Introduction
This is the master file for the data processing, analysis and visualization for Pottier et al. 2024. Vulnerability of amphibians to global warming
This code goes through every step of the pipeline used to assess the vulnerability of amphibians to global warming. However, it is not entirely reproducible. This code requires extensive computational power and most computations used the computational cluster Katana supported by Research Technology Services at UNSW Sydney (https://research.unsw.edu.au/katana). All code ran on Katana are indicated under each header, along with the location of the specific files one can use to reproduce the results.
Therefore, the present file is mostly here to walk the reader through the analyses. Where one wants to reproduce the analysis, please see the folder /R, where the files used to produce these results in an HPC environment are provided. The /pbs folder also describes the resources requested to run each individual R file, and these can be adapted to different supercomputers.
This file contains nearly 40,000 lines of code, and it is highly recommended to navigate the knitted version of the code (html file; or https://p-pottier.github.io/Vulnerability_amphibians_global_warming/). If opening this code in Rstudio or VScode, please use the headers to navigate this document. At the bottom of the headers on the knitted page, you also have the option to visualize this document using a light or dark theme.
While not all data and RData files are provided in this repository due to memory size limits in Github, all files are available upon request. Outputs from intermediate files are also presented throughout. Please feel free to contact Patrice Pottier (p.pottier@unsw.edu.au) if you have any questions, find mistakes in the code, or if you would like to access specific files. We will also archive all files to a permanent repository upon journal acceptance.
Note that species level occurrences are named “populations” in this code, and assemblages are referred to as “communities”.
Data processing
Load packages and data
Load packages
pacman::p_load(tidyverse,
kableExtra,
viridis,
viridisLite,
maps,
ape,
naniar,
patchwork,
R.utils,
ggtree, # devtools::install_github("YuLab-SMU/ggtree")
ggtreeExtra, # devtools::install_github("xiangpin/ggtreeExtra")
phytools,
tidytree,
ggnewscale,
RColorBrewer,
ggdist,
ggstatsplot,
here,
ggExtra,
ggbeeswarm,
raster,
sp,
rasterSp,# remotes::install_github("RS-eco/rasterSp", build_vignettes = T)
rgeos,
letsR,
rredlist,
taxize,# remotes::install_github("ropensci/taxize")
rredlist, #remotes::install_github("ropensci/rredlist")
rgdal,
rgeos,
purrr,
parallel,
doParallel,
abind,
curl,
zoo,
sf,
data.table,
purrr,
RNetCDF,
NicheMapR, # devtools::install_github("https://github.com/mrke/NicheMapR")
microclima,
letsR,
MCMCglmm,
mgcv,
gamm4,
rlang,
future,
furrr,
future.apply,
futile.logger,
rnaturalearth,
rnaturalearthdata,
rnaturalearthhires,
metafor,
ggspatial,
lwgeom,
cowplot,
lme4,
ggeffects,
optimx,
emmeans)
'%!in%' <- function(x,y)!('%in%'(x,y)) # Function opposite of %in%
Load data and phylogenetic tree
d <- read_csv("data/data_Pottier_et_al_2022.csv") # Curated data from Pottier et al. (2022) Scientific Data
tree <- read.tree("data/Jetz_Pyron_2018_consensus.tre") # Load consensus tree from Jetz and Pyron (2018) Nature Ecology and Evolution
tree_metadata <- read_csv("data/Jetz_Pyron_metadata_tree.csv") # Metadata for species in the tree
Johnson <- read_csv("data/data_Johnson_et_al_2023.csv") # Body mass data from Johnson et al. (2023) Global Ecology and Biogeography
ecotype <- read_csv("data/ecotype_data.csv") # Ecotype data from Wu et al. (2024). in prep; and supplemented by data from Pietro Pollo and A. Nayelli Rivera-Villanueva
Load and process data from the IUCN
IUCN_polygons <- shapefile("data/amphibian_IUCN_maps/AMPHIBIANS.shp")
IUCN_polygons <- IUCN_polygons[IUCN_polygons$presence == 1, ] # Only keep extant amphibians
IUCN_polygons <- IUCN_polygons[IUCN_polygons$category != "EX", ] # Remove extinct species
IUCN_polygons <- IUCN_polygons[IUCN_polygons$category != "EW", ]
IUCN_polygons@data$binomial <- IUCN_polygons@data$sci_name
saveRDS(IUCN_polygons, file = "RData/General_data/raster_IUCN_polygons.rds")
# create a table with IUCN species names, taxonomic information, and threat
# status
IUCN_data <- data.frame(tip.label = IUCN_polygons@data$binomial, order = IUCN_polygons@data$order_,
family = IUCN_polygons@data$family, IUCN_status = IUCN_polygons@data$category)
Process training data for the imputation
Here, we generate a dataset with 3 acclimation temperatures per species with ~90% missing data (5213 species in total).
Filtering training data
Here, we focus on data for which we possess the acclimation or acclimatisation temperatures
# Process data from Pottier et al. 2022
d.training <- filter(d,
d$acclimation_temp!="NA"|
ambient_temp!="NA"|
substrate_temp!="NA"|
water_temp!="NA"|
field_body_temp!="NA", # Remove data without acclimation or acclimatisation temperatures
life_stage_tested=="adults"|life_stage_tested=="larvae") # Take data from both adults and larvae
# Take the acclimatisation temperature (preferably the field body temperature or microenvironmental temperature) as the acclimation temperature
d.training <- d.training %>%
mutate(acclimation_temp = ifelse(!is.na(acclimation_temp), acclimation_temp, # Take acclimation temperature when available
ifelse(!is.na(field_body_temp), field_body_temp, # Otherwise take the field body temperature
ifelse(!is.na(substrate_temp), substrate_temp, # Otherwise take the substrate temperature
ifelse(!is.na(water_temp), water_temp, ambient_temp))))) # Otherwise take the water temperature or ambient temperature
Match species names with the IUCN red list
d.training$tip.label <- d.training$species # Rename species name to tip.label
tree$tip.label <- gsub("_", " ", tree$tip.label) # Remove underscore between species names in the tree
d.training <- data.frame(d.training[d.training$tip.label %in% tree$tip.label, ]) # Only get species for which we have phylogenetic information
d.not_IUCN <- d.training[d.training$tip.label %!in% IUCN_data$tip.label, ] # Identify species not listed in the IUCN
d.not_IUCN$tip.label <- as.factor(d.not_IUCN$tip.label) # 63 species not matching IUCN red list
# Rename species name in the data and phylogenetic tree to match IUCN data
### Dendropsophus labialis --> Dendropsophus molitor in redlist
d.training$tip.label[d.training$tip.label == "Dendropsophus labialis"] <- "Dendropsophus molitor"
tree$tip.label[tree$tip.label == "Dendropsophus labialis"] <- "Dendropsophus molitor"
### Hyla andersonii --> Dryophytes andersonii in redlist
d.training$tip.label[d.training$tip.label == "Hyla andersonii"] <- "Dryophytes andersonii"
tree$tip.label[tree$tip.label == "Hyla andersonii"] <- "Dryophytes andersonii"
### Hyla chrysoscelis --> Dryophytes chrysoscelis in redlist
d.training$tip.label[d.training$tip.label == "Hyla chrysoscelis"] <- "Dryophytes chrysoscelis"
tree$tip.label[tree$tip.label == "Hyla chrysoscelis"] <- "Dryophytes chrysoscelis"
### Hyla cinerea --> Dryophytes cinereus in redlist
d.training$tip.label[d.training$tip.label == "Hyla cinerea"] <- "Dryophytes cinereus"
tree$tip.label[tree$tip.label == "Hyla cinerea"] <- "Dryophytes cinereus"
### Hyla squirella --> Dryophytes squirellus in redlist
d.training$tip.label[d.training$tip.label == "Hyla squirella"] <- "Dryophytes squirellus"
tree$tip.label[tree$tip.label == "Hyla squirella"] <- "Dryophytes squirellus"
### Hyla versicolor --> Dryophytes versicolor in redlist
d.training$tip.label[d.training$tip.label == "Hyla versicolor"] <- "Dryophytes versicolor"
tree$tip.label[tree$tip.label == "Hyla versicolor"] <- "Dryophytes versicolor"
### Hyla walkeri --> Dryophytes walkeri in redlist
d.training$tip.label[d.training$tip.label == "Hyla walkeri"] <- "Dryophytes walkeri"
tree$tip.label[tree$tip.label == "Hyla walkeri"] <- "Dryophytes walkeri"
### Hynobius fuca --> Hynobius fucus in redlist
d.training$tip.label[d.training$tip.label == "Hynobius fuca"] <- "Hynobius fucus"
tree$tip.label[tree$tip.label == "Hynobius fuca"] <- "Hynobius fucus"
### Hypsiboas cinerascens --> Boana cinerascens in redlist
d.training$tip.label[d.training$tip.label == "Hypsiboas cinerascens"] <- "Boana cinerascens"
tree$tip.label[tree$tip.label == "Hypsiboas cinerascens"] <- "Boana cinerascens"
### Hypsiboas faber ---> Boana faber in redlist
d.training$tip.label[d.training$tip.label == "Hypsiboas faber"] <- "Boana faber"
tree$tip.label[tree$tip.label == "Hypsiboas faber"] <- "Boana faber"
### Hypsiboas geographicus --> Boana geographica in redlist
d.training$tip.label[d.training$tip.label == "Hypsiboas geographicus"] <- "Boana geographica"
tree$tip.label[tree$tip.label == "Hypsiboas geographicus"] <- "Boana geographica"
### Hypsiboas lanciformis --> Boana lanciformis in redlist
d.training$tip.label[d.training$tip.label == "Hypsiboas lanciformis"] <- "Boana lanciformis"
tree$tip.label[tree$tip.label == "Hypsiboas lanciformis"] <- "Boana lanciformis"
### Hypsiboas punctatus --> Boana punctata in redlist
d.training$tip.label[d.training$tip.label == "Hypsiboas punctatus"] <- "Boana punctata"
tree$tip.label[tree$tip.label == "Hypsiboas punctatus"] <- "Boana punctata"
### Pachymedusa dacnicolor --> Agalychnis dacnicolor in redlist
d.training$tip.label[d.training$tip.label == "Pachymedusa dacnicolor"] <- "Agalychnis dacnicolor"
tree$tip.label[tree$tip.label == "Pachymedusa dacnicolor"] <- "Agalychnis dacnicolor"
### Rana berlandieri --> Lithobates berlandieri in redlist
d.training$tip.label[d.training$tip.label == "Rana berlandieri"] <- "Lithobates berlandieri"
tree$tip.label[tree$tip.label == "Rana berlandieri"] <- "Lithobates berlandieri"
### Rana catesbeiana --> Lithobates catesbeianus in redlist
d.training$tip.label[d.training$tip.label == "Rana catesbeiana"] <- "Lithobates catesbeianus"
tree$tip.label[tree$tip.label == "Rana catesbeiana"] <- "Lithobates catesbeianus"
### Rana clamitans --> Lithobates clamitans in redlist
d.training$tip.label[d.training$tip.label == "Rana clamitans"] <- "Lithobates clamitans"
tree$tip.label[tree$tip.label == "Rana clamitans"] <- "Lithobates clamitans"
### Rana palmipes --> Lithobates palmipes in redlist
d.training$tip.label[d.training$tip.label == "Rana palmipes"] <- "Lithobates palmipes"
tree$tip.label[tree$tip.label == "Rana palmipes"] <- "Lithobates palmipes"
### Rana palustris --> Lithobates palustris in redlist
d.training$tip.label[d.training$tip.label == "Rana palustris"] <- "Lithobates palustris"
tree$tip.label[tree$tip.label == "Rana palustris"] <- "Lithobates palustris"
### Rana pipiens --> Lithobates pipiens in redlist
d.training$tip.label[d.training$tip.label == "Rana pipiens"] <- "Lithobates pipiens"
tree$tip.label[tree$tip.label == "Rana pipiens"] <- "Lithobates pipiens"
### Rana sphenocephala --> Lithobates sphenocephalus in redlist
d.training$tip.label[d.training$tip.label == "Rana sphenocephala"] <- "Lithobates sphenocephalus"
tree$tip.label[tree$tip.label == "Rana sphenocephala"] <- "Lithobates sphenocephalus"
### Rana sylvatica --> Lithobates sylvaticus in redlist
d.training$tip.label[d.training$tip.label == "Rana sylvatica"] <- "Lithobates sylvaticus"
tree$tip.label[tree$tip.label == "Rana sylvatica"] <- "Lithobates sylvaticus"
### Rana virgatipes --> Lithobates virgatipes in redlist
d.training$tip.label[d.training$tip.label == "Rana virgatipes"] <- "Lithobates virgatipes"
tree$tip.label[tree$tip.label == "Rana virgatipes"] <- "Lithobates virgatipes"
### Rana warszewitschii --> Lithobates warszewitschii in redlist
d.training$tip.label[d.training$tip.label == "Rana warszewitschii"] <- "Lithobates warszewitschii"
tree$tip.label[tree$tip.label == "Rana warszewitschii"] <- "Lithobates warszewitschii"
### Rhinella schneideri ---> Rhinella diptycha in redlist
d.training$tip.label[d.training$tip.label == "Rhinella schneideri"] <- "Rhinella diptycha"
### Syncope bassleri --> Chiasmocleis bassleri in redlist
d.training$tip.label[d.training$tip.label == "Syncope bassleri"] <- "Chiasmocleis bassleri"
tree$tip.label[tree$tip.label == "Syncope bassleri"] <- "Chiasmocleis bassleri"
### Ecnomiohyla miotympanum --> Rheohyla miotympanum in redlist
d.training$tip.label[d.training$tip.label == "Ecnomiohyla miotympanum"] <- "Rheohyla miotympanum"
tree$tip.label[tree$tip.label == "Ecnomiohyla miotympanum"] <- "Rheohyla miotympanum"
### Eupemphix nattereri --> Physalaemus nattereri in redlist
d.training$tip.label[d.training$tip.label == "Eupemphix nattereri"] <- "Physalaemus nattereri"
tree$tip.label[tree$tip.label == "Eupemphix nattereri"] <- "Physalaemus nattereri"
### Hylarana labialis --> Chalcorana labialis in redlist
d.training$tip.label[d.training$tip.label == "Hylarana labialis"] <- "Chalcorana labialis"
tree$tip.label[tree$tip.label == "Hylarana labialis"] <- "Chalcorana labialis"
### Hypsiboas albomarginatus --> Boana albomarginata in redlist
d.training$tip.label[d.training$tip.label == "Hypsiboas albomarginatus"] <- "Boana albomarginata"
tree$tip.label[tree$tip.label == "Hypsiboas albomarginatus"] <- "Boana albomarginata"
### Hypsiboas albopunctatus --> Boana albopunctata in redlist
d.training$tip.label[d.training$tip.label == "Hypsiboas albopunctatus"] <- "Boana albopunctata"
tree$tip.label[tree$tip.label == "Hypsiboas albopunctatus"] <- "Boana albopunctata"
### Hypsiboas boans --> Boana boans in redlist
d.training$tip.label[d.training$tip.label == "Hypsiboas boans"] <- "Boana boans"
tree$tip.label[tree$tip.label == "Hypsiboas boans"] <- "Boana boans"
### Hypsiboas crepitans --> Boana crepitans
d.training$tip.label[d.training$tip.label == "Hypsiboas crepitans"] <- "Boana crepitans"
tree$tip.label[tree$tip.label == "Hypsiboas crepitans"] <- "Boana crepitans"
### Hypsiboas curupi --> Boana curupi
d.training$tip.label[d.training$tip.label == "Hypsiboas curupi"] <- "Boana curupi"
tree$tip.label[tree$tip.label == "Hypsiboas curupi"] <- "Boana curupi"
### Hypsiboas fasciatus --> Boana fasciata
d.training$tip.label[d.training$tip.label == "Hypsiboas fasciatus"] <- "Boana fasciata"
tree$tip.label[tree$tip.label == "Hypsiboas fasciatus"] <- "Boana fasciata"
### Hypsiboas pardalis --> Boana pardalis
d.training$tip.label[d.training$tip.label == "Hypsiboas pardalis"] <- "Boana pardalis"
tree$tip.label[tree$tip.label == "Hypsiboas pardalis"] <- "Boana pardalis"
### Hypsiboas pellucens --> Boana pellucens
d.training$tip.label[d.training$tip.label == "Hypsiboas pellucens"] <- "Boana pellucens"
tree$tip.label[tree$tip.label == "Hypsiboas pellucens"] <- "Boana pellucens"
### Hypsiboas pulchellus --> Boana pulchella
d.training$tip.label[d.training$tip.label == "Hypsiboas pulchellus"] <- "Boana pulchella"
tree$tip.label[tree$tip.label == "Hypsiboas pulchellus"] <- "Boana pulchella"
### Hypsiboas raniceps --> Boana raniceps
d.training$tip.label[d.training$tip.label == "Hypsiboas raniceps"] <- "Boana raniceps"
### Hypsiboas rosenbergi --> Boana raniceps
d.training$tip.label[d.training$tip.label == "Hypsiboas rosenbergi"] <- "Boana raniceps"
tree$tip.label[tree$tip.label == "Hypsiboas rosenbergi"] <- "Boana raniceps"
### Hypsiboas semilineatus --> Boana semilineata
d.training$tip.label[d.training$tip.label == "Hypsiboas semilineatus"] <- "Boana semilineata"
tree$tip.label[tree$tip.label == "Hypsiboas semilineatus"] <- "Boana semilineata"
### Phyllomedusa nordestina --> Pithecopus nordestinus
d.training$tip.label[d.training$tip.label == "Phyllomedusa nordestina"] <- "Pithecopus nordestinus"
tree$tip.label[tree$tip.label == "Phyllomedusa nordestina"] <- "Pithecopus nordestinus"
### Phyllomedusa rohdei --> Pithecopus rohdei
d.training$tip.label[d.training$tip.label == "Phyllomedusa rohdei"] <- "Pithecopus rohdei"
tree$tip.label[tree$tip.label == "Phyllomedusa rohdei"] <- "Pithecopus rohdei"
### Rana bwana--> Lithobates bwana
d.training$tip.label[d.training$tip.label == "Rana bwana"] <- "Lithobates bwana"
tree$tip.label[tree$tip.label == "Rana bwana"] <- "Lithobates bwana"
### Rana vaillanti --> Lithobates vaillanti
d.training$tip.label[d.training$tip.label == "Rana vaillanti"] <- "Lithobates vaillanti"
tree$tip.label[tree$tip.label == "Rana vaillanti"] <- "Lithobates vaillanti"
### Rhinella humboldti --> Rhinella granulosa
d.training$tip.label[d.training$tip.label == "Rhinella humboldti"] <- "Rhinella granulosa"
### Scinax agilis --> Ololygon agilis
d.training$tip.label[d.training$tip.label == "Scinax agilis"] <- "Ololygon agilis"
tree$tip.label[tree$tip.label == "Scinax agilis"] <- "Ololygon agilis"
### Scinax aromothyella --> Ololygon aromothyella
d.training$tip.label[d.training$tip.label == "Scinax aromothyella"] <- "Ololygon aromothyella"
tree$tip.label[tree$tip.label == "Scinax aromothyella"] <- "Ololygon aromothyella"
### Scinax strigilatus --> Ololygon strigilata
d.training$tip.label[d.training$tip.label == "Scinax strigilatus"] <- "Ololygon strigilata"
tree$tip.label[tree$tip.label == "Scinax strigilatus"] <- "Ololygon strigilata"
### Sphaenorhynchus pauloalvini --> Gabohyla pauloalvini
d.training$tip.label[d.training$tip.label == "Sphaenorhynchus pauloalvini"] <- "Gabohyla pauloalvini"
tree$tip.label[tree$tip.label == "Sphaenorhynchus pauloalvini"] <- "Gabohyla pauloalvini"
####### Species not matching IUCN or not having distribution ranges ##########
# Hypsiboas almendarizae --> not in IUCN Elachistocleis muiraquitan --> not in
# IUCN Epipedobates darwinwallacei --> not in IUCN Hyloxalus yasuni --> not in
# IUCN Pristimantis reichlei --> not in IUCN Pristimantis bicantus --> not in
# IUCN Plethodon chlorobryonis --> not in IUCN Plethodon grobmani --> not in
# IUCN Plethodon ocmulgee --> not in IUCN Plethodon variolatus --> not in IUCN
# Rhinella azarai --> not in IUCN Trachycephalus cunauaru --> not in IUCN
# Scinax strigilatus --> in the IUCN, but no geographical distribution
# Uperoleia marmorata --> in the IUCN, but no geographical distribution
saveRDS(tree, "Rdata/General_data/tree_for_imputation.rds") # Save the modified phylogenetic tree
d.not_IUCN <- d.training[d.training$tip.label %!in% IUCN_data$tip.label, ] # Check if all replacements were done correctly
unique(d.not_IUCN$species) # All good, 14 species not captured
d.training <- d.training[d.training$tip.label %in% IUCN_data$tip.label, ] # Only get species for which we have IUCN ranges
d.training <- unique(d.training)
species <- distinct(data.frame(tip.label = d.training$tip.label)) # List of unique species names (524 species with phylogeny and distribution range)
d.training %>%
group_by(tip.label) %>%
summarise(n = n()) %>%
ungroup() %>%
summarise(mean = mean(n), min = min(n), max = max(n)) # 5.08 estimates per species on average
d.training %>%
group_by(tip.label) %>%
summarise(n = n()) %>%
filter(n > 1) %>%
ungroup() # 287 species with more than one estimate.
Merge ecotype data with the training data and do additional processing
# Select relevant variables
d.training <- dplyr::select(d.training, tip.label, order, family, acclimated, acclimation_temp,
acclimation_time, life_stage_tested, SVL, body_mass, endpoint, medium_test_temp,
ramping, mean_UTL, error_UTL, n_UTL, error_type)
d.training <- left_join(d.training, dplyr::select(unique(IUCN_data), tip.label, IUCN_status)) # Update IUCN status
# Process ecotype data
ecotype$tip.label <- ecotype$binomial # Rename species name
ecotype$order_name <- str_to_title(ecotype$order_name)
ecotype$family_name <- str_to_title(ecotype$family_name)
ecotype$binomial_tree_phylo <- gsub("_", " ", ecotype$binomial_tree_phylo)
ecotype_sp <- ecotype
# Match the different variables in the ecotype data to the training data
ecotype_IUCN_match <- ecotype_sp[ecotype_sp$binomial_IUCN %in% d.training$tip.label,
] %>%
mutate(matched_var = "binomial_IUCN")
ecotype_binomial_match <- ecotype_sp[ecotype_sp$binomial %in% d.training$tip.label,
] %>%
mutate(matched_var = "binomial")
ecotype_phylo_match <- ecotype_sp[ecotype_sp$binomial_tree_phylo %in% d.training$tip.label,
] %>%
mutate(matched_var = "binomial_tree_phylo")
# Combine the datasets and create the 'tip.label' column based on the
# 'matched_var' colum
combined_data <- bind_rows(ecotype_IUCN_match, ecotype_binomial_match, ecotype_phylo_match) %>%
mutate(tip.label = case_when(matched_var == "binomial_IUCN" ~ binomial_IUCN,
matched_var == "binomial" ~ binomial, matched_var == "binomial_tree_phylo" ~
binomial_tree_phylo))
ecotype_sp <- combined_data %>%
distinct(tip.label, .keep_all = TRUE)
# Merge ecotype information in the training data
d.training <- left_join(d.training, dplyr::select(ecotype_sp, tip.label, ecotype,
second_ecotype, strategy, Notes))
d.training <- d.training %>%
mutate(sd_UTL = ifelse(error_type == "se" & is.na(n_UTL) == "TRUE", NA, ifelse(error_type ==
"sd", error_UTL, error_UTL * sqrt(n_UTL)))) # Convert SE to SD
Process list of species to impute
Select species to be imputed
Here, we focus on species for which we have ecotype data, geographical distribution range, and matching the phylogenetic tree from Jetz and Pyron (2018)
# Filter species for which we have IUCN distribution range and phylogenetic
# position
tree_sp <- data.frame(tip.label = tree$tip.label) # Data frame with all species in the phylogenetic tree
tree_sp <- data.frame(tip.label = tree_sp[tree_sp$tip.label %in% IUCN_data$tip.label,
]) # Only get species for which we have IUCN ranges (5792)
ecotype_sp <- dplyr::select(ecotype, order_name, family_name, ecotype, second_ecotype,
strategy, Notes, SVL_cm, mass_g, binomial, binomial_IUCN, binomial_tree_phylo)
# Match the different variables in the ecotype data to the phylogenetic tree
ecotype_IUCN_match <- ecotype_sp[ecotype_sp$binomial_IUCN %in% tree_sp$tip.label,
] %>%
mutate(matched_var = "binomial_IUCN")
ecotype_binomial_match <- ecotype_sp[ecotype_sp$binomial %in% tree_sp$tip.label,
] %>%
mutate(matched_var = "binomial")
ecotype_phylo_match <- ecotype_sp[ecotype_sp$binomial_tree_phylo %in% tree_sp$tip.label,
] %>%
mutate(matched_var = "binomial_tree_phylo")
# Combine the datasets and create the 'tip.label' column based on the
# 'matched_var' colum
combined_data <- bind_rows(ecotype_IUCN_match, ecotype_binomial_match, ecotype_phylo_match) %>%
mutate(tip.label = case_when(matched_var == "binomial_IUCN" ~ binomial_IUCN,
matched_var == "binomial" ~ binomial, matched_var == "binomial_tree_phylo" ~
binomial_tree_phylo))
ecotype_sp <- combined_data %>%
distinct(tip.label, .keep_all = TRUE)
# Remove obligate cave-dwellers
ecotype_sp <- ecotype_sp %>%
filter(strategy != "Obligate cave-dweller" | is.na(strategy) == TRUE)
# Add a mention for paedomorphic species
ecotype_sp <- ecotype_sp %>%
mutate(strategy = ifelse(strategy == "Paedomorphic" | Notes == "Paedomorphic",
"Paedomorphic", NA)) %>%
dplyr::select(-Notes)
## Now we create a list of data-deficient species that match the phylogeny and
## for which we know the ecotype
data_deficient_sp <- data.frame(tip.label = tree_sp[tree_sp$tip.label %!in% d.training$tip.label,
]) # Data frame with all species we do not have data for (5268)
data_deficient_sp <- data.frame(tip.label = data_deficient_sp[data_deficient_sp$tip.label %in%
ecotype_sp$tip.label, ]) # Focus on species we have ecotype data (4822)
data_deficient_sp <- left_join(data_deficient_sp, ecotype_sp, by = "tip.label") # Assign ecotype data to each species.
data_deficient_sp <- left_join(data_deficient_sp, dplyr::select(unique(IUCN_data),
tip.label, IUCN_status))
data_deficient_sp <- dplyr::select(data_deficient_sp, tip.label, order = order_name,
family = family_name, IUCN_status, ecotype, second_ecotype, strategy, SVL = SVL_cm,
mass_g) # 4822 species
# Add body mass data from Johnson et al. 2023
Johnson$tip.label <- Johnson$Species
Johnson$tip.label <- gsub("_", " ", Johnson$tip.label)
Johnson$mass_Johnson <- Johnson$Body_mass
data_deficient_sp <- left_join(data_deficient_sp, dplyr::select(Johnson, tip.label,
mass_Johnson), by = "tip.label")
# Choose the body mass from Niky and Wu (2023) when available, otherwise take
# it from Johnson et al. 2023
data_deficient_sp <- data_deficient_sp %>%
mutate(body_mass = ifelse(is.na(mass_g) == FALSE, mass_g, mass_Johnson))
# Remove Caecilians because we did not have data for this Order.
data_deficient_sp <- filter(data_deficient_sp, order != "Gymnophiona")
# All species that will be imputed (4679 species)
all_species <- dplyr::select(data_deficient_sp, -mass_g, -mass_Johnson)
Process species in the training data that will be imputed
We will also generate 3 new estimates per species, for the species we already have in the training dataset. This will allow us to standardise CTmax estimates using the same parameters.
species_training <- dplyr::select(d.training, tip.label, order, family, IUCN_status)
# Match with the ecotype dataset
species_training <- left_join(species_training, dplyr::select(ecotype_sp, tip.label,
ecotype, second_ecotype, SVL = SVL_cm, mass_g))
# Match with Johnson et al. body mass data
species_training <- left_join(species_training, dplyr::select(Johnson, tip.label,
mass_Johnson))
# Take the data from Johnson et al. when available
species_training <- species_training %>%
mutate(body_mass = ifelse(is.na(mass_g) == FALSE, mass_g, mass_Johnson)) %>%
dplyr::select(-mass_g, -mass_Johnson)
Merge datasets of species we need to impute and assign predictors
data_to_imp <- full_join(species_training, all_species)
data_to_imp <- distinct(data_to_imp)
data_to_imp <- data_to_imp %>% mutate(ramping=1, # most common ramping
acclimated="acclimated", # acclimated animals
acclimation_temp = NA, # will be determined from biophysical models
acclimation_time=10, # most common acclimation time
endpoint="OS", # Most common endpoint; most precise one too
medium_test_temp="body_water", # Body or water temperature recorded during assay
life_stage_tested="adults",
imputed="yes")
Combine training data and list of species to impute
d.training <- mutate(d.training, imputed = "no") # add a column 'imputed'
d.training <- mutate(d.training, medium_test_temp = ifelse(medium_test_temp == "body" |
medium_test_temp == "water", "body_water", "ambient"))
data_for_imp <- full_join(d.training, data_to_imp) # Join the train data to the data to impute
data_for_imp <- mutate(data_for_imp, species = tip.label) # Add another column for species so we can use this as a random effect as well.
data_for_imp <- mutate(data_for_imp, row_n = as.character(row_number()))
# Manually add missing ecotypes
# Subset the data_for_imp dataframe to remove the rows with missing ecotype
# values
data_with_ecotypes <- data_for_imp[!is.na(data_for_imp$ecotype), ]
# Identify missing species
missing_ecotypes <- data_for_imp[is.na(data_for_imp$ecotype), ]
# Manually add missing ecotypes
missing_ecotypes[missing_ecotypes$tip.label == "Cophixalus australis", "ecotype"] <- "Ground-dwelling"
missing_ecotypes[missing_ecotypes$tip.label == "Oreobates gemcare", "ecotype"] <- "Ground-dwelling"
missing_ecotypes[missing_ecotypes$tip.label == "Oreobates granulosus", "ecotype"] <- "Ground-dwelling"
missing_ecotypes[missing_ecotypes$tip.label == "Dryophytes walkeri", "ecotype"] <- "Ground-dwelling"
missing_ecotypes[missing_ecotypes$tip.label == "Hynobius fucus", "ecotype"] <- "Ground-dwelling"
missing_ecotypes[missing_ecotypes$tip.label == "Kalophrynus limbooliati", "ecotype"] <- "Ground-dwelling"
missing_ecotypes[missing_ecotypes$tip.label == "Pristimantis festae", "ecotype"] <- "Ground-dwelling"
missing_ecotypes[missing_ecotypes$tip.label == "Pristimantis matidiktyo", "ecotype"] <- "Ground-dwelling"
missing_ecotypes[missing_ecotypes$tip.label == "Pristimantis pharangobates", "ecotype"] <- "Ground-dwelling"
missing_ecotypes[missing_ecotypes$tip.label == "Chalcorana labialis", "ecotype"] <- "Stream-dwelling"
missing_ecotypes[missing_ecotypes$tip.label == "Hyloxalus italoi", "ecotype"] <- "Stream-dwelling"
missing_ecotypes[missing_ecotypes$tip.label == "Cynops orientalis", "ecotype"] <- "Aquatic"
missing_ecotypes[missing_ecotypes$tip.label == "Paramesotriton labiatus", "ecotype"] <- "Aquatic"
missing_ecotypes[missing_ecotypes$tip.label == "Dendropsophus molitor", "ecotype"] <- "Arboreal"
missing_ecotypes[missing_ecotypes$tip.label == "Polypedates braueri", "ecotype"] <- "Arboreal"
# Merge the two data frames based on matching tip.label values
data_for_imp <- rbind(data_with_ecotypes, missing_ecotypes)
# Save the preliminary data for the imputation (we still need to add the
# temperature)
saveRDS(data_for_imp, "RData/General_data/pre_data_for_imputation.rds")
Match species to their geographical distribution
IUCN_polygons <- readRDS(file = "RData/General_data/raster_IUCN_polygons.rds") # Save processed IUCN polygons
polygon <- subset(IUCN_polygons, IUCN_polygons@data$binomial %in% data_for_imp$tip.label)
# Rasterize at a 1-degree resolution
raster_polygon <- lets.presab(polygon, resol = 1)
presence_absence <- data.frame(raster_polygon$Presence_and_Absence_Matrix)
# Pivot longer
presence_absence <- pivot_longer(presence_absence, cols = Acanthixalus.sonjae:Zachaenus.parvulus,
names_to = "tip.label", values_to = "Presence")
presence <- filter(presence_absence, Presence == "1") # Only keep rows where species are present
saveRDS(presence, file = "RData/General_data/species_coordinates.rds")
distinct_coord <- distinct(dplyr::select(presence, -Presence, -tip.label)) # Coordinates where species are present (14119 grid cells)
distinct_coord <- distinct_coord %>%
rename(x = Longitude.x., y = Latitude.y.)
saveRDS(distinct_coord, file = "RData/General_data/distinct_coordinates.rds")
Adjust coordinates to land masses
Rasterizing at a 1-degree resolution produces data points that do not necessarily match land masses. Therefore, these coordinates must be adjusted
Loop over coordinates and find matching land
This code ran on an HPC environment, where the original code can be found in R/Data_wrangling/Adjusting_coordinates.R and the resources used in pbs/Data_wrangling/Adjusting_coordinates.pbs
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Function to check if coordinate is on land
check_if_point_on_land <- function(lon, lat) {
point <- st_point(c(lon, lat))
point_sf <- st_sf(geometry = st_sfc(point), crs = 4326) # specify the CRS when you create the st_point
st_transform(point_sf, st_crs(land_polygon)) # transform the point to match the CRS of the land_polygon
st_intersects(land_polygon, point_sf, sparse = FALSE)[1, 1]
}
adjust_coordinates_to_land <- function(lon, lat) {
if (check_if_point_on_land(lon, lat)) {
return(c(lon, lat))
}
steps <- seq(-0.45, 0.45, by = 0.05)
# Iterate over both longitude and latitude in the full range of steps
for (dx in steps) {
for (dy in steps) {
if (check_if_point_on_land(lon + dx, lat + dy)) {
return(c(lon + dx, lat + dy))
}
}
}
return(NULL) # return NULL if no land found
}
distinct_coord <- readRDS(file = "RData/General_data/distinct_coordinates.rds")
distinct_coord_adj <- as.data.frame(distinct_coord %>%
rename(lon = x, lat = y))
# Iterate through each row in the dataframe
for (i in 1:nrow(distinct_coord_adj)) {
print(paste("Processing lon: ", distinct_coord_adj$lon[i], ", lat: ", distinct_coord_adj$lat[i]))
adjusted_coords <- adjust_coordinates_to_land(distinct_coord_adj$lon[i], distinct_coord_adj$lat[i])
if (!is.null(adjusted_coords)) {
print(paste("Adjusted lon: ", adjusted_coords[1], ", lat: ", adjusted_coords[2]))
distinct_coord_adj$lon[i] <- adjusted_coords[1]
distinct_coord_adj$lat[i] <- adjusted_coords[2]
} else {
print(paste("No suitable land coordinates found for lon: ", distinct_coord_adj$lon[i],
", lat: ", distinct_coord_adj$lat[i]))
}
}
saveRDS(distinct_coord_adj, file = "RData/General_data/distinct_coordinates_adj.rds")
Adjust coordinates not matching land masses
Some coordinates were not adjusted properly, and had to undergo further processing.
species_occurrence <- readRDS("RData/General_data/species_coordinates.rds")
species_occurrence <- rename(species_occurrence, lon = Longitude.x., lat = Latitude.y.)
n_species <- unique(species_occurrence$tip.label) # 5213
distinct_coord_adj <- readRDS("RData/General_data/distinct_coordinates_adj.rds")
# Identify coordinates that did not intersect with land masses
failed_coords <- data.frame(lon = c(-124.5, 38.5, -123.5, 129.5, -107.5, -74.5, -68.5,
-65.5, 122.5, 97.5, 120.5, 126.5, -14.5, -9.5, 107.5, -0.5, 0.5, -0.5, 0.5, 6.5,
150.5, -5.5, 50.5, 17.5, 25.5, 122.5, -64.5), lat = c(45.5, 41.5, 37.5, 27.5,
23.5, 19.5, 19.5, 17.5, 15.5, 13.5, 10.5, 10.5, 9.5, 4.5, 3.5, 0.5, 0.5, -0.5,
-0.5, -0.5, -8.5, -16.5, -16.5, -33.5, -34.5, -34.5, -41.5))
distinct_coord_adj <- distinct_coord_adj %>%
mutate(id = paste(lon, lat))
failed_coords <- failed_coords %>%
mutate(id = paste(lon, lat))
# Replace the coordinates
distinct_coord_adj <- distinct_coord_adj %>%
rowwise() %>%
mutate(across(c(lon, lat), ~if_else(id %in% failed_coords$id, NA_real_, .))) %>%
dplyr::select(-id)
# Get original distinct coordinates
distinct_coord <- readRDS("RData/General_data/distinct_coordinates.rds")
distinct_coord_adj <- cbind(distinct_coord, distinct_coord_adj)
distinct_coord_adj <- filter(distinct_coord_adj, is.na(lat) == FALSE)
saveRDS(distinct_coord_adj, file = "RData/General_data/distinct_coordinates_adjusted.rds")
##
species_occurrence <- species_occurrence %>%
mutate(id = paste(lon, lat))
species_occurrence <- species_occurrence %>%
rowwise() %>%
mutate(across(c(lon, lat), ~if_else(id %in% failed_coords$id, NA_real_, .))) %>%
dplyr::select(-id)
species_occurrence <- filter(species_occurrence, is.na(lat) == FALSE)
n_species <- unique(species_occurrence$tip.label) # 5203. All good.
### Updating species occurrence dataset
distinct_coord <- readRDS(file = "RData/General_data/distinct_coordinates_adjusted.rds")
# Match body mass data to coordinates
presence <- readRDS(file = "RData/General_data/species_coordinates.rds")
presence <- dplyr::rename(presence, lon = Longitude.x., lat = Latitude.y.)
presence$tip.label <- gsub("\\.", " ", presence$tip.label)
presence_adjusted <- presence %>%
dplyr::left_join(distinct_coord, by = c(lon = "x", lat = "y"))
presence <- dplyr::rename(presence_adjusted, original_lon = lon, original_lat = lat,
lon = lon.y, lat = lat.y)
presence <- dplyr::filter(presence, is.na(lon) == FALSE)
saveRDS(presence, file = "RData/General_data/species_coordinates_adjusted.rds")
##### Adjust coordinates that were not properly adjusted ############
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
mutate(lon = case_when(lon == -17.95 & lat == 27.7 ~ -17.95, lon == 54.05 & lat ==
26.5 ~ 54.05, lon == 107.5 & lat == 10.5 ~ 107.5, lon == "0.05" & lat ==
5.65 ~ 0.05, lon == 134.05 & lat == -0.95 ~ 134.05, lon == 55.25 & lat ==
-4.5 ~ 55.23, lon == 133.5 & lat == -11.5 ~ 133.45, lon == -38.95 & lat ==
-14.1 ~ -38.97, lon == -5.75 & lat == -15.95 ~ -5.7, lon == 49.05 & lat ==
-19.15 ~ 49.02, lon == 30.05 & lat == -31.25 ~ 30.05, lon == 147.05 & lat ==
-38.5 ~ 147.05, lon == 174.5 & lat == -35.5 ~ 174.45, TRUE ~ lon), lat = case_when(lon ==
-17.95 & lat == 27.7 ~ 27.75, lon == 54.05 & lat == 26.5 ~ 26.8, lon == 107.5 &
lat == 10.5 ~ 10.55, lon == "0.05" & lat == 5.65 ~ 5.7, lon == 134.05 & lat ==
-0.95 ~ -0.85, lon == 55.25 & lat == -4.5 ~ -4.5, lon == 133.5 & lat == -11.5 ~
-11.5, lon == -38.95 & lat == -14.1 ~ -14.1, lon == -5.75 & lat == -15.95 ~
-15.95, lon == 49.05 & lat == -19.15 ~ -19.15, lon == 30.05 & lat == -31.25 ~
-31.2, lon == 147.05 & lat == -38.5 ~ -38.45, lon == 174.5 & lat == -35.5 ~
-35.5, TRUE ~ lat))
saveRDS(distinct_coord, file = "RData/General_data/distinct_coordinates_adjusted.rds")
### Same for species coordinates
species_coordinates <- readRDS("RData/General_data/species_coordinates_adjusted.rds")
species_coordinates <- species_coordinates %>%
mutate(lon = case_when(lon == -17.95 & lat == 27.7 ~ -17.95, lon == 54.05 & lat ==
26.5 ~ 54.05, lon == 107.5 & lat == 10.5 ~ 107.5, lon == "0.05" & lat ==
5.65 ~ 0.05, lon == 134.05 & lat == -0.95 ~ 134.05, lon == 55.25 & lat ==
-4.5 ~ 55.23, lon == 133.5 & lat == -11.5 ~ 133.45, lon == -38.95 & lat ==
-14.1 ~ -38.97, lon == -5.75 & lat == -15.95 ~ -5.7, lon == 49.05 & lat ==
-19.15 ~ 49.02, lon == 30.05 & lat == -31.25 ~ 30.05, lon == 147.05 & lat ==
-38.5 ~ 147.05, lon == 174.5 & lat == -35.5 ~ 174.45, TRUE ~ lon), lat = case_when(lon ==
-17.95 & lat == 27.7 ~ 27.75, lon == 54.05 & lat == 26.5 ~ 26.8, lon == 107.5 &
lat == 10.5 ~ 10.55, lon == "0.05" & lat == 5.65 ~ 5.7, lon == 134.05 & lat ==
-0.95 ~ -0.85, lon == 55.25 & lat == -4.5 ~ -4.5, lon == 133.5 & lat == -11.5 ~
-11.5, lon == -38.95 & lat == -14.1 ~ -14.1, lon == -5.75 & lat == -15.95 ~
-15.95, lon == 49.05 & lat == -19.15 ~ -19.15, lon == 30.05 & lat == -31.25 ~
-31.2, lon == 147.05 & lat == -38.5 ~ -38.45, lon == 174.5 & lat == -35.5 ~
-35.5, TRUE ~ lat))
saveRDS(species_coordinates, file = "RData/General_data/species_coordinates_adjusted.rds")
Biophysical modelling
This code assumes that you have downloaded NCEP and TerraClimate data locally. NCEP data can be downloaded at https://psl.noaa.gov/thredds/catalog/Datasets/ncep.reanalysis2/gaussian_grid/catalog.html ; and TerraClimate data can be downloaded at https://www.climatologylab.org/terraclimate.html
This code ran on an HPC environment, where the original code can be found in R/Biophysical_modelling/ and the resources used in pbs/Biophysical_modelling/ These folders contain R files for each microhabitat (Substrate/ for terrestrial conditions; Pond/ for aquatic conditions; Arboreal/ for arboreal conditions) and climatic scenario (/current for 2006-2015; 2C/ for +2 degrees of warming above pre-industrial levels; or 4C/ for +4 degrees of warming above pre-industrial levels).
For each conditions, R files are separated in batches to reduce memory and time requirements. There are also files with the suffix “…problematic_locations or”…failed_locations”. The former refer to locations that did not run properly in parallel (e.g. got stuck in endless loops) and had to run in regular for loops; while failed locations are locations that were identified as failing, post-hoc, and that needed small adjustments (i.e., increase in the error tolerance for calculating soil temperatures in NicheMapR). All geographical coordinates eventually ran without error.
Once all R scripts have finished running, you can combine the outputs from all files using the “Combining_outputs…” file for each microhabitat and climatic scenario.
Models for arboreal species also require further adjustments because they ran on a subset of species. You can find the script to subset arboreal species in R/Data_wrangling/Filtering_data_for_arboreal_species.R, as well as some code to match the row numbers known to be “problematic locations” in this subsetted dataset in R/Data_wrangling/Matching_row_numbers_problematic_locations_arboreal.R
Vegetated substrate
Current climate
Function to process coordinates
# Set up parallel processing
plan(multicore(workers = 16))
# Set the global timeout
options(future.globals.timeout = 1800) # Set a global timeout for 30 minutes
# Function to process each location
process_location <- function(loc) {
print(paste("Processing location with lon =", loc$lon, "lat =", loc$lat))
# Set parameters
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
coords <- c(loc$lon, loc$lat)
ERR <- 1.5 # Adjusting ERR based on the locations (locations with snow sometimes need a higher value)
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords, dstart = dstart, dfinish = dfinish, scenario = 0,
minshade = 85, maxshade = 90, Usrhyt = 0.01, cap = 1, ERR = ERR, spatial = "data/NCEP")
}, timeout = 600, onTimeout = "warning")
# If the process takes longer than 10 minutes, break.
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep exceeded time limit for location with lon =", loc$lon,
"lat =", loc$lat))
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = "micro_ncep exceeded time limit"))
} else {
micro <- micro_result
}
# When the first micro_ncep fails, try again with different ERR
if (max(micro$metout[, 1] == 0)) {
while (max(micro$metout[, 1] == 0)) {
ERR <- ERR + 0.5
# Use withTimeout() for the micro_ncep() function inside the while
# loop as well
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords, dstart = dstart, dfinish = dfinish,
scenario = 0, minshade = 85, maxshade = 90, Usrhyt = 0.01, cap = 1,
ERR = ERR, spatial = "data/NCEP")
}, timeout = 600, onTimeout = "warning")
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep inside while loop exceeded time limit for location with lon =",
loc$lon, "lat =", loc$lat))
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep inside while loop exceeded time limit"))
} else {
micro <- micro_result
}
# If ERR exceeds 5, break the loop regardless of the value of
# micro$metout[,1]
if (ERR >= 5) {
break
}
}
}
# If even after adjusting ERR micro_ncep fails, return an error message
if (max(micro$metout[, 1] == 0)) {
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = "Failed on micro_ncep call"))
}
# Another explicit check
if (!max(micro$metout[, 1] == 0)) {
assign("micro", micro, envir = globalenv())
} else {
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = "Failed on micro_ncep call"))
}
success <- FALSE
result <- NULL
# Use withTimeout() for the ectotherm() function as well
ecto_result <- withTimeout({
tryCatch({
ecto <- NicheMapR::ectotherm(live = 0, Ww_g = loc$median_mass, shape = 4,
pct_wet = 80)
list(success = TRUE, ecto = ecto)
}, error = function(e) {
list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = paste("Failed on ectotherm call:",
as.character(conditionMessage(e))))
})
}, timeout = 200, onTimeout = "warning")
if (inherits(ecto_result, "try-error") || is.null(ecto_result)) {
print(paste("ectotherm() exceeded time limit for location with lon =", loc$lon,
"lat =", loc$lat))
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = "ectotherm() exceeded time limit"))
}
if (!ecto_result$success) {
return(ecto_result)
}
gc()
# Assign the successful ecto result to the global environment
ecto <- ecto_result$ecto
assign("ecto", ecto, envir = globalenv())
environ <- as.data.frame(ecto$environ)
# Max and mean daily temperatures
daily_temp <- environ %>%
dplyr::mutate(YEAR = YEAR + 2004, ERR = ERR) %>%
dplyr::group_by(ERR, YEAR, DOY, lon = paste(loc$lon), lat = paste(loc$lat)) %>%
dplyr::summarize(max_temp = max(TC), mean_temp = mean(TC), .groups = "drop")
# Create a function to calculate the rolling weekly temperature
calc_yearly_rolling_mean <- function(data) {
data$mean_weekly_temp <- zoo::rollapply(data$mean_temp, width = 7, FUN = mean,
align = "right", partial = TRUE, fill = NA)
data$max_weekly_temp <- zoo::rollapply(data$max_temp, width = 7, FUN = mean,
align = "right", partial = TRUE, fill = NA)
return(data)
}
# Calculate the rolling mean for each year and location
daily_temp <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::top_n(91, max_temp)
# Calculate the mean overall maximum temperature for the warmest days of
# each year
overall_temp_warmest_days <- daily_temp_warmest_days %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp), median = median(max_temp), fifth_percentile = quantile(max_temp,
0.05), first_quartile = quantile(max_temp, 0.25), third_quartile = quantile(max_temp,
0.75), ninetyfifth_percentile = quantile(max_temp, 0.95), min = min(max_temp),
max = max(max_temp), .groups = "drop")
result <- list(daily_temp, daily_temp_warmest_days, overall_temp_warmest_days)
return(list(success = ecto_result$success, result = result)) # Return a list with a success flag and the result.
}
Function to process coordinates in chunks
Processing the coordinates in chunks is very useful for debugging.
# Function to process a chunk of locations
process_chunk <- function(start_index, end_index) {
# Read in distinct coordinates
distinct_coord <- readRDS(file = "RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord[, 3:4]
distinct_coord <- rename(distinct_coord, x = lon, y = lat)
# Adjust the range of locations
distinct_coord <- distinct_coord[start_index:end_index, ]
loc_list <- split(distinct_coord, seq(nrow(distinct_coord)))
loc_list <- lapply(loc_list, unlist)
# Match body mass data to coordinates
presence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
data_for_imp <- readRDS(file = "RData/General_data/pre_data_for_imputation.rds")
presence_body_mass <- merge(presence, dplyr::select(data_for_imp, tip.label,
body_mass), by = "tip.label")
median_body_mass <- presence_body_mass %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass <- mutate(median_body_mass, median_mass = ifelse(is.na(median_mass) ==
TRUE, 8.4, median_mass))
# Convert loc_list back into a data frame
loc_df <- do.call("rbind", loc_list)
loc_df <- as.data.frame(loc_df)
names(loc_df) <- c("lon", "lat")
# Join loc_df and median_body_mass
loc_df <- dplyr::left_join(loc_df, median_body_mass, by = c("lon", "lat"))
# Convert loc_df back into a list
loc_list <- split(loc_df, seq(nrow(loc_df)))
# # Set up parallel processing
plan(multicore(workers = 16))
# Set the global timeout
options(future.globals.timeout = 1800) # Set a global timeout for 30 minutes
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
results <- future.apply::future_lapply(loc_list, process_location, future.packages = c("NicheMapR",
"microclima", "dplyr", "zoo", "R.utils"))
Sys.time()
saveRDS(results, file = paste0("RData/Biophysical_modelling/Substrate/current/results/1st_batch/results_biophysical_modelling_substrate_",
start_index, "-", end_index, ".rds"))
}
Process all locations
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
chunk_size <- 16
# Define start and end row numbers in distinct_coord
start_row <- 1
end_row <- 14092
# Calculate total chunks for the specified range
total_chunks <- ceiling((end_row - start_row + 1)/chunk_size)
# Loop through each chunk
for (i in seq(total_chunks)) {
# Calculate start and end indices for the current chunk
start_index <- ((i - 1) * chunk_size) + start_row
end_index <- min(i * chunk_size + start_row - 1, end_row)
# Call the process_chunk function with a timeout of 600 seconds
result <- process_chunk(start_index, end_index)
}
Sys.time()
Combine outputs
Note that some coordinates failed to run with the code provided above, and hence ran using slightly different parameters (higher error tolerance for calculating soil temperatures; not in parallel session). See details [HERE] Note also that the year 2005 was taken out as a burn in to allow the models to fully converge.
# List of folders for each type of file
folders <- c("1st_batch", "2nd_batch", "3rd_batch", "4th_batch", "5th_batch")
# Initialize empty lists to store the combined dataframes
combined_daily_temp <- list()
combined_daily_temp_warmest_days <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the folder
path_to_rds <- paste("RData/Biophysical_modelling/Substrate/current/results",
folder, sep = "/")
# Get the list of all rds files in the folder
rds_files <- list.files(path = path_to_rds, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract 'result' from each sublist in nested_list_results
nested_list_results <- lapply(nested_list_results, function(x) lapply(x, function(y) y[["result"]]))
# Flatten the list
flattened_list <- do.call("c", nested_list_results)
# Combine all dataframes for each metric and store them in the respective
# lists
combined_daily_temp[[folder]] <- do.call("rbind", lapply(flattened_list, function(x) x[[1]]))
combined_daily_temp_warmest_days[[folder]] <- do.call("rbind", lapply(flattened_list,
function(x) x[[2]]))
}
# Combine the dataframes from all folders
combined_daily_temp <- do.call("rbind", combined_daily_temp)
combined_daily_temp_warmest_days <- do.call("rbind", combined_daily_temp_warmest_days)
# Convert to numeric values
combined_daily_temp$lon <- as.numeric(combined_daily_temp$lon)
combined_daily_temp$lat <- as.numeric(combined_daily_temp$lat)
combined_daily_temp_warmest_days$lon <- as.numeric(combined_daily_temp_warmest_days$lon)
combined_daily_temp_warmest_days$lat <- as.numeric(combined_daily_temp_warmest_days$lat)
######################################################################################################
# Initialize empty lists to store the combined dataframes
combined_daily_temp_problematic <- list()
combined_daily_temp_warmest_days_problematic <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the subfolder 'problematic_locations'
path_to_subfolder <- paste("RData/Biophysical_modelling/Substrate/current/results",
folder, "problematic_locations", sep = "/")
# Check if the subfolder exists
if (dir.exists(path_to_subfolder)) {
# Get the list of all rds files in the subfolder
rds_files <- list.files(path = path_to_subfolder, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract the four dataframes from each list and unlist 'lat' and 'lon'
# columns
combined_daily_temp_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[1]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
combined_daily_temp_warmest_days_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[2]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
# Store the combined dataframes in the respective lists
combined_daily_temp_problematic[[folder]] <- combined_daily_temp_subfolder
combined_daily_temp_warmest_days_problematic[[folder]] <- combined_daily_temp_warmest_days_subfolder
}
}
# Combine the dataframes from all subfolders
combined_daily_temp_problematic <- do.call("rbind", combined_daily_temp_problematic)
combined_daily_temp_warmest_days_problematic <- do.call("rbind", combined_daily_temp_warmest_days_problematic)
#################################################################################################################
# Get the path to the 'failed_locations' folder
path_to_failed_locations <- "RData/Biophysical_modelling/Substrate/current/results/failed_locations"
# Initialize empty lists to store the combined dataframes
combined_daily_temp_failed <- list()
combined_daily_temp_warmest_days_failed <- list()
# Get the list of .rds files in the 'failed_locations' folder
rds_files_failed <- list.files(path = path_to_failed_locations, pattern = "*.rds",
full.names = TRUE)
# Loop over each .rds file
for (file_failed in rds_files_failed) {
# Read the .rds file into a list
nested_list_results_failed <- readRDS(file_failed)
# Extract the four dataframes from the list
combined_daily_temp_failed_subfolder <- nested_list_results_failed[["result"]][[1]]
combined_daily_temp_warmest_days_failed_subfolder <- nested_list_results_failed[["result"]][[2]]
# Store the combined dataframes in the respective lists
combined_daily_temp_failed[[file_failed]] <- combined_daily_temp_failed_subfolder
combined_daily_temp_warmest_days_failed[[file_failed]] <- combined_daily_temp_warmest_days_failed_subfolder
}
# Combine the dataframes from all files in the 'failed_locations' folder
combined_daily_temp_failed <- do.call("rbind", combined_daily_temp_failed)
combined_daily_temp_warmest_days_failed <- do.call("rbind", combined_daily_temp_warmest_days_failed)
#####################################################################################################
# Combine files
combined_daily_temp_all <- rbind(combined_daily_temp, combined_daily_temp_problematic,
combined_daily_temp_failed)
combined_daily_temp_warmest_days_all <- rbind(combined_daily_temp_warmest_days, combined_daily_temp_warmest_days_problematic,
combined_daily_temp_warmest_days_failed)
# Remove the first year (burn-in)
combined_daily_temp_all <- filter(combined_daily_temp_all, YEAR != "2005")
combined_daily_temp_warmest_days_all <- filter(combined_daily_temp_warmest_days_all,
YEAR != "2005")
# Calculate the overall temperature across coordinates
combined_overall_temp_all <- combined_daily_temp_warmest_days_all %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp), median = median(max_temp), fifth_percentile = quantile(max_temp,
0.05), first_quartile = quantile(max_temp, 0.25), third_quartile = quantile(max_temp,
0.75), ninetyfifth_percentile = quantile(max_temp, 0.95), min = min(max_temp),
max = max(max_temp), .groups = "drop")
# Save files
saveRDS(combined_daily_temp_all, file = "RData/Biophysical_modelling/Substrate/current/daily_temp_substrate.rds")
saveRDS(combined_daily_temp_warmest_days_all, file = "RData/Biophysical_modelling/Substrate/current/daily_temp_warmest_days_substrate.rds")
saveRDS(combined_overall_temp_all, file = "RData/Biophysical_modelling/Substrate/current/overall_temp_warmest_days_substrate.rds")
####################################################################################################
## Check for missing coordinates again
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- mutate(distinct_coord, lon_lat = paste(lon, lat))
combined_daily_temp_warmest_days_all <- mutate(combined_daily_temp_warmest_days_all,
lon_lat = paste(lon, lat))
# Function opposite of %in%
"%!in%" <- function(x, y) !(x %in% y)
missing_coord <- distinct_coord[distinct_coord$lon_lat %!in% combined_daily_temp_warmest_days_all$lon_lat,
]
missing_coord
missing_coord_row_numbers <- data.frame(row_n = which(distinct_coord$lon_lat %!in%
combined_daily_temp_warmest_days_all$lon_lat))
missing_coord_row_numbers
###
check_dup <- group_by(combined_daily_temp_all, lon, lat, YEAR, DOY) %>%
summarise(n = n())
loc_with_more_than_one <- filter(check_dup, n > 1)
loc_with_more_than_one <- mutate(loc_with_more_than_one, lon_lat = paste(lon, lat))
row_n_dup <- data.frame(row_n = which(distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat))
row_n_dup
dup_coord <- distinct_coord[distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat,
]
dup_coord
# Save the combined data
saveRDS(missing_coord, file = "RData/Biophysical_modelling/Substrate/current/missing_coordinates.rds")
saveRDS(missing_coord_row_numbers, file = "RData/Biophysical_modelling/Substrate/current/missing_coordinates_row_n.rds")
saveRDS(row_n_dup, file = "RData/Biophysical_modelling/Substrate/current/row_n_duplicated_coordinates.rds")
saveRDS(dup_coord, file = "RData/Biophysical_modelling/Substrate/current/duplicated_coordinates.rds")
Future climate (+2C)
Here, we assume a climate projection assuming 2 degrees of warming.
Function to process coordinates
# Set up parallel processing
plan(multicore(workers = 16))
# Set the global timeout
options(future.globals.timeout = 1800) # Set a global timeout for 30 minutes
# Function to process each location
process_location <- function(loc) {
print(paste("Processing location with lon =", loc$lon, "lat =", loc$lat))
# Set parameters
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
coords <- c(loc$lon, loc$lat)
# Check if current index falls within any of the problematic ranges
ERR <- 1.5
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords, dstart = dstart, dfinish = dfinish, scenario = 2,
minshade = 85, maxshade = 90, Usrhyt = 0.01, cap = 1, ERR = ERR, spatial = "data/NCEP",
terra_source = "data/TerraClimate/data")
}, timeout = 600, onTimeout = "warning")
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep exceeded time limit for location with lon =", loc$lon,
"lat =", loc$lat))
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = "micro_ncep exceeded time limit"))
} else {
micro <- micro_result
}
# When the first micro_ncep fails, try again with different ERR
if (max(micro$metout[, 1] == 0)) {
while (max(micro$metout[, 1] == 0)) {
ERR <- ERR + 0.5
# Use withTimeout() for the micro_ncep() function inside the while
# loop as well
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords, dstart = dstart, dfinish = dfinish,
scenario = 2, minshade = 85, maxshade = 90, Usrhyt = 0.01, cap = 1,
ERR = ERR, spatial = "data/NCEP", terra_source = "data/TerraClimate/data")
}, timeout = 600, onTimeout = "warning")
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep inside while loop exceeded time limit for location with lon =",
loc$lon, "lat =", loc$lat))
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep inside while loop exceeded time limit"))
} else {
micro <- micro_result
}
# If ERR exceeds 5, break the loop regardless of the value of
# micro$metout[,1]
if (ERR >= 5) {
break
}
}
}
# If even after adjusting ERR micro_ncep fails, return an error message
if (max(micro$metout[, 1] == 0)) {
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = "Failed on micro_ncep call"))
}
# Another explicit check
if (!max(micro$metout[, 1] == 0)) {
assign("micro", micro, envir = globalenv())
} else {
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = "Failed on micro_ncep call"))
}
success <- FALSE
result <- NULL
# Use withTimeout() for the ectotherm() function as well
ecto_result <- withTimeout({
tryCatch({
ecto <- NicheMapR::ectotherm(live = 0, Ww_g = loc$median_mass, shape = 4,
pct_wet = 80)
list(success = TRUE, ecto = ecto)
}, error = function(e) {
list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = paste("Failed on ectotherm call:",
as.character(conditionMessage(e))))
})
}, timeout = 300, onTimeout = "warning")
if (inherits(ecto_result, "try-error") || is.null(ecto_result)) {
print(paste("ectotherm() exceeded time limit for location with lon =", loc$lon,
"lat =", loc$lat))
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = "ectotherm() exceeded time limit"))
}
if (!ecto_result$success) {
return(ecto_result)
}
gc()
# Assign the successful ecto result to the global environment
ecto <- ecto_result$ecto
assign("ecto", ecto, envir = globalenv())
environ <- as.data.frame(ecto$environ)
# Max and mean daily temperatures
daily_temp <- environ %>%
dplyr::mutate(YEAR = YEAR + 2004, ERR = ERR) %>%
dplyr::group_by(ERR, YEAR, DOY, lon = paste(loc$lon), lat = paste(loc$lat)) %>%
dplyr::summarize(max_temp = max(TC), mean_temp = mean(TC), .groups = "drop")
# Create a function to calculate the rolling weekly temperature
calc_yearly_rolling_mean <- function(data) {
data$mean_weekly_temp <- zoo::rollapply(data$mean_temp, width = 7, FUN = mean,
align = "right", partial = TRUE, fill = NA)
data$max_weekly_temp <- zoo::rollapply(data$max_temp, width = 7, FUN = mean,
align = "right", partial = TRUE, fill = NA)
return(data)
}
# Calculate the rolling mean for each year and location
daily_temp <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::top_n(91, max_temp)
# Calculate the mean overall maximum temperature for the warmest days of
# each year
overall_temp_warmest_days <- daily_temp_warmest_days %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp), median = median(max_temp), fifth_percentile = quantile(max_temp,
0.05), first_quartile = quantile(max_temp, 0.25), third_quartile = quantile(max_temp,
0.75), ninetyfifth_percentile = quantile(max_temp, 0.95), min = min(max_temp),
max = max(max_temp), .groups = "drop")
result <- list(daily_temp, daily_temp_warmest_days, overall_temp_warmest_days)
return(list(success = ecto_result$success, result = result)) # Return a list with a success flag and the result.
}
Function to process coordinates in chunks
# Function to process a chunk of locations
process_chunk <- function(start_index, end_index) {
# Read in distinct coordinates
distinct_coord <- readRDS(file = "RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord[, 3:4]
distinct_coord <- rename(distinct_coord, x = lon, y = lat)
# Adjust the range of locations
distinct_coord <- distinct_coord[start_index:end_index, ]
loc_list <- split(distinct_coord, seq(nrow(distinct_coord)))
loc_list <- lapply(loc_list, unlist)
# Match body mass data to coordinates
presence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
data_for_imp <- readRDS(file = "RData/General_data/pre_data_for_imputation.rds")
presence_body_mass <- merge(presence, dplyr::select(data_for_imp, tip.label,
body_mass), by = "tip.label")
median_body_mass <- presence_body_mass %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass <- mutate(median_body_mass, median_mass = ifelse(is.na(median_mass) ==
TRUE, 8.4, median_mass))
# Convert loc_list back into a data frame
loc_df <- do.call("rbind", loc_list)
loc_df <- as.data.frame(loc_df)
names(loc_df) <- c("lon", "lat")
# Join loc_df and median_body_mass
loc_df <- dplyr::left_join(loc_df, median_body_mass, by = c("lon", "lat"))
# Convert loc_df back into a list
loc_list <- split(loc_df, seq(nrow(loc_df)))
# # Set up parallel processing
plan(multicore(workers = 16))
# Set the global timeout
options(future.globals.timeout = 1800) # Set a global timeout for 50 minutes
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
results <- future.apply::future_lapply(loc_list, process_location, future.packages = c("NicheMapR",
"microclima", "dplyr", "zoo", "R.utils"))
Sys.time()
saveRDS(results, file = paste0("RData/Biophysical_modelling/Substrate/2C/results/1st_batch/results_biophysical_modelling_substrate_future2C_",
start_index, "-", end_index, ".rds"))
}
Process all locations
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
chunk_size <- 16
# Define start and end row numbers in distinct_coord
start_row <- 1
end_row <- 14092
# Calculate total chunks for the specified range
total_chunks <- ceiling((end_row - start_row + 1)/chunk_size)
# Loop through each chunk
for (i in seq(total_chunks)) {
# Calculate start and end indices for the current chunk
start_index <- ((i - 1) * chunk_size) + start_row
end_index <- min(i * chunk_size + start_row - 1, end_row)
# Call the process_chunk function with a timeout of 600 seconds
result <- process_chunk(start_index, end_index)
}
Sys.time()
Combine outputs
Note that some coordinates failed to run with the code provided above, and hence ran using slightly different parameters (higher error tolerance for calculating soil temperatures; not in parallel session). See details [HERE] Note also that the year 2005 was taken out as a burn in to allow the models to fully converge.
# List of folders for each type of file
folders <- c("1st_batch", "2nd_batch", "3rd_batch", "4th_batch", "5th_batch", "6th_batch",
"7th_batch", "8th_batch", "9th_batch", "10th_batch", "11th_batch", "12th_batch",
"13th_batch", "14th_batch")
# Initialize empty lists to store the combined dataframes
combined_daily_temp <- list()
combined_daily_temp_warmest_days <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the folder
path_to_rds <- paste("RData/Biophysical_modelling/Substrate/2C/results", folder,
sep = "/")
# Get the list of all rds files in the folder
rds_files <- list.files(path = path_to_rds, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract 'result' from each sublist in nested_list_results
nested_list_results <- lapply(nested_list_results, function(x) lapply(x, function(y) y[["result"]]))
# Flatten the list
flattened_list <- do.call("c", nested_list_results)
# Combine all dataframes for each metric and store them in the respective
# lists
combined_daily_temp[[folder]] <- do.call("rbind", lapply(flattened_list, function(x) x[[1]]))
combined_daily_temp_warmest_days[[folder]] <- do.call("rbind", lapply(flattened_list,
function(x) x[[2]]))
}
# Combine the dataframes from all folders
combined_daily_temp <- do.call("rbind", combined_daily_temp)
combined_daily_temp_warmest_days <- do.call("rbind", combined_daily_temp_warmest_days)
# Convert to numeric values
combined_daily_temp$lon <- as.numeric(combined_daily_temp$lon)
combined_daily_temp$lat <- as.numeric(combined_daily_temp$lat)
combined_daily_temp_warmest_days$lon <- as.numeric(combined_daily_temp_warmest_days$lon)
combined_daily_temp_warmest_days$lat <- as.numeric(combined_daily_temp_warmest_days$lat)
######################################################################################################
# Initialize empty lists to store the combined dataframes
combined_daily_temp_problematic <- list()
combined_daily_temp_warmest_days_problematic <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the subfolder 'problematic_locations'
path_to_subfolder <- paste("RData/Biophysical_modelling/Substrate/2C/results",
folder, "problematic_locations", sep = "/")
# Check if the subfolder exists
if (dir.exists(path_to_subfolder)) {
# Get the list of all rds files in the subfolder
rds_files <- list.files(path = path_to_subfolder, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract the four dataframes from each list and unlist 'lat' and 'lon'
# columns
combined_daily_temp_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[1]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
combined_daily_temp_warmest_days_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[2]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
# Store the combined dataframes in the respective lists
combined_daily_temp_problematic[[folder]] <- combined_daily_temp_subfolder
combined_daily_temp_warmest_days_problematic[[folder]] <- combined_daily_temp_warmest_days_subfolder
}
}
# Combine the dataframes from all subfolders
combined_daily_temp_problematic <- do.call("rbind", combined_daily_temp_problematic)
combined_daily_temp_warmest_days_problematic <- do.call("rbind", combined_daily_temp_warmest_days_problematic)
#################################################################################################################
# Get the path to the 'failed_locations' folder
path_to_failed_locations <- "RData/Biophysical_modelling/Substrate/2C/results/failed_locations"
# Initialize empty lists to store the combined dataframes
combined_daily_temp_failed <- list()
combined_daily_temp_warmest_days_failed <- list()
# Get the list of .rds files in the 'failed_locations' folder
rds_files_failed <- list.files(path = path_to_failed_locations, pattern = "*.rds",
full.names = TRUE)
# Loop over each .rds file
for (file_failed in rds_files_failed) {
# Read the .rds file into a list
nested_list_results_failed <- readRDS(file_failed)
# Extract the four dataframes from the list
combined_daily_temp_failed_subfolder <- nested_list_results_failed[["result"]][[1]]
combined_daily_temp_warmest_days_failed_subfolder <- nested_list_results_failed[["result"]][[2]]
# Store the combined dataframes in the respective lists
combined_daily_temp_failed[[file_failed]] <- combined_daily_temp_failed_subfolder
combined_daily_temp_warmest_days_failed[[file_failed]] <- combined_daily_temp_warmest_days_failed_subfolder
}
# Combine the dataframes from all files in the 'failed_locations' folder
combined_daily_temp_failed <- do.call("rbind", combined_daily_temp_failed)
combined_daily_temp_warmest_days_failed <- do.call("rbind", combined_daily_temp_warmest_days_failed)
#####################################################################################################
# Combine files
combined_daily_temp_all <- rbind(combined_daily_temp, combined_daily_temp_problematic,
combined_daily_temp_failed)
combined_daily_temp_warmest_days_all <- rbind(combined_daily_temp_warmest_days, combined_daily_temp_warmest_days_problematic,
combined_daily_temp_warmest_days_failed)
# Remove the first year (burn-in)
combined_daily_temp_all <- filter(combined_daily_temp_all, YEAR != "2005")
combined_daily_temp_warmest_days_all <- filter(combined_daily_temp_warmest_days_all,
YEAR != "2005")
# Calculate the overall temperature across coordinates
combined_overall_temp_all <- combined_daily_temp_warmest_days_all %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp), median = median(max_temp), fifth_percentile = quantile(max_temp,
0.05), first_quartile = quantile(max_temp, 0.25), third_quartile = quantile(max_temp,
0.75), ninetyfifth_percentile = quantile(max_temp, 0.95), min = min(max_temp),
max = max(max_temp), .groups = "drop")
# Save files
saveRDS(combined_daily_temp_all, file = "RData/Biophysical_modelling/Substrate/2C/daily_temp_substrate_2C.rds")
saveRDS(combined_daily_temp_warmest_days_all, file = "RData/Biophysical_modelling/Substrate/2C/daily_temp_warmest_days_substrate_2C.rds")
saveRDS(combined_overall_temp_all, file = "RData/Biophysical_modelling/Substrate/2C/overall_temp_warmest_days_substrate_2C.rds")
####################################################################################################
## Check for missing coordinates again
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- mutate(distinct_coord, lon_lat = paste(lon, lat))
combined_daily_temp_warmest_days_all <- mutate(combined_daily_temp_warmest_days_all,
lon_lat = paste(lon, lat))
# Function opposite of %in%
"%!in%" <- function(x, y) !(x %in% y)
missing_coord <- distinct_coord[distinct_coord$lon_lat %!in% combined_daily_temp_warmest_days_all$lon_lat,
]
missing_coord
missing_coord_row_numbers <- data.frame(row_n = which(distinct_coord$lon_lat %!in%
combined_daily_temp_warmest_days_all$lon_lat))
missing_coord_row_numbers
###
check_dup <- group_by(combined_daily_temp_all, lon, lat, YEAR, DOY) %>%
summarise(n = n())
loc_with_more_than_one <- filter(check_dup, n > 1)
loc_with_more_than_one <- mutate(loc_with_more_than_one, lon_lat = paste(lon, lat))
row_n_dup <- data.frame(row_n = which(distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat))
row_n_dup
dup_coord <- distinct_coord[distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat,
]
dup_coord
# Save the combined data
saveRDS(missing_coord, file = "RData/Biophysical_modelling/Substrate/2C/missing_coordinates.rds")
saveRDS(missing_coord_row_numbers, file = "RData/Biophysical_modelling/Substrate/2C/missing_coordinates_row_n.rds")
saveRDS(row_n_dup, file = "RData/Biophysical_modelling/Substrate/2C/row_n_duplicated_coordinates.rds")
saveRDS(dup_coord, file = "RData/Biophysical_modelling/Substrate/2C/duplicated_coordinates.rds")
Future climate (+4C)
Function to process coordinates
# # Set up parallel processing
plan(multicore(workers = 16))
# Set the global timeout
options(future.globals.timeout = 2700) # Set a global timeout for 45 minutes
# Function to process each location
process_location <- function(loc) {
print(paste("Processing location with lon =", loc$lon, "lat =", loc$lat))
# Set parameters
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
coords <- c(loc$lon, loc$lat)
# Check if current index falls within any of the problematic ranges
ERR <- 1.5
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords, dstart = dstart, dfinish = dfinish, scenario = 4,
minshade = 85, maxshade = 90, Usrhyt = 0.01, cap = 1, ERR = ERR, spatial = "data/NCEP",
terra_source = "data/TerraClimate/data")
}, timeout = 600, onTimeout = "warning")
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep exceeded time limit for location with lon =", loc$lon,
"lat =", loc$lat))
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = "micro_ncep exceeded time limit"))
} else {
micro <- micro_result
}
# When the first micro_ncep fails, try again with different ERR
if (max(micro$metout[, 1] == 0)) {
while (max(micro$metout[, 1] == 0)) {
ERR <- ERR + 0.5
# Use withTimeout() for the micro_ncep() function inside the while
# loop as well
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords, dstart = dstart, dfinish = dfinish,
scenario = 4, minshade = 85, maxshade = 90, Usrhyt = 0.01, cap = 1,
ERR = ERR, spatial = "data/NCEP", terra_source = "data/TerraClimate/data")
}, timeout = 600, onTimeout = "warning")
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep inside while loop exceeded time limit for location with lon =",
loc$lon, "lat =", loc$lat))
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep inside while loop exceeded time limit"))
} else {
micro <- micro_result
}
# If ERR exceeds 5, break the loop regardless of the value of
# micro$metout[,1]
if (ERR >= 5) {
break
}
}
}
# If even after adjusting ERR micro_ncep fails, return an error message
if (max(micro$metout[, 1] == 0)) {
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = "Failed on micro_ncep call"))
}
# Another explicit check
if (!max(micro$metout[, 1] == 0)) {
assign("micro", micro, envir = globalenv())
} else {
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = "Failed on micro_ncep call"))
}
success <- FALSE
result <- NULL
# Use withTimeout() for the ectotherm() function as well
ecto_result <- withTimeout({
tryCatch({
ecto <- NicheMapR::ectotherm(live = 0, Ww_g = loc$median_mass, shape = 4,
pct_wet = 80)
list(success = TRUE, ecto = ecto)
}, error = function(e) {
list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = paste("Failed on ectotherm call:",
as.character(conditionMessage(e))))
})
}, timeout = 300, onTimeout = "warning")
if (inherits(ecto_result, "try-error") || is.null(ecto_result)) {
print(paste("ectotherm() exceeded time limit for location with lon =", loc$lon,
"lat =", loc$lat))
return(list(success = FALSE, loc = c(lon = loc$lon, lat = loc$lat), error_message = "ectotherm() exceeded time limit"))
}
if (!ecto_result$success) {
return(ecto_result)
}
gc()
# Assign the successful ecto result to the global environment
ecto <- ecto_result$ecto
assign("ecto", ecto, envir = globalenv())
environ <- as.data.frame(ecto$environ)
# Max and mean daily temperatures
daily_temp <- environ %>%
dplyr::mutate(YEAR = YEAR + 2004, ERR = ERR) %>%
dplyr::group_by(ERR, YEAR, DOY, lon = paste(loc$lon), lat = paste(loc$lat)) %>%
dplyr::summarize(max_temp = max(TC), mean_temp = mean(TC), .groups = "drop")
# Create a function to calculate the rolling weekly temperature
calc_yearly_rolling_mean <- function(data) {
data$mean_weekly_temp <- zoo::rollapply(data$mean_temp, width = 7, FUN = mean,
align = "right", partial = TRUE, fill = NA)
data$max_weekly_temp <- zoo::rollapply(data$max_temp, width = 7, FUN = mean,
align = "right", partial = TRUE, fill = NA)
return(data)
}
# Calculate the rolling mean for each year and location
daily_temp <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::top_n(91, max_temp)
# Calculate the mean overall maximum temperature for the warmest days of
# each year
overall_temp_warmest_days <- daily_temp_warmest_days %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp), median = median(max_temp), fifth_percentile = quantile(max_temp,
0.05), first_quartile = quantile(max_temp, 0.25), third_quartile = quantile(max_temp,
0.75), ninetyfifth_percentile = quantile(max_temp, 0.95), min = min(max_temp),
max = max(max_temp), .groups = "drop")
result <- list(daily_temp, daily_temp_warmest_days, overall_temp_warmest_days)
return(list(success = ecto_result$success, result = result)) # Return a list with a success flag and the result.
}
Function to process coordinates in chunks
# Function to process a chunk of locations
process_chunk <- function(start_index, end_index) {
# Read in distinct coordinates
distinct_coord <- readRDS(file = "RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord[, 3:4]
distinct_coord <- rename(distinct_coord, x = lon, y = lat)
# Adjust the range of locations
distinct_coord <- distinct_coord[start_index:end_index, ]
loc_list <- split(distinct_coord, seq(nrow(distinct_coord)))
loc_list <- lapply(loc_list, unlist)
# Match body mass data to coordinates
presence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
data_for_imp <- readRDS(file = "RData/General_data/pre_data_for_imputation.rds")
presence_body_mass <- merge(presence, dplyr::select(data_for_imp, tip.label,
body_mass), by = "tip.label")
median_body_mass <- presence_body_mass %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass <- mutate(median_body_mass, median_mass = ifelse(is.na(median_mass) ==
TRUE, 8.4, median_mass))
# Convert loc_list back into a data frame
loc_df <- do.call("rbind", loc_list)
loc_df <- as.data.frame(loc_df)
names(loc_df) <- c("lon", "lat")
# Join loc_df and median_body_mass
loc_df <- dplyr::left_join(loc_df, median_body_mass, by = c("lon", "lat"))
# Convert loc_df back into a list
loc_list <- split(loc_df, seq(nrow(loc_df)))
# # Set up parallel processing
plan(multicore(workers = 16))
# Set the global timeout
options(future.globals.timeout = 2700) # Set a global timeout for 45 minutes
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
results <- future.apply::future_lapply(loc_list, process_location, future.packages = c("NicheMapR",
"microclima", "dplyr", "zoo", "R.utils"))
Sys.time()
saveRDS(results, file = paste0("RData/Biophysical_modelling/Substrate/4C/results/1st_batch/results_biophysical_modelling_substrate_future4C_",
start_index, "-", end_index, ".rds"))
}
Process all locations
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
chunk_size <- 16
# Define start and end row numbers in distinct_coord
start_row <- 1
end_row <- 14092
# Calculate total chunks for the specified range
total_chunks <- ceiling((end_row - start_row + 1)/chunk_size)
# Loop through each chunk
for (i in seq(total_chunks)) {
# Calculate start and end indices for the current chunk
start_index <- ((i - 1) * chunk_size) + start_row
end_index <- min(i * chunk_size + start_row - 1, end_row)
# Call the process_chunk function with a timeout of 600 seconds
result <- process_chunk(start_index, end_index)
}
Sys.time()
Combine outputs
Note that some coordinates failed to run with the code provided above, and hence ran using slightly different parameters (higher error tolerance for calculating soil temperatures; not in parallel session). See details [HERE] Note also that the year 2005 was taken out as a burn in to allow the models to fully converge.
# List of folders for each type of file
folders <- c("1st_batch", "2nd_batch", "3rd_batch", "4th_batch", "5th_batch", "6th_batch",
"7th_batch", "8th_batch", "9th_batch", "10th_batch", "11th_batch", "12th_batch",
"13th_batch", "14th_batch")
# Initialize empty lists to store the combined dataframes
combined_daily_temp <- list()
combined_daily_temp_warmest_days <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the folder
path_to_rds <- paste("RData/Biophysical_modelling/Substrate/4C/results", folder,
sep = "/")
# Get the list of all rds files in the folder
rds_files <- list.files(path = path_to_rds, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract 'result' from each sublist in nested_list_results
nested_list_results <- lapply(nested_list_results, function(x) lapply(x, function(y) y[["result"]]))
# Flatten the list
flattened_list <- do.call("c", nested_list_results)
# Combine all dataframes for each metric and store them in the respective
# lists
combined_daily_temp[[folder]] <- do.call("rbind", lapply(flattened_list, function(x) x[[1]]))
combined_daily_temp_warmest_days[[folder]] <- do.call("rbind", lapply(flattened_list,
function(x) x[[2]]))
}
# Combine the dataframes from all folders
combined_daily_temp <- do.call("rbind", combined_daily_temp)
combined_daily_temp_warmest_days <- do.call("rbind", combined_daily_temp_warmest_days)
# Convert to numeric values
combined_daily_temp$lon <- as.numeric(combined_daily_temp$lon)
combined_daily_temp$lat <- as.numeric(combined_daily_temp$lat)
combined_daily_temp_warmest_days$lon <- as.numeric(combined_daily_temp_warmest_days$lon)
combined_daily_temp_warmest_days$lat <- as.numeric(combined_daily_temp_warmest_days$lat)
######################################################################################################
# Initialize empty lists to store the combined dataframes
combined_daily_temp_problematic <- list()
combined_daily_temp_warmest_days_problematic <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the subfolder 'problematic_locations'
path_to_subfolder <- paste("RData/Biophysical_modelling/Substrate/4C/results",
folder, "problematic_locations", sep = "/")
# Check if the subfolder exists
if (dir.exists(path_to_subfolder)) {
# Get the list of all rds files in the subfolder
rds_files <- list.files(path = path_to_subfolder, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract the four dataframes from each list and unlist 'lat' and 'lon'
# columns
combined_daily_temp_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[1]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
combined_daily_temp_warmest_days_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[2]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
# Store the combined dataframes in the respective lists
combined_daily_temp_problematic[[folder]] <- combined_daily_temp_subfolder
combined_daily_temp_warmest_days_problematic[[folder]] <- combined_daily_temp_warmest_days_subfolder
}
}
# Combine the dataframes from all subfolders
combined_daily_temp_problematic <- do.call("rbind", combined_daily_temp_problematic)
combined_daily_temp_warmest_days_problematic <- do.call("rbind", combined_daily_temp_warmest_days_problematic)
#################################################################################################################
# Get the path to the 'failed_locations' folder
path_to_failed_locations <- "RData/Biophysical_modelling/Substrate/4C/results/failed_locations"
# Initialize empty lists to store the combined dataframes
combined_daily_temp_failed <- list()
combined_daily_temp_warmest_days_failed <- list()
# Get the list of .rds files in the 'failed_locations' folder
rds_files_failed <- list.files(path = path_to_failed_locations, pattern = "*.rds",
full.names = TRUE)
# Loop over each .rds file
for (file_failed in rds_files_failed) {
# Read the .rds file into a list
nested_list_results_failed <- readRDS(file_failed)
# Extract the four dataframes from the list
combined_daily_temp_failed_subfolder <- nested_list_results_failed[["result"]][[1]]
combined_daily_temp_warmest_days_failed_subfolder <- nested_list_results_failed[["result"]][[2]]
# Store the combined dataframes in the respective lists
combined_daily_temp_failed[[file_failed]] <- combined_daily_temp_failed_subfolder
combined_daily_temp_warmest_days_failed[[file_failed]] <- combined_daily_temp_warmest_days_failed_subfolder
}
# Combine the dataframes from all files in the 'failed_locations' folder
combined_daily_temp_failed <- do.call("rbind", combined_daily_temp_failed)
combined_daily_temp_warmest_days_failed <- do.call("rbind", combined_daily_temp_warmest_days_failed)
#####################################################################################################
# Combine files
combined_daily_temp_all <- rbind(combined_daily_temp, combined_daily_temp_problematic,
combined_daily_temp_failed)
combined_daily_temp_warmest_days_all <- rbind(combined_daily_temp_warmest_days, combined_daily_temp_warmest_days_problematic,
combined_daily_temp_warmest_days_failed)
# Remove the first year (burn-in)
combined_daily_temp_all <- filter(combined_daily_temp_all, YEAR != "2005")
combined_daily_temp_warmest_days_all <- filter(combined_daily_temp_warmest_days_all,
YEAR != "2005")
# Calculate the overall temperature across coordinates
combined_overall_temp_all <- combined_daily_temp_warmest_days_all %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp), median = median(max_temp), fifth_percentile = quantile(max_temp,
0.05), first_quartile = quantile(max_temp, 0.25), third_quartile = quantile(max_temp,
0.75), ninetyfifth_percentile = quantile(max_temp, 0.95), min = min(max_temp),
max = max(max_temp), .groups = "drop")
# Save files
saveRDS(combined_daily_temp_all, file = "RData/Biophysical_modelling/Substrate/4C/daily_temp_substrate_4C.rds")
saveRDS(combined_daily_temp_warmest_days_all, file = "RData/Biophysical_modelling/Substrate/4C/daily_temp_warmest_days_substrate_4C.rds")
saveRDS(combined_overall_temp_all, file = "RData/Biophysical_modelling/Substrate/4C/overall_temp_warmest_days_substrate_4C.rds")
####################################################################################################
## Check for missing coordinates again
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- mutate(distinct_coord, lon_lat = paste(lon, lat))
combined_daily_temp_warmest_days_all <- mutate(combined_daily_temp_warmest_days_all,
lon_lat = paste(lon, lat))
# Function opposite of %in%
"%!in%" <- function(x, y) !(x %in% y)
missing_coord <- distinct_coord[distinct_coord$lon_lat %!in% combined_daily_temp_warmest_days_all$lon_lat,
]
missing_coord
missing_coord_row_numbers <- data.frame(row_n = which(distinct_coord$lon_lat %!in%
combined_daily_temp_warmest_days_all$lon_lat))
missing_coord_row_numbers
###
check_dup <- group_by(combined_daily_temp_all, lon, lat, YEAR, DOY) %>%
summarise(n = n())
loc_with_more_than_one <- filter(check_dup, n > 1)
loc_with_more_than_one <- mutate(loc_with_more_than_one, lon_lat = paste(lon, lat))
row_n_dup <- data.frame(row_n = which(distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat))
row_n_dup
dup_coord <- distinct_coord[distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat,
]
dup_coord
# Save the combined data
saveRDS(missing_coord, file = "RData/Biophysical_modelling/Substrate/4C/missing_coordinates.rds")
saveRDS(missing_coord_row_numbers, file = "RData/Biophysical_modelling/Substrate/4C/missing_coordinates_row_n.rds")
saveRDS(row_n_dup, file = "RData/Biophysical_modelling/Substrate/4C/row_n_duplicated_coordinates.rds")
saveRDS(dup_coord, file = "RData/Biophysical_modelling/Substrate/4C/duplicated_coordinates.rds")
Ponds or wetlands
Current climate
Function to process coordinates
# Set up parallel processing
plan(multicore(workers=16))
# Set the global timeout
options(future.globals.timeout = 3600) # Set a global timeout for 1 hour
# Function to process each location
process_location <- function(loc) {
print(paste("Processing location with lon =", loc$lon, "lat =", loc$lat))
# Set parameters
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
coords<- c(loc$lon, loc$lat)
ERR <- 1.5 # Adjusting ERR based on the locations (locations with snow sometimes need a higher value)
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=0,
minshade=85,
maxshade=90,
Usrhyt = 0.01,
cap = 1,
ERR = ERR,
spatial = 'data/NCEP')
}, timeout = 600, onTimeout = "warning")
# If the process takes longer than 10 minutes, break.
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep exceeded time limit"))
} else {
micro <- micro_result
micro$metout[, 13] <- 0 # Make sure the pond stays in the shade
}
# When the first micro_ncep fails, try again with different ERR
if (max(micro$metout[,1] == 0)) {
while(max(micro$metout[,1] == 0)){
ERR <- ERR + 0.5
# Use withTimeout() for the micro_ncep() function inside the while loop as well
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=0,
minshade=85,
maxshade=90,
Usrhyt = 0.01,
cap = 1,
ERR = ERR,
spatial = 'data/NCEP')
}, timeout = 600, onTimeout = "warning")
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep inside while loop exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep inside while loop exceeded time limit"))
} else {
micro <- micro_result
micro$metout[, 13] <- 0 # Make sure the pond stays in the shade
}
# If ERR exceeds 5, break the loop regardless of the value of micro$metout[,1]
if(ERR >= 5){
break
}
}
}
# If even after adjusting ERR micro_ncep fails, return an error message
if (max(micro$metout[,1] == 0)) {
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "Failed on micro_ncep call"))
}
# Another explicit check
if (!max(micro$metout[,1] == 0)) {
assign("micro", micro, envir = globalenv())
} else {
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "Failed on micro_ncep call"))
}
success <- FALSE
result <- NULL
micro$metout[, 13] <- 0 # Make sure the pond stays in the shade
# Use withTimeout() for the ectotherm() function as well
ecto_result <- withTimeout({
tryCatch({
ecto <- NicheMapR::ectotherm(
container=1, # container model
conth=1500, # shallow pond of 1.5m depth
contw=12000,# pond of 12m width
contype=1, # container sunk into the ground like a pond
rainmult = 1000000000, # rainfall multiplier, to keep the pond wet
continit = 1500, # Initial container water level (1.5m)
conthole = 0, # Daily loss of height (mm) due to hole in container (e.g. infiltration)
contwet=100, # 100% of container surface area acting as free water exchanger
contonly=1)
list(success = TRUE, ecto = ecto)
}, error = function(e) {
list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = paste("Failed on ectotherm call:", as.character(conditionMessage(e))))
})
}, timeout = 2000, onTimeout = "warning")
if (inherits(ecto_result, "try-error") || is.null(ecto_result)) {
print(paste("ectotherm() exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "ectotherm() exceeded time limit"))
}
if(!ecto_result$success){
return(ecto_result)
}
gc()
# Assign the successful ecto result to the global environment
ecto <- ecto_result$ecto
assign("ecto", ecto, envir = globalenv())
environ <- as.data.frame(ecto$environ)
# Max and mean daily temperatures
daily_temp <- environ %>%
dplyr::mutate(YEAR = YEAR + 2004,
ERR = ERR) %>%
dplyr::group_by(ERR, YEAR, DOY, lon = paste(loc$lon), lat=paste(loc$lat)) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = 'drop')
# Create a function to calculate the rolling weekly temperature
calc_yearly_rolling_mean <- function(data) {
data$mean_weekly_temp <- zoo::rollapply(data$mean_temp, width = 7, FUN = mean, align = "right", partial = TRUE, fill = NA)
data$max_weekly_temp <- zoo::rollapply(data$max_temp, width = 7, FUN = mean, align = "right", partial = TRUE, fill = NA)
return(data)
}
# Calculate the rolling mean for each year and location
daily_temp <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::top_n(91, max_temp)
# Calculate the mean overall maximum temperature for the warmest days of each year
overall_temp_warmest_days <- daily_temp_warmest_days %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp),
median = median(max_temp),
fifth_percentile = quantile(max_temp, 0.05),
first_quartile = quantile(max_temp, 0.25),
third_quartile = quantile(max_temp, 0.75),
ninetyfifth_percentile = quantile(max_temp, 0.95),
min = min(max_temp),
max = max(max_temp), .groups = 'drop')
result <- list(daily_temp,
daily_temp_warmest_days,
overall_temp_warmest_days)
return(list(success = ecto_result$success, result = result)) # Return a list with a success flag and the result.
}
Function to process coordinates in chunks
Processing the coordinates in chunks is very useful for debugging.
# Function to process a chunk of locations
process_chunk <- function(start_index, end_index) {
# Read in distinct coordinates
distinct_coord <- readRDS(file = "RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord[, 3:4]
distinct_coord <- rename(distinct_coord, x = lon, y = lat)
# Adjust the range of locations
distinct_coord <- distinct_coord[start_index:end_index, ]
loc_list <- split(distinct_coord, seq(nrow(distinct_coord)))
loc_list <- lapply(loc_list, unlist)
# Match body mass data to coordinates
presence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
data_for_imp <- readRDS(file = "RData/General_data/pre_data_for_imputation.rds")
presence_body_mass <- merge(presence, dplyr::select(data_for_imp, tip.label,
body_mass), by = "tip.label")
median_body_mass <- presence_body_mass %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass <- mutate(median_body_mass, median_mass = ifelse(is.na(median_mass) ==
TRUE, 8.4, median_mass))
# Convert loc_list back into a data frame
loc_df <- do.call("rbind", loc_list)
loc_df <- as.data.frame(loc_df)
names(loc_df) <- c("lon", "lat")
# Join loc_df and median_body_mass
loc_df <- dplyr::left_join(loc_df, median_body_mass, by = c("lon", "lat"))
# Convert loc_df back into a list
loc_list <- split(loc_df, seq(nrow(loc_df)))
# # Set up parallel processing
plan(multicore(workers = 16))
# Set the global timeout
options(future.globals.timeout = 3600) # Set a global timeout for 60 minutes
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
results <- future.apply::future_lapply(loc_list, process_location, future.packages = c("NicheMapR",
"microclima", "dplyr", "zoo", "R.utils"))
Sys.time()
saveRDS(results, file = paste0("RData/Biophysical_modelling/Pond/current/results/1st_batch/results_biophysical_modelling_pond_",
start_index, "-", end_index, ".rds"))
}
Process all locations
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
chunk_size <- 16
# Define start and end row numbers in distinct_coord
start_row <- 1
end_row <- 14092
# Calculate total chunks for the specified range
total_chunks <- ceiling((end_row - start_row + 1)/chunk_size)
# Loop through each chunk
for (i in seq(total_chunks)) {
# Calculate start and end indices for the current chunk
start_index <- ((i - 1) * chunk_size) + start_row
end_index <- min(i * chunk_size + start_row - 1, end_row)
# Call the process_chunk function with a timeout of 600 seconds
result <- process_chunk(start_index, end_index)
}
Sys.time()
Combine outputs
Note that some coordinates failed to run with the code provided above, and hence ran using slightly different parameters (higher error tolerance for calculating soil temperatures; not in parallel session). See details [HERE] Note also that the year 2005 was taken out as a burn in to allow the models to fully converge.
# List of folders for each type of file
folders <- c("1st_batch", "2nd_batch", "3rd_batch", "21st_batch", "22nd_batch", "23rd_batch",
"31st_batch", "32nd_batch", "33rd_batch")
folders2 <- paste0(4:20, "th_batch")
folders3 <- paste0(24:30, "th_batch")
folders4 <- paste0(34:36, "th_batch")
folders <- c(folders, folders2, folders3, folders4)
# Initialize empty lists to store the combined dataframes
combined_daily_temp <- list()
combined_daily_temp_warmest_days <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the folder
path_to_rds <- paste("RData/Biophysical_modelling/Pond/current/results", folder,
sep = "/")
# Get the list of all rds files in the folder
rds_files <- list.files(path = path_to_rds, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract 'result' from each sublist in nested_list_results
nested_list_results <- lapply(nested_list_results, function(x) lapply(x, function(y) y[["result"]]))
# Flatten the list
flattened_list <- do.call("c", nested_list_results)
# Combine all dataframes for each metric and store them in the respective
# lists
combined_daily_temp[[folder]] <- do.call("rbind", lapply(flattened_list, function(x) x[[1]]))
combined_daily_temp_warmest_days[[folder]] <- do.call("rbind", lapply(flattened_list,
function(x) x[[2]]))
}
# Combine the dataframes from all folders
combined_daily_temp <- do.call("rbind", combined_daily_temp)
combined_daily_temp_warmest_days <- do.call("rbind", combined_daily_temp_warmest_days)
# Convert to numeric values
combined_daily_temp$lon <- as.numeric(combined_daily_temp$lon)
combined_daily_temp$lat <- as.numeric(combined_daily_temp$lat)
combined_daily_temp_warmest_days$lon <- as.numeric(combined_daily_temp_warmest_days$lon)
combined_daily_temp_warmest_days$lat <- as.numeric(combined_daily_temp_warmest_days$lat)
######################################################################################################
# Initialize empty lists to store the combined dataframes
combined_daily_temp_problematic <- list()
combined_daily_temp_warmest_days_problematic <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the subfolder 'problematic_locations'
path_to_subfolder <- paste("RData/Biophysical_modelling/Pond/current/results",
folder, "problematic_locations", sep = "/")
# Check if the subfolder exists
if (dir.exists(path_to_subfolder)) {
# Get the list of all rds files in the subfolder
rds_files <- list.files(path = path_to_subfolder, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract the four dataframes from each list and unlist 'lat' and 'lon'
# columns
combined_daily_temp_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[1]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
combined_daily_temp_warmest_days_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[2]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
# Store the combined dataframes in the respective lists
combined_daily_temp_problematic[[folder]] <- combined_daily_temp_subfolder
combined_daily_temp_warmest_days_problematic[[folder]] <- combined_daily_temp_warmest_days_subfolder
}
}
# Combine the dataframes from all subfolders
combined_daily_temp_problematic <- do.call("rbind", combined_daily_temp_problematic)
combined_daily_temp_warmest_days_problematic <- do.call("rbind", combined_daily_temp_warmest_days_problematic)
#################################################################################################################
# Get the path to the 'failed_locations' folder
path_to_failed_locations <- "RData/Biophysical_modelling/Pond/current/results/failed_locations"
# Initialize empty lists to store the combined dataframes
combined_daily_temp_failed <- list()
combined_daily_temp_warmest_days_failed <- list()
# Get the list of .rds files in the 'failed_locations' folder
rds_files_failed <- list.files(path = path_to_failed_locations, pattern = "*.rds",
full.names = TRUE)
# Loop over each .rds file
for (file_failed in rds_files_failed) {
# Read the .rds file into a list
nested_list_results_failed <- readRDS(file_failed)
# Extract the four dataframes from the list
combined_daily_temp_failed_subfolder <- nested_list_results_failed[["result"]][[1]]
combined_daily_temp_warmest_days_failed_subfolder <- nested_list_results_failed[["result"]][[2]]
# Store the combined dataframes in the respective lists
combined_daily_temp_failed[[file_failed]] <- combined_daily_temp_failed_subfolder
combined_daily_temp_warmest_days_failed[[file_failed]] <- combined_daily_temp_warmest_days_failed_subfolder
}
# Combine the dataframes from all files in the 'failed_locations' folder
combined_daily_temp_failed <- do.call("rbind", combined_daily_temp_failed)
combined_daily_temp_warmest_days_failed <- do.call("rbind", combined_daily_temp_warmest_days_failed)
#####################################################################################################
# Combine files
combined_daily_temp_all <- rbind(combined_daily_temp, combined_daily_temp_problematic,
combined_daily_temp_failed)
combined_daily_temp_warmest_days_all <- rbind(combined_daily_temp_warmest_days, combined_daily_temp_warmest_days_problematic,
combined_daily_temp_warmest_days_failed)
# Remove the first year (burn-in)
combined_daily_temp_all <- filter(combined_daily_temp_all, YEAR != "2005")
combined_daily_temp_warmest_days_all <- filter(combined_daily_temp_warmest_days_all,
YEAR != "2005")
# Calculate the overall temperature across coordinates
combined_overall_temp_all <- combined_daily_temp_warmest_days_all %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp), median = median(max_temp), fifth_percentile = quantile(max_temp,
0.05), first_quartile = quantile(max_temp, 0.25), third_quartile = quantile(max_temp,
0.75), ninetyfifth_percentile = quantile(max_temp, 0.95), min = min(max_temp),
max = max(max_temp), .groups = "drop")
# Save files
saveRDS(combined_daily_temp_all, file = "RData/Biophysical_modelling/Pond/current/daily_temp_pond.rds")
saveRDS(combined_daily_temp_warmest_days_all, file = "RData/Biophysical_modelling/Pond/current/daily_temp_warmest_days_pond.rds")
saveRDS(combined_overall_temp_all, file = "RData/Biophysical_modelling/Pond/current/overall_temp_warmest_days_pond.rds")
####################################################################################################
## Check for missing coordinates again
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- mutate(distinct_coord, lon_lat = paste(lon, lat))
combined_daily_temp_warmest_days_all <- mutate(combined_daily_temp_warmest_days_all,
lon_lat = paste(lon, lat))
# Function opposite of %in%
"%!in%" <- function(x, y) !(x %in% y)
missing_coord <- distinct_coord[distinct_coord$lon_lat %!in% combined_daily_temp_warmest_days_all$lon_lat,
]
missing_coord
missing_coord_row_numbers <- data.frame(row_n = which(distinct_coord$lon_lat %!in%
combined_daily_temp_warmest_days_all$lon_lat))
missing_coord_row_numbers
###
check_dup <- group_by(combined_daily_temp_all, lon, lat, YEAR, DOY) %>%
summarise(n = n())
loc_with_more_than_one <- filter(check_dup, n > 1)
loc_with_more_than_one <- mutate(loc_with_more_than_one, lon_lat = paste(lon, lat))
row_n_dup <- data.frame(row_n = which(distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat))
row_n_dup
dup_coord <- distinct_coord[distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat,
]
dup_coord
# Save the combined data
saveRDS(missing_coord, file = "RData/Biophysical_modelling/Pond/current/missing_coordinates.rds")
saveRDS(missing_coord_row_numbers, file = "RData/Biophysical_modelling/Pond/current/missing_coordinates_row_n.rds")
saveRDS(row_n_dup, file = "RData/Biophysical_modelling/Pond/current/row_n_duplicated_coordinates.rds")
saveRDS(dup_coord, file = "RData/Biophysical_modelling/Pond/current/duplicated_coordinates.rds")
Future climate (+2C)
Here, we assume a climate projection assuming 2 degrees of warming.
Function to process coordinates
# Set up parallel processing
plan(multicore(workers=16))
# Set the global timeout
options(future.globals.timeout = 3600) # Set a global timeout for 60 minutes
# Function to process each location
process_location <- function(loc) {
print(paste("Processing location with lon =", loc$lon, "lat =", loc$lat))
# Set parameters
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
coords<- c(loc$lon, loc$lat)
ERR <- 1.5 # Adjusting ERR based on the locations (locations with snow sometimes need a higher value)
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=2,
minshade=85,
maxshade=90,
Usrhyt = 0.01,
cap = 1,
ERR = ERR,
spatial = 'data/NCEP',
terra_source = 'data/TerraClimate/data')
}, timeout = 600, onTimeout = "warning")
# If the process takes longer than 10 minutes, break.
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep exceeded time limit"))
} else {
micro <- micro_result
micro$metout[, 13] <- 0 # Make sure the pond stays in the shade
}
# When the first micro_ncep fails, try again with different ERR
if (max(micro$metout[,1] == 0)) {
while(max(micro$metout[,1] == 0)){
ERR <- ERR + 0.5
# Use withTimeout() for the micro_ncep() function inside the while loop as well
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=2,
minshade=85,
maxshade=90,
Usrhyt = 0.01,
cap = 1,
ERR = ERR,
spatial = 'data/NCEP',
terra_source = 'data/TerraClimate/data')
}, timeout = 600, onTimeout = "warning")
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep inside while loop exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep inside while loop exceeded time limit"))
} else {
micro <- micro_result
micro$metout[, 13] <- 0 # Make sure the pond stays in the shade
}
# If ERR exceeds 5, break the loop regardless of the value of micro$metout[,1]
if(ERR >= 5){
break
}
}
}
# If even after adjusting ERR micro_ncep fails, return an error message
if (max(micro$metout[,1] == 0)) {
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "Failed on micro_ncep call"))
}
# Another explicit check
if (!max(micro$metout[,1] == 0)) {
assign("micro", micro, envir = globalenv())
} else {
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "Failed on micro_ncep call"))
}
success <- FALSE
result <- NULL
micro$metout[, 13] <- 0 # Make sure the pond stays in the shade
# Use withTimeout() for the ectotherm() function as well
ecto_result <- withTimeout({
tryCatch({
ecto <- NicheMapR::ectotherm(
container=1, # container model
conth=1500, # shallow pond of 1.5m depth
contw=12000,# pond of 12m width
contype=1, # container sunk into the ground like a pond
rainmult = 1000000000, # rainfall multiplier, to keep the pond wet
continit = 1500, # Initial container water level (1.5m)
conthole = 0, # Daily loss of height (mm) due to hole in container (e.g. infiltration)
contwet=100, # 100% of container surface area acting as free water exchanger
contonly=1)
list(success = TRUE, ecto = ecto)
}, error = function(e) {
list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = paste("Failed on ectotherm call:", as.character(conditionMessage(e))))
})
}, timeout = 2000, onTimeout = "warning")
if (inherits(ecto_result, "try-error") || is.null(ecto_result)) {
print(paste("ectotherm() exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "ectotherm() exceeded time limit"))
}
if(!ecto_result$success){
return(ecto_result)
}
gc()
# Assign the successful ecto result to the global environment
ecto <- ecto_result$ecto
assign("ecto", ecto, envir = globalenv())
environ <- as.data.frame(ecto$environ)
# Max and mean daily temperatures
daily_temp <- environ %>%
dplyr::mutate(YEAR = YEAR + 2004,
ERR = ERR) %>%
dplyr::group_by(ERR, YEAR, DOY, lon = paste(loc$lon), lat=paste(loc$lat)) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = 'drop')
# Create a function to calculate the rolling weekly temperature
calc_yearly_rolling_mean <- function(data) {
data$mean_weekly_temp <- zoo::rollapply(data$mean_temp, width = 7, FUN = mean, align = "right", partial = TRUE, fill = NA)
data$max_weekly_temp <- zoo::rollapply(data$max_temp, width = 7, FUN = mean, align = "right", partial = TRUE, fill = NA)
return(data)
}
# Calculate the rolling mean for each year and location
daily_temp <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::top_n(91, max_temp)
# Calculate the mean overall maximum temperature for the warmest days of each year
overall_temp_warmest_days <- daily_temp_warmest_days %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp),
median = median(max_temp),
fifth_percentile = quantile(max_temp, 0.05),
first_quartile = quantile(max_temp, 0.25),
third_quartile = quantile(max_temp, 0.75),
ninetyfifth_percentile = quantile(max_temp, 0.95),
min = min(max_temp),
max = max(max_temp), .groups = 'drop')
result <- list(daily_temp,
daily_temp_warmest_days,
overall_temp_warmest_days)
return(list(success = ecto_result$success, result = result)) # Return a list with a success flag and the result.
}
Function to process coordinates in chunks
# Function to process a chunk of locations
process_chunk <- function(start_index, end_index) {
# Read in distinct coordinates
distinct_coord <- readRDS(file = "RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord[, 3:4]
distinct_coord <- rename(distinct_coord, x = lon, y = lat)
# Adjust the range of locations
distinct_coord <- distinct_coord[start_index:end_index, ]
loc_list <- split(distinct_coord, seq(nrow(distinct_coord)))
loc_list <- lapply(loc_list, unlist)
# Match body mass data to coordinates
presence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
data_for_imp <- readRDS(file = "RData/General_data/pre_data_for_imputation.rds")
presence_body_mass <- merge(presence, dplyr::select(data_for_imp, tip.label,
body_mass), by = "tip.label")
median_body_mass <- presence_body_mass %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass <- mutate(median_body_mass, median_mass = ifelse(is.na(median_mass) ==
TRUE, 8.4, median_mass))
# Convert loc_list back into a data frame
loc_df <- do.call("rbind", loc_list)
loc_df <- as.data.frame(loc_df)
names(loc_df) <- c("lon", "lat")
# Join loc_df and median_body_mass
loc_df <- dplyr::left_join(loc_df, median_body_mass, by = c("lon", "lat"))
# Convert loc_df back into a list
loc_list <- split(loc_df, seq(nrow(loc_df)))
# # Set up parallel processing
plan(multicore(workers = 16))
# Set the global timeout
options(future.globals.timeout = 3600) # Set a global timeout for 30 minutes
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
results <- future.apply::future_lapply(loc_list, process_location, future.packages = c("NicheMapR",
"microclima", "dplyr", "zoo", "R.utils"))
Sys.time()
saveRDS(results, file = paste0("RData/Biophysical_modelling/Pond/2C/results/1st_batch/results_biophysical_modelling_pond_future2C_",
start_index, "-", end_index, ".rds"))
}
Process all locations
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
chunk_size <- 16
# Define start and end row numbers in distinct_coord
start_row <- 1
end_row <- 14092
# Calculate total chunks for the specified range
total_chunks <- ceiling((end_row - start_row + 1)/chunk_size)
# Loop through each chunk
for (i in seq(total_chunks)) {
# Calculate start and end indices for the current chunk
start_index <- ((i - 1) * chunk_size) + start_row
end_index <- min(i * chunk_size + start_row - 1, end_row)
# Call the process_chunk function with a timeout of 600 seconds
result <- process_chunk(start_index, end_index)
}
Sys.time()
Combine outputs
Note that some coordinates failed to run with the code provided above, and hence ran using slightly different parameters (higher error tolerance for calculating soil temperatures; not in parallel session). See details [HERE] Note also that the year 2005 was taken out as a burn in to allow the models to fully converge.
# List of folders for each type of file
folders <- c("1st_batch", "2nd_batch", "3rd_batch", "21st_batch", "22nd_batch", "23rd_batch",
"31st_batch", "32nd_batch", "33rd_batch")
folders2 <- paste0(4:20, "th_batch")
folders3 <- paste0(24:30, "th_batch")
folders4 <- paste0(34:36, "th_batch")
folders <- c(folders, folders2, folders3, folders4)
# Initialize empty lists to store the combined dataframes
combined_daily_temp <- list()
combined_daily_temp_warmest_days <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the folder
path_to_rds <- paste("RData/Biophysical_modelling/Pond/2C/results", folder, sep = "/")
# Get the list of all rds files in the folder
rds_files <- list.files(path = path_to_rds, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract 'result' from each sublist in nested_list_results
nested_list_results <- lapply(nested_list_results, function(x) lapply(x, function(y) y[["result"]]))
# Flatten the list
flattened_list <- do.call("c", nested_list_results)
# Combine all dataframes for each metric and store them in the respective
# lists
combined_daily_temp[[folder]] <- do.call("rbind", lapply(flattened_list, function(x) x[[1]]))
combined_daily_temp_warmest_days[[folder]] <- do.call("rbind", lapply(flattened_list,
function(x) x[[2]]))
}
# Combine the dataframes from all folders
combined_daily_temp <- do.call("rbind", combined_daily_temp)
combined_daily_temp_warmest_days <- do.call("rbind", combined_daily_temp_warmest_days)
# Convert to numeric values
combined_daily_temp$lon <- as.numeric(combined_daily_temp$lon)
combined_daily_temp$lat <- as.numeric(combined_daily_temp$lat)
combined_daily_temp_warmest_days$lon <- as.numeric(combined_daily_temp_warmest_days$lon)
combined_daily_temp_warmest_days$lat <- as.numeric(combined_daily_temp_warmest_days$lat)
######################################################################################################
# Initialize empty lists to store the combined dataframes
combined_daily_temp_problematic <- list()
combined_daily_temp_warmest_days_problematic <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the subfolder 'problematic_locations'
path_to_subfolder <- paste("RData/Biophysical_modelling/Pond/2C/results", folder,
"problematic_locations", sep = "/")
# Check if the subfolder exists
if (dir.exists(path_to_subfolder)) {
# Get the list of all rds files in the subfolder
rds_files <- list.files(path = path_to_subfolder, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract the four dataframes from each list and unlist 'lat' and 'lon'
# columns
combined_daily_temp_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[1]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
combined_daily_temp_warmest_days_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[2]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
# Store the combined dataframes in the respective lists
combined_daily_temp_problematic[[folder]] <- combined_daily_temp_subfolder
combined_daily_temp_warmest_days_problematic[[folder]] <- combined_daily_temp_warmest_days_subfolder
}
}
# Combine the dataframes from all subfolders
combined_daily_temp_problematic <- do.call("rbind", combined_daily_temp_problematic)
combined_daily_temp_warmest_days_problematic <- do.call("rbind", combined_daily_temp_warmest_days_problematic)
#################################################################################################################
# Get the path to the 'failed_locations' folder
path_to_failed_locations <- "RData/Biophysical_modelling/Pond/2C/results/failed_locations"
# Initialize empty lists to store the combined dataframes
combined_daily_temp_failed <- list()
combined_daily_temp_warmest_days_failed <- list()
# Get the list of .rds files in the 'failed_locations' folder
rds_files_failed <- list.files(path = path_to_failed_locations, pattern = "*.rds",
full.names = TRUE)
# Loop over each .rds file
for (file_failed in rds_files_failed) {
# Read the .rds file into a list
nested_list_results_failed <- readRDS(file_failed)
# Extract the four dataframes from the list
combined_daily_temp_failed_subfolder <- nested_list_results_failed[["result"]][[1]]
combined_daily_temp_warmest_days_failed_subfolder <- nested_list_results_failed[["result"]][[2]]
# Store the combined dataframes in the respective lists
combined_daily_temp_failed[[file_failed]] <- combined_daily_temp_failed_subfolder
combined_daily_temp_warmest_days_failed[[file_failed]] <- combined_daily_temp_warmest_days_failed_subfolder
}
# Combine the dataframes from all files in the 'failed_locations' folder
combined_daily_temp_failed <- do.call("rbind", combined_daily_temp_failed)
combined_daily_temp_warmest_days_failed <- do.call("rbind", combined_daily_temp_warmest_days_failed)
#####################################################################################################
# Combine files
combined_daily_temp_all <- rbind(combined_daily_temp, combined_daily_temp_problematic,
combined_daily_temp_failed)
combined_daily_temp_warmest_days_all <- rbind(combined_daily_temp_warmest_days, combined_daily_temp_warmest_days_problematic,
combined_daily_temp_warmest_days_failed)
# Remove the first year (burn-in)
combined_daily_temp_all <- filter(combined_daily_temp_all, YEAR != "2005")
combined_daily_temp_warmest_days_all <- filter(combined_daily_temp_warmest_days_all,
YEAR != "2005")
# Calculate the overall temperature across coordinates
combined_overall_temp_all <- combined_daily_temp_warmest_days_all %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp), median = median(max_temp), fifth_percentile = quantile(max_temp,
0.05), first_quartile = quantile(max_temp, 0.25), third_quartile = quantile(max_temp,
0.75), ninetyfifth_percentile = quantile(max_temp, 0.95), min = min(max_temp),
max = max(max_temp), .groups = "drop")
# Save files
saveRDS(combined_daily_temp_all, file = "RData/Biophysical_modelling/Pond/2C/daily_temp_pond_2C.rds")
saveRDS(combined_daily_temp_warmest_days_all, file = "RData/Biophysical_modelling/Pond/2C/daily_temp_warmest_days_pond_2C.rds")
saveRDS(combined_overall_temp_all, file = "RData/Biophysical_modelling/Pond/2C/overall_temp_warmest_days_pond_2C.rds")
####################################################################################################
## Check for missing coordinates again
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- mutate(distinct_coord, lon_lat = paste(lon, lat))
combined_daily_temp_warmest_days_all <- mutate(combined_daily_temp_warmest_days_all,
lon_lat = paste(lon, lat))
# Function opposite of %in%
"%!in%" <- function(x, y) !(x %in% y)
missing_coord <- distinct_coord[distinct_coord$lon_lat %!in% combined_daily_temp_warmest_days_all$lon_lat,
]
missing_coord
missing_coord_row_numbers <- data.frame(row_n = which(distinct_coord$lon_lat %!in%
combined_daily_temp_warmest_days_all$lon_lat))
missing_coord_row_numbers
###
check_dup <- group_by(combined_daily_temp_all, lon, lat, YEAR, DOY) %>%
summarise(n = n())
loc_with_more_than_one <- filter(check_dup, n > 1)
loc_with_more_than_one <- mutate(loc_with_more_than_one, lon_lat = paste(lon, lat))
row_n_dup <- data.frame(row_n = which(distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat))
row_n_dup
dup_coord <- distinct_coord[distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat,
]
dup_coord
# Save the combined data
saveRDS(missing_coord, file = "RData/Biophysical_modelling/Pond/2C/missing_coordinates_2C.rds")
saveRDS(missing_coord_row_numbers, file = "RData/Biophysical_modelling/Pond/2C/missing_coordinates_row_n_2C.rds")
saveRDS(row_n_dup, file = "RData/Biophysical_modelling/Pond/2C/row_n_duplicated_coordinates_2C.rds")
saveRDS(dup_coord, file = "RData/Biophysical_modelling/Pond/2C/duplicated_coordinates_2C.rds")
Future climate (+4C)
Function to process coordinates
# Set up parallel processing
plan(multicore(workers=16))
# Set the global timeout
options(future.globals.timeout = 3600) # Set a global timeout for 60 minutes
# Function to process each location
process_location <- function(loc) {
print(paste("Processing location with lon =", loc$lon, "lat =", loc$lat))
# Set parameters
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
coords<- c(loc$lon, loc$lat)
ERR <- 1.5 # Adjusting ERR based on the locations (locations with snow sometimes need a higher value)
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=4,
minshade=85,
maxshade=90,
Usrhyt = 0.01,
cap = 1,
ERR = ERR,
spatial = 'data/NCEP',
terra_source = 'data/TerraClimate/data')
}, timeout = 600, onTimeout = "warning")
# If the process takes longer than 10 minutes, break.
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep exceeded time limit"))
} else {
micro <- micro_result
micro$metout[, 13] <- 0 # Make sure the pond stays in the shade
}
# When the first micro_ncep fails, try again with different ERR
if (max(micro$metout[,1] == 0)) {
while(max(micro$metout[,1] == 0)){
ERR <- ERR + 0.5
# Use withTimeout() for the micro_ncep() function inside the while loop as well
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=4,
minshade=85,
maxshade=90,
Usrhyt = 0.01,
cap = 1,
ERR = ERR,
spatial = 'data/NCEP',
terra_source = 'data/TerraClimate/data')
}, timeout = 600, onTimeout = "warning")
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep inside while loop exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep inside while loop exceeded time limit"))
} else {
micro <- micro_result
micro$metout[, 13] <- 0 # Make sure the pond stays in the shade
}
# If ERR exceeds 5, break the loop regardless of the value of micro$metout[,1]
if(ERR >= 5){
break
}
}
}
# If even after adjusting ERR micro_ncep fails, return an error message
if (max(micro$metout[,1] == 0)) {
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "Failed on micro_ncep call"))
}
# Another explicit check
if (!max(micro$metout[,1] == 0)) {
assign("micro", micro, envir = globalenv())
} else {
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "Failed on micro_ncep call"))
}
success <- FALSE
result <- NULL
micro$metout[, 13] <- 0 # Make sure the pond stays in the shade
# Use withTimeout() for the ectotherm() function as well
ecto_result <- withTimeout({
tryCatch({
ecto <- NicheMapR::ectotherm(
container=1, # container model
conth=1500, # shallow pond of 1.5m depth
contw=12000,# pond of 12m width
contype=1, # container sunk into the ground like a pond
rainmult = 1000000000, # rainfall multiplier, to keep the pond wet
continit = 1500, # Initial container water level (1.5m)
conthole = 0, # Daily loss of height (mm) due to hole in container (e.g. infiltration)
contwet=100, # 100% of container surface area acting as free water exchanger
contonly=1)
list(success = TRUE, ecto = ecto)
}, error = function(e) {
list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = paste("Failed on ectotherm call:", as.character(conditionMessage(e))))
})
}, timeout = 2000, onTimeout = "warning")
if (inherits(ecto_result, "try-error") || is.null(ecto_result)) {
print(paste("ectotherm() exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "ectotherm() exceeded time limit"))
}
if(!ecto_result$success){
return(ecto_result)
}
gc()
# Assign the successful ecto result to the global environment
ecto <- ecto_result$ecto
assign("ecto", ecto, envir = globalenv())
environ <- as.data.frame(ecto$environ)
# Max and mean daily temperatures
daily_temp <- environ %>%
dplyr::mutate(YEAR = YEAR + 2004,
ERR = ERR) %>%
dplyr::group_by(ERR, YEAR, DOY, lon = paste(loc$lon), lat=paste(loc$lat)) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = 'drop')
# Create a function to calculate the rolling weekly temperature
calc_yearly_rolling_mean <- function(data) {
data$mean_weekly_temp <- zoo::rollapply(data$mean_temp, width = 7, FUN = mean, align = "right", partial = TRUE, fill = NA)
data$max_weekly_temp <- zoo::rollapply(data$max_temp, width = 7, FUN = mean, align = "right", partial = TRUE, fill = NA)
return(data)
}
# Calculate the rolling mean for each year and location
daily_temp <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::top_n(91, max_temp)
# Calculate the mean overall maximum temperature for the warmest days of each year
overall_temp_warmest_days <- daily_temp_warmest_days %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp),
median = median(max_temp),
fifth_percentile = quantile(max_temp, 0.05),
first_quartile = quantile(max_temp, 0.25),
third_quartile = quantile(max_temp, 0.75),
ninetyfifth_percentile = quantile(max_temp, 0.95),
min = min(max_temp),
max = max(max_temp), .groups = 'drop')
result <- list(daily_temp,
daily_temp_warmest_days,
overall_temp_warmest_days)
return(list(success = ecto_result$success, result = result)) # Return a list with a success flag and the result.
}
Function to process coordinates in chunks
# Function to process a chunk of locations
process_chunk <- function(start_index, end_index) {
# Read in distinct coordinates
distinct_coord <- readRDS(file = "RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord[, 3:4]
distinct_coord <- rename(distinct_coord, x = lon, y = lat)
# Adjust the range of locations
distinct_coord <- distinct_coord[start_index:end_index, ]
loc_list <- split(distinct_coord, seq(nrow(distinct_coord)))
loc_list <- lapply(loc_list, unlist)
# Match body mass data to coordinates
presence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
data_for_imp <- readRDS(file = "RData/General_data/pre_data_for_imputation.rds")
presence_body_mass <- merge(presence, dplyr::select(data_for_imp, tip.label,
body_mass), by = "tip.label")
median_body_mass <- presence_body_mass %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass <- mutate(median_body_mass, median_mass = ifelse(is.na(median_mass) ==
TRUE, 8.4, median_mass))
# Convert loc_list back into a data frame
loc_df <- do.call("rbind", loc_list)
loc_df <- as.data.frame(loc_df)
names(loc_df) <- c("lon", "lat")
# Join loc_df and median_body_mass
loc_df <- dplyr::left_join(loc_df, median_body_mass, by = c("lon", "lat"))
# Convert loc_df back into a list
loc_list <- split(loc_df, seq(nrow(loc_df)))
# # Set up parallel processing
plan(multicore(workers = 16))
# Set the global timeout
options(future.globals.timeout = 3600) # Set a global timeout for 30 minutes
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
results <- future.apply::future_lapply(loc_list, process_location, future.packages = c("NicheMapR",
"microclima", "dplyr", "zoo", "R.utils"))
Sys.time()
saveRDS(results, file = paste0("RData/Biophysical_modelling/Pond/4C/results/1st_batch/results_biophysical_modelling_pond_future4C_",
start_index, "-", end_index, ".rds"))
}
Process all locations
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
chunk_size <- 16
# Define start and end row numbers in distinct_coord
start_row <- 1
end_row <- 14092
# Calculate total chunks for the specified range
total_chunks <- ceiling((end_row - start_row + 1)/chunk_size)
# Loop through each chunk
for (i in seq(total_chunks)) {
# Calculate start and end indices for the current chunk
start_index <- ((i - 1) * chunk_size) + start_row
end_index <- min(i * chunk_size + start_row - 1, end_row)
# Call the process_chunk function with a timeout of 600 seconds
result <- process_chunk(start_index, end_index)
}
Sys.time()
Combine outputs
Note that some coordinates failed to run with the code provided above, and hence ran using slightly different parameters (higher error tolerance for calculating soil temperatures; not in parallel session). See details [HERE] Note also that the year 2005 was taken out as a burn in to allow the models to fully converge.
# List of folders for each type of file
folders <- c("1st_batch", "2nd_batch", "3rd_batch", "21st_batch", "22nd_batch", "23rd_batch",
"31st_batch", "32nd_batch", "33rd_batch")
folders2 <- paste0(4:20, "th_batch")
folders3 <- paste0(24:30, "th_batch")
folders4 <- paste0(34:36, "th_batch")
folders <- c(folders, folders2, folders3, folders4)
# Initialize empty lists to store the combined dataframes
combined_daily_temp <- list()
combined_daily_temp_warmest_days <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the folder
path_to_rds <- paste("RData/Biophysical_modelling/Pond/4C/results", folder, sep = "/")
# Get the list of all rds files in the folder
rds_files <- list.files(path = path_to_rds, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract 'result' from each sublist in nested_list_results
nested_list_results <- lapply(nested_list_results, function(x) lapply(x, function(y) y[["result"]]))
# Flatten the list
flattened_list <- do.call("c", nested_list_results)
# Combine all dataframes for each metric and store them in the respective
# lists
combined_daily_temp[[folder]] <- do.call("rbind", lapply(flattened_list, function(x) x[[1]]))
combined_daily_temp_warmest_days[[folder]] <- do.call("rbind", lapply(flattened_list,
function(x) x[[2]]))
}
# Combine the dataframes from all folders
combined_daily_temp <- do.call("rbind", combined_daily_temp)
combined_daily_temp_warmest_days <- do.call("rbind", combined_daily_temp_warmest_days)
# Convert to numeric values
combined_daily_temp$lon <- as.numeric(combined_daily_temp$lon)
combined_daily_temp$lat <- as.numeric(combined_daily_temp$lat)
combined_daily_temp_warmest_days$lon <- as.numeric(combined_daily_temp_warmest_days$lon)
combined_daily_temp_warmest_days$lat <- as.numeric(combined_daily_temp_warmest_days$lat)
######################################################################################################
# Initialize empty lists to store the combined dataframes
combined_daily_temp_problematic <- list()
combined_daily_temp_warmest_days_problematic <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the subfolder 'problematic_locations'
path_to_subfolder <- paste("RData/Biophysical_modelling/Pond/4C/results", folder,
"problematic_locations", sep = "/")
# Check if the subfolder exists
if (dir.exists(path_to_subfolder)) {
# Get the list of all rds files in the subfolder
rds_files <- list.files(path = path_to_subfolder, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract the four dataframes from each list and unlist 'lat' and 'lon'
# columns
combined_daily_temp_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[1]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
combined_daily_temp_warmest_days_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[2]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
# Store the combined dataframes in the respective lists
combined_daily_temp_problematic[[folder]] <- combined_daily_temp_subfolder
combined_daily_temp_warmest_days_problematic[[folder]] <- combined_daily_temp_warmest_days_subfolder
}
}
# Combine the dataframes from all subfolders
combined_daily_temp_problematic <- do.call("rbind", combined_daily_temp_problematic)
combined_daily_temp_warmest_days_problematic <- do.call("rbind", combined_daily_temp_warmest_days_problematic)
#################################################################################################################
# Get the path to the 'failed_locations' folder
path_to_failed_locations <- "RData/Biophysical_modelling/Pond/4C/results/failed_locations"
# Initialize empty lists to store the combined dataframes
combined_daily_temp_failed <- list()
combined_daily_temp_warmest_days_failed <- list()
# Get the list of .rds files in the 'failed_locations' folder
rds_files_failed <- list.files(path = path_to_failed_locations, pattern = "*.rds",
full.names = TRUE)
# Loop over each .rds file
for (file_failed in rds_files_failed) {
# Read the .rds file into a list
nested_list_results_failed <- readRDS(file_failed)
# Extract the four dataframes from the list
combined_daily_temp_failed_subfolder <- nested_list_results_failed[["result"]][[1]]
combined_daily_temp_warmest_days_failed_subfolder <- nested_list_results_failed[["result"]][[2]]
# Store the combined dataframes in the respective lists
combined_daily_temp_failed[[file_failed]] <- combined_daily_temp_failed_subfolder
combined_daily_temp_warmest_days_failed[[file_failed]] <- combined_daily_temp_warmest_days_failed_subfolder
}
# Combine the dataframes from all files in the 'failed_locations' folder
combined_daily_temp_failed <- do.call("rbind", combined_daily_temp_failed)
combined_daily_temp_warmest_days_failed <- do.call("rbind", combined_daily_temp_warmest_days_failed)
#####################################################################################################
# Combine files
combined_daily_temp_all <- rbind(combined_daily_temp, combined_daily_temp_problematic,
combined_daily_temp_failed)
combined_daily_temp_warmest_days_all <- rbind(combined_daily_temp_warmest_days, combined_daily_temp_warmest_days_problematic,
combined_daily_temp_warmest_days_failed)
# Remove the first year (burn-in)
combined_daily_temp_all <- filter(combined_daily_temp_all, YEAR != "2005")
combined_daily_temp_warmest_days_all <- filter(combined_daily_temp_warmest_days_all,
YEAR != "2005")
# Calculate the overall temperature across coordinates
combined_overall_temp_all <- combined_daily_temp_warmest_days_all %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp), median = median(max_temp), fifth_percentile = quantile(max_temp,
0.05), first_quartile = quantile(max_temp, 0.25), third_quartile = quantile(max_temp,
0.75), ninetyfifth_percentile = quantile(max_temp, 0.95), min = min(max_temp),
max = max(max_temp), .groups = "drop")
# Save files
saveRDS(combined_daily_temp_all, file = "RData/Biophysical_modelling/Pond/4C/daily_temp_pond_4C.rds")
saveRDS(combined_daily_temp_warmest_days_all, file = "RData/Biophysical_modelling/Pond/4C/daily_temp_warmest_days_pond_4C.rds")
saveRDS(combined_overall_temp_all, file = "RData/Biophysical_modelling/Pond/4C/overall_temp_warmest_days_pond_4C.rds")
####################################################################################################
## Check for missing coordinates again
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- mutate(distinct_coord, lon_lat = paste(lon, lat))
combined_daily_temp_warmest_days_all <- mutate(combined_daily_temp_warmest_days_all,
lon_lat = paste(lon, lat))
# Function opposite of %in%
"%!in%" <- function(x, y) !(x %in% y)
missing_coord <- distinct_coord[distinct_coord$lon_lat %!in% combined_daily_temp_warmest_days_all$lon_lat,
]
missing_coord
missing_coord_row_numbers <- data.frame(row_n = which(distinct_coord$lon_lat %!in%
combined_daily_temp_warmest_days_all$lon_lat))
missing_coord_row_numbers
###
check_dup <- group_by(combined_daily_temp_all, lon, lat, YEAR, DOY) %>%
summarise(n = n())
loc_with_more_than_one <- filter(check_dup, n > 1)
loc_with_more_than_one <- mutate(loc_with_more_than_one, lon_lat = paste(lon, lat))
row_n_dup <- data.frame(row_n = which(distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat))
row_n_dup
dup_coord <- distinct_coord[distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat,
]
dup_coord
# Save the combined data
saveRDS(missing_coord, file = "RData/Biophysical_modelling/Pond/4C/missing_coordinates_4C.rds")
saveRDS(missing_coord_row_numbers, file = "RData/Biophysical_modelling/Pond/4C/missing_coordinates_row_n_4C.rds")
saveRDS(row_n_dup, file = "RData/Biophysical_modelling/Pond/4C/row_n_duplicated_coordinates_4C.rds")
saveRDS(dup_coord, file = "RData/Biophysical_modelling/Pond/4C/duplicated_coordinates_4C.rds")
Above-ground vegetation
Filter data to arboreal or semi-arboreal species
"%!in%" <- function(x, y) !(x %in% y) # Function opposite of %in%
# Generate list of coordinates for arboreal species, specifically
data_for_imp <- readRDS(file = "RData/General_data/pre_data_for_imputation.rds")
data_for_imp <- data_for_imp %>%
mutate(arboreal = ifelse(ecotype == "Arboreal" | second_ecotype == "Arboreal" |
second_ecotype == "Semi-arboreal" | second_ecotype == "Semi-Arboreal", "yes",
"no")) %>%
mutate(arboreal = ifelse(is.na(arboreal) == TRUE, "no", arboreal))
data_arboreal <- filter(data_for_imp, arboreal == "yes")
saveRDS(data_arboreal, file = "RData/General_data/data_arboreal_sp.rds")
### Adjust species coordinates
species_coordinates_adj <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
species_coordinates_adj_arboreal <- species_coordinates_adj[species_coordinates_adj$tip.label %in%
data_arboreal$tip.label, ]
saveRDS(species_coordinates_adj_arboreal, file = "RData/General_data/species_coordinates_adjusted_arboreal.rds")
# Now get list of unique coordinates
distinct_coord <- distinct(dplyr::select(species_coordinates_adj_arboreal, -Presence,
-tip.label))
distinct_coord <- distinct_coord %>%
rename(x = original_lon, y = original_lat)
saveRDS(distinct_coord, file = "RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
Current climate
Function to process coordinates
# Set up parallel processing
plan(multicore(workers=16))
# Set the global timeout
options(future.globals.timeout = 1800) # Set a global timeout for 30 minutes
# Function to process each location
process_location <- function(loc) {
print(paste("Processing location with lon =", loc$lon, "lat =", loc$lat))
# Set parameters
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
coords<- c(loc$lon, loc$lat)
ERR <- 1.5 # Adjusting ERR based on the locations (locations with snow sometimes need a higher value)
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=0,
minshade=85,
maxshade=90,
Usrhyt = 2, # 2 meters above ground
windfac = 0.2, # Reduce wind speed by 80% in dense vegetation
microclima.LAI = 0.9, # 90% of the radiation is diffused because of vegetation
cap = 1,
ERR = ERR,
spatial = 'data/NCEP')
}, timeout = 600, onTimeout = "warning")
# If the process takes longer than 10 minutes, break.
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep exceeded time limit"))
} else {
micro <- micro_result
}
# When the first micro_ncep fails, try again with different ERR
if (max(micro$metout[,1] == 0)) {
while(max(micro$metout[,1] == 0)){
ERR <- ERR + 0.5
# Use withTimeout() for the micro_ncep() function inside the while loop as well
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=0,
minshade=85,
maxshade=90,
Usrhyt = 2, # 2 meters above ground
windfac = 0.2, # Reduce wind speed by 80% in dense vegetation
microclima.LAI = 0.9, # 90% of the radiation is diffused because of vegetation
cap = 1,
ERR = ERR,
spatial = 'data/NCEP')
}, timeout = 600, onTimeout = "warning")
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep inside while loop exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep inside while loop exceeded time limit"))
} else {
micro <- micro_result
}
# If ERR exceeds 5, break the loop regardless of the value of micro$metout[,1]
if(ERR >= 5){
break
}
}
}
# If even after adjusting ERR micro_ncep fails, return an error message
if (max(micro$metout[,1] == 0)) {
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "Failed on micro_ncep call"))
}
# Another explicit check
if (!max(micro$metout[,1] == 0)) {
assign("micro", micro, envir = globalenv())
} else {
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "Failed on micro_ncep call"))
}
success <- FALSE
result <- NULL
micro$metout[, 3] <- micro$metout[, 4] # Make the local height equal to reference height (2m)
micro$metout[, 5] <- micro$metout[, 6] # Make the local height equal to reference height (2m)
micro$metout[, 7] <- micro$metout[, 8] # Make the local height equal to reference height (2m)
# Use withTimeout() for the ectotherm() function as well
ecto_result <- withTimeout({
tryCatch({
ecto <- NicheMapR::ectotherm(live=0,
Ww_g = loc$median_mass,
shape = 4,
pct_wet = 80)
list(success = TRUE, ecto = ecto)
}, error = function(e) {
list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = paste("Failed on ectotherm call:", as.character(conditionMessage(e))))
})
}, timeout = 200, onTimeout = "warning")
if (inherits(ecto_result, "try-error") || is.null(ecto_result)) {
print(paste("ectotherm() exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "ectotherm() exceeded time limit"))
}
if(!ecto_result$success){
return(ecto_result)
}
gc()
# Assign the successful ecto result to the global environment
ecto <- ecto_result$ecto
assign("ecto", ecto, envir = globalenv())
environ <- as.data.frame(ecto$environ)
# Max and mean daily temperatures
daily_temp <- environ %>%
dplyr::mutate(YEAR = YEAR + 2004,
ERR = ERR) %>%
dplyr::group_by(ERR, YEAR, DOY, lon = paste(loc$lon), lat=paste(loc$lat)) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = 'drop')
# Create a function to calculate the rolling weekly temperature
calc_yearly_rolling_mean <- function(data) {
data$mean_weekly_temp <- zoo::rollapply(data$mean_temp, width = 7, FUN = mean, align = "right", partial = TRUE, fill = NA)
data$max_weekly_temp <- zoo::rollapply(data$max_temp, width = 7, FUN = mean, align = "right", partial = TRUE, fill = NA)
return(data)
}
# Calculate the rolling mean for each year and location
daily_temp <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::top_n(91, max_temp)
# Calculate the mean overall maximum temperature for the warmest days of each year
overall_temp_warmest_days <- daily_temp_warmest_days %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp),
median = median(max_temp),
fifth_percentile = quantile(max_temp, 0.05),
first_quartile = quantile(max_temp, 0.25),
third_quartile = quantile(max_temp, 0.75),
ninetyfifth_percentile = quantile(max_temp, 0.95),
min = min(max_temp),
max = max(max_temp), .groups = 'drop')
result <- list(daily_temp,
daily_temp_warmest_days,
overall_temp_warmest_days)
return(list(success = ecto_result$success, result = result)) # Return a list with a success flag and the result.
}
Function to process coordinates in chunks
Processing the coordinates in chunks is very useful for debugging.
# Function to process a chunk of locations
process_chunk <- function(start_index, end_index) {
# Read in distinct coordinates
distinct_coord <- readRDS(file = "RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord[, 3:4]
distinct_coord <- rename(distinct_coord, x = lon, y = lat)
# Adjust the range of locations
distinct_coord <- distinct_coord[start_index:end_index, ]
loc_list <- split(distinct_coord, seq(nrow(distinct_coord)))
loc_list <- lapply(loc_list, unlist)
# Match body mass data to coordinates
presence <- readRDS(file = "RData/General_data/species_coordinates_adjusted_arboreal.rds")
data <- readRDS(file = "RData/General_data/data_arboreal_sp.rds")
presence_body_mass <- merge(presence, dplyr::select(data, tip.label, body_mass),
by = "tip.label")
median_body_mass <- presence_body_mass %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass <- mutate(median_body_mass, median_mass = ifelse(is.na(median_mass) ==
TRUE, 8.4, median_mass))
# Convert loc_list back into a data frame
loc_df <- do.call("rbind", loc_list)
loc_df <- as.data.frame(loc_df)
names(loc_df) <- c("lon", "lat")
# Join loc_df and median_body_mass
loc_df <- dplyr::left_join(loc_df, median_body_mass, by = c("lon", "lat"))
# Convert loc_df back into a list
loc_list <- split(loc_df, seq(nrow(loc_df)))
# # Set up parallel processing
plan(multicore(workers = 16))
# Set the global timeout
options(future.globals.timeout = 1800) # Set a global timeout for 30 minutes
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
results <- future.apply::future_lapply(loc_list, process_location, future.packages = c("NicheMapR",
"microclima", "dplyr", "zoo", "R.utils"))
Sys.time()
saveRDS(results, file = paste0("RData/Biophysical_modelling/Arboreal/current/results/1st_batch/results_biophysical_modelling_arboreal_",
start_index, "-", end_index, ".rds"))
}
Process all locations
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
chunk_size <- 16
# Define start and end row numbers in distinct_coord
start_row <- 1
end_row <- 6614
# Calculate total chunks for the specified range
total_chunks <- ceiling((end_row - start_row + 1)/chunk_size)
# Loop through each chunk
for (i in seq(total_chunks)) {
# Calculate start and end indices for the current chunk
start_index <- ((i - 1) * chunk_size) + start_row
end_index <- min(i * chunk_size + start_row - 1, end_row)
# Call the process_chunk function with a timeout of 600 seconds
result <- process_chunk(start_index, end_index)
}
Sys.time()
Combine outputs
Note that some coordinates failed to run with the code provided above, and hence ran using slightly different parameters (higher error tolerance for calculating soil temperatures; not in parallel session). See details [HERE] Note also that the year 2005 was taken out as a burn in to allow the models to fully converge.
# List of folders for each type of file
folders <- c("1st_batch", "2nd_batch", "3rd_batch", "4th_batch", "5th_batch", "6th_batch",
"7th_batch")
# Initialize empty lists to store the combined dataframes
combined_daily_temp <- list()
combined_daily_temp_warmest_days <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the folder
path_to_rds <- paste("RData/Biophysical_modelling/Arboreal/current/results",
folder, sep = "/")
# Get the list of all rds files in the folder
rds_files <- list.files(path = path_to_rds, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract 'result' from each sublist in nested_list_results
nested_list_results <- lapply(nested_list_results, function(x) lapply(x, function(y) y[["result"]]))
# Flatten the list
flattened_list <- do.call("c", nested_list_results)
# Combine all dataframes for each metric and store them in the respective
# lists
combined_daily_temp[[folder]] <- do.call("rbind", lapply(flattened_list, function(x) x[[1]]))
combined_daily_temp_warmest_days[[folder]] <- do.call("rbind", lapply(flattened_list,
function(x) x[[2]]))
}
# Combine the dataframes from all folders
combined_daily_temp <- do.call("rbind", combined_daily_temp)
combined_daily_temp_warmest_days <- do.call("rbind", combined_daily_temp_warmest_days)
# Convert to numeric values
combined_daily_temp$lon <- as.numeric(combined_daily_temp$lon)
combined_daily_temp$lat <- as.numeric(combined_daily_temp$lat)
combined_daily_temp_warmest_days$lon <- as.numeric(combined_daily_temp_warmest_days$lon)
combined_daily_temp_warmest_days$lat <- as.numeric(combined_daily_temp_warmest_days$lat)
######################################################################################################
# Initialize empty lists to store the combined dataframes
combined_daily_temp_problematic <- list()
combined_daily_temp_warmest_days_problematic <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the subfolder 'problematic_locations'
path_to_subfolder <- paste("RData/Biophysical_modelling/Arboreal/current/results",
folder, "problematic_locations", sep = "/")
# Check if the subfolder exists
if (dir.exists(path_to_subfolder)) {
# Get the list of all rds files in the subfolder
rds_files <- list.files(path = path_to_subfolder, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract the four dataframes from each list and unlist 'lat' and 'lon'
# columns
combined_daily_temp_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[1]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
combined_daily_temp_warmest_days_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[2]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
# Store the combined dataframes in the respective lists
combined_daily_temp_problematic[[folder]] <- combined_daily_temp_subfolder
combined_daily_temp_warmest_days_problematic[[folder]] <- combined_daily_temp_warmest_days_subfolder
}
}
# Combine the dataframes from all subfolders
combined_daily_temp_problematic <- do.call("rbind", combined_daily_temp_problematic)
combined_daily_temp_warmest_days_problematic <- do.call("rbind", combined_daily_temp_warmest_days_problematic)
#################################################################################################################
# Get the path to the 'failed_locations' folder
path_to_failed_locations <- "RData/Biophysical_modelling/Arboreal/current/results/failed_locations"
# Initialize empty lists to store the combined dataframes
combined_daily_temp_failed <- list()
combined_daily_temp_warmest_days_failed <- list()
# Get the list of .rds files in the 'failed_locations' folder
rds_files_failed <- list.files(path = path_to_failed_locations, pattern = "*.rds",
full.names = TRUE)
# Loop over each .rds file
for (file_failed in rds_files_failed) {
# Read the .rds file into a list
nested_list_results_failed <- readRDS(file_failed)
# Extract the four dataframes from the list
combined_daily_temp_failed_subfolder <- nested_list_results_failed[["result"]][[1]]
combined_daily_temp_warmest_days_failed_subfolder <- nested_list_results_failed[["result"]][[2]]
# Store the combined dataframes in the respective lists
combined_daily_temp_failed[[file_failed]] <- combined_daily_temp_failed_subfolder
combined_daily_temp_warmest_days_failed[[file_failed]] <- combined_daily_temp_warmest_days_failed_subfolder
}
# Combine the dataframes from all files in the 'failed_locations' folder
combined_daily_temp_failed <- do.call("rbind", combined_daily_temp_failed)
combined_daily_temp_warmest_days_failed <- do.call("rbind", combined_daily_temp_warmest_days_failed)
#####################################################################################################
# Combine files
combined_daily_temp_all <- rbind(combined_daily_temp, combined_daily_temp_problematic,
combined_daily_temp_failed)
combined_daily_temp_warmest_days_all <- rbind(combined_daily_temp_warmest_days, combined_daily_temp_warmest_days_problematic,
combined_daily_temp_warmest_days_failed)
# Remove the first year (burn-in)
combined_daily_temp_all <- filter(combined_daily_temp_all, YEAR != "2005")
combined_daily_temp_warmest_days_all <- filter(combined_daily_temp_warmest_days_all,
YEAR != "2005")
# Calculate the overall temperature across coordinates
combined_overall_temp_all <- combined_daily_temp_warmest_days_all %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp), median = median(max_temp), fifth_percentile = quantile(max_temp,
0.05), first_quartile = quantile(max_temp, 0.25), third_quartile = quantile(max_temp,
0.75), ninetyfifth_percentile = quantile(max_temp, 0.95), min = min(max_temp),
max = max(max_temp), .groups = "drop")
# Save files
saveRDS(combined_daily_temp_all, file = "RData/Biophysical_modelling/Arboreal/current/daily_temp_arboreal.rds")
saveRDS(combined_daily_temp_warmest_days_all, file = "RData/Biophysical_modelling/Arboreal/current/daily_temp_warmest_days_arboreal.rds")
saveRDS(combined_overall_temp_all, file = "RData/Biophysical_modelling/Arboreal/current/overall_temp_warmest_days_arboreal.rds")
####################################################################################################
## Check for missing coordinates again
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- mutate(distinct_coord, lon_lat = paste(lon, lat))
combined_daily_temp_warmest_days_all <- mutate(combined_daily_temp_warmest_days_all,
lon_lat = paste(lon, lat))
# Function opposite of %in%
"%!in%" <- function(x, y) !(x %in% y)
missing_coord <- distinct_coord[distinct_coord$lon_lat %!in% combined_daily_temp_warmest_days_all$lon_lat,
]
missing_coord
missing_coord_row_numbers <- data.frame(row_n = which(distinct_coord$lon_lat %!in%
combined_daily_temp_warmest_days_all$lon_lat))
missing_coord_row_numbers
###
check_dup <- group_by(combined_daily_temp_all, lon, lat, YEAR, DOY) %>%
summarise(n = n())
loc_with_more_than_one <- filter(check_dup, n > 1)
loc_with_more_than_one <- mutate(loc_with_more_than_one, lon_lat = paste(lon, lat))
row_n_dup <- data.frame(row_n = which(distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat))
row_n_dup
dup_coord <- distinct_coord[distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat,
]
dup_coord
# Save the combined data
saveRDS(missing_coord, file = "RData/Biophysical_modelling/Arboreal/current/missing_coordinates.rds")
saveRDS(missing_coord_row_numbers, file = "RData/Biophysical_modelling/Arboreal/current/missing_coordinates_row_n.rds")
saveRDS(row_n_dup, file = "RData/Biophysical_modelling/Arboreal/current/row_n_duplicated_coordinates.rds")
saveRDS(dup_coord, file = "RData/Biophysical_modelling/Arboreal/current/duplicated_coordinates.rds")
Future climate (+2C)
Here, we assume a climate projection assuming 2 degrees of warming.
Function to process coordinates
# Set up parallel processing
plan(multicore(workers=16))
# Set the global timeout
options(future.globals.timeout = 1800) # Set a global timeout for 30 minutes
# Function to process each location
process_location <- function(loc) {
print(paste("Processing location with lon =", loc$lon, "lat =", loc$lat))
# Set parameters
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
coords<- c(loc$lon, loc$lat)
ERR <- 1.5 # Adjusting ERR based on the locations (locations with snow sometimes need a higher value)
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=2,
minshade=85,
maxshade=90,
Usrhyt = 2, # 2 meters above ground
windfac = 0.2, # Reduce wind speed by 80% in dense vegetation
microclima.LAI = 0.9, # 90% of the radiation is diffused because of vegetation
cap = 1,
ERR = ERR,
spatial = 'data/NCEP',
terra_source = 'data/TerraClimate/data')
}, timeout = 600, onTimeout = "warning")
# If the process takes longer than 10 minutes, break.
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep exceeded time limit"))
} else {
micro <- micro_result
}
# When the first micro_ncep fails, try again with different ERR
if (max(micro$metout[,1] == 0)) {
while(max(micro$metout[,1] == 0)){
ERR <- ERR + 0.5
# Use withTimeout() for the micro_ncep() function inside the while loop as well
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=2,
minshade=85,
maxshade=90,
Usrhyt = 2, # 2 meters above ground
windfac = 0.2, # Reduce wind speed by 80% in dense vegetation
microclima.LAI = 0.9, # 90% of the radiation is diffused because of vegetation
cap = 1,
ERR = ERR,
spatial = 'data/NCEP',
terra_source = 'data/TerraClimate/data')
}, timeout = 600, onTimeout = "warning")
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep inside while loop exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep inside while loop exceeded time limit"))
} else {
micro <- micro_result
}
# If ERR exceeds 5, break the loop regardless of the value of micro$metout[,1]
if(ERR >= 5){
break
}
}
}
# If even after adjusting ERR micro_ncep fails, return an error message
if (max(micro$metout[,1] == 0)) {
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "Failed on micro_ncep call"))
}
# Another explicit check
if (!max(micro$metout[,1] == 0)) {
assign("micro", micro, envir = globalenv())
} else {
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "Failed on micro_ncep call"))
}
success <- FALSE
result <- NULL
micro$metout[, 3] <- micro$metout[, 4] # Make the local height equal to reference height (2m)
micro$metout[, 5] <- micro$metout[, 6] # Make the local height equal to reference height (2m)
micro$metout[, 7] <- micro$metout[, 8] # Make the local height equal to reference height (2m)
# Use withTimeout() for the ectotherm() function as well
ecto_result <- withTimeout({
tryCatch({
ecto <- NicheMapR::ectotherm(live=0,
Ww_g = loc$median_mass,
shape = 4,
pct_wet = 80)
list(success = TRUE, ecto = ecto)
}, error = function(e) {
list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = paste("Failed on ectotherm call:", as.character(conditionMessage(e))))
})
}, timeout = 200, onTimeout = "warning")
if (inherits(ecto_result, "try-error") || is.null(ecto_result)) {
print(paste("ectotherm() exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "ectotherm() exceeded time limit"))
}
if(!ecto_result$success){
return(ecto_result)
}
gc()
# Assign the successful ecto result to the global environment
ecto <- ecto_result$ecto
assign("ecto", ecto, envir = globalenv())
environ <- as.data.frame(ecto$environ)
# Max and mean daily temperatures
daily_temp <- environ %>%
dplyr::mutate(YEAR = YEAR + 2004,
ERR = ERR) %>%
dplyr::group_by(ERR, YEAR, DOY, lon = paste(loc$lon), lat=paste(loc$lat)) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = 'drop')
# Create a function to calculate the rolling weekly temperature
calc_yearly_rolling_mean <- function(data) {
data$mean_weekly_temp <- zoo::rollapply(data$mean_temp, width = 7, FUN = mean, align = "right", partial = TRUE, fill = NA)
data$max_weekly_temp <- zoo::rollapply(data$max_temp, width = 7, FUN = mean, align = "right", partial = TRUE, fill = NA)
return(data)
}
# Calculate the rolling mean for each year and location
daily_temp <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::top_n(91, max_temp)
# Calculate the mean overall maximum temperature for the warmest days of each year
overall_temp_warmest_days <- daily_temp_warmest_days %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp),
median = median(max_temp),
fifth_percentile = quantile(max_temp, 0.05),
first_quartile = quantile(max_temp, 0.25),
third_quartile = quantile(max_temp, 0.75),
ninetyfifth_percentile = quantile(max_temp, 0.95),
min = min(max_temp),
max = max(max_temp), .groups = 'drop')
result <- list(daily_temp,
daily_temp_warmest_days,
overall_temp_warmest_days)
return(list(success = ecto_result$success, result = result)) # Return a list with a success flag and the result.
}
Function to process coordinates in chunks
# Function to process a chunk of locations
process_chunk <- function(start_index, end_index) {
# Read in distinct coordinates
distinct_coord <- readRDS(file = "RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord[, 3:4]
distinct_coord <- rename(distinct_coord, x = lon, y = lat)
# Adjust the range of locations
distinct_coord <- distinct_coord[start_index:end_index, ]
loc_list <- split(distinct_coord, seq(nrow(distinct_coord)))
loc_list <- lapply(loc_list, unlist)
# Match body mass data to coordinates
presence <- readRDS(file = "RData/General_data/species_coordinates_adjusted_arboreal.rds")
data <- readRDS(file = "RData/General_data/data_arboreal_sp.rds")
presence_body_mass <- merge(presence, dplyr::select(data, tip.label, body_mass),
by = "tip.label")
median_body_mass <- presence_body_mass %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass <- mutate(median_body_mass, median_mass = ifelse(is.na(median_mass) ==
TRUE, 8.4, median_mass))
# Convert loc_list back into a data frame
loc_df <- do.call("rbind", loc_list)
loc_df <- as.data.frame(loc_df)
names(loc_df) <- c("lon", "lat")
# Join loc_df and median_body_mass
loc_df <- dplyr::left_join(loc_df, median_body_mass, by = c("lon", "lat"))
# Convert loc_df back into a list
loc_list <- split(loc_df, seq(nrow(loc_df)))
# # Set up parallel processing
plan(multicore(workers = 16))
# Set the global timeout
options(future.globals.timeout = 1800) # Set a global timeout for 30 minutes
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
results <- future.apply::future_lapply(loc_list, process_location, future.packages = c("NicheMapR",
"microclima", "dplyr", "zoo", "R.utils"))
Sys.time()
saveRDS(results, file = paste0("RData/Biophysical_modelling/Arboreal/2C/results/1st_batch/results_biophysical_modelling_arboreal_future2C_",
start_index, "-", end_index, ".rds"))
}
Process all locations
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
chunk_size <- 16
# Define start and end row numbers in distinct_coord
start_row <- 1
end_row <- 6614
# Calculate total chunks for the specified range
total_chunks <- ceiling((end_row - start_row + 1)/chunk_size)
# Loop through each chunk
for (i in seq(total_chunks)) {
# Calculate start and end indices for the current chunk
start_index <- ((i - 1) * chunk_size) + start_row
end_index <- min(i * chunk_size + start_row - 1, end_row)
# Call the process_chunk function with a timeout of 600 seconds
result <- process_chunk(start_index, end_index)
}
Sys.time()
Combine outputs
Note that some coordinates failed to run with the code provided above, and hence ran using slightly different parameters (higher error tolerance for calculating soil temperatures; not in parallel session). See details [HERE] Note also that the year 2005 was taken out as a burn in to allow the models to fully converge.
# List of folders for each type of file
folders <- c("1st_batch", "2nd_batch", "3rd_batch", "4th_batch", "5th_batch", "6th_batch",
"7th_batch")
# Initialize empty lists to store the combined dataframes
combined_daily_temp <- list()
combined_daily_temp_warmest_days <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the folder
path_to_rds <- paste("RData/Biophysical_modelling/Arboreal/2C/results", folder,
sep = "/")
# Get the list of all rds files in the folder
rds_files <- list.files(path = path_to_rds, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract 'result' from each sublist in nested_list_results
nested_list_results <- lapply(nested_list_results, function(x) lapply(x, function(y) y[["result"]]))
# Flatten the list
flattened_list <- do.call("c", nested_list_results)
# Combine all dataframes for each metric and store them in the respective
# lists
combined_daily_temp[[folder]] <- do.call("rbind", lapply(flattened_list, function(x) x[[1]]))
combined_daily_temp_warmest_days[[folder]] <- do.call("rbind", lapply(flattened_list,
function(x) x[[2]]))
}
# Combine the dataframes from all folders
combined_daily_temp <- do.call("rbind", combined_daily_temp)
combined_daily_temp_warmest_days <- do.call("rbind", combined_daily_temp_warmest_days)
# Convert to numeric values
combined_daily_temp$lon <- as.numeric(combined_daily_temp$lon)
combined_daily_temp$lat <- as.numeric(combined_daily_temp$lat)
combined_daily_temp_warmest_days$lon <- as.numeric(combined_daily_temp_warmest_days$lon)
combined_daily_temp_warmest_days$lat <- as.numeric(combined_daily_temp_warmest_days$lat)
######################################################################################################
# Initialize empty lists to store the combined dataframes
combined_daily_temp_problematic <- list()
combined_daily_temp_warmest_days_problematic <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the subfolder 'problematic_locations'
path_to_subfolder <- paste("RData/Biophysical_modelling/Arboreal/2C/results",
folder, "problematic_locations", sep = "/")
# Check if the subfolder exists
if (dir.exists(path_to_subfolder)) {
# Get the list of all rds files in the subfolder
rds_files <- list.files(path = path_to_subfolder, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract the four dataframes from each list and unlist 'lat' and 'lon'
# columns
combined_daily_temp_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[1]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
combined_daily_temp_warmest_days_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[2]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
# Store the combined dataframes in the respective lists
combined_daily_temp_problematic[[folder]] <- combined_daily_temp_subfolder
combined_daily_temp_warmest_days_problematic[[folder]] <- combined_daily_temp_warmest_days_subfolder
}
}
# Combine the dataframes from all subfolders
combined_daily_temp_problematic <- do.call("rbind", combined_daily_temp_problematic)
combined_daily_temp_warmest_days_problematic <- do.call("rbind", combined_daily_temp_warmest_days_problematic)
#################################################################################################################
# Get the path to the 'failed_locations' folder
path_to_failed_locations <- "RData/Biophysical_modelling/Arboreal/2C/results/failed_locations"
# Initialize empty lists to store the combined dataframes
combined_daily_temp_failed <- list()
combined_daily_temp_warmest_days_failed <- list()
# Get the list of .rds files in the 'failed_locations' folder
rds_files_failed <- list.files(path = path_to_failed_locations, pattern = "*.rds",
full.names = TRUE)
# Loop over each .rds file
for (file_failed in rds_files_failed) {
# Read the .rds file into a list
nested_list_results_failed <- readRDS(file_failed)
# Extract the four dataframes from the list
combined_daily_temp_failed_subfolder <- nested_list_results_failed[["result"]][[1]]
combined_daily_temp_warmest_days_failed_subfolder <- nested_list_results_failed[["result"]][[2]]
# Store the combined dataframes in the respective lists
combined_daily_temp_failed[[file_failed]] <- combined_daily_temp_failed_subfolder
combined_daily_temp_warmest_days_failed[[file_failed]] <- combined_daily_temp_warmest_days_failed_subfolder
}
# Combine the dataframes from all files in the 'failed_locations' folder
combined_daily_temp_failed <- do.call("rbind", combined_daily_temp_failed)
combined_daily_temp_warmest_days_failed <- do.call("rbind", combined_daily_temp_warmest_days_failed)
#####################################################################################################
# Combine files
combined_daily_temp_all <- rbind(combined_daily_temp, combined_daily_temp_problematic,
combined_daily_temp_failed)
combined_daily_temp_warmest_days_all <- rbind(combined_daily_temp_warmest_days, combined_daily_temp_warmest_days_problematic,
combined_daily_temp_warmest_days_failed)
# Remove the first year (burn-in)
combined_daily_temp_all <- filter(combined_daily_temp_all, YEAR != "2005")
combined_daily_temp_warmest_days_all <- filter(combined_daily_temp_warmest_days_all,
YEAR != "2005")
# Calculate the overall temperature across coordinates
combined_overall_temp_all <- combined_daily_temp_warmest_days_all %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp), median = median(max_temp), fifth_percentile = quantile(max_temp,
0.05), first_quartile = quantile(max_temp, 0.25), third_quartile = quantile(max_temp,
0.75), ninetyfifth_percentile = quantile(max_temp, 0.95), min = min(max_temp),
max = max(max_temp), .groups = "drop")
# Save files
saveRDS(combined_daily_temp_all, file = "RData/Biophysical_modelling/Arboreal/2C/daily_temp_arboreal_2C.rds")
saveRDS(combined_daily_temp_warmest_days_all, file = "RData/Biophysical_modelling/Arboreal/2C/daily_temp_warmest_days_arboreal_2C.rds")
saveRDS(combined_overall_temp_all, file = "RData/Biophysical_modelling/Arboreal/2C/overall_temp_warmest_days_arboreal_2C.rds")
####################################################################################################
## Check for missing coordinates again
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- mutate(distinct_coord, lon_lat = paste(lon, lat))
combined_daily_temp_warmest_days_all <- mutate(combined_daily_temp_warmest_days_all,
lon_lat = paste(lon, lat))
# Function opposite of %in%
"%!in%" <- function(x, y) !(x %in% y)
missing_coord <- distinct_coord[distinct_coord$lon_lat %!in% combined_daily_temp_warmest_days_all$lon_lat,
]
missing_coord
missing_coord_row_numbers <- data.frame(row_n = which(distinct_coord$lon_lat %!in%
combined_daily_temp_warmest_days_all$lon_lat))
missing_coord_row_numbers
###
check_dup <- group_by(combined_daily_temp_all, lon, lat, YEAR, DOY) %>%
summarise(n = n())
loc_with_more_than_one <- filter(check_dup, n > 1)
loc_with_more_than_one <- mutate(loc_with_more_than_one, lon_lat = paste(lon, lat))
row_n_dup <- data.frame(row_n = which(distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat))
row_n_dup
dup_coord <- distinct_coord[distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat,
]
dup_coord
# Save the combined data
saveRDS(missing_coord, file = "RData/Biophysical_modelling/Arboreal/2C/missing_coordinates_2C.rds")
saveRDS(missing_coord_row_numbers, file = "RData/Biophysical_modelling/Arboreal/2C/missing_coordinates_row_n_2C.rds")
saveRDS(row_n_dup, file = "RData/Biophysical_modelling/Arboreal/2C/row_n_duplicated_coordinates_2C.rds")
saveRDS(dup_coord, file = "RData/Biophysical_modelling/Arboreal/2C/duplicated_coordinates_2C.rds")
Future climate (+4C)
Function to process coordinates
# Set up parallel processing
plan(multicore(workers=16))
# Set the global timeout
options(future.globals.timeout = 1800) # Set a global timeout for 30 minutes
# Function to process each location
process_location <- function(loc) {
print(paste("Processing location with lon =", loc$lon, "lat =", loc$lat))
# Set parameters
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
coords<- c(loc$lon, loc$lat)
ERR <- 1.5 # Adjusting ERR based on the locations (locations with snow sometimes need a higher value)
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=4,
minshade=85,
maxshade=90,
Usrhyt = 2, # 2 meters above ground
windfac = 0.2, # Reduce wind speed by 80% in dense vegetation
microclima.LAI = 0.9, # 90% of the radiation is diffused because of vegetation
cap = 1,
ERR = ERR,
spatial = 'data/NCEP',
terra_source = 'data/TerraClimate/data')
}, timeout = 600, onTimeout = "warning")
# If the process takes longer than 10 minutes, break.
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep exceeded time limit"))
} else {
micro <- micro_result
}
# When the first micro_ncep fails, try again with different ERR
if (max(micro$metout[,1] == 0)) {
while(max(micro$metout[,1] == 0)){
ERR <- ERR + 0.5
# Use withTimeout() for the micro_ncep() function inside the while loop as well
micro_result <- withTimeout({
NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=4,
minshade=85,
maxshade=90,
Usrhyt = 2, # 2 meters above ground
windfac = 0.2, # Reduce wind speed by 80% in dense vegetation
microclima.LAI = 0.9, # 90% of the radiation is diffused because of vegetation
cap = 1,
ERR = ERR,
spatial = 'data/NCEP',
terra_source = 'data/TerraClimate/data')
}, timeout = 600, onTimeout = "warning")
if (inherits(micro_result, "try-error") || is.null(micro_result)) {
print(paste("micro_ncep inside while loop exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "micro_ncep inside while loop exceeded time limit"))
} else {
micro <- micro_result
}
# If ERR exceeds 5, break the loop regardless of the value of micro$metout[,1]
if(ERR >= 5){
break
}
}
}
# If even after adjusting ERR micro_ncep fails, return an error message
if (max(micro$metout[,1] == 0)) {
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "Failed on micro_ncep call"))
}
# Another explicit check
if (!max(micro$metout[,1] == 0)) {
assign("micro", micro, envir = globalenv())
} else {
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "Failed on micro_ncep call"))
}
success <- FALSE
result <- NULL
micro$metout[, 3] <- micro$metout[, 4] # Make the local height equal to reference height (2m)
micro$metout[, 5] <- micro$metout[, 6] # Make the local height equal to reference height (2m)
micro$metout[, 7] <- micro$metout[, 8] # Make the local height equal to reference height (2m)
# Use withTimeout() for the ectotherm() function as well
ecto_result <- withTimeout({
tryCatch({
ecto <- NicheMapR::ectotherm(live=0,
Ww_g = loc$median_mass,
shape = 4,
pct_wet = 80)
list(success = TRUE, ecto = ecto)
}, error = function(e) {
list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = paste("Failed on ectotherm call:", as.character(conditionMessage(e))))
})
}, timeout = 200, onTimeout = "warning")
if (inherits(ecto_result, "try-error") || is.null(ecto_result)) {
print(paste("ectotherm() exceeded time limit for location with lon =", loc$lon, "lat =", loc$lat))
return(list(success = FALSE,
loc = c(lon = loc$lon, lat = loc$lat),
error_message = "ectotherm() exceeded time limit"))
}
if(!ecto_result$success){
return(ecto_result)
}
gc()
# Assign the successful ecto result to the global environment
ecto <- ecto_result$ecto
assign("ecto", ecto, envir = globalenv())
environ <- as.data.frame(ecto$environ)
# Max and mean daily temperatures
daily_temp <- environ %>%
dplyr::mutate(YEAR = YEAR + 2004,
ERR = ERR) %>%
dplyr::group_by(ERR, YEAR, DOY, lon = paste(loc$lon), lat=paste(loc$lat)) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = 'drop')
# Create a function to calculate the rolling weekly temperature
calc_yearly_rolling_mean <- function(data) {
data$mean_weekly_temp <- zoo::rollapply(data$mean_temp, width = 7, FUN = mean, align = "right", partial = TRUE, fill = NA)
data$max_weekly_temp <- zoo::rollapply(data$max_temp, width = 7, FUN = mean, align = "right", partial = TRUE, fill = NA)
return(data)
}
# Calculate the rolling mean for each year and location
daily_temp <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days <- daily_temp %>%
dplyr::group_by(YEAR, lon, lat) %>%
dplyr::top_n(91, max_temp)
# Calculate the mean overall maximum temperature for the warmest days of each year
overall_temp_warmest_days <- daily_temp_warmest_days %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp),
median = median(max_temp),
fifth_percentile = quantile(max_temp, 0.05),
first_quartile = quantile(max_temp, 0.25),
third_quartile = quantile(max_temp, 0.75),
ninetyfifth_percentile = quantile(max_temp, 0.95),
min = min(max_temp),
max = max(max_temp), .groups = 'drop')
result <- list(daily_temp,
daily_temp_warmest_days,
overall_temp_warmest_days)
return(list(success = ecto_result$success, result = result)) # Return a list with a success flag and the result.
}
Function to process coordinates in chunks
# Function to process a chunk of locations
process_chunk <- function(start_index, end_index) {
# Read in distinct coordinates
distinct_coord <- readRDS(file = "RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord[, 3:4]
distinct_coord <- rename(distinct_coord, x = lon, y = lat)
# Adjust the range of locations
distinct_coord <- distinct_coord[start_index:end_index, ]
loc_list <- split(distinct_coord, seq(nrow(distinct_coord)))
loc_list <- lapply(loc_list, unlist)
# Match body mass data to coordinates
presence <- readRDS(file = "RData/General_data/species_coordinates_adjusted_arboreal.rds")
data <- readRDS(file = "RData/General_data/data_arboreal_sp.rds")
presence_body_mass <- merge(presence, dplyr::select(data, tip.label, body_mass),
by = "tip.label")
median_body_mass <- presence_body_mass %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass <- mutate(median_body_mass, median_mass = ifelse(is.na(median_mass) ==
TRUE, 8.4, median_mass))
# Convert loc_list back into a data frame
loc_df <- do.call("rbind", loc_list)
loc_df <- as.data.frame(loc_df)
names(loc_df) <- c("lon", "lat")
# Join loc_df and median_body_mass
loc_df <- dplyr::left_join(loc_df, median_body_mass, by = c("lon", "lat"))
# Convert loc_df back into a list
loc_list <- split(loc_df, seq(nrow(loc_df)))
# # Set up parallel processing
plan(multicore(workers = 16))
# Set the global timeout
options(future.globals.timeout = 1800) # Set a global timeout for 30 minutes
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
results <- future.apply::future_lapply(loc_list, process_location, future.packages = c("NicheMapR",
"microclima", "dplyr", "zoo", "R.utils"))
Sys.time()
saveRDS(results, file = paste0("RData/Biophysical_modelling/Arboreal/4C/results/1st_batch/results_biophysical_modelling_arboreal_future4C_",
start_index, "-", end_index, ".rds"))
}
Process all locations
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
Sys.time()
chunk_size <- 16
# Define start and end row numbers in distinct_coord
start_row <- 1
end_row <- 6614
# Calculate total chunks for the specified range
total_chunks <- ceiling((end_row - start_row + 1)/chunk_size)
# Loop through each chunk
for (i in seq(total_chunks)) {
# Calculate start and end indices for the current chunk
start_index <- ((i - 1) * chunk_size) + start_row
end_index <- min(i * chunk_size + start_row - 1, end_row)
# Call the process_chunk function with a timeout of 600 seconds
result <- process_chunk(start_index, end_index)
}
Sys.time()
Combine outputs
Note that some coordinates failed to run with the code provided above, and hence ran using slightly different parameters (higher error tolerance for calculating soil temperatures; not in parallel session). See details [HERE] Note also that the year 2005 was taken out as a burn in to allow the models to fully converge.
# List of folders for each type of file
folders <- c("1st_batch", "2nd_batch", "3rd_batch", "4th_batch", "5th_batch", "6th_batch",
"7th_batch")
# Initialize empty lists to store the combined dataframes
combined_daily_temp <- list()
combined_daily_temp_warmest_days <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the folder
path_to_rds <- paste("RData/Biophysical_modelling/Arboreal/4C/results", folder,
sep = "/")
# Get the list of all rds files in the folder
rds_files <- list.files(path = path_to_rds, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract 'result' from each sublist in nested_list_results
nested_list_results <- lapply(nested_list_results, function(x) lapply(x, function(y) y[["result"]]))
# Flatten the list
flattened_list <- do.call("c", nested_list_results)
# Combine all dataframes for each metric and store them in the respective
# lists
combined_daily_temp[[folder]] <- do.call("rbind", lapply(flattened_list, function(x) x[[1]]))
combined_daily_temp_warmest_days[[folder]] <- do.call("rbind", lapply(flattened_list,
function(x) x[[2]]))
}
# Combine the dataframes from all folders
combined_daily_temp <- do.call("rbind", combined_daily_temp)
combined_daily_temp_warmest_days <- do.call("rbind", combined_daily_temp_warmest_days)
# Convert to numeric values
combined_daily_temp$lon <- as.numeric(combined_daily_temp$lon)
combined_daily_temp$lat <- as.numeric(combined_daily_temp$lat)
combined_daily_temp_warmest_days$lon <- as.numeric(combined_daily_temp_warmest_days$lon)
combined_daily_temp_warmest_days$lat <- as.numeric(combined_daily_temp_warmest_days$lat)
######################################################################################################
# Initialize empty lists to store the combined dataframes
combined_daily_temp_problematic <- list()
combined_daily_temp_warmest_days_problematic <- list()
# Loop over each folder
for (folder in folders) {
# Get the path to the subfolder 'problematic_locations'
path_to_subfolder <- paste("RData/Biophysical_modelling/Arboreal/4C/results",
folder, "problematic_locations", sep = "/")
# Check if the subfolder exists
if (dir.exists(path_to_subfolder)) {
# Get the list of all rds files in the subfolder
rds_files <- list.files(path = path_to_subfolder, pattern = "*.rds", full.names = TRUE)
# Read all the files into a list
nested_list_results <- lapply(rds_files, readRDS)
# Extract the four dataframes from each list and unlist 'lat' and 'lon'
# columns
combined_daily_temp_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[1]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
combined_daily_temp_warmest_days_subfolder <- do.call("rbind", lapply(nested_list_results,
function(x) {
df <- x[[2]]
if (is.list(df$lat))
df$lat <- unlist(df$lat)
if (is.list(df$lon))
df$lon <- unlist(df$lon)
df
}))
# Store the combined dataframes in the respective lists
combined_daily_temp_problematic[[folder]] <- combined_daily_temp_subfolder
combined_daily_temp_warmest_days_problematic[[folder]] <- combined_daily_temp_warmest_days_subfolder
}
}
# Combine the dataframes from all subfolders
combined_daily_temp_problematic <- do.call("rbind", combined_daily_temp_problematic)
combined_daily_temp_warmest_days_problematic <- do.call("rbind", combined_daily_temp_warmest_days_problematic)
#################################################################################################################
# Get the path to the 'failed_locations' folder
path_to_failed_locations <- "RData/Biophysical_modelling/Arboreal/4C/results/failed_locations"
# Initialize empty lists to store the combined dataframes
combined_daily_temp_failed <- list()
combined_daily_temp_warmest_days_failed <- list()
# Get the list of .rds files in the 'failed_locations' folder
rds_files_failed <- list.files(path = path_to_failed_locations, pattern = "*.rds",
full.names = TRUE)
# Loop over each .rds file
for (file_failed in rds_files_failed) {
# Read the .rds file into a list
nested_list_results_failed <- readRDS(file_failed)
# Extract the four dataframes from the list
combined_daily_temp_failed_subfolder <- nested_list_results_failed[["result"]][[1]]
combined_daily_temp_warmest_days_failed_subfolder <- nested_list_results_failed[["result"]][[2]]
# Store the combined dataframes in the respective lists
combined_daily_temp_failed[[file_failed]] <- combined_daily_temp_failed_subfolder
combined_daily_temp_warmest_days_failed[[file_failed]] <- combined_daily_temp_warmest_days_failed_subfolder
}
# Combine the dataframes from all files in the 'failed_locations' folder
combined_daily_temp_failed <- do.call("rbind", combined_daily_temp_failed)
combined_daily_temp_warmest_days_failed <- do.call("rbind", combined_daily_temp_warmest_days_failed)
#####################################################################################################
# Combine files
combined_daily_temp_all <- rbind(combined_daily_temp, combined_daily_temp_problematic,
combined_daily_temp_failed)
combined_daily_temp_warmest_days_all <- rbind(combined_daily_temp_warmest_days, combined_daily_temp_warmest_days_problematic,
combined_daily_temp_warmest_days_failed)
# Remove the first year (burn-in)
combined_daily_temp_all <- filter(combined_daily_temp_all, YEAR != "2005")
combined_daily_temp_warmest_days_all <- filter(combined_daily_temp_warmest_days_all,
YEAR != "2005")
# Calculate the overall temperature across coordinates
combined_overall_temp_all <- combined_daily_temp_warmest_days_all %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarize(mean = mean(max_temp), median = median(max_temp), fifth_percentile = quantile(max_temp,
0.05), first_quartile = quantile(max_temp, 0.25), third_quartile = quantile(max_temp,
0.75), ninetyfifth_percentile = quantile(max_temp, 0.95), min = min(max_temp),
max = max(max_temp), .groups = "drop")
# Save files
saveRDS(combined_daily_temp_all, file = "RData/Biophysical_modelling/Arboreal/4C/daily_temp_arboreal_4C.rds")
saveRDS(combined_daily_temp_warmest_days_all, file = "RData/Biophysical_modelling/Arboreal/4C/daily_temp_warmest_days_arboreal_4C.rds")
saveRDS(combined_overall_temp_all, file = "RData/Biophysical_modelling/Arboreal/4C/overall_temp_warmest_days_arboreal_4C.rds")
####################################################################################################
## Check for missing coordinates again
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- mutate(distinct_coord, lon_lat = paste(lon, lat))
combined_daily_temp_warmest_days_all <- mutate(combined_daily_temp_warmest_days_all,
lon_lat = paste(lon, lat))
# Function opposite of %in%
"%!in%" <- function(x, y) !(x %in% y)
missing_coord <- distinct_coord[distinct_coord$lon_lat %!in% combined_daily_temp_warmest_days_all$lon_lat,
]
missing_coord
missing_coord_row_numbers <- data.frame(row_n = which(distinct_coord$lon_lat %!in%
combined_daily_temp_warmest_days_all$lon_lat))
missing_coord_row_numbers
###
check_dup <- group_by(combined_daily_temp_all, lon, lat, YEAR, DOY) %>%
summarise(n = n())
loc_with_more_than_one <- filter(check_dup, n > 1)
loc_with_more_than_one <- mutate(loc_with_more_than_one, lon_lat = paste(lon, lat))
row_n_dup <- data.frame(row_n = which(distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat))
row_n_dup
dup_coord <- distinct_coord[distinct_coord$lon_lat %in% loc_with_more_than_one$lon_lat,
]
dup_coord
# Save the combined data
saveRDS(missing_coord, file = "RData/Biophysical_modelling/Arboreal/4C/missing_coordinates_4C.rds")
saveRDS(missing_coord_row_numbers, file = "RData/Biophysical_modelling/Arboreal/4C/missing_coordinates_row_n_4C.rds")
saveRDS(row_n_dup, file = "RData/Biophysical_modelling/Arboreal/4C/row_n_duplicated_coordinates_4C.rds")
saveRDS(dup_coord, file = "RData/Biophysical_modelling/Arboreal/4C/duplicated_coordinates_4C.rds")
Data imputation
Here, the data was imputed assuming that animals were acclimated to either the median, 5% or 95% percentile mean maximum temperature experienced across their range of distribution in the warmest three-months of each year.
Add ecologicall-relevant temperatures to the training data
This code ran on an HPC environment, where the original code can be found in R/Data_wrangling/Adding_temperatures_to_data_for_imputation.R and the resources used in pbs/Data_wrangling/Adding_temperatures_to_data_for_imputation.pbs
## Load preliminary data for imputation
data_for_imp <- readRDS(file="RData/General_data/pre_data_for_imputation.rds")
## Load occurence data
species_occurrence <- readRDS(file="RData/General_data/species_coordinates_adjusted.rds")
# Combine temperature data
### Maximum temperature
overall_temp<-readRDS("Rdata/Biophysical_modelling/Substrate/current/overall_temp_warmest_days_substrate.rds")
overall_temp$lon <- as.numeric(overall_temp$lon)
overall_temp$lat <- as.numeric(overall_temp$lat)
# Merge coordinates with the mean maximum temperature of the warmest days across the species distribution
species_occurrence_temp <- merge(species_occurrence, overall_temp, by.x = c("lat", "lon"), by.y = c("lat", "lon"))
# Group by species and calculate mean for each variable
species_temp_values <- species_occurrence_temp %>%
group_by(tip.label) %>%
summarize(
mean_mean = mean(mean),
mean_median = mean(median),
mean_fifth_percentile = mean(fifth_percentile),
mean_first_quartile = mean(first_quartile),
mean_third_quartile = mean(third_quartile),
mean_ninetyfifth_percentile = mean(ninetyfifth_percentile),
mean_min = mean(min),
mean_max = mean(max),
.groups = 'drop'
)
# Filter the relevant columns (here adding data from the 5th and 95th percentiles)
species_temp_values_filtered <- species_temp_values %>%
dplyr::select(tip.label, mean_median, mean_fifth_percentile, mean_ninetyfifth_percentile)
# Pivot the data frame into long format
species_temp_values_long <- species_temp_values_filtered %>%
pivot_longer(cols = c(mean_median, mean_fifth_percentile, mean_ninetyfifth_percentile),
names_to = "temp_range",
values_to = "acclimation_temp") %>%
mutate(tip.label = gsub("\\.", "_", tip.label), # replace dots with underscores
temp_range = gsub("^mean_", "", temp_range)) # remove "mean_" from temp_range
# Reorder the columns
species_temp_values_long <- species_temp_values_long %>%
dplyr::select(tip.label, temp_range, acclimation_temp)
# Rename the "mean_median" column to "median", etc.
names(species_temp_values_long)[2:3] <- c("temp_range", "acclimation_temp")
species_temp_values_long$tip.label <- gsub("_", " ", species_temp_values_long$tip.label)
# Join with data for imputation
species_temp_values_long$tip.label[species_temp_values_long$tip.label=="Scinax x signatus"] <- "Scinax x-signatus" # Rename
species_temp_values_long$tip.label[species_temp_values_long$tip.label=="Pristimantis w nigrum"] <- "Pristimantis w-nigrum" # Rename
# Split data_for_imp into two data frames
data_for_imp_nonNA <- data_for_imp %>%
filter(!is.na(acclimation_temp))
data_for_imp_NA <- data_for_imp %>%
filter(is.na(acclimation_temp)) %>%
dplyr::select(-acclimation_temp) # Remove the NA acclimation_temp column
# Perform a full join on data_for_imp_NA and species_temp_values_long
data_for_imp_NA <- full_join(data_for_imp_NA, species_temp_values_long, by = "tip.label")
# Combine the two data frames
data_for_imp_with_temp <- bind_rows(data_for_imp_nonNA, data_for_imp_NA)
saveRDS(data_for_imp_with_temp, file="RData/General_data/data_for_imputation_with_temp.rds")
Function to perfom the imputation
The .R file for this code can be found in R/Imputation/Functions_BACE.R
####################### supporting functions
# these functions below are from: https://github.com/matthiasspeidel/hmi
#' Standardizing function
#'
#' Function to standardize variables that are numeric (continuous and count variables) but no rounded continuous, semicontinuous, intercepts or categorical variables.
#' @param X A n times p data.frame with p fixed (or random) effects variables.
#' @return A n times p data.frame with the standardized versions of the numeric variables.
#' @export
stand <- function(X) {
# if(!is.data.frame(X)) stop('X has to be a data.frame.') if(ncol(X) == 0)
# return(X) types <- array(NA, dim = ncol(X)) for(i in 1:length(types)){
# types[i] <- get_type(X[, i]) } need_stand_X <- types %in% c('cont',
# 'count', 'roundedcont', 'semicont')
X_stand <- X
tmp <- scale(X)
X_stand <- matrix(tmp, ncol = ncol(tmp)) # this avoids having attributes delivered by scale().
return(X_stand)
}
#' Sample imputation.
#'
#' Function to sample values in a variable from other (observed) values in this variable.
#' So this imputation does not use further covariates.
#' @param variable A vector of size \code{n} with missing values.
#' @return A list with a n times 1 data.frame without missing values and
#' a list with the chains of the Gibbs-samples for the fixed effects and variance parameters.
#' @examples
#' set.seed(123)
#' sample_imp(c(1, NA, 3, NA, 5))
#' @export
sample_imp <- function(variable) {
if (is.data.frame(variable)) {
stop("You passed a data.frame instead of a vector to sample_imp.")
}
if (all(is.na(variable)))
stop("Variable consists only of NAs.")
ret <- data.frame(target = variable)
need_replacement <- is.na(variable) | is.infinite(variable)
ret[need_replacement, 1] <- sample(size = sum(need_replacement), variable[!need_replacement],
replace = TRUE)
return(ret)
}
##################### imputation function
# inter = muitplier for iteration
b_mice <- function(cycle = 1, data = dat, Ainv = Ainv, iter1 = 10, iter2 = 20, iter3 = 60) {
# Standard deviation of thermal tolerance estimates (sd_UTL)
# formula
forms_sd_UTL <- as.formula(paste("ln_sd_UTL ~
life_stage_tested +",
"acclimation_temp", "+", "endpoint2", "+", "acclimated", "+", paste0("ln_acclimation_time_stand",
cycle), "+", paste0("medium_test_temp2_fill", cycle), "+", paste0("ramping_stand",
cycle), "+", paste0("mean_UTL_stand", cycle)))
prior_sd_UTL <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0, alpha.V = 1000)))
# model
mod_sd_UTL <- MCMCglmm(forms_sd_UTL, random = ~species, pl = TRUE, pr = TRUE,
nitt = 13000 * iter1, thin = 10 * iter1, burnin = 3000 * iter1, singular.ok = TRUE,
verbose = FALSE, prior = prior_sd_UTL, data = data)
# processing
pre_sd_UTL <- as.vector(predict(mod_sd_UTL, marginal = NULL)) # prediction
# creating a new variable
data[[paste0("ln_sd_UTL_stand", cycle + 1)]] <- data$ln_sd_UTL
# filling in with predicted values
data[[paste0("ln_sd_UTL_stand", cycle + 1)]][sd_UTL_mpos] <- pre_sd_UTL[sd_UTL_mpos]
data[[paste0("ln_sd_UTL_stand", cycle + 1)]] <- stand(data[[paste0("ln_sd_UTL_stand",
cycle + 1)]])[, 1]
# Adding variance column
data[[paste0("var_UTL_stand", cycle + 1)]] <- (data[[paste0("ln_sd_UTL_stand",
cycle + 1)]])^2
# data
print("1 out of 5 models done")
# Acclimation time
# formula
forms_acclimation_time <- as.formula(paste("ln_acclimation_time ~
life_stage_tested +",
paste0("ln_sd_UTL_stand", cycle + 1), "+", paste0("mean_UTL_stand", cycle)))
prior_acclimation_time <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = 1,
nu = 0.002, alpha.mu = 0, alpha.V = 1000)))
# model
mod_acclimation_time <- MCMCglmm(forms_acclimation_time, random = ~species, pl = TRUE,
pr = TRUE, nitt = 13000 * iter1, thin = 10 * iter1, burnin = 3000 * iter1,
singular.ok = TRUE, verbose = FALSE, prior = prior_acclimation_time, data = data)
# processing
pre_acclimation_time <- as.vector(predict(mod_acclimation_time, marginal = NULL)) # prediction
# creating a new variable
data[[paste0("ln_acclimation_time_stand", cycle + 1)]] <- data$ln_acclimation_time
# filling in with predicted values
data[[paste0("ln_acclimation_time_stand", cycle + 1)]][acclimation_time_mpos] <- pre_acclimation_time[acclimation_time_mpos]
data[[paste0("ln_acclimation_time_stand", cycle + 1)]] <- stand(data[[paste0("ln_acclimation_time_stand",
cycle + 1)]])[, 1]
# data
print("2 out of 5 models done")
# Ramping rate
# formula
forms_ramping <- as.formula(paste("ramping ~
life_stage_tested +",
paste0("ln_sd_UTL_stand", cycle + 1), "+", paste0("mean_UTL_stand", cycle)))
# prior
prior_ramping <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = 1,
nu = 0.002, alpha.mu = 0, alpha.V = 1000)))
# model
mod_ramping <- MCMCglmm(forms_ramping, random = ~species, pl = TRUE, pr = TRUE,
nitt = 13000 * iter1, thin = 10 * iter1, burnin = 3000 * iter1, singular.ok = TRUE,
prior = prior_ramping, verbose = FALSE, data = data)
# processing
pre_ramping <- as.vector(predict(mod_ramping, marginal = NULL)) # prediction
# creating a new variable
data[[paste0("ramping_stand", cycle + 1)]] <- data$ramping
# filling in with predicted values
data[[paste0("ramping_stand", cycle + 1)]][ramping_mpos] <- pre_ramping[ramping_mpos]
data[[paste0("ramping_stand", cycle + 1)]] <- stand(data[[paste0("ramping_stand",
cycle + 1)]])[, 1]
# data
print("3 out of 5 models done")
# Medium for measuring CTmax (ambient, water/body)
# formula
forms_medium <- as.formula(paste("medium_test_temp2 ~
life_stage_tested +",
paste0("ln_sd_UTL_stand", cycle + 1), "+", paste0("mean_UTL_stand", cycle)))
forms_medium_prior <- as.formula(paste(" ~ life_stage_tested +", paste0("ln_sd_UTL_stand",
cycle + 1), "+", paste0("mean_UTL_stand", cycle)))
# prior
prior_medium <- list(B = list(mu = rep(0, 4), V = gelman.prior(forms_medium_prior,
data = data, scale = sqrt(1 + 1))), R = list(V = 1, fix = 1), G = list(G1 = list(V = 1,
nu = 0.002, alpha.mu = 0, alpha.V = 1000)))
# model
mod_medium <- MCMCglmm(forms_medium, random = ~species, ginverse = list(tip.label = Ainv),
pl = TRUE, pr = TRUE, family = "threshold", nitt = 13000 * iter3, thin = 10 *
iter3, burnin = 3000 * iter3, singular.ok = TRUE, prior = prior_medium,
verbose = FALSE, data = data)
# processing
pre_medium <- as.vector(predict(mod_medium, marginal = NULL)) # prediction
pre_medium_b <- levels(data$medium_test_temp2)[round(pre_medium, 0) + 1]
# creating a new variable
data[[paste0("medium_test_temp2_fill", cycle + 1)]] <- data$medium_test_temp2
# filling in with predicted values
data[[paste0("medium_test_temp2_fill", cycle + 1)]][medium_test_temp2_mpos] <- pre_medium_b[medium_test_temp2_mpos]
# data
print("4 out of 5 models done")
# Thermal tolerance (mean_UTL)
# formula
forms_mean_UTL <- as.formula(paste("mean_UTL ~
acclimation_temp_stand +",
paste0("ln_acclimation_time_stand", cycle + 1), "+", paste0("ramping_stand",
cycle + 1), "+", paste0("medium_test_temp2_fill", cycle + 1), "+", "endpoint2",
"+", "acclimated", "+", "life_stage_tested", "+", "ecotype"))
# prior
prior_mean_UTL <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = diag(2)/2,
nu = 2, alpha.mu = rep(0, 2), alpha.V = diag(2) * 1000), G2 = list(V = diag(2)/2,
nu = 2, alpha.mu = rep(0, 2), alpha.V = diag(2) * 1000)))
mev <- noquote(paste0("var_UTL_stand", cycle + 1)) # Variance for mev argument
# model
mod_mean_UTL <- MCMCglmm(forms_mean_UTL, random = ~us(1 + acclimation_temp_stand):tip.label +
us(1 + acclimation_temp_stand):species, ginverse = list(tip.label = Ainv),
pl = TRUE, pr = TRUE, nitt = 13000 * iter3, thin = 10 * iter3, burnin = 3000 *
iter3, singular.ok = TRUE, prior = prior_mean_UTL, verbose = FALSE, mev = data$mev,
data = data)
print("5 out of 5 models done")
# processing
predictions <- predict(mod_mean_UTL, marginal = NULL, interval = "confidence") # prediction
pre_mean_UTL <- predictions[, 1]
data[["lower_mean_UTL"]] <- predictions[, 2]
data[["upper_mean_UTL"]] <- predictions[, 3]
# creating a new variable
data[[paste0("mean_UTL_stand", cycle + 1)]] <- data$mean_UTL
# filling in with predicted values
data[[paste0("mean_UTL_stand", cycle + 1)]][mean_UTL_mpos] <- pre_mean_UTL[mean_UTL_mpos]
data[[paste0("mean_UTL_stand", cycle + 1)]] <- data[[paste0("mean_UTL_stand",
cycle + 1)]]
data[[paste0("filled_mean_UTL", cycle)]] <- data[[paste0("mean_UTL_stand", cycle +
1)]] # row estimation
data[[paste0("mean_UTL_stand", cycle + 1)]] <- stand(data[[paste0("mean_UTL_stand",
cycle + 1)]])[, 1]
data
}
Data processing
This code can be found in R/Imputation/Running_imputation.R
# Load functions for the Bayesian Augmentation with Chain Equations (BACE)
source("R/Functions_BACE.R")
# Load data and tree
tree<- readRDS("RData/General_data/tree_for_imputation.rds")
# Load data
data_for_imp<- readRDS("RData/General_data/data_for_imputation_with_temp.rds")
# Transform variables
data_for_imp <- data_for_imp %>%
mutate(
acclimated = factor(acclimated),
life_stage_tested = factor(life_stage_tested),
ln_acclimation_time = log(acclimation_time),
ln_sd_UTL = log(sd_UTL),
ln_body_mass = log(body_mass),
medium_test_temp2 = factor(medium_test_temp),
life_stage_tested=factor(life_stage_tested,
levels=c("adult", "adults", "larvae"),
labels=c("adults", "adults", "larvae")), # Correct typo
endpoint2 = factor(endpoint,
levels=c("LRR", "OS", "LOE", "prodding", "other", "death"),
labels=c("LRR", "OS", "LRR", "other", "other", "other")) # Take LOE as LRR
)
data_for_imp<- dplyr::select(data_for_imp, -family) # Remove family to run MCMCglmm
# Make sure everything matches
matchpos <- match(data_for_imp$tip.label, tree$tip.label)
data_for_imp$matchpos <- matchpos
dat <- data_for_imp %>% filter(is.na(matchpos) == F)
tree_imputation <- drop.tip(tree, tree$tip.label[-match(dat$tip.label, tree$tip.label)]) # Pruned tree that only contains species in the data
tree_imputation<-force.ultrametric(tree_imputation, method="extend") # Force the tree to be ultrametric
# Phylogenetic co-variance matrix
Ainv<-inverseA(tree_imputation)$Ainv
# Standardize variables
#######################
# acclimation_temp
dat$acclimation_temp_stand<- stand(dat$acclimation_temp)[,1]
# mean_UTL
mean_UTL_mpos <- is.na(dat$mean_UTL)
dat$mean_UTL_stand1 <- stand(dat$mean_UTL)[,1]
dat$mean_UTL_stand1[mean_UTL_mpos] <- 0
# acclimation_time
acclimation_time_mpos <- is.na(dat$ln_acclimation_time)
dat$ln_acclimation_time_stand1 <- stand(dat$ln_acclimation_time)[,1]
dat$ln_acclimation_time_stand1[acclimation_time_mpos] <- 0
# ramping
ramping_mpos <- is.na(dat$ramping)
dat$ramping_stand1 <- stand(dat$ramping)[,1]
dat$ramping_stand1[ramping_mpos] <- 0
# medium_test_temp2
medium_test_temp2_mpos <- is.na(dat$medium_test_temp2)
dat$medium_test_temp2_fill1 <- sample_imp(dat$medium_test_temp2)[[1]]
# sd_UTL
sd_UTL_mpos <- is.na(dat$ln_sd_UTL)
dat$ln_sd_UTL_stand1 <- stand(dat$ln_sd_UTL)[,1]
dat$ln_sd_UTL_stand1[sd_UTL_mpos] <- 0
# body_mass
body_mass_mpos <- is.na(dat$ln_body_mass)
dat$ln_body_mass_stand1 <- stand(dat$ln_body_mass)[,1]
dat$ln_body_mass_stand1[body_mass_mpos] <- 0
Run imputation
This code ran on an HPC environment, where the original code can be found in R/Imputation/Running_imputation.R and the resources used in pbs/Imputation/Running_imputation.pbs
# Cycle 1
system.time(dat1 <- b_mice(cycle = 1, data = dat, Ainv = Ainv))
saveRDS(dat1, file = "RData/Imputation/results/imputation_1st_cycle.Rds")
#########
# Cycle 2
system.time(dat2 <- b_mice(cycle = 2, data = dat1, Ainv = Ainv))
saveRDS(dat2, file = "RData/Imputation/results/imputation_2nd_cycle.Rds")
########
# Cycle 3
system.time(dat3 <- b_mice(cycle = 3, data = dat2, Ainv = Ainv))
saveRDS(dat3, file = "RData/Imputation/results/imputation_3rd_cycle.Rds")
#########
# Cycle 4
system.time(dat4 <- b_mice(cycle = 4, data = dat3, Ainv = Ainv))
saveRDS(dat4, file = "RData/Imputation/results/imputation_4th_cycle.Rds")
########
# Cycle 5
system.time(dat5 <- b_mice(cycle = 5, data = dat4, Ainv = Ainv))
saveRDS(dat5, file = "RData/Imputation/results/imputation_5th_cycle.Rds")
Run imputation cross-validation
Prepare datasets for the cross-validation
Here, we created five datasets in which we removed heat tolerance estimates for 5% of the species in the experimental dataset (16 species), and 5% of the data-deficient species (234 species); maintaining the same proportion of missing data.
We specifically removed original data that fit the characteristics of the data to be imputed, i.e., ramping=1, # most common heating rate acclimated=“acclimated”, # acclimated animals endpoint=“OS”, # Most common endpoint; most precise one too life_stage_tested==“adults” # adult animals
This code can be found in R/Data_wrangling/Generating_data_for_imputation.Rmd
data_for_imp <- readRDS("RData/General_data/data_for_imputation_with_temp.rds")
# Only consider observations that are comparable to the data we impute
training_data_for_crossV <- filter(data_for_imp, imputed == "no" & ramping == "1" &
acclimated == "acclimated" & endpoint == "OS" & life_stage_tested == "adults")
training_species_crossV <- distinct(data.frame(tip.label = training_data_for_crossV$tip.label)) # 77 species
imp_data_for_crossV <- filter(data_for_imp, imputed == "yes")
imp_data_for_crossV <- imp_data_for_crossV[imp_data_for_crossV$tip.label %!in% training_data_for_crossV$tip.label,
] # Make sure we get species not in the original data
imp_species_crossV <- distinct(data.frame(tip.label = imp_data_for_crossV$tip.label))
First set
### First set
set.seed(123)
first_training_sample_16sp_crossV <- data.frame(tip.label = sample(training_species_crossV$tip.label,
16)) # Sample of 16 species
first_imp_sample_234sp_crossV <- data.frame(tip.label = sample(imp_species_crossV$tip.label,
234)) # Sample of 234 species
first_crossV <- mutate(data_for_imp, sp_to_validate = ifelse((data_for_imp$tip.label %in%
first_training_sample_16sp_crossV$tip.label) == TRUE, "yes", "no")) # Flag species to validate
first_crossV <- mutate(first_crossV, dat_to_validate = ifelse(sp_to_validate == "yes" &
ramping == 1 & endpoint == "OS" & life_stage_tested == "adults", "yes", "no")) # Flag data to validate
first_crossV <- filter(first_crossV, !(dat_to_validate == "yes" & imputed == "yes")) # Remove the fake data for species we want to cross-validate
first_crossV <- mutate(first_crossV, mean_UTL = ifelse(dat_to_validate == "yes",
NA, mean_UTL)) # Set values as NA for these 16 species
first_crossV <- first_crossV[first_crossV$tip.label %!in% first_imp_sample_234sp_crossV$tip.label,
] # Remove the data for 234 fully imputed species
saveRDS(first_crossV, "RData/Imputation/data/Data_crossV_1st_set.rds")
Second set
### Second set
remaining_sp <- data.frame(tip.label = training_species_crossV[training_species_crossV$tip.label %!in%
first_training_sample_16sp_crossV$tip.label, ])
set.seed(385)
second_training_sample_16sp_crossV <- data.frame(tip.label = sample(remaining_sp$tip.label,
16)) # Sample of 16 species
second_imp_sample_234sp_crossV <- data.frame(tip.label = sample(imp_species_crossV$tip.label,
234)) # Sample of 234 species
second_crossV <- mutate(data_for_imp, sp_to_validate = ifelse((data_for_imp$tip.label %in%
second_training_sample_16sp_crossV$tip.label) == TRUE, "yes", "no")) # flag species to validate
second_crossV <- mutate(second_crossV, dat_to_validate = ifelse(sp_to_validate ==
"yes" & ramping == 1 & endpoint == "OS" & life_stage_tested == "adults", "yes",
"no")) # flag data to validate
second_crossV <- filter(second_crossV, !(dat_to_validate == "yes" & imputed == "yes")) # Remove the fake data for species we want to cross-validate
second_crossV <- mutate(second_crossV, mean_UTL = ifelse(dat_to_validate == "yes",
NA, mean_UTL)) # Set values as NA for these 16 species
second_crossV <- second_crossV[second_crossV$tip.label %!in% second_imp_sample_234sp_crossV$tip.label,
] # Remove the data for 234 fully imputed species
saveRDS(second_crossV, "RData/Imputation/data/Data_crossV_2nd_set.rds")
Third set
### Third set
remaining_sp <- data.frame(tip.label = remaining_sp[remaining_sp$tip.label %!in%
second_training_sample_16sp_crossV$tip.label, ])
set.seed(390)
third_training_sample_16sp_crossV <- data.frame(tip.label = sample(remaining_sp$tip.label,
16)) # Sample of 16 species
third_imp_sample_234sp_crossV <- data.frame(tip.label = sample(imp_species_crossV$tip.label,
234)) # Sample of 234 species
third_crossV <- mutate(data_for_imp, sp_to_validate = ifelse((data_for_imp$tip.label %in%
third_training_sample_16sp_crossV$tip.label) == TRUE, "yes", "no")) # flag species to validate
third_crossV <- mutate(third_crossV, dat_to_validate = ifelse(sp_to_validate == "yes" &
ramping == 1 & endpoint == "OS" & life_stage_tested == "adults", "yes", "no")) # flag data relevant for validation for these species
third_crossV <- filter(third_crossV, !(dat_to_validate == "yes" & imputed == "yes")) # Remove the fake data for species we want to cross-validate
third_crossV <- mutate(third_crossV, mean_UTL = ifelse(dat_to_validate == "yes",
NA, mean_UTL)) # Set values as NA for these 15 species 15 species
third_crossV <- third_crossV[third_crossV$tip.label %!in% third_imp_sample_234sp_crossV$tip.label,
] # Remove the data 234 fully-imputed species
saveRDS(third_crossV, "RData/Imputation/data/Data_crossV_3rd_set.rds")
Fourth set
### Fourth set
remaining_sp <- data.frame(tip.label = remaining_sp[remaining_sp$tip.label %!in%
third_training_sample_16sp_crossV$tip.label, ])
set.seed(369)
fourth_training_sample_16sp_crossV <- data.frame(tip.label = sample(remaining_sp$tip.label,
16)) # Sample of 16 species
fourth_imp_sample_234sp_crossV <- data.frame(tip.label = sample(imp_species_crossV$tip.label,
234)) # Sample of 234 species
fourth_crossV <- mutate(data_for_imp, sp_to_validate = ifelse((data_for_imp$tip.label %in%
fourth_training_sample_16sp_crossV$tip.label) == TRUE, "yes", "no")) # flag species to validate
fourth_crossV <- mutate(fourth_crossV, dat_to_validate = ifelse(sp_to_validate ==
"yes" & ramping == 1 & endpoint == "OS" & life_stage_tested == "adults", "yes",
"no")) # flag data relevant for validation for these species
fourth_crossV <- filter(fourth_crossV, !(dat_to_validate == "yes" & imputed == "yes")) # Remove the fake data for species we want to cross-validate
fourth_crossV <- mutate(fourth_crossV, mean_UTL = ifelse(dat_to_validate == "yes",
NA, mean_UTL)) # Set values as NA for these 15 species 15 species
fourth_crossV <- fourth_crossV[fourth_crossV$tip.label %!in% fourth_imp_sample_234sp_crossV$tip.label,
] # Remove the data 234 fully-imputed species
saveRDS(fourth_crossV, "RData/Imputation/data/Data_crossV_4th_set.rds")
Fifth set
### Fifth set
remaining_sp <- data.frame(tip.label = remaining_sp[remaining_sp$tip.label %!in%
fourth_training_sample_16sp_crossV$tip.label, ]) # 13
set.seed(536)
fifth_training_sample_16sp_crossV <- rbind(data.frame(tip.label = sample(training_species_crossV$tip.label,
3)), remaining_sp) # Sample of 3 extra species species because we have only 13 remaining
fifth_imp_sample_234sp_crossV <- data.frame(tip.label = sample(imp_species_crossV$tip.label,
234)) # Sample of 234 species
fifth_crossV <- mutate(data_for_imp, sp_to_validate = ifelse((data_for_imp$tip.label %in%
fifth_training_sample_16sp_crossV$tip.label) == TRUE, "yes", "no")) # flag species to validate
fifth_crossV <- mutate(fifth_crossV, dat_to_validate = ifelse(sp_to_validate == "yes" &
ramping == 1 & endpoint == "OS" & life_stage_tested == "adults", "yes", "no")) # flag data relevant for validation for these species
fifth_crossV <- filter(fifth_crossV, !(dat_to_validate == "yes" & imputed == "yes")) # Remove the fake data for species we want to cross-validate
fifth_crossV <- mutate(fifth_crossV, mean_UTL = ifelse(dat_to_validate == "yes",
NA, mean_UTL)) # Set values as NA for these 15 species 15 species
fifth_crossV <- fifth_crossV[fifth_crossV$tip.label %!in% fifth_imp_sample_234sp_crossV$tip.label,
] # Remove the data 234 fully-imputed species
saveRDS(fifth_crossV, "RData/Imputation/data/Data_crossV_5th_set.rds")
Run the cross-validation
First set
This code ran on an HPC environment, where the original code can be found in R/Imputation/Running_cross_validation_1st_set.R and the resources used in pbs/Imputation/Running_cross_validation_1st_set.pbs
# Load functions for the Bayesian Augmentation with Chain Equations (BACE)
source("R/Imputation/Functions_BACE.R")
# Load data and tree
tree<- readRDS("RData/General_data/tree_for_imputation.rds")
# Load data
data_for_imp<- readRDS("RData/Imputation/data/Data_crossV_1st_set.rds")
# Transform variables
data_for_imp <- data_for_imp %>%
mutate(
acclimated = factor(acclimated),
life_stage_tested = factor(life_stage_tested),
ln_acclimation_time = log(acclimation_time),
ln_sd_UTL = log(sd_UTL),
ln_body_mass = log(body_mass),
medium_test_temp2 = factor(medium_test_temp),
life_stage_tested=factor(life_stage_tested,
levels=c("adult", "adults", "larvae"),
labels=c("adults", "adults", "larvae")), # Correct typo
endpoint2 = factor(endpoint,
levels=c("LRR", "OS", "LOE", "prodding", "other", "death"),
labels=c("LRR", "OS", "LRR", "other", "other", "other")) # Take LOE as LRR
)
data_for_imp<- dplyr::select(data_for_imp, -family) # Remove family to run MCMCglmm
length(unique(data_for_imp$species))
# Make sure everything matches
matchpos <- match(data_for_imp$tip.label, tree$tip.label)
data_for_imp$matchpos <- matchpos
dat <- data_for_imp %>% filter(is.na(matchpos) == F)
tree_imputation <- drop.tip(tree, tree$tip.label[-match(dat$tip.label, tree$tip.label)]) # Pruned tree that only contains species in the data
tree_imputation<-force.ultrametric(tree_imputation, method="extend") # Force the tree to be ultrametric
# Phylogenetic co-variance matrix
Ainv<-inverseA(tree_imputation)$Ainv
# Standardize variables
#######################
# acclimation_temp
dat$acclimation_temp_stand<- stand(dat$acclimation_temp)[,1]
# mean_UTL
mean_UTL_mpos <- is.na(dat$mean_UTL)
dat$mean_UTL_stand1 <- stand(dat$mean_UTL)[,1]
dat$mean_UTL_stand1[mean_UTL_mpos] <- 0
# acclimation_time
acclimation_time_mpos <- is.na(dat$ln_acclimation_time)
dat$ln_acclimation_time_stand1 <- stand(dat$ln_acclimation_time)[,1]
dat$ln_acclimation_time_stand1[acclimation_time_mpos] <- 0
# ramping
ramping_mpos <- is.na(dat$ramping)
dat$ramping_stand1 <- stand(dat$ramping)[,1]
dat$ramping_stand1[ramping_mpos] <- 0
# medium_test_temp2
medium_test_temp2_mpos <- is.na(dat$medium_test_temp2)
dat$medium_test_temp2_fill1 <- sample_imp(dat$medium_test_temp2)[[1]]
# sd_UTL
sd_UTL_mpos <- is.na(dat$ln_sd_UTL)
dat$ln_sd_UTL_stand1 <- stand(dat$ln_sd_UTL)[,1]
dat$ln_sd_UTL_stand1[sd_UTL_mpos] <- 0
# body_mass
body_mass_mpos <- is.na(dat$ln_body_mass)
dat$ln_body_mass_stand1 <- stand(dat$ln_body_mass)[,1]
dat$ln_body_mass_stand1[body_mass_mpos] <- 0
## -------------------------------------------------------------------------------------------------------------------------------------------
# cycle 1
system.time(dat1_crossV <- b_mice(cycle = 1, data = dat, Ainv = Ainv))
saveRDS(dat1_crossV, file = "RData/Imputation/results/1st_cross_validation_1st_cycle.Rds")
#########
# cycle 2
system.time(dat2_crossV <- b_mice(cycle = 2, data = dat1_crossV, Ainv = Ainv))
saveRDS(dat2_crossV, file = "RData/Imputation/results/1st_cross_validation_2nd_cycle.Rds")
########
# cycle 3
system.time(dat3_crossV<- b_mice(cycle = 3, data = dat2_crossV, Ainv = Ainv))
saveRDS(dat3_crossV, file = "RData/Imputation/results/1st_cross_validation_3rd_cycle.Rds")
########
# cycle 4
system.time(dat4_crossV<- b_mice(cycle = 4, data = dat3_crossV, Ainv = Ainv))
saveRDS(dat4_crossV, file = "RData/Imputation/results/1st_cross_validation_4th_cycle.Rds")
########
# cycle 5
system.time(dat5_crossV<- b_mice(cycle = 5, data = dat4_crossV, Ainv = Ainv))
saveRDS(dat5_crossV, file = "RData/Imputation/results/1st_cross_validation_5th_cycle.Rds")
Second set
This code ran on an HPC environment, where the original code can be found in R/Imputation/Running_cross_validation_2nd_set.R and the resources used in pbs/Imputation/Running_cross_validation_2nd_set.pbs
# Load functions for the Bayesian Augmentation with Chain Equations (BACE)
source("R/Imputation/Functions_BACE.R")
# Load data and tree
tree<- readRDS("RData/General_data/tree_for_imputation.rds")
# Load data
data_for_imp<- readRDS("RData/Imputation/data/Data_crossV_2nd_set.rds")
# Transform variables
data_for_imp <- data_for_imp %>%
mutate(
acclimated = factor(acclimated),
life_stage_tested = factor(life_stage_tested),
ln_acclimation_time = log(acclimation_time),
ln_sd_UTL = log(sd_UTL),
ln_body_mass = log(body_mass),
medium_test_temp2 = factor(medium_test_temp),
life_stage_tested=factor(life_stage_tested,
levels=c("adult", "adults", "larvae"),
labels=c("adults", "adults", "larvae")), # Correct typo
endpoint2 = factor(endpoint,
levels=c("LRR", "OS", "LOE", "prodding", "other", "death"),
labels=c("LRR", "OS", "LRR", "other", "other", "other")) # Take LOE as LRR
)
data_for_imp<- dplyr::select(data_for_imp, -family) # Remove family to run MCMCglmm
length(unique(data_for_imp$species))
# Make sure everything matches
matchpos <- match(data_for_imp$tip.label, tree$tip.label)
data_for_imp$matchpos <- matchpos
dat <- data_for_imp %>% filter(is.na(matchpos) == F)
tree_imputation <- drop.tip(tree, tree$tip.label[-match(dat$tip.label, tree$tip.label)]) # Pruned tree that only contains species in the data
tree_imputation<-force.ultrametric(tree_imputation, method="extend") # Force the tree to be ultrametric
# Phylogenetic co-variance matrix
Ainv<-inverseA(tree_imputation)$Ainv
# Standardize variables
#######################
# acclimation_temp
dat$acclimation_temp_stand<- stand(dat$acclimation_temp)[,1]
# mean_UTL
mean_UTL_mpos <- is.na(dat$mean_UTL)
dat$mean_UTL_stand1 <- stand(dat$mean_UTL)[,1]
dat$mean_UTL_stand1[mean_UTL_mpos] <- 0
# acclimation_time
acclimation_time_mpos <- is.na(dat$ln_acclimation_time)
dat$ln_acclimation_time_stand1 <- stand(dat$ln_acclimation_time)[,1]
dat$ln_acclimation_time_stand1[acclimation_time_mpos] <- 0
# ramping
ramping_mpos <- is.na(dat$ramping)
dat$ramping_stand1 <- stand(dat$ramping)[,1]
dat$ramping_stand1[ramping_mpos] <- 0
# medium_test_temp2
medium_test_temp2_mpos <- is.na(dat$medium_test_temp2)
dat$medium_test_temp2_fill1 <- sample_imp(dat$medium_test_temp2)[[1]]
# sd_UTL
sd_UTL_mpos <- is.na(dat$ln_sd_UTL)
dat$ln_sd_UTL_stand1 <- stand(dat$ln_sd_UTL)[,1]
dat$ln_sd_UTL_stand1[sd_UTL_mpos] <- 0
# body_mass
body_mass_mpos <- is.na(dat$ln_body_mass)
dat$ln_body_mass_stand1 <- stand(dat$ln_body_mass)[,1]
dat$ln_body_mass_stand1[body_mass_mpos] <- 0
## -------------------------------------------------------------------------------------------------------------------------------------------
# cycle 1
system.time(dat1_crossV <- b_mice(cycle = 1, data = dat, Ainv = Ainv))
saveRDS(dat1_crossV, file = "RData/Imputation/results/2nd_cross_validation_1st_cycle.Rds")
#########
# cycle 2
system.time(dat2_crossV <- b_mice(cycle = 2, data = dat1_crossV, Ainv = Ainv))
saveRDS(dat2_crossV, file = "RData/Imputation/results/2nd_cross_validation_2nd_cycle.Rds")
########
# cycle 3
system.time(dat3_crossV<- b_mice(cycle = 3, data = dat2_crossV, Ainv = Ainv))
saveRDS(dat3_crossV, file = "RData/Imputation/results/2nd_cross_validation_3rd_cycle.Rds")
########
# cycle 4
system.time(dat4_crossV<- b_mice(cycle = 4, data = dat3_crossV, Ainv = Ainv))
saveRDS(dat4_crossV, file = "RData/Imputation/results/2nd_cross_validation_4th_cycle.Rds")
########
# cycle 5
system.time(dat5_crossV<- b_mice(cycle = 5, data = dat4_crossV, Ainv = Ainv))
saveRDS(dat5_crossV, file = "RData/Imputation/results/2nd_cross_validation_5th_cycle.Rds")
Third set
This code ran on an HPC environment, where the original code can be found in R/Imputation/Running_cross_validation_3rd_set.R and the resources used in pbs/Imputation/Running_cross_validation_3rd_set.pbs
# Load functions for the Bayesian Augmentation with Chain Equations (BACE)
source("R/Imputation/Functions_BACE.R")
# Load data and tree
tree<- readRDS("RData/General_data/tree_for_imputation.rds")
# Load data
data_for_imp<- readRDS("RData/Imputation/data/Data_crossV_3rd_set.rds")
# Transform variables
data_for_imp <- data_for_imp %>%
mutate(
acclimated = factor(acclimated),
life_stage_tested = factor(life_stage_tested),
ln_acclimation_time = log(acclimation_time),
ln_sd_UTL = log(sd_UTL),
ln_body_mass = log(body_mass),
medium_test_temp2 = factor(medium_test_temp),
life_stage_tested=factor(life_stage_tested,
levels=c("adult", "adults", "larvae"),
labels=c("adults", "adults", "larvae")), # Correct typo
endpoint2 = factor(endpoint,
levels=c("LRR", "OS", "LOE", "prodding", "other", "death"),
labels=c("LRR", "OS", "LRR", "other", "other", "other")) # Take LOE as LRR
)
data_for_imp<- dplyr::select(data_for_imp, -family) # Remove family to run MCMCglmm
# Taking out missing species from the tree
length(unique(data_for_imp$species))
# Make sure everything matches
matchpos <- match(data_for_imp$tip.label, tree$tip.label)
data_for_imp$matchpos <- matchpos
dat <- data_for_imp %>% filter(is.na(matchpos) == F)
tree_imputation <- drop.tip(tree, tree$tip.label[-match(dat$tip.label, tree$tip.label)]) # Pruned tree that only contains species in the data
tree_imputation<-force.ultrametric(tree_imputation, method="extend") # Force the tree to be ultrametric
# Phylogenetic co-variance matrix
Ainv<-inverseA(tree_imputation)$Ainv
# Standardize variables
#######################
# acclimation_temp
dat$acclimation_temp_stand<- stand(dat$acclimation_temp)[,1]
# mean_UTL
mean_UTL_mpos <- is.na(dat$mean_UTL)
dat$mean_UTL_stand1 <- stand(dat$mean_UTL)[,1]
dat$mean_UTL_stand1[mean_UTL_mpos] <- 0
# acclimation_time
acclimation_time_mpos <- is.na(dat$ln_acclimation_time)
dat$ln_acclimation_time_stand1 <- stand(dat$ln_acclimation_time)[,1]
dat$ln_acclimation_time_stand1[acclimation_time_mpos] <- 0
# ramping
ramping_mpos <- is.na(dat$ramping)
dat$ramping_stand1 <- stand(dat$ramping)[,1]
dat$ramping_stand1[ramping_mpos] <- 0
# medium_test_temp2
medium_test_temp2_mpos <- is.na(dat$medium_test_temp2)
dat$medium_test_temp2_fill1 <- sample_imp(dat$medium_test_temp2)[[1]]
# sd_UTL
sd_UTL_mpos <- is.na(dat$ln_sd_UTL)
dat$ln_sd_UTL_stand1 <- stand(dat$ln_sd_UTL)[,1]
dat$ln_sd_UTL_stand1[sd_UTL_mpos] <- 0
# body_mass
body_mass_mpos <- is.na(dat$ln_body_mass)
dat$ln_body_mass_stand1 <- stand(dat$ln_body_mass)[,1]
dat$ln_body_mass_stand1[body_mass_mpos] <- 0
## -------------------------------------------------------------------------------------------------------------------------------------------
# cycle 1
system.time(dat1_crossV <- b_mice(cycle = 1, data = dat, Ainv = Ainv))
saveRDS(dat1_crossV, file = "RData/Imputation/results/3rd_cross_validation_1st_cycle.Rds")
#########
# cycle 2
system.time(dat2_crossV <- b_mice(cycle = 2, data = dat1_crossV, Ainv = Ainv))
saveRDS(dat2_crossV, file = "RData/Imputation/results/3rd_cross_validation_2nd_cycle.Rds")
########
# cycle 3
system.time(dat3_crossV<- b_mice(cycle = 3, data = dat2_crossV, Ainv = Ainv))
saveRDS(dat3_crossV, file = "RData/Imputation/results/3rd_cross_validation_3rd_cycle.Rds")
########
# cycle 4
system.time(dat4_crossV<- b_mice(cycle = 4, data = dat3_crossV, Ainv = Ainv))
saveRDS(dat4_crossV, file = "RData/Imputation/results/3rd_cross_validation_4th_cycle.Rds")
########
# cycle 5
system.time(dat5_crossV<- b_mice(cycle = 5, data = dat4_crossV, Ainv = Ainv))
saveRDS(dat5_crossV, file = "RData/Imputation/results/3rd_cross_validation_5th_cycle.Rds")
Fourth set
This code ran on an HPC environment, where the original code can be found in R/Imputation/Running_cross_validation_4th_set.R and the resources used in pbs/Imputation/Running_cross_validation_4th_set.pbs
# Load functions for the Bayesian Augmentation with Chain Equations (BACE)
source("R/Imputation/Functions_BACE.R")
# Load data and tree
tree<- readRDS("RData/General_data/tree_for_imputation.rds")
# Load data
data_for_imp<- readRDS("RData/Imputation/data/Data_crossV_4th_set.rds")
# Transform variables
data_for_imp <- data_for_imp %>%
mutate(
acclimated = factor(acclimated),
life_stage_tested = factor(life_stage_tested),
ln_acclimation_time = log(acclimation_time),
ln_sd_UTL = log(sd_UTL),
ln_body_mass = log(body_mass),
medium_test_temp2 = factor(medium_test_temp),
life_stage_tested=factor(life_stage_tested,
levels=c("adult", "adults", "larvae"),
labels=c("adults", "adults", "larvae")), # Correct typo
endpoint2 = factor(endpoint,
levels=c("LRR", "OS", "LOE", "prodding", "other", "death"),
labels=c("LRR", "OS", "LRR", "other", "other", "other")) # Take LOE as LRR
)
data_for_imp<- dplyr::select(data_for_imp, -family) # Remove family to run MCMCglmm
length(unique(data_for_imp$species))
# Make sure everything matches
matchpos <- match(data_for_imp$tip.label, tree$tip.label)
data_for_imp$matchpos <- matchpos
dat <- data_for_imp %>% filter(is.na(matchpos) == F)
tree_imputation <- drop.tip(tree, tree$tip.label[-match(dat$tip.label, tree$tip.label)]) # Pruned tree that only contains species in the data
tree_imputation<-force.ultrametric(tree_imputation, method="extend") # Force the tree to be ultrametric
# Phylogenetic co-variance matrix
Ainv<-inverseA(tree_imputation)$Ainv
# Standardize variables
#######################
# acclimation_temp
dat$acclimation_temp_stand<- stand(dat$acclimation_temp)[,1]
# mean_UTL
mean_UTL_mpos <- is.na(dat$mean_UTL)
dat$mean_UTL_stand1 <- stand(dat$mean_UTL)[,1]
dat$mean_UTL_stand1[mean_UTL_mpos] <- 0
# acclimation_time
acclimation_time_mpos <- is.na(dat$ln_acclimation_time)
dat$ln_acclimation_time_stand1 <- stand(dat$ln_acclimation_time)[,1]
dat$ln_acclimation_time_stand1[acclimation_time_mpos] <- 0
# ramping
ramping_mpos <- is.na(dat$ramping)
dat$ramping_stand1 <- stand(dat$ramping)[,1]
dat$ramping_stand1[ramping_mpos] <- 0
# medium_test_temp2
medium_test_temp2_mpos <- is.na(dat$medium_test_temp2)
dat$medium_test_temp2_fill1 <- sample_imp(dat$medium_test_temp2)[[1]]
# sd_UTL
sd_UTL_mpos <- is.na(dat$ln_sd_UTL)
dat$ln_sd_UTL_stand1 <- stand(dat$ln_sd_UTL)[,1]
dat$ln_sd_UTL_stand1[sd_UTL_mpos] <- 0
# body_mass
body_mass_mpos <- is.na(dat$ln_body_mass)
dat$ln_body_mass_stand1 <- stand(dat$ln_body_mass)[,1]
dat$ln_body_mass_stand1[body_mass_mpos] <- 0
## -------------------------------------------------------------------------------------------------------------------------------------------
# cycle 1
system.time(dat1_crossV <- b_mice(cycle = 1, data = dat, Ainv = Ainv))
saveRDS(dat1_crossV, file = "RData/Imputation/results/4th_cross_validation_1st_cycle.Rds")
#########
# cycle 2
system.time(dat2_crossV <- b_mice(cycle = 2, data = dat1_crossV, Ainv = Ainv))
saveRDS(dat2_crossV, file = "RData/Imputation/results/4th_cross_validation_2nd_cycle.Rds")
########
# cycle 3
system.time(dat3_crossV<- b_mice(cycle = 3, data = dat2_crossV, Ainv = Ainv))
saveRDS(dat3_crossV, file = "RData/Imputation/results/4th_cross_validation_3rd_cycle.Rds")
########
# cycle 4
system.time(dat4_crossV<- b_mice(cycle = 4, data = dat3_crossV, Ainv = Ainv))
saveRDS(dat4_crossV, file = "RData/Imputation/results/4th_cross_validation_4th_cycle.Rds")
########
# cycle 5
system.time(dat5_crossV<- b_mice(cycle = 5, data = dat4_crossV, Ainv = Ainv))
saveRDS(dat5_crossV, file = "RData/Imputation/results/4th_cross_validation_5th_cycle.Rds")
Fifth set
This code ran on an HPC environment, where the original code can be found in R/Imputation/Running_cross_validation_5th_set.R and the resources used in pbs/Imputation/Running_cross_validation_5th_set.pbs
# Load functions for the Bayesian Augmentation with Chain Equations (BACE)
source("R/Imputation/Functions_BACE.R")
# Load data and tree
tree<- readRDS("RData/General_data/tree_for_imputation.rds")
# Load data
data_for_imp<- readRDS("RData/Imputation/data/Data_crossV_5th_set.rds")
# Transform variables
data_for_imp <- data_for_imp %>%
mutate(
acclimated = factor(acclimated),
life_stage_tested = factor(life_stage_tested),
ln_acclimation_time = log(acclimation_time),
ln_sd_UTL = log(sd_UTL),
ln_body_mass = log(body_mass),
medium_test_temp2 = factor(medium_test_temp),
life_stage_tested=factor(life_stage_tested,
levels=c("adult", "adults", "larvae"),
labels=c("adults", "adults", "larvae")), # Correct typo
endpoint2 = factor(endpoint,
levels=c("LRR", "OS", "LOE", "prodding", "other", "death"),
labels=c("LRR", "OS", "LRR", "other", "other", "other")) # Take LOE as LRR
)
data_for_imp<- dplyr::select(data_for_imp, -family) # Remove family to run MCMCglmm
length(unique(data_for_imp$species))
# Make sure everything matches
matchpos <- match(data_for_imp$tip.label, tree$tip.label)
data_for_imp$matchpos <- matchpos
dat <- data_for_imp %>% filter(is.na(matchpos) == F)
tree_imputation <- drop.tip(tree, tree$tip.label[-match(dat$tip.label, tree$tip.label)]) # Pruned tree that only contains species in the data
tree_imputation<-force.ultrametric(tree_imputation, method="extend") # Force the tree to be ultrametric
# Phylogenetic co-variance matrix
Ainv<-inverseA(tree_imputation)$Ainv
# Standardize variables
#######################
# acclimation_temp
dat$acclimation_temp_stand<- stand(dat$acclimation_temp)[,1]
# mean_UTL
mean_UTL_mpos <- is.na(dat$mean_UTL)
dat$mean_UTL_stand1 <- stand(dat$mean_UTL)[,1]
dat$mean_UTL_stand1[mean_UTL_mpos] <- 0
# acclimation_time
acclimation_time_mpos <- is.na(dat$ln_acclimation_time)
dat$ln_acclimation_time_stand1 <- stand(dat$ln_acclimation_time)[,1]
dat$ln_acclimation_time_stand1[acclimation_time_mpos] <- 0
# ramping
ramping_mpos <- is.na(dat$ramping)
dat$ramping_stand1 <- stand(dat$ramping)[,1]
dat$ramping_stand1[ramping_mpos] <- 0
# medium_test_temp2
medium_test_temp2_mpos <- is.na(dat$medium_test_temp2)
dat$medium_test_temp2_fill1 <- sample_imp(dat$medium_test_temp2)[[1]]
# sd_UTL
sd_UTL_mpos <- is.na(dat$ln_sd_UTL)
dat$ln_sd_UTL_stand1 <- stand(dat$ln_sd_UTL)[,1]
dat$ln_sd_UTL_stand1[sd_UTL_mpos] <- 0
# body_mass
body_mass_mpos <- is.na(dat$ln_body_mass)
dat$ln_body_mass_stand1 <- stand(dat$ln_body_mass)[,1]
dat$ln_body_mass_stand1[body_mass_mpos] <- 0
## -------------------------------------------------------------------------------------------------------------------------------------------
# cycle 1
system.time(dat1_crossV <- b_mice(cycle = 1, data = dat, Ainv = Ainv))
saveRDS(dat1_crossV, file = "RData/Imputation/results/5th_cross_validation_1st_cycle.Rds")
#########
# cycle 2
system.time(dat2_crossV <- b_mice(cycle = 2, data = dat1_crossV, Ainv = Ainv))
saveRDS(dat2_crossV, file = "RData/Imputation/results/5th_cross_validation_2nd_cycle.Rds")
########
# cycle 3
system.time(dat3_crossV<- b_mice(cycle = 3, data = dat2_crossV, Ainv = Ainv))
saveRDS(dat3_crossV, file = "RData/Imputation/results/5th_cross_validation_3rd_cycle.Rds")
########
# cycle 4
system.time(dat4_crossV<- b_mice(cycle = 4, data = dat3_crossV, Ainv = Ainv))
saveRDS(dat4_crossV, file = "RData/Imputation/results/5th_cross_validation_4th_cycle.Rds")
########
# cycle 5
system.time(dat5_crossV<- b_mice(cycle = 5, data = dat4_crossV, Ainv = Ainv))
saveRDS(dat5_crossV, file = "RData/Imputation/results/5th_cross_validation_5th_cycle.Rds")
Predict CTmax across the distribution range of each species
Vegetated substrate
Combine species data with operative body temperatures
Here, we merge the distribution data of each species with the daily temperatures they experience in each coordinate during the warmest 3-month period of each year
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Substrate/ and the resources used in pbs/Climate_vulnerability/Substrate/
These files are named as Combining_species_data_with_temp_data_substrate and the file suffix denotes the climatic scenario (**_current** for 2006-2015; **_future2C** for +2 degrees of warming above pre-industrial levels; or **_future_4C** for +4 degrees of warming above pre-industrial levels).
Current climate
### Daily temperature of the warmest days
daily_temp_warmest_days <- readRDS("RData/Biophysical_modelling/Substrate/current/daily_temp_warmest_days_substrate.rds")
species_occurrence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
### Remove species that are paedomorphic as they live exclusively in water
pre_data_for_imputation <- readRDS("RData/General_data/pre_data_for_imputation.rds")
pre_data_for_imputation <- dplyr::select(pre_data_for_imputation, tip.label, strategy)
paedomorphic_species <- filter(pre_data_for_imputation, strategy == "Paedomorphic")
species_occurrence <- anti_join(species_occurrence, paedomorphic_species, by = "tip.label")
### Combine datasets
species_temp_warmest_days <- merge(daily_temp_warmest_days, species_occurrence, by = c("lon",
"lat"))
saveRDS(species_temp_warmest_days, file = "RData/Biophysical_modelling/Substrate/current/species_daily_temp_warmest_days_substrate_current.rds")
Future climate (+2C)
### Daily temperature of the warmest days
daily_temp_warmest_days <- readRDS("RData/Biophysical_modelling/Substrate/2C/daily_temp_warmest_days_substrate_2C.rds")
species_occurrence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
### Remove species that are paedomorphic as they live exclusively in water
pre_data_for_imputation <- readRDS("RData/General_data/pre_data_for_imputation.rds")
pre_data_for_imputation <- dplyr::select(pre_data_for_imputation, tip.label, strategy)
paedomorphic_species <- filter(pre_data_for_imputation, strategy == "Paedomorphic")
species_occurrence <- anti_join(species_occurrence, paedomorphic_species, by = "tip.label")
### Combine datasets
species_temp_warmest_days <- merge(daily_temp_warmest_days, species_occurrence, by = c("lon",
"lat"))
saveRDS(species_temp_warmest_days, file = "RData/Biophysical_modelling/Substrate/2C/species_daily_temp_warmest_days_substrate_future2C.rds")
Future climate (+4C)
### Daily temperature of the warmest days
daily_temp_warmest_days <- readRDS("RData/Biophysical_modelling/Substrate/4C/daily_temp_warmest_days_substrate_4C.rds")
species_occurrence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
### Remove species that are paedomorphic as they live exclusively in water
pre_data_for_imputation <- readRDS("RData/General_data/pre_data_for_imputation.rds")
pre_data_for_imputation <- dplyr::select(pre_data_for_imputation, tip.label, strategy)
paedomorphic_species <- filter(pre_data_for_imputation, strategy == "Paedomorphic")
species_occurrence <- anti_join(species_occurrence, paedomorphic_species, by = "tip.label")
### Combine datasets
species_temp_warmest_days <- merge(daily_temp_warmest_days, species_occurrence, by = c("lon",
"lat"))
saveRDS(species_temp_warmest_days, file = "RData/Biophysical_modelling/Substrate/4C/species_daily_temp_warmest_days_substrate_future4C.rds")
Predict CTmax across the distribution range of each species
Here, we run meta-analytic models for each species to estimate the model parameters, and use model predictions to project their CTmax across their range of distribution. These predictions are made assuming that animals are acclimated to the mean or maximum weekly temperature in each day surveyed.
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Substrate/ and the resources used in pbs/Climate_vulnerability/Substrate/
These files are named as Predicting_CTmax_across_coordinates_substrate and the file suffix denotes the climatic scenario (**_current** for 2006-2015; **_future2C** for +2 degrees of warming above pre-industrial levels; or **_future_4C** for +4 degrees of warming above pre-industrial levels).
Function to run meta-analytic models
# Run meta-analytic models to calculate species-level ARR and intercept; and
# predict the CTmax of each day once acclimated to the mean or maximum weekly
# temperature
species_meta <- function(species_name, species_data, temp_species) {
cat("Processing:", species_name, "\n")
dat <- dplyr::filter(species_data, tip.label == species_name)
dat2 <- dplyr::filter(temp_species, tip.label == species_name)
# Fit a meta-analytic model
fit <- metafor::rma(yi = CTmax, sei = se, mod = ~acclimation_temp, data = dat)
int_slope <- coef(fit)
se <- fit$se
cat("Get model coefficients:\n")
coefs <- data.frame(tip.label = dat$tip.label, intercept = coef(fit)[1], intercept_se = fit$se[1],
slope = coef(fit)[2], slope_se = fit$se[2])
print(head(coefs))
prediction_mean <- predict(fit, newmods = dat2$mean_weekly_temp)
prediction_max <- predict(fit, newmods = dat2$max_weekly_temp)
cat("Generate predictions, mean temp:\n")
print(head(prediction_mean))
cat("Generate predictions, max temp:\n")
print(head(prediction_max))
daily_CTmax_substrate_mean_acc_current <- dplyr::select((cbind(dat2, cbind(predicted_CTmax = prediction_mean$pred,
predicted_CTmax_se = prediction_mean$se))), -max_weekly_temp)
daily_CTmax_substrate_max_acc_current <- dplyr::select((cbind(dat2, cbind(predicted_CTmax = prediction_max$pred,
predicted_CTmax_se = prediction_max$se))), -mean_weekly_temp)
return(list(coefs, daily_CTmax_substrate_mean_acc_current, daily_CTmax_substrate_max_acc_current))
}
Current climate
Load data
results_imputation <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
CTmax_data <- dplyr::select(results_imputation, CTmax = filled_mean_UTL5, lowerCI = lower_mean_UTL,
upperCI = upper_mean_UTL, acclimation_temp, tip.label, imputed) # Select relevant columns
original_data <- dplyr::filter(CTmax_data, imputed == "no") # Original experimental data
imputed_data <- dplyr::filter(CTmax_data, imputed == "yes") # Imputed data
# Calculate standard error of each observation
imputed_data <- imputed_data %>%
mutate(se = (upperCI - CTmax)/1.96)
# Group data by species
species_data <- imputed_data %>%
group_by(tip.label)
temp_species <- readRDS("RData/Biophysical_modelling/Substrate/current/species_daily_temp_warmest_days_substrate_current.rds")
temp_species$tip.label <- gsub("_", " ", temp_species$tip.label)
temp_species$tip.label[temp_species$tip.label == "Scinax x signatus"] <- "Scinax x-signatus"
temp_species$tip.label[temp_species$tip.label == "Pristimantis w nigrum"] <- "Pristimantis w-nigrum"
# Find common species between species_data and temp_species. This is needed
# because paedomorphic species were taken out from substrate temperature data
common_species <- intersect(unique(species_data$tip.label), unique(temp_species$tip.label))
# Filter both datasets to include only the matching species
species_data <- species_data %>%
filter(tip.label %in% common_species)
temp_species <- temp_species %>%
filter(tip.label %in% common_species)
saveRDS(temp_species, file = "RData/Biophysical_modelling/Substrate/current/species_daily_temp_warmest_days_substrate_current_adj.rds")
# Run meta-analytic models to calculate species-level ARR and intercept; and
# predict the CTmax of each day once acclimated to the mean weekly temperature
temp_species <- temp_species %>%
dplyr::select(tip.label, lon, lat, YEAR, DOY, max_temp, mean_weekly_temp, max_weekly_temp)
Run the models in chunks
# Create chunks of 3 species at a time
species_list <- unique(species_data$tip.label)
chunk_size <- 3
num_chunks <- ceiling(length(species_list)/chunk_size)
# Split the species list into chunks
chunk_species_list <- split(species_list, cut(1:length(species_list), breaks = num_chunks,
labels = FALSE))
# Now, create larger chunks of small chunks Running all chunks at once will
# require an enormous amount of RAM, so we proceed with 175 chunks at a time in
# 10 batches.
larger_chunk_size <- 175
num_larger_chunks <- ceiling(num_chunks/larger_chunk_size)
# Split the chunk list into larger chunks
larger_chunk_list <- split(chunk_species_list, cut(1:length(chunk_species_list),
breaks = num_larger_chunks, labels = FALSE))
# Set up parallel processing
cl <- makeCluster(16)
# Load packages on nodes
clusterEvalQ(cl, {
library(dplyr)
library(metafor)
})
# Check processing time
Sys.time()
# Processing for first larger chunk
current_larger_chunk <- larger_chunk_list[[1]]
result_list_1 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_1 <- c(result_list_1, result_chunk)
}
species_ARR_substrate_current_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_current_1 <- do.call(rbind, lapply(result_list_1,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_current_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_1)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_current_1, file = "RData/Climate_vulnerability/Substrate/current/temp_files_ARR/species_ARR_substrate_current_1st_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_current_1, file = "RData/Climate_vulnerability/Substrate/current/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_current_1st_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_current_1, file = "RData/Climate_vulnerability/Substrate/current/temp_files_max_acc/daily_CTmax_substrate_max_acc_current_1st_chunk.rds")
################################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[2]]
result_list_2 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_2 <- c(result_list_2, result_chunk)
}
species_ARR_substrate_current_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_current_2 <- do.call(rbind, lapply(result_list_2,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_current_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_2)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_current_2, file = "RData/Climate_vulnerability/Substrate/current/temp_files_ARR/species_ARR_substrate_current_2nd_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_current_2, file = "RData/Climate_vulnerability/Substrate/current/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_current_2nd_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_current_2, file = "RData/Climate_vulnerability/Substrate/current/temp_files_max_acc/daily_CTmax_substrate_max_acc_current_2nd_chunk.rds")
###################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[3]]
result_list_3 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_3 <- c(result_list_3, result_chunk)
}
species_ARR_substrate_current_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_current_3 <- do.call(rbind, lapply(result_list_3,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_current_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_3)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_current_3, file = "RData/Climate_vulnerability/Substrate/current/temp_files_ARR/species_ARR_substrate_current_3rd_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_current_3, file = "RData/Climate_vulnerability/Substrate/current/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_current_3rd_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_current_3, file = "RData/Climate_vulnerability/Substrate/current/temp_files_max_acc/daily_CTmax_substrate_max_acc_current_3rd_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[4]]
result_list_4 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_4 <- c(result_list_4, result_chunk)
}
species_ARR_substrate_current_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_current_4 <- do.call(rbind, lapply(result_list_4,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_current_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_4)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_current_4, file = "RData/Climate_vulnerability/Substrate/current/temp_files_ARR/species_ARR_substrate_current_4th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_current_4, file = "RData/Climate_vulnerability/Substrate/current/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_current_4th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_current_4, file = "RData/Climate_vulnerability/Substrate/current/temp_files_max_acc/daily_CTmax_substrate_max_acc_current_4th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[5]]
result_list_5 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_5 <- c(result_list_5, result_chunk)
}
species_ARR_substrate_current_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_current_5 <- do.call(rbind, lapply(result_list_5,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_current_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_5)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_current_5, file = "RData/Climate_vulnerability/Substrate/current/temp_files_ARR/species_ARR_substrate_current_5th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_current_5, file = "RData/Climate_vulnerability/Substrate/current/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_current_5th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_current_5, file = "RData/Climate_vulnerability/Substrate/current/temp_files_max_acc/daily_CTmax_substrate_max_acc_current_5th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[6]]
result_list_6 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_6 <- c(result_list_6, result_chunk)
}
species_ARR_substrate_current_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_current_6 <- do.call(rbind, lapply(result_list_6,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_current_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_6)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_current_6, file = "RData/Climate_vulnerability/Substrate/current/temp_files_ARR/species_ARR_substrate_current_6th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_current_6, file = "RData/Climate_vulnerability/Substrate/current/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_current_6th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_current_6, file = "RData/Climate_vulnerability/Substrate/current/temp_files_max_acc/daily_CTmax_substrate_max_acc_current_6th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[7]]
result_list_7 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_7 <- c(result_list_7, result_chunk)
}
species_ARR_substrate_current_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_current_7 <- do.call(rbind, lapply(result_list_7,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_current_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_7)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_current_7, file = "RData/Climate_vulnerability/Substrate/current/temp_files_ARR/species_ARR_substrate_current_7th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_current_7, file = "RData/Climate_vulnerability/Substrate/current/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_current_7th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_current_7, file = "RData/Climate_vulnerability/Substrate/current/temp_files_max_acc/daily_CTmax_substrate_max_acc_current_7th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[8]]
result_list_8 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_8 <- c(result_list_8, result_chunk)
}
species_ARR_substrate_current_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_current_8 <- do.call(rbind, lapply(result_list_8,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_current_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_8)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_current_8, file = "RData/Climate_vulnerability/Substrate/current/temp_files_ARR/species_ARR_substrate_current_8th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_current_8, file = "RData/Climate_vulnerability/Substrate/current/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_current_8th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_current_8, file = "RData/Climate_vulnerability/Substrate/current/temp_files_max_acc/daily_CTmax_substrate_max_acc_current_8th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[9]]
result_list_9 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_9 <- c(result_list_9, result_chunk)
}
species_ARR_substrate_current_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_current_9 <- do.call(rbind, lapply(result_list_9,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_current_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_9)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_current_9, file = "RData/Climate_vulnerability/Substrate/current/temp_files_ARR/species_ARR_substrate_current_9th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_current_9, file = "RData/Climate_vulnerability/Substrate/current/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_current_9th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_current_9, file = "RData/Climate_vulnerability/Substrate/current/temp_files_max_acc/daily_CTmax_substrate_max_acc_current_9th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[10]]
result_list_10 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_10 <- c(result_list_10, result_chunk)
}
species_ARR_substrate_current_10 <- do.call(rbind, lapply(result_list_10, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_current_10 <- do.call(rbind, lapply(result_list_10,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_current_10 <- do.call(rbind, lapply(result_list_10,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_10)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_current_10, file = "RData/Climate_vulnerability/Substrate/current/temp_files_ARR/species_ARR_substrate_current_10th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_current_10, file = "RData/Climate_vulnerability/Substrate/current/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_current_10th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_current_10, file = "RData/Climate_vulnerability/Substrate/current/temp_files_max_acc/daily_CTmax_substrate_max_acc_current_10th_chunk.rds")
######################
# Stop the cluster
stopCluster(cl)
gc()
Combine chunks
# Combine results from all chunks and save
species_ARR_substrate_current <- distinct(rbind(species_ARR_substrate_current_1,
species_ARR_substrate_current_2, species_ARR_substrate_current_3, species_ARR_substrate_current_4,
species_ARR_substrate_current_5, species_ARR_substrate_current_6, species_ARR_substrate_current_7,
species_ARR_substrate_current_8, species_ARR_substrate_current_9, species_ARR_substrate_current_10))
daily_CTmax_substrate_mean_acc_current <- rbind(daily_CTmax_substrate_mean_acc_current_1,
daily_CTmax_substrate_mean_acc_current_2, daily_CTmax_substrate_mean_acc_current_3,
daily_CTmax_substrate_mean_acc_current_4, daily_CTmax_substrate_mean_acc_current_5,
daily_CTmax_substrate_mean_acc_current_6, daily_CTmax_substrate_mean_acc_current_7,
daily_CTmax_substrate_mean_acc_current_8, daily_CTmax_substrate_mean_acc_current_9,
daily_CTmax_substrate_mean_acc_current_10)
daily_CTmax_substrate_max_acc_current <- rbind(daily_CTmax_substrate_max_acc_current_1,
daily_CTmax_substrate_max_acc_current_2, daily_CTmax_substrate_max_acc_current_3,
daily_CTmax_substrate_max_acc_current_4, daily_CTmax_substrate_max_acc_current_5,
daily_CTmax_substrate_max_acc_current_6, daily_CTmax_substrate_max_acc_current_7,
daily_CTmax_substrate_max_acc_current_8, daily_CTmax_substrate_max_acc_current_9,
daily_CTmax_substrate_max_acc_current_10)
saveRDS(species_ARR_substrate_current, file = "RData/Climate_vulnerability/Substrate/current/species_ARR_substrate_current.rds")
saveRDS(daily_CTmax_substrate_mean_acc_current, file = "RData/Climate_vulnerability/Substrate/current/daily_CTmax_substrate_mean_acc_current.rds")
saveRDS(daily_CTmax_substrate_max_acc_current, file = "RData/Climate_vulnerability/Substrate/current/daily_CTmax_substrate_max_acc_current.rds")
Future climate (+2C)
Load data
results_imputation <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
CTmax_data <- dplyr::select(results_imputation, CTmax = filled_mean_UTL5, lowerCI = lower_mean_UTL,
upperCI = upper_mean_UTL, acclimation_temp, tip.label, imputed) # Select relevant columns
original_data <- dplyr::filter(CTmax_data, imputed == "no") # Original experimental data
imputed_data <- dplyr::filter(CTmax_data, imputed == "yes") # Imputed data
# Calculate standard error of each observation
imputed_data <- imputed_data %>%
mutate(se = (upperCI - CTmax)/1.96)
# Group data by species
species_data <- imputed_data %>%
group_by(tip.label)
temp_species <- readRDS("RData/Biophysical_modelling/Substrate/2C/species_daily_temp_warmest_days_substrate_future2C.rds")
temp_species$tip.label <- gsub("_", " ", temp_species$tip.label)
temp_species$tip.label[temp_species$tip.label == "Scinax x signatus"] <- "Scinax x-signatus"
temp_species$tip.label[temp_species$tip.label == "Pristimantis w nigrum"] <- "Pristimantis w-nigrum"
# Find common species between species_data and temp_species. This is needed
# because paedomorphic species were taken out from substrate temperature data
common_species <- intersect(unique(species_data$tip.label), unique(temp_species$tip.label))
# Filter both datasets to include only the matching species
species_data <- species_data %>%
filter(tip.label %in% common_species)
temp_species <- temp_species %>%
filter(tip.label %in% common_species)
saveRDS(temp_species, file = "RData/Biophysical_modelling/Substrate/2C/species_daily_temp_warmest_days_substrate_future2C_adj.rds")
# Run meta-analytic models to calculate species-level ARR and intercept; and
# predict the CTmax of each day once acclimated to the mean weekly temperature
temp_species <- temp_species %>%
dplyr::select(tip.label, lon, lat, YEAR, DOY, max_temp, mean_weekly_temp, max_weekly_temp)
Run the models in chunks
# Create chunks of 3 species at a time
species_list <- unique(species_data$tip.label)
chunk_size <- 3
num_chunks <- ceiling(length(species_list)/chunk_size)
# Split the species list into chunks
chunk_species_list <- split(species_list, cut(1:length(species_list), breaks = num_chunks,
labels = FALSE))
# Now, create larger chunks of small chunks Running all chunks at once will
# require an enormous amount of RAM, so we proceed with 175 chunks at a time in
# 10 batches.
larger_chunk_size <- 175
num_larger_chunks <- ceiling(num_chunks/larger_chunk_size)
# Split the chunk list into larger chunks
larger_chunk_list <- split(chunk_species_list, cut(1:length(chunk_species_list),
breaks = num_larger_chunks, labels = FALSE))
# Set up parallel processing
cl <- makeCluster(16)
# Load packages on nodes
clusterEvalQ(cl, {
library(dplyr)
library(metafor)
})
# Check processing time
Sys.time()
# Processing for first larger chunk
current_larger_chunk <- larger_chunk_list[[1]]
result_list_1 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_1 <- c(result_list_1, result_chunk)
}
species_ARR_substrate_future2C_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future2C_1 <- do.call(rbind, lapply(result_list_1,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future2C_1 <- do.call(rbind, lapply(result_list_1,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_1)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future2C_1, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_ARR/species_ARR_substrate_future2C_1st_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future2C_1, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future2C_1st_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future2C_1, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future2C_1st_chunk.rds")
################################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[2]]
result_list_2 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_2 <- c(result_list_2, result_chunk)
}
species_ARR_substrate_future2C_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future2C_2 <- do.call(rbind, lapply(result_list_2,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future2C_2 <- do.call(rbind, lapply(result_list_2,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_2)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future2C_2, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_ARR/species_ARR_substrate_future2C_2nd_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future2C_2, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future2C_2nd_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future2C_2, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future2C_2nd_chunk.rds")
###################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[3]]
result_list_3 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_3 <- c(result_list_3, result_chunk)
}
species_ARR_substrate_future2C_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future2C_3 <- do.call(rbind, lapply(result_list_3,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future2C_3 <- do.call(rbind, lapply(result_list_3,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_3)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future2C_3, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_ARR/species_ARR_substrate_future2C_3rd_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future2C_3, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future2C_3rd_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future2C_3, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future2C_3rd_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[4]]
result_list_4 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_4 <- c(result_list_4, result_chunk)
}
species_ARR_substrate_future2C_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future2C_4 <- do.call(rbind, lapply(result_list_4,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future2C_4 <- do.call(rbind, lapply(result_list_4,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_4)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future2C_4, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_ARR/species_ARR_substrate_future2C_4th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future2C_4, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future2C_4th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future2C_4, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future2C_4th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[5]]
result_list_5 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_5 <- c(result_list_5, result_chunk)
}
species_ARR_substrate_future2C_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future2C_5 <- do.call(rbind, lapply(result_list_5,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future2C_5 <- do.call(rbind, lapply(result_list_5,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_5)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future2C_5, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_ARR/species_ARR_substrate_future2C_5th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future2C_5, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future2C_5th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future2C_5, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future2C_5th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[6]]
result_list_6 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_6 <- c(result_list_6, result_chunk)
}
species_ARR_substrate_future2C_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future2C_6 <- do.call(rbind, lapply(result_list_6,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future2C_6 <- do.call(rbind, lapply(result_list_6,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_6)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future2C_6, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_ARR/species_ARR_substrate_future2C_6th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future2C_6, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future2C_6th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future2C_6, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future2C_6th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[7]]
result_list_7 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_7 <- c(result_list_7, result_chunk)
}
species_ARR_substrate_future2C_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future2C_7 <- do.call(rbind, lapply(result_list_7,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future2C_7 <- do.call(rbind, lapply(result_list_7,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_7)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future2C_7, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_ARR/species_ARR_substrate_future2C_7th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future2C_7, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future2C_7th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future2C_7, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future2C_7th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[8]]
result_list_8 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_8 <- c(result_list_8, result_chunk)
}
species_ARR_substrate_future2C_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future2C_8 <- do.call(rbind, lapply(result_list_8,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future2C_8 <- do.call(rbind, lapply(result_list_8,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_8)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future2C_8, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_ARR/species_ARR_substrate_future2C_8th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future2C_8, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future2C_8th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future2C_8, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future2C_8th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[9]]
result_list_9 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_9 <- c(result_list_9, result_chunk)
}
species_ARR_substrate_future2C_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future2C_9 <- do.call(rbind, lapply(result_list_9,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future2C_9 <- do.call(rbind, lapply(result_list_9,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_9)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future2C_9, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_ARR/species_ARR_substrate_future2C_9th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future2C_9, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future2C_9th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future2C_9, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future2C_9th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[10]]
result_list_10 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_10 <- c(result_list_10, result_chunk)
}
species_ARR_substrate_future2C_10 <- do.call(rbind, lapply(result_list_10, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future2C_10 <- do.call(rbind, lapply(result_list_10,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future2C_10 <- do.call(rbind, lapply(result_list_10,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_10)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future2C_10, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_ARR/species_ARR_substrate_future2C_10th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future2C_10, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future2C_10th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future2C_10, file = "RData/Climate_vulnerability/Substrate/future2C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future2C_10th_chunk.rds")
######################
# Stop the cluster
stopCluster(cl)
gc()
Combine chunks
# Combine results from all chunks and save
species_ARR_substrate_future2C <- distinct(rbind(species_ARR_substrate_future2C_1,
species_ARR_substrate_future2C_2, species_ARR_substrate_future2C_3, species_ARR_substrate_future2C_4,
species_ARR_substrate_future2C_5, species_ARR_substrate_future2C_6, species_ARR_substrate_future2C_7,
species_ARR_substrate_future2C_8, species_ARR_substrate_future2C_9, species_ARR_substrate_future2C_10))
daily_CTmax_substrate_mean_acc_future2C <- rbind(daily_CTmax_substrate_mean_acc_future2C_1,
daily_CTmax_substrate_mean_acc_future2C_2, daily_CTmax_substrate_mean_acc_future2C_3,
daily_CTmax_substrate_mean_acc_future2C_4, daily_CTmax_substrate_mean_acc_future2C_5,
daily_CTmax_substrate_mean_acc_future2C_6, daily_CTmax_substrate_mean_acc_future2C_7,
daily_CTmax_substrate_mean_acc_future2C_8, daily_CTmax_substrate_mean_acc_future2C_9,
daily_CTmax_substrate_mean_acc_future2C_10)
daily_CTmax_substrate_max_acc_future2C <- rbind(daily_CTmax_substrate_max_acc_future2C_1,
daily_CTmax_substrate_max_acc_future2C_2, daily_CTmax_substrate_max_acc_future2C_3,
daily_CTmax_substrate_max_acc_future2C_4, daily_CTmax_substrate_max_acc_future2C_5,
daily_CTmax_substrate_max_acc_future2C_6, daily_CTmax_substrate_max_acc_future2C_7,
daily_CTmax_substrate_max_acc_future2C_8, daily_CTmax_substrate_max_acc_future2C_9,
daily_CTmax_substrate_max_acc_future2C_10)
saveRDS(species_ARR_substrate_future2C, file = "RData/Climate_vulnerability/Substrate/future2C/species_ARR_substrate_future2C.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future2C, file = "RData/Climate_vulnerability/Substrate/future2C/daily_CTmax_substrate_mean_acc_future2C.rds")
saveRDS(daily_CTmax_substrate_max_acc_future2C, file = "RData/Climate_vulnerability/Substrate/future2C/daily_CTmax_substrate_max_acc_future2C.rds")
Future climate (+4C)
Load data
results_imputation <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
CTmax_data <- dplyr::select(results_imputation, CTmax = filled_mean_UTL5, lowerCI = lower_mean_UTL,
upperCI = upper_mean_UTL, acclimation_temp, tip.label, imputed) # Select relevant columns
original_data <- dplyr::filter(CTmax_data, imputed == "no") # Original experimental data
imputed_data <- dplyr::filter(CTmax_data, imputed == "yes") # Imputed data
# Calculate standard error of each observation
imputed_data <- imputed_data %>%
mutate(se = (upperCI - CTmax)/1.96)
# Group data by species
species_data <- imputed_data %>%
group_by(tip.label)
temp_species <- readRDS("RData/Biophysical_modelling/Substrate/4C/species_daily_temp_warmest_days_substrate_future4C.rds")
temp_species$tip.label <- gsub("_", " ", temp_species$tip.label)
temp_species$tip.label[temp_species$tip.label == "Scinax x signatus"] <- "Scinax x-signatus"
temp_species$tip.label[temp_species$tip.label == "Pristimantis w nigrum"] <- "Pristimantis w-nigrum"
# Find common species between species_data and temp_species. This is needed
# because paedomorphic species were taken out from substrate temperature data
common_species <- intersect(unique(species_data$tip.label), unique(temp_species$tip.label))
# Filter both datasets to include only the matching species
species_data <- species_data %>%
filter(tip.label %in% common_species)
temp_species <- temp_species %>%
filter(tip.label %in% common_species)
saveRDS(temp_species, file = "RData/Biophysical_modelling/Substrate/4C/species_daily_temp_warmest_days_substrate_future4C_adj.rds")
# Run meta-analytic models to calculate species-level ARR and intercept; and
# predict the CTmax of each day once acclimated to the mean weekly temperature
temp_species <- temp_species %>%
dplyr::select(tip.label, lon, lat, YEAR, DOY, max_temp, mean_weekly_temp, max_weekly_temp)
Run the models in chunks
# Create chunks of 3 species at a time
species_list <- unique(species_data$tip.label)
chunk_size <- 3
num_chunks <- ceiling(length(species_list)/chunk_size)
# Split the species list into chunks
chunk_species_list <- split(species_list, cut(1:length(species_list), breaks = num_chunks,
labels = FALSE))
# Now, create larger chunks of small chunks Running all chunks at once will
# require an enormous amount of RAM, so we proceed with 175 chunks at a time in
# 10 batches.
larger_chunk_size <- 175
num_larger_chunks <- ceiling(num_chunks/larger_chunk_size)
# Split the chunk list into larger chunks
larger_chunk_list <- split(chunk_species_list, cut(1:length(chunk_species_list),
breaks = num_larger_chunks, labels = FALSE))
# Set up parallel processing
cl <- makeCluster(16)
# Load packages on nodes
clusterEvalQ(cl, {
library(dplyr)
library(metafor)
})
# Check processing time
Sys.time()
# Processing for first larger chunk
current_larger_chunk <- larger_chunk_list[[1]]
result_list_1 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_1 <- c(result_list_1, result_chunk)
}
species_ARR_substrate_future4C_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future4C_1 <- do.call(rbind, lapply(result_list_1,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future4C_1 <- do.call(rbind, lapply(result_list_1,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_1)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future4C_1, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_ARR/species_ARR_substrate_future4C_1st_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future4C_1, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future4C_1st_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future4C_1, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future4C_1st_chunk.rds")
################################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[2]]
result_list_2 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_2 <- c(result_list_2, result_chunk)
}
species_ARR_substrate_future4C_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future4C_2 <- do.call(rbind, lapply(result_list_2,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future4C_2 <- do.call(rbind, lapply(result_list_2,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_2)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future4C_2, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_ARR/species_ARR_substrate_future4C_2nd_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future4C_2, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future4C_2nd_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future4C_2, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future4C_2nd_chunk.rds")
###################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[3]]
result_list_3 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_3 <- c(result_list_3, result_chunk)
}
species_ARR_substrate_future4C_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future4C_3 <- do.call(rbind, lapply(result_list_3,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future4C_3 <- do.call(rbind, lapply(result_list_3,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_3)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future4C_3, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_ARR/species_ARR_substrate_future4C_3rd_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future4C_3, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future4C_3rd_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future4C_3, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future4C_3rd_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[4]]
result_list_4 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_4 <- c(result_list_4, result_chunk)
}
species_ARR_substrate_future4C_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future4C_4 <- do.call(rbind, lapply(result_list_4,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future4C_4 <- do.call(rbind, lapply(result_list_4,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_4)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future4C_4, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_ARR/species_ARR_substrate_future4C_4th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future4C_4, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future4C_4th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future4C_4, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future4C_4th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[5]]
result_list_5 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_5 <- c(result_list_5, result_chunk)
}
species_ARR_substrate_future4C_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future4C_5 <- do.call(rbind, lapply(result_list_5,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future4C_5 <- do.call(rbind, lapply(result_list_5,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_5)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future4C_5, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_ARR/species_ARR_substrate_future4C_5th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future4C_5, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future4C_5th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future4C_5, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future4C_5th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[6]]
result_list_6 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_6 <- c(result_list_6, result_chunk)
}
species_ARR_substrate_future4C_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future4C_6 <- do.call(rbind, lapply(result_list_6,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future4C_6 <- do.call(rbind, lapply(result_list_6,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_6)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future4C_6, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_ARR/species_ARR_substrate_future4C_6th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future4C_6, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future4C_6th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future4C_6, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future4C_6th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[7]]
result_list_7 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_7 <- c(result_list_7, result_chunk)
}
species_ARR_substrate_future4C_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future4C_7 <- do.call(rbind, lapply(result_list_7,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future4C_7 <- do.call(rbind, lapply(result_list_7,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_7)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future4C_7, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_ARR/species_ARR_substrate_future4C_7th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future4C_7, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future4C_7th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future4C_7, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future4C_7th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[8]]
result_list_8 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_8 <- c(result_list_8, result_chunk)
}
species_ARR_substrate_future4C_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future4C_8 <- do.call(rbind, lapply(result_list_8,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future4C_8 <- do.call(rbind, lapply(result_list_8,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_8)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future4C_8, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_ARR/species_ARR_substrate_future4C_8th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future4C_8, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future4C_8th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future4C_8, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future4C_8th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[9]]
result_list_9 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_9 <- c(result_list_9, result_chunk)
}
species_ARR_substrate_future4C_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future4C_9 <- do.call(rbind, lapply(result_list_9,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future4C_9 <- do.call(rbind, lapply(result_list_9,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_9)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future4C_9, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_ARR/species_ARR_substrate_future4C_9th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future4C_9, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future4C_9th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future4C_9, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future4C_9th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[10]]
result_list_10 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_10 <- c(result_list_10, result_chunk)
}
species_ARR_substrate_future4C_10 <- do.call(rbind, lapply(result_list_10, function(x) x[[1]]))
daily_CTmax_substrate_mean_acc_future4C_10 <- do.call(rbind, lapply(result_list_10,
function(x) x[[2]]))
daily_CTmax_substrate_max_acc_future4C_10 <- do.call(rbind, lapply(result_list_10,
function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_10)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_substrate_future4C_10, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_ARR/species_ARR_substrate_future4C_10th_chunk.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future4C_10, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_mean_acc/daily_CTmax_substrate_mean_acc_future4C_10th_chunk.rds")
saveRDS(daily_CTmax_substrate_max_acc_future4C_10, file = "RData/Climate_vulnerability/Substrate/future4C/temp_files_max_acc/daily_CTmax_substrate_max_acc_future4C_10th_chunk.rds")
######################
# Stop the cluster
stopCluster(cl)
gc()
Combine chunks
# Combine results from all chunks and save
species_ARR_substrate_future4C <- distinct(rbind(species_ARR_substrate_future4C_1,
species_ARR_substrate_future4C_2, species_ARR_substrate_future4C_3, species_ARR_substrate_future4C_4,
species_ARR_substrate_future4C_5, species_ARR_substrate_future4C_6, species_ARR_substrate_future4C_7,
species_ARR_substrate_future4C_8, species_ARR_substrate_future4C_9, species_ARR_substrate_future4C_10))
daily_CTmax_substrate_mean_acc_future4C <- rbind(daily_CTmax_substrate_mean_acc_future4C_1,
daily_CTmax_substrate_mean_acc_future4C_2, daily_CTmax_substrate_mean_acc_future4C_3,
daily_CTmax_substrate_mean_acc_future4C_4, daily_CTmax_substrate_mean_acc_future4C_5,
daily_CTmax_substrate_mean_acc_future4C_6, daily_CTmax_substrate_mean_acc_future4C_7,
daily_CTmax_substrate_mean_acc_future4C_8, daily_CTmax_substrate_mean_acc_future4C_9,
daily_CTmax_substrate_mean_acc_future4C_10)
daily_CTmax_substrate_max_acc_future4C <- rbind(daily_CTmax_substrate_max_acc_future4C_1,
daily_CTmax_substrate_max_acc_future4C_2, daily_CTmax_substrate_max_acc_future4C_3,
daily_CTmax_substrate_max_acc_future4C_4, daily_CTmax_substrate_max_acc_future4C_5,
daily_CTmax_substrate_max_acc_future4C_6, daily_CTmax_substrate_max_acc_future4C_7,
daily_CTmax_substrate_max_acc_future4C_8, daily_CTmax_substrate_max_acc_future4C_9,
daily_CTmax_substrate_max_acc_future4C_10)
saveRDS(species_ARR_substrate_future4C, file = "RData/Climate_vulnerability/Substrate/future4C/species_ARR_substrate_future4C.rds")
saveRDS(daily_CTmax_substrate_mean_acc_future4C, file = "RData/Climate_vulnerability/Substrate/future4C/daily_CTmax_substrate_mean_acc_future4C.rds")
saveRDS(daily_CTmax_substrate_max_acc_future4C, file = "RData/Climate_vulnerability/Substrate/future4C/daily_CTmax_substrate_max_acc_future4C.rds")
Pond or wetland
Combine species data with operative body temperatures
Here, we merge the distribution data of each species with the daily temperatures they experience in each coordinate during the warmest 3-month period of each year
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Pond/ and the resources used in pbs/Climate_vulnerability/Pond/
These files are named as Combining_species_data_with_temp_data_pond and the file suffix denotes the climatic scenario (**_current** for 2006-2015; **_future2C** for +2 degrees of warming above pre-industrial levels; or **_future_4C** for +4 degrees of warming above pre-industrial levels).
Current climate
### Daily temperature of the warmest days
daily_temp_warmest_days <- readRDS("RData/Biophysical_modelling/Pond/current/daily_temp_warmest_days_pond.rds")
species_occurrence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
species_temp_warmest_days <- merge(daily_temp_warmest_days, species_occurrence, by = c("lon",
"lat"))
saveRDS(species_temp_warmest_days, file = "RData/Biophysical_modelling/Pond/current/species_daily_temp_warmest_days_pond_current.rds")
Future climate (+2C)
### Daily temperature of the warmest days
daily_temp_warmest_days <- readRDS("RData/Biophysical_modelling/Pond/2C/daily_temp_warmest_days_pond_2C.rds")
species_occurrence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
species_temp_warmest_days <- merge(daily_temp_warmest_days, species_occurrence, by = c("lon",
"lat"))
saveRDS(species_temp_warmest_days, file = "RData/Biophysical_modelling/Pond/2C/species_daily_temp_warmest_days_pond_future2C.rds")
Future climate (+4C)
### Daily temperature of the warmest days
daily_temp_warmest_days <- readRDS("RData/Biophysical_modelling/Pond/4C/daily_temp_warmest_days_pond_4C.rds")
species_occurrence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
species_temp_warmest_days <- merge(daily_temp_warmest_days, species_occurrence, by = c("lon",
"lat"))
saveRDS(species_temp_warmest_days, file = "RData/Biophysical_modelling/Pond/4C/species_daily_temp_warmest_days_pond_future4C.rds")
Predict CTmax across the distribution range of each species
Here, we run meta-analytic models for each species to estimate the model parameters, and use model predictions to project their CTmax across their range of distribution. These predictions are made assuming that animals are acclimated to the mean or maximum weekly temperature in each day surveyed.
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Pond/ and the resources used in pbs/Climate_vulnerability/Pond/
These files are named as Predicting_CTmax_across_coordinates_pond and the file suffix denotes the climatic scenario (**_current** for 2006-2015; **_future2C** for +2 degrees of warming above pre-industrial levels; or **_future_4C** for +4 degrees of warming above pre-industrial levels).
Function to run meta-analytic models
# Run meta-analytic models to calculate species-level ARR and intercept; and
# predict the CTmax of each day once acclimated to the mean or maximum weekly
# temperature
species_meta <- function(species_name, species_data, temp_species) {
cat("Processing:", species_name, "\n")
dat <- dplyr::filter(species_data, tip.label == species_name)
dat2 <- dplyr::filter(temp_species, tip.label == species_name)
# Fit a meta-analytic model
fit <- metafor::rma(yi = CTmax, sei = se, mod = ~acclimation_temp, data = dat)
int_slope <- coef(fit)
se <- fit$se
cat("Get model coefficients:\n")
coefs <- data.frame(tip.label = dat$tip.label, intercept = coef(fit)[1], intercept_se = fit$se[1],
slope = coef(fit)[2], slope_se = fit$se[2])
print(head(coefs))
prediction_mean <- predict(fit, newmods = dat2$mean_weekly_temp)
prediction_max <- predict(fit, newmods = dat2$max_weekly_temp)
cat("Generate predictions, mean temp:\n")
print(head(prediction_mean))
cat("Generate predictions, max temp:\n")
print(head(prediction_max))
daily_CTmax_pond_mean_acc_current <- dplyr::select((cbind(dat2, cbind(predicted_CTmax = prediction_mean$pred,
predicted_CTmax_se = prediction_mean$se))), -max_weekly_temp)
daily_CTmax_pond_max_acc_current <- dplyr::select((cbind(dat2, cbind(predicted_CTmax = prediction_max$pred,
predicted_CTmax_se = prediction_max$se))), -mean_weekly_temp)
return(list(coefs, daily_CTmax_pond_mean_acc_current, daily_CTmax_pond_max_acc_current))
}
Current climate
Load data
results_imputation <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
CTmax_data <- dplyr::select(results_imputation, CTmax = filled_mean_UTL5, lowerCI = lower_mean_UTL,
upperCI = upper_mean_UTL, acclimation_temp, tip.label, imputed) # Select relevant columns
original_data <- dplyr::filter(CTmax_data, imputed == "no") # Original experimental data
imputed_data <- dplyr::filter(CTmax_data, imputed == "yes") # Imputed data
# Calculate standard error of each observation
imputed_data <- imputed_data %>%
mutate(se = (upperCI - CTmax)/1.96)
# Group data by species
species_data <- imputed_data %>%
group_by(tip.label)
temp_species <- readRDS("RData/Biophysical_modelling/Pond/current/species_daily_temp_warmest_days_pond_current.rds")
temp_species$tip.label <- gsub("_", " ", temp_species$tip.label)
temp_species$tip.label[temp_species$tip.label == "Scinax x signatus"] <- "Scinax x-signatus"
temp_species$tip.label[temp_species$tip.label == "Pristimantis w nigrum"] <- "Pristimantis w-nigrum"
saveRDS(temp_species, file = "RData/Biophysical_modelling/Pond/current/species_daily_temp_warmest_days_pond_current_adj.rds")
# Run meta-analytic models to calculate species-level ARR and intercept; and
# predict the CTmax of each day once acclimated to the mean weekly temperature
temp_species <- temp_species %>%
dplyr::select(tip.label, lon, lat, YEAR, DOY, max_temp, mean_weekly_temp, max_weekly_temp)
Run the models in chunks
# Create chunks of 3 species at a time
species_list <- unique(species_data$tip.label)
chunk_size <- 3
num_chunks <- ceiling(length(species_list)/chunk_size)
# Split the species list into chunks
chunk_species_list <- split(species_list, cut(1:length(species_list), breaks = num_chunks,
labels = FALSE))
# Now, create larger chunks of small chunks Running all chunks at once will
# require an enormous amount of RAM, so we proceed with 175 chunks at a time in
# 10 batches.
larger_chunk_size <- 175
num_larger_chunks <- ceiling(num_chunks/larger_chunk_size)
# Split the chunk list into larger chunks
larger_chunk_list <- split(chunk_species_list, cut(1:length(chunk_species_list),
breaks = num_larger_chunks, labels = FALSE))
# Set up parallel processing
cl <- makeCluster(16)
# Load packages on nodes
clusterEvalQ(cl, {
library(dplyr)
library(metafor)
})
# Check processing time
Sys.time()
# Processing for first larger chunk
current_larger_chunk <- larger_chunk_list[[1]]
result_list_1 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_1 <- c(result_list_1, result_chunk)
}
species_ARR_pond_current_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_current_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[2]]))
daily_CTmax_pond_max_acc_current_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_1)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_current_1, file = "RData/Climate_vulnerability/Pond/current/temp_files_ARR/species_ARR_pond_current_1st_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_current_1, file = "RData/Climate_vulnerability/Pond/current/temp_files_mean_acc/daily_CTmax_pond_mean_acc_current_1st_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_current_1, file = "RData/Climate_vulnerability/Pond/current/temp_files_max_acc/daily_CTmax_pond_max_acc_current_1st_chunk.rds")
################################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[2]]
result_list_2 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_2 <- c(result_list_2, result_chunk)
}
species_ARR_pond_current_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_current_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[2]]))
daily_CTmax_pond_max_acc_current_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_2)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_current_2, file = "RData/Climate_vulnerability/Pond/current/temp_files_ARR/species_ARR_pond_current_2nd_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_current_2, file = "RData/Climate_vulnerability/Pond/current/temp_files_mean_acc/daily_CTmax_pond_mean_acc_current_2nd_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_current_2, file = "RData/Climate_vulnerability/Pond/current/temp_files_max_acc/daily_CTmax_pond_max_acc_current_2nd_chunk.rds")
###################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[3]]
result_list_3 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_3 <- c(result_list_3, result_chunk)
}
species_ARR_pond_current_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_current_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[2]]))
daily_CTmax_pond_max_acc_current_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_3)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_current_3, file = "RData/Climate_vulnerability/Pond/current/temp_files_ARR/species_ARR_pond_current_3rd_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_current_3, file = "RData/Climate_vulnerability/Pond/current/temp_files_mean_acc/daily_CTmax_pond_mean_acc_current_3rd_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_current_3, file = "RData/Climate_vulnerability/Pond/current/temp_files_max_acc/daily_CTmax_pond_max_acc_current_3rd_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[4]]
result_list_4 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_4 <- c(result_list_4, result_chunk)
}
species_ARR_pond_current_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_current_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[2]]))
daily_CTmax_pond_max_acc_current_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_4)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_current_4, file = "RData/Climate_vulnerability/Pond/current/temp_files_ARR/species_ARR_pond_current_4th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_current_4, file = "RData/Climate_vulnerability/Pond/current/temp_files_mean_acc/daily_CTmax_pond_mean_acc_current_4th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_current_4, file = "RData/Climate_vulnerability/Pond/current/temp_files_max_acc/daily_CTmax_pond_max_acc_current_4th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[5]]
result_list_5 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_5 <- c(result_list_5, result_chunk)
}
species_ARR_pond_current_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_current_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[2]]))
daily_CTmax_pond_max_acc_current_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_5)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_current_5, file = "RData/Climate_vulnerability/Pond/current/temp_files_ARR/species_ARR_pond_current_5th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_current_5, file = "RData/Climate_vulnerability/Pond/current/temp_files_mean_acc/daily_CTmax_pond_mean_acc_current_5th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_current_5, file = "RData/Climate_vulnerability/Pond/current/temp_files_max_acc/daily_CTmax_pond_max_acc_current_5th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[6]]
result_list_6 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_6 <- c(result_list_6, result_chunk)
}
species_ARR_pond_current_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_current_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[2]]))
daily_CTmax_pond_max_acc_current_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_6)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_current_6, file = "RData/Climate_vulnerability/Pond/current/temp_files_ARR/species_ARR_pond_current_6th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_current_6, file = "RData/Climate_vulnerability/Pond/current/temp_files_mean_acc/daily_CTmax_pond_mean_acc_current_6th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_current_6, file = "RData/Climate_vulnerability/Pond/current/temp_files_max_acc/daily_CTmax_pond_max_acc_current_6th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[7]]
result_list_7 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_7 <- c(result_list_7, result_chunk)
}
species_ARR_pond_current_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_current_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[2]]))
daily_CTmax_pond_max_acc_current_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_7)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_current_7, file = "RData/Climate_vulnerability/Pond/current/temp_files_ARR/species_ARR_pond_current_7th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_current_7, file = "RData/Climate_vulnerability/Pond/current/temp_files_mean_acc/daily_CTmax_pond_mean_acc_current_7th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_current_7, file = "RData/Climate_vulnerability/Pond/current/temp_files_max_acc/daily_CTmax_pond_max_acc_current_7th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[8]]
result_list_8 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_8 <- c(result_list_8, result_chunk)
}
species_ARR_pond_current_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_current_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[2]]))
daily_CTmax_pond_max_acc_current_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_8)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_current_8, file = "RData/Climate_vulnerability/Pond/current/temp_files_ARR/species_ARR_pond_current_8th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_current_8, file = "RData/Climate_vulnerability/Pond/current/temp_files_mean_acc/daily_CTmax_pond_mean_acc_current_8th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_current_8, file = "RData/Climate_vulnerability/Pond/current/temp_files_max_acc/daily_CTmax_pond_max_acc_current_8th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[9]]
result_list_9 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_9 <- c(result_list_9, result_chunk)
}
species_ARR_pond_current_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_current_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[2]]))
daily_CTmax_pond_max_acc_current_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_9)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_current_9, file = "RData/Climate_vulnerability/Pond/current/temp_files_ARR/species_ARR_pond_current_9th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_current_9, file = "RData/Climate_vulnerability/Pond/current/temp_files_mean_acc/daily_CTmax_pond_mean_acc_current_9th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_current_9, file = "RData/Climate_vulnerability/Pond/current/temp_files_max_acc/daily_CTmax_pond_max_acc_current_9th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[10]]
result_list_10 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_10 <- c(result_list_10, result_chunk)
}
species_ARR_pond_current_10 <- do.call(rbind, lapply(result_list_10, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_current_10 <- do.call(rbind, lapply(result_list_10, function(x) x[[2]]))
daily_CTmax_pond_max_acc_current_10 <- do.call(rbind, lapply(result_list_10, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_10)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_current_10, file = "RData/Climate_vulnerability/Pond/current/temp_files_ARR/species_ARR_pond_current_10th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_current_10, file = "RData/Climate_vulnerability/Pond/current/temp_files_mean_acc/daily_CTmax_pond_mean_acc_current_10th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_current_10, file = "RData/Climate_vulnerability/Pond/current/temp_files_max_acc/daily_CTmax_pond_max_acc_current_10th_chunk.rds")
######################
# Stop the cluster
stopCluster(cl)
gc()
Combine chunks
# Combine results from all chunks and save
species_ARR_pond_current <- distinct(rbind(species_ARR_pond_current_1, species_ARR_pond_current_2,
species_ARR_pond_current_3, species_ARR_pond_current_4, species_ARR_pond_current_5,
species_ARR_pond_current_6, species_ARR_pond_current_7, species_ARR_pond_current_8,
species_ARR_pond_current_9, species_ARR_pond_current_10))
daily_CTmax_pond_mean_acc_current <- rbind(daily_CTmax_pond_mean_acc_current_1, daily_CTmax_pond_mean_acc_current_2,
daily_CTmax_pond_mean_acc_current_3, daily_CTmax_pond_mean_acc_current_4, daily_CTmax_pond_mean_acc_current_5,
daily_CTmax_pond_mean_acc_current_6, daily_CTmax_pond_mean_acc_current_7, daily_CTmax_pond_mean_acc_current_8,
daily_CTmax_pond_mean_acc_current_9, daily_CTmax_pond_mean_acc_current_10)
daily_CTmax_pond_max_acc_current <- rbind(daily_CTmax_pond_max_acc_current_1, daily_CTmax_pond_max_acc_current_2,
daily_CTmax_pond_max_acc_current_3, daily_CTmax_pond_max_acc_current_4, daily_CTmax_pond_max_acc_current_5,
daily_CTmax_pond_max_acc_current_6, daily_CTmax_pond_max_acc_current_7, daily_CTmax_pond_max_acc_current_8,
daily_CTmax_pond_max_acc_current_9, daily_CTmax_pond_max_acc_current_10)
saveRDS(species_ARR_pond_current, file = "RData/Climate_vulnerability/Pond/current/species_ARR_pond_current.rds")
saveRDS(daily_CTmax_pond_mean_acc_current, file = "RData/Climate_vulnerability/Pond/current/daily_CTmax_pond_mean_acc_current.rds")
saveRDS(daily_CTmax_pond_max_acc_current, file = "RData/Climate_vulnerability/Pond/current/daily_CTmax_pond_max_acc_current.rds")
Future climate (+2C)
Load data
results_imputation <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
CTmax_data <- dplyr::select(results_imputation, CTmax = filled_mean_UTL5, lowerCI = lower_mean_UTL,
upperCI = upper_mean_UTL, acclimation_temp, tip.label, imputed) # Select relevant columns
original_data <- dplyr::filter(CTmax_data, imputed == "no") # Original experimental data
imputed_data <- dplyr::filter(CTmax_data, imputed == "yes") # Imputed data
# Calculate standard error of each observation
imputed_data <- imputed_data %>%
mutate(se = (upperCI - CTmax)/1.96)
# Group data by species
species_data <- imputed_data %>%
group_by(tip.label)
temp_species <- readRDS("RData/Biophysical_modelling/Pond/2C/species_daily_temp_warmest_days_pond_future2C.rds")
temp_species$tip.label <- gsub("_", " ", temp_species$tip.label)
temp_species$tip.label[temp_species$tip.label == "Scinax x signatus"] <- "Scinax x-signatus"
temp_species$tip.label[temp_species$tip.label == "Pristimantis w nigrum"] <- "Pristimantis w-nigrum"
saveRDS(temp_species, file = "RData/Biophysical_modelling/Pond/2C/species_daily_temp_warmest_days_pond_future2C_adj.rds")
# Run meta-analytic models to calculate species-level ARR and intercept; and
# predict the CTmax of each day once acclimated to the mean weekly temperature
temp_species <- temp_species %>%
dplyr::select(tip.label, lon, lat, YEAR, DOY, max_temp, mean_weekly_temp, max_weekly_temp)
Run the models in chunks
# Create chunks of 3 species at a time
species_list <- unique(species_data$tip.label)
chunk_size <- 3
num_chunks <- ceiling(length(species_list)/chunk_size)
# Split the species list into chunks
chunk_species_list <- split(species_list, cut(1:length(species_list), breaks = num_chunks,
labels = FALSE))
# Now, create larger chunks of small chunks Running all chunks at once will
# require an enormous amount of RAM, so we proceed with 175 chunks at a time in
# 10 batches.
larger_chunk_size <- 175
num_larger_chunks <- ceiling(num_chunks/larger_chunk_size)
# Split the chunk list into larger chunks
larger_chunk_list <- split(chunk_species_list, cut(1:length(chunk_species_list),
breaks = num_larger_chunks, labels = FALSE))
# Set up parallel processing
cl <- makeCluster(16)
# Load packages on nodes
clusterEvalQ(cl, {
library(dplyr)
library(metafor)
})
# Check processing time
Sys.time()
# Processing for first larger chunk
current_larger_chunk <- larger_chunk_list[[1]]
result_list_1 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_1 <- c(result_list_1, result_chunk)
}
species_ARR_pond_future2C_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future2C_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future2C_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_1)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future2C_1, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_ARR/species_ARR_pond_future2C_1st_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future2C_1, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future2C_1st_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future2C_1, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_max_acc/daily_CTmax_pond_max_acc_future2C_1st_chunk.rds")
################################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[2]]
result_list_2 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_2 <- c(result_list_2, result_chunk)
}
species_ARR_pond_future2C_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future2C_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future2C_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_2)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future2C_2, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_ARR/species_ARR_pond_future2C_2nd_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future2C_2, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future2C_2nd_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future2C_2, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_max_acc/daily_CTmax_pond_max_acc_future2C_2nd_chunk.rds")
###################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[3]]
result_list_3 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_3 <- c(result_list_3, result_chunk)
}
species_ARR_pond_future2C_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future2C_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future2C_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_3)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future2C_3, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_ARR/species_ARR_pond_future2C_3rd_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future2C_3, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future2C_3rd_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future2C_3, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_max_acc/daily_CTmax_pond_max_acc_future2C_3rd_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[4]]
result_list_4 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_4 <- c(result_list_4, result_chunk)
}
species_ARR_pond_future2C_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future2C_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future2C_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_4)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future2C_4, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_ARR/species_ARR_pond_future2C_4th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future2C_4, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future2C_4th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future2C_4, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_max_acc/daily_CTmax_pond_max_acc_future2C_4th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[5]]
result_list_5 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_5 <- c(result_list_5, result_chunk)
}
species_ARR_pond_future2C_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future2C_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future2C_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_5)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future2C_5, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_ARR/species_ARR_pond_future2C_5th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future2C_5, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future2C_5th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future2C_5, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_max_acc/daily_CTmax_pond_max_acc_future2C_5th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[6]]
result_list_6 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_6 <- c(result_list_6, result_chunk)
}
species_ARR_pond_future2C_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future2C_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future2C_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_6)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future2C_6, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_ARR/species_ARR_pond_future2C_6th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future2C_6, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future2C_6th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future2C_6, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_max_acc/daily_CTmax_pond_max_acc_future2C_6th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[7]]
result_list_7 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_7 <- c(result_list_7, result_chunk)
}
species_ARR_pond_future2C_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future2C_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future2C_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_7)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future2C_7, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_ARR/species_ARR_pond_future2C_7th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future2C_7, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future2C_7th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future2C_7, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_max_acc/daily_CTmax_pond_max_acc_future2C_7th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[8]]
result_list_8 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_8 <- c(result_list_8, result_chunk)
}
species_ARR_pond_future2C_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future2C_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future2C_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_8)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future2C_8, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_ARR/species_ARR_pond_future2C_8th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future2C_8, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future2C_8th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future2C_8, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_max_acc/daily_CTmax_pond_max_acc_future2C_8th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[9]]
result_list_9 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_9 <- c(result_list_9, result_chunk)
}
species_ARR_pond_future2C_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future2C_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future2C_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_9)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future2C_9, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_ARR/species_ARR_pond_future2C_9th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future2C_9, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future2C_9th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future2C_9, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_max_acc/daily_CTmax_pond_max_acc_future2C_9th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[10]]
result_list_10 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_10 <- c(result_list_10, result_chunk)
}
species_ARR_pond_future2C_10 <- do.call(rbind, lapply(result_list_10, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future2C_10 <- do.call(rbind, lapply(result_list_10, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future2C_10 <- do.call(rbind, lapply(result_list_10, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_10)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future2C_10, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_ARR/species_ARR_pond_future2C_10th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future2C_10, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future2C_10th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future2C_10, file = "RData/Climate_vulnerability/Pond/future2C/temp_files_max_acc/daily_CTmax_pond_max_acc_future2C_10th_chunk.rds")
######################
# Stop the cluster
stopCluster(cl)
gc()
Combine chunks
# Combine results from all chunks and save
species_ARR_pond_future2C <- distinct(rbind(species_ARR_pond_future2C_1, species_ARR_pond_future2C_2,
species_ARR_pond_future2C_3, species_ARR_pond_future2C_4, species_ARR_pond_future2C_5,
species_ARR_pond_future2C_6, species_ARR_pond_future2C_7, species_ARR_pond_future2C_8,
species_ARR_pond_future2C_9, species_ARR_pond_future2C_10))
daily_CTmax_pond_mean_acc_future2C <- rbind(daily_CTmax_pond_mean_acc_future2C_1,
daily_CTmax_pond_mean_acc_future2C_2, daily_CTmax_pond_mean_acc_future2C_3, daily_CTmax_pond_mean_acc_future2C_4,
daily_CTmax_pond_mean_acc_future2C_5, daily_CTmax_pond_mean_acc_future2C_6, daily_CTmax_pond_mean_acc_future2C_7,
daily_CTmax_pond_mean_acc_future2C_8, daily_CTmax_pond_mean_acc_future2C_9, daily_CTmax_pond_mean_acc_future2C_10)
daily_CTmax_pond_max_acc_future2C <- rbind(daily_CTmax_pond_max_acc_future2C_1, daily_CTmax_pond_max_acc_future2C_2,
daily_CTmax_pond_max_acc_future2C_3, daily_CTmax_pond_max_acc_future2C_4, daily_CTmax_pond_max_acc_future2C_5,
daily_CTmax_pond_max_acc_future2C_6, daily_CTmax_pond_max_acc_future2C_7, daily_CTmax_pond_max_acc_future2C_8,
daily_CTmax_pond_max_acc_future2C_9, daily_CTmax_pond_max_acc_future2C_10)
saveRDS(species_ARR_pond_future2C, file = "RData/Climate_vulnerability/Pond/future2C/species_ARR_pond_future2C.rds")
saveRDS(daily_CTmax_pond_mean_acc_future2C, file = "RData/Climate_vulnerability/Pond/future2C/daily_CTmax_pond_mean_acc_future2C.rds")
saveRDS(daily_CTmax_pond_max_acc_future2C, file = "RData/Climate_vulnerability/Pond/future2C/daily_CTmax_pond_max_acc_future2C.rds")
Future climate (+4C)
Load data
results_imputation <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
CTmax_data <- dplyr::select(results_imputation, CTmax = filled_mean_UTL5, lowerCI = lower_mean_UTL,
upperCI = upper_mean_UTL, acclimation_temp, tip.label, imputed) # Select relevant columns
original_data <- dplyr::filter(CTmax_data, imputed == "no") # Original experimental data
imputed_data <- dplyr::filter(CTmax_data, imputed == "yes") # Imputed data
# Calculate standard error of each observation
imputed_data <- imputed_data %>%
mutate(se = (upperCI - CTmax)/1.96)
# Group data by species
species_data <- imputed_data %>%
group_by(tip.label)
temp_species <- readRDS("RData/Biophysical_modelling/Pond/4C/species_daily_temp_warmest_days_pond_future4C.rds")
temp_species$tip.label <- gsub("_", " ", temp_species$tip.label)
temp_species$tip.label[temp_species$tip.label == "Scinax x signatus"] <- "Scinax x-signatus"
temp_species$tip.label[temp_species$tip.label == "Pristimantis w nigrum"] <- "Pristimantis w-nigrum"
saveRDS(temp_species, file = "RData/Biophysical_modelling/Pond/4C/species_daily_temp_warmest_days_pond_future4C_adj.rds")
# Run meta-analytic models to calculate species-level ARR and intercept; and
# predict the CTmax of each day once acclimated to the mean weekly temperature
temp_species <- temp_species %>%
dplyr::select(tip.label, lon, lat, YEAR, DOY, max_temp, mean_weekly_temp, max_weekly_temp)
Run the models in chunks
# Create chunks of 3 species at a time
species_list <- unique(species_data$tip.label)
chunk_size <- 3
num_chunks <- ceiling(length(species_list)/chunk_size)
# Split the species list into chunks
chunk_species_list <- split(species_list, cut(1:length(species_list), breaks = num_chunks,
labels = FALSE))
# Now, create larger chunks of small chunks Running all chunks at once will
# require an enormous amount of RAM, so we proceed with 175 chunks at a time in
# 10 batches.
larger_chunk_size <- 175
num_larger_chunks <- ceiling(num_chunks/larger_chunk_size)
# Split the chunk list into larger chunks
larger_chunk_list <- split(chunk_species_list, cut(1:length(chunk_species_list),
breaks = num_larger_chunks, labels = FALSE))
# Set up parallel processing
cl <- makeCluster(16)
# Load packages on nodes
clusterEvalQ(cl, {
library(dplyr)
library(metafor)
})
# Check processing time
Sys.time()
# Processing for first larger chunk
current_larger_chunk <- larger_chunk_list[[1]]
result_list_1 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_1 <- c(result_list_1, result_chunk)
}
species_ARR_pond_future4C_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future4C_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future4C_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_1)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future4C_1, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_ARR/species_ARR_pond_future4C_1st_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future4C_1, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future4C_1st_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future4C_1, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_max_acc/daily_CTmax_pond_max_acc_future4C_1st_chunk.rds")
################################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[2]]
result_list_2 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_2 <- c(result_list_2, result_chunk)
}
species_ARR_pond_future4C_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future4C_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future4C_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_2)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future4C_2, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_ARR/species_ARR_pond_future4C_2nd_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future4C_2, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future4C_2nd_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future4C_2, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_max_acc/daily_CTmax_pond_max_acc_future4C_2nd_chunk.rds")
###################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[3]]
result_list_3 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_3 <- c(result_list_3, result_chunk)
}
species_ARR_pond_future4C_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future4C_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future4C_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_3)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future4C_3, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_ARR/species_ARR_pond_future4C_3rd_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future4C_3, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future4C_3rd_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future4C_3, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_max_acc/daily_CTmax_pond_max_acc_future4C_3rd_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[4]]
result_list_4 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_4 <- c(result_list_4, result_chunk)
}
species_ARR_pond_future4C_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future4C_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future4C_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_4)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future4C_4, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_ARR/species_ARR_pond_future4C_4th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future4C_4, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future4C_4th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future4C_4, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_max_acc/daily_CTmax_pond_max_acc_future4C_4th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[5]]
result_list_5 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_5 <- c(result_list_5, result_chunk)
}
species_ARR_pond_future4C_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future4C_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future4C_5 <- do.call(rbind, lapply(result_list_5, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_5)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future4C_5, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_ARR/species_ARR_pond_future4C_5th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future4C_5, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future4C_5th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future4C_5, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_max_acc/daily_CTmax_pond_max_acc_future4C_5th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[6]]
result_list_6 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_6 <- c(result_list_6, result_chunk)
}
species_ARR_pond_future4C_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future4C_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future4C_6 <- do.call(rbind, lapply(result_list_6, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_6)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future4C_6, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_ARR/species_ARR_pond_future4C_6th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future4C_6, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future4C_6th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future4C_6, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_max_acc/daily_CTmax_pond_max_acc_future4C_6th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[7]]
result_list_7 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_7 <- c(result_list_7, result_chunk)
}
species_ARR_pond_future4C_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future4C_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future4C_7 <- do.call(rbind, lapply(result_list_7, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_7)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future4C_7, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_ARR/species_ARR_pond_future4C_7th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future4C_7, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future4C_7th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future4C_7, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_max_acc/daily_CTmax_pond_max_acc_future4C_7th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[8]]
result_list_8 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_8 <- c(result_list_8, result_chunk)
}
species_ARR_pond_future4C_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future4C_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future4C_8 <- do.call(rbind, lapply(result_list_8, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_8)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future4C_8, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_ARR/species_ARR_pond_future4C_8th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future4C_8, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future4C_8th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future4C_8, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_max_acc/daily_CTmax_pond_max_acc_future4C_8th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[9]]
result_list_9 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_9 <- c(result_list_9, result_chunk)
}
species_ARR_pond_future4C_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future4C_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future4C_9 <- do.call(rbind, lapply(result_list_9, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_9)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future4C_9, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_ARR/species_ARR_pond_future4C_9th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future4C_9, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future4C_9th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future4C_9, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_max_acc/daily_CTmax_pond_max_acc_future4C_9th_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[10]]
result_list_10 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_10 <- c(result_list_10, result_chunk)
}
species_ARR_pond_future4C_10 <- do.call(rbind, lapply(result_list_10, function(x) x[[1]]))
daily_CTmax_pond_mean_acc_future4C_10 <- do.call(rbind, lapply(result_list_10, function(x) x[[2]]))
daily_CTmax_pond_max_acc_future4C_10 <- do.call(rbind, lapply(result_list_10, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_10)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_pond_future4C_10, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_ARR/species_ARR_pond_future4C_10th_chunk.rds")
saveRDS(daily_CTmax_pond_mean_acc_future4C_10, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_mean_acc/daily_CTmax_pond_mean_acc_future4C_10th_chunk.rds")
saveRDS(daily_CTmax_pond_max_acc_future4C_10, file = "RData/Climate_vulnerability/Pond/future4C/temp_files_max_acc/daily_CTmax_pond_max_acc_future4C_10th_chunk.rds")
######################
# Stop the cluster
stopCluster(cl)
gc()
Combine chunks
# Combine results from all chunks and save
species_ARR_pond_future4C <- distinct(rbind(species_ARR_pond_future4C_1, species_ARR_pond_future4C_2,
species_ARR_pond_future4C_3, species_ARR_pond_future4C_4, species_ARR_pond_future4C_5,
species_ARR_pond_future4C_6, species_ARR_pond_future4C_7, species_ARR_pond_future4C_8,
species_ARR_pond_future4C_9, species_ARR_pond_future4C_10))
daily_CTmax_pond_mean_acc_future4C <- rbind(daily_CTmax_pond_mean_acc_future4C_1,
daily_CTmax_pond_mean_acc_future4C_2, daily_CTmax_pond_mean_acc_future4C_3, daily_CTmax_pond_mean_acc_future4C_4,
daily_CTmax_pond_mean_acc_future4C_5, daily_CTmax_pond_mean_acc_future4C_6, daily_CTmax_pond_mean_acc_future4C_7,
daily_CTmax_pond_mean_acc_future4C_8, daily_CTmax_pond_mean_acc_future4C_9, daily_CTmax_pond_mean_acc_future4C_10)
daily_CTmax_pond_max_acc_future4C <- rbind(daily_CTmax_pond_max_acc_future4C_1, daily_CTmax_pond_max_acc_future4C_2,
daily_CTmax_pond_max_acc_future4C_3, daily_CTmax_pond_max_acc_future4C_4, daily_CTmax_pond_max_acc_future4C_5,
daily_CTmax_pond_max_acc_future4C_6, daily_CTmax_pond_max_acc_future4C_7, daily_CTmax_pond_max_acc_future4C_8,
daily_CTmax_pond_max_acc_future4C_9, daily_CTmax_pond_max_acc_future4C_10)
saveRDS(species_ARR_pond_future4C, file = "RData/Climate_vulnerability/Pond/future4C/species_ARR_pond_future4C.rds")
saveRDS(daily_CTmax_pond_mean_acc_future4C, file = "RData/Climate_vulnerability/Pond/future4C/daily_CTmax_pond_mean_acc_future4C.rds")
saveRDS(daily_CTmax_pond_max_acc_future4C, file = "RData/Climate_vulnerability/Pond/future4C/daily_CTmax_pond_max_acc_future4C.rds")
Above-ground vegetation
Combine species data with operative body temperatures
Here, we merge the distribution data of each species with the daily temperatures they experience in each coordinate during the warmest 3-month period of each year
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Arboreal/ and the resources used in pbs/Climate_vulnerability/Arboreal/
These files are named as Combining_species_data_with_temp_data_arboreal and the file suffix denotes the climatic scenario (**_current** for 2006-2015; **_future2C** for +2 degrees of warming above pre-industrial levels; or **_future_4C** for +4 degrees of warming above pre-industrial levels).
Current climate
### Daily temperature of the warmest days
daily_temp_warmest_days <- readRDS("RData/Biophysical_modelling/Arboreal/current/daily_temp_warmest_days_arboreal.rds")
species_occurrence <- readRDS(file = "RData/General_data/species_coordinates_adjusted_arboreal.rds")
species_temp_warmest_days <- merge(daily_temp_warmest_days, species_occurrence, by = c("lon",
"lat"))
saveRDS(species_temp_warmest_days, file = "RData/Biophysical_modelling/Arboreal/current/species_daily_temp_warmest_days_arboreal_current.rds")
Future climate (+2C)
### Daily temperature of the warmest days
daily_temp_warmest_days <- readRDS("RData/Biophysical_modelling/Arboreal/2C/daily_temp_warmest_days_arboreal_2C.rds")
species_occurrence <- readRDS(file = "RData/General_data/species_coordinates_adjusted_arboreal.rds")
species_temp_warmest_days <- merge(daily_temp_warmest_days, species_occurrence, by = c("lon",
"lat"))
saveRDS(species_temp_warmest_days, file = "RData/Biophysical_modelling/Arboreal/2C/species_daily_temp_warmest_days_arboreal_future2C.rds")
Future climate (+4C)
### Daily temperature of the warmest days
daily_temp_warmest_days <- readRDS("RData/Biophysical_modelling/Arboreal/4C/daily_temp_warmest_days_arboreal_4C.rds")
species_occurrence <- readRDS(file = "RData/General_data/species_coordinates_adjusted_arboreal.rds")
species_temp_warmest_days <- merge(daily_temp_warmest_days, species_occurrence, by = c("lon",
"lat"))
saveRDS(species_temp_warmest_days, file = "RData/Biophysical_modelling/Arboreal/4C/species_daily_temp_warmest_days_arboreal_future4C.rds")
Predict CTmax across the distribution range of each species
Here, we run meta-analytic models for each species to estimate the model parameters, and use model predictions to project their CTmax across their range of distribution. These predictions are made assuming that animals are acclimated to the mean or maximum weekly temperature in each day surveyed.
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Arboreal/ and the resources used in pbs/Climate_vulnerability/Arboreal/
These files are named as Predicting_CTmax_across_coordinates_arboreal and the file suffix denotes the climatic scenario (**_current** for 2006-2015; **_future2C** for +2 degrees of warming above pre-industrial levels; or **_future_4C** for +4 degrees of warming above pre-industrial levels).
Function to run meta-analytic models
# Run meta-analytic models to calculate species-level ARR and intercept; and
# predict the CTmax of each day once acclimated to the mean or maximum weekly
# temperature
## Create function
species_meta <- function(species_name, species_data, temp_species) {
cat("Processing:", species_name, "\n")
dat <- dplyr::filter(species_data, tip.label == species_name)
dat2 <- dplyr::filter(temp_species, tip.label == species_name)
# Fit a meta-analytic model
fit <- metafor::rma(yi = CTmax, sei = se, mod = ~acclimation_temp, data = dat)
int_slope <- coef(fit)
se <- fit$se
cat("Get model coefficients:\n")
coefs <- data.frame(tip.label = dat$tip.label, intercept = coef(fit)[1], intercept_se = fit$se[1],
slope = coef(fit)[2], slope_se = fit$se[2])
print(head(coefs))
prediction_mean <- predict(fit, newmods = dat2$mean_weekly_temp)
prediction_max <- predict(fit, newmods = dat2$max_weekly_temp)
cat("Generate predictions, mean temp:\n")
print(head(prediction_mean))
cat("Generate predictions, max temp:\n")
print(head(prediction_max))
daily_CTmax_arboreal_mean_acc_current <- dplyr::select((cbind(dat2, cbind(predicted_CTmax = prediction_mean$pred,
predicted_CTmax_se = prediction_mean$se))), -max_weekly_temp)
daily_CTmax_arboreal_max_acc_current <- dplyr::select((cbind(dat2, cbind(predicted_CTmax = prediction_max$pred,
predicted_CTmax_se = prediction_max$se))), -mean_weekly_temp)
return(list(coefs, daily_CTmax_arboreal_mean_acc_current, daily_CTmax_arboreal_max_acc_current))
}
Current climate
Load data
results_imputation <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
CTmax_data <- dplyr::select(results_imputation, CTmax = filled_mean_UTL5, lowerCI = lower_mean_UTL,
upperCI = upper_mean_UTL, acclimation_temp, tip.label, imputed) # Select relevant columns
original_data <- dplyr::filter(CTmax_data, imputed == "no") # Original experimental data
imputed_data <- dplyr::filter(CTmax_data, imputed == "yes") # Imputed data
# Calculate standard error of each observation
imputed_data <- imputed_data %>%
mutate(se = (upperCI - CTmax)/1.96)
# Group data by species
species_data <- imputed_data %>%
group_by(tip.label)
temp_species <- readRDS("RData/Biophysical_modelling/Arboreal/current/species_daily_temp_warmest_days_arboreal_current.rds")
temp_species$tip.label <- gsub("_", " ", temp_species$tip.label)
temp_species$tip.label[temp_species$tip.label == "Scinax x signatus"] <- "Scinax x-signatus"
temp_species$tip.label[temp_species$tip.label == "Pristimantis w nigrum"] <- "Pristimantis w-nigrum"
saveRDS(temp_species, file = "RData/Biophysical_modelling/Arboreal/current/species_daily_temp_warmest_days_arboreal_current_adj.rds")
species_data <- filter(species_data, tip.label %in% temp_species$tip.label)
# Run meta-analytic models to calculate species-level ARR and intercept; and
# predict the CTmax of each day once acclimated to the mean weekly temperature
temp_species <- temp_species %>%
dplyr::select(tip.label, lon, lat, YEAR, DOY, max_temp, mean_weekly_temp, max_weekly_temp)
Run the models in chunks
# Create chunks of 3 species at a time
species_list <- unique(species_data$tip.label)
chunk_size <- 3
num_chunks <- ceiling(length(species_list)/chunk_size)
# Split the species list into chunks
chunk_species_list <- split(species_list, cut(1:length(species_list), breaks = num_chunks,
labels = FALSE))
# Now, create larger chunks of small chunks Running all chunks at once will
# require an enormous amount of RAM, so we proceed with 175 chunks at a time in
# 10 batches.
larger_chunk_size <- 175
num_larger_chunks <- ceiling(num_chunks/larger_chunk_size)
# Split the chunk list into larger chunks
larger_chunk_list <- split(chunk_species_list, cut(1:length(chunk_species_list),
breaks = num_larger_chunks, labels = FALSE))
# Set up parallel processing
cl <- makeCluster(16)
# Load packages on nodes
clusterEvalQ(cl, {
library(dplyr)
library(metafor)
})
# Check processing time
Sys.time()
# Processing for first larger chunk
current_larger_chunk <- larger_chunk_list[[1]]
result_list_1 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_1 <- c(result_list_1, result_chunk)
}
species_ARR_arboreal_current_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[1]]))
daily_CTmax_arboreal_mean_acc_current_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[2]]))
daily_CTmax_arboreal_max_acc_current_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_1)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_arboreal_current_1, file = "RData/Climate_vulnerability/Arboreal/current/temp_files_ARR/species_ARR_arboreal_current_1st_chunk.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_current_1, file = "RData/Climate_vulnerability/Arboreal/current/temp_files_mean_acc/daily_CTmax_arboreal_mean_acc_current_1st_chunk.rds")
saveRDS(daily_CTmax_arboreal_max_acc_current_1, file = "RData/Climate_vulnerability/Arboreal/current/temp_files_max_acc/daily_CTmax_arboreal_max_acc_current_1st_chunk.rds")
################################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[2]]
result_list_2 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_2 <- c(result_list_2, result_chunk)
}
species_ARR_arboreal_current_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[1]]))
daily_CTmax_arboreal_mean_acc_current_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[2]]))
daily_CTmax_arboreal_max_acc_current_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_2)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_arboreal_current_2, file = "RData/Climate_vulnerability/Arboreal/current/temp_files_ARR/species_ARR_arboreal_current_2nd_chunk.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_current_2, file = "RData/Climate_vulnerability/Arboreal/current/temp_files_mean_acc/daily_CTmax_arboreal_mean_acc_current_2nd_chunk.rds")
saveRDS(daily_CTmax_arboreal_max_acc_current_2, file = "RData/Climate_vulnerability/Arboreal/current/temp_files_max_acc/daily_CTmax_arboreal_max_acc_current_2nd_chunk.rds")
###################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[3]]
result_list_3 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_3 <- c(result_list_3, result_chunk)
}
species_ARR_arboreal_current_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[1]]))
daily_CTmax_arboreal_mean_acc_current_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[2]]))
daily_CTmax_arboreal_max_acc_current_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_3)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_arboreal_current_3, file = "RData/Climate_vulnerability/Arboreal/current/temp_files_ARR/species_ARR_arboreal_current_3rd_chunk.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_current_3, file = "RData/Climate_vulnerability/Arboreal/current/temp_files_mean_acc/daily_CTmax_arboreal_mean_acc_current_3rd_chunk.rds")
saveRDS(daily_CTmax_arboreal_max_acc_current_3, file = "RData/Climate_vulnerability/Arboreal/current/temp_files_max_acc/daily_CTmax_arboreal_max_acc_current_3rd_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[4]]
result_list_4 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_4 <- c(result_list_4, result_chunk)
}
species_ARR_arboreal_current_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[1]]))
daily_CTmax_arboreal_mean_acc_current_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[2]]))
daily_CTmax_arboreal_max_acc_current_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_4)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_arboreal_current_4, file = "RData/Climate_vulnerability/Arboreal/current/temp_files_ARR/species_ARR_arboreal_current_4th_chunk.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_current_4, file = "RData/Climate_vulnerability/Arboreal/current/temp_files_mean_acc/daily_CTmax_arboreal_mean_acc_current_4th_chunk.rds")
saveRDS(daily_CTmax_arboreal_max_acc_current_4, file = "RData/Climate_vulnerability/Arboreal/current/temp_files_max_acc/daily_CTmax_arboreal_max_acc_current_4th_chunk.rds")
######################
# Stop the cluster
stopCluster(cl)
gc()
Combine chunks
# Combine results from all chunks and save
species_ARR_arboreal_current <- distinct(rbind(species_ARR_arboreal_current_1, species_ARR_arboreal_current_2,
species_ARR_arboreal_current_3, species_ARR_arboreal_current_4))
daily_CTmax_arboreal_mean_acc_current <- rbind(daily_CTmax_arboreal_mean_acc_current_1,
daily_CTmax_arboreal_mean_acc_current_2, daily_CTmax_arboreal_mean_acc_current_3,
daily_CTmax_arboreal_mean_acc_current_4)
daily_CTmax_arboreal_max_acc_current <- rbind(daily_CTmax_arboreal_max_acc_current_1,
daily_CTmax_arboreal_max_acc_current_2, daily_CTmax_arboreal_max_acc_current_3,
daily_CTmax_arboreal_max_acc_current_4)
saveRDS(species_ARR_arboreal_current, file = "RData/Climate_vulnerability/Arboreal/current/species_ARR_arboreal_current.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_current, file = "RData/Climate_vulnerability/Arboreal/current/daily_CTmax_arboreal_mean_acc_current.rds")
saveRDS(daily_CTmax_arboreal_max_acc_current, file = "RData/Climate_vulnerability/Arboreal/current/daily_CTmax_arboreal_max_acc_current.rds")
Future climate (+2C)
Load data
results_imputation <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
CTmax_data <- dplyr::select(results_imputation, CTmax = filled_mean_UTL5, lowerCI = lower_mean_UTL,
upperCI = upper_mean_UTL, acclimation_temp, tip.label, imputed) # Select relevant columns
original_data <- dplyr::filter(CTmax_data, imputed == "no") # Original experimental data
imputed_data <- dplyr::filter(CTmax_data, imputed == "yes") # Imputed data
# Calculate standard error of each observation
imputed_data <- imputed_data %>%
mutate(se = (upperCI - CTmax)/1.96)
# Group data by species
species_data <- imputed_data %>%
group_by(tip.label)
temp_species <- readRDS("RData/Biophysical_modelling/Arboreal/2C/species_daily_temp_warmest_days_arboreal_future2C.rds")
temp_species$tip.label <- gsub("_", " ", temp_species$tip.label)
temp_species$tip.label[temp_species$tip.label == "Scinax x signatus"] <- "Scinax x-signatus"
temp_species$tip.label[temp_species$tip.label == "Pristimantis w nigrum"] <- "Pristimantis w-nigrum"
saveRDS(temp_species, file = "RData/Biophysical_modelling/Arboreal/2C/species_daily_temp_warmest_days_arboreal_future2C_adj.rds")
species_data <- filter(species_data, tip.label %in% temp_species$tip.label)
# Run meta-analytic models to calculate species-level ARR and intercept; and
# predict the CTmax of each day once acclimated to the mean weekly temperature
temp_species <- temp_species %>%
dplyr::select(tip.label, lon, lat, YEAR, DOY, max_temp, mean_weekly_temp, max_weekly_temp)
Run the models in chunks
# Create chunks of 3 species at a time
species_list <- unique(species_data$tip.label)
chunk_size <- 3
num_chunks <- ceiling(length(species_list)/chunk_size)
# Split the species list into chunks
chunk_species_list <- split(species_list, cut(1:length(species_list), breaks = num_chunks,
labels = FALSE))
# Now, create larger chunks of small chunks Running all chunks at once will
# require an enormous amount of RAM, so we proceed with 175 chunks at a time in
# 10 batches.
larger_chunk_size <- 175
num_larger_chunks <- ceiling(num_chunks/larger_chunk_size)
# Split the chunk list into larger chunks
larger_chunk_list <- split(chunk_species_list, cut(1:length(chunk_species_list),
breaks = num_larger_chunks, labels = FALSE))
# Set up parallel processing
cl <- makeCluster(16)
# Load packages on nodes
clusterEvalQ(cl, {
library(dplyr)
library(metafor)
})
# Check processing time
Sys.time()
# Processing for first larger chunk
current_larger_chunk <- larger_chunk_list[[1]]
result_list_1 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_1 <- c(result_list_1, result_chunk)
}
species_ARR_arboreal_future2C_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[1]]))
daily_CTmax_arboreal_mean_acc_future2C_1 <- do.call(rbind, lapply(result_list_1,
function(x) x[[2]]))
daily_CTmax_arboreal_max_acc_future2C_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_1)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_arboreal_future2C_1, file = "RData/Climate_vulnerability/Arboreal/future2C/temp_files_ARR/species_ARR_arboreal_future2C_1st_chunk.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_future2C_1, file = "RData/Climate_vulnerability/Arboreal/future2C/temp_files_mean_acc/daily_CTmax_arboreal_mean_acc_future2C_1st_chunk.rds")
saveRDS(daily_CTmax_arboreal_max_acc_future2C_1, file = "RData/Climate_vulnerability/Arboreal/future2C/temp_files_max_acc/daily_CTmax_arboreal_max_acc_future2C_1st_chunk.rds")
################################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[2]]
result_list_2 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_2 <- c(result_list_2, result_chunk)
}
species_ARR_arboreal_future2C_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[1]]))
daily_CTmax_arboreal_mean_acc_future2C_2 <- do.call(rbind, lapply(result_list_2,
function(x) x[[2]]))
daily_CTmax_arboreal_max_acc_future2C_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_2)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_arboreal_future2C_2, file = "RData/Climate_vulnerability/Arboreal/future2C/temp_files_ARR/species_ARR_arboreal_future2C_2nd_chunk.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_future2C_2, file = "RData/Climate_vulnerability/Arboreal/future2C/temp_files_mean_acc/daily_CTmax_arboreal_mean_acc_future2C_2nd_chunk.rds")
saveRDS(daily_CTmax_arboreal_max_acc_future2C_2, file = "RData/Climate_vulnerability/Arboreal/future2C/temp_files_max_acc/daily_CTmax_arboreal_max_acc_future2C_2nd_chunk.rds")
###################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[3]]
result_list_3 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_3 <- c(result_list_3, result_chunk)
}
species_ARR_arboreal_future2C_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[1]]))
daily_CTmax_arboreal_mean_acc_future2C_3 <- do.call(rbind, lapply(result_list_3,
function(x) x[[2]]))
daily_CTmax_arboreal_max_acc_future2C_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_3)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_arboreal_future2C_3, file = "RData/Climate_vulnerability/Arboreal/future2C/temp_files_ARR/species_ARR_arboreal_future2C_3rd_chunk.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_future2C_3, file = "RData/Climate_vulnerability/Arboreal/future2C/temp_files_mean_acc/daily_CTmax_arboreal_mean_acc_future2C_3rd_chunk.rds")
saveRDS(daily_CTmax_arboreal_max_acc_future2C_3, file = "RData/Climate_vulnerability/Arboreal/future2C/temp_files_max_acc/daily_CTmax_arboreal_max_acc_future2C_3rd_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[4]]
result_list_4 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_4 <- c(result_list_4, result_chunk)
}
species_ARR_arboreal_future2C_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[1]]))
daily_CTmax_arboreal_mean_acc_future2C_4 <- do.call(rbind, lapply(result_list_4,
function(x) x[[2]]))
daily_CTmax_arboreal_max_acc_future2C_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_4)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_arboreal_future2C_4, file = "RData/Climate_vulnerability/Arboreal/future2C/temp_files_ARR/species_ARR_arboreal_future2C_4th_chunk.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_future2C_4, file = "RData/Climate_vulnerability/Arboreal/future2C/temp_files_mean_acc/daily_CTmax_arboreal_mean_acc_future2C_4th_chunk.rds")
saveRDS(daily_CTmax_arboreal_max_acc_future2C_4, file = "RData/Climate_vulnerability/Arboreal/future2C/temp_files_max_acc/daily_CTmax_arboreal_max_acc_future2C_4th_chunk.rds")
######################
# Stop the cluster
stopCluster(cl)
gc()
Combine chunks
# Combine results from all chunks and save
species_ARR_arboreal_future2C <- distinct(rbind(species_ARR_arboreal_future2C_1,
species_ARR_arboreal_future2C_2, species_ARR_arboreal_future2C_3, species_ARR_arboreal_future2C_4))
daily_CTmax_arboreal_mean_acc_future2C <- rbind(daily_CTmax_arboreal_mean_acc_future2C_1,
daily_CTmax_arboreal_mean_acc_future2C_2, daily_CTmax_arboreal_mean_acc_future2C_3,
daily_CTmax_arboreal_mean_acc_future2C_4)
daily_CTmax_arboreal_max_acc_future2C <- rbind(daily_CTmax_arboreal_max_acc_future2C_1,
daily_CTmax_arboreal_max_acc_future2C_2, daily_CTmax_arboreal_max_acc_future2C_3,
daily_CTmax_arboreal_max_acc_future2C_4)
saveRDS(species_ARR_arboreal_future2C, file = "RData/Climate_vulnerability/Arboreal/future2C/species_ARR_arboreal_future2C.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_future2C, file = "RData/Climate_vulnerability/Arboreal/future2C/daily_CTmax_arboreal_mean_acc_future2C.rds")
saveRDS(daily_CTmax_arboreal_max_acc_future2C, file = "RData/Climate_vulnerability/Arboreal/future2C/daily_CTmax_arboreal_max_acc_future2C.rds")
Future climate (+4C)
Load data
results_imputation <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
CTmax_data <- dplyr::select(results_imputation, CTmax = filled_mean_UTL5, lowerCI = lower_mean_UTL,
upperCI = upper_mean_UTL, acclimation_temp, tip.label, imputed) # Select relevant columns
original_data <- dplyr::filter(CTmax_data, imputed == "no") # Original experimental data
imputed_data <- dplyr::filter(CTmax_data, imputed == "yes") # Imputed data
# Calculate standard error of each observation
imputed_data <- imputed_data %>%
mutate(se = (upperCI - CTmax)/1.96)
# Group data by species
species_data <- imputed_data %>%
group_by(tip.label)
temp_species <- readRDS("RData/Biophysical_modelling/Arboreal/4C/species_daily_temp_warmest_days_arboreal_future4C.rds")
temp_species$tip.label <- gsub("_", " ", temp_species$tip.label)
temp_species$tip.label[temp_species$tip.label == "Scinax x signatus"] <- "Scinax x-signatus"
temp_species$tip.label[temp_species$tip.label == "Pristimantis w nigrum"] <- "Pristimantis w-nigrum"
saveRDS(temp_species, file = "RData/Biophysical_modelling/Arboreal/4C/species_daily_temp_warmest_days_arboreal_future4C_adj.rds")
species_data <- filter(species_data, tip.label %in% temp_species$tip.label)
# Run meta-analytic models to calculate species-level ARR and intercept; and
# predict the CTmax of each day once acclimated to the mean weekly temperature
temp_species <- temp_species %>%
dplyr::select(tip.label, lon, lat, YEAR, DOY, max_temp, mean_weekly_temp, max_weekly_temp)
Run the models in chunks
# Create chunks of 3 species at a time
species_list <- unique(species_data$tip.label)
chunk_size <- 3
num_chunks <- ceiling(length(species_list)/chunk_size)
# Split the species list into chunks
chunk_species_list <- split(species_list, cut(1:length(species_list), breaks = num_chunks,
labels = FALSE))
# Now, create larger chunks of small chunks Running all chunks at once will
# require an enormous amount of RAM, so we proceed with 175 chunks at a time in
# 10 batches.
larger_chunk_size <- 175
num_larger_chunks <- ceiling(num_chunks/larger_chunk_size)
# Split the chunk list into larger chunks
larger_chunk_list <- split(chunk_species_list, cut(1:length(chunk_species_list),
breaks = num_larger_chunks, labels = FALSE))
# Set up parallel processing
cl <- makeCluster(16)
# Load packages on nodes
clusterEvalQ(cl, {
library(dplyr)
library(metafor)
})
# Check processing time
Sys.time()
# Processing for first larger chunk
current_larger_chunk <- larger_chunk_list[[1]]
result_list_1 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_1 <- c(result_list_1, result_chunk)
}
species_ARR_arboreal_future4C_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[1]]))
daily_CTmax_arboreal_mean_acc_future4C_1 <- do.call(rbind, lapply(result_list_1,
function(x) x[[2]]))
daily_CTmax_arboreal_max_acc_future4C_1 <- do.call(rbind, lapply(result_list_1, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_1)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_arboreal_future4C_1, file = "RData/Climate_vulnerability/Arboreal/future4C/temp_files_ARR/species_ARR_arboreal_future4C_1st_chunk.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_future4C_1, file = "RData/Climate_vulnerability/Arboreal/future4C/temp_files_mean_acc/daily_CTmax_arboreal_mean_acc_future4C_1st_chunk.rds")
saveRDS(daily_CTmax_arboreal_max_acc_future4C_1, file = "RData/Climate_vulnerability/Arboreal/future4C/temp_files_max_acc/daily_CTmax_arboreal_max_acc_future4C_1st_chunk.rds")
################################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[2]]
result_list_2 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_2 <- c(result_list_2, result_chunk)
}
species_ARR_arboreal_future4C_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[1]]))
daily_CTmax_arboreal_mean_acc_future4C_2 <- do.call(rbind, lapply(result_list_2,
function(x) x[[2]]))
daily_CTmax_arboreal_max_acc_future4C_2 <- do.call(rbind, lapply(result_list_2, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_2)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_arboreal_future4C_2, file = "RData/Climate_vulnerability/Arboreal/future4C/temp_files_ARR/species_ARR_arboreal_future4C_2nd_chunk.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_future4C_2, file = "RData/Climate_vulnerability/Arboreal/future4C/temp_files_mean_acc/daily_CTmax_arboreal_mean_acc_future4C_2nd_chunk.rds")
saveRDS(daily_CTmax_arboreal_max_acc_future4C_2, file = "RData/Climate_vulnerability/Arboreal/future4C/temp_files_max_acc/daily_CTmax_arboreal_max_acc_future4C_2nd_chunk.rds")
###################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[3]]
result_list_3 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_3 <- c(result_list_3, result_chunk)
}
species_ARR_arboreal_future4C_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[1]]))
daily_CTmax_arboreal_mean_acc_future4C_3 <- do.call(rbind, lapply(result_list_3,
function(x) x[[2]]))
daily_CTmax_arboreal_max_acc_future4C_3 <- do.call(rbind, lapply(result_list_3, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_3)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_arboreal_future4C_3, file = "RData/Climate_vulnerability/Arboreal/future4C/temp_files_ARR/species_ARR_arboreal_future4C_3rd_chunk.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_future4C_3, file = "RData/Climate_vulnerability/Arboreal/future4C/temp_files_mean_acc/daily_CTmax_arboreal_mean_acc_future4C_3rd_chunk.rds")
saveRDS(daily_CTmax_arboreal_max_acc_future4C_3, file = "RData/Climate_vulnerability/Arboreal/future4C/temp_files_max_acc/daily_CTmax_arboreal_max_acc_future4C_3rd_chunk.rds")
######################
Sys.time()
# Processing for second larger chunk
current_larger_chunk <- larger_chunk_list[[4]]
result_list_4 <- list()
# Loop over the small chunks within the current larger chunk
for (i in seq_along(current_larger_chunk)) {
current_species <- current_larger_chunk[[i]]
# Filter data for only the species in the current chunk
chunk_species_data <- dplyr::filter(species_data, tip.label %in% current_species)
chunk_temp_species <- dplyr::filter(temp_species, tip.label %in% current_species)
# Export only the filtered data and the current species list to the cluster
clusterExport(cl, c("chunk_species_data", "chunk_temp_species", "current_species",
"species_meta"))
# Call species_meta for each species in the chunk
result_chunk <- parallel::parLapply(cl, current_species, function(x) species_meta(x,
chunk_species_data, chunk_temp_species))
result_list_4 <- c(result_list_4, result_chunk)
}
species_ARR_arboreal_future4C_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[1]]))
daily_CTmax_arboreal_mean_acc_future4C_4 <- do.call(rbind, lapply(result_list_4,
function(x) x[[2]]))
daily_CTmax_arboreal_max_acc_future4C_4 <- do.call(rbind, lapply(result_list_4, function(x) x[[3]]))
rm(chunk_species_data)
rm(chunk_temp_species)
rm(result_chunk)
rm(result_list_4)
Sys.time()
# Save the results for first chunk
saveRDS(species_ARR_arboreal_future4C_4, file = "RData/Climate_vulnerability/Arboreal/future4C/temp_files_ARR/species_ARR_arboreal_future4C_4th_chunk.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_future4C_4, file = "RData/Climate_vulnerability/Arboreal/future4C/temp_files_mean_acc/daily_CTmax_arboreal_mean_acc_future4C_4th_chunk.rds")
saveRDS(daily_CTmax_arboreal_max_acc_future4C_4, file = "RData/Climate_vulnerability/Arboreal/future4C/temp_files_max_acc/daily_CTmax_arboreal_max_acc_future4C_4th_chunk.rds")
######################
# Stop the cluster
stopCluster(cl)
gc()
Combine chunks
# Combine results from all chunks and save
species_ARR_arboreal_future4C <- distinct(rbind(species_ARR_arboreal_future4C_1,
species_ARR_arboreal_future4C_2, species_ARR_arboreal_future4C_3, species_ARR_arboreal_future4C_4))
daily_CTmax_arboreal_mean_acc_future4C <- rbind(daily_CTmax_arboreal_mean_acc_future4C_1,
daily_CTmax_arboreal_mean_acc_future4C_2, daily_CTmax_arboreal_mean_acc_future4C_3,
daily_CTmax_arboreal_mean_acc_future4C_4)
daily_CTmax_arboreal_max_acc_future4C <- rbind(daily_CTmax_arboreal_max_acc_future4C_1,
daily_CTmax_arboreal_max_acc_future4C_2, daily_CTmax_arboreal_max_acc_future4C_3,
daily_CTmax_arboreal_max_acc_future4C_4)
saveRDS(species_ARR_arboreal_future4C, file = "RData/Climate_vulnerability/Arboreal/future4C/species_ARR_arboreal_future4C.rds")
saveRDS(daily_CTmax_arboreal_mean_acc_future4C, file = "RData/Climate_vulnerability/Arboreal/future4C/daily_CTmax_arboreal_mean_acc_future4C.rds")
saveRDS(daily_CTmax_arboreal_max_acc_future4C, file = "RData/Climate_vulnerability/Arboreal/future4C/daily_CTmax_arboreal_max_acc_future4C.rds")
Climate vulnerability assessment
Vegetated substrate
Here, we assume that animals are acclimated daily to the mean weekly temperature experienced prior to each day.
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Substrate/Calculating_climate_vulnerability_metrics_substrate.R and the resources used in pbs/Climate_vulnerability/Substrate/Calculating_climate_vulnerability_metrics_substrate.pbs
Weighted means and standard errors were calculated according to Formula 22 in Higgins & Thompson (2002). Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558
Current climate
daily_CTmax_mean_current <- readRDS(file="RData/Climate_vulnerability/Substrate/current/daily_CTmax_substrate_mean_acc_current.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_current <- daily_CTmax_mean_current %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_current <- daily_vulnerability_mean_current %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_current)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_current <- daily_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_current)
## Calculate number of consecutive overheating days
consecutive_overheating_days_current <- daily_consecutive_mean_current %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_current)
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
left_join(consecutive_overheating_days_current, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_current)
## Add original coordinates
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_current <- left_join(pop_vulnerability_mean_current, distinct_coord, by="lon_lat")
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_current, file="RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
######## Community-level patterns ################
community_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_current)
saveRDS(community_vulnerability_mean_current, file="RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
Future climate (+2C)
daily_CTmax_mean_2C <- readRDS(file="RData/Climate_vulnerability/Substrate/future2C/daily_CTmax_substrate_mean_acc_future2C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_2C <- daily_CTmax_mean_2C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_2C <- daily_vulnerability_mean_2C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_2C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_2C <- daily_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_2C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_2C <- daily_consecutive_mean_2C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_2C)
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
left_join(consecutive_overheating_days_2C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_2C)
## Add original coordinates
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_2C <- left_join(pop_vulnerability_mean_2C, distinct_coord, by="lon_lat")
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_2C, file="RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
######## Community-level patterns ################
community_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_2C)
saveRDS(community_vulnerability_mean_2C, file="RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
Future climate (+4C)
daily_CTmax_mean_4C <- readRDS(file="RData/Climate_vulnerability/Substrate/future4C/daily_CTmax_substrate_mean_acc_future4C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_4C <- daily_CTmax_mean_4C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_4C <- daily_vulnerability_mean_4C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_4C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_4C <- daily_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_4C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_4C <- daily_consecutive_mean_4C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_4C)
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
left_join(consecutive_overheating_days_4C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_4C)
## Add original coordinates
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_4C <- left_join(pop_vulnerability_mean_4C, distinct_coord, by="lon_lat")
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_4C, file="RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
######## Community-level patterns ################
community_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_4C)
saveRDS(community_vulnerability_mean_4C, file="RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
Clip grid cells to match land masses
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Substrate/Clipping_grid_cells_substrate.R and the resources used in pbs/Climate_vulnerability/Substrate/Clipping_grid_cells_substrate.pbs
community_df_mean_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_mean_current", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_mean_current), function(i) {
row <- community_df_mean_current[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells.rds")
################################# Do the same for mean future 2C
################################# #########################
community_df_mean_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_mean_future2C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_mean_future2C), function(i) {
row <- community_df_mean_future2C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells.rds")
################################# Do the same for mean future 4C
################################# #########################
community_df_mean_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_mean_future4C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_mean_future4C), function(i) {
row <- community_df_mean_future4C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells.rds")
Subset of arboreal species
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Substrate/Calculating_climate_vulnerability_metrics_substrate_arboreal_species.R and the resources used in pbs/Climate_vulnerability/Substrate/Calculating_climate_vulnerability_metrics_substrate_arboreal_species.pbs
The code to clip the grid cells to match land masses can be found in R/Climate_vulnerability/Substrate/Clipping_grid_cells_substrate_arboreal_species.R and the resources used in pbs/Climate_vulnerability/Substrate/Clipping_grid_cells_substrate_arboreal_species.pbs
##############################################################################################################
############### Acclimation to mean weekly temperature on substrate, current climate ######################
pop_vulnerability_mean_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_vulnerability_mean_current_arb <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
# Filter to arboreal species
pop_vulnerability_mean_current <- pop_vulnerability_mean_current[pop_vulnerability_mean_current$tip.label %in% pop_vulnerability_mean_current_arb$tip.label,]
######## Community-level patterns ################
community_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_current)
saveRDS(community_vulnerability_mean_current, file="RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_arboreal_sp.rds")
rm(community_vulnerability_mean_current)
###################################################################################################################
############### Acclimation to mean weekly temperature on substrate, future climate (+2C) ######################
pop_vulnerability_mean_2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_vulnerability_mean_2C_arb <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
# Filter to arboreal species
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C[pop_vulnerability_mean_2C$tip.label %in% pop_vulnerability_mean_2C_arb$tip.label,]
######## Community-level patterns ################
community_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_2C)
saveRDS(community_vulnerability_mean_2C, file="RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_arboreal_sp.rds")
rm(community_vulnerability_mean_2C)
###################################################################################################################
############### Acclimation to mean weekly temperature on substrate, future climate (+4C) ######################
pop_vulnerability_mean_4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
pop_vulnerability_mean_4C_arb <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
# Filter to arboreal species
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C[pop_vulnerability_mean_4C$tip.label %in% pop_vulnerability_mean_4C_arb$tip.label,]
######## Community-level patterns ################
community_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_4C)
saveRDS(community_vulnerability_mean_4C, file="RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_arboreal_sp.rds")
####################################################################################
################### Clipping grid cells to match land masses #######################
####################################################################################
################################# Current climate #######################################
community_df_mean_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_arboreal_sp.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy,
lon + dx, lat - dy,
lon + dx, lat + dy,
lon - dx, lat + dy,
lon - dx, lat - dy), ncol = 2, byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_mean_current", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_mean_current), function(i) {
row <- community_df_mean_current[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) { # check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file="RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells_arboreal_sp.rds")
################################# Future climate (+2C) ##################################
community_df_mean_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_arboreal_sp.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy,
lon + dx, lat - dy,
lon + dx, lat + dy,
lon - dx, lat + dy,
lon - dx, lat - dy), ncol = 2, byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_mean_future2C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_mean_future2C), function(i) {
row <- community_df_mean_future2C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) { # check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file="RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells_arboreal_sp.rds")
################################# Future climate (+4C) ########################################
community_df_mean_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_arboreal_sp.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy,
lon + dx, lat - dy,
lon + dx, lat + dy,
lon - dx, lat + dy,
lon - dx, lat - dy), ncol = 2, byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_mean_future4C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_mean_future4C), function(i) {
row <- community_df_mean_future4C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) { # check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file="RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells_arboreal_sp.rds")
Pond or wetland
Here, we assume that animals are acclimated daily to the mean weekly temperature experienced prior to each day.
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Pond/Calculating_climate_vulnerability_metrics_pond.R and the resources used in pbs/Climate_vulnerability/Pond/Calculating_climate_vulnerability_metrics_pond.pbs
Weighted means and standard errors were calculated according to Formula 22 in Higgins & Thompson (2002). Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558
Current climate
daily_CTmax_mean_current <- readRDS(file="RData/Climate_vulnerability/Pond/current/daily_CTmax_pond_mean_acc_current.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_current <- daily_CTmax_mean_current %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_current <- daily_vulnerability_mean_current %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_current)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_current <- daily_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_current)
## Calculate number of consecutive overheating days
consecutive_overheating_days_current <- daily_consecutive_mean_current %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_current)
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
left_join(consecutive_overheating_days_current, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_current)
## Add original coordinates
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_current <- left_join(pop_vulnerability_mean_current, distinct_coord, by="lon_lat")
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_current, file="RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current.rds")
######## Community-level patterns ################
community_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_current)
saveRDS(community_vulnerability_mean_current, file="RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current.rds")
Future climate (+2C)
daily_CTmax_mean_2C <- readRDS(file="RData/Climate_vulnerability/Pond/future2C/daily_CTmax_pond_mean_acc_future2C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_2C <- daily_CTmax_mean_2C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_2C <- daily_vulnerability_mean_2C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_2C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_2C <- daily_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_2C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_2C <- daily_consecutive_mean_2C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_2C)
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
left_join(consecutive_overheating_days_2C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_2C)
## Add original coordinates
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_2C <- left_join(pop_vulnerability_mean_2C, distinct_coord, by="lon_lat")
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_2C, file="RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C.rds")
######## Community-level patterns ################
community_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_2C)
saveRDS(community_vulnerability_mean_2C, file="RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C.rds")
Future climate (+4C)
daily_CTmax_mean_4C <- readRDS(file="RData/Climate_vulnerability/Pond/future4C/daily_CTmax_pond_mean_acc_future4C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_4C <- daily_CTmax_mean_4C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_4C <- daily_vulnerability_mean_4C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_4C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_4C <- daily_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_4C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_4C <- daily_consecutive_mean_4C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_4C)
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
left_join(consecutive_overheating_days_4C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_4C)
## Add original coordinates
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_4C <- left_join(pop_vulnerability_mean_4C, distinct_coord, by="lon_lat")
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_4C, file="RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C.rds")
######## Community-level patterns ################
community_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_4C)
saveRDS(community_vulnerability_mean_4C, file="RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C.rds")
Clip grid cells to match land masses
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Pond/Clipping_grid_cells_pond.R and the resources used in pbs/Climate_vulnerability/Pond/Clipping_grid_cells_pond.pbs
community_df_mean_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_mean_current", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_mean_current), function(i) {
row <- community_df_mean_current[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current_clipped_cells.rds")
################################# Do the same for mean future 2C
################################# #########################
community_df_mean_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_mean_future2C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_mean_future2C), function(i) {
row <- community_df_mean_future2C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C_clipped_cells.rds")
################################# Do the same for mean future 4C
################################# #########################
community_df_mean_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_mean_future4C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_mean_future4C), function(i) {
row <- community_df_mean_future4C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C_clipped_cells.rds")
Above-ground vegetation
Here, we assume that animals are acclimated daily to the mean weekly temperature experienced prior to each day.
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Arboreal/Calculating_climate_vulnerability_metrics_arboreal.R and the resources used in pbs/Climate_vulnerability/Arboreal/Calculating_climate_vulnerability_metrics_arboreal.pbs
Weighted means and standard errors were calculated according to Formula 22 in Higgins & Thompson (2002). Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558
Current climate
daily_CTmax_mean_current <- readRDS(file="RData/Climate_vulnerability/Arboreal/current/daily_CTmax_arboreal_mean_acc_current.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_current <- daily_CTmax_mean_current %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_current <- daily_vulnerability_mean_current %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_current)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_current <- daily_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_current)
## Calculate number of consecutive overheating days
consecutive_overheating_days_current <- daily_consecutive_mean_current %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_current)
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
left_join(consecutive_overheating_days_current, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_current)
## Add original coordinates
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_current <- left_join(pop_vulnerability_mean_current, distinct_coord, by="lon_lat")
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_current, file="RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
######## Community-level patterns ################
community_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_current)
saveRDS(community_vulnerability_mean_current, file="RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
Future climate (+2C)
daily_CTmax_mean_2C <- readRDS(file="RData/Climate_vulnerability/Arboreal/future2C/daily_CTmax_arboreal_mean_acc_future2C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_2C <- daily_CTmax_mean_2C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_2C <- daily_vulnerability_mean_2C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_2C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_2C <- daily_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_2C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_2C <- daily_consecutive_mean_2C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_2C)
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
left_join(consecutive_overheating_days_2C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_2C)
## Add original coordinates
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_2C <- left_join(pop_vulnerability_mean_2C, distinct_coord, by="lon_lat")
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_2C, file="RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
######## Community-level patterns ################
community_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_2C)
saveRDS(community_vulnerability_mean_2C, file="RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
Future climate (+4C)
daily_CTmax_mean_4C <- readRDS(file="RData/Climate_vulnerability/Arboreal/future4C/daily_CTmax_arboreal_mean_acc_future4C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_4C <- daily_CTmax_mean_4C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_4C <- daily_vulnerability_mean_4C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_4C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_4C <- daily_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_4C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_4C <- daily_consecutive_mean_4C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_4C)
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
left_join(consecutive_overheating_days_4C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_4C)
## Add original coordinates
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_4C <- left_join(pop_vulnerability_mean_4C, distinct_coord, by="lon_lat")
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_4C, file="RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
######## Community-level patterns ################
community_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_4C)
saveRDS(community_vulnerability_mean_4C, file="RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
Clip grid cells to match land masses
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Arboreal/Clipping_grid_cells_arboreal.R and the resources used in pbs/Climate_vulnerability/Arboreal/Clipping_grid_cells_arboreal.pbs
community_df_mean_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_mean_current", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_mean_current), function(i) {
row <- community_df_mean_current[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_clipped_cells.rds")
################################# Do the same for mean future 2C
################################# #########################
community_df_mean_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_mean_future2C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_mean_future2C), function(i) {
row <- community_df_mean_future2C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_clipped_cells.rds")
################################# Do the same for mean future 4C
################################# #########################
community_df_mean_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_mean_future4C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_mean_future4C), function(i) {
row <- community_df_mean_future4C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_clipped_cells.rds")
Data exploration and summaries
Population-level data
Overview of the datasets
Vegetated substrate
Current climate
# Load data
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
kable(head(pop_sub_current), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acanthixalus sonjae | -7.5 | 5.5 | 39.98908 | 4.511444 | 27.49703 | 0.5640217 | 12.43264 | 4.511444 | 0 | 0.0e+00 | 0 | 0.00e+00 | 0 | 0 | 0 | -7.5 | 5.5 |
Acanthixalus sonjae | -7.5 | 6.5 | 39.94793 | 5.140802 | 28.11521 | 0.7375726 | 11.77718 | 5.140802 | 0 | 0.0e+00 | 0 | 1.00e-07 | 0 | 0 | 0 | -7.5 | 6.5 |
Acanthixalus sonjae | -2.5 | 5.5 | 40.10568 | 2.994119 | 27.49391 | 0.4345626 | 12.52263 | 2.994119 | 0 | 0.0e+00 | 0 | 0.00e+00 | 0 | 0 | 0 | -2.5 | 5.5 |
Acanthixalus sonjae | -2.5 | 6.5 | 39.96916 | 4.789386 | 27.87452 | 0.7030635 | 12.03742 | 4.789386 | 0 | 1.4e-06 | 0 | 4.24e-05 | 0 | 0 | 0 | -2.5 | 6.5 |
Acanthixalus sonjae | -0.5 | 5.5 | 40.10494 | 2.999076 | 27.17083 | 0.4061500 | 12.84422 | 2.999076 | 0 | 0.0e+00 | 0 | 0.00e+00 | 0 | 0 | 0 | -0.5 | 5.5 |
Acanthixalus sonjae | -0.5 | 6.5 | 39.83716 | 6.545874 | 27.64199 | 0.6936346 | 12.14957 | 6.545874 | 0 | 0.0e+00 | 0 | 8.00e-07 | 0 | 0 | 0 | -0.5 | 6.5 |
Future climate (+2C)
# Load data
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
kable(head(pop_sub_future2C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acanthixalus sonjae | -7.5 | 5.5 | 40.07114 | 3.474365 | 28.10160 | 0.5579338 | 11.90477 | 3.474365 | 0 | 0.0e+00 | 0 | 0.0000000 | 0 | 0 | 0 | -7.5 | 5.5 |
Acanthixalus sonjae | -7.5 | 6.5 | 40.04391 | 3.929021 | 28.72451 | 0.6948312 | 11.23654 | 3.929021 | 0 | 0.0e+00 | 0 | 0.0000001 | 0 | 0 | 0 | -7.5 | 6.5 |
Acanthixalus sonjae | -2.5 | 5.5 | 40.17528 | 2.223076 | 27.96704 | 0.4191247 | 12.11475 | 2.223076 | 0 | 0.0e+00 | 0 | 0.0000000 | 0 | 0 | 0 | -2.5 | 5.5 |
Acanthixalus sonjae | -2.5 | 6.5 | 40.05892 | 3.653073 | 28.52474 | 0.6999964 | 11.46329 | 3.653073 | 0 | 6.8e-06 | 0 | 0.0002045 | 0 | 0 | 0 | -2.5 | 6.5 |
Acanthixalus sonjae | -0.5 | 5.5 | 40.17137 | 2.258792 | 27.64496 | 0.3972899 | 12.43235 | 2.258792 | 0 | 0.0e+00 | 0 | 0.0000000 | 0 | 0 | 0 | -0.5 | 5.5 |
Acanthixalus sonjae | -0.5 | 6.5 | 39.96322 | 4.871988 | 28.22187 | 0.6965914 | 11.67015 | 4.871988 | 0 | 9.0e-07 | 0 | 0.0000261 | 0 | 0 | 0 | -0.5 | 6.5 |
Future climate (+4C)
# Load data
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
kable(head(pop_sub_future4C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acanthixalus sonjae | -7.5 | 5.5 | 40.21668 | 1.919900 | 29.33575 | 0.5847588 | 10.83930 | 1.919900 | 0 | 0.00e+00 | 0e+00 | 0.0000000 | 0 | 0 | 0 | -7.5 | 5.5 |
Acanthixalus sonjae | -7.5 | 6.5 | 40.19928 | 2.186185 | 30.01605 | 0.6481885 | 10.11402 | 2.186185 | 0 | 1.00e-07 | 0e+00 | 0.0000016 | 0 | 0 | 0 | -7.5 | 6.5 |
Acanthixalus sonjae | -2.5 | 5.5 | 40.28841 | 1.554146 | 28.95367 | 0.4144662 | 11.34288 | 1.554146 | 0 | 0.00e+00 | 0e+00 | 0.0000000 | 0 | 0 | 0 | -2.5 | 5.5 |
Acanthixalus sonjae | -2.5 | 6.5 | 40.21597 | 1.951563 | 29.88231 | 0.7412744 | 10.28378 | 1.951563 | 0 | 2.76e-05 | 7e-07 | 0.0008336 | 0 | 0 | 0 | -2.5 | 6.5 |
Acanthixalus sonjae | -0.5 | 5.5 | 40.28151 | 1.547718 | 28.61743 | 0.3911445 | 11.66422 | 1.547718 | 0 | 0.00e+00 | 0e+00 | 0.0000000 | 0 | 0 | 0 | -0.5 | 5.5 |
Acanthixalus sonjae | -0.5 | 6.5 | 40.12299 | 2.883553 | 29.35210 | 0.7227937 | 10.67789 | 2.883553 | 0 | 9.40e-06 | 1e-07 | 0.0002845 | 0 | 0 | 0 | -0.5 | 6.5 |
Pond or wetland
Current climate
# Load data
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current.rds")
kable(head(pop_pond_current), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acanthixalus sonjae | -7.5 | 5.5 | 40.12142 | 2.778655 | 26.42222 | 0.3267298 | 13.57842 | 2.778655 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -7.5 | 5.5 |
Acanthixalus sonjae | -7.5 | 6.5 | 40.11113 | 2.898319 | 26.33136 | 0.3593094 | 13.64646 | 2.898319 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -7.5 | 6.5 |
Acanthixalus sonjae | -2.5 | 5.5 | 40.20766 | 1.857587 | 27.09084 | 0.2763299 | 13.03188 | 1.857587 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2.5 | 5.5 |
Acanthixalus sonjae | -2.5 | 6.5 | 40.11388 | 2.839007 | 26.38464 | 0.2914183 | 13.63919 | 2.839007 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2.5 | 6.5 |
Acanthixalus sonjae | -0.5 | 5.5 | 40.21134 | 1.832755 | 27.11520 | 0.2841698 | 13.00945 | 1.832755 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -0.5 | 5.5 |
Acanthixalus sonjae | -0.5 | 6.5 | 39.96080 | 4.791702 | 25.25868 | 0.3218876 | 14.63013 | 4.791702 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -0.5 | 6.5 |
Future climate (+2C)
# Load data
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C.rds")
kable(head(pop_pond_future2C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acanthixalus sonjae | -7.5 | 5.5 | 40.23332 | 1.683957 | 27.31245 | 0.3308270 | 12.84941 | 1.683957 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -7.5 | 5.5 |
Acanthixalus sonjae | -7.5 | 6.5 | 40.23304 | 1.712315 | 27.27147 | 0.3590141 | 12.85409 | 1.712315 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -7.5 | 6.5 |
Acanthixalus sonjae | -2.5 | 5.5 | 40.30246 | 1.500733 | 27.92074 | 0.2724560 | 12.41353 | 1.500733 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2.5 | 5.5 |
Acanthixalus sonjae | -2.5 | 6.5 | 40.23957 | 1.638277 | 27.35264 | 0.2965129 | 12.82004 | 1.638277 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2.5 | 6.5 |
Acanthixalus sonjae | -0.5 | 5.5 | 40.30629 | 1.512145 | 27.95502 | 0.2781772 | 12.38921 | 1.512145 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -0.5 | 5.5 |
Acanthixalus sonjae | -0.5 | 6.5 | 40.10374 | 2.965873 | 26.29957 | 0.3085789 | 13.70488 | 2.965873 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -0.5 | 6.5 |
Future climate (+4C)
# Load data
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C.rds")
kable(head(pop_pond_future4C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acanthixalus sonjae | -7.5 | 5.5 | 40.40632 | 2.286515 | 28.82448 | 0.3489392 | 11.70777 | 2.286515 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -7.5 | 5.5 |
Acanthixalus sonjae | -7.5 | 6.5 | 40.40846 | 2.319777 | 28.87492 | 0.3679164 | 11.68146 | 2.319777 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -7.5 | 6.5 |
Acanthixalus sonjae | -2.5 | 5.5 | 40.48945 | 3.210875 | 29.35713 | 0.2646245 | 11.19841 | 3.210875 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2.5 | 5.5 |
Acanthixalus sonjae | -2.5 | 6.5 | 40.43397 | 2.561734 | 28.98423 | 0.2944050 | 11.54253 | 2.561734 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2.5 | 6.5 |
Acanthixalus sonjae | -0.5 | 5.5 | 40.49296 | 3.259129 | 29.39339 | 0.2790567 | 11.17269 | 3.259129 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -0.5 | 5.5 |
Acanthixalus sonjae | -0.5 | 6.5 | 40.28693 | 1.500615 | 27.78416 | 0.3000444 | 12.50691 | 1.500615 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -0.5 | 6.5 |
Above-ground vegetation
Current climate
# Load data
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
kable(head(pop_arb_current), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acanthixalus sonjae | -7.5 | 5.5 | 39.98052 | 4.614039 | 27.09566 | 0.4785521 | 12.81254 | 4.614039 | 0 | 0e+00 | 0 | 0.0e+00 | 0 | 0 | 0 | -7.5 | 5.5 |
Acanthixalus sonjae | -7.5 | 6.5 | 39.93806 | 5.255807 | 27.48481 | 0.6116997 | 12.37592 | 5.255807 | 0 | 0e+00 | 0 | 0.0e+00 | 0 | 0 | 0 | -7.5 | 6.5 |
Acanthixalus sonjae | -2.5 | 5.5 | 40.09495 | 3.114133 | 27.06597 | 0.3899019 | 12.93484 | 3.114133 | 0 | 0e+00 | 0 | 0.0e+00 | 0 | 0 | 0 | -2.5 | 5.5 |
Acanthixalus sonjae | -2.5 | 6.5 | 39.96101 | 4.884643 | 27.47563 | 0.6209588 | 12.42651 | 4.884643 | 0 | 1e-07 | 0 | 3.8e-06 | 0 | 0 | 0 | -2.5 | 6.5 |
Acanthixalus sonjae | -0.5 | 5.5 | 40.09575 | 3.102568 | 26.91175 | 0.3857633 | 13.08930 | 3.102568 | 0 | 0e+00 | 0 | 0.0e+00 | 0 | 0 | 0 | -0.5 | 5.5 |
Acanthixalus sonjae | -0.5 | 6.5 | 39.82503 | 6.706676 | 27.04198 | 0.6098642 | 12.73293 | 6.706676 | 0 | 0e+00 | 0 | 0.0e+00 | 0 | 0 | 0 | -0.5 | 6.5 |
Future climate (+2C)
# Load data
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
kable(head(pop_arb_future2C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acanthixalus sonjae | -7.5 | 5.5 | 40.06338 | 3.558020 | 27.71739 | 0.4786351 | 12.26436 | 3.558020 | 0 | 0e+00 | 0 | 0.00e+00 | 0 | 0 | 0 | -7.5 | 5.5 |
Acanthixalus sonjae | -7.5 | 6.5 | 40.03367 | 4.032642 | 28.13511 | 0.5841255 | 11.78944 | 4.032642 | 0 | 0e+00 | 0 | 0.00e+00 | 0 | 0 | 0 | -7.5 | 6.5 |
Acanthixalus sonjae | -2.5 | 5.5 | 40.16682 | 2.301188 | 27.56933 | 0.3832526 | 12.49497 | 2.301188 | 0 | 0e+00 | 0 | 0.00e+00 | 0 | 0 | 0 | -2.5 | 5.5 |
Acanthixalus sonjae | -2.5 | 6.5 | 40.05091 | 3.736134 | 28.14061 | 0.6248420 | 11.83496 | 3.736134 | 0 | 5e-07 | 0 | 1.48e-05 | 0 | 0 | 0 | -2.5 | 6.5 |
Acanthixalus sonjae | -0.5 | 5.5 | 40.16311 | 2.336728 | 27.38994 | 0.3780957 | 12.67134 | 2.336728 | 0 | 0e+00 | 0 | 0.00e+00 | 0 | 0 | 0 | -0.5 | 5.5 |
Acanthixalus sonjae | -0.5 | 6.5 | 39.95280 | 4.999105 | 27.64377 | 0.6144162 | 12.24088 | 4.999105 | 0 | 1e-07 | 0 | 2.80e-06 | 0 | 0 | 0 | -0.5 | 6.5 |
Future climate (+4C)
# Load data
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
kable(head(pop_arb_future4C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acanthixalus sonjae | -7.5 | 5.5 | 40.21213 | 1.945054 | 28.97567 | 0.5110117 | 11.17535 | 1.945054 | 0 | 0.0e+00 | 0 | 0.0000000 | 0 | 0 | 0 | -7.5 | 5.5 |
Acanthixalus sonjae | -7.5 | 6.5 | 40.19537 | 2.200921 | 29.48198 | 0.5725145 | 10.61936 | 2.200921 | 0 | 0.0e+00 | 0 | 0.0000000 | 0 | 0 | 0 | -7.5 | 6.5 |
Acanthixalus sonjae | -2.5 | 5.5 | 40.28343 | 1.541577 | 28.58393 | 0.3811469 | 11.70445 | 1.541577 | 0 | 0.0e+00 | 0 | 0.0000000 | 0 | 0 | 0 | -2.5 | 5.5 |
Acanthixalus sonjae | -2.5 | 6.5 | 40.21093 | 1.982208 | 29.51412 | 0.6789194 | 10.63372 | 1.982208 | 0 | 3.9e-06 | 0 | 0.0001168 | 0 | 0 | 0 | -2.5 | 6.5 |
Acanthixalus sonjae | -0.5 | 5.5 | 40.27578 | 1.545703 | 28.35889 | 0.3702133 | 11.91259 | 1.545703 | 0 | 0.0e+00 | 0 | 0.0000000 | 0 | 0 | 0 | -0.5 | 5.5 |
Acanthixalus sonjae | -0.5 | 6.5 | 40.11236 | 2.998551 | 28.81230 | 0.6550556 | 11.20044 | 2.998551 | 0 | 1.0e-06 | 0 | 0.0000317 | 0 | 0 | 0 | -0.5 | 6.5 |
Number of populations predicted to overheat
Vegetated substrate
# Load data
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
# Counts for each climatic scenario
n_pop_current <- n_distinct(pop_sub_current[pop_sub_current$overheating_risk > 0,
])
n_pop_future2C <- n_distinct(pop_sub_future2C[pop_sub_future2C$overheating_risk >
0, ])
n_pop_future4C <- n_distinct(pop_sub_future4C[pop_sub_future4C$overheating_risk >
0, ])
results_summary <- data.frame(Climate_Scenario = c("Current Climate", "Future Climate (+2C)",
"Future Climate (+4C)"), Number_pop_overheating = c(n_pop_current, n_pop_future2C,
n_pop_future4C))
kable(results_summary, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
Climate_Scenario | Number_pop_overheating |
---|---|
Current Climate | 836 |
Future Climate (+2C) | 1424 |
Future Climate (+4C) | 4248 |
Pond or wetland
# Load data
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C.rds")
# Counts for each climatic scenario
n_pop_current <- n_distinct(pop_pond_current[pop_pond_current$overheating_risk >
0, ])
n_pop_future2C <- n_distinct(pop_pond_future2C[pop_pond_future2C$overheating_risk >
0, ])
n_pop_future4C <- n_distinct(pop_pond_future4C[pop_pond_future4C$overheating_risk >
0, ])
results_summary <- data.frame(Climate_Scenario = c("Current Climate", "Future Climate (+2C)",
"Future Climate (+4C)"), Number_pop_overheating = c(n_pop_current, n_pop_future2C,
n_pop_future4C))
kable(results_summary, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
Climate_Scenario | Number_pop_overheating |
---|---|
Current Climate | 0 |
Future Climate (+2C) | 0 |
Future Climate (+4C) | 56 |
Above-ground vegetation
# Load data
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
# Counts for each climatic scenario
n_pop_current <- n_distinct(pop_arb_current[pop_arb_current$overheating_risk > 0,
])
n_pop_future2C <- n_distinct(pop_arb_future2C[pop_arb_future2C$overheating_risk >
0, ])
n_pop_future4C <- n_distinct(pop_arb_future4C[pop_arb_future4C$overheating_risk >
0, ])
results_summary <- data.frame(Climate_Scenario = c("Current Climate", "Future Climate (+2C)",
"Future Climate (+4C)"), Number_pop_overheating = c(n_pop_current, n_pop_future2C,
n_pop_future4C))
kable(results_summary, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
Climate_Scenario | Number_pop_overheating |
---|---|
Current Climate | 152 |
Future Climate (+2C) | 283 |
Future Climate (+4C) | 748 |
Arboreal species on substrate conditions
# Filter substrate data to only arboreal species
pop_sub_current_arb_subset <- filter(pop_sub_current, tip.label %in% pop_arb_current$tip.label)
pop_sub_future2C_arb_subset <- filter(pop_sub_future2C, tip.label %in% pop_arb_future2C$tip.label)
pop_sub_future4C_arb_subset <- filter(pop_sub_future4C, tip.label %in% pop_arb_future4C$tip.label)
# Counts for each climatic scenario
n_pop_current <- n_distinct(pop_sub_current_arb_subset[pop_sub_current_arb_subset$overheating_risk >
0, ])
n_pop_future2C <- n_distinct(pop_sub_future2C_arb_subset[pop_sub_future2C_arb_subset$overheating_risk >
0, ])
n_pop_future4C <- n_distinct(pop_sub_future4C_arb_subset[pop_sub_future4C_arb_subset$overheating_risk >
0, ])
results_summary <- data.frame(Climate_Scenario = c("Current Climate", "Future Climate (+2C)",
"Future Climate (+4C)"), Number_pop_overheating = c(n_pop_current, n_pop_future2C,
n_pop_future4C))
kable(results_summary, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
Climate_Scenario | Number_pop_overheating |
---|---|
Current Climate | 320 |
Future Climate (+2C) | 533 |
Future Climate (+4C) | 1137 |
Number of species predicted to overheat
Vegetated substrate
# Counts for each climatic scenario
n_sp_current <- n_distinct(pop_sub_current$tip.label[pop_sub_current$overheating_risk >
0])
n_sp_future2C <- n_distinct(pop_sub_future2C$tip.label[pop_sub_future2C$overheating_risk >
0])
n_sp_future4C <- n_distinct(pop_sub_future4C$tip.label[pop_sub_future4C$overheating_risk >
0])
results_summary <- data.frame(Climate_Scenario = c("Current Climate", "Future Climate (+2C)",
"Future Climate (+4C)"), Number_sp_overheating = c(n_sp_current, n_sp_future2C,
n_sp_future4C))
kable(results_summary, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
Climate_Scenario | Number_sp_overheating |
---|---|
Current Climate | 104 |
Future Climate (+2C) | 168 |
Future Climate (+4C) | 391 |
Pond or wetland
# Counts for each climatic scenario
n_sp_current <- n_distinct(pop_pond_current$tip.label[pop_pond_current$overheating_risk >
0])
n_sp_future2C <- n_distinct(pop_pond_future2C$tip.label[pop_pond_future2C$overheating_risk >
0])
n_sp_future4C <- n_distinct(pop_pond_future4C$tip.label[pop_pond_future4C$overheating_risk >
0])
results_summary <- data.frame(Climate_Scenario = c("Current Climate", "Future Climate (+2C)",
"Future Climate (+4C)"), Number_sp_overheating = c(n_sp_current, n_sp_future2C,
n_sp_future4C))
kable(results_summary, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
Climate_Scenario | Number_sp_overheating |
---|---|
Current Climate | 0 |
Future Climate (+2C) | 0 |
Future Climate (+4C) | 11 |
Above-ground vegetation
# Counts for each climatic scenario
n_sp_current <- n_distinct(pop_arb_current$tip.label[pop_arb_current$overheating_risk >
0])
n_sp_future2C <- n_distinct(pop_arb_future2C$tip.label[pop_arb_future2C$overheating_risk >
0])
n_sp_future4C <- n_distinct(pop_arb_future4C$tip.label[pop_arb_future4C$overheating_risk >
0])
results_summary <- data.frame(Climate_Scenario = c("Current Climate", "Future Climate (+2C)",
"Future Climate (+4C)"), Number_sp_overheating = c(n_sp_current, n_sp_future2C,
n_sp_future4C))
kable(results_summary, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
Climate_Scenario | Number_sp_overheating |
---|---|
Current Climate | 13 |
Future Climate (+2C) | 16 |
Future Climate (+4C) | 56 |
Arboreal species on substrate conditions
# Counts for each climatic scenario
n_sp_current <- n_distinct(pop_sub_current_arb_subset$tip.label[pop_sub_current_arb_subset$overheating_risk >
0])
n_sp_future2C <- n_distinct(pop_sub_future2C_arb_subset$tip.label[pop_sub_future2C_arb_subset$overheating_risk >
0])
n_sp_future4C <- n_distinct(pop_sub_future4C_arb_subset$tip.label[pop_sub_future4C_arb_subset$overheating_risk >
0])
results_summary <- data.frame(Climate_Scenario = c("Current Climate", "Future Climate (+2C)",
"Future Climate (+4C)"), Number_sp_overheating = c(n_sp_current, n_sp_future2C,
n_sp_future4C))
kable(results_summary, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
Climate_Scenario | Number_sp_overheating |
---|---|
Current Climate | 15 |
Future Climate (+2C) | 34 |
Future Climate (+4C) | 83 |
Data summaries
Vegetated substrate
kable(summary(pop_sub_current), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length:203854 | Min. :-166.800 | Min. :-54.500 | Min. :26.17 | Min. : 0.09331 | Min. : 1.106 | Min. : 0.2772 | Min. : 3.02 | Min. : 0.09331 | Min. :0.000e+00 | Min. :0.000e+00 | Min. : 0.00000 | Min. :0.000000 | Min. :0.000000 | Min. :0.0000000 | Min. :0.000000 | Min. :-166.500 | Min. :-54.500 | |
Class :character | 1st Qu.: -66.500 | 1st Qu.:-11.500 | 1st Qu.:36.70 | 1st Qu.: 1.18867 | 1st Qu.:23.116 | 1st Qu.: 0.7492 | 1st Qu.:10.71 | 1st Qu.: 1.18867 | 1st Qu.:0.000e+00 | 1st Qu.:0.000e+00 | 1st Qu.: 0.00000 | 1st Qu.:0.000000 | 1st Qu.:0.000000 | 1st Qu.:0.0000000 | 1st Qu.:0.000000 | 1st Qu.: -66.500 | 1st Qu.:-11.500 | |
Mode :character | Median : -37.500 | Median : 0.500 | Median :38.18 | Median : 2.23987 | Median :26.220 | Median : 0.9502 | Median :12.44 | Median : 2.23987 | Median :0.000e+00 | Median :0.000e+00 | Median : 0.00000 | Median :0.000000 | Median :0.000000 | Median :0.0000000 | Median :0.000000 | Median : -37.500 | Median : 0.500 | |
NA | Mean : -2.776 | Mean : 6.275 | Mean :37.96 | Mean : 2.80390 | Mean :24.879 | Mean : 1.1976 | Mean :12.81 | Mean : 2.80390 | Mean :1.712e-05 | Mean :6.414e-04 | Mean : 0.01558 | Mean :0.019349 | Mean :0.004101 | Mean :0.0004022 | Mean :0.007339 | Mean : -2.749 | Mean : 6.287 | |
NA | 3rd Qu.: 43.500 | 3rd Qu.: 24.500 | 3rd Qu.:39.65 | 3rd Qu.: 3.90903 | 3rd Qu.:27.761 | 3rd Qu.: 1.3664 | 3rd Qu.:14.52 | 3rd Qu.: 3.90903 | 3rd Qu.:0.000e+00 | 3rd Qu.:1.870e-06 | 3rd Qu.: 0.00000 | 3rd Qu.:0.000056 | 3rd Qu.:0.000000 | 3rd Qu.:0.0000000 | 3rd Qu.:0.000000 | 3rd Qu.: 43.500 | 3rd Qu.: 24.500 | |
NA | Max. : 178.050 | Max. : 71.500 | Max. :46.38 | Max. :38.05593 | Max. :31.130 | Max. :11.4393 | Max. :36.85 | Max. :38.05593 | Max. :1.477e-02 | Max. :1.206e-01 | Max. :13.43828 | Max. :3.638659 | Max. :1.000000 | Max. :1.0000000 | Max. :2.000000 | Max. : 178.500 | Max. : 71.500 |
kable(summary(pop_sub_future2C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length:203853 | Min. :-166.800 | Min. :-54.500 | Min. :26.34 | Min. : 0.09907 | Min. : 1.601 | Min. : 0.2740 | Min. : 2.47 | Min. : 0.09907 | Min. :0.00000 | Min. :0.000e+00 | Min. : 0.0000 | Min. :0.000000 | Min. :0.000000 | Min. :0.00000 | Min. :0.00000 | Min. :-166.500 | Min. :-54.500 | |
Class :character | 1st Qu.: -66.500 | 1st Qu.:-11.500 | 1st Qu.:36.81 | 1st Qu.: 0.99026 | 1st Qu.:24.284 | 1st Qu.: 0.7296 | 1st Qu.:10.02 | 1st Qu.: 0.99026 | 1st Qu.:0.00000 | 1st Qu.:0.000e+00 | 1st Qu.: 0.0000 | 1st Qu.:0.000000 | 1st Qu.:0.000000 | 1st Qu.:0.00000 | 1st Qu.:0.00000 | 1st Qu.: -66.500 | 1st Qu.:-11.500 | |
Mode :character | Median : -37.500 | Median : 0.500 | Median :38.30 | Median : 1.77887 | Median :27.024 | Median : 0.9139 | Median :11.67 | Median : 1.77887 | Median :0.00000 | Median :1.000e-08 | Median : 0.0000 | Median :0.000000 | Median :0.000000 | Median :0.00000 | Median :0.00000 | Median : -37.500 | Median : 0.500 | |
NA | Mean : -2.776 | Mean : 6.276 | Mean :38.07 | Mean : 2.29021 | Mean :25.791 | Mean : 1.1596 | Mean :12.04 | Mean : 2.29021 | Mean :0.00003 | Mean :9.717e-04 | Mean : 0.0273 | Mean :0.029313 | Mean :0.006985 | Mean :0.00101 | Mean :0.01138 | Mean : -2.749 | Mean : 6.287 | |
NA | 3rd Qu.: 43.500 | 3rd Qu.: 24.500 | 3rd Qu.:39.76 | 3rd Qu.: 3.08589 | 3rd Qu.:28.526 | 3rd Qu.: 1.3001 | 3rd Qu.:13.63 | 3rd Qu.: 3.08589 | 3rd Qu.:0.00000 | 3rd Qu.:8.040e-06 | 3rd Qu.: 0.0000 | 3rd Qu.:0.000243 | 3rd Qu.:0.000000 | 3rd Qu.:0.00000 | 3rd Qu.:0.00000 | 3rd Qu.: 43.500 | 3rd Qu.: 24.500 | |
NA | Max. : 178.050 | Max. : 71.500 | Max. :46.49 | Max. :42.18184 | Max. :32.315 | Max. :12.5131 | Max. :35.89 | Max. :42.18184 | Max. :0.02908 | Max. :1.680e-01 | Max. :26.4663 | Max. :5.069180 | Max. :1.000000 | Max. :1.00000 | Max. :2.00000 | Max. : 178.500 | Max. : 71.500 |
kable(summary(pop_sub_future4C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length:203853 | Min. :-166.800 | Min. :-54.500 | Min. :26.55 | Min. : 0.09718 | Min. : 1.434 | Min. : 0.2730 | Min. : 0.9714 | Min. : 0.09718 | Min. :0.000e+00 | Min. :0.0000000 | Min. : 0.00000 | Min. : 0.000000 | Min. :0.00000 | Min. :0.000000 | Min. :0.00000 | Min. :-166.500 | Min. :-54.500 | |
Class :character | 1st Qu.: -66.500 | 1st Qu.:-11.500 | 1st Qu.:36.99 | 1st Qu.: 0.75769 | 1st Qu.:26.464 | 1st Qu.: 0.7322 | 1st Qu.: 8.5317 | 1st Qu.: 0.75769 | 1st Qu.:0.000e+00 | 1st Qu.:0.0000000 | 1st Qu.: 0.00000 | 1st Qu.: 0.000000 | 1st Qu.:0.00000 | 1st Qu.:0.000000 | 1st Qu.:0.00000 | 1st Qu.: -66.500 | 1st Qu.:-11.500 | |
Mode :character | Median : -37.500 | Median : 0.500 | Median :38.49 | Median : 1.35678 | Median :28.721 | Median : 0.9325 | Median :10.0737 | Median : 1.35678 | Median :0.000e+00 | Median :0.0000008 | Median : 0.00000 | Median : 0.000025 | Median :0.00000 | Median :0.000000 | Median :0.00000 | Median : -37.500 | Median : 0.500 | |
NA | Mean : -2.776 | Mean : 6.276 | Mean :38.25 | Mean : 1.64280 | Mean :27.664 | Mean : 1.1794 | Mean :10.4602 | Mean : 1.64280 | Mean :1.753e-04 | Mean :0.0027500 | Mean : 0.15954 | Mean : 0.082958 | Mean :0.02084 | Mean :0.007137 | Mean :0.02714 | Mean : -2.749 | Mean : 6.287 | |
NA | 3rd Qu.: 43.500 | 3rd Qu.: 24.500 | 3rd Qu.:39.95 | 3rd Qu.: 2.03537 | 3rd Qu.:30.174 | 3rd Qu.: 1.3211 | 3rd Qu.:11.9791 | 3rd Qu.: 2.03537 | 3rd Qu.:5.000e-08 | 3rd Qu.:0.0002325 | 3rd Qu.: 0.00005 | 3rd Qu.: 0.007013 | 3rd Qu.:0.00000 | 3rd Qu.:0.000000 | 3rd Qu.:0.00000 | 3rd Qu.: 43.500 | 3rd Qu.: 24.500 | |
NA | Max. : 178.050 | Max. : 71.500 | Max. :46.73 | Max. :31.71911 | Max. :35.135 | Max. :12.0536 | Max. :36.3159 | Max. :31.71911 | Max. :2.277e-01 | Max. :0.4193273 | Max. :207.17805 | Max. :12.649514 | Max. :1.00000 | Max. :1.000000 | Max. :7.00000 | Max. : 178.500 | Max. : 71.500 |
Pond or wetland
kable(summary(pop_pond_current), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length:204809 | Min. :-166.80 | Min. :-54.50 | Min. :26.37 | Min. : 0.09255 | Min. :-9.592 | Min. :0.1390 | Min. : 5.128 | Min. : 0.09255 | Min. :0.000e+00 | Min. :0.000e+00 | Min. :0.00e+00 | Min. :0.0000000 | Min. :0 | Min. :0 | Min. :0 | Min. :-166.500 | Min. :-54.500 | |
Class :character | 1st Qu.: -66.50 | 1st Qu.:-11.50 | 1st Qu.:36.84 | 1st Qu.: 0.80518 | 1st Qu.:21.572 | 1st Qu.:0.3703 | 1st Qu.:12.467 | 1st Qu.: 0.80518 | 1st Qu.:0.000e+00 | 1st Qu.:0.000e+00 | 1st Qu.:0.00e+00 | 1st Qu.:0.0000000 | 1st Qu.:0 | 1st Qu.:0 | 1st Qu.:0 | 1st Qu.: -66.500 | 1st Qu.:-11.500 | |
Mode :character | Median : -37.50 | Median : 0.50 | Median :38.35 | Median : 1.48021 | Median :24.762 | Median :0.4911 | Median :14.219 | Median : 1.48021 | Median :0.000e+00 | Median :0.000e+00 | Median :0.00e+00 | Median :0.0000000 | Median :0 | Median :0 | Median :0 | Median : -37.500 | Median : 0.500 | |
NA | Mean : -3.05 | Mean : 6.43 | Mean :38.14 | Mean : 1.92864 | Mean :23.195 | Mean :0.7617 | Mean :14.763 | Mean : 1.92864 | Mean :1.680e-10 | Mean :1.530e-07 | Mean :1.53e-07 | Mean :0.0000046 | Mean :0 | Mean :0 | Mean :0 | Mean : -3.023 | Mean : 6.441 | |
NA | 3rd Qu.: 42.50 | 3rd Qu.: 25.50 | 3rd Qu.:39.86 | 3rd Qu.: 2.42313 | 3rd Qu.:26.310 | 3rd Qu.:0.9840 | 3rd Qu.:16.490 | 3rd Qu.: 2.42313 | 3rd Qu.:0.000e+00 | 3rd Qu.:0.000e+00 | 3rd Qu.:0.00e+00 | 3rd Qu.:0.0000000 | 3rd Qu.:0 | 3rd Qu.:0 | 3rd Qu.:0 | 3rd Qu.: 42.500 | 3rd Qu.: 25.500 | |
NA | Max. : 178.05 | Max. : 71.50 | Max. :46.71 | Max. :35.52709 | Max. :30.137 | Max. :5.8776 | Max. :43.618 | Max. :35.52709 | Max. :1.813e-05 | Max. :4.258e-03 | Max. :1.65e-02 | Max. :0.1284366 | Max. :0 | Max. :0 | Max. :0 | Max. : 178.500 | Max. : 71.500 |
kable(summary(pop_pond_future2C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length:204808 | Min. :-166.80 | Min. :-54.50 | Min. :26.55 | Min. : 0.09301 | Min. :-8.232 | Min. :0.1393 | Min. : 4.31 | Min. : 0.09301 | Min. :0.000e+00 | Min. :0.000e+00 | Min. :0.0000000 | Min. :0.0000000 | Min. :0 | Min. :0 | Min. :0 | Min. :-166.500 | Min. :-54.500 | |
Class :character | 1st Qu.: -66.50 | 1st Qu.:-11.50 | 1st Qu.:36.98 | 1st Qu.: 0.72129 | 1st Qu.:22.779 | 1st Qu.:0.3784 | 1st Qu.:11.59 | 1st Qu.: 0.72129 | 1st Qu.:0.000e+00 | 1st Qu.:0.000e+00 | 1st Qu.:0.0000000 | 1st Qu.:0.0000000 | 1st Qu.:0 | 1st Qu.:0 | 1st Qu.:0 | 1st Qu.: -66.500 | 1st Qu.:-11.500 | |
Mode :character | Median : -37.50 | Median : 0.50 | Median :38.49 | Median : 1.28760 | Median :25.859 | Median :0.5097 | Median :13.32 | Median : 1.28760 | Median :0.000e+00 | Median :0.000e+00 | Median :0.0000000 | Median :0.0000000 | Median :0 | Median :0 | Median :0 | Median : -37.500 | Median : 0.500 | |
NA | Mean : -3.05 | Mean : 6.43 | Mean :38.28 | Mean : 1.57883 | Mean :24.349 | Mean :0.7727 | Mean :13.85 | Mean : 1.57883 | Mean :9.700e-09 | Mean :1.831e-06 | Mean :0.0000088 | Mean :0.0000552 | Mean :0 | Mean :0 | Mean :0 | Mean : -3.023 | Mean : 6.441 | |
NA | 3rd Qu.: 42.50 | 3rd Qu.: 25.50 | 3rd Qu.:40.00 | 3rd Qu.: 1.90669 | 3rd Qu.:27.407 | 3rd Qu.:0.9844 | 3rd Qu.:15.55 | 3rd Qu.: 1.90669 | 3rd Qu.:0.000e+00 | 3rd Qu.:0.000e+00 | 3rd Qu.:0.0000000 | 3rd Qu.:0.0000000 | 3rd Qu.:0 | 3rd Qu.:0 | 3rd Qu.:0 | 3rd Qu.: 42.500 | 3rd Qu.: 25.500 | |
NA | Max. : 178.05 | Max. : 71.50 | Max. :46.90 | Max. :32.96062 | Max. :31.782 | Max. :6.0906 | Max. :42.57 | Max. :32.96062 | Max. :8.619e-04 | Max. :2.934e-02 | Max. :0.7842886 | Max. :0.8852190 | Max. :0 | Max. :0 | Max. :0 | Max. : 178.500 | Max. : 71.500 |
kable(summary(pop_pond_future4C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length:204808 | Min. :-166.80 | Min. :-54.50 | Min. :26.78 | Min. : 0.0937 | Min. :-5.07 | Min. :0.1369 | Min. : 2.682 | Min. : 0.0937 | Min. :0.000e+00 | Min. :0.000e+00 | Min. : 0.000000 | Min. :0.000000 | Min. :0.0000000 | Min. :0.00e+00 | Min. :0 | Min. :-166.500 | Min. :-54.500 | |
Class :character | 1st Qu.: -66.50 | 1st Qu.:-11.50 | 1st Qu.:37.19 | 1st Qu.: 0.8691 | 1st Qu.:24.69 | 1st Qu.:0.3980 | 1st Qu.:10.144 | 1st Qu.: 0.8691 | 1st Qu.:0.000e+00 | 1st Qu.:0.000e+00 | 1st Qu.: 0.000000 | 1st Qu.:0.000000 | 1st Qu.:0.0000000 | 1st Qu.:0.00e+00 | 1st Qu.:0 | 1st Qu.: -66.500 | 1st Qu.:-11.500 | |
Mode :character | Median : -37.50 | Median : 0.50 | Median :38.70 | Median : 1.4866 | Median :27.58 | Median :0.5530 | Median :11.868 | Median : 1.4866 | Median :0.000e+00 | Median :0.000e+00 | Median : 0.000000 | Median :0.000000 | Median :0.0000000 | Median :0.00e+00 | Median :0 | Median : -37.500 | Median : 0.500 | |
NA | Mean : -3.05 | Mean : 6.43 | Mean :38.50 | Mean : 1.7275 | Mean :26.22 | Mean :0.7995 | Mean :12.375 | Mean : 1.7275 | Mean :1.450e-06 | Mean :5.916e-05 | Mean : 0.001316 | Mean :0.001785 | Mean :0.0002734 | Mean :5.86e-05 | Mean :0 | Mean : -3.023 | Mean : 6.441 | |
NA | 3rd Qu.: 42.50 | 3rd Qu.: 25.50 | 3rd Qu.:40.23 | 3rd Qu.: 2.1799 | 3rd Qu.:29.16 | 3rd Qu.:1.0338 | 3rd Qu.:14.097 | 3rd Qu.: 2.1799 | 3rd Qu.:0.000e+00 | 3rd Qu.:0.000e+00 | 3rd Qu.: 0.000000 | 3rd Qu.:0.000000 | 3rd Qu.:0.0000000 | 3rd Qu.:0.00e+00 | 3rd Qu.:0 | 3rd Qu.: 42.500 | 3rd Qu.: 25.500 | |
NA | Max. : 178.05 | Max. : 71.50 | Max. :47.23 | Max. :29.0510 | Max. :34.55 | Max. :6.6509 | Max. :39.834 | Max. :29.0510 | Max. :3.208e-02 | Max. :1.762e-01 | Max. :29.195841 | Max. :5.315933 | Max. :1.0000000 | Max. :1.00e+00 | Max. :0 | Max. : 178.500 | Max. : 71.500 |
Above-ground vegetation
kable(summary(pop_arb_current), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length:56210 | Min. :-158.20 | Min. :-51.950 | Min. :29.03 | Min. : 0.1771 | Min. : 2.168 | Min. :0.2319 | Min. : 3.699 | Min. : 0.1771 | Min. :0.000e+00 | Min. :0.000e+00 | Min. :0.000000 | Min. :0.0000000 | Min. :0.000000 | Min. :0.0000000 | Min. :0.000000 | Min. :-158.50 | Min. :-51.500 | |
Class :character | 1st Qu.: -66.50 | 1st Qu.:-12.500 | 1st Qu.:37.77 | 1st Qu.: 1.5931 | 1st Qu.:24.873 | 1st Qu.:0.6074 | 1st Qu.:11.398 | 1st Qu.: 1.5931 | 1st Qu.:0.000e+00 | 1st Qu.:0.000e+00 | 1st Qu.:0.000000 | 1st Qu.:0.0000000 | 1st Qu.:0.000000 | 1st Qu.:0.0000000 | 1st Qu.:0.000000 | 1st Qu.: -66.50 | 1st Qu.:-12.500 | |
Mode :character | Median : -51.50 | Median : -4.500 | Median :39.33 | Median : 2.8114 | Median :26.559 | Median :0.7435 | Median :12.757 | Median : 2.8114 | Median :0.000e+00 | Median :0.000e+00 | Median :0.000000 | Median :0.0000000 | Median :0.000000 | Median :0.0000000 | Median :0.000000 | Median : -51.50 | Median : -4.500 | |
NA | Mean : -17.94 | Mean : -2.646 | Mean :38.82 | Mean : 3.2586 | Mean :25.815 | Mean :0.8264 | Mean :12.875 | Mean : 3.2586 | Mean :1.072e-05 | Mean :4.440e-04 | Mean :0.009754 | Mean :0.0133929 | Mean :0.002704 | Mean :0.0001245 | Mean :0.005088 | Mean : -17.91 | Mean : -2.633 | |
NA | 3rd Qu.: 22.50 | 3rd Qu.: 4.500 | 3rd Qu.:40.16 | 3rd Qu.: 4.3693 | 3rd Qu.:27.467 | 3rd Qu.:0.9189 | 3rd Qu.:14.168 | 3rd Qu.: 4.3693 | 3rd Qu.:0.000e+00 | 3rd Qu.:1.700e-07 | 3rd Qu.:0.000000 | 3rd Qu.:0.0000051 | 3rd Qu.:0.000000 | 3rd Qu.:0.0000000 | 3rd Qu.:0.000000 | 3rd Qu.: 22.50 | 3rd Qu.: 4.500 | |
NA | Max. : 177.05 | Max. : 57.500 | Max. :46.37 | Max. :27.4362 | Max. :29.827 | Max. :9.2086 | Max. :33.467 | Max. :27.4362 | Max. :6.208e-03 | Max. :7.854e-02 | Max. :5.649007 | Max. :2.3693754 | Max. :1.000000 | Max. :1.0000000 | Max. :1.000000 | Max. : 177.50 | Max. : 57.500 |
kable(summary(pop_arb_future2C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length:56210 | Min. :-158.20 | Min. :-51.950 | Min. :29.19 | Min. : 0.1792 | Min. : 1.844 | Min. :0.2266 | Min. : 3.111 | Min. : 0.1792 | Min. :0.000e+00 | Min. :0.000e+00 | Min. :0.00000 | Min. :0.0000000 | Min. :0.000000 | Min. :0.0000000 | Min. :0.000000 | Min. :-158.50 | Min. :-51.500 | |
Class :character | 1st Qu.: -66.50 | 1st Qu.:-12.500 | 1st Qu.:37.87 | 1st Qu.: 1.2478 | 1st Qu.:25.659 | 1st Qu.:0.6086 | 1st Qu.:10.727 | 1st Qu.: 1.2478 | 1st Qu.:0.000e+00 | 1st Qu.:0.000e+00 | 1st Qu.:0.00000 | 1st Qu.:0.0000000 | 1st Qu.:0.000000 | 1st Qu.:0.0000000 | 1st Qu.:0.000000 | 1st Qu.: -66.50 | 1st Qu.:-12.500 | |
Mode :character | Median : -51.50 | Median : -4.500 | Median :39.44 | Median : 2.1585 | Median :27.250 | Median :0.7280 | Median :12.067 | Median : 2.1585 | Median :0.000e+00 | Median :0.000e+00 | Median :0.00000 | Median :0.0000000 | Median :0.000000 | Median :0.0000000 | Median :0.000000 | Median : -51.50 | Median : -4.500 | |
NA | Mean : -17.94 | Mean : -2.646 | Mean :38.93 | Mean : 2.6312 | Mean :26.632 | Mean :0.8029 | Mean :12.170 | Mean : 2.6312 | Mean :1.861e-05 | Mean :6.503e-04 | Mean :0.01693 | Mean :0.0196187 | Mean :0.005035 | Mean :0.0003736 | Mean :0.008095 | Mean : -17.91 | Mean : -2.633 | |
NA | 3rd Qu.: 22.50 | 3rd Qu.: 4.500 | 3rd Qu.:40.26 | 3rd Qu.: 3.4901 | 3rd Qu.:28.262 | 3rd Qu.:0.8852 | 3rd Qu.:13.459 | 3rd Qu.: 3.4901 | 3rd Qu.:0.000e+00 | 3rd Qu.:7.100e-07 | 3rd Qu.:0.00000 | 3rd Qu.:0.0000215 | 3rd Qu.:0.000000 | 3rd Qu.:0.0000000 | 3rd Qu.:0.000000 | 3rd Qu.: 22.50 | 3rd Qu.: 4.500 | |
NA | Max. : 177.05 | Max. : 57.500 | Max. :46.49 | Max. :24.9583 | Max. :30.435 | Max. :9.7651 | Max. :33.790 | Max. :24.9583 | Max. :9.752e-03 | Max. :9.827e-02 | Max. :8.87437 | Max. :2.9644271 | Max. :1.000000 | Max. :1.0000000 | Max. :1.000000 | Max. : 177.50 | Max. : 57.500 |
kable(summary(pop_arb_future4C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
tip.label | lon_adj | lat_adj | CTmax | CTmax_se | max_temp | max_temp_se | TSM | TSM_se | overheating_probability | overheating_probability_se | overheating_days | overheating_days_se | overheating_risk | overheating_risk_strict | consecutive_overheating_days | lon | lat | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length:56210 | Min. :-158.20 | Min. :-51.950 | Min. :29.38 | Min. : 0.1832 | Min. : 2.172 | Min. : 0.2195 | Min. : 1.747 | Min. : 0.1832 | Min. :0.000e+00 | Min. :0.000e+00 | Min. : 0.00000 | Min. :0.00000 | Min. :0.00000 | Min. :0.000000 | Min. :0.00000 | Min. :-158.50 | Min. :-51.500 | |
Class :character | 1st Qu.: -66.50 | 1st Qu.:-12.500 | 1st Qu.:38.01 | 1st Qu.: 0.8147 | 1st Qu.:27.265 | 1st Qu.: 0.6233 | 1st Qu.: 9.278 | 1st Qu.: 0.8147 | 1st Qu.:0.000e+00 | 1st Qu.:0.000e+00 | 1st Qu.: 0.00000 | 1st Qu.:0.00000 | 1st Qu.:0.00000 | 1st Qu.:0.000000 | 1st Qu.:0.00000 | 1st Qu.: -66.50 | 1st Qu.:-12.500 | |
Mode :character | Median : -51.50 | Median : -4.500 | Median :39.62 | Median : 1.4328 | Median :28.675 | Median : 0.7425 | Median :10.580 | Median : 1.4328 | Median :0.000e+00 | Median :2.000e-08 | Median : 0.00000 | Median :0.00000 | Median :0.00000 | Median :0.000000 | Median :0.00000 | Median : -51.50 | Median : -4.500 | |
NA | Mean : -17.94 | Mean : -2.646 | Mean :39.10 | Mean : 1.8006 | Mean :28.325 | Mean : 0.8210 | Mean :10.696 | Mean : 1.8006 | Mean :8.602e-05 | Mean :1.551e-03 | Mean : 0.07828 | Mean :0.04678 | Mean :0.01331 | Mean :0.004661 | Mean :0.01784 | Mean : -17.91 | Mean : -2.633 | |
NA | 3rd Qu.: 22.50 | 3rd Qu.: 4.500 | 3rd Qu.:40.44 | 3rd Qu.: 2.1686 | 3rd Qu.:30.069 | 3rd Qu.: 0.9295 | 3rd Qu.:12.030 | 3rd Qu.: 2.1686 | 3rd Qu.:0.000e+00 | 3rd Qu.:1.492e-05 | 3rd Qu.: 0.00000 | 3rd Qu.:0.00045 | 3rd Qu.:0.00000 | 3rd Qu.:0.000000 | 3rd Qu.:0.00000 | 3rd Qu.: 22.50 | 3rd Qu.: 4.500 | |
NA | Max. : 177.05 | Max. : 57.500 | Max. :46.72 | Max. :21.8019 | Max. :33.787 | Max. :11.7245 | Max. :36.002 | Max. :21.8019 | Max. :8.370e-02 | Max. :2.769e-01 | Max. :76.16597 | Max. :8.35410 | Max. :1.00000 | Max. :1.000000 | Max. :3.00000 | Max. : 177.50 | Max. : 57.500 |
Community-level data
Overview of the datasets
Vegetated substrate
Current climate
# Load data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
kable(head(community_sub_current), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
lon | lat | community_CTmax | community_CTmax_se | community_max_temp | community_max_temp_se | community_TSM | community_TSM_se | n_species | n_species_overheating | proportion_species_overheating | proportion_species_overheating_se | n_species_overheating_strict | proportion_species_overheating_strict | proportion_species_overheating_se_strict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-166.5 | 68.5 | 33.17221 | 0.3408237 | 8.015516 | 2.081530 | 24.45919 | 0.3408237 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 60.5 | 33.32319 | 0.3052863 | 9.236246 | 1.497526 | 23.64718 | 0.3052863 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 67.5 | 33.30512 | 0.3141322 | 8.820103 | 2.338195 | 23.54795 | 0.3141322 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 68.5 | 33.23857 | 0.3288506 | 8.430455 | 2.399227 | 23.86126 | 0.3288506 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-164.5 | 59.5 | 33.40008 | 0.2889095 | 9.843303 | 1.536170 | 23.09577 | 0.2889095 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-164.5 | 60.5 | 33.39810 | 0.2893413 | 9.825714 | 1.537561 | 23.11138 | 0.2893413 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Future climate (+2C)
# Load data
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
kable(head(community_sub_future2C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
lon | lat | community_CTmax | community_CTmax_se | community_max_temp | community_max_temp_se | community_TSM | community_TSM_se | n_species | n_species_overheating | proportion_species_overheating | proportion_species_overheating_se | n_species_overheating_strict | proportion_species_overheating_strict | proportion_species_overheating_se_strict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-166.5 | 68.5 | 33.34969 | 0.3024569 | 9.128464 | 2.027997 | 23.48372 | 0.3024569 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 60.5 | 33.47315 | 0.2733130 | 10.178880 | 1.475962 | 22.82974 | 0.2733130 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 67.5 | 33.48473 | 0.2762448 | 9.927426 | 2.287983 | 22.56154 | 0.2762448 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 68.5 | 33.41275 | 0.2916277 | 9.511248 | 2.339423 | 22.90391 | 0.2916277 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-164.5 | 59.5 | 33.55198 | 0.2569316 | 10.796484 | 1.522394 | 22.26990 | 0.2569316 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-164.5 | 60.5 | 33.55141 | 0.2570616 | 10.782023 | 1.521070 | 22.28421 | 0.2570616 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Future climate (+4C)
# Load data
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
kable(head(community_sub_future4C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
lon | lat | community_CTmax | community_CTmax_se | community_max_temp | community_max_temp_se | community_TSM | community_TSM_se | n_species | n_species_overheating | proportion_species_overheating | proportion_species_overheating_se | n_species_overheating_strict | proportion_species_overheating_strict | proportion_species_overheating_se_strict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-166.5 | 68.5 | 33.68787 | 0.2352213 | 11.41588 | 1.810334 | 21.46671 | 0.2352213 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 60.5 | 33.75261 | 0.2165792 | 11.95603 | 1.445371 | 21.28579 | 0.2165792 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 67.5 | 33.81986 | 0.2118906 | 12.14303 | 2.118961 | 20.59627 | 0.2118906 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 68.5 | 33.74000 | 0.2276859 | 11.68170 | 2.139558 | 20.97120 | 0.2276859 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-164.5 | 59.5 | 33.83358 | 0.2013136 | 12.57430 | 1.498550 | 20.72771 | 0.2013136 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-164.5 | 60.5 | 33.83216 | 0.2016450 | 12.55591 | 1.499213 | 20.74163 | 0.2016450 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Pond or wetland
Current climate
# Load data
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current.rds")
kable(head(community_pond_current), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
lon | lat | community_CTmax | community_CTmax_se | community_max_temp | community_max_temp_se | community_TSM | community_TSM_se | n_species | n_species_overheating | proportion_species_overheating | proportion_species_overheating_se | n_species_overheating_strict | proportion_species_overheating_strict | proportion_species_overheating_se_strict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-166.5 | 68.5 | 32.56957 | 0.4723818 | 3.327308 | 1.394739 | 28.94239 | 0.4723818 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 60.5 | 33.01829 | 0.3713634 | 6.260043 | 1.519877 | 26.36852 | 0.3713634 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 67.5 | 32.63804 | 0.4589844 | 3.562022 | 1.756225 | 28.54950 | 0.4589844 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 68.5 | 32.52784 | 0.4836071 | 2.872569 | 1.713213 | 29.18338 | 0.4836071 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-164.5 | 59.5 | 33.14150 | 0.3441268 | 7.080617 | 1.482238 | 25.65416 | 0.3441268 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-164.5 | 60.5 | 33.13719 | 0.3450720 | 7.052383 | 1.483242 | 25.67913 | 0.3450720 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Future climate (+2C)
# Load data
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C.rds")
kable(head(community_pond_future2C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
lon | lat | community_CTmax | community_CTmax_se | community_max_temp | community_max_temp_se | community_TSM | community_TSM_se | n_species | n_species_overheating | proportion_species_overheating | proportion_species_overheating_se | n_species_overheating_strict | proportion_species_overheating_strict | proportion_species_overheating_se_strict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-166.5 | 68.5 | 32.90685 | 0.3957764 | 5.583626 | 1.323727 | 27.01520 | 0.3957764 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 60.5 | 33.27285 | 0.3153421 | 7.939282 | 1.461537 | 24.90612 | 0.3153421 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 67.5 | 32.98002 | 0.3812016 | 5.895649 | 1.564385 | 26.59331 | 0.3812016 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 68.5 | 32.85766 | 0.4086489 | 5.074816 | 1.608037 | 27.29979 | 0.4086489 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-164.5 | 59.5 | 33.39119 | 0.2900648 | 8.705233 | 1.453285 | 24.22281 | 0.2900648 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-164.5 | 60.5 | 33.39359 | 0.2896131 | 8.714851 | 1.459325 | 24.20951 | 0.2896131 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Future climate (+4C)
# Load data
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C.rds")
kable(head(community_pond_future4C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
lon | lat | community_CTmax | community_CTmax_se | community_max_temp | community_max_temp_se | community_TSM | community_TSM_se | n_species | n_species_overheating | proportion_species_overheating | proportion_species_overheating_se | n_species_overheating_strict | proportion_species_overheating_strict | proportion_species_overheating_se_strict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-166.5 | 68.5 | 33.42968 | 0.2800353 | 9.143732 | 1.076592 | 24.00849 | 0.2800353 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 60.5 | 33.68452 | 0.2292832 | 10.631329 | 1.387111 | 22.54070 | 0.2292832 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 67.5 | 33.49314 | 0.2685735 | 9.384212 | 1.315300 | 23.64491 | 0.2685735 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-165.5 | 68.5 | 33.36912 | 0.2948686 | 8.573314 | 1.331719 | 24.35341 | 0.2948686 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-164.5 | 59.5 | 33.80019 | 0.2070758 | 11.374784 | 1.395492 | 21.87930 | 0.2070758 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-164.5 | 60.5 | 33.80809 | 0.2057318 | 11.419378 | 1.399156 | 21.83365 | 0.2057318 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Above-ground vegetation
Current climate
# Load data
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
kable(head(community_arb_current), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
lon | lat | community_CTmax | community_CTmax_se | community_max_temp | community_max_temp_se | community_TSM | community_TSM_se | n_species | n_species_overheating | proportion_species_overheating | proportion_species_overheating_se | n_species_overheating_strict | proportion_species_overheating_strict | proportion_species_overheating_se_strict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-158.5 | 21.5 | 35.64807 | 2.9200780 | 24.24569 | 0.6513578 | 11.15609 | 2.9200780 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-157.5 | 21.5 | 37.88426 | 2.1274737 | 24.44356 | 0.6767201 | 13.17293 | 2.1274737 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
-133.5 | 53.5 | 34.99025 | 0.4919342 | 12.38168 | 1.0949775 | 22.27664 | 0.4919342 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-133.5 | 54.5 | 35.03701 | 0.4603092 | 12.77450 | 1.0758568 | 21.93629 | 0.4603092 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-132.5 | 53.5 | 34.91539 | 0.5439662 | 11.96129 | 1.1790289 | 22.61334 | 0.5439662 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-132.5 | 54.5 | 35.01083 | 0.4779669 | 12.58975 | 1.0834335 | 22.09295 | 0.4779669 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Future climate (+2C)
# Load data
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
kable(head(community_arb_future2C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
lon | lat | community_CTmax | community_CTmax_se | community_max_temp | community_max_temp_se | community_TSM | community_TSM_se | n_species | n_species_overheating | proportion_species_overheating | proportion_species_overheating_se | n_species_overheating_strict | proportion_species_overheating_strict | proportion_species_overheating_se_strict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-158.5 | 21.5 | 35.72397 | 2.5078995 | 24.72602 | 0.6405922 | 10.71095 | 2.5078995 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-157.5 | 21.5 | 37.91964 | 1.7500296 | 25.01383 | 0.6657816 | 12.58989 | 1.7500296 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
-133.5 | 53.5 | 35.07396 | 0.4368020 | 13.06147 | 1.0877487 | 21.66623 | 0.4368020 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-133.5 | 54.5 | 35.12885 | 0.4022496 | 13.52744 | 1.0759089 | 21.25936 | 0.4022496 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-132.5 | 53.5 | 35.01423 | 0.4761303 | 12.74279 | 1.1478999 | 21.92006 | 0.4761303 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-132.5 | 54.5 | 35.09755 | 0.4217223 | 13.29303 | 1.0793997 | 21.46185 | 0.4217223 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Future climate (+4C)
# Load data
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
kable(head(community_arb_future4C), "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
lon | lat | community_CTmax | community_CTmax_se | community_max_temp | community_max_temp_se | community_TSM | community_TSM_se | n_species | n_species_overheating | proportion_species_overheating | proportion_species_overheating_se | n_species_overheating_strict | proportion_species_overheating_strict | proportion_species_overheating_se_strict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-158.5 | 21.5 | 35.87435 | 1.7306178 | 25.66557 | 0.6282421 | 9.814141 | 1.7306178 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-157.5 | 21.5 | 38.01973 | 1.1118923 | 26.09707 | 0.6480026 | 11.501296 | 1.1118923 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
-133.5 | 53.5 | 35.22545 | 0.3476055 | 14.32490 | 1.0884031 | 20.550408 | 0.3476055 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-133.5 | 54.5 | 35.29009 | 0.3158709 | 14.91988 | 1.0852557 | 20.049704 | 0.3158709 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-132.5 | 53.5 | 35.16235 | 0.3832731 | 13.95471 | 1.1517807 | 20.828830 | 0.3832731 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-132.5 | 54.5 | 35.25330 | 0.3332472 | 14.60744 | 1.0845907 | 20.309158 | 0.3332472 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Number of communities with overheating species
Vegetated substrate
# Load data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
# Counts for each climatic scenario
n_commu_current <- n_distinct(community_sub_current[community_sub_current$n_species_overheating >
0, ])
n_commu_future2C <- n_distinct(community_sub_future2C[community_sub_future2C$n_species_overheating >
0, ])
n_commu_future4C <- n_distinct(community_sub_future4C[community_sub_future4C$n_species_overheating >
0, ])
results_summary <- data.frame(Climate_Scenario = c("Current Climate", "Future Climate (+2C)",
"Future Climate (+4C)"), Number_sp_overheating = c(n_commu_current, n_commu_future2C,
n_commu_future4C))
kable(results_summary, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
Climate_Scenario | Number_sp_overheating |
---|---|
Current Climate | 253 |
Future Climate (+2C) | 426 |
Future Climate (+4C) | 1328 |
Pond or wetland
# Load data
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current.rds")
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C.rds")
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C.rds")
# Counts for each climatic scenario
n_commu_current <- n_distinct(community_pond_current[community_pond_current$n_species_overheating >
0, ])
n_commu_future2C <- n_distinct(community_pond_future2C[community_pond_future2C$n_species_overheating >
0, ])
n_commu_future4C <- n_distinct(community_pond_future4C[community_pond_future4C$n_species_overheating >
0, ])
results_summary <- data.frame(Climate_Scenario = c("Current Climate", "Future Climate (+2C)",
"Future Climate (+4C)"), Number_sp_overheating = c(n_commu_current, n_commu_future2C,
n_commu_future4C))
kable(results_summary, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
Climate_Scenario | Number_sp_overheating |
---|---|
Current Climate | 0 |
Future Climate (+2C) | 0 |
Future Climate (+4C) | 48 |
Above-ground vegetation
# Load data
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
# Counts for each climatic scenario
n_commu_current <- n_distinct(community_arb_current[community_arb_current$n_species_overheating >
0, ])
n_commu_future2C <- n_distinct(community_arb_future2C[community_arb_future2C$n_species_overheating >
0, ])
n_commu_future4C <- n_distinct(community_arb_future4C[community_arb_future4C$n_species_overheating >
0, ])
results_summary <- data.frame(Climate_Scenario = c("Current Climate", "Future Climate (+2C)",
"Future Climate (+4C)"), Number_sp_overheating = c(n_commu_current, n_commu_future2C,
n_commu_future4C))
kable(results_summary, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "250px")
Climate_Scenario | Number_sp_overheating |
---|---|
Current Climate | 74 |
Future Climate (+2C) | 111 |
Future Climate (+4C) | 285 |
Data summaries
Vegetated substrate
summary(community_sub_current)
## lon lat community_CTmax community_CTmax_se
## Min. :-166.50 Min. :-54.50 Min. :29.26 Min. : 0.1213
## 1st Qu.: -61.50 1st Qu.: 0.50 1st Qu.:34.98 1st Qu.: 0.5730
## Median : 30.50 Median : 33.50 Median :36.74 Median : 1.1903
## Mean : 23.33 Mean : 26.42 Mean :36.65 Mean : 1.5986
## 3rd Qu.: 102.50 3rd Qu.: 53.50 3rd Qu.:38.68 3rd Qu.: 2.0408
## Max. : 178.50 Max. : 71.50 Max. :45.43 Max. :18.0169
## community_max_temp community_max_temp_se community_TSM community_TSM_se
## Min. : 1.106 Min. : 0.2772 Min. : 7.326 Min. : 0.1213
## 1st Qu.:16.677 1st Qu.: 0.9795 1st Qu.:12.324 1st Qu.: 0.5730
## Median :21.426 Median : 1.5833 Median :14.791 Median : 1.1903
## Mean :20.921 Mean : 1.8187 Mean :15.191 Mean : 1.5986
## 3rd Qu.:26.198 3rd Qu.: 2.4244 3rd Qu.:17.302 3rd Qu.: 2.0408
## Max. :31.130 Max. :11.4393 Max. :33.523 Max. :18.0169
## n_species n_species_overheating proportion_species_overheating
## Min. : 1.00 Min. : 0.00000 Min. :0.000000
## 1st Qu.: 2.00 1st Qu.: 0.00000 1st Qu.:0.000000
## Median : 7.00 Median : 0.00000 Median :0.000000
## Mean : 14.47 Mean : 0.05933 Mean :0.002082
## 3rd Qu.: 19.00 3rd Qu.: 0.00000 3rd Qu.:0.000000
## Max. :158.00 Max. :18.00000 Max. :1.000000
## proportion_species_overheating_se n_species_overheating_strict
## Min. :0.000000 Min. :0.000000
## 1st Qu.:0.000000 1st Qu.:0.000000
## Median :0.000000 Median :0.000000
## Mean :0.004606 Mean :0.005819
## 3rd Qu.:0.000000 3rd Qu.:0.000000
## Max. :0.707107 Max. :4.000000
## proportion_species_overheating_strict proportion_species_overheating_se_strict
## Min. :0.000e+00 Min. :0.0000000
## 1st Qu.:0.000e+00 1st Qu.:0.0000000
## Median :0.000e+00 Median :0.0000000
## Mean :8.284e-05 Mean :0.0005369
## 3rd Qu.:0.000e+00 3rd Qu.:0.0000000
## Max. :3.846e-02 Max. :0.1932390
summary(community_sub_future2C)
## lon lat community_CTmax community_CTmax_se
## Min. :-166.50 Min. :-54.50 Min. :29.32 Min. : 0.1167
## 1st Qu.: -61.50 1st Qu.: 0.50 1st Qu.:35.13 1st Qu.: 0.5223
## Median : 30.50 Median : 33.50 Median :36.93 Median : 0.9993
## Mean : 23.33 Mean : 26.43 Mean :36.80 Mean : 1.3283
## 3rd Qu.: 102.50 3rd Qu.: 53.50 3rd Qu.:38.86 3rd Qu.: 1.7352
## Max. : 178.50 Max. : 71.50 Max. :45.35 Max. :16.8344
## community_max_temp community_max_temp_se community_TSM community_TSM_se
## Min. : 1.601 Min. : 0.2740 Min. : 6.862 Min. : 0.1167
## 1st Qu.:17.813 1st Qu.: 0.9301 1st Qu.:11.512 1st Qu.: 0.5223
## Median :23.010 Median : 1.5320 Median :13.584 Median : 0.9993
## Mean :22.035 Mean : 1.7857 Mean :14.298 Mean : 1.3283
## 3rd Qu.:27.173 3rd Qu.: 2.3963 3rd Qu.:16.419 3rd Qu.: 1.7352
## Max. :32.315 Max. :12.5131 Max. :32.257 Max. :16.8344
## n_species n_species_overheating proportion_species_overheating
## Min. : 1.00 Min. : 0.0000 Min. :0.000000
## 1st Qu.: 2.00 1st Qu.: 0.0000 1st Qu.:0.000000
## Median : 7.00 Median : 0.0000 Median :0.000000
## Mean : 14.47 Mean : 0.1011 Mean :0.003736
## 3rd Qu.: 19.00 3rd Qu.: 0.0000 3rd Qu.:0.000000
## Max. :158.00 Max. :20.0000 Max. :1.000000
## proportion_species_overheating_se n_species_overheating_strict
## Min. :0.00000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000
## Mean :0.00789 Mean :0.01462
## 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :0.57735 Max. :8.00000
## proportion_species_overheating_strict proportion_species_overheating_se_strict
## Min. :0.0000000 Min. :0.000000
## 1st Qu.:0.0000000 1st Qu.:0.000000
## Median :0.0000000 Median :0.000000
## Mean :0.0002319 Mean :0.001232
## 3rd Qu.:0.0000000 3rd Qu.:0.000000
## Max. :0.1666667 Max. :0.408248
summary(community_sub_future4C)
## lon lat community_CTmax community_CTmax_se
## Min. :-166.50 Min. :-54.50 Min. :29.40 Min. : 0.1191
## 1st Qu.: -61.50 1st Qu.: 0.50 1st Qu.:35.39 1st Qu.: 0.4885
## Median : 30.50 Median : 33.50 Median :37.31 Median : 0.8511
## Mean : 23.33 Mean : 26.43 Mean :37.07 Mean : 1.0712
## 3rd Qu.: 102.50 3rd Qu.: 53.50 3rd Qu.:39.17 3rd Qu.: 1.4807
## Max. : 178.50 Max. : 71.50 Max. :45.32 Max. :15.3900
## community_max_temp community_max_temp_se community_TSM community_TSM_se
## Min. : 1.434 Min. : 0.2730 Min. : 4.053 Min. : 0.1191
## 1st Qu.:19.971 1st Qu.: 0.9353 1st Qu.: 9.834 1st Qu.: 0.4885
## Median :25.568 Median : 1.5527 Median :11.754 Median : 0.8511
## Mean :24.226 Mean : 1.8062 Mean :12.587 Mean : 1.0712
## 3rd Qu.:29.080 3rd Qu.: 2.4510 3rd Qu.:14.868 3rd Qu.: 1.4807
## Max. :35.135 Max. :12.0536 Max. :35.323 Max. :15.3900
## n_species n_species_overheating proportion_species_overheating
## Min. : 1.00 Min. : 0.0000 Min. :0.00000
## 1st Qu.: 2.00 1st Qu.: 0.0000 1st Qu.:0.00000
## Median : 7.00 Median : 0.0000 Median :0.00000
## Mean : 14.47 Mean : 0.3015 Mean :0.01797
## 3rd Qu.: 19.00 3rd Qu.: 0.0000 3rd Qu.:0.00000
## Max. :158.00 Max. :37.0000 Max. :1.00000
## proportion_species_overheating_se n_species_overheating_strict
## Min. :0.00000 Min. : 0.0000
## 1st Qu.:0.00000 1st Qu.: 0.0000
## Median :0.00000 Median : 0.0000
## Mean :0.02985 Mean : 0.1033
## 3rd Qu.:0.00000 3rd Qu.: 0.0000
## Max. :0.70711 Max. :15.0000
## proportion_species_overheating_strict proportion_species_overheating_se_strict
## Min. :0.000000 Min. :0.0000
## 1st Qu.:0.000000 1st Qu.:0.0000
## Median :0.000000 Median :0.0000
## Mean :0.004919 Mean :0.0105
## 3rd Qu.:0.000000 3rd Qu.:0.0000
## Max. :1.000000 Max. :0.7071
Pond or wetland
summary(community_pond_current)
## lon lat community_CTmax community_CTmax_se
## Min. :-166.50 Min. :-54.50 Min. :29.07 Min. : 0.1182
## 1st Qu.: -61.50 1st Qu.: 0.50 1st Qu.:35.08 1st Qu.: 0.5134
## Median : 30.50 Median : 33.50 Median :36.95 Median : 0.9164
## Mean : 23.32 Mean : 26.42 Mean :36.82 Mean : 1.3063
## 3rd Qu.: 102.50 3rd Qu.: 53.50 3rd Qu.:38.99 3rd Qu.: 1.7381
## Max. : 178.50 Max. : 71.50 Max. :45.27 Max. :19.1743
## community_max_temp community_max_temp_se community_TSM community_TSM_se
## Min. :-9.592 Min. :0.1390 Min. : 8.137 Min. : 0.1182
## 1st Qu.:13.874 1st Qu.:0.5659 1st Qu.:13.941 1st Qu.: 0.5134
## Median :18.979 Median :1.3682 Median :17.292 Median : 0.9164
## Mean :18.785 Mean :1.4041 Mean :17.590 Mean : 1.3063
## 3rd Qu.:24.943 3rd Qu.:2.0225 3rd Qu.:20.157 3rd Qu.: 1.7381
## Max. :30.137 Max. :5.8776 Max. :43.526 Max. :19.1743
## n_species n_species_overheating proportion_species_overheating
## Min. : 1.00 Min. :0 Min. :0
## 1st Qu.: 2.00 1st Qu.:0 1st Qu.:0
## Median : 7.00 Median :0 Median :0
## Mean : 14.53 Mean :0 Mean :0
## 3rd Qu.: 19.00 3rd Qu.:0 3rd Qu.:0
## Max. :158.00 Max. :0 Max. :0
## proportion_species_overheating_se n_species_overheating_strict
## Min. :0 Min. :0
## 1st Qu.:0 1st Qu.:0
## Median :0 Median :0
## Mean :0 Mean :0
## 3rd Qu.:0 3rd Qu.:0
## Max. :0 Max. :0
## proportion_species_overheating_strict proportion_species_overheating_se_strict
## Min. :0 Min. :0
## 1st Qu.:0 1st Qu.:0
## Median :0 Median :0
## Mean :0 Mean :0
## 3rd Qu.:0 3rd Qu.:0
## Max. :0 Max. :0
summary(community_pond_future2C)
## lon lat community_CTmax community_CTmax_se
## Min. :-166.50 Min. :-54.50 Min. :29.22 Min. : 0.1155
## 1st Qu.: -61.50 1st Qu.: 0.50 1st Qu.:35.28 1st Qu.: 0.4899
## Median : 30.50 Median : 33.50 Median :37.18 Median : 0.8535
## Mean : 23.32 Mean : 26.43 Mean :37.02 Mean : 1.1815
## 3rd Qu.: 102.50 3rd Qu.: 53.50 3rd Qu.:39.21 3rd Qu.: 1.5879
## Max. : 178.50 Max. : 71.50 Max. :45.56 Max. :17.9086
## community_max_temp community_max_temp_se community_TSM community_TSM_se
## Min. :-8.232 Min. :0.1393 Min. : 7.405 Min. : 0.1155
## 1st Qu.:15.219 1st Qu.:0.5907 1st Qu.:13.088 1st Qu.: 0.4899
## Median :20.217 Median :1.3659 Median :16.328 Median : 0.8535
## Mean :20.098 Mean :1.4214 Mean :16.624 Mean : 1.1815
## 3rd Qu.:26.223 3rd Qu.:2.0425 3rd Qu.:19.167 3rd Qu.: 1.5879
## Max. :31.782 Max. :6.0906 Max. :42.484 Max. :17.9086
## n_species n_species_overheating proportion_species_overheating
## Min. : 1.00 Min. :0 Min. :0
## 1st Qu.: 2.00 1st Qu.:0 1st Qu.:0
## Median : 7.00 Median :0 Median :0
## Mean : 14.53 Mean :0 Mean :0
## 3rd Qu.: 19.00 3rd Qu.:0 3rd Qu.:0
## Max. :158.00 Max. :0 Max. :0
## proportion_species_overheating_se n_species_overheating_strict
## Min. :0 Min. :0
## 1st Qu.:0 1st Qu.:0
## Median :0 Median :0
## Mean :0 Mean :0
## 3rd Qu.:0 3rd Qu.:0
## Max. :0 Max. :0
## proportion_species_overheating_strict proportion_species_overheating_se_strict
## Min. :0 Min. :0
## 1st Qu.:0 1st Qu.:0
## Median :0 Median :0
## Mean :0 Mean :0
## 3rd Qu.:0 3rd Qu.:0
## Max. :0 Max. :0
summary(community_pond_future4C)
## lon lat community_CTmax community_CTmax_se
## Min. :-166.50 Min. :-54.50 Min. :29.36 Min. : 0.1214
## 1st Qu.: -61.50 1st Qu.: 0.50 1st Qu.:35.61 1st Qu.: 0.5146
## Median : 30.50 Median : 33.50 Median :37.56 Median : 0.9767
## Mean : 23.32 Mean : 26.43 Mean :37.32 Mean : 1.2968
## 3rd Qu.: 102.50 3rd Qu.: 53.50 3rd Qu.:39.45 3rd Qu.: 1.6013
## Max. : 178.50 Max. : 71.50 Max. :46.05 Max. :16.0988
## community_max_temp community_max_temp_se community_TSM community_TSM_se
## Min. :-5.07 Min. :0.1369 Min. : 4.432 Min. : 0.1214
## 1st Qu.:17.48 1st Qu.:0.6343 1st Qu.:11.620 1st Qu.: 0.5146
## Median :22.34 Median :1.3655 Median :14.912 Median : 0.9767
## Mean :22.21 Mean :1.4339 Mean :15.091 Mean : 1.2968
## 3rd Qu.:28.09 3rd Qu.:2.0254 3rd Qu.:17.706 3rd Qu.: 1.6013
## Max. :34.55 Max. :6.6509 Max. :39.749 Max. :16.0988
## n_species n_species_overheating proportion_species_overheating
## Min. : 1.00 Min. :0.000000 Min. :0.0000000
## 1st Qu.: 2.00 1st Qu.:0.000000 1st Qu.:0.0000000
## Median : 7.00 Median :0.000000 Median :0.0000000
## Mean : 14.53 Mean :0.003974 Mean :0.0002084
## 3rd Qu.: 19.00 3rd Qu.:0.000000 3rd Qu.:0.0000000
## Max. :158.00 Max. :2.000000 Max. :0.2857143
## proportion_species_overheating_se n_species_overheating_strict
## Min. :0.0000000 Min. :0.0000000
## 1st Qu.:0.0000000 1st Qu.:0.0000000
## Median :0.0000000 Median :0.0000000
## Mean :0.0007117 Mean :0.0008516
## 3rd Qu.:0.0000000 3rd Qu.:0.0000000
## Max. :0.4879500 Max. :2.0000000
## proportion_species_overheating_strict proportion_species_overheating_se_strict
## Min. :0.000e+00 Min. :0.0000000
## 1st Qu.:0.000e+00 1st Qu.:0.0000000
## Median :0.000e+00 Median :0.0000000
## Mean :7.511e-05 Mean :0.0002021
## 3rd Qu.:0.000e+00 3rd Qu.:0.0000000
## Max. :2.857e-01 Max. :0.4879500
Above-ground vegetation
summary(community_arb_current)
## lon lat community_CTmax community_CTmax_se
## Min. :-158.50 Min. :-51.500 Min. :31.27 Min. : 0.2136
## 1st Qu.: -61.50 1st Qu.:-12.500 1st Qu.:37.94 1st Qu.: 0.8569
## Median : 17.50 Median : 4.500 Median :39.05 Median : 1.6694
## Mean : 16.65 Mean : 7.019 Mean :38.76 Mean : 2.2242
## 3rd Qu.: 99.50 3rd Qu.: 27.500 3rd Qu.:39.59 3rd Qu.: 3.1685
## Max. : 177.50 Max. : 57.500 Max. :45.59 Max. :19.2463
## community_max_temp community_max_temp_se community_TSM community_TSM_se
## Min. : 2.168 Min. :0.2319 Min. : 7.765 Min. : 0.2136
## 1st Qu.:22.172 1st Qu.:0.6832 1st Qu.:12.074 1st Qu.: 0.8569
## Median :25.430 Median :0.9272 Median :13.608 Median : 1.6694
## Mean :24.242 Mean :1.1104 Mean :14.252 Mean : 2.2242
## 3rd Qu.:27.046 3rd Qu.:1.3950 3rd Qu.:16.044 3rd Qu.: 3.1685
## Max. :29.827 Max. :9.2086 Max. :33.467 Max. :19.2463
## n_species n_species_overheating proportion_species_overheating
## Min. : 1.000 Min. :0.00000 Min. :0.0000000
## 1st Qu.: 1.000 1st Qu.:0.00000 1st Qu.:0.0000000
## Median : 4.000 Median :0.00000 Median :0.0000000
## Mean : 8.499 Mean :0.02298 Mean :0.0005957
## 3rd Qu.:10.000 3rd Qu.:0.00000 3rd Qu.:0.0000000
## Max. :88.000 Max. :6.00000 Max. :0.2000000
## proportion_species_overheating_se n_species_overheating_strict
## Min. :0.000000 Min. :0.000000
## 1st Qu.:0.000000 1st Qu.:0.000000
## Median :0.000000 Median :0.000000
## Mean :0.002402 Mean :0.001058
## 3rd Qu.:0.000000 3rd Qu.:0.000000
## Max. :0.447214 Max. :1.000000
## proportion_species_overheating_strict proportion_species_overheating_se_strict
## Min. :0.000e+00 Min. :0.0000000
## 1st Qu.:0.000e+00 1st Qu.:0.0000000
## Median :0.000e+00 Median :0.0000000
## Mean :2.006e-05 Mean :0.0001456
## 3rd Qu.:0.000e+00 3rd Qu.:0.0000000
## Max. :2.174e-02 Max. :0.1474420
summary(community_arb_future2C)
## lon lat community_CTmax community_CTmax_se
## Min. :-158.50 Min. :-51.500 Min. :31.35 Min. : 0.2143
## 1st Qu.: -61.50 1st Qu.:-12.500 1st Qu.:38.04 1st Qu.: 0.7129
## Median : 17.50 Median : 4.500 Median :39.16 Median : 1.3155
## Mean : 16.65 Mean : 7.019 Mean :38.87 Mean : 1.8070
## 3rd Qu.: 99.50 3rd Qu.: 27.500 3rd Qu.:39.69 3rd Qu.: 2.5081
## Max. : 177.50 Max. : 57.500 Max. :45.50 Max. :17.2673
## community_max_temp community_max_temp_se community_TSM community_TSM_se
## Min. : 1.844 Min. :0.2266 Min. : 7.474 Min. : 0.2143
## 1st Qu.:23.443 1st Qu.:0.6620 1st Qu.:11.415 1st Qu.: 0.7129
## Median :26.366 Median :0.8841 Median :12.797 Median : 1.3155
## Mean :25.224 Mean :1.0645 Mean :13.424 Mean : 1.8070
## 3rd Qu.:27.752 3rd Qu.:1.3196 3rd Qu.:14.990 3rd Qu.: 2.5081
## Max. :30.435 Max. :9.7651 Max. :33.790 Max. :17.2673
## n_species n_species_overheating proportion_species_overheating
## Min. : 1.000 Min. :0.00000 Min. :0.000000
## 1st Qu.: 1.000 1st Qu.:0.00000 1st Qu.:0.000000
## Median : 4.000 Median :0.00000 Median :0.000000
## Mean : 8.499 Mean :0.04279 Mean :0.001336
## 3rd Qu.:10.000 3rd Qu.:0.00000 3rd Qu.:0.000000
## Max. :88.000 Max. :8.00000 Max. :0.500000
## proportion_species_overheating_se n_species_overheating_strict
## Min. :0.000000 Min. :0.000000
## 1st Qu.:0.000000 1st Qu.:0.000000
## Median :0.000000 Median :0.000000
## Mean :0.004311 Mean :0.003175
## 3rd Qu.:0.000000 3rd Qu.:0.000000
## Max. :0.707107 Max. :2.000000
## proportion_species_overheating_strict proportion_species_overheating_se_strict
## Min. :0.000e+00 Min. :0.0000000
## 1st Qu.:0.000e+00 1st Qu.:0.0000000
## Median :0.000e+00 Median :0.0000000
## Mean :6.163e-05 Mean :0.0004048
## 3rd Qu.:0.000e+00 3rd Qu.:0.0000000
## Max. :3.846e-02 Max. :0.1941839
summary(community_arb_future4C)
## lon lat community_CTmax community_CTmax_se
## Min. :-158.50 Min. :-51.500 Min. :31.51 Min. : 0.2132
## 1st Qu.: -61.50 1st Qu.:-12.500 1st Qu.:38.24 1st Qu.: 0.6157
## Median : 17.50 Median : 4.500 Median :39.39 Median : 1.0321
## Mean : 16.65 Mean : 7.019 Mean :39.07 Mean : 1.3027
## 3rd Qu.: 99.50 3rd Qu.: 27.500 3rd Qu.:39.91 3rd Qu.: 1.6991
## Max. : 177.50 Max. : 57.500 Max. :45.66 Max. :15.2617
## community_max_temp community_max_temp_se community_TSM community_TSM_se
## Min. : 2.172 Min. : 0.2195 Min. : 6.080 Min. : 0.2132
## 1st Qu.:25.844 1st Qu.: 0.6673 1st Qu.: 9.968 1st Qu.: 0.6157
## Median :28.143 Median : 0.9061 Median :11.171 Median : 1.0321
## Mean :27.133 Mean : 1.0827 Mean :11.819 Mean : 1.3027
## 3rd Qu.:29.381 3rd Qu.: 1.3465 3rd Qu.:13.104 3rd Qu.: 1.6991
## Max. :33.787 Max. :11.7245 Max. :34.630 Max. :15.2617
## n_species n_species_overheating proportion_species_overheating
## Min. : 1.000 Min. : 0.0000 Min. :0.000000
## 1st Qu.: 1.000 1st Qu.: 0.0000 1st Qu.:0.000000
## Median : 4.000 Median : 0.0000 Median :0.000000
## Mean : 8.499 Mean : 0.1131 Mean :0.003957
## 3rd Qu.:10.000 3rd Qu.: 0.0000 3rd Qu.:0.000000
## Max. :88.000 Max. :11.0000 Max. :1.000000
## proportion_species_overheating_se n_species_overheating_strict
## Min. :0.00000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000
## Mean :0.01137 Mean :0.03961
## 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :0.70711 Max. :7.00000
## proportion_species_overheating_strict proportion_species_overheating_se_strict
## Min. :0.0000000 Min. :0.000000
## 1st Qu.:0.0000000 1st Qu.:0.000000
## Median :0.0000000 Median :0.000000
## Mean :0.0008389 Mean :0.003495
## 3rd Qu.:0.0000000 3rd Qu.:0.000000
## Max. :0.1206897 Max. :0.328611
Predicted CTmax of each species
# Load imputed data
imputed_data <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
# Filter to imputed data and select relevant columns
imputed_data <- filter(imputed_data, imputed == "yes")
imputed_data <- dplyr::select(imputed_data, species = tip.label, order, IUCN_status,
ecotype, acclimation_temperature = acclimation_temp, predicted_CTmax = filled_mean_UTL5,
lower_95CI = lower_mean_UTL, upper_95CI = upper_mean_UTL)
# Display data
kable(imputed_data, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
species | order | IUCN_status | ecotype | acclimation_temperature | predicted_CTmax | lower_95CI | upper_95CI |
---|---|---|---|---|---|---|---|
Pleurodema thaul | Anura | LC | Ground-dwelling | 15.463748 | 38.10344 | 37.22839 | 38.89933 |
Pleurodema thaul | Anura | LC | Ground-dwelling | 13.430227 | 37.81469 | 36.88420 | 38.60340 |
Pleurodema thaul | Anura | LC | Ground-dwelling | 19.618585 | 38.69341 | 37.73227 | 39.50440 |
Anaxyrus americanus | Anura | LC | Ground-dwelling | 19.122093 | 38.92091 | 38.41185 | 39.40160 |
Anaxyrus americanus | Anura | LC | Ground-dwelling | 15.674680 | 38.60556 | 38.05185 | 39.11823 |
Anaxyrus americanus | Anura | LC | Ground-dwelling | 23.517150 | 39.32294 | 38.78115 | 39.87656 |
Dryophytes versicolor | Anura | LC | Arboreal | 22.065446 | 40.14071 | 38.96226 | 41.39508 |
Dryophytes versicolor | Anura | LC | Arboreal | 19.011121 | 39.75760 | 38.67100 | 41.04572 |
Dryophytes versicolor | Anura | LC | Arboreal | 26.206637 | 40.66015 | 39.31047 | 42.09517 |
Pseudacris crucifer | Anura | LC | Arboreal | 21.817045 | 37.62693 | 36.34249 | 39.18047 |
Pseudacris crucifer | Anura | LC | Arboreal | 18.767761 | 37.24850 | 35.82576 | 38.60354 |
Pseudacris crucifer | Anura | LC | Arboreal | 25.779018 | 38.11862 | 36.58169 | 39.57903 |
Rana cascadae | Anura | LC | Semi-aquatic | 17.631615 | 34.31408 | 33.11589 | 35.45648 |
Rana cascadae | Anura | LC | Semi-aquatic | 15.554605 | 34.05063 | 32.79932 | 35.24507 |
Rana cascadae | Anura | LC | Semi-aquatic | 20.879876 | 34.72610 | 33.53585 | 35.86237 |
Rana luteiventris | Anura | LC | Aquatic | 15.327719 | 35.01461 | 33.24360 | 36.84351 |
Rana luteiventris | Anura | LC | Aquatic | 12.500964 | 34.61194 | 32.77004 | 36.44644 |
Rana luteiventris | Anura | LC | Aquatic | 19.712970 | 35.63928 | 33.57624 | 37.30083 |
Lithobates sphenocephalus | Anura | LC | Semi-aquatic | 25.917240 | 39.12878 | 37.48914 | 41.06474 |
Lithobates sphenocephalus | Anura | LC | Semi-aquatic | 23.191184 | 38.77741 | 37.10617 | 40.37965 |
Lithobates sphenocephalus | Anura | LC | Semi-aquatic | 29.075561 | 39.53587 | 37.49439 | 41.51158 |
Hylomantis aspera | Anura | LC | Arboreal | 25.150077 | 38.61316 | 36.52150 | 40.96978 |
Hylomantis aspera | Anura | LC | Arboreal | 24.324014 | 38.50234 | 36.45610 | 40.87586 |
Hylomantis aspera | Anura | LC | Arboreal | 26.642705 | 38.81340 | 36.63182 | 41.15960 |
Alytes cisternasii | Anura | LC | Ground-dwelling | 20.960597 | 36.42807 | 35.48323 | 37.49598 |
Alytes cisternasii | Anura | LC | Ground-dwelling | 19.033210 | 36.10631 | 35.20329 | 37.08004 |
Alytes cisternasii | Anura | LC | Ground-dwelling | 24.098229 | 36.95187 | 35.74170 | 38.01497 |
Alytes dickhilleni | Anura | EN | Ground-dwelling | 22.370947 | 37.33613 | 36.06117 | 38.56023 |
Alytes dickhilleni | Anura | EN | Ground-dwelling | 20.528157 | 37.11195 | 35.89012 | 38.23478 |
Alytes dickhilleni | Anura | EN | Ground-dwelling | 24.883578 | 37.64180 | 36.22978 | 38.99728 |
Alytes obstetricans | Anura | LC | Ground-dwelling | 19.264184 | 36.07213 | 34.93983 | 37.21620 |
Alytes obstetricans | Anura | LC | Ground-dwelling | 17.153941 | 35.75180 | 34.60714 | 36.80148 |
Alytes obstetricans | Anura | LC | Ground-dwelling | 22.792516 | 36.60773 | 35.43546 | 37.96771 |
Bufotes boulengeri | Anura | LC | Ground-dwelling | 23.173925 | 39.50641 | 37.42884 | 41.43809 |
Bufotes boulengeri | Anura | LC | Ground-dwelling | 21.852330 | 39.32406 | 37.32270 | 41.33521 |
Bufotes boulengeri | Anura | LC | Ground-dwelling | 25.686514 | 39.85307 | 37.68330 | 41.79840 |
Barbarophryne brongersmai | Anura | LC | Ground-dwelling | 22.112689 | 38.47828 | 37.63872 | 39.32604 |
Barbarophryne brongersmai | Anura | LC | Ground-dwelling | 20.839716 | 38.33425 | 37.59936 | 39.23796 |
Barbarophryne brongersmai | Anura | LC | Ground-dwelling | 24.342688 | 38.73061 | 37.81238 | 39.62742 |
Bufo bufo | Anura | LC | Ground-dwelling | 17.855448 | 36.53730 | 35.69461 | 37.23484 |
Bufo bufo | Anura | LC | Ground-dwelling | 14.755367 | 36.20395 | 35.40753 | 37.05268 |
Bufo bufo | Anura | LC | Ground-dwelling | 22.586930 | 37.04609 | 36.24178 | 37.88581 |
Epidalea calamita | Anura | LC | Ground-dwelling | 18.294835 | 37.74490 | 36.84573 | 38.61511 |
Epidalea calamita | Anura | LC | Ground-dwelling | 15.822059 | 37.37088 | 36.50317 | 38.23606 |
Epidalea calamita | Anura | LC | Ground-dwelling | 22.723061 | 38.41468 | 37.42149 | 39.45575 |
Ceratophrys aurita | Anura | LC | Ground-dwelling | 25.264245 | 40.14391 | 38.09167 | 42.43652 |
Ceratophrys aurita | Anura | LC | Ground-dwelling | 24.193216 | 40.00391 | 37.95313 | 42.30894 |
Ceratophrys aurita | Anura | LC | Ground-dwelling | 27.244999 | 40.40282 | 38.31375 | 42.67976 |
Dendropsophus branneri | Anura | LC | Arboreal | 25.906170 | 39.18379 | 37.94444 | 40.37139 |
Dendropsophus branneri | Anura | LC | Arboreal | 24.998267 | 39.08403 | 37.75504 | 40.13238 |
Dendropsophus branneri | Anura | LC | Arboreal | 27.610415 | 39.37106 | 38.01644 | 40.56276 |
Dendropsophus elegans | Anura | LC | Arboreal | 25.339773 | 38.91596 | 37.56247 | 40.42926 |
Dendropsophus elegans | Anura | LC | Arboreal | 24.239965 | 38.78553 | 37.32726 | 40.14636 |
Dendropsophus elegans | Anura | LC | Arboreal | 27.348396 | 39.15416 | 37.68104 | 40.61965 |
Dendropsophus haddadi | Anura | LC | Arboreal | 25.231623 | 37.47571 | 35.81743 | 39.25908 |
Dendropsophus haddadi | Anura | LC | Arboreal | 24.348311 | 37.38168 | 35.76310 | 39.15526 |
Dendropsophus haddadi | Anura | LC | Arboreal | 26.776738 | 37.64019 | 36.00658 | 39.57072 |
Dendropsophus novaisi | Anura | DD | Arboreal | 24.840434 | 40.67349 | 39.25456 | 42.03659 |
Dendropsophus novaisi | Anura | DD | Arboreal | 23.727946 | 40.53549 | 39.17512 | 41.98645 |
Dendropsophus novaisi | Anura | DD | Arboreal | 27.226817 | 40.96950 | 39.59491 | 42.43510 |
Discoglossus galganoi | Anura | LC | Ground-dwelling | 20.650608 | 36.30486 | 34.75851 | 37.74577 |
Discoglossus galganoi | Anura | LC | Ground-dwelling | 18.744411 | 35.97323 | 34.53306 | 37.45971 |
Discoglossus galganoi | Anura | LC | Ground-dwelling | 23.539960 | 36.80754 | 35.27078 | 38.42091 |
Discoglossus pictus | Anura | LC | Ground-dwelling | 23.308752 | 37.63117 | 35.45122 | 39.77978 |
Discoglossus pictus | Anura | LC | Ground-dwelling | 21.568351 | 37.36858 | 35.25450 | 39.51171 |
Discoglossus pictus | Anura | LC | Ground-dwelling | 25.955073 | 38.03045 | 35.72859 | 40.24215 |
Discoglossus scovazzi | Anura | LC | Ground-dwelling | 21.901447 | 37.09122 | 35.27646 | 38.72669 |
Discoglossus scovazzi | Anura | LC | Ground-dwelling | 20.525669 | 36.88553 | 35.33998 | 38.73553 |
Discoglossus scovazzi | Anura | LC | Ground-dwelling | 24.299294 | 37.44973 | 35.80004 | 39.32725 |
Hyla arborea | Anura | LC | Arboreal | 18.592148 | 38.12536 | 36.94339 | 39.20401 |
Hyla arborea | Anura | LC | Arboreal | 16.133384 | 37.77391 | 36.76276 | 38.98075 |
Hyla arborea | Anura | LC | Arboreal | 23.102272 | 38.77003 | 37.44992 | 40.03325 |
Hyla meridionalis | Anura | LC | Arboreal | 21.653851 | 37.65431 | 36.98516 | 38.31533 |
Hyla meridionalis | Anura | LC | Arboreal | 19.904028 | 37.43987 | 36.76676 | 38.05589 |
Hyla meridionalis | Anura | LC | Arboreal | 24.409188 | 37.99197 | 37.30913 | 38.80327 |
Boana albomarginata | Anura | LC | Arboreal | 25.395633 | 40.40561 | 39.00315 | 42.08395 |
Boana albomarginata | Anura | LC | Arboreal | 24.262187 | 40.25600 | 38.87933 | 41.89761 |
Boana albomarginata | Anura | LC | Arboreal | 27.373206 | 40.66665 | 39.09499 | 42.35359 |
Boana faber | Anura | LC | Arboreal | 25.639795 | 40.87918 | 40.20370 | 41.68374 |
Boana faber | Anura | LC | Arboreal | 24.369854 | 40.72418 | 40.05100 | 41.49335 |
Boana faber | Anura | LC | Arboreal | 27.871194 | 41.15154 | 40.26844 | 41.91410 |
Leptodactylus fuscus | Anura | LC | Ground-dwelling | 26.941878 | 42.29611 | 40.12915 | 44.58408 |
Leptodactylus fuscus | Anura | LC | Ground-dwelling | 25.996500 | 42.16817 | 40.00971 | 44.38614 |
Leptodactylus fuscus | Anura | LC | Ground-dwelling | 28.784026 | 42.54543 | 40.18552 | 44.80138 |
Leptodactylus latrans | Anura | LC | Semi-aquatic | 26.408131 | 40.69743 | 39.83160 | 41.73152 |
Leptodactylus latrans | Anura | LC | Semi-aquatic | 25.300401 | 40.56324 | 39.67065 | 41.50387 |
Leptodactylus latrans | Anura | LC | Semi-aquatic | 28.514613 | 40.95261 | 39.89800 | 42.01274 |
Pelobates cultripes | Anura | VU | Ground-dwelling | 20.740381 | 38.05742 | 37.12363 | 38.95998 |
Pelobates cultripes | Anura | VU | Ground-dwelling | 18.795726 | 37.77608 | 36.92698 | 38.70589 |
Pelobates cultripes | Anura | VU | Ground-dwelling | 23.631916 | 38.47575 | 37.44438 | 39.52062 |
Pelodytes ibericus | Anura | LC | Semi-aquatic | 21.811513 | 35.59888 | 35.02264 | 36.20577 |
Pelodytes ibericus | Anura | LC | Semi-aquatic | 20.006828 | 35.43409 | 34.89251 | 36.04032 |
Pelodytes ibericus | Anura | LC | Semi-aquatic | 24.634864 | 35.85669 | 35.17822 | 36.57223 |
Pelodytes punctatus | Anura | LC | Semi-aquatic | 19.862542 | 35.87230 | 34.98078 | 36.95143 |
Pelodytes punctatus | Anura | LC | Semi-aquatic | 17.774726 | 35.63134 | 34.69994 | 36.63907 |
Pelodytes punctatus | Anura | LC | Semi-aquatic | 23.241043 | 36.26223 | 35.12303 | 37.32593 |
Phasmahyla spectabilis | Anura | DD | Arboreal | 25.349791 | 38.09159 | 36.37864 | 39.44414 |
Phasmahyla spectabilis | Anura | DD | Arboreal | 24.481954 | 37.98081 | 36.58047 | 39.59649 |
Phasmahyla spectabilis | Anura | DD | Arboreal | 27.135204 | 38.31949 | 36.59568 | 39.80467 |
Phyllodytes luteolus | Anura | LC | Arboreal | 25.276462 | 39.70829 | 38.26382 | 41.34600 |
Phyllodytes luteolus | Anura | LC | Arboreal | 24.438787 | 39.60109 | 38.10701 | 41.14002 |
Phyllodytes luteolus | Anura | LC | Arboreal | 26.732893 | 39.89468 | 38.37913 | 41.55709 |
Phyllodytes melanomystax | Anura | LC | Arboreal | 25.136527 | 40.58735 | 38.35016 | 42.66668 |
Phyllodytes melanomystax | Anura | LC | Arboreal | 24.291129 | 40.47488 | 38.37329 | 42.64952 |
Phyllodytes melanomystax | Anura | LC | Arboreal | 26.625417 | 40.78542 | 38.54172 | 42.93678 |
Pithecopus rohdei | Anura | LC | Arboreal | 25.645855 | 40.31657 | 38.16824 | 42.24255 |
Pithecopus rohdei | Anura | LC | Arboreal | 24.445115 | 40.15325 | 38.16378 | 42.15954 |
Pithecopus rohdei | Anura | LC | Arboreal | 27.794176 | 40.60878 | 38.44853 | 42.68228 |
Physalaemus camacan | Anura | DD | Ground-dwelling | 25.361645 | 39.71825 | 37.66106 | 42.06952 |
Physalaemus camacan | Anura | DD | Ground-dwelling | 24.597670 | 39.61595 | 37.60582 | 41.96530 |
Physalaemus camacan | Anura | DD | Ground-dwelling | 26.767371 | 39.90648 | 37.94382 | 42.42052 |
Physalaemus erikae | Anura | LC | Ground-dwelling | 25.355265 | 40.04766 | 37.82478 | 42.27657 |
Physalaemus erikae | Anura | LC | Ground-dwelling | 24.634345 | 39.95069 | 37.68547 | 42.09720 |
Physalaemus erikae | Anura | LC | Ground-dwelling | 26.707000 | 40.22948 | 38.08593 | 42.58549 |
Pipa carvalhoi | Anura | LC | Aquatic | 25.475894 | 39.57024 | 36.96498 | 42.02644 |
Pipa carvalhoi | Anura | LC | Aquatic | 24.539384 | 39.43955 | 36.84172 | 41.87225 |
Pipa carvalhoi | Anura | LC | Aquatic | 27.080545 | 39.79416 | 37.06314 | 42.29071 |
Pleurodeles waltl | Caudata | NT | Semi-aquatic | 21.379514 | 36.48250 | 35.10804 | 37.78484 |
Pleurodeles waltl | Caudata | NT | Semi-aquatic | 19.616555 | 36.24190 | 34.92006 | 37.54096 |
Pleurodeles waltl | Caudata | NT | Semi-aquatic | 24.150504 | 36.86066 | 35.48838 | 38.26530 |
Pelophylax perezi | Anura | LC | Semi-aquatic | 20.804521 | 38.36993 | 36.88445 | 39.79244 |
Pelophylax perezi | Anura | LC | Semi-aquatic | 18.915268 | 38.10553 | 36.71818 | 39.53697 |
Pelophylax perezi | Anura | LC | Semi-aquatic | 23.629346 | 38.76525 | 37.16691 | 40.25594 |
Rana temporaria | Anura | LC | Semi-aquatic | 16.651132 | 35.44709 | 34.97421 | 35.89911 |
Rana temporaria | Anura | LC | Semi-aquatic | 13.482010 | 35.03058 | 34.49873 | 35.53432 |
Rana temporaria | Anura | LC | Semi-aquatic | 21.738392 | 36.11570 | 35.61429 | 36.58598 |
Rhinella crucifer | Anura | LC | Ground-dwelling | 25.397915 | 40.28157 | 38.28283 | 42.20792 |
Rhinella crucifer | Anura | LC | Ground-dwelling | 24.464195 | 40.15777 | 38.18593 | 42.03138 |
Rhinella crucifer | Anura | LC | Ground-dwelling | 27.033544 | 40.49845 | 38.36255 | 42.43366 |
Rhinella hoogmoedi | Anura | LC | Ground-dwelling | 25.576216 | 39.14927 | 37.05240 | 41.38204 |
Rhinella hoogmoedi | Anura | LC | Ground-dwelling | 24.603794 | 39.03001 | 36.83452 | 41.12515 |
Rhinella hoogmoedi | Anura | LC | Ground-dwelling | 27.205460 | 39.34909 | 37.23015 | 41.67476 |
Rhinella diptycha | Anura | DD | Ground-dwelling | 27.481509 | 41.12811 | 39.85738 | 42.23158 |
Rhinella diptycha | Anura | DD | Ground-dwelling | 26.257249 | 40.97444 | 39.79755 | 42.06137 |
Rhinella diptycha | Anura | DD | Ground-dwelling | 29.666878 | 41.40243 | 40.12279 | 42.73833 |
Salamandra salamandra | Caudata | LC | Ground-dwelling | 19.534064 | 34.47876 | 33.20128 | 35.72961 |
Salamandra salamandra | Caudata | LC | Ground-dwelling | 17.119418 | 34.16249 | 32.98373 | 35.60072 |
Salamandra salamandra | Caudata | LC | Ground-dwelling | 23.598472 | 35.01111 | 33.70054 | 36.33778 |
Ololygon agilis | Anura | LC | Arboreal | 25.306808 | 41.32400 | 38.98708 | 43.80786 |
Ololygon agilis | Anura | LC | Arboreal | 24.547895 | 41.22652 | 38.93593 | 43.68638 |
Ololygon agilis | Anura | LC | Arboreal | 26.750661 | 41.50945 | 38.90526 | 43.79785 |
Scinax eurydice | Anura | LC | Arboreal | 25.821944 | 41.03284 | 39.58070 | 42.74988 |
Scinax eurydice | Anura | LC | Arboreal | 24.936357 | 40.91882 | 39.33257 | 42.41443 |
Scinax eurydice | Anura | LC | Arboreal | 27.503517 | 41.24935 | 39.72698 | 43.01170 |
Sphaenorhynchus prasinus | Anura | LC | Arboreal | 25.222129 | 40.43759 | 38.16638 | 42.54932 |
Sphaenorhynchus prasinus | Anura | LC | Arboreal | 24.303760 | 40.32064 | 38.06261 | 42.46639 |
Sphaenorhynchus prasinus | Anura | LC | Arboreal | 27.055607 | 40.67108 | 38.34645 | 42.81101 |
Trachycephalus mesophaeus | Anura | LC | Arboreal | 25.176322 | 40.22450 | 38.21113 | 42.46123 |
Trachycephalus mesophaeus | Anura | LC | Arboreal | 23.982734 | 40.07507 | 37.95266 | 42.18266 |
Trachycephalus mesophaeus | Anura | LC | Arboreal | 27.346637 | 40.49621 | 38.59998 | 42.91660 |
Triturus pygmaeus | Caudata | NT | Semi-aquatic | 21.291128 | 36.69927 | 35.04810 | 38.50982 |
Triturus pygmaeus | Caudata | NT | Semi-aquatic | 19.507261 | 36.46495 | 34.53290 | 37.96059 |
Triturus pygmaeus | Caudata | NT | Semi-aquatic | 24.064004 | 37.06351 | 35.34832 | 38.88223 |
Desmognathus carolinensis | Caudata | LC | Semi-aquatic | 25.918325 | 35.09802 | 32.88357 | 37.05101 |
Desmognathus carolinensis | Caudata | LC | Semi-aquatic | 23.765010 | 34.83246 | 32.87921 | 36.84785 |
Desmognathus carolinensis | Caudata | LC | Semi-aquatic | 28.939567 | 35.47062 | 33.13734 | 37.61486 |
Desmognathus fuscus | Caudata | LC | Semi-aquatic | 23.859174 | 35.59828 | 34.93641 | 36.31865 |
Desmognathus fuscus | Caudata | LC | Semi-aquatic | 20.860006 | 35.17295 | 34.49186 | 35.69665 |
Desmognathus fuscus | Caudata | LC | Semi-aquatic | 27.352062 | 36.09362 | 35.30626 | 36.96120 |
Desmognathus monticola | Caudata | LC | Semi-aquatic | 25.096452 | 35.24495 | 33.86494 | 36.74298 |
Desmognathus monticola | Caudata | LC | Semi-aquatic | 22.821356 | 34.95757 | 33.74975 | 36.41350 |
Desmognathus monticola | Caudata | LC | Semi-aquatic | 28.516688 | 35.67699 | 34.12108 | 37.39872 |
Desmognathus ochrophaeus | Caudata | LC | Ground-dwelling | 22.256460 | 34.09650 | 33.16078 | 35.09240 |
Desmognathus ochrophaeus | Caudata | LC | Ground-dwelling | 19.386642 | 33.73322 | 32.81031 | 34.60151 |
Desmognathus ochrophaeus | Caudata | LC | Ground-dwelling | 25.978825 | 34.56771 | 33.28213 | 35.66781 |
Desmognathus ocoee | Caudata | LC | Aquatic | 26.771094 | 35.27167 | 33.08376 | 37.54190 |
Desmognathus ocoee | Caudata | LC | Aquatic | 24.763603 | 35.02020 | 32.89100 | 37.13601 |
Desmognathus ocoee | Caudata | LC | Aquatic | 29.770476 | 35.64740 | 33.37176 | 38.19462 |
Desmognathus orestes | Caudata | LC | Ground-dwelling | 25.659643 | 35.20866 | 33.12460 | 37.74128 |
Desmognathus orestes | Caudata | LC | Ground-dwelling | 23.325119 | 34.91615 | 32.86278 | 37.23080 |
Desmognathus orestes | Caudata | LC | Ground-dwelling | 28.735461 | 35.59406 | 33.35455 | 38.26243 |
Plethodon cinereus | Caudata | LC | Ground-dwelling | 20.562720 | 35.22343 | 34.22453 | 36.11166 |
Plethodon cinereus | Caudata | LC | Ground-dwelling | 17.159364 | 34.83922 | 33.99444 | 35.65751 |
Plethodon cinereus | Caudata | LC | Ground-dwelling | 24.628324 | 35.68240 | 34.45277 | 36.75955 |
Plethodon hubrichti | Caudata | VU | Ground-dwelling | 25.055749 | 34.63426 | 32.97317 | 36.33933 |
Plethodon hubrichti | Caudata | VU | Ground-dwelling | 22.277467 | 34.30537 | 32.80618 | 35.86399 |
Plethodon hubrichti | Caudata | VU | Ground-dwelling | 28.347050 | 35.02389 | 33.18011 | 36.89623 |
Plethodon richmondi | Caudata | LC | Ground-dwelling | 25.349730 | 35.09728 | 33.44782 | 36.85404 |
Plethodon richmondi | Caudata | LC | Ground-dwelling | 22.930877 | 34.79794 | 33.25171 | 36.37157 |
Plethodon richmondi | Caudata | LC | Ground-dwelling | 28.542972 | 35.49245 | 33.50797 | 37.40958 |
Plethodon virginia | Caudata | NT | Ground-dwelling | 24.787448 | 34.90653 | 32.77881 | 36.98873 |
Plethodon virginia | Caudata | NT | Ground-dwelling | 21.794457 | 34.53918 | 32.64672 | 36.71767 |
Plethodon virginia | Caudata | NT | Ground-dwelling | 27.992287 | 35.29989 | 33.00333 | 37.52142 |
Plethodon cylindraceus | Caudata | LC | Ground-dwelling | 25.085179 | 34.35712 | 33.21722 | 35.42912 |
Plethodon cylindraceus | Caudata | LC | Ground-dwelling | 20.903442 | 33.89003 | 32.95546 | 34.79426 |
Plethodon cylindraceus | Caudata | LC | Ground-dwelling | 28.042615 | 34.68746 | 33.44198 | 36.01642 |
Plethodon glutinosus | Caudata | LC | Ground-dwelling | 24.961828 | 35.00158 | 34.17515 | 35.88874 |
Plethodon glutinosus | Caudata | LC | Ground-dwelling | 22.023323 | 34.66136 | 33.97446 | 35.44936 |
Plethodon glutinosus | Caudata | LC | Ground-dwelling | 28.358123 | 35.39481 | 34.35838 | 36.45918 |
Plethodon montanus | Caudata | LC | Ground-dwelling | 25.723035 | 34.78167 | 32.55220 | 36.77586 |
Plethodon montanus | Caudata | LC | Ground-dwelling | 23.447192 | 34.50356 | 32.32213 | 36.36015 |
Plethodon montanus | Caudata | LC | Ground-dwelling | 28.786830 | 35.15608 | 32.84245 | 37.42535 |
Plethodon teyahalee | Caudata | LC | Ground-dwelling | 26.404787 | 35.19772 | 32.96693 | 37.04741 |
Plethodon teyahalee | Caudata | LC | Ground-dwelling | 24.395115 | 34.94969 | 32.91064 | 36.82198 |
Plethodon teyahalee | Caudata | LC | Ground-dwelling | 29.333299 | 35.55915 | 33.15172 | 37.63256 |
Plethodon punctatus | Caudata | NT | Ground-dwelling | 24.967104 | 34.78966 | 32.56832 | 36.65866 |
Plethodon punctatus | Caudata | NT | Ground-dwelling | 22.073758 | 34.43146 | 32.36694 | 36.19591 |
Plethodon punctatus | Caudata | NT | Ground-dwelling | 28.173759 | 35.18664 | 33.02111 | 37.52784 |
Plethodon wehrlei | Caudata | LC | Ground-dwelling | 23.650724 | 34.98295 | 33.38041 | 36.81618 |
Plethodon wehrlei | Caudata | LC | Ground-dwelling | 21.032996 | 34.64994 | 33.20612 | 36.45662 |
Plethodon wehrlei | Caudata | LC | Ground-dwelling | 27.599772 | 35.48533 | 33.62852 | 37.41579 |
Rhinella spinulosa | Anura | LC | Ground-dwelling | 15.900965 | 38.10968 | 37.36464 | 38.81157 |
Rhinella spinulosa | Anura | LC | Ground-dwelling | 14.029476 | 37.95260 | 37.18280 | 38.64698 |
Rhinella spinulosa | Anura | LC | Ground-dwelling | 19.213246 | 38.38768 | 37.65681 | 39.17804 |
Bryophryne cophites | Anura | EN | Ground-dwelling | 15.323045 | 28.99673 | 27.41640 | 30.59071 |
Bryophryne cophites | Anura | EN | Ground-dwelling | 11.264668 | 28.38912 | 26.74693 | 30.12279 |
Bryophryne cophites | Anura | EN | Ground-dwelling | 17.134228 | 29.26790 | 27.66766 | 30.85201 |
Bryophryne hanssaueri | Anura | LC | Ground-dwelling | 15.323045 | 26.95227 | 25.31065 | 28.63319 |
Bryophryne hanssaueri | Anura | LC | Ground-dwelling | 11.264668 | 26.36565 | 24.64935 | 28.27946 |
Bryophryne hanssaueri | Anura | LC | Ground-dwelling | 17.134228 | 27.21407 | 25.54742 | 28.79919 |
Bryophryne nubilosus | Anura | LC | Ground-dwelling | 15.323045 | 27.90592 | 26.19072 | 29.50554 |
Bryophryne nubilosus | Anura | LC | Ground-dwelling | 11.264668 | 27.30989 | 25.43524 | 28.97795 |
Bryophryne nubilosus | Anura | LC | Ground-dwelling | 17.134228 | 28.17192 | 26.41178 | 29.69871 |
Noblella myrmecoides | Anura | LC | Ground-dwelling | 25.871846 | 32.91570 | 30.98792 | 34.52600 |
Noblella myrmecoides | Anura | LC | Ground-dwelling | 25.108644 | 32.80537 | 30.93055 | 34.40767 |
Noblella myrmecoides | Anura | LC | Ground-dwelling | 27.229970 | 33.11204 | 31.06746 | 34.67182 |
Noblella pygmaea | Anura | LC | Ground-dwelling | 15.323045 | 28.38520 | 26.52289 | 30.00236 |
Noblella pygmaea | Anura | LC | Ground-dwelling | 11.264668 | 27.81540 | 25.85881 | 29.58317 |
Noblella pygmaea | Anura | LC | Ground-dwelling | 17.134228 | 28.63950 | 26.72249 | 30.15455 |
Oreobates cruralis | Anura | LC | Ground-dwelling | 21.099044 | 35.76660 | 34.25724 | 37.40610 |
Oreobates cruralis | Anura | LC | Ground-dwelling | 20.238659 | 35.63876 | 34.15486 | 37.26828 |
Oreobates cruralis | Anura | LC | Ground-dwelling | 22.363954 | 35.95455 | 34.38242 | 37.53954 |
Pristimantis buccinator | Anura | LC | Arboreal | 22.946424 | 34.28710 | 32.74854 | 35.79861 |
Pristimantis buccinator | Anura | LC | Arboreal | 22.150745 | 34.18119 | 32.63490 | 35.66669 |
Pristimantis buccinator | Anura | LC | Arboreal | 24.110096 | 34.44200 | 32.84789 | 35.91424 |
Pristimantis carvalhoi | Anura | LC | Arboreal | 26.979084 | 33.59735 | 31.90872 | 35.43183 |
Pristimantis carvalhoi | Anura | LC | Arboreal | 26.234799 | 33.49564 | 31.80972 | 35.30576 |
Pristimantis carvalhoi | Anura | LC | Arboreal | 28.438705 | 33.79681 | 32.06137 | 35.68524 |
Pristimantis danae | Anura | LC | Arboreal | 19.128299 | 31.30577 | 29.46254 | 32.87773 |
Pristimantis danae | Anura | LC | Arboreal | 17.971302 | 31.14438 | 29.35925 | 32.79243 |
Pristimantis danae | Anura | LC | Arboreal | 20.474625 | 31.49358 | 29.71787 | 33.16720 |
Pristimantis lindae | Anura | LC | Arboreal | 15.323045 | 29.77919 | 27.86563 | 32.21131 |
Pristimantis lindae | Anura | LC | Arboreal | 11.264668 | 29.22131 | 27.21601 | 31.61719 |
Pristimantis lindae | Anura | LC | Arboreal | 17.134228 | 30.02816 | 28.03045 | 32.38344 |
Pristimantis ockendeni | Anura | LC | Arboreal | 25.708748 | 32.50928 | 30.71903 | 34.14947 |
Pristimantis ockendeni | Anura | LC | Arboreal | 24.946567 | 32.40749 | 30.61836 | 34.00368 |
Pristimantis ockendeni | Anura | LC | Arboreal | 27.127086 | 32.69869 | 30.87569 | 34.40248 |
Pristimantis platydactylus | Anura | LC | Arboreal | 18.798633 | 31.47670 | 29.34281 | 33.72907 |
Pristimantis platydactylus | Anura | LC | Arboreal | 17.737139 | 31.33035 | 29.08890 | 33.49718 |
Pristimantis platydactylus | Anura | LC | Arboreal | 20.167842 | 31.66547 | 29.38783 | 33.79309 |
Pristimantis salaputium | Anura | LC | Arboreal | 15.323045 | 30.90547 | 29.17107 | 32.51374 |
Pristimantis salaputium | Anura | LC | Arboreal | 11.264668 | 30.32897 | 28.64763 | 32.21175 |
Pristimantis salaputium | Anura | LC | Arboreal | 17.134228 | 31.16275 | 29.48873 | 32.73514 |
Pristimantis toftae | Anura | LC | Ground-dwelling | 22.378310 | 32.66790 | 31.18569 | 34.08705 |
Pristimantis toftae | Anura | LC | Ground-dwelling | 21.632966 | 32.56140 | 31.21547 | 34.09276 |
Pristimantis toftae | Anura | LC | Ground-dwelling | 23.553001 | 32.83574 | 31.35649 | 34.29524 |
Psychrophrynella usurpator | Anura | NT | Ground-dwelling | 15.323045 | 29.68722 | 27.92876 | 31.34597 |
Psychrophrynella usurpator | Anura | NT | Ground-dwelling | 11.264668 | 29.10076 | 27.29003 | 30.91298 |
Psychrophrynella usurpator | Anura | NT | Ground-dwelling | 17.134228 | 29.94895 | 28.30580 | 31.67574 |
Eurycea nana | Caudata | VU | Semi-aquatic | 26.551885 | 37.89340 | 36.15332 | 39.57338 |
Eurycea nana | Caudata | VU | Semi-aquatic | 25.679670 | 37.78595 | 36.06156 | 39.37440 |
Eurycea nana | Caudata | VU | Semi-aquatic | 28.719675 | 38.16047 | 36.37338 | 40.01122 |
Aneides ferreus | Caudata | LC | Ground-dwelling | 17.932325 | 33.43356 | 31.19598 | 35.57736 |
Aneides ferreus | Caudata | LC | Ground-dwelling | 16.083264 | 33.19910 | 30.92027 | 35.22959 |
Aneides ferreus | Caudata | LC | Ground-dwelling | 20.790306 | 33.79595 | 31.39687 | 35.87425 |
Ensatina eschscholtzii | Caudata | LC | Ground-dwelling | 18.485448 | 32.87109 | 30.62078 | 35.30112 |
Ensatina eschscholtzii | Caudata | LC | Ground-dwelling | 16.732646 | 32.65025 | 30.36469 | 34.95601 |
Ensatina eschscholtzii | Caudata | LC | Ground-dwelling | 21.290759 | 33.22453 | 30.72621 | 35.53679 |
Plethodon dunni | Caudata | LC | Ground-dwelling | 17.964681 | 33.44251 | 31.26625 | 35.40368 |
Plethodon dunni | Caudata | LC | Ground-dwelling | 16.071043 | 33.20417 | 31.09726 | 35.14681 |
Plethodon dunni | Caudata | LC | Ground-dwelling | 20.898117 | 33.81174 | 31.76591 | 36.10044 |
Plethodon vehiculum | Caudata | LC | Ground-dwelling | 16.492929 | 32.94804 | 30.81797 | 35.01257 |
Plethodon vehiculum | Caudata | LC | Ground-dwelling | 14.366518 | 32.68087 | 30.65529 | 34.83384 |
Plethodon vehiculum | Caudata | LC | Ground-dwelling | 19.826253 | 33.36684 | 31.19713 | 35.46187 |
Rhyacotriton olympicus | Caudata | NT | Semi-aquatic | 16.285091 | 29.87304 | 27.84552 | 31.73791 |
Rhyacotriton olympicus | Caudata | NT | Semi-aquatic | 14.261817 | 29.59550 | 27.63018 | 31.41258 |
Rhyacotriton olympicus | Caudata | NT | Semi-aquatic | 19.543964 | 30.32006 | 28.24247 | 32.40857 |
Agalychnis dacnicolor | Anura | LC | Arboreal | 25.301923 | 36.43243 | 33.51322 | 38.70549 |
Agalychnis dacnicolor | Anura | LC | Arboreal | 24.097990 | 36.23151 | 33.40176 | 38.42678 |
Agalychnis dacnicolor | Anura | LC | Arboreal | 27.283721 | 36.76315 | 33.80660 | 39.22701 |
Anaxyrus boreas | Anura | LC | Ground-dwelling | 15.634025 | 37.03757 | 36.28796 | 37.77973 |
Anaxyrus boreas | Anura | LC | Ground-dwelling | 13.040954 | 36.76250 | 36.05148 | 37.53979 |
Anaxyrus boreas | Anura | LC | Ground-dwelling | 19.718182 | 37.47083 | 36.68843 | 38.25884 |
Anaxyrus canorus | Anura | VU | Ground-dwelling | 18.068758 | 37.53249 | 36.26891 | 38.76364 |
Anaxyrus canorus | Anura | VU | Ground-dwelling | 16.539996 | 37.32884 | 36.03195 | 38.52402 |
Anaxyrus canorus | Anura | VU | Ground-dwelling | 20.818636 | 37.89880 | 36.77849 | 39.39783 |
Anaxyrus cognatus | Anura | LC | Fossorial | 21.539984 | 40.65966 | 39.68514 | 41.68129 |
Anaxyrus cognatus | Anura | LC | Fossorial | 19.165765 | 40.33875 | 39.33272 | 41.18797 |
Anaxyrus cognatus | Anura | LC | Fossorial | 24.969158 | 41.12316 | 40.04297 | 42.28860 |
Anaxyrus compactilis | Anura | LC | Fossorial | 22.990764 | 38.27199 | 36.58180 | 39.86959 |
Anaxyrus compactilis | Anura | LC | Fossorial | 21.715446 | 38.11836 | 36.54335 | 39.75630 |
Anaxyrus compactilis | Anura | LC | Fossorial | 25.282783 | 38.54810 | 36.88738 | 40.36958 |
Anaxyrus retiformis | Anura | LC | Fossorial | 23.727196 | 40.64958 | 39.33791 | 42.17184 |
Anaxyrus retiformis | Anura | LC | Fossorial | 21.966445 | 40.41723 | 39.10740 | 41.87215 |
Anaxyrus retiformis | Anura | LC | Fossorial | 26.705337 | 41.04260 | 39.63033 | 42.64046 |
Anaxyrus exsul | Anura | VU | Ground-dwelling | 19.667759 | 37.52900 | 36.28842 | 38.70807 |
Anaxyrus exsul | Anura | VU | Ground-dwelling | 18.107435 | 37.35522 | 36.16674 | 38.55614 |
Anaxyrus exsul | Anura | VU | Ground-dwelling | 22.251625 | 37.81678 | 36.48955 | 39.02228 |
Anaxyrus fowleri | Anura | LC | Ground-dwelling | 24.461617 | 38.65713 | 37.49527 | 39.89198 |
Anaxyrus fowleri | Anura | LC | Ground-dwelling | 21.513699 | 38.24633 | 37.17125 | 39.34655 |
Anaxyrus fowleri | Anura | LC | Ground-dwelling | 28.078379 | 39.16112 | 37.81839 | 40.54427 |
Anaxyrus nelsoni | Anura | CR | Ground-dwelling | 19.254180 | 37.39407 | 35.89436 | 38.58805 |
Anaxyrus nelsoni | Anura | CR | Ground-dwelling | 17.573728 | 37.22649 | 35.87401 | 38.55146 |
Anaxyrus nelsoni | Anura | CR | Ground-dwelling | 22.184528 | 37.68631 | 36.19676 | 39.05828 |
Dendrobates auratus | Anura | LC | Arboreal | 26.651805 | 36.09641 | 33.78917 | 38.32619 |
Dendrobates auratus | Anura | LC | Arboreal | 25.986834 | 36.00350 | 33.79717 | 38.28042 |
Dendrobates auratus | Anura | LC | Arboreal | 27.978536 | 36.28177 | 33.97164 | 38.55024 |
Incilius alvarius | Anura | LC | Ground-dwelling | 23.148447 | 39.72002 | 38.38816 | 41.16070 |
Incilius alvarius | Anura | LC | Ground-dwelling | 21.307951 | 39.46371 | 37.98069 | 40.70749 |
Incilius alvarius | Anura | LC | Ground-dwelling | 26.093013 | 40.13009 | 38.70122 | 41.53088 |
Incilius canaliferus | Anura | LC | Ground-dwelling | 26.786633 | 39.37735 | 37.33414 | 41.37046 |
Incilius canaliferus | Anura | LC | Ground-dwelling | 25.877706 | 39.27036 | 37.24750 | 41.23975 |
Incilius canaliferus | Anura | LC | Ground-dwelling | 28.705361 | 39.60320 | 37.45354 | 41.60635 |
Incilius marmoreus | Anura | LC | Ground-dwelling | 26.224771 | 40.46109 | 38.80452 | 41.80316 |
Incilius marmoreus | Anura | LC | Ground-dwelling | 25.202167 | 40.31549 | 38.82170 | 41.81324 |
Incilius marmoreus | Anura | LC | Ground-dwelling | 28.024332 | 40.71731 | 39.13839 | 42.19661 |
Incilius mazatlanensis | Anura | LC | Ground-dwelling | 25.268513 | 40.05036 | 38.72863 | 41.48234 |
Incilius mazatlanensis | Anura | LC | Ground-dwelling | 23.882154 | 39.86771 | 38.57811 | 41.29844 |
Incilius mazatlanensis | Anura | LC | Ground-dwelling | 27.377753 | 40.32825 | 38.95286 | 41.76265 |
Leptodactylus melanonotus | Anura | LC | Ground-dwelling | 26.331108 | 39.35792 | 37.67321 | 41.05199 |
Leptodactylus melanonotus | Anura | LC | Ground-dwelling | 25.438435 | 39.23699 | 37.56013 | 40.90906 |
Leptodactylus melanonotus | Anura | LC | Ground-dwelling | 28.041559 | 39.58963 | 37.89490 | 41.30111 |
Lithobates catesbeianus | Anura | LC | Semi-aquatic | 22.583502 | 36.74855 | 36.06968 | 37.44138 |
Lithobates catesbeianus | Anura | LC | Semi-aquatic | 20.318099 | 36.57193 | 35.95868 | 37.27405 |
Lithobates catesbeianus | Anura | LC | Semi-aquatic | 25.691955 | 36.99090 | 36.17809 | 37.83749 |
Lithobates palmipes | Anura | LC | Semi-aquatic | 27.222478 | 37.43041 | 35.78357 | 39.03364 |
Lithobates palmipes | Anura | LC | Semi-aquatic | 26.482362 | 37.33422 | 35.67646 | 38.88909 |
Lithobates palmipes | Anura | LC | Semi-aquatic | 28.783168 | 37.63322 | 35.96501 | 39.29535 |
Lithobates palustris | Anura | LC | Semi-aquatic | 22.979583 | 33.80988 | 32.69849 | 34.86100 |
Lithobates palustris | Anura | LC | Semi-aquatic | 19.893034 | 33.41870 | 32.45548 | 34.47434 |
Lithobates palustris | Anura | LC | Semi-aquatic | 26.744006 | 34.28696 | 32.99164 | 35.47241 |
Lithobates pipiens | Anura | LC | Semi-aquatic | 19.066299 | 35.96812 | 35.59588 | 36.38094 |
Lithobates pipiens | Anura | LC | Semi-aquatic | 16.001909 | 35.42470 | 34.98095 | 35.78971 |
Lithobates pipiens | Anura | LC | Semi-aquatic | 23.225238 | 36.70564 | 36.28292 | 37.10885 |
Lithobates sylvaticus | Anura | LC | Semi-aquatic | 16.008088 | 34.41302 | 34.00377 | 34.77393 |
Lithobates sylvaticus | Anura | LC | Semi-aquatic | 12.482629 | 33.88987 | 33.41088 | 34.31062 |
Lithobates sylvaticus | Anura | LC | Semi-aquatic | 20.701914 | 35.10954 | 34.69809 | 35.49337 |
Lithobates warszewitschii | Anura | LC | Stream-dwelling | 26.780117 | 34.69182 | 32.57910 | 36.85975 |
Lithobates warszewitschii | Anura | LC | Stream-dwelling | 26.060326 | 34.60094 | 32.48952 | 36.75321 |
Lithobates warszewitschii | Anura | LC | Stream-dwelling | 28.195157 | 34.87050 | 32.65687 | 36.97106 |
Pseudacris cadaverina | Anura | LC | Arboreal | 21.173869 | 35.55850 | 33.70636 | 37.07354 |
Pseudacris cadaverina | Anura | LC | Arboreal | 19.618993 | 35.29180 | 33.53528 | 36.86124 |
Pseudacris cadaverina | Anura | LC | Arboreal | 23.746408 | 35.99976 | 34.17437 | 37.65387 |
Pseudacris regilla | Anura | LC | Arboreal | 15.919683 | 35.45361 | 34.73739 | 36.28022 |
Pseudacris regilla | Anura | LC | Arboreal | 13.430067 | 35.16586 | 34.42381 | 35.99552 |
Pseudacris regilla | Anura | LC | Arboreal | 19.864850 | 35.90959 | 35.12310 | 36.73507 |
Rana boylii | Anura | NT | Stream-dwelling | 18.554606 | 34.07130 | 32.65406 | 35.43706 |
Rana boylii | Anura | NT | Stream-dwelling | 16.935380 | 33.85906 | 32.40126 | 35.19827 |
Rana boylii | Anura | NT | Stream-dwelling | 21.175220 | 34.41480 | 32.94700 | 35.77744 |
Lithobates clamitans | Anura | LC | Semi-aquatic | 22.073747 | 36.74562 | 36.07130 | 37.42891 |
Lithobates clamitans | Anura | LC | Semi-aquatic | 19.140405 | 36.30289 | 35.66883 | 37.03449 |
Lithobates clamitans | Anura | LC | Semi-aquatic | 25.893931 | 37.32220 | 36.62156 | 38.12711 |
Rana pretiosa | Anura | VU | Aquatic | 17.421308 | 34.76691 | 33.47954 | 36.13846 |
Rana pretiosa | Anura | VU | Aquatic | 15.256563 | 34.48983 | 33.21807 | 35.93186 |
Rana pretiosa | Anura | VU | Aquatic | 20.864486 | 35.20761 | 33.87446 | 36.53828 |
Rhaebo haematiticus | Anura | LC | Ground-dwelling | 25.914127 | 38.13928 | 36.48004 | 39.80493 |
Rhaebo haematiticus | Anura | LC | Ground-dwelling | 25.158877 | 38.04092 | 36.37620 | 39.71530 |
Rhaebo haematiticus | Anura | LC | Ground-dwelling | 27.399292 | 38.33270 | 36.68263 | 40.02357 |
Rhinella marina | Anura | LC | Ground-dwelling | 26.855625 | 40.84599 | 40.51086 | 41.23724 |
Rhinella marina | Anura | LC | Ground-dwelling | 26.035628 | 40.72368 | 40.35591 | 41.09339 |
Rhinella marina | Anura | LC | Ground-dwelling | 28.483440 | 41.08878 | 40.73487 | 41.45780 |
Scaphiopus holbrookii | Anura | LC | Fossorial | 25.264129 | 35.16663 | 33.74488 | 36.51622 |
Scaphiopus holbrookii | Anura | LC | Fossorial | 22.335032 | 34.59784 | 33.35155 | 35.88402 |
Scaphiopus holbrookii | Anura | LC | Fossorial | 28.497729 | 35.79455 | 34.28641 | 37.34439 |
Smilisca fodiens | Anura | LC | Fossorial | 24.457317 | 39.53719 | 38.32221 | 40.91792 |
Smilisca fodiens | Anura | LC | Fossorial | 22.955486 | 39.27371 | 38.08932 | 40.59798 |
Smilisca fodiens | Anura | LC | Fossorial | 26.875429 | 39.96143 | 38.64762 | 41.36440 |
Smilisca baudinii | Anura | LC | Ground-dwelling | 25.884853 | 40.00233 | 38.35697 | 41.64204 |
Smilisca baudinii | Anura | LC | Ground-dwelling | 24.932456 | 39.86069 | 38.35232 | 41.57165 |
Smilisca baudinii | Anura | LC | Ground-dwelling | 27.711827 | 40.27403 | 38.65892 | 42.07410 |
Spea hammondii | Anura | NT | Fossorial | 19.579209 | 37.44114 | 36.54368 | 38.21527 |
Spea hammondii | Anura | NT | Fossorial | 18.042932 | 37.22160 | 36.45132 | 38.14104 |
Spea hammondii | Anura | NT | Fossorial | 22.044705 | 37.79347 | 36.92819 | 38.63156 |
Tlalocohyla smithii | Anura | LC | Stream-dwelling | 25.146850 | 41.01741 | 39.24496 | 42.91893 |
Tlalocohyla smithii | Anura | LC | Stream-dwelling | 24.013478 | 40.82026 | 39.02206 | 42.67922 |
Tlalocohyla smithii | Anura | LC | Stream-dwelling | 27.074006 | 41.35265 | 39.47206 | 43.27442 |
Adelotus brevis | Anura | NT | Ground-dwelling | 23.121801 | 35.30275 | 33.13041 | 37.56260 |
Adelotus brevis | Anura | NT | Ground-dwelling | 21.709001 | 35.09577 | 32.92200 | 37.19249 |
Adelotus brevis | Anura | NT | Ground-dwelling | 25.617642 | 35.66839 | 33.37297 | 38.21085 |
Assa darlingtoni | Anura | LC | Ground-dwelling | 23.059869 | 34.70748 | 32.26602 | 37.30700 |
Assa darlingtoni | Anura | LC | Ground-dwelling | 21.698433 | 34.49474 | 32.06202 | 37.03385 |
Assa darlingtoni | Anura | LC | Ground-dwelling | 25.319227 | 35.06052 | 32.62703 | 37.77397 |
Cophixalus ornatus | Anura | LC | Arboreal | 25.620922 | 34.49083 | 33.21649 | 35.91963 |
Cophixalus ornatus | Anura | LC | Arboreal | 24.543763 | 34.34197 | 33.05855 | 35.69002 |
Cophixalus ornatus | Anura | LC | Arboreal | 27.578402 | 34.76134 | 33.38805 | 36.22747 |
Crinia parinsignifera | Anura | LC | Ground-dwelling | 21.587566 | 36.32383 | 34.72302 | 38.17026 |
Crinia parinsignifera | Anura | LC | Ground-dwelling | 19.856410 | 36.05577 | 34.55813 | 37.78171 |
Crinia parinsignifera | Anura | LC | Ground-dwelling | 24.573663 | 36.78622 | 34.93581 | 38.77520 |
Crinia signifera | Anura | LC | Ground-dwelling | 20.402425 | 35.70355 | 35.02878 | 36.27797 |
Crinia signifera | Anura | LC | Ground-dwelling | 18.682574 | 35.47445 | 34.92060 | 36.05793 |
Crinia signifera | Anura | LC | Ground-dwelling | 23.389506 | 36.10146 | 35.38862 | 36.83938 |
Geocrinia laevis | Anura | LC | Ground-dwelling | 16.882006 | 33.94228 | 32.35638 | 35.26855 |
Geocrinia laevis | Anura | LC | Ground-dwelling | 15.207520 | 33.65438 | 32.21127 | 35.08083 |
Geocrinia laevis | Anura | LC | Ground-dwelling | 19.744337 | 34.43442 | 32.98794 | 36.04799 |
Geocrinia victoriana | Anura | LC | Ground-dwelling | 18.565653 | 34.89911 | 33.81261 | 35.94504 |
Geocrinia victoriana | Anura | LC | Ground-dwelling | 16.631306 | 34.55448 | 33.47353 | 35.52101 |
Geocrinia victoriana | Anura | LC | Ground-dwelling | 21.710703 | 35.45945 | 34.27001 | 36.64902 |
Limnodynastes dorsalis | Anura | LC | Semi-aquatic | 20.076121 | 35.86030 | 34.92717 | 36.73196 |
Limnodynastes dorsalis | Anura | LC | Semi-aquatic | 18.548878 | 35.63248 | 34.78942 | 36.57589 |
Limnodynastes dorsalis | Anura | LC | Semi-aquatic | 23.220392 | 36.32932 | 35.35933 | 37.25866 |
Limnodynastes fletcheri | Anura | LC | Semi-aquatic | 22.416478 | 33.55348 | 31.32191 | 35.64877 |
Limnodynastes fletcheri | Anura | LC | Semi-aquatic | 20.727885 | 33.25866 | 31.15292 | 35.24612 |
Limnodynastes fletcheri | Anura | LC | Semi-aquatic | 25.329487 | 34.06208 | 31.55121 | 36.31357 |
Limnodynastes peronii | Anura | LC | Ground-dwelling | 21.802238 | 36.23459 | 35.50974 | 36.86630 |
Limnodynastes peronii | Anura | LC | Ground-dwelling | 20.237239 | 35.94571 | 35.27520 | 36.57084 |
Limnodynastes peronii | Anura | LC | Ground-dwelling | 24.528046 | 36.73773 | 36.00686 | 37.48383 |
Limnodynastes salmini | Anura | LC | Ground-dwelling | 23.158980 | 36.16857 | 34.33447 | 37.96882 |
Limnodynastes salmini | Anura | LC | Ground-dwelling | 21.611844 | 35.94128 | 34.16630 | 37.67067 |
Limnodynastes salmini | Anura | LC | Ground-dwelling | 25.873337 | 36.56733 | 34.54194 | 38.46256 |
Limnodynastes tasmaniensis | Anura | LC | Semi-aquatic | 22.332344 | 36.26686 | 35.39837 | 37.19363 |
Limnodynastes tasmaniensis | Anura | LC | Semi-aquatic | 20.650717 | 35.98965 | 35.21671 | 36.94254 |
Limnodynastes tasmaniensis | Anura | LC | Semi-aquatic | 25.250422 | 36.74790 | 35.83261 | 37.78189 |
Litoria aurea | Anura | VU | Semi-aquatic | 20.359934 | 36.16338 | 35.28159 | 37.07160 |
Litoria aurea | Anura | VU | Semi-aquatic | 18.847228 | 35.96263 | 35.14382 | 36.82177 |
Litoria aurea | Anura | VU | Semi-aquatic | 22.717810 | 36.47630 | 35.47655 | 37.42239 |
Litoria bicolor | Anura | LC | Arboreal | 27.358038 | 40.82070 | 39.45557 | 42.38680 |
Litoria bicolor | Anura | LC | Arboreal | 26.360907 | 40.64454 | 39.16978 | 42.08859 |
Litoria bicolor | Anura | LC | Arboreal | 29.336737 | 41.17027 | 39.79214 | 42.86554 |
Cyclorana brevipes | Anura | LC | Fossorial | 24.663221 | 40.06756 | 38.62798 | 41.77888 |
Cyclorana brevipes | Anura | LC | Fossorial | 23.248376 | 39.86791 | 38.20456 | 41.37971 |
Cyclorana brevipes | Anura | LC | Fossorial | 27.162614 | 40.42023 | 39.03229 | 42.12405 |
Litoria caerulea | Anura | LC | Arboreal | 25.142010 | 39.26847 | 38.59311 | 39.85861 |
Litoria caerulea | Anura | LC | Arboreal | 23.787692 | 39.04373 | 38.41488 | 39.62330 |
Litoria caerulea | Anura | LC | Arboreal | 27.517760 | 39.66270 | 38.98452 | 40.36468 |
Litoria chloris | Anura | LC | Arboreal | 22.935912 | 39.13628 | 38.14462 | 40.13794 |
Litoria chloris | Anura | LC | Arboreal | 21.540586 | 38.96787 | 38.01424 | 39.97284 |
Litoria chloris | Anura | LC | Arboreal | 25.281121 | 39.41935 | 38.35617 | 40.43343 |
Litoria citropa | Anura | LC | Stream-dwelling | 19.916530 | 33.88001 | 32.46905 | 35.15193 |
Litoria citropa | Anura | LC | Stream-dwelling | 18.205166 | 33.66651 | 32.34808 | 34.96685 |
Litoria citropa | Anura | LC | Stream-dwelling | 22.563213 | 34.21020 | 32.74261 | 35.48447 |
Litoria ewingii | Anura | LC | Arboreal | 17.815123 | 34.72873 | 33.95519 | 35.35431 |
Litoria ewingii | Anura | LC | Arboreal | 16.075922 | 34.56029 | 33.87138 | 35.19217 |
Litoria ewingii | Anura | LC | Arboreal | 20.652706 | 35.00355 | 34.29702 | 35.81470 |
Litoria fallax | Anura | LC | Arboreal | 23.404223 | 39.47879 | 38.71739 | 40.18196 |
Litoria fallax | Anura | LC | Arboreal | 22.024117 | 39.30391 | 38.60324 | 40.00628 |
Litoria fallax | Anura | LC | Arboreal | 25.799583 | 39.78232 | 39.01235 | 40.62205 |
Litoria freycineti | Anura | VU | Ground-dwelling | 22.374903 | 36.69041 | 35.00503 | 38.55021 |
Litoria freycineti | Anura | VU | Ground-dwelling | 20.971218 | 36.46165 | 34.89559 | 38.39614 |
Litoria freycineti | Anura | VU | Ground-dwelling | 24.626360 | 37.05734 | 35.46189 | 39.06380 |
Litoria gracilenta | Anura | LC | Arboreal | 24.230047 | 38.54294 | 38.00746 | 39.07674 |
Litoria gracilenta | Anura | LC | Arboreal | 22.976557 | 38.40929 | 37.92071 | 38.92713 |
Litoria gracilenta | Anura | LC | Arboreal | 26.390521 | 38.77330 | 38.17682 | 39.39226 |
Litoria lesueurii | Anura | LC | Stream-dwelling | 20.058409 | 34.77835 | 34.08976 | 35.59612 |
Litoria lesueurii | Anura | LC | Stream-dwelling | 18.277997 | 34.53127 | 33.79321 | 35.28389 |
Litoria lesueurii | Anura | LC | Stream-dwelling | 22.909214 | 35.17397 | 34.44853 | 36.04500 |
Litoria peronii | Anura | LC | Arboreal | 21.896649 | 37.23336 | 36.37286 | 38.11272 |
Litoria peronii | Anura | LC | Arboreal | 20.169988 | 36.99028 | 36.20351 | 37.82529 |
Litoria peronii | Anura | LC | Arboreal | 24.851134 | 37.64930 | 36.73429 | 38.71479 |
Litoria phyllochroa | Anura | LC | Stream-dwelling | 22.149054 | 34.30089 | 32.94233 | 35.56732 |
Litoria phyllochroa | Anura | LC | Stream-dwelling | 20.700981 | 34.09775 | 32.75743 | 35.27423 |
Litoria phyllochroa | Anura | LC | Stream-dwelling | 24.489505 | 34.62921 | 33.27897 | 36.12122 |
Litoria rothii | Anura | LC | Arboreal | 26.847620 | 39.14040 | 38.12990 | 40.17287 |
Litoria rothii | Anura | LC | Arboreal | 25.775858 | 38.94764 | 37.95279 | 39.94941 |
Litoria rothii | Anura | LC | Arboreal | 28.907034 | 39.51081 | 38.41185 | 40.58431 |
Litoria rubella | Anura | LC | Arboreal | 24.834580 | 39.75827 | 38.97642 | 40.50461 |
Litoria rubella | Anura | LC | Arboreal | 23.360075 | 39.52235 | 38.80065 | 40.27226 |
Litoria rubella | Anura | LC | Arboreal | 27.379450 | 40.16544 | 39.30184 | 40.95669 |
Litoria verreauxii | Anura | LC | Ground-dwelling | 20.616474 | 34.03360 | 33.13866 | 34.80513 |
Litoria verreauxii | Anura | LC | Ground-dwelling | 18.963504 | 33.79065 | 33.00099 | 34.54342 |
Litoria verreauxii | Anura | LC | Ground-dwelling | 23.230953 | 34.41788 | 33.47365 | 35.36214 |
Mixophyes fasciolatus | Anura | LC | Ground-dwelling | 22.789447 | 32.37850 | 30.90085 | 33.75188 |
Mixophyes fasciolatus | Anura | LC | Ground-dwelling | 21.393825 | 32.19592 | 30.64244 | 33.53627 |
Mixophyes fasciolatus | Anura | LC | Ground-dwelling | 25.109385 | 32.68200 | 31.26434 | 34.05719 |
Neobatrachus pictus | Anura | LC | Fossorial | 20.117135 | 33.63771 | 32.00720 | 35.32460 |
Neobatrachus pictus | Anura | LC | Fossorial | 18.200918 | 33.34923 | 31.77967 | 35.04565 |
Neobatrachus pictus | Anura | LC | Fossorial | 23.753637 | 34.18518 | 32.58465 | 36.05529 |
Philoria frosti | Anura | CR | Ground-dwelling | 19.334236 | 29.94425 | 28.94926 | 31.11516 |
Philoria frosti | Anura | CR | Ground-dwelling | 17.360367 | 29.68996 | 28.50046 | 30.61546 |
Philoria frosti | Anura | CR | Ground-dwelling | 22.939626 | 30.40873 | 29.23330 | 31.56846 |
Philoria loveridgei | Anura | EN | Ground-dwelling | 23.203397 | 33.39454 | 31.52391 | 35.29864 |
Philoria loveridgei | Anura | EN | Ground-dwelling | 21.843774 | 33.18571 | 31.29636 | 34.98011 |
Philoria loveridgei | Anura | EN | Ground-dwelling | 25.439491 | 33.73800 | 31.75270 | 35.84311 |
Philoria sphagnicolus | Anura | EN | Ground-dwelling | 22.670003 | 32.08177 | 29.71986 | 34.30800 |
Philoria sphagnicolus | Anura | EN | Ground-dwelling | 21.241990 | 31.83836 | 29.60065 | 34.02568 |
Philoria sphagnicolus | Anura | EN | Ground-dwelling | 25.046961 | 32.48694 | 30.10885 | 34.97827 |
Pseudophryne bibronii | Anura | LC | Ground-dwelling | 20.497748 | 36.48884 | 35.51805 | 37.34919 |
Pseudophryne bibronii | Anura | LC | Ground-dwelling | 18.710130 | 36.21905 | 35.35095 | 37.02127 |
Pseudophryne bibronii | Anura | LC | Ground-dwelling | 23.609073 | 36.95841 | 35.89082 | 38.00100 |
Pseudophryne corroboree | Anura | CR | Stream-dwelling | 18.818785 | 34.01796 | 32.63186 | 35.22525 |
Pseudophryne corroboree | Anura | CR | Stream-dwelling | 16.779380 | 33.57809 | 32.22004 | 34.72203 |
Pseudophryne corroboree | Anura | CR | Stream-dwelling | 22.052036 | 34.71533 | 33.27451 | 36.02107 |
Pseudophryne dendyi | Anura | LC | Ground-dwelling | 19.295535 | 37.15013 | 35.31549 | 39.16441 |
Pseudophryne dendyi | Anura | LC | Ground-dwelling | 17.439597 | 36.89374 | 35.16284 | 38.80425 |
Pseudophryne dendyi | Anura | LC | Ground-dwelling | 22.202445 | 37.55172 | 35.53996 | 39.75247 |
Dicamptodon tenebrosus | Caudata | LC | Semi-aquatic | 17.799710 | 30.59743 | 28.35517 | 33.16328 |
Dicamptodon tenebrosus | Caudata | LC | Semi-aquatic | 15.851193 | 30.33238 | 28.06028 | 32.87282 |
Dicamptodon tenebrosus | Caudata | LC | Semi-aquatic | 20.820401 | 31.00832 | 28.69238 | 33.53923 |
Rhyacotriton variegatus | Caudata | LC | Ground-dwelling | 18.017144 | 28.97406 | 27.05889 | 30.77802 |
Rhyacotriton variegatus | Caudata | LC | Ground-dwelling | 16.303437 | 28.72772 | 26.91866 | 30.49634 |
Rhyacotriton variegatus | Caudata | LC | Ground-dwelling | 20.686921 | 29.35782 | 27.57509 | 31.49202 |
Buergeria japonica | Anura | LC | Stream-dwelling | 27.303723 | 42.41802 | 41.53946 | 43.35776 |
Buergeria japonica | Anura | LC | Stream-dwelling | 26.441995 | 42.28516 | 41.40504 | 43.22367 |
Buergeria japonica | Anura | LC | Stream-dwelling | 28.347980 | 42.57903 | 41.63382 | 43.45256 |
Eleutherodactylus coqui | Anura | LC | Ground-dwelling | 25.951730 | 40.88549 | 39.67451 | 42.01774 |
Eleutherodactylus coqui | Anura | LC | Ground-dwelling | 25.262435 | 40.76397 | 39.53744 | 41.84188 |
Eleutherodactylus coqui | Anura | LC | Ground-dwelling | 27.037675 | 41.07693 | 39.84572 | 42.24918 |
Eleutherodactylus portoricensis | Anura | EN | Arboreal | 26.882112 | 38.00733 | 36.46240 | 39.43076 |
Eleutherodactylus portoricensis | Anura | EN | Arboreal | 26.344935 | 37.94190 | 36.40385 | 39.33199 |
Eleutherodactylus portoricensis | Anura | EN | Arboreal | 27.616751 | 38.09680 | 36.50946 | 39.52389 |
Ascaphus truei | Anura | LC | Stream-dwelling | 16.143789 | 30.98727 | 29.51497 | 32.45739 |
Ascaphus truei | Anura | LC | Stream-dwelling | 13.855197 | 30.64999 | 29.19276 | 31.96893 |
Ascaphus truei | Anura | LC | Stream-dwelling | 19.817749 | 31.52872 | 29.84344 | 33.22833 |
Ambystoma jeffersonianum | Caudata | LC | Aquatic | 22.474986 | 36.58252 | 36.02232 | 37.09372 |
Ambystoma jeffersonianum | Caudata | LC | Aquatic | 19.000089 | 36.17106 | 35.73055 | 36.65746 |
Ambystoma jeffersonianum | Caudata | LC | Aquatic | 26.425878 | 37.05033 | 36.33639 | 37.64952 |
Ambystoma tigrinum | Caudata | LC | Ground-dwelling | 21.792873 | 37.19427 | 36.61949 | 37.71191 |
Ambystoma tigrinum | Caudata | LC | Ground-dwelling | 19.053502 | 36.84207 | 36.37715 | 37.35668 |
Ambystoma tigrinum | Caudata | LC | Ground-dwelling | 25.449105 | 37.66434 | 37.08940 | 38.36120 |
Pseudacris triseriata | Anura | LC | Ground-dwelling | 22.094439 | 37.83465 | 37.42899 | 38.26452 |
Pseudacris triseriata | Anura | LC | Ground-dwelling | 18.698907 | 37.55675 | 37.19505 | 37.94200 |
Pseudacris triseriata | Anura | LC | Ground-dwelling | 26.436564 | 38.19002 | 37.67210 | 38.66672 |
Anaxyrus woodhousii | Anura | LC | Fossorial | 21.616098 | 39.72796 | 39.18368 | 40.25859 |
Anaxyrus woodhousii | Anura | LC | Fossorial | 19.349773 | 39.51200 | 39.01788 | 40.07118 |
Anaxyrus woodhousii | Anura | LC | Fossorial | 24.937689 | 40.04447 | 39.45864 | 40.62442 |
Gastrophryne carolinensis | Anura | LC | Fossorial | 26.328826 | 40.60782 | 39.98970 | 41.22615 |
Gastrophryne carolinensis | Anura | LC | Fossorial | 24.002571 | 40.29942 | 39.67844 | 40.84586 |
Gastrophryne carolinensis | Anura | LC | Fossorial | 29.362151 | 41.00997 | 40.26532 | 41.74308 |
Fejervarya cancrivora | Anura | LC | Ground-dwelling | 27.633893 | 40.95235 | 39.07737 | 42.82323 |
Fejervarya cancrivora | Anura | LC | Ground-dwelling | 27.049701 | 40.87562 | 39.00983 | 42.72891 |
Fejervarya cancrivora | Anura | LC | Ground-dwelling | 28.881010 | 41.11617 | 39.27027 | 43.05049 |
Ceratophrys cranwelli | Anura | LC | Fossorial | 26.139434 | 41.24121 | 39.07134 | 43.45005 |
Ceratophrys cranwelli | Anura | LC | Fossorial | 24.608667 | 41.04028 | 38.87127 | 43.20896 |
Ceratophrys cranwelli | Anura | LC | Fossorial | 28.883272 | 41.60138 | 39.33396 | 43.94553 |
Dermatonotus muelleri | Anura | LC | Fossorial | 26.682622 | 42.26149 | 40.08977 | 44.58536 |
Dermatonotus muelleri | Anura | LC | Fossorial | 25.530536 | 42.10085 | 40.08957 | 44.54491 |
Dermatonotus muelleri | Anura | LC | Fossorial | 28.849724 | 42.56366 | 40.33272 | 44.99581 |
Elachistocleis bicolor | Anura | LC | Ground-dwelling | 25.053433 | 40.23869 | 38.62549 | 41.73553 |
Elachistocleis bicolor | Anura | LC | Ground-dwelling | 23.342909 | 40.00725 | 38.49421 | 41.50313 |
Elachistocleis bicolor | Anura | LC | Ground-dwelling | 27.937566 | 40.62894 | 38.85797 | 42.23570 |
Boana raniceps | Anura | LC | Arboreal | 27.293036 | 41.84018 | 40.53766 | 43.38194 |
Boana raniceps | Anura | LC | Arboreal | 26.336488 | 41.70775 | 40.45377 | 43.21655 |
Boana raniceps | Anura | LC | Arboreal | 29.184445 | 42.10204 | 40.58395 | 43.64056 |
Lepidobatrachus llanensis | Anura | LC | Fossorial | 25.062020 | 42.80347 | 40.51748 | 45.00449 |
Lepidobatrachus llanensis | Anura | LC | Fossorial | 23.485805 | 42.58598 | 40.33602 | 44.72550 |
Lepidobatrachus llanensis | Anura | LC | Fossorial | 27.774683 | 43.17777 | 40.73964 | 45.51580 |
Leptodactylus bufonius | Anura | LC | Ground-dwelling | 26.085835 | 42.27292 | 40.53503 | 44.05164 |
Leptodactylus bufonius | Anura | LC | Ground-dwelling | 24.554278 | 42.06752 | 40.52429 | 43.96695 |
Leptodactylus bufonius | Anura | LC | Ground-dwelling | 28.794633 | 42.63620 | 40.84119 | 44.49948 |
Leptodactylus latinasus | Anura | LC | Ground-dwelling | 25.016157 | 41.57418 | 39.87019 | 42.91044 |
Leptodactylus latinasus | Anura | LC | Ground-dwelling | 23.370293 | 41.35680 | 39.73121 | 42.70655 |
Leptodactylus latinasus | Anura | LC | Ground-dwelling | 27.942698 | 41.96071 | 40.23093 | 43.53043 |
Leptodactylus podicipinus | Anura | LC | Ground-dwelling | 27.408965 | 41.71987 | 39.61707 | 44.01724 |
Leptodactylus podicipinus | Anura | LC | Ground-dwelling | 26.334710 | 41.56920 | 39.53044 | 43.85965 |
Leptodactylus podicipinus | Anura | LC | Ground-dwelling | 29.510812 | 42.01467 | 39.80332 | 44.38347 |
Phyllomedusa sauvagii | Anura | LC | Arboreal | 26.326901 | 41.21305 | 39.32363 | 43.21971 |
Phyllomedusa sauvagii | Anura | LC | Arboreal | 24.848740 | 41.01442 | 39.13096 | 42.98774 |
Phyllomedusa sauvagii | Anura | LC | Arboreal | 28.956146 | 41.56634 | 39.59506 | 43.71934 |
Physalaemus albonotatus | Anura | LC | Ground-dwelling | 27.024819 | 40.35583 | 38.62045 | 42.16240 |
Physalaemus albonotatus | Anura | LC | Ground-dwelling | 25.831237 | 40.18981 | 38.43292 | 41.85949 |
Physalaemus albonotatus | Anura | LC | Ground-dwelling | 29.340196 | 40.67787 | 38.81999 | 42.55830 |
Lysapsus limellum | Anura | LC | Aquatic | 26.847379 | 41.08418 | 39.29476 | 43.00320 |
Lysapsus limellum | Anura | LC | Aquatic | 25.391029 | 40.89765 | 39.11292 | 42.63759 |
Lysapsus limellum | Anura | LC | Aquatic | 29.491742 | 41.42289 | 39.47625 | 43.51878 |
Pseudis platensis | Anura | DD | Aquatic | 27.241463 | 41.29940 | 39.04510 | 43.30468 |
Pseudis platensis | Anura | DD | Aquatic | 25.920975 | 41.12766 | 38.93734 | 43.09413 |
Pseudis platensis | Anura | DD | Aquatic | 29.616754 | 41.60832 | 39.40064 | 43.83840 |
Scinax acuminatus | Anura | LC | Semi-aquatic | 27.371678 | 42.29705 | 40.49931 | 44.17369 |
Scinax acuminatus | Anura | LC | Semi-aquatic | 25.984779 | 42.11769 | 40.33859 | 43.95267 |
Scinax acuminatus | Anura | LC | Semi-aquatic | 29.925970 | 42.62739 | 40.89712 | 44.87016 |
Scinax nasicus | Anura | LC | Arboreal | 26.327282 | 41.32566 | 39.91164 | 42.99881 |
Scinax nasicus | Anura | LC | Arboreal | 24.953311 | 41.14999 | 39.59826 | 42.59123 |
Scinax nasicus | Anura | LC | Arboreal | 28.855690 | 41.64893 | 40.15901 | 43.49403 |
Crossodactylus schmidti | Anura | NT | Stream-dwelling | 26.657096 | 36.35326 | 33.98710 | 38.60239 |
Crossodactylus schmidti | Anura | NT | Stream-dwelling | 25.042496 | 36.13660 | 33.74540 | 38.31649 |
Crossodactylus schmidti | Anura | NT | Stream-dwelling | 29.112911 | 36.68281 | 34.13754 | 38.93848 |
Dendropsophus minutus | Anura | LC | Arboreal | 26.853605 | 36.66319 | 35.70893 | 37.60712 |
Dendropsophus minutus | Anura | LC | Arboreal | 25.928973 | 36.59636 | 35.73933 | 37.55256 |
Dendropsophus minutus | Anura | LC | Arboreal | 28.657017 | 36.79354 | 35.81235 | 37.93756 |
Boana curupi | Anura | LC | Arboreal | 26.941994 | 38.03007 | 35.70967 | 40.14786 |
Boana curupi | Anura | LC | Arboreal | 25.419025 | 37.84378 | 35.65548 | 40.04755 |
Boana curupi | Anura | LC | Arboreal | 29.251066 | 38.31250 | 35.94703 | 40.50875 |
Limnomedusa macroglossa | Anura | LC | Semi-aquatic | 24.418614 | 39.27202 | 37.45365 | 40.93335 |
Limnomedusa macroglossa | Anura | LC | Semi-aquatic | 22.627233 | 39.02375 | 37.28216 | 40.70926 |
Limnomedusa macroglossa | Anura | LC | Semi-aquatic | 27.378622 | 39.68225 | 37.93082 | 41.59000 |
Melanophryniscus devincenzii | Anura | EN | Stream-dwelling | 24.218736 | 38.12993 | 35.79230 | 40.49958 |
Melanophryniscus devincenzii | Anura | EN | Stream-dwelling | 22.382412 | 37.88261 | 35.50622 | 40.20520 |
Melanophryniscus devincenzii | Anura | EN | Stream-dwelling | 27.515083 | 38.57389 | 36.14353 | 41.03915 |
Melanophryniscus krauczuki | Anura | LC | Stream-dwelling | 26.776295 | 38.93301 | 36.70653 | 41.22662 |
Melanophryniscus krauczuki | Anura | LC | Stream-dwelling | 25.066618 | 38.70463 | 36.52818 | 40.93181 |
Melanophryniscus krauczuki | Anura | LC | Stream-dwelling | 29.628117 | 39.31398 | 37.14917 | 41.91142 |
Phyllomedusa tetraploidea | Anura | LC | Arboreal | 26.365607 | 41.09025 | 39.00319 | 42.98092 |
Phyllomedusa tetraploidea | Anura | LC | Arboreal | 24.922985 | 40.89711 | 38.93648 | 42.78663 |
Phyllomedusa tetraploidea | Anura | LC | Arboreal | 28.815273 | 41.41822 | 39.16209 | 43.34946 |
Rhinella ornata | Anura | LC | Ground-dwelling | 25.856101 | 39.93853 | 38.75415 | 41.11999 |
Rhinella ornata | Anura | LC | Ground-dwelling | 24.595028 | 39.77068 | 38.52409 | 40.83705 |
Rhinella ornata | Anura | LC | Ground-dwelling | 28.117604 | 40.23955 | 39.02420 | 41.51886 |
Scinax fuscovarius | Anura | LC | Semi-aquatic | 26.533982 | 40.99495 | 39.16423 | 42.81214 |
Scinax fuscovarius | Anura | LC | Semi-aquatic | 25.304915 | 40.83819 | 39.11316 | 42.63125 |
Scinax fuscovarius | Anura | LC | Semi-aquatic | 28.808772 | 41.28509 | 39.39415 | 43.22602 |
Alytes muletensis | Anura | EN | Stream-dwelling | 23.372290 | 37.42678 | 35.77818 | 39.32252 |
Alytes muletensis | Anura | EN | Stream-dwelling | 21.703700 | 37.19762 | 35.39955 | 38.80518 |
Alytes muletensis | Anura | EN | Stream-dwelling | 25.446445 | 37.71164 | 35.93572 | 39.62058 |
Lissotriton boscai | Caudata | LC | Semi-aquatic | 20.193821 | 36.84203 | 34.89422 | 38.99162 |
Lissotriton boscai | Caudata | LC | Semi-aquatic | 18.353363 | 36.59268 | 34.65359 | 38.71923 |
Lissotriton boscai | Caudata | LC | Semi-aquatic | 23.146633 | 37.24209 | 35.11334 | 39.23565 |
Pelophylax lessonae | Anura | LC | Semi-aquatic | 18.362694 | 37.03467 | 34.71550 | 39.17094 |
Pelophylax lessonae | Anura | LC | Semi-aquatic | 15.476456 | 36.65204 | 34.27384 | 38.67964 |
Pelophylax lessonae | Anura | LC | Semi-aquatic | 23.234550 | 37.68054 | 35.17489 | 39.71301 |
Rana arvalis | Anura | LC | Ground-dwelling | 16.701593 | 33.99302 | 33.10721 | 34.89867 |
Rana arvalis | Anura | LC | Ground-dwelling | 13.036141 | 33.52999 | 32.49901 | 34.49454 |
Rana arvalis | Anura | LC | Ground-dwelling | 22.129802 | 34.67872 | 33.77914 | 35.64811 |
Rana iberica | Anura | VU | Aquatic | 19.584087 | 34.62237 | 33.52410 | 35.66230 |
Rana iberica | Anura | VU | Aquatic | 17.679558 | 34.41202 | 33.34461 | 35.42741 |
Rana iberica | Anura | VU | Aquatic | 22.643383 | 34.96027 | 33.88136 | 36.18299 |
Triturus cristatus | Caudata | LC | Ground-dwelling | 17.715264 | 36.23627 | 34.46612 | 38.23803 |
Triturus cristatus | Caudata | LC | Ground-dwelling | 14.842348 | 35.84343 | 34.00880 | 37.82416 |
Triturus cristatus | Caudata | LC | Ground-dwelling | 22.523106 | 36.89370 | 35.05995 | 38.95109 |
Acris crepitans | Anura | LC | Semi-aquatic | 25.648822 | 41.34131 | 40.64022 | 41.92435 |
Acris crepitans | Anura | LC | Semi-aquatic | 22.762735 | 41.20106 | 40.56105 | 41.73579 |
Acris crepitans | Anura | LC | Semi-aquatic | 28.908264 | 41.49970 | 40.75877 | 42.19048 |
Necturus maculosus | Caudata | LC | Aquatic | 22.295546 | 34.55989 | 33.97253 | 35.11647 |
Necturus maculosus | Caudata | LC | Aquatic | 19.216572 | 34.17222 | 33.69978 | 34.67389 |
Necturus maculosus | Caudata | LC | Aquatic | 26.427077 | 35.08008 | 34.34444 | 35.77961 |
Ambystoma maculatum | Caudata | LC | Ground-dwelling | 22.171809 | 37.33251 | 36.29732 | 38.66912 |
Ambystoma maculatum | Caudata | LC | Ground-dwelling | 19.093002 | 36.99702 | 36.06138 | 38.08529 |
Ambystoma maculatum | Caudata | LC | Ground-dwelling | 26.065181 | 37.75677 | 36.34953 | 39.21061 |
Hyperolius tuberilinguis | Anura | LC | Arboreal | 24.836058 | 39.08405 | 36.69738 | 41.50443 |
Hyperolius tuberilinguis | Anura | LC | Arboreal | 23.900023 | 38.97059 | 36.59289 | 41.44984 |
Hyperolius tuberilinguis | Anura | LC | Arboreal | 26.704672 | 39.31053 | 36.76699 | 41.54332 |
Hyperolius viridiflavus | Anura | LC | Arboreal | 24.493520 | 40.90433 | 39.47749 | 42.28402 |
Hyperolius viridiflavus | Anura | LC | Arboreal | 23.628289 | 40.83953 | 39.45981 | 42.29048 |
Hyperolius viridiflavus | Anura | LC | Arboreal | 26.233414 | 41.03465 | 39.67405 | 42.35256 |
Triturus dobrogicus | Caudata | LC | Ground-dwelling | 19.639288 | 36.71630 | 35.02435 | 38.28339 |
Triturus dobrogicus | Caudata | LC | Ground-dwelling | 16.529703 | 36.28664 | 34.60390 | 37.86456 |
Triturus dobrogicus | Caudata | LC | Ground-dwelling | 23.685098 | 37.27532 | 35.59840 | 38.96273 |
Eleutherodactylus richmondi | Anura | EN | Ground-dwelling | 26.909318 | 36.05345 | 33.75636 | 38.48236 |
Eleutherodactylus richmondi | Anura | EN | Ground-dwelling | 26.392690 | 35.98672 | 33.74528 | 38.43965 |
Eleutherodactylus richmondi | Anura | EN | Ground-dwelling | 27.600337 | 36.14271 | 33.83921 | 38.59430 |
Lithobates virgatipes | Anura | LC | Semi-aquatic | 25.661305 | 38.11214 | 36.52828 | 39.69509 |
Lithobates virgatipes | Anura | LC | Semi-aquatic | 21.467772 | 37.57007 | 36.16190 | 39.00637 |
Lithobates virgatipes | Anura | LC | Semi-aquatic | 28.902357 | 38.53110 | 36.83345 | 40.30091 |
Ambystoma macrodactylum | Caudata | LC | Ground-dwelling | 15.419792 | 34.41362 | 33.20825 | 35.40387 |
Ambystoma macrodactylum | Caudata | LC | Ground-dwelling | 12.619308 | 34.08453 | 33.03572 | 35.20930 |
Ambystoma macrodactylum | Caudata | LC | Ground-dwelling | 19.869537 | 34.93651 | 33.72616 | 36.12962 |
Aneides aeneus | Caudata | NT | Ground-dwelling | 25.058465 | 34.09149 | 31.75343 | 36.33597 |
Aneides aeneus | Caudata | NT | Ground-dwelling | 22.700531 | 33.79643 | 31.68913 | 36.23850 |
Aneides aeneus | Caudata | NT | Ground-dwelling | 28.163333 | 34.48001 | 32.13123 | 36.94296 |
Eurycea longicauda | Caudata | LC | Semi-aquatic | 24.101021 | 36.53855 | 35.01155 | 38.02535 |
Eurycea longicauda | Caudata | LC | Semi-aquatic | 21.118512 | 36.35173 | 35.01945 | 37.69923 |
Eurycea longicauda | Caudata | LC | Semi-aquatic | 28.083846 | 36.78803 | 34.97078 | 38.46488 |
Eurycea lucifuga | Caudata | LC | Ground-dwelling | 25.197978 | 36.37556 | 35.17335 | 37.72273 |
Eurycea lucifuga | Caudata | LC | Ground-dwelling | 22.406310 | 36.18309 | 35.01192 | 37.31321 |
Eurycea lucifuga | Caudata | LC | Ground-dwelling | 29.035627 | 36.64014 | 35.14460 | 38.18802 |
Notophthalmus viridescens | Caudata | LC | Aquatic | 22.765661 | 39.02550 | 38.71121 | 39.30558 |
Notophthalmus viridescens | Caudata | LC | Aquatic | 19.838502 | 38.49436 | 38.22225 | 38.75551 |
Notophthalmus viridescens | Caudata | LC | Aquatic | 26.508634 | 39.70467 | 39.36041 | 40.05775 |
Ambystoma opacum | Caudata | LC | Ground-dwelling | 25.028017 | 37.72637 | 36.68336 | 38.75474 |
Ambystoma opacum | Caudata | LC | Ground-dwelling | 22.283560 | 37.41198 | 36.44936 | 38.38606 |
Ambystoma opacum | Caudata | LC | Ground-dwelling | 28.570506 | 38.13218 | 36.85471 | 39.21830 |
Ambystoma mabeei | Caudata | LC | Ground-dwelling | 25.348679 | 37.71139 | 35.56631 | 39.77329 |
Ambystoma mabeei | Caudata | LC | Ground-dwelling | 20.997835 | 37.14959 | 35.27143 | 39.25093 |
Ambystoma mabeei | Caudata | LC | Ground-dwelling | 28.834888 | 38.16153 | 35.92753 | 40.34173 |
Ambystoma talpoideum | Caudata | LC | Semi-aquatic | 26.905141 | 37.95384 | 35.65131 | 40.09933 |
Ambystoma talpoideum | Caudata | LC | Semi-aquatic | 24.557507 | 37.65019 | 35.42524 | 39.79633 |
Ambystoma talpoideum | Caudata | LC | Semi-aquatic | 29.794082 | 38.32749 | 36.03592 | 40.70822 |
Ambystoma laterale | Caudata | LC | Ground-dwelling | 18.550365 | 36.14636 | 34.52056 | 37.52068 |
Ambystoma laterale | Caudata | LC | Ground-dwelling | 15.237623 | 35.73943 | 34.10870 | 37.18453 |
Ambystoma laterale | Caudata | LC | Ground-dwelling | 22.932137 | 36.68461 | 35.12802 | 38.34305 |
Taricha granulosa | Caudata | LC | Ground-dwelling | 14.985472 | 35.53738 | 33.15900 | 37.57351 |
Taricha granulosa | Caudata | LC | Ground-dwelling | 12.733136 | 35.22985 | 32.74451 | 37.24072 |
Taricha granulosa | Caudata | LC | Ground-dwelling | 18.574453 | 36.02742 | 33.70583 | 38.10790 |
Amphiuma tridactylum | Caudata | LC | Semi-aquatic | 27.188976 | 37.33393 | 34.65484 | 39.93223 |
Amphiuma tridactylum | Caudata | LC | Semi-aquatic | 25.143717 | 37.07589 | 34.42648 | 39.66546 |
Amphiuma tridactylum | Caudata | LC | Semi-aquatic | 29.978876 | 37.68592 | 34.94646 | 40.46871 |
Desmognathus quadramaculatus | Caudata | LC | Semi-aquatic | 25.816243 | 33.66231 | 32.24162 | 35.09992 |
Desmognathus quadramaculatus | Caudata | LC | Semi-aquatic | 23.539969 | 33.35561 | 31.92828 | 34.60823 |
Desmognathus quadramaculatus | Caudata | LC | Semi-aquatic | 28.856340 | 34.07192 | 32.44377 | 35.67304 |
Plethodon jordani | Caudata | NT | Ground-dwelling | 26.273694 | 35.62633 | 34.46529 | 36.63870 |
Plethodon jordani | Caudata | NT | Ground-dwelling | 24.260429 | 35.36814 | 34.31807 | 36.31421 |
Plethodon jordani | Caudata | NT | Ground-dwelling | 29.241377 | 36.00690 | 34.75868 | 37.25781 |
Hemidactylium scutatum | Caudata | LC | Semi-aquatic | 22.749870 | 36.19041 | 33.99184 | 38.52265 |
Hemidactylium scutatum | Caudata | LC | Semi-aquatic | 19.517229 | 35.79160 | 33.58695 | 38.14492 |
Hemidactylium scutatum | Caudata | LC | Semi-aquatic | 26.674701 | 36.67461 | 34.51543 | 39.17019 |
Gyrinophilus porphyriticus | Caudata | LC | Semi-aquatic | 23.073228 | 34.59252 | 32.43743 | 36.66460 |
Gyrinophilus porphyriticus | Caudata | LC | Semi-aquatic | 20.387323 | 34.29477 | 32.23463 | 36.34392 |
Gyrinophilus porphyriticus | Caudata | LC | Semi-aquatic | 26.715406 | 34.99628 | 32.57236 | 37.03566 |
Pseudotriton montanus | Caudata | LC | Fossorial | 25.839937 | 36.47834 | 34.26863 | 38.60756 |
Pseudotriton montanus | Caudata | LC | Fossorial | 22.954185 | 36.14517 | 34.14161 | 38.23646 |
Pseudotriton montanus | Caudata | LC | Fossorial | 29.058142 | 36.84989 | 34.63378 | 39.29453 |
Eurycea quadridigitata | Caudata | LC | Semi-aquatic | 27.009992 | 37.80491 | 35.54113 | 39.78074 |
Eurycea quadridigitata | Caudata | LC | Semi-aquatic | 24.901850 | 37.56200 | 35.46856 | 39.57004 |
Eurycea quadridigitata | Caudata | LC | Semi-aquatic | 29.672127 | 38.11166 | 35.83717 | 40.38042 |
Cryptobranchus alleganiensis | Caudata | VU | Stream-dwelling | 24.125260 | 35.60884 | 34.70130 | 36.53204 |
Cryptobranchus alleganiensis | Caudata | VU | Stream-dwelling | 21.225349 | 35.25921 | 34.49230 | 36.13553 |
Cryptobranchus alleganiensis | Caudata | VU | Stream-dwelling | 28.252049 | 36.10639 | 34.99509 | 37.16014 |
Dryophytes andersonii | Anura | NT | Arboreal | 26.236817 | 41.27919 | 39.17753 | 43.82594 |
Dryophytes andersonii | Anura | NT | Arboreal | 20.417847 | 40.46266 | 38.28048 | 42.66990 |
Dryophytes andersonii | Anura | NT | Arboreal | 29.082302 | 41.67847 | 39.12070 | 43.95097 |
Osteopilus septentrionalis | Anura | LC | Arboreal | 27.367498 | 39.17552 | 38.00860 | 40.23815 |
Osteopilus septentrionalis | Anura | LC | Arboreal | 26.654358 | 39.08435 | 37.98845 | 40.19652 |
Osteopilus septentrionalis | Anura | LC | Arboreal | 28.548836 | 39.32655 | 38.18449 | 40.42144 |
Acris gryllus | Anura | LC | Semi-aquatic | 26.972820 | 40.41640 | 38.19495 | 42.52269 |
Acris gryllus | Anura | LC | Semi-aquatic | 24.637201 | 40.14755 | 37.96729 | 42.14421 |
Acris gryllus | Anura | LC | Semi-aquatic | 29.765493 | 40.73786 | 38.38007 | 42.96085 |
Dryophytes cinereus | Anura | LC | Arboreal | 26.382399 | 40.47347 | 38.75124 | 42.28672 |
Dryophytes cinereus | Anura | LC | Arboreal | 24.026268 | 40.14706 | 38.40313 | 41.84073 |
Dryophytes cinereus | Anura | LC | Arboreal | 29.224803 | 40.86725 | 39.05269 | 42.71695 |
Dryophytes squirellus | Anura | LC | Arboreal | 26.886326 | 39.13382 | 37.03360 | 41.25422 |
Dryophytes squirellus | Anura | LC | Arboreal | 24.694925 | 38.86004 | 36.96004 | 41.03252 |
Dryophytes squirellus | Anura | LC | Arboreal | 29.449395 | 39.45404 | 37.40291 | 41.79201 |
Cyclorana alboguttata | Anura | LC | Fossorial | 24.891090 | 40.18912 | 38.27461 | 42.29745 |
Cyclorana alboguttata | Anura | LC | Fossorial | 23.494947 | 39.99111 | 38.12163 | 42.14129 |
Cyclorana alboguttata | Anura | LC | Fossorial | 27.349330 | 40.53776 | 38.53700 | 42.70900 |
Cyclorana australis | Anura | LC | Fossorial | 26.843676 | 40.49954 | 38.65233 | 42.65937 |
Cyclorana australis | Anura | LC | Fossorial | 25.595915 | 40.32413 | 38.38459 | 42.35087 |
Cyclorana australis | Anura | LC | Fossorial | 28.907605 | 40.78969 | 38.59084 | 42.74099 |
Litoria eucnemis | Anura | LC | Stream-dwelling | 26.855651 | 36.10942 | 33.76269 | 38.30210 |
Litoria eucnemis | Anura | LC | Stream-dwelling | 26.096565 | 36.00981 | 33.68723 | 38.21819 |
Litoria eucnemis | Anura | LC | Stream-dwelling | 28.240431 | 36.29112 | 33.95534 | 38.48386 |
Litoria nasuta | Anura | LC | Ground-dwelling | 26.430829 | 36.66233 | 34.74853 | 38.89395 |
Litoria nasuta | Anura | LC | Ground-dwelling | 25.404252 | 36.52716 | 34.61634 | 38.70606 |
Litoria nasuta | Anura | LC | Ground-dwelling | 28.388695 | 36.92011 | 34.50198 | 38.79798 |
Litoria nigrofrenata | Anura | LC | Ground-dwelling | 27.374170 | 38.64742 | 36.53816 | 40.93696 |
Litoria nigrofrenata | Anura | LC | Ground-dwelling | 26.511803 | 38.52722 | 36.45518 | 40.81710 |
Litoria nigrofrenata | Anura | LC | Ground-dwelling | 29.197431 | 38.90157 | 36.65775 | 41.17506 |
Litoria pearsoniana | Anura | LC | Stream-dwelling | 22.554499 | 34.50141 | 32.45624 | 36.43598 |
Litoria pearsoniana | Anura | LC | Stream-dwelling | 21.155140 | 34.30661 | 32.26199 | 36.14287 |
Litoria pearsoniana | Anura | LC | Stream-dwelling | 24.827130 | 34.81778 | 32.70929 | 36.77092 |
Neobatrachus sudelli | Anura | LC | Ground-dwelling | 22.180839 | 33.90907 | 32.03118 | 35.82575 |
Neobatrachus sudelli | Anura | LC | Ground-dwelling | 20.384759 | 33.61973 | 31.76467 | 35.62404 |
Neobatrachus sudelli | Anura | LC | Ground-dwelling | 25.316883 | 34.41427 | 32.34512 | 36.27082 |
Pseudophryne major | Anura | LC | Ground-dwelling | 24.186365 | 35.18430 | 32.92737 | 37.43575 |
Pseudophryne major | Anura | LC | Ground-dwelling | 22.886315 | 34.98617 | 32.76510 | 37.20508 |
Pseudophryne major | Anura | LC | Ground-dwelling | 26.576937 | 35.54865 | 33.20809 | 37.89183 |
Pseudophryne semimarmorata | Anura | LC | Ground-dwelling | 17.768395 | 34.50633 | 32.26162 | 36.73195 |
Pseudophryne semimarmorata | Anura | LC | Ground-dwelling | 15.979066 | 34.23438 | 31.89268 | 36.35506 |
Pseudophryne semimarmorata | Anura | LC | Ground-dwelling | 20.852617 | 34.97508 | 32.60022 | 37.27074 |
Uperoleia laevigata | Anura | LC | Ground-dwelling | 22.243437 | 34.42062 | 31.85283 | 36.55165 |
Uperoleia laevigata | Anura | LC | Ground-dwelling | 20.690914 | 34.19739 | 31.82817 | 36.52039 |
Uperoleia laevigata | Anura | LC | Ground-dwelling | 24.901669 | 34.80283 | 32.15439 | 36.83986 |
Uperoleia rugosa | Anura | LC | Ground-dwelling | 22.953803 | 35.48281 | 33.19231 | 37.77581 |
Uperoleia rugosa | Anura | LC | Ground-dwelling | 21.357149 | 35.23872 | 32.95217 | 37.55616 |
Uperoleia rugosa | Anura | LC | Ground-dwelling | 25.692848 | 35.90155 | 33.63550 | 38.24164 |
Platyplectrum ornatum | Anura | LC | Ground-dwelling | 25.505469 | 40.54497 | 39.33728 | 41.71225 |
Platyplectrum ornatum | Anura | LC | Ground-dwelling | 24.192496 | 40.31048 | 39.14164 | 41.47727 |
Platyplectrum ornatum | Anura | LC | Ground-dwelling | 27.797360 | 40.95430 | 39.70243 | 42.22603 |
Eurycea bislineata | Caudata | LC | Semi-aquatic | 19.996823 | 35.93220 | 35.40792 | 36.54272 |
Eurycea bislineata | Caudata | LC | Semi-aquatic | 16.654287 | 35.58887 | 34.92700 | 36.21928 |
Eurycea bislineata | Caudata | LC | Semi-aquatic | 23.912572 | 36.33441 | 35.81270 | 36.95617 |
Plethodon ouachitae | Caudata | NT | Ground-dwelling | 26.407276 | 35.36583 | 33.92765 | 36.89512 |
Plethodon ouachitae | Caudata | NT | Ground-dwelling | 24.464077 | 35.12571 | 33.76053 | 36.52472 |
Plethodon ouachitae | Caudata | NT | Ground-dwelling | 29.501864 | 35.74822 | 34.10996 | 37.42351 |
Lithobates berlandieri | Anura | LC | Semi-aquatic | 23.861038 | 39.82088 | 38.38887 | 41.40312 |
Lithobates berlandieri | Anura | LC | Semi-aquatic | 22.567755 | 39.65694 | 38.17533 | 41.05867 |
Lithobates berlandieri | Anura | LC | Semi-aquatic | 26.170086 | 40.11359 | 38.54187 | 41.81633 |
Dryophytes chrysoscelis | Anura | LC | Arboreal | 23.257625 | 40.68931 | 39.16807 | 42.29264 |
Dryophytes chrysoscelis | Anura | LC | Arboreal | 20.413931 | 40.36146 | 38.85731 | 41.72224 |
Dryophytes chrysoscelis | Anura | LC | Arboreal | 27.084038 | 41.13046 | 39.40595 | 42.95570 |
Rhinella granulosa | Anura | LC | Ground-dwelling | 26.943393 | 41.88185 | 40.82221 | 42.83887 |
Rhinella granulosa | Anura | LC | Ground-dwelling | 25.971169 | 41.73537 | 40.75417 | 42.72115 |
Rhinella granulosa | Anura | LC | Ground-dwelling | 28.829064 | 42.16596 | 41.15521 | 43.29408 |
Pleurodema bufoninum | Anura | LC | Ground-dwelling | 13.438626 | 37.40161 | 36.05461 | 38.90836 |
Pleurodema bufoninum | Anura | LC | Ground-dwelling | 11.366708 | 37.15441 | 35.74998 | 38.66958 |
Pleurodema bufoninum | Anura | LC | Ground-dwelling | 17.867059 | 37.92996 | 36.47117 | 39.28935 |
Alsodes gargola | Anura | LC | Semi-aquatic | 14.798402 | 33.26557 | 31.47817 | 34.96162 |
Alsodes gargola | Anura | LC | Semi-aquatic | 12.593310 | 32.99706 | 31.21523 | 34.77848 |
Alsodes gargola | Anura | LC | Semi-aquatic | 19.593371 | 33.84944 | 32.14578 | 35.65419 |
Anaxyrus terrestris | Anura | LC | Fossorial | 26.962373 | 39.22885 | 38.49518 | 39.98389 |
Anaxyrus terrestris | Anura | LC | Fossorial | 24.586909 | 38.95829 | 38.24241 | 39.73505 |
Anaxyrus terrestris | Anura | LC | Fossorial | 29.719161 | 39.54284 | 38.74774 | 40.29442 |
Xenopus laevis | Anura | LC | Aquatic | 22.300803 | 36.03092 | 35.43285 | 36.63302 |
Xenopus laevis | Anura | LC | Aquatic | 20.922581 | 35.84024 | 35.27386 | 36.43299 |
Xenopus laevis | Anura | LC | Aquatic | 24.771323 | 36.37272 | 35.69668 | 37.04056 |
Eleutherodactylus cundalli | Anura | VU | Ground-dwelling | 27.495925 | 36.68873 | 34.87707 | 38.42630 |
Eleutherodactylus cundalli | Anura | VU | Ground-dwelling | 27.126705 | 36.63962 | 34.83119 | 38.36001 |
Eleutherodactylus cundalli | Anura | VU | Ground-dwelling | 28.083133 | 36.76682 | 34.93047 | 38.53255 |
Eleutherodactylus gossei | Anura | VU | Ground-dwelling | 27.473430 | 35.98547 | 34.26757 | 37.70097 |
Eleutherodactylus gossei | Anura | VU | Ground-dwelling | 27.097639 | 35.94149 | 34.22359 | 37.63122 |
Eleutherodactylus gossei | Anura | VU | Ground-dwelling | 28.066481 | 36.05487 | 34.30583 | 37.77295 |
Eleutherodactylus johnstonei | Anura | LC | Ground-dwelling | 26.194749 | 38.80301 | 36.90667 | 40.31758 |
Eleutherodactylus johnstonei | Anura | LC | Ground-dwelling | 25.556125 | 38.71868 | 36.86993 | 40.26827 |
Eleutherodactylus johnstonei | Anura | LC | Ground-dwelling | 27.404075 | 38.96269 | 37.23880 | 40.69245 |
Eleutherodactylus planirostris | Anura | LC | Ground-dwelling | 27.317668 | 39.54669 | 37.89439 | 41.29417 |
Eleutherodactylus planirostris | Anura | LC | Ground-dwelling | 26.479765 | 39.42269 | 37.80989 | 41.15781 |
Eleutherodactylus planirostris | Anura | LC | Ground-dwelling | 28.732212 | 39.75602 | 38.12330 | 41.59982 |
Odontophrynus occidentalis | Anura | LC | Ground-dwelling | 20.200706 | 35.06940 | 33.87581 | 36.20053 |
Odontophrynus occidentalis | Anura | LC | Ground-dwelling | 18.118641 | 34.75506 | 33.50229 | 35.83007 |
Odontophrynus occidentalis | Anura | LC | Ground-dwelling | 23.911802 | 35.62968 | 34.42791 | 36.95580 |
Rhinella arenarum | Anura | LC | Ground-dwelling | 21.794451 | 39.12899 | 38.20059 | 40.13337 |
Rhinella arenarum | Anura | LC | Ground-dwelling | 19.928701 | 38.93235 | 38.00748 | 39.93306 |
Rhinella arenarum | Anura | LC | Ground-dwelling | 25.039571 | 39.47101 | 38.44615 | 40.54928 |
Melanophryniscus rubriventris | Anura | LC | Ground-dwelling | 19.192884 | 35.71527 | 34.00843 | 37.42919 |
Melanophryniscus rubriventris | Anura | LC | Ground-dwelling | 18.011103 | 35.57332 | 33.79897 | 37.29022 |
Melanophryniscus rubriventris | Anura | LC | Ground-dwelling | 21.065894 | 35.94023 | 34.23812 | 37.62777 |
Kaloula kalingensis | Anura | LC | Arboreal | 27.722871 | 36.93203 | 34.96830 | 38.71287 |
Kaloula kalingensis | Anura | LC | Arboreal | 27.226222 | 36.86660 | 34.90238 | 38.61154 |
Kaloula kalingensis | Anura | LC | Arboreal | 28.643884 | 37.05337 | 35.07452 | 38.85011 |
Occidozyga laevis | Anura | LC | Aquatic | 27.545372 | 36.85682 | 34.41792 | 39.20510 |
Occidozyga laevis | Anura | LC | Aquatic | 27.032258 | 36.79116 | 34.33608 | 39.10216 |
Occidozyga laevis | Anura | LC | Aquatic | 28.628062 | 36.99535 | 34.40778 | 39.25898 |
Philautus surdus | Anura | LC | Arboreal | 27.554874 | 35.51638 | 33.23474 | 37.82591 |
Philautus surdus | Anura | LC | Arboreal | 27.048847 | 35.45243 | 33.25101 | 37.79364 |
Philautus surdus | Anura | LC | Arboreal | 28.588364 | 35.64701 | 33.29495 | 37.92639 |
Platymantis banahao | Anura | NT | Arboreal | 27.300462 | 35.71101 | 34.22818 | 37.32071 |
Platymantis banahao | Anura | NT | Arboreal | 26.857937 | 35.64969 | 34.15904 | 37.20513 |
Platymantis banahao | Anura | NT | Arboreal | 28.156659 | 35.82965 | 34.33063 | 37.45594 |
Platymantis corrugatus | Anura | LC | Ground-dwelling | 27.552003 | 35.00489 | 32.71626 | 37.44110 |
Platymantis corrugatus | Anura | LC | Ground-dwelling | 27.052883 | 34.93769 | 32.51008 | 37.20274 |
Platymantis corrugatus | Anura | LC | Ground-dwelling | 28.575732 | 35.14271 | 32.67764 | 37.44993 |
Platymantis dorsalis | Anura | LC | Ground-dwelling | 27.493280 | 34.43959 | 32.12254 | 36.90346 |
Platymantis dorsalis | Anura | LC | Ground-dwelling | 27.029134 | 34.37839 | 32.09923 | 36.85994 |
Platymantis dorsalis | Anura | LC | Ground-dwelling | 28.456896 | 34.56665 | 32.24745 | 37.07887 |
Platymantis luzonensis | Anura | NT | Arboreal | 27.656366 | 35.50112 | 33.39694 | 37.76962 |
Platymantis luzonensis | Anura | NT | Arboreal | 27.186974 | 35.43607 | 33.35423 | 37.68853 |
Platymantis luzonensis | Anura | NT | Arboreal | 28.498275 | 35.61779 | 33.52781 | 37.93858 |
Sanguirana luzonensis | Anura | LC | Stream-dwelling | 27.711440 | 36.19917 | 34.30853 | 37.91820 |
Sanguirana luzonensis | Anura | LC | Stream-dwelling | 27.217234 | 36.13348 | 34.45666 | 38.03468 |
Sanguirana luzonensis | Anura | LC | Stream-dwelling | 28.659223 | 36.32514 | 34.44501 | 38.12880 |
Hylarana erythraea | Anura | LC | Ground-dwelling | 27.789423 | 36.15075 | 33.67126 | 38.26012 |
Hylarana erythraea | Anura | LC | Ground-dwelling | 27.063349 | 36.05521 | 33.57512 | 38.16324 |
Hylarana erythraea | Anura | LC | Ground-dwelling | 29.267280 | 36.34523 | 33.86695 | 38.50603 |
Limnonectes woodworthi | Anura | LC | Semi-aquatic | 27.721398 | 37.54929 | 35.38175 | 39.76279 |
Limnonectes woodworthi | Anura | LC | Semi-aquatic | 27.236624 | 37.48917 | 35.32081 | 39.67283 |
Limnonectes woodworthi | Anura | LC | Semi-aquatic | 28.645959 | 37.66394 | 35.48988 | 39.93353 |
Platymantis montanus | Anura | VU | Arboreal | 27.627292 | 35.14299 | 33.20703 | 36.80358 |
Platymantis montanus | Anura | VU | Arboreal | 27.121792 | 35.07449 | 33.18995 | 36.74332 |
Platymantis montanus | Anura | VU | Arboreal | 28.602361 | 35.27512 | 33.30476 | 36.96706 |
Kaloula walteri | Anura | VU | Stream-dwelling | 27.620045 | 37.72149 | 35.45396 | 39.71931 |
Kaloula walteri | Anura | VU | Stream-dwelling | 27.139889 | 37.65289 | 35.30136 | 39.55270 |
Kaloula walteri | Anura | VU | Stream-dwelling | 28.513708 | 37.84916 | 35.53616 | 39.83023 |
Physalaemus cuvieri | Anura | LC | Semi-aquatic | 26.916559 | 38.47990 | 37.59084 | 39.37027 |
Physalaemus cuvieri | Anura | LC | Semi-aquatic | 25.905765 | 38.34593 | 37.52132 | 39.28418 |
Physalaemus cuvieri | Anura | LC | Semi-aquatic | 28.866836 | 38.73841 | 37.74095 | 39.67385 |
Pleurodema diplolister | Anura | LC | Fossorial | 26.025050 | 42.21063 | 41.30363 | 43.04299 |
Pleurodema diplolister | Anura | LC | Fossorial | 25.019541 | 42.07239 | 41.10068 | 42.84491 |
Pleurodema diplolister | Anura | LC | Fossorial | 27.822968 | 42.45782 | 41.56374 | 43.33130 |
Rhinella icterica | Anura | LC | Ground-dwelling | 25.800249 | 40.59029 | 39.88705 | 41.31808 |
Rhinella icterica | Anura | LC | Ground-dwelling | 24.459283 | 40.41196 | 39.71770 | 41.11154 |
Rhinella icterica | Anura | LC | Ground-dwelling | 28.150519 | 40.90285 | 40.05844 | 41.64040 |
Rana chensinensis | Anura | LC | Semi-aquatic | 20.863311 | 34.17244 | 33.37576 | 34.96019 |
Rana chensinensis | Anura | LC | Semi-aquatic | 17.789265 | 33.72127 | 32.97604 | 34.45851 |
Rana chensinensis | Anura | LC | Semi-aquatic | 24.635550 | 34.72608 | 33.81212 | 35.67812 |
Batrachuperus tibetanus | Caudata | VU | Semi-aquatic | 17.591549 | 34.15486 | 32.13512 | 36.36602 |
Batrachuperus tibetanus | Caudata | VU | Semi-aquatic | 15.087701 | 33.82508 | 31.74952 | 35.87938 |
Batrachuperus tibetanus | Caudata | VU | Semi-aquatic | 20.727726 | 34.56792 | 32.35269 | 36.85984 |
Batrachuperus yenyuanensis | Caudata | EN | Semi-aquatic | 20.065157 | 33.90249 | 31.70556 | 36.13076 |
Batrachuperus yenyuanensis | Caudata | EN | Semi-aquatic | 18.734125 | 33.72688 | 31.59686 | 35.94963 |
Batrachuperus yenyuanensis | Caudata | EN | Semi-aquatic | 22.048790 | 34.16419 | 31.85422 | 36.45374 |
Paramesotriton chinensis | Caudata | LC | Semi-aquatic | 26.805770 | 37.47014 | 34.95739 | 39.70569 |
Paramesotriton chinensis | Caudata | LC | Semi-aquatic | 24.618871 | 37.17332 | 34.76883 | 39.30108 |
Paramesotriton chinensis | Caudata | LC | Semi-aquatic | 29.367742 | 37.81787 | 35.07578 | 40.17302 |
Tylototriton kweichowensis | Caudata | VU | Semi-aquatic | 23.280404 | 36.87632 | 34.58320 | 39.32508 |
Tylototriton kweichowensis | Caudata | VU | Semi-aquatic | 21.795537 | 36.67719 | 34.41471 | 39.09228 |
Tylototriton kweichowensis | Caudata | VU | Semi-aquatic | 25.409225 | 37.16180 | 34.88017 | 39.77316 |
Quasipaa spinosa | Anura | VU | Stream-dwelling | 26.388714 | 44.68546 | 43.22626 | 46.07364 |
Quasipaa spinosa | Anura | VU | Stream-dwelling | 24.974069 | 44.48296 | 43.13024 | 45.80151 |
Quasipaa spinosa | Anura | VU | Stream-dwelling | 28.680552 | 45.01353 | 43.24363 | 46.41184 |
Pseudotriton ruber | Caudata | LC | Semi-aquatic | 24.742337 | 35.59786 | 33.84082 | 37.73392 |
Pseudotriton ruber | Caudata | LC | Semi-aquatic | 21.697471 | 35.25012 | 33.21278 | 37.04071 |
Pseudotriton ruber | Caudata | LC | Semi-aquatic | 28.244500 | 35.99782 | 34.06900 | 38.19531 |
Scaphiopus couchii | Anura | LC | Fossorial | 23.488390 | 38.98445 | 37.98857 | 40.00356 |
Scaphiopus couchii | Anura | LC | Fossorial | 21.885411 | 38.73838 | 37.73866 | 39.73804 |
Scaphiopus couchii | Anura | LC | Fossorial | 26.068780 | 39.38055 | 38.33162 | 40.39746 |
Leptodactylus mystacinus | Anura | LC | Ground-dwelling | 25.340923 | 41.66481 | 39.65245 | 43.72663 |
Leptodactylus mystacinus | Anura | LC | Ground-dwelling | 23.929010 | 41.47968 | 39.44163 | 43.41021 |
Leptodactylus mystacinus | Anura | LC | Ground-dwelling | 27.868427 | 41.99623 | 39.91282 | 44.21085 |
Pelophylax saharicus | Anura | LC | Aquatic | 22.854607 | 38.34321 | 36.25133 | 40.46459 |
Pelophylax saharicus | Anura | LC | Aquatic | 21.421358 | 38.14822 | 36.12557 | 40.32309 |
Pelophylax saharicus | Anura | LC | Aquatic | 25.535072 | 38.70788 | 36.64807 | 41.08215 |
Bufotes viridis | Anura | LC | Ground-dwelling | 19.396877 | 38.47693 | 36.54036 | 40.43139 |
Bufotes viridis | Anura | LC | Ground-dwelling | 16.594990 | 38.10681 | 36.05711 | 40.01267 |
Bufotes viridis | Anura | LC | Ground-dwelling | 23.792848 | 39.05763 | 37.11995 | 41.07696 |
Leptodactylus albilabris | Anura | LC | Semi-aquatic | 27.064394 | 38.10411 | 37.08492 | 39.34291 |
Leptodactylus albilabris | Anura | LC | Semi-aquatic | 26.582806 | 38.04648 | 37.05093 | 39.27990 |
Leptodactylus albilabris | Anura | LC | Semi-aquatic | 27.788220 | 38.19073 | 37.18620 | 39.49168 |
Aplastodiscus ibirapitanga | Anura | LC | Arboreal | 25.194158 | 39.55491 | 37.44233 | 41.77816 |
Aplastodiscus ibirapitanga | Anura | LC | Arboreal | 24.394840 | 39.44979 | 37.32513 | 41.60246 |
Aplastodiscus ibirapitanga | Anura | LC | Arboreal | 26.614824 | 39.74175 | 37.53575 | 41.95458 |
Aplastodiscus sibilatus | Anura | DD | Arboreal | 24.895750 | 37.77114 | 35.44356 | 40.03515 |
Aplastodiscus sibilatus | Anura | DD | Arboreal | 23.944508 | 37.64960 | 35.26757 | 39.77662 |
Aplastodiscus sibilatus | Anura | DD | Arboreal | 26.585867 | 37.98708 | 35.67174 | 40.36512 |
Aplastodiscus weygoldti | Anura | NT | Arboreal | 25.434686 | 38.17311 | 36.67111 | 39.70382 |
Aplastodiscus weygoldti | Anura | NT | Arboreal | 24.665388 | 38.07745 | 36.58630 | 39.54825 |
Aplastodiscus weygoldti | Anura | NT | Arboreal | 26.933814 | 38.35951 | 36.82403 | 39.98771 |
Ceratophrys joazeirensis | Anura | LC | Fossorial | 25.358394 | 40.91103 | 38.82308 | 43.22320 |
Ceratophrys joazeirensis | Anura | LC | Fossorial | 24.210859 | 40.76398 | 38.68758 | 43.01833 |
Ceratophrys joazeirensis | Anura | LC | Fossorial | 27.406412 | 41.17345 | 39.01969 | 43.56380 |
Phyllomedusa burmeisteri | Anura | LC | Arboreal | 25.371847 | 41.63586 | 39.79575 | 43.71032 |
Phyllomedusa burmeisteri | Anura | LC | Arboreal | 24.232086 | 41.47366 | 39.70075 | 43.52740 |
Phyllomedusa burmeisteri | Anura | LC | Arboreal | 27.556444 | 41.94675 | 39.92527 | 44.06202 |
Physalaemus cicada | Anura | LC | Ground-dwelling | 25.024456 | 39.04699 | 37.06674 | 41.16918 |
Physalaemus cicada | Anura | LC | Ground-dwelling | 23.878503 | 38.88962 | 36.98209 | 41.01677 |
Physalaemus cicada | Anura | LC | Ground-dwelling | 27.133795 | 39.33667 | 37.19973 | 41.47147 |
Proceratophrys schirchi | Anura | LC | Ground-dwelling | 25.396475 | 38.57688 | 36.29282 | 40.86314 |
Proceratophrys schirchi | Anura | LC | Ground-dwelling | 24.521493 | 38.45627 | 36.19335 | 40.68945 |
Proceratophrys schirchi | Anura | LC | Ground-dwelling | 26.971310 | 38.79396 | 36.46156 | 41.14163 |
Physalaemus signifer | Anura | LC | Ground-dwelling | 25.393255 | 40.88154 | 38.86855 | 42.98080 |
Physalaemus signifer | Anura | LC | Ground-dwelling | 24.490610 | 40.76187 | 38.75498 | 42.81978 |
Physalaemus signifer | Anura | LC | Ground-dwelling | 27.028321 | 41.09831 | 39.04673 | 43.28196 |
Scinax alter | Anura | LC | Arboreal | 25.118411 | 40.87859 | 38.40003 | 43.11363 |
Scinax alter | Anura | LC | Arboreal | 23.923007 | 40.72896 | 38.26764 | 42.92237 |
Scinax alter | Anura | LC | Arboreal | 27.121667 | 41.12935 | 38.70235 | 43.56092 |
Stereocyclops incrassatus | Anura | LC | Ground-dwelling | 25.259423 | 40.01554 | 37.84696 | 42.53820 |
Stereocyclops incrassatus | Anura | LC | Ground-dwelling | 24.339215 | 39.88863 | 37.70448 | 42.35099 |
Stereocyclops incrassatus | Anura | LC | Ground-dwelling | 27.056773 | 40.26342 | 38.07135 | 42.86095 |
Scinax pachycrus | Anura | LC | Arboreal | 25.117548 | 41.20409 | 39.04653 | 43.69304 |
Scinax pachycrus | Anura | LC | Arboreal | 23.974055 | 41.05799 | 38.95625 | 43.52291 |
Scinax pachycrus | Anura | LC | Arboreal | 27.223284 | 41.47312 | 39.27848 | 44.07163 |
Gabohyla pauloalvini | Anura | DD | Arboreal | 25.306209 | 40.39377 | 38.20340 | 42.76353 |
Gabohyla pauloalvini | Anura | DD | Arboreal | 24.515917 | 40.29483 | 38.14318 | 42.63136 |
Gabohyla pauloalvini | Anura | DD | Arboreal | 26.810078 | 40.58203 | 38.30747 | 42.95433 |
Dendropsophus sanborni | Anura | LC | Arboreal | 25.013744 | 38.61547 | 36.29110 | 40.79338 |
Dendropsophus sanborni | Anura | LC | Arboreal | 23.309969 | 38.40563 | 36.37866 | 40.74934 |
Dendropsophus sanborni | Anura | LC | Arboreal | 27.871470 | 38.96743 | 36.64680 | 41.32428 |
Boana albopunctata | Anura | LC | Arboreal | 26.790175 | 38.80452 | 36.73051 | 41.05597 |
Boana albopunctata | Anura | LC | Arboreal | 25.627170 | 38.66799 | 36.63755 | 40.88928 |
Boana albopunctata | Anura | LC | Arboreal | 28.992730 | 39.06309 | 36.88459 | 41.36521 |
Boana pulchella | Anura | LC | Arboreal | 23.871903 | 37.38474 | 36.23935 | 38.62698 |
Boana pulchella | Anura | LC | Arboreal | 22.048726 | 37.16536 | 36.07342 | 38.42030 |
Boana pulchella | Anura | LC | Arboreal | 26.984163 | 37.75923 | 36.43486 | 39.05811 |
Scinax uruguayus | Anura | LC | Ground-dwelling | 24.481040 | 39.50106 | 38.28723 | 40.85169 |
Scinax uruguayus | Anura | LC | Ground-dwelling | 22.703098 | 39.29806 | 38.11509 | 40.60999 |
Scinax uruguayus | Anura | LC | Ground-dwelling | 27.362221 | 39.83002 | 38.36990 | 41.09415 |
Leptodactylus gracilis | Anura | LC | Ground-dwelling | 24.370603 | 40.48560 | 38.50967 | 42.78884 |
Leptodactylus gracilis | Anura | LC | Ground-dwelling | 22.613529 | 40.25211 | 38.18770 | 42.40279 |
Leptodactylus gracilis | Anura | LC | Ground-dwelling | 27.364904 | 40.88350 | 38.75653 | 43.11590 |
Odontophrynus americanus | Anura | LC | Fossorial | 24.554150 | 38.92325 | 37.49399 | 40.38385 |
Odontophrynus americanus | Anura | LC | Fossorial | 23.000150 | 38.69567 | 37.32372 | 40.06978 |
Odontophrynus americanus | Anura | LC | Fossorial | 27.313483 | 39.32734 | 37.68642 | 40.78001 |
Ololygon aromothyella | Anura | DD | Arboreal | 26.619474 | 41.13656 | 38.82725 | 43.55490 |
Ololygon aromothyella | Anura | DD | Arboreal | 25.081036 | 40.93795 | 38.80039 | 43.42456 |
Ololygon aromothyella | Anura | DD | Arboreal | 28.930983 | 41.43497 | 38.93450 | 43.82050 |
Phyllomedusa iheringii | Anura | LC | Arboreal | 23.392788 | 40.26925 | 39.15008 | 41.35676 |
Phyllomedusa iheringii | Anura | LC | Arboreal | 21.589605 | 40.04555 | 38.83519 | 40.96882 |
Phyllomedusa iheringii | Anura | LC | Arboreal | 26.388377 | 40.64089 | 39.44495 | 41.86301 |
Physalaemus gracilis | Anura | LC | Ground-dwelling | 24.506654 | 38.63587 | 37.33861 | 39.79253 |
Physalaemus gracilis | Anura | LC | Ground-dwelling | 22.748692 | 38.42067 | 37.24600 | 39.61116 |
Physalaemus gracilis | Anura | LC | Ground-dwelling | 27.308670 | 38.97888 | 37.57500 | 40.21607 |
Physalaemus henselii | Anura | LC | Ground-dwelling | 24.178375 | 37.11105 | 36.08661 | 38.27401 |
Physalaemus henselii | Anura | LC | Ground-dwelling | 22.364873 | 36.91462 | 35.80079 | 37.91919 |
Physalaemus henselii | Anura | LC | Ground-dwelling | 27.230595 | 37.44166 | 36.25769 | 38.67925 |
Physalaemus riograndensis | Anura | LC | Ground-dwelling | 25.028235 | 41.30004 | 39.12829 | 43.76610 |
Physalaemus riograndensis | Anura | LC | Ground-dwelling | 23.268373 | 41.06148 | 38.50342 | 43.08878 |
Physalaemus riograndensis | Anura | LC | Ground-dwelling | 27.984471 | 41.70077 | 39.55718 | 44.35238 |
Pseudis minuta | Anura | LC | Aquatic | 24.250873 | 38.98984 | 37.88060 | 40.15681 |
Pseudis minuta | Anura | LC | Aquatic | 22.410697 | 38.78700 | 37.80926 | 39.99667 |
Pseudis minuta | Anura | LC | Aquatic | 27.383664 | 39.33517 | 38.07263 | 40.63262 |
Pseudopaludicola falcipes | Anura | LC | Ground-dwelling | 25.247562 | 40.51103 | 38.17387 | 43.09867 |
Pseudopaludicola falcipes | Anura | LC | Ground-dwelling | 23.688647 | 40.30016 | 37.91320 | 42.71021 |
Pseudopaludicola falcipes | Anura | LC | Ground-dwelling | 27.974812 | 40.87996 | 38.54088 | 43.60343 |
Rhinella dorbignyi | Anura | LC | Ground-dwelling | 22.771908 | 39.60586 | 37.59136 | 41.86826 |
Rhinella dorbignyi | Anura | LC | Ground-dwelling | 20.944119 | 39.37246 | 37.25915 | 41.38297 |
Rhinella dorbignyi | Anura | LC | Ground-dwelling | 25.953382 | 40.01210 | 37.59955 | 42.07556 |
Scinax granulatus | Anura | LC | Ground-dwelling | 24.304297 | 40.09174 | 37.75541 | 42.26262 |
Scinax granulatus | Anura | LC | Ground-dwelling | 22.554410 | 39.87288 | 37.70142 | 42.11502 |
Scinax granulatus | Anura | LC | Ground-dwelling | 27.193959 | 40.45316 | 38.01221 | 42.69891 |
Scinax squalirostris | Anura | LC | Arboreal | 25.264325 | 41.24497 | 38.77794 | 43.44554 |
Scinax squalirostris | Anura | LC | Arboreal | 23.801961 | 41.05702 | 38.92160 | 43.51252 |
Scinax squalirostris | Anura | LC | Arboreal | 27.832007 | 41.57499 | 39.07688 | 43.86355 |
Gastrotheca pseustes | Anura | NT | Arboreal | 23.264063 | 37.14374 | 36.51560 | 37.92329 |
Gastrotheca pseustes | Anura | NT | Arboreal | 21.671049 | 36.98320 | 36.34560 | 37.74862 |
Gastrotheca pseustes | Anura | NT | Arboreal | 25.494172 | 37.36848 | 36.66731 | 38.11237 |
Gastrotheca riobambae | Anura | EN | Arboreal | 20.883009 | 37.89816 | 37.08452 | 38.67727 |
Gastrotheca riobambae | Anura | EN | Arboreal | 18.807879 | 37.65427 | 36.82610 | 38.46690 |
Gastrotheca riobambae | Anura | EN | Arboreal | 23.416515 | 38.19593 | 37.40815 | 38.99839 |
Agalychnis spurrelli | Anura | LC | Arboreal | 25.931973 | 40.90113 | 40.20098 | 41.69618 |
Agalychnis spurrelli | Anura | LC | Arboreal | 25.210596 | 40.79096 | 40.05063 | 41.53072 |
Agalychnis spurrelli | Anura | LC | Arboreal | 27.300220 | 41.11010 | 40.31999 | 41.88086 |
Boana geographica | Anura | LC | Arboreal | 26.980590 | 40.77866 | 39.86173 | 41.55425 |
Boana geographica | Anura | LC | Arboreal | 26.123019 | 40.65596 | 39.74236 | 41.39535 |
Boana geographica | Anura | LC | Arboreal | 28.707527 | 41.02575 | 40.15419 | 41.93857 |
Smilisca phaeota | Anura | LC | Stream-dwelling | 26.084751 | 40.60639 | 39.81140 | 41.38914 |
Smilisca phaeota | Anura | LC | Stream-dwelling | 25.321692 | 40.49390 | 39.70766 | 41.27284 |
Smilisca phaeota | Anura | LC | Stream-dwelling | 27.550657 | 40.82248 | 39.92144 | 41.57105 |
Boana crepitans | Anura | LC | Arboreal | 26.119967 | 39.72392 | 38.36882 | 41.07622 |
Boana crepitans | Anura | LC | Arboreal | 25.152466 | 39.61845 | 38.27653 | 40.91944 |
Boana crepitans | Anura | LC | Arboreal | 27.954286 | 39.92389 | 38.34716 | 41.21278 |
Boana semilineata | Anura | LC | Arboreal | 25.342960 | 39.78947 | 38.03603 | 41.73545 |
Boana semilineata | Anura | LC | Arboreal | 24.219541 | 39.65305 | 37.76650 | 41.33201 |
Boana semilineata | Anura | LC | Arboreal | 27.366559 | 40.03521 | 37.80968 | 41.72016 |
Leptodactylus troglodytes | Anura | LC | Ground-dwelling | 26.197973 | 41.23732 | 39.44128 | 43.07169 |
Leptodactylus troglodytes | Anura | LC | Ground-dwelling | 25.202294 | 41.10291 | 39.42421 | 42.92832 |
Leptodactylus troglodytes | Anura | LC | Ground-dwelling | 28.029004 | 41.48450 | 39.60216 | 43.33863 |
Physalaemus crombiei | Anura | LC | Ground-dwelling | 25.298055 | 41.17563 | 39.67871 | 43.23460 |
Physalaemus crombiei | Anura | LC | Ground-dwelling | 24.503063 | 41.06771 | 39.51655 | 43.05065 |
Physalaemus crombiei | Anura | LC | Ground-dwelling | 26.826563 | 41.38313 | 39.77205 | 43.44529 |
Pithecopus nordestinus | Anura | DD | Arboreal | 25.581520 | 40.40331 | 38.72976 | 42.01021 |
Pithecopus nordestinus | Anura | DD | Arboreal | 24.541365 | 40.26230 | 38.59961 | 41.83482 |
Pithecopus nordestinus | Anura | DD | Arboreal | 27.435870 | 40.65470 | 38.91341 | 42.35488 |
Scinax x-signatus | Anura | LC | Arboreal | 27.164479 | 41.54175 | 39.96942 | 43.23569 |
Scinax x-signatus | Anura | LC | Arboreal | 26.289657 | 41.42846 | 39.92442 | 43.13446 |
Scinax x-signatus | Anura | LC | Arboreal | 28.929848 | 41.77035 | 40.01377 | 43.45235 |
Trachycephalus atlas | Anura | LC | Arboreal | 24.864425 | 40.95270 | 39.14940 | 42.51054 |
Trachycephalus atlas | Anura | LC | Arboreal | 23.740526 | 40.80265 | 39.06772 | 42.35999 |
Trachycephalus atlas | Anura | LC | Arboreal | 27.024445 | 41.24107 | 39.39822 | 42.91812 |
Agalychnis hulli | Anura | LC | Arboreal | 25.642851 | 39.48907 | 37.55575 | 41.80280 |
Agalychnis hulli | Anura | LC | Arboreal | 24.847883 | 39.37608 | 37.45020 | 41.64044 |
Agalychnis hulli | Anura | LC | Arboreal | 27.212916 | 39.71223 | 37.61381 | 41.96557 |
Allobates insperatus | Anura | LC | Ground-dwelling | 25.638782 | 37.54551 | 35.36955 | 39.83553 |
Allobates insperatus | Anura | LC | Ground-dwelling | 24.760919 | 37.42221 | 35.23195 | 39.62726 |
Allobates insperatus | Anura | LC | Ground-dwelling | 27.246083 | 37.77125 | 35.41089 | 39.99428 |
Allobates zaparo | Anura | LC | Ground-dwelling | 25.494666 | 38.00964 | 35.87523 | 40.07018 |
Allobates zaparo | Anura | LC | Ground-dwelling | 24.698166 | 37.90277 | 35.83960 | 39.98503 |
Allobates zaparo | Anura | LC | Ground-dwelling | 27.079750 | 38.22234 | 35.94462 | 40.30581 |
Atelopus elegans | Anura | EN | Stream-dwelling | 23.495298 | 36.10367 | 34.31002 | 37.84220 |
Atelopus elegans | Anura | EN | Stream-dwelling | 22.462300 | 35.97060 | 34.14228 | 37.61078 |
Atelopus elegans | Anura | EN | Stream-dwelling | 25.230306 | 36.32716 | 34.34734 | 37.94137 |
Atelopus spumarius | Anura | VU | Stream-dwelling | 27.478170 | 36.93426 | 34.87639 | 39.43005 |
Atelopus spumarius | Anura | VU | Stream-dwelling | 26.784003 | 36.84406 | 34.84653 | 39.34364 |
Atelopus spumarius | Anura | VU | Stream-dwelling | 29.000142 | 37.13200 | 34.93194 | 39.63145 |
Boana boans | Anura | LC | Arboreal | 27.215709 | 40.42277 | 38.35701 | 42.35147 |
Boana boans | Anura | LC | Arboreal | 26.483715 | 40.32703 | 38.30619 | 42.22252 |
Boana boans | Anura | LC | Arboreal | 28.777208 | 40.62699 | 38.50812 | 42.65654 |
Boana cinerascens | Anura | LC | Arboreal | 27.502494 | 39.98874 | 38.41799 | 41.78669 |
Boana cinerascens | Anura | LC | Arboreal | 26.786636 | 39.89472 | 38.26680 | 41.58964 |
Boana cinerascens | Anura | LC | Arboreal | 29.036045 | 40.19013 | 38.51669 | 42.03312 |
Boana fasciata | Anura | LC | Arboreal | 27.396672 | 39.90043 | 37.56416 | 42.16012 |
Boana fasciata | Anura | LC | Arboreal | 26.678670 | 39.80987 | 37.54453 | 42.08506 |
Boana fasciata | Anura | LC | Arboreal | 28.948844 | 40.09621 | 37.91706 | 42.63034 |
Boana lanciformis | Anura | LC | Arboreal | 27.275380 | 41.36055 | 39.82648 | 42.92365 |
Boana lanciformis | Anura | LC | Arboreal | 26.530717 | 41.25001 | 39.70708 | 42.74888 |
Boana lanciformis | Anura | LC | Arboreal | 28.838690 | 41.59261 | 40.01637 | 43.29056 |
Boana pellucens | Anura | LC | Arboreal | 24.299713 | 40.27975 | 38.49210 | 41.96450 |
Boana pellucens | Anura | LC | Arboreal | 23.283378 | 40.14756 | 38.37071 | 41.78640 |
Boana pellucens | Anura | LC | Arboreal | 26.001824 | 40.50114 | 38.84547 | 42.42443 |
Chiasmocleis ventrimaculata | Anura | LC | Ground-dwelling | 25.082655 | 39.02850 | 36.87264 | 41.37149 |
Chiasmocleis ventrimaculata | Anura | LC | Ground-dwelling | 24.313668 | 38.92169 | 36.72542 | 41.22974 |
Chiasmocleis ventrimaculata | Anura | LC | Ground-dwelling | 26.464856 | 39.22049 | 37.03286 | 41.60758 |
Chimerella mariaelenae | Anura | LC | Arboreal | 23.727007 | 37.29639 | 35.82396 | 38.83405 |
Chimerella mariaelenae | Anura | LC | Arboreal | 22.592906 | 37.14647 | 35.63595 | 38.61191 |
Chimerella mariaelenae | Anura | LC | Arboreal | 25.584364 | 37.54193 | 36.01429 | 39.12454 |
Cruziohyla calcarifer | Anura | LC | Arboreal | 24.867687 | 39.71325 | 37.54078 | 42.03987 |
Cruziohyla calcarifer | Anura | LC | Arboreal | 24.077584 | 39.60067 | 37.35517 | 41.78651 |
Cruziohyla calcarifer | Anura | LC | Arboreal | 26.263610 | 39.91217 | 37.80064 | 42.36179 |
Dendropsophus bifurcus | Anura | LC | Arboreal | 26.350021 | 40.58680 | 38.32821 | 42.73319 |
Dendropsophus bifurcus | Anura | LC | Arboreal | 25.571765 | 40.48877 | 38.25773 | 42.59835 |
Dendropsophus bifurcus | Anura | LC | Arboreal | 27.916304 | 40.78409 | 38.43116 | 42.90762 |
Dendropsophus bokermanni | Anura | LC | Arboreal | 26.824381 | 39.23805 | 36.98995 | 41.69454 |
Dendropsophus bokermanni | Anura | LC | Arboreal | 26.058449 | 39.14493 | 37.06486 | 41.69828 |
Dendropsophus bokermanni | Anura | LC | Arboreal | 28.323521 | 39.42033 | 37.26324 | 42.07914 |
Dendropsophus brevifrons | Anura | LC | Arboreal | 27.034935 | 39.01236 | 37.20740 | 40.79556 |
Dendropsophus brevifrons | Anura | LC | Arboreal | 26.323579 | 38.92627 | 37.16359 | 40.71330 |
Dendropsophus brevifrons | Anura | LC | Arboreal | 28.519804 | 39.19208 | 37.34622 | 41.03620 |
Dendropsophus carnifex | Anura | LC | Arboreal | 20.180939 | 39.04306 | 37.56703 | 40.80361 |
Dendropsophus carnifex | Anura | LC | Arboreal | 18.072574 | 38.77132 | 37.11695 | 40.34223 |
Dendropsophus carnifex | Anura | LC | Arboreal | 22.820081 | 39.38320 | 37.75700 | 41.09055 |
Dendropsophus ebraccatus | Anura | LC | Arboreal | 26.064724 | 41.12778 | 39.40161 | 42.82813 |
Dendropsophus ebraccatus | Anura | LC | Arboreal | 25.266923 | 41.02363 | 39.18814 | 42.56982 |
Dendropsophus ebraccatus | Anura | LC | Arboreal | 27.615023 | 41.33017 | 39.53006 | 43.04866 |
Dendropsophus marmoratus | Anura | LC | Arboreal | 27.410152 | 41.16743 | 39.05718 | 43.58566 |
Dendropsophus marmoratus | Anura | LC | Arboreal | 26.697600 | 41.07572 | 38.99947 | 43.48208 |
Dendropsophus marmoratus | Anura | LC | Arboreal | 28.950102 | 41.36562 | 38.99352 | 43.64954 |
Dendropsophus parviceps | Anura | LC | Arboreal | 27.369229 | 39.20377 | 37.28598 | 41.55083 |
Dendropsophus parviceps | Anura | LC | Arboreal | 26.629398 | 39.11342 | 37.16746 | 41.38463 |
Dendropsophus parviceps | Anura | LC | Arboreal | 28.927590 | 39.39409 | 37.46218 | 41.84813 |
Dendropsophus sarayacuensis | Anura | LC | Arboreal | 27.225988 | 40.08166 | 38.52532 | 41.69102 |
Dendropsophus sarayacuensis | Anura | LC | Arboreal | 26.468940 | 39.98968 | 38.43237 | 41.53729 |
Dendropsophus sarayacuensis | Anura | LC | Arboreal | 28.744375 | 40.26614 | 38.57005 | 41.87673 |
Dendropsophus triangulum | Anura | LC | Arboreal | 27.385494 | 40.37777 | 38.79119 | 42.17608 |
Dendropsophus triangulum | Anura | LC | Arboreal | 26.643232 | 40.28987 | 38.71324 | 42.03055 |
Dendropsophus triangulum | Anura | LC | Arboreal | 28.912234 | 40.55855 | 38.90221 | 42.42502 |
Engystomops coloradorum | Anura | DD | Ground-dwelling | 23.033729 | 39.56458 | 37.62847 | 41.52548 |
Engystomops coloradorum | Anura | DD | Ground-dwelling | 21.190651 | 39.32602 | 37.28661 | 41.13432 |
Engystomops coloradorum | Anura | DD | Ground-dwelling | 25.447074 | 39.87696 | 37.96368 | 42.03956 |
Engystomops guayaco | Anura | VU | Ground-dwelling | 25.157273 | 39.76712 | 38.13814 | 41.51404 |
Engystomops guayaco | Anura | VU | Ground-dwelling | 23.907105 | 39.60422 | 38.00223 | 41.29584 |
Engystomops guayaco | Anura | VU | Ground-dwelling | 27.136643 | 40.02502 | 38.22690 | 41.78746 |
Engystomops petersi | Anura | LC | Ground-dwelling | 26.061992 | 39.11846 | 37.25183 | 40.84301 |
Engystomops petersi | Anura | LC | Ground-dwelling | 25.166215 | 38.99997 | 37.16475 | 40.71965 |
Engystomops petersi | Anura | LC | Ground-dwelling | 27.695005 | 39.33449 | 37.37174 | 41.12403 |
Engystomops randi | Anura | LC | Ground-dwelling | 23.740388 | 40.30951 | 38.47610 | 42.48777 |
Engystomops randi | Anura | LC | Ground-dwelling | 22.459834 | 40.13500 | 38.31710 | 42.27678 |
Engystomops randi | Anura | LC | Ground-dwelling | 25.835929 | 40.59509 | 38.55178 | 42.72527 |
Epipedobates anthonyi | Anura | NT | Stream-dwelling | 24.021096 | 38.04794 | 37.36660 | 38.70634 |
Epipedobates anthonyi | Anura | NT | Stream-dwelling | 22.976511 | 37.89629 | 37.20192 | 38.53054 |
Epipedobates anthonyi | Anura | NT | Stream-dwelling | 25.865535 | 38.31571 | 37.67313 | 39.07244 |
Epipedobates boulengeri | Anura | LC | Ground-dwelling | 24.382863 | 38.42545 | 36.76897 | 40.11415 |
Epipedobates boulengeri | Anura | LC | Ground-dwelling | 23.388305 | 38.28794 | 36.55687 | 39.88447 |
Epipedobates boulengeri | Anura | LC | Ground-dwelling | 26.018706 | 38.65163 | 36.91693 | 40.37177 |
Epipedobates espinosai | Anura | DD | Ground-dwelling | 26.262132 | 38.27065 | 36.46766 | 40.42705 |
Epipedobates espinosai | Anura | DD | Ground-dwelling | 25.183072 | 38.12743 | 36.39908 | 40.27699 |
Epipedobates espinosai | Anura | DD | Ground-dwelling | 28.032647 | 38.50565 | 36.27919 | 40.41924 |
Epipedobates machalilla | Anura | LC | Ground-dwelling | 23.961946 | 38.38735 | 36.86609 | 39.90325 |
Epipedobates machalilla | Anura | LC | Ground-dwelling | 22.784849 | 38.22338 | 36.83362 | 39.81314 |
Epipedobates machalilla | Anura | LC | Ground-dwelling | 25.868755 | 38.65298 | 37.12016 | 40.29393 |
Epipedobates tricolor | Anura | VU | Ground-dwelling | 24.178205 | 38.14330 | 36.57416 | 39.68529 |
Epipedobates tricolor | Anura | VU | Ground-dwelling | 22.579566 | 37.92859 | 36.50367 | 39.47735 |
Epipedobates tricolor | Anura | VU | Ground-dwelling | 26.372882 | 38.43806 | 36.80040 | 40.06195 |
Espadarana callistomma | Anura | LC | Stream-dwelling | 24.808678 | 36.65424 | 34.95473 | 38.32072 |
Espadarana callistomma | Anura | LC | Stream-dwelling | 24.004542 | 36.54259 | 34.85247 | 38.15630 |
Espadarana callistomma | Anura | LC | Stream-dwelling | 26.254812 | 36.85503 | 35.14284 | 38.62879 |
Espadarana prosoblepon | Anura | LC | Stream-dwelling | 25.722112 | 34.62956 | 33.42214 | 35.87295 |
Espadarana prosoblepon | Anura | LC | Stream-dwelling | 24.880986 | 34.56004 | 33.40545 | 35.78281 |
Espadarana prosoblepon | Anura | LC | Stream-dwelling | 27.236771 | 34.75475 | 33.47988 | 36.06229 |
Gastrotheca lateonota | Anura | VU | Arboreal | 22.736035 | 37.52490 | 35.97760 | 39.15076 |
Gastrotheca lateonota | Anura | VU | Arboreal | 21.681466 | 37.38785 | 35.73152 | 38.85169 |
Gastrotheca lateonota | Anura | VU | Arboreal | 24.443522 | 37.74679 | 36.18978 | 39.45736 |
Gastrotheca litonedis | Anura | CR | Arboreal | 21.252659 | 37.54452 | 35.53392 | 39.77306 |
Gastrotheca litonedis | Anura | CR | Arboreal | 19.420658 | 37.30545 | 35.23221 | 39.44060 |
Gastrotheca litonedis | Anura | CR | Arboreal | 23.758706 | 37.87156 | 35.60904 | 40.02659 |
Hyloscirtus alytolylax | Anura | LC | Stream-dwelling | 24.213945 | 36.85621 | 35.09817 | 38.55343 |
Hyloscirtus alytolylax | Anura | LC | Stream-dwelling | 23.072077 | 36.70957 | 35.05645 | 38.47517 |
Hyloscirtus alytolylax | Anura | LC | Stream-dwelling | 25.988427 | 37.08411 | 35.18315 | 38.76138 |
Hyloscirtus lindae | Anura | LC | Stream-dwelling | 23.840175 | 36.33520 | 34.93277 | 37.94294 |
Hyloscirtus lindae | Anura | LC | Stream-dwelling | 22.658008 | 36.18601 | 34.76808 | 37.76103 |
Hyloscirtus lindae | Anura | LC | Stream-dwelling | 25.653878 | 36.56409 | 35.07773 | 38.14261 |
Hyloscirtus phyllognathus | Anura | LC | Stream-dwelling | 22.277657 | 37.18112 | 35.70867 | 38.60317 |
Hyloscirtus phyllognathus | Anura | LC | Stream-dwelling | 21.220654 | 37.04227 | 35.61238 | 38.50709 |
Hyloscirtus phyllognathus | Anura | LC | Stream-dwelling | 23.795333 | 37.38048 | 35.95201 | 38.92547 |
Hyloxalus bocagei | Anura | LC | Stream-dwelling | 24.246141 | 37.51895 | 35.64421 | 39.23126 |
Hyloxalus bocagei | Anura | LC | Stream-dwelling | 23.313995 | 37.38724 | 35.55149 | 39.11920 |
Hyloxalus bocagei | Anura | LC | Stream-dwelling | 25.863330 | 37.74745 | 35.81342 | 39.45697 |
Hyloxalus elachyhistus | Anura | LC | Stream-dwelling | 23.328916 | 36.15882 | 33.76257 | 38.61757 |
Hyloxalus elachyhistus | Anura | LC | Stream-dwelling | 22.356582 | 36.02645 | 33.73179 | 38.50535 |
Hyloxalus elachyhistus | Anura | LC | Stream-dwelling | 25.038241 | 36.39153 | 34.01762 | 38.90662 |
Colostethus jacobuspetersi | Anura | CR | Stream-dwelling | 19.805326 | 33.02547 | 30.67896 | 35.05069 |
Colostethus jacobuspetersi | Anura | CR | Stream-dwelling | 17.198230 | 32.69793 | 30.50872 | 34.88825 |
Colostethus jacobuspetersi | Anura | CR | Stream-dwelling | 22.861501 | 33.40943 | 31.14885 | 35.57286 |
Hyloxalus maculosus | Anura | DD | Stream-dwelling | 23.870176 | 36.72844 | 34.54208 | 38.73330 |
Hyloxalus maculosus | Anura | DD | Stream-dwelling | 22.471871 | 36.53872 | 34.38551 | 38.49246 |
Hyloxalus maculosus | Anura | DD | Stream-dwelling | 25.771383 | 36.98640 | 34.82901 | 39.15337 |
Hyloxalus nexipus | Anura | LC | Stream-dwelling | 23.656136 | 36.87561 | 34.60853 | 38.83339 |
Hyloxalus nexipus | Anura | LC | Stream-dwelling | 22.733830 | 36.74545 | 34.45527 | 38.66447 |
Hyloxalus nexipus | Anura | LC | Stream-dwelling | 25.341093 | 37.11341 | 34.83304 | 39.13300 |
Hyloxalus pulchellus | Anura | NT | Ground-dwelling | 23.104466 | 34.57885 | 32.51749 | 37.14699 |
Hyloxalus pulchellus | Anura | NT | Ground-dwelling | 21.766491 | 34.40265 | 32.39762 | 36.91830 |
Hyloxalus pulchellus | Anura | NT | Ground-dwelling | 24.960875 | 34.82332 | 32.54207 | 37.22413 |
Hyloxalus toachi | Anura | EN | Ground-dwelling | 22.986312 | 36.85959 | 34.80524 | 39.35495 |
Hyloxalus toachi | Anura | EN | Ground-dwelling | 21.456474 | 36.64990 | 34.55143 | 39.04732 |
Hyloxalus toachi | Anura | EN | Ground-dwelling | 25.131200 | 37.15358 | 34.76266 | 39.34800 |
Hyloxalus vertebralis | Anura | CR | Stream-dwelling | 23.499563 | 35.21639 | 32.93452 | 37.39710 |
Hyloxalus vertebralis | Anura | CR | Stream-dwelling | 22.018834 | 35.01609 | 32.82048 | 37.24095 |
Hyloxalus vertebralis | Anura | CR | Stream-dwelling | 25.735214 | 35.51880 | 33.09177 | 37.65823 |
Leptodactylus labrosus | Anura | LC | Ground-dwelling | 24.093412 | 39.38919 | 37.10262 | 41.39392 |
Leptodactylus labrosus | Anura | LC | Ground-dwelling | 23.141828 | 39.26559 | 37.07465 | 41.35309 |
Leptodactylus labrosus | Anura | LC | Ground-dwelling | 25.797436 | 39.61053 | 37.35297 | 41.62668 |
Leptodactylus rhodomystax | Anura | LC | Ground-dwelling | 27.579410 | 39.29749 | 37.09949 | 41.52347 |
Leptodactylus rhodomystax | Anura | LC | Ground-dwelling | 26.864078 | 39.20689 | 37.09489 | 41.46767 |
Leptodactylus rhodomystax | Anura | LC | Ground-dwelling | 29.120992 | 39.49274 | 37.20018 | 41.73593 |
Leptodactylus ventrimaculatus | Anura | LC | Ground-dwelling | 24.937993 | 39.19895 | 37.71395 | 40.68558 |
Leptodactylus ventrimaculatus | Anura | LC | Ground-dwelling | 24.047604 | 39.08374 | 37.64888 | 40.56891 |
Leptodactylus ventrimaculatus | Anura | LC | Ground-dwelling | 26.507941 | 39.40208 | 37.72440 | 40.85018 |
Leptodactylus wagneri | Anura | LC | Ground-dwelling | 25.962888 | 39.37594 | 37.26807 | 41.64060 |
Leptodactylus wagneri | Anura | LC | Ground-dwelling | 25.047608 | 39.26210 | 37.16916 | 41.52576 |
Leptodactylus wagneri | Anura | LC | Ground-dwelling | 27.574081 | 39.57633 | 37.33902 | 41.87184 |
Osteocephalus mutabor | Anura | LC | Arboreal | 24.600941 | 38.84923 | 37.18710 | 40.64769 |
Osteocephalus mutabor | Anura | LC | Arboreal | 23.554897 | 38.72149 | 37.07977 | 40.45605 |
Osteocephalus mutabor | Anura | LC | Arboreal | 26.336208 | 39.06114 | 37.26455 | 40.84597 |
Phyllomedusa coelestis | Anura | LC | Ground-dwelling | 25.065187 | 40.60201 | 38.42037 | 42.81847 |
Phyllomedusa coelestis | Anura | LC | Ground-dwelling | 24.285196 | 40.49439 | 38.32154 | 42.67300 |
Phyllomedusa coelestis | Anura | LC | Ground-dwelling | 26.623968 | 40.81708 | 38.54965 | 43.04877 |
Phyllomedusa vaillantii | Anura | LC | Arboreal | 27.576903 | 40.54062 | 38.96517 | 42.30953 |
Phyllomedusa vaillantii | Anura | LC | Arboreal | 26.857733 | 40.44070 | 38.89590 | 42.18077 |
Phyllomedusa vaillantii | Anura | LC | Arboreal | 29.134017 | 40.75696 | 39.17772 | 42.58246 |
Lithobates bwana | Anura | LC | Semi-aquatic | 24.606241 | 37.79464 | 35.80461 | 39.76588 |
Lithobates bwana | Anura | LC | Semi-aquatic | 23.503526 | 37.64140 | 35.68731 | 39.57196 |
Lithobates bwana | Anura | LC | Semi-aquatic | 26.501025 | 38.05796 | 36.00618 | 40.06793 |
Lithobates vaillanti | Anura | LC | Semi-aquatic | 26.097529 | 38.54479 | 36.48930 | 40.73575 |
Lithobates vaillanti | Anura | LC | Semi-aquatic | 25.273434 | 38.42926 | 36.21234 | 40.41243 |
Lithobates vaillanti | Anura | LC | Semi-aquatic | 27.713013 | 38.77125 | 36.90969 | 41.23516 |
Rhinella margaritifera | Anura | LC | Ground-dwelling | 27.084304 | 38.88154 | 37.36352 | 40.48257 |
Rhinella margaritifera | Anura | LC | Ground-dwelling | 26.288679 | 38.78867 | 37.28326 | 40.37031 |
Rhinella margaritifera | Anura | LC | Ground-dwelling | 28.728070 | 39.07341 | 37.45926 | 40.67490 |
Scinax elaeochroa | Anura | LC | Arboreal | 26.480345 | 40.26435 | 38.03072 | 42.74217 |
Scinax elaeochroa | Anura | LC | Arboreal | 25.748273 | 40.17155 | 37.93782 | 42.58010 |
Scinax elaeochroa | Anura | LC | Arboreal | 27.862185 | 40.43952 | 38.09711 | 42.85347 |
Scinax garbei | Anura | LC | Arboreal | 27.326182 | 39.97615 | 37.84324 | 42.25361 |
Scinax garbei | Anura | LC | Arboreal | 26.588927 | 39.88447 | 37.75704 | 42.12968 |
Scinax garbei | Anura | LC | Arboreal | 28.874148 | 40.16864 | 37.93107 | 42.43706 |
Scinax quinquefasciatus | Anura | LC | Arboreal | 24.616354 | 41.20541 | 39.35125 | 43.03390 |
Scinax quinquefasciatus | Anura | LC | Arboreal | 23.618313 | 41.07952 | 39.28903 | 42.92799 |
Scinax quinquefasciatus | Anura | LC | Arboreal | 26.265288 | 41.41341 | 39.55013 | 43.35755 |
Scinax ruber | Anura | LC | Arboreal | 27.428745 | 40.78879 | 39.37958 | 42.21463 |
Scinax ruber | Anura | LC | Arboreal | 26.666557 | 40.69422 | 39.34213 | 42.11603 |
Scinax ruber | Anura | LC | Arboreal | 29.044834 | 40.98929 | 39.48389 | 42.46765 |
Eleutherodactylus antillensis | Anura | LC | Ground-dwelling | 27.100319 | 45.46772 | 43.20019 | 47.57578 |
Eleutherodactylus antillensis | Anura | LC | Ground-dwelling | 26.555958 | 45.35477 | 43.11779 | 47.44807 |
Eleutherodactylus antillensis | Anura | LC | Ground-dwelling | 27.882953 | 45.63011 | 43.31069 | 47.77107 |
Eleutherodactylus brittoni | Anura | LC | Ground-dwelling | 26.951986 | 36.50472 | 34.06038 | 38.71138 |
Eleutherodactylus brittoni | Anura | LC | Ground-dwelling | 26.448459 | 36.45756 | 34.00172 | 38.62885 |
Eleutherodactylus brittoni | Anura | LC | Ground-dwelling | 27.635538 | 36.56876 | 34.11905 | 38.84425 |
Eleutherodactylus wightmanae | Anura | EN | Ground-dwelling | 26.909318 | 38.44017 | 36.12252 | 40.34261 |
Eleutherodactylus wightmanae | Anura | EN | Ground-dwelling | 26.392690 | 38.37580 | 36.06595 | 40.25098 |
Eleutherodactylus wightmanae | Anura | EN | Ground-dwelling | 27.600337 | 38.52627 | 36.17150 | 40.46221 |
Plethodon yonahlossee | Caudata | LC | Ground-dwelling | 25.800021 | 35.10147 | 33.73703 | 36.81362 |
Plethodon yonahlossee | Caudata | LC | Ground-dwelling | 23.529304 | 34.82812 | 33.31989 | 36.18844 |
Plethodon yonahlossee | Caudata | LC | Ground-dwelling | 28.868351 | 35.47083 | 33.85008 | 37.28125 |
Plethodon caddoensis | Caudata | NT | Ground-dwelling | 26.535050 | 35.73646 | 34.16342 | 37.30475 |
Plethodon caddoensis | Caudata | NT | Ground-dwelling | 24.472091 | 35.48679 | 34.07009 | 37.06091 |
Plethodon caddoensis | Caudata | NT | Ground-dwelling | 29.808076 | 36.13257 | 34.26584 | 37.87318 |
Plethodon dorsalis | Caudata | LC | Ground-dwelling | 26.105896 | 34.35695 | 32.11152 | 36.86382 |
Plethodon dorsalis | Caudata | LC | Ground-dwelling | 23.076841 | 33.98381 | 31.66330 | 36.08513 |
Plethodon dorsalis | Caudata | LC | Ground-dwelling | 29.453704 | 34.76936 | 32.34069 | 37.52912 |
Eurycea multiplicata | Caudata | LC | Semi-aquatic | 25.444802 | 37.64142 | 35.65078 | 39.22586 |
Eurycea multiplicata | Caudata | LC | Semi-aquatic | 23.308749 | 37.44406 | 35.68857 | 38.98869 |
Eurycea multiplicata | Caudata | LC | Semi-aquatic | 29.335530 | 38.00091 | 35.88308 | 40.06487 |
Plethodon serratus | Caudata | LC | Ground-dwelling | 25.571874 | 35.21598 | 33.07564 | 37.64315 |
Plethodon serratus | Caudata | LC | Ground-dwelling | 23.091812 | 34.91262 | 32.71508 | 37.08124 |
Plethodon serratus | Caudata | LC | Ground-dwelling | 29.496507 | 35.69603 | 33.28442 | 38.30489 |
Adenomera andreae | Anura | LC | Ground-dwelling | 27.336711 | 37.95190 | 35.61629 | 40.33543 |
Adenomera andreae | Anura | LC | Ground-dwelling | 26.604865 | 37.86351 | 35.52650 | 40.23865 |
Adenomera andreae | Anura | LC | Ground-dwelling | 28.892930 | 38.13986 | 35.68262 | 40.42983 |
Allobates conspicuus | Anura | DD | Ground-dwelling | 26.525372 | 36.49538 | 34.47094 | 38.81875 |
Allobates conspicuus | Anura | DD | Ground-dwelling | 25.786418 | 36.39946 | 34.39453 | 38.71595 |
Allobates conspicuus | Anura | DD | Ground-dwelling | 27.915035 | 36.67578 | 34.51919 | 38.89653 |
Allobates femoralis | Anura | LC | Ground-dwelling | 27.449361 | 39.97274 | 37.95662 | 42.16430 |
Allobates femoralis | Anura | LC | Ground-dwelling | 26.720267 | 39.86101 | 37.86276 | 42.04034 |
Allobates femoralis | Anura | LC | Ground-dwelling | 28.997731 | 40.21003 | 38.19087 | 42.44995 |
Allobates trilineatus | Anura | LC | Ground-dwelling | 25.104709 | 35.50559 | 33.17104 | 37.78552 |
Allobates trilineatus | Anura | LC | Ground-dwelling | 24.356533 | 35.41271 | 33.04784 | 37.68327 |
Allobates trilineatus | Anura | LC | Ground-dwelling | 26.500218 | 35.67883 | 33.38267 | 38.03455 |
Ameerega hahneli | Anura | LC | Ground-dwelling | 27.524329 | 38.70755 | 36.83259 | 41.02193 |
Ameerega hahneli | Anura | LC | Ground-dwelling | 26.817301 | 38.60908 | 36.74321 | 40.90621 |
Ameerega hahneli | Anura | LC | Ground-dwelling | 29.035421 | 38.91800 | 36.72416 | 41.00646 |
Ameerega trivittata | Anura | LC | Ground-dwelling | 27.656596 | 39.13981 | 36.93920 | 41.35434 |
Ameerega trivittata | Anura | LC | Ground-dwelling | 26.950152 | 39.03615 | 36.76340 | 41.12174 |
Ameerega trivittata | Anura | LC | Ground-dwelling | 29.184302 | 39.36396 | 37.30689 | 41.80134 |
Chiasmocleis bassleri | Anura | LC | Fossorial | 27.717312 | 39.45158 | 37.36806 | 41.81921 |
Chiasmocleis bassleri | Anura | LC | Fossorial | 26.959875 | 39.35015 | 37.23449 | 41.69239 |
Chiasmocleis bassleri | Anura | LC | Fossorial | 29.254362 | 39.65741 | 37.45419 | 41.94687 |
Ctenophryne geayi | Anura | LC | Fossorial | 27.232893 | 40.12566 | 37.83373 | 42.45442 |
Ctenophryne geayi | Anura | LC | Fossorial | 26.514806 | 40.02441 | 37.58848 | 42.19820 |
Ctenophryne geayi | Anura | LC | Fossorial | 28.762768 | 40.34138 | 37.96989 | 42.65915 |
Dendropsophus koechlini | Anura | LC | Arboreal | 26.287558 | 39.85417 | 37.96657 | 41.95939 |
Dendropsophus koechlini | Anura | LC | Arboreal | 25.519095 | 39.75203 | 37.85205 | 41.82854 |
Dendropsophus koechlini | Anura | LC | Arboreal | 27.728750 | 40.04571 | 38.06496 | 42.12846 |
Dendropsophus leucophyllatus | Anura | LC | Arboreal | 27.407738 | 40.87114 | 38.61052 | 42.88325 |
Dendropsophus leucophyllatus | Anura | LC | Arboreal | 26.692422 | 40.77724 | 38.79563 | 43.05465 |
Dendropsophus leucophyllatus | Anura | LC | Arboreal | 28.947355 | 41.07325 | 38.82000 | 43.12334 |
Dendropsophus schubarti | Anura | LC | Arboreal | 26.908705 | 38.36789 | 36.31696 | 40.68170 |
Dendropsophus schubarti | Anura | LC | Arboreal | 26.141679 | 38.27658 | 36.25423 | 40.58282 |
Dendropsophus schubarti | Anura | LC | Arboreal | 28.532174 | 38.56115 | 36.52107 | 40.95536 |
Edalorhina perezi | Anura | LC | Ground-dwelling | 27.233396 | 39.84654 | 37.63241 | 42.16872 |
Edalorhina perezi | Anura | LC | Ground-dwelling | 26.469376 | 39.74660 | 37.28288 | 41.75285 |
Edalorhina perezi | Anura | LC | Ground-dwelling | 28.714241 | 40.04024 | 37.58254 | 42.20293 |
Engystomops freibergi | Anura | LC | Ground-dwelling | 26.939369 | 38.81926 | 36.75916 | 40.85689 |
Engystomops freibergi | Anura | LC | Ground-dwelling | 26.179302 | 38.72657 | 36.80379 | 40.84144 |
Engystomops freibergi | Anura | LC | Ground-dwelling | 28.493060 | 39.00873 | 36.91036 | 41.07364 |
Hamptophryne boliviana | Anura | LC | Ground-dwelling | 27.417312 | 40.00964 | 38.01187 | 42.45739 |
Hamptophryne boliviana | Anura | LC | Ground-dwelling | 26.692523 | 39.91171 | 37.85878 | 42.24480 |
Hamptophryne boliviana | Anura | LC | Ground-dwelling | 28.973002 | 40.21983 | 38.15173 | 42.69309 |
Boana punctata | Anura | LC | Arboreal | 26.999464 | 40.65675 | 38.45514 | 42.79239 |
Boana punctata | Anura | LC | Arboreal | 26.115953 | 40.53508 | 38.33099 | 42.64123 |
Boana punctata | Anura | LC | Arboreal | 28.768927 | 40.90044 | 38.59700 | 42.97250 |
Leptodactylus bolivianus | Anura | LC | Semi-aquatic | 27.188422 | 39.07941 | 37.03742 | 41.54976 |
Leptodactylus bolivianus | Anura | LC | Semi-aquatic | 26.455967 | 38.98877 | 36.96184 | 41.45900 |
Leptodactylus bolivianus | Anura | LC | Semi-aquatic | 28.741056 | 39.27156 | 37.07179 | 41.64386 |
Leptodactylus didymus | Anura | LC | Ground-dwelling | 22.146497 | 38.09861 | 35.93070 | 40.17592 |
Leptodactylus didymus | Anura | LC | Ground-dwelling | 21.361075 | 38.00328 | 35.80291 | 40.05784 |
Leptodactylus didymus | Anura | LC | Ground-dwelling | 23.375214 | 38.24774 | 36.16455 | 40.33716 |
Leptodactylus leptodactyloides | Anura | LC | Ground-dwelling | 27.433733 | 39.65611 | 37.53425 | 41.81256 |
Leptodactylus leptodactyloides | Anura | LC | Ground-dwelling | 26.727593 | 39.56562 | 37.47532 | 41.69959 |
Leptodactylus leptodactyloides | Anura | LC | Ground-dwelling | 28.970029 | 39.85299 | 37.55391 | 41.94063 |
Leptodactylus petersii | Anura | LC | Ground-dwelling | 27.690084 | 39.84792 | 37.73765 | 41.81854 |
Leptodactylus petersii | Anura | LC | Ground-dwelling | 26.940594 | 39.75324 | 37.78172 | 41.80967 |
Leptodactylus petersii | Anura | LC | Ground-dwelling | 29.292669 | 40.05035 | 37.95340 | 42.16217 |
Lithodytes lineatus | Anura | LC | Ground-dwelling | 27.179455 | 39.80360 | 37.51023 | 41.99373 |
Lithodytes lineatus | Anura | LC | Ground-dwelling | 26.458499 | 39.70801 | 37.43881 | 41.88824 |
Lithodytes lineatus | Anura | LC | Ground-dwelling | 28.723511 | 40.00831 | 37.76038 | 42.26807 |
Oreobates quixensis | Anura | LC | Ground-dwelling | 27.084996 | 37.61602 | 35.48423 | 39.70221 |
Oreobates quixensis | Anura | LC | Ground-dwelling | 26.318842 | 37.48853 | 35.37731 | 39.56918 |
Oreobates quixensis | Anura | LC | Ground-dwelling | 28.576446 | 37.86421 | 35.61249 | 39.89084 |
Osteocephalus buckleyi | Anura | LC | Stream-dwelling | 27.290320 | 39.76244 | 37.67904 | 41.86366 |
Osteocephalus buckleyi | Anura | LC | Stream-dwelling | 26.574573 | 39.66589 | 37.65274 | 41.79118 |
Osteocephalus buckleyi | Anura | LC | Stream-dwelling | 28.813329 | 39.96790 | 38.10777 | 42.44125 |
Phyllomedusa camba | Anura | LC | Arboreal | 26.460486 | 41.41157 | 39.58496 | 43.46404 |
Phyllomedusa camba | Anura | LC | Arboreal | 25.657317 | 41.29680 | 39.49218 | 43.30753 |
Phyllomedusa camba | Anura | LC | Arboreal | 28.063087 | 41.64058 | 39.50776 | 43.49191 |
Pristimantis fenestratus | Anura | LC | Ground-dwelling | 27.695321 | 35.32204 | 33.05821 | 37.38503 |
Pristimantis fenestratus | Anura | LC | Ground-dwelling | 26.964108 | 35.21731 | 32.98513 | 37.29972 |
Pristimantis fenestratus | Anura | LC | Ground-dwelling | 29.275475 | 35.54835 | 33.21614 | 37.64030 |
Ranitomeya sirensis | Anura | LC | Arboreal | 21.968866 | 38.03888 | 35.69075 | 40.20037 |
Ranitomeya sirensis | Anura | LC | Arboreal | 21.175998 | 37.91943 | 35.56542 | 40.06461 |
Ranitomeya sirensis | Anura | LC | Arboreal | 23.306122 | 38.24034 | 35.98825 | 40.49329 |
Scarthyla goinorum | Anura | LC | Semi-aquatic | 27.775071 | 38.64205 | 36.30091 | 40.87232 |
Scarthyla goinorum | Anura | LC | Semi-aquatic | 27.025097 | 38.55613 | 36.19848 | 40.70847 |
Scarthyla goinorum | Anura | LC | Semi-aquatic | 29.290099 | 38.81559 | 36.13984 | 40.81681 |
Scinax ictericus | Anura | LC | Arboreal | 22.997749 | 40.12200 | 37.97207 | 42.48160 |
Scinax ictericus | Anura | LC | Arboreal | 22.321185 | 40.03660 | 37.90702 | 42.44451 |
Scinax ictericus | Anura | LC | Arboreal | 24.173715 | 40.27043 | 38.11949 | 42.68079 |
Sphaenorhynchus lacteus | Anura | LC | Semi-aquatic | 27.410364 | 41.44774 | 39.21361 | 43.73559 |
Sphaenorhynchus lacteus | Anura | LC | Semi-aquatic | 26.693859 | 41.35375 | 39.10975 | 43.59440 |
Sphaenorhynchus lacteus | Anura | LC | Semi-aquatic | 28.952800 | 41.65008 | 39.43435 | 44.00787 |
Leptodactylus lithonaetes | Anura | LC | Stream-dwelling | 27.661690 | 41.17483 | 39.20090 | 42.91342 |
Leptodactylus lithonaetes | Anura | LC | Stream-dwelling | 26.957256 | 41.06813 | 39.08099 | 42.82745 |
Leptodactylus lithonaetes | Anura | LC | Stream-dwelling | 29.179950 | 41.40482 | 39.47690 | 43.13288 |
Chiropterotriton multidentatus | Caudata | EN | Arboreal | 23.066179 | 34.08395 | 33.14232 | 35.14012 |
Chiropterotriton multidentatus | Caudata | EN | Arboreal | 22.040805 | 33.95862 | 33.05307 | 34.94712 |
Chiropterotriton multidentatus | Caudata | EN | Arboreal | 25.197040 | 34.34438 | 33.32957 | 35.60690 |
Bufo bankorensis | Anura | LC | Ground-dwelling | 27.514509 | 39.87984 | 39.35691 | 40.42004 |
Bufo bankorensis | Anura | LC | Ground-dwelling | 26.761020 | 39.76180 | 39.28342 | 40.30385 |
Bufo bankorensis | Anura | LC | Ground-dwelling | 28.703695 | 40.06614 | 39.52150 | 40.65370 |
Odorrana swinhoana | Anura | LC | Stream-dwelling | 27.395311 | 36.18974 | 34.37177 | 38.06597 |
Odorrana swinhoana | Anura | LC | Stream-dwelling | 26.621837 | 36.08423 | 34.28397 | 37.92779 |
Odorrana swinhoana | Anura | LC | Stream-dwelling | 28.594579 | 36.35334 | 34.57225 | 38.32429 |
Kurixalus eiffingeri | Anura | LC | Arboreal | 27.441253 | 35.52215 | 34.21905 | 36.71238 |
Kurixalus eiffingeri | Anura | LC | Arboreal | 26.656250 | 35.44142 | 34.30550 | 36.72348 |
Kurixalus eiffingeri | Anura | LC | Arboreal | 28.646511 | 35.64611 | 34.19747 | 36.84904 |
Fejervarya limnocharis | Anura | LC | Ground-dwelling | 26.363591 | 40.11326 | 39.18921 | 41.04696 |
Fejervarya limnocharis | Anura | LC | Ground-dwelling | 25.074396 | 39.95158 | 39.11484 | 40.97277 |
Fejervarya limnocharis | Anura | LC | Ground-dwelling | 28.441970 | 40.37392 | 39.46301 | 41.38938 |
Hylarana latouchii | Anura | LC | Ground-dwelling | 27.155017 | 38.38551 | 36.72633 | 40.25995 |
Hylarana latouchii | Anura | LC | Ground-dwelling | 25.575214 | 38.17299 | 36.55398 | 40.01909 |
Hylarana latouchii | Anura | LC | Ground-dwelling | 29.476888 | 38.69786 | 36.81428 | 40.56052 |
Rana longicrus | Anura | VU | Semi-aquatic | 27.321876 | 36.85203 | 34.92848 | 38.67137 |
Rana longicrus | Anura | VU | Semi-aquatic | 26.484367 | 36.74120 | 34.79870 | 38.42483 |
Rana longicrus | Anura | VU | Semi-aquatic | 28.616127 | 37.02330 | 35.03496 | 38.90639 |
Rana sauteri | Anura | VU | Stream-dwelling | 27.421578 | 35.45392 | 33.76634 | 37.29228 |
Rana sauteri | Anura | VU | Stream-dwelling | 26.675417 | 35.35558 | 33.67311 | 37.15945 |
Rana sauteri | Anura | VU | Stream-dwelling | 28.608292 | 35.61032 | 33.96269 | 37.54903 |
Kaloula pulchra | Anura | LC | Ground-dwelling | 27.566496 | 41.06636 | 40.11473 | 41.80228 |
Kaloula pulchra | Anura | LC | Ground-dwelling | 26.701150 | 40.91651 | 40.01191 | 41.65817 |
Kaloula pulchra | Anura | LC | Ground-dwelling | 29.277603 | 41.36267 | 40.47373 | 42.31284 |
Batrachyla taeniata | Anura | LC | Ground-dwelling | 14.255902 | 35.56092 | 34.62784 | 36.43576 |
Batrachyla taeniata | Anura | LC | Ground-dwelling | 12.211969 | 35.33778 | 34.37641 | 36.23897 |
Batrachyla taeniata | Anura | LC | Ground-dwelling | 18.532463 | 36.02781 | 35.13724 | 37.10527 |
Atelopus limosus | Anura | CR | Stream-dwelling | 27.088398 | 37.73753 | 34.94583 | 39.83935 |
Atelopus limosus | Anura | CR | Stream-dwelling | 26.527920 | 37.66149 | 34.94439 | 39.78260 |
Atelopus limosus | Anura | CR | Stream-dwelling | 28.279757 | 37.89915 | 35.13696 | 40.09074 |
Physalaemus nattereri | Anura | LC | Fossorial | 27.012709 | 41.35516 | 40.38971 | 42.47080 |
Physalaemus nattereri | Anura | LC | Fossorial | 25.887194 | 41.20338 | 40.27432 | 42.26051 |
Physalaemus nattereri | Anura | LC | Fossorial | 29.253390 | 41.65732 | 40.57721 | 42.86774 |
Boana pardalis | Anura | LC | Arboreal | 25.548561 | 41.56469 | 40.33960 | 42.99918 |
Boana pardalis | Anura | LC | Arboreal | 24.374994 | 41.40459 | 40.12736 | 42.73935 |
Boana pardalis | Anura | LC | Arboreal | 27.669221 | 41.85399 | 40.56134 | 43.39013 |
Hylorina sylvatica | Anura | LC | Semi-aquatic | 13.124678 | 34.70268 | 32.66475 | 36.81451 |
Hylorina sylvatica | Anura | LC | Semi-aquatic | 11.166061 | 34.44249 | 32.40984 | 36.59327 |
Hylorina sylvatica | Anura | LC | Semi-aquatic | 17.515376 | 35.28594 | 33.25634 | 37.41320 |
Craugastor crassidigitus | Anura | LC | Ground-dwelling | 26.722658 | 37.51663 | 35.27250 | 39.78024 |
Craugastor crassidigitus | Anura | LC | Ground-dwelling | 26.102354 | 37.43237 | 35.17938 | 39.70364 |
Craugastor crassidigitus | Anura | LC | Ground-dwelling | 27.984135 | 37.68799 | 35.33347 | 39.98279 |
Craugastor fitzingeri | Anura | LC | Ground-dwelling | 26.572651 | 38.42677 | 36.31160 | 40.56259 |
Craugastor fitzingeri | Anura | LC | Ground-dwelling | 25.861127 | 38.32414 | 36.22756 | 40.45616 |
Craugastor fitzingeri | Anura | LC | Ground-dwelling | 28.002549 | 38.63300 | 36.45827 | 40.81785 |
Dendropsophus anceps | Anura | LC | Arboreal | 25.499168 | 38.44676 | 36.89114 | 40.13210 |
Dendropsophus anceps | Anura | LC | Arboreal | 24.438720 | 38.31892 | 36.76096 | 39.93982 |
Dendropsophus anceps | Anura | LC | Arboreal | 27.413115 | 38.67748 | 37.07399 | 40.40772 |
Dendropsophus decipiens | Anura | LC | Arboreal | 25.749589 | 37.54659 | 35.97592 | 39.32216 |
Dendropsophus decipiens | Anura | LC | Arboreal | 24.758249 | 37.43612 | 35.94349 | 39.26766 |
Dendropsophus decipiens | Anura | LC | Arboreal | 27.493444 | 37.74093 | 36.08641 | 39.50352 |
Alytes maurus | Anura | EN | Ground-dwelling | 21.769723 | 37.31064 | 35.05970 | 39.46124 |
Alytes maurus | Anura | EN | Ground-dwelling | 20.218430 | 37.09044 | 35.11333 | 39.38399 |
Alytes maurus | Anura | EN | Ground-dwelling | 24.376298 | 37.68062 | 35.19550 | 39.88632 |
Bufo gargarizans | Anura | LC | Ground-dwelling | 21.332920 | 37.41990 | 36.61630 | 38.15938 |
Bufo gargarizans | Anura | LC | Ground-dwelling | 18.633791 | 37.03884 | 36.25896 | 37.69502 |
Bufo gargarizans | Anura | LC | Ground-dwelling | 24.676640 | 37.89196 | 36.97139 | 38.75018 |
Pseudacris feriarum | Anura | LC | Ground-dwelling | 25.648446 | 38.62626 | 36.74992 | 40.64231 |
Pseudacris feriarum | Anura | LC | Ground-dwelling | 22.461698 | 38.22764 | 36.45512 | 40.17606 |
Pseudacris feriarum | Anura | LC | Ground-dwelling | 29.066762 | 39.05384 | 36.99131 | 41.18801 |
Cophixalus aenigma | Anura | VU | Ground-dwelling | 26.415710 | 31.88702 | 29.14228 | 34.26350 |
Cophixalus aenigma | Anura | VU | Ground-dwelling | 25.165581 | 31.70900 | 29.14110 | 34.15633 |
Cophixalus aenigma | Anura | VU | Ground-dwelling | 28.731015 | 32.21672 | 29.52657 | 34.82166 |
Cophixalus bombiens | Anura | LC | Ground-dwelling | 26.801236 | 35.00594 | 32.34153 | 37.50722 |
Cophixalus bombiens | Anura | LC | Ground-dwelling | 25.588831 | 34.83136 | 32.21014 | 37.25615 |
Cophixalus bombiens | Anura | LC | Ground-dwelling | 29.037380 | 35.32793 | 32.99590 | 38.42120 |
Cophixalus concinnus | Anura | CR | Ground-dwelling | 26.415710 | 32.49630 | 29.83407 | 34.86526 |
Cophixalus concinnus | Anura | CR | Ground-dwelling | 25.165581 | 32.32009 | 29.68892 | 34.66313 |
Cophixalus concinnus | Anura | CR | Ground-dwelling | 28.731015 | 32.82266 | 30.09654 | 35.27581 |
Cophixalus exiguus | Anura | LC | Ground-dwelling | 27.228068 | 36.96072 | 34.67720 | 39.39367 |
Cophixalus exiguus | Anura | LC | Ground-dwelling | 26.069923 | 36.78846 | 34.48317 | 39.18659 |
Cophixalus exiguus | Anura | LC | Ground-dwelling | 29.362021 | 37.27813 | 34.91511 | 39.79913 |
Cophixalus hosmeri | Anura | EN | Arboreal | 26.415710 | 34.49678 | 32.14587 | 37.13292 |
Cophixalus hosmeri | Anura | EN | Arboreal | 25.165581 | 34.31288 | 32.05000 | 36.91810 |
Cophixalus hosmeri | Anura | EN | Arboreal | 28.731015 | 34.83737 | 32.24110 | 37.51479 |
Cophixalus infacetus | Anura | LC | Ground-dwelling | 25.726234 | 36.19802 | 33.73605 | 38.71970 |
Cophixalus infacetus | Anura | LC | Ground-dwelling | 24.774413 | 36.05874 | 33.71843 | 38.65420 |
Cophixalus infacetus | Anura | LC | Ground-dwelling | 27.439325 | 36.44871 | 33.92008 | 38.98497 |
Cophixalus mcdonaldi | Anura | CR | Arboreal | 24.988161 | 34.71835 | 32.20723 | 36.93856 |
Cophixalus mcdonaldi | Anura | CR | Arboreal | 23.609885 | 34.52131 | 32.05184 | 36.79799 |
Cophixalus mcdonaldi | Anura | CR | Arboreal | 27.450133 | 35.07032 | 32.69721 | 37.56324 |
Cophixalus monticola | Anura | CR | Arboreal | 26.415710 | 33.89951 | 31.33631 | 36.53761 |
Cophixalus monticola | Anura | CR | Arboreal | 25.165581 | 33.72222 | 31.25047 | 36.33569 |
Cophixalus monticola | Anura | CR | Arboreal | 28.731015 | 34.22786 | 31.49787 | 36.98089 |
Cophixalus neglectus | Anura | CR | Ground-dwelling | 24.826134 | 33.75348 | 31.30153 | 36.31941 |
Cophixalus neglectus | Anura | CR | Ground-dwelling | 23.921945 | 33.62251 | 31.14052 | 36.11096 |
Cophixalus neglectus | Anura | CR | Ground-dwelling | 26.425790 | 33.98520 | 31.54296 | 36.70879 |
Cophixalus saxatilis | Anura | LC | Ground-dwelling | 27.228068 | 36.24367 | 33.81975 | 38.60986 |
Cophixalus saxatilis | Anura | LC | Ground-dwelling | 26.069923 | 36.07143 | 33.59125 | 38.36591 |
Cophixalus saxatilis | Anura | LC | Ground-dwelling | 29.362021 | 36.56103 | 34.08558 | 38.94995 |
Craugastor rhodopis | Anura | LC | Ground-dwelling | 24.330446 | 34.87649 | 32.50133 | 37.07616 |
Craugastor rhodopis | Anura | LC | Ground-dwelling | 23.337194 | 34.74371 | 32.30919 | 36.87693 |
Craugastor rhodopis | Anura | LC | Ground-dwelling | 26.529719 | 35.17050 | 32.74844 | 37.44433 |
Rheohyla miotympanum | Anura | LC | Arboreal | 24.201966 | 39.47822 | 36.90828 | 41.62900 |
Rheohyla miotympanum | Anura | LC | Arboreal | 23.155981 | 39.34154 | 36.81824 | 41.47205 |
Rheohyla miotympanum | Anura | LC | Arboreal | 26.310517 | 39.75376 | 37.41464 | 42.28292 |
Engystomops pustulosus | Anura | LC | Ground-dwelling | 26.449767 | 40.18439 | 39.44853 | 40.92581 |
Engystomops pustulosus | Anura | LC | Ground-dwelling | 25.646919 | 40.06652 | 39.35373 | 40.83651 |
Engystomops pustulosus | Anura | LC | Ground-dwelling | 28.051185 | 40.41951 | 39.75069 | 41.21936 |
Craugastor loki | Anura | LC | Ground-dwelling | 26.321194 | 35.90275 | 34.74143 | 37.23174 |
Craugastor loki | Anura | LC | Ground-dwelling | 25.405887 | 35.78184 | 34.68257 | 37.13998 |
Craugastor loki | Anura | LC | Ground-dwelling | 28.229800 | 36.15487 | 34.77215 | 37.46627 |
Pleurodema brachyops | Anura | LC | Ground-dwelling | 26.709086 | 42.79322 | 41.45814 | 44.25798 |
Pleurodema brachyops | Anura | LC | Ground-dwelling | 25.947995 | 42.67349 | 41.31907 | 44.11977 |
Pleurodema brachyops | Anura | LC | Ground-dwelling | 28.268318 | 43.03850 | 41.68178 | 44.51023 |
Pristimantis frater | Anura | LC | Arboreal | 23.647121 | 33.77803 | 31.86861 | 35.63549 |
Pristimantis frater | Anura | LC | Arboreal | 22.787811 | 33.66754 | 31.78146 | 35.50745 |
Pristimantis frater | Anura | LC | Arboreal | 25.315927 | 33.99262 | 32.10050 | 35.95922 |
Pristimantis medemi | Anura | LC | Arboreal | 24.189374 | 35.02791 | 32.51771 | 37.29650 |
Pristimantis medemi | Anura | LC | Arboreal | 23.389942 | 34.91156 | 32.53443 | 37.36119 |
Pristimantis medemi | Anura | LC | Arboreal | 25.822636 | 35.26561 | 33.00802 | 37.81402 |
Pristimantis taeniatus | Anura | LC | Ground-dwelling | 26.071208 | 36.74640 | 34.92597 | 38.49950 |
Pristimantis taeniatus | Anura | LC | Ground-dwelling | 25.371504 | 36.64224 | 34.83700 | 38.38416 |
Pristimantis taeniatus | Anura | LC | Ground-dwelling | 27.513249 | 36.96106 | 35.09751 | 38.71128 |
Pristimantis fallax | Anura | VU | Stream-dwelling | 23.628676 | 35.92268 | 33.90030 | 38.39404 |
Pristimantis fallax | Anura | VU | Stream-dwelling | 22.714297 | 35.78488 | 33.64303 | 38.14418 |
Pristimantis fallax | Anura | VU | Stream-dwelling | 25.234324 | 36.16464 | 34.20683 | 38.77348 |
Pristimantis w-nigrum | Anura | LC | Arboreal | 24.242574 | 36.15408 | 33.95105 | 38.16569 |
Pristimantis w-nigrum | Anura | LC | Arboreal | 23.266761 | 35.99754 | 33.75400 | 37.93978 |
Pristimantis w-nigrum | Anura | LC | Arboreal | 25.929147 | 36.42465 | 34.26021 | 38.51497 |
Pristimantis bicolor | Anura | VU | Arboreal | 23.634135 | 35.68944 | 33.37983 | 38.31732 |
Pristimantis bicolor | Anura | VU | Arboreal | 22.896095 | 35.58231 | 33.09089 | 38.01380 |
Pristimantis bicolor | Anura | VU | Arboreal | 25.228297 | 35.92085 | 33.50265 | 38.51442 |
Pristimantis bogotensis | Anura | LC | Arboreal | 22.977523 | 35.30491 | 33.81807 | 36.84169 |
Pristimantis bogotensis | Anura | LC | Arboreal | 22.085246 | 35.17992 | 33.76074 | 36.71463 |
Pristimantis bogotensis | Anura | LC | Arboreal | 24.609919 | 35.53358 | 33.98022 | 37.18087 |
Pristimantis savagei | Anura | NT | Arboreal | 24.089231 | 33.60704 | 31.43248 | 36.08607 |
Pristimantis savagei | Anura | NT | Arboreal | 23.292529 | 33.49593 | 31.32229 | 35.95521 |
Pristimantis savagei | Anura | NT | Arboreal | 25.685061 | 33.82960 | 31.69949 | 36.46112 |
Pristimantis renjiforum | Anura | EN | Ground-dwelling | 23.231393 | 36.34027 | 34.03165 | 38.98733 |
Pristimantis renjiforum | Anura | EN | Ground-dwelling | 22.364476 | 36.22032 | 34.02636 | 38.91142 |
Pristimantis renjiforum | Anura | EN | Ground-dwelling | 24.748943 | 36.55025 | 34.13843 | 39.21635 |
Pristimantis conspicillatus | Anura | LC | Ground-dwelling | 26.492196 | 35.65518 | 33.21752 | 37.86333 |
Pristimantis conspicillatus | Anura | LC | Ground-dwelling | 25.741338 | 35.54963 | 33.10844 | 37.71035 |
Pristimantis conspicillatus | Anura | LC | Ground-dwelling | 27.961036 | 35.86166 | 33.35904 | 38.19911 |
Pristimantis elegans | Anura | VU | Arboreal | 23.149266 | 35.36109 | 33.84675 | 36.88380 |
Pristimantis elegans | Anura | VU | Arboreal | 22.297397 | 35.24252 | 33.72998 | 36.69106 |
Pristimantis elegans | Anura | VU | Arboreal | 24.812711 | 35.59263 | 34.00064 | 37.22921 |
Pristimantis nervicus | Anura | LC | Ground-dwelling | 22.992371 | 35.69363 | 33.26369 | 38.14189 |
Pristimantis nervicus | Anura | LC | Ground-dwelling | 22.118649 | 35.57218 | 33.14287 | 37.92474 |
Pristimantis nervicus | Anura | LC | Ground-dwelling | 24.751450 | 35.93816 | 33.45121 | 38.48086 |
Eurycea sosorum | Caudata | VU | Aquatic | 26.500352 | 36.39330 | 34.21026 | 38.38225 |
Eurycea sosorum | Caudata | VU | Aquatic | 25.286696 | 36.27567 | 34.04014 | 38.13273 |
Eurycea sosorum | Caudata | VU | Aquatic | 29.192627 | 36.65424 | 34.25097 | 38.71203 |
Duttaphrynus melanostictus | Anura | LC | Ground-dwelling | 26.998722 | 39.00029 | 37.76821 | 40.34305 |
Duttaphrynus melanostictus | Anura | LC | Ground-dwelling | 25.998304 | 38.86582 | 37.63125 | 40.21948 |
Duttaphrynus melanostictus | Anura | LC | Ground-dwelling | 28.894420 | 39.25510 | 37.97166 | 40.67227 |
Limnonectes blythii | Anura | LC | Stream-dwelling | 28.089075 | 37.11896 | 34.73348 | 39.31465 |
Limnonectes blythii | Anura | LC | Stream-dwelling | 27.384388 | 37.02879 | 34.66001 | 39.22868 |
Limnonectes blythii | Anura | LC | Stream-dwelling | 29.594612 | 37.31160 | 34.91206 | 39.56646 |
Limnonectes malesianus | Anura | LC | Stream-dwelling | 28.202336 | 37.48714 | 34.86601 | 39.69908 |
Limnonectes malesianus | Anura | LC | Stream-dwelling | 27.520200 | 37.39983 | 34.79570 | 39.57145 |
Limnonectes malesianus | Anura | LC | Stream-dwelling | 29.629396 | 37.66980 | 34.97000 | 39.96610 |
Nyctixalus pictus | Anura | LC | Arboreal | 27.780370 | 37.29310 | 34.99940 | 39.49998 |
Nyctixalus pictus | Anura | LC | Arboreal | 27.173132 | 37.21281 | 34.94251 | 39.42944 |
Nyctixalus pictus | Anura | LC | Arboreal | 29.039628 | 37.45959 | 35.13223 | 39.76801 |
Polypedates leucomystax | Anura | LC | Arboreal | 27.042901 | 39.06387 | 36.93361 | 41.36224 |
Polypedates leucomystax | Anura | LC | Arboreal | 26.302092 | 38.96369 | 36.85176 | 41.22688 |
Polypedates leucomystax | Anura | LC | Arboreal | 28.523530 | 39.26410 | 36.97460 | 41.47657 |
Microhyla butleri | Anura | LC | Ground-dwelling | 26.839623 | 38.47737 | 36.19760 | 40.75222 |
Microhyla butleri | Anura | LC | Ground-dwelling | 25.755793 | 38.32533 | 36.07800 | 40.66206 |
Microhyla butleri | Anura | LC | Ground-dwelling | 28.740012 | 38.74395 | 36.36680 | 41.07612 |
Microhyla heymonsi | Anura | LC | Ground-dwelling | 27.189960 | 40.52937 | 38.23810 | 42.92662 |
Microhyla heymonsi | Anura | LC | Ground-dwelling | 26.124000 | 40.37510 | 38.06542 | 42.67848 |
Microhyla heymonsi | Anura | LC | Ground-dwelling | 29.071166 | 40.80163 | 38.37744 | 43.15794 |
Microhyla mantheyi | Anura | LC | Ground-dwelling | 28.267068 | 37.40238 | 34.99020 | 39.75347 |
Microhyla mantheyi | Anura | LC | Ground-dwelling | 27.576765 | 37.30844 | 34.91960 | 39.62203 |
Microhyla mantheyi | Anura | LC | Ground-dwelling | 29.788156 | 37.60937 | 35.16179 | 40.02378 |
Pseudis paradoxa | Anura | LC | Aquatic | 27.408842 | 41.18748 | 38.76892 | 43.13219 |
Pseudis paradoxa | Anura | LC | Aquatic | 26.508077 | 41.07525 | 38.70177 | 42.96033 |
Pseudis paradoxa | Anura | LC | Aquatic | 29.250377 | 41.41692 | 39.05609 | 43.56529 |
Anaxyrus punctatus | Anura | LC | Fossorial | 22.586297 | 40.20711 | 38.84831 | 41.49307 |
Anaxyrus punctatus | Anura | LC | Fossorial | 20.834767 | 39.98048 | 38.59273 | 41.24410 |
Anaxyrus punctatus | Anura | LC | Fossorial | 25.352864 | 40.56508 | 39.29617 | 42.00119 |
Craugastor longirostris | Anura | LC | Ground-dwelling | 25.628476 | 40.00618 | 37.39799 | 42.26877 |
Craugastor longirostris | Anura | LC | Ground-dwelling | 24.836657 | 39.89203 | 37.31162 | 42.12365 |
Craugastor longirostris | Anura | LC | Ground-dwelling | 27.106370 | 40.21922 | 37.51990 | 42.46707 |
Pristimantis achatinus | Anura | LC | Ground-dwelling | 24.953709 | 38.35438 | 36.43640 | 40.08545 |
Pristimantis achatinus | Anura | LC | Ground-dwelling | 24.077514 | 38.22309 | 36.36277 | 39.94058 |
Pristimantis achatinus | Anura | LC | Ground-dwelling | 26.510669 | 38.58767 | 36.67418 | 40.42804 |
Pristimantis latidiscus | Anura | LC | Arboreal | 25.249689 | 36.94002 | 34.64183 | 39.30542 |
Pristimantis latidiscus | Anura | LC | Arboreal | 24.468097 | 36.82664 | 34.62051 | 39.22421 |
Pristimantis latidiscus | Anura | LC | Arboreal | 26.689412 | 37.14887 | 34.80060 | 39.54741 |
Pristimantis laticlavius | Anura | VU | Arboreal | 22.593496 | 34.91432 | 33.25642 | 37.01514 |
Pristimantis laticlavius | Anura | VU | Arboreal | 21.178511 | 34.71167 | 33.15479 | 36.83745 |
Pristimantis laticlavius | Anura | VU | Arboreal | 24.575191 | 35.19815 | 33.33797 | 37.13385 |
Pristimantis incomptus | Anura | LC | Arboreal | 22.906981 | 34.75592 | 32.43057 | 36.95966 |
Pristimantis incomptus | Anura | LC | Arboreal | 21.483456 | 34.55335 | 32.14307 | 36.65337 |
Pristimantis incomptus | Anura | LC | Arboreal | 24.951026 | 35.04678 | 32.66093 | 37.21136 |
Pristimantis quaquaversus | Anura | LC | Arboreal | 24.740908 | 35.15724 | 32.79671 | 37.25976 |
Pristimantis quaquaversus | Anura | LC | Arboreal | 23.823776 | 35.02403 | 32.65117 | 37.10213 |
Pristimantis quaquaversus | Anura | LC | Arboreal | 26.391577 | 35.39701 | 33.02915 | 37.56673 |
Pristimantis crenunguis | Anura | EN | Stream-dwelling | 22.986312 | 34.19682 | 31.85686 | 36.32118 |
Pristimantis crenunguis | Anura | EN | Stream-dwelling | 21.456474 | 33.97547 | 31.65264 | 36.00621 |
Pristimantis crenunguis | Anura | EN | Stream-dwelling | 25.131200 | 34.50716 | 32.34491 | 36.86293 |
Pristimantis trachyblepharis | Anura | LC | Arboreal | 23.649499 | 33.46583 | 31.17765 | 35.77394 |
Pristimantis trachyblepharis | Anura | LC | Arboreal | 22.473968 | 33.30439 | 31.09222 | 35.63067 |
Pristimantis trachyblepharis | Anura | LC | Arboreal | 25.512832 | 33.72173 | 31.18524 | 35.84827 |
Pristimantis actites | Anura | VU | Ground-dwelling | 22.903646 | 34.66822 | 32.53907 | 36.69407 |
Pristimantis actites | Anura | VU | Ground-dwelling | 21.297960 | 34.44491 | 32.38978 | 36.51057 |
Pristimantis actites | Anura | VU | Ground-dwelling | 25.045552 | 34.96612 | 32.75799 | 36.98932 |
Pristimantis unistrigatus | Anura | LC | Ground-dwelling | 22.208859 | 35.61051 | 33.84233 | 37.25414 |
Pristimantis unistrigatus | Anura | LC | Ground-dwelling | 20.675313 | 35.39072 | 33.58629 | 36.96695 |
Pristimantis unistrigatus | Anura | LC | Ground-dwelling | 24.228444 | 35.89996 | 34.04486 | 37.52274 |
Pristimantis vertebralis | Anura | VU | Stream-dwelling | 22.208003 | 31.69978 | 29.49138 | 33.78692 |
Pristimantis vertebralis | Anura | VU | Stream-dwelling | 20.442740 | 31.45442 | 29.34371 | 33.66176 |
Pristimantis vertebralis | Anura | VU | Stream-dwelling | 24.557603 | 32.02636 | 29.82696 | 34.17333 |
Pristimantis riveti | Anura | CR | Ground-dwelling | 22.043563 | 34.88749 | 32.63304 | 37.17114 |
Pristimantis riveti | Anura | CR | Ground-dwelling | 20.823650 | 34.71170 | 32.45424 | 36.95752 |
Pristimantis riveti | Anura | CR | Ground-dwelling | 23.766620 | 35.13577 | 32.86291 | 37.52183 |
Pristimantis phoxocephalus | Anura | CR | Arboreal | 23.033729 | 32.33111 | 29.96352 | 34.59074 |
Pristimantis phoxocephalus | Anura | CR | Arboreal | 21.190651 | 32.07398 | 29.71420 | 34.24631 |
Pristimantis phoxocephalus | Anura | CR | Arboreal | 25.447074 | 32.66781 | 30.25656 | 34.98497 |
Pristimantis pycnodermis | Anura | EN | Arboreal | 23.049225 | 34.50209 | 32.37553 | 36.71222 |
Pristimantis pycnodermis | Anura | EN | Arboreal | 21.493692 | 34.28047 | 32.03301 | 36.37780 |
Pristimantis pycnodermis | Anura | EN | Arboreal | 25.325715 | 34.82642 | 32.64489 | 37.08543 |
Pristimantis curtipes | Anura | LC | Ground-dwelling | 22.330378 | 34.61732 | 32.70468 | 36.97811 |
Pristimantis curtipes | Anura | LC | Ground-dwelling | 20.719567 | 34.39141 | 32.38352 | 36.58683 |
Pristimantis curtipes | Anura | LC | Ground-dwelling | 24.454681 | 34.91525 | 32.92974 | 37.29671 |
Pleurodema marmoratum | Anura | VU | Ground-dwelling | 16.284323 | 36.22708 | 34.18540 | 38.15420 |
Pleurodema marmoratum | Anura | VU | Ground-dwelling | 14.758955 | 36.02946 | 34.01557 | 37.95991 |
Pleurodema marmoratum | Anura | VU | Ground-dwelling | 18.560447 | 36.52196 | 34.55136 | 38.56742 |
Microhyla fissipes | Anura | LC | Ground-dwelling | 26.295214 | 39.33562 | 37.92800 | 40.77718 |
Microhyla fissipes | Anura | LC | Ground-dwelling | 24.846265 | 39.13780 | 37.77276 | 40.58533 |
Microhyla fissipes | Anura | LC | Ground-dwelling | 28.511561 | 39.63822 | 38.10100 | 41.14942 |
Hoplobatrachus rugulosus | Anura | LC | Semi-aquatic | 27.010259 | 42.53600 | 40.08815 | 44.94544 |
Hoplobatrachus rugulosus | Anura | LC | Semi-aquatic | 25.740998 | 42.35578 | 39.92947 | 44.73488 |
Hoplobatrachus rugulosus | Anura | LC | Semi-aquatic | 29.073415 | 42.82895 | 40.37442 | 45.35028 |
Microhyla ornata | Anura | LC | Ground-dwelling | 26.507481 | 40.05139 | 38.72277 | 41.57460 |
Microhyla ornata | Anura | LC | Ground-dwelling | 25.293963 | 39.87284 | 38.65640 | 41.45396 |
Microhyla ornata | Anura | LC | Ground-dwelling | 28.676190 | 40.37049 | 39.00677 | 41.94516 |
Rana dybowskii | Anura | LC | Semi-aquatic | 18.244216 | 29.36283 | 28.49545 | 30.24583 |
Rana dybowskii | Anura | LC | Semi-aquatic | 14.179610 | 28.94416 | 27.93541 | 30.01903 |
Rana dybowskii | Anura | LC | Semi-aquatic | 22.620571 | 29.81362 | 28.93511 | 30.78229 |
Hyperolius marmoratus | Anura | LC | Arboreal | 24.117403 | 46.03317 | 45.23247 | 46.81729 |
Hyperolius marmoratus | Anura | LC | Arboreal | 22.993360 | 45.79944 | 45.11020 | 46.55617 |
Hyperolius marmoratus | Anura | LC | Arboreal | 26.227887 | 46.47202 | 45.47465 | 47.30801 |
Oophaga pumilio | Anura | LC | Ground-dwelling | 26.534847 | 32.86695 | 31.27791 | 34.90825 |
Oophaga pumilio | Anura | LC | Ground-dwelling | 25.755738 | 32.77726 | 31.00543 | 34.61610 |
Oophaga pumilio | Anura | LC | Ground-dwelling | 27.998334 | 33.03542 | 31.29595 | 34.96929 |
Odontophrynus barrioi | Anura | LC | Ground-dwelling | 19.888283 | 37.56406 | 36.10551 | 38.81295 |
Odontophrynus barrioi | Anura | LC | Ground-dwelling | 18.097781 | 37.29907 | 35.95140 | 38.67085 |
Odontophrynus barrioi | Anura | LC | Ground-dwelling | 23.047078 | 38.03154 | 36.65974 | 39.45840 |
Pleurodema nebulosum | Anura | LC | Ground-dwelling | 19.719194 | 39.69379 | 37.74808 | 41.94607 |
Pleurodema nebulosum | Anura | LC | Ground-dwelling | 17.713046 | 39.41789 | 37.44182 | 41.65774 |
Pleurodema nebulosum | Anura | LC | Ground-dwelling | 23.479780 | 40.21098 | 38.23774 | 42.57729 |
Pleurodema tucumanum | Anura | LC | Ground-dwelling | 22.758730 | 40.22621 | 38.30877 | 42.26292 |
Pleurodema tucumanum | Anura | LC | Ground-dwelling | 20.890279 | 39.97885 | 37.90875 | 41.75403 |
Pleurodema tucumanum | Anura | LC | Ground-dwelling | 25.875681 | 40.63886 | 38.52256 | 42.57921 |
Desmognathus brimleyorum | Caudata | LC | Semi-aquatic | 26.558190 | 35.77729 | 33.94598 | 37.70727 |
Desmognathus brimleyorum | Caudata | LC | Semi-aquatic | 24.631292 | 35.53243 | 33.90120 | 37.49900 |
Desmognathus brimleyorum | Caudata | LC | Semi-aquatic | 29.652741 | 36.17052 | 34.20720 | 38.36627 |
Ambystoma californiense | Caudata | VU | Ground-dwelling | 19.685859 | 36.49679 | 34.36201 | 38.47989 |
Ambystoma californiense | Caudata | VU | Ground-dwelling | 18.312888 | 36.32879 | 34.24000 | 38.22853 |
Ambystoma californiense | Caudata | VU | Ground-dwelling | 21.999293 | 36.77986 | 34.62935 | 38.89036 |
Ambystoma mavortium | Caudata | LC | Ground-dwelling | 20.226437 | 36.39017 | 34.28126 | 38.63011 |
Ambystoma mavortium | Caudata | LC | Ground-dwelling | 17.587617 | 36.06482 | 33.97124 | 38.19942 |
Ambystoma mavortium | Caudata | LC | Ground-dwelling | 23.875884 | 36.84013 | 34.70321 | 39.31363 |
Batrachuperus karlschmidti | Caudata | VU | Stream-dwelling | 16.399896 | 32.84581 | 29.84628 | 35.75212 |
Batrachuperus karlschmidti | Caudata | VU | Stream-dwelling | 14.140677 | 32.54285 | 29.69296 | 35.63141 |
Batrachuperus karlschmidti | Caudata | VU | Stream-dwelling | 18.989650 | 33.19310 | 30.23353 | 36.13760 |
Batrachuperus londongensis | Caudata | EN | Stream-dwelling | 20.716649 | 33.28365 | 30.21586 | 36.37340 |
Batrachuperus londongensis | Caudata | EN | Stream-dwelling | 18.796383 | 33.02604 | 29.99250 | 36.08028 |
Batrachuperus londongensis | Caudata | EN | Stream-dwelling | 23.031664 | 33.59422 | 30.53780 | 36.85679 |
Batrachuperus pinchonii | Caudata | VU | Semi-aquatic | 18.334808 | 33.83821 | 30.72412 | 36.76406 |
Batrachuperus pinchonii | Caudata | VU | Semi-aquatic | 16.288402 | 33.57066 | 30.56101 | 36.53491 |
Batrachuperus pinchonii | Caudata | VU | Semi-aquatic | 20.786179 | 34.15871 | 30.98483 | 37.13258 |
Liua shihi | Caudata | LC | Semi-aquatic | 24.839697 | 34.43503 | 30.67124 | 38.69260 |
Liua shihi | Caudata | LC | Semi-aquatic | 22.105195 | 34.06828 | 30.32350 | 38.16309 |
Liua shihi | Caudata | LC | Semi-aquatic | 28.017331 | 34.86122 | 30.67301 | 38.95050 |
Liua tsinpaensis | Caudata | VU | Semi-aquatic | 22.153719 | 34.07123 | 30.64504 | 38.05921 |
Liua tsinpaensis | Caudata | VU | Semi-aquatic | 19.461413 | 33.70627 | 30.35903 | 37.75954 |
Liua tsinpaensis | Caudata | VU | Semi-aquatic | 25.656249 | 34.54601 | 30.93054 | 38.41741 |
Pseudohynobius flavomaculatus | Caudata | VU | Ground-dwelling | 25.967304 | 34.30959 | 30.50064 | 38.43489 |
Pseudohynobius flavomaculatus | Caudata | VU | Ground-dwelling | 23.557808 | 33.97980 | 30.19973 | 38.05763 |
Pseudohynobius flavomaculatus | Caudata | VU | Ground-dwelling | 28.502143 | 34.65653 | 30.59584 | 38.70310 |
Pseudohynobius kuankuoshuiensis | Caudata | CR | Semi-aquatic | 25.072476 | 34.44986 | 30.89747 | 38.98954 |
Pseudohynobius kuankuoshuiensis | Caudata | CR | Semi-aquatic | 23.322387 | 34.21223 | 30.79470 | 38.78717 |
Pseudohynobius kuankuoshuiensis | Caudata | CR | Semi-aquatic | 27.473569 | 34.77587 | 31.14589 | 39.46115 |
Pseudohynobius shuichengensis | Caudata | CR | Ground-dwelling | 23.039610 | 33.88555 | 30.27961 | 37.92496 |
Pseudohynobius shuichengensis | Caudata | CR | Ground-dwelling | 21.766568 | 33.71492 | 30.15200 | 37.66867 |
Pseudohynobius shuichengensis | Caudata | CR | Ground-dwelling | 25.469759 | 34.21126 | 30.49285 | 38.27795 |
Pseudohynobius puxiongensis | Caudata | CR | Ground-dwelling | 20.706935 | 33.67561 | 29.60713 | 37.65257 |
Pseudohynobius puxiongensis | Caudata | CR | Ground-dwelling | 19.102920 | 33.45492 | 29.42166 | 37.39849 |
Pseudohynobius puxiongensis | Caudata | CR | Ground-dwelling | 22.692973 | 33.94885 | 29.83657 | 37.83916 |
Hynobius abei | Caudata | EN | Ground-dwelling | 24.665948 | 33.84299 | 30.19908 | 37.86152 |
Hynobius abei | Caudata | EN | Ground-dwelling | 21.759341 | 33.44878 | 29.85664 | 37.40188 |
Hynobius abei | Caudata | EN | Ground-dwelling | 27.579047 | 34.23808 | 30.54388 | 38.30744 |
Hynobius lichenatus | Caudata | LC | Semi-aquatic | 23.695550 | 33.98193 | 30.19247 | 37.53666 |
Hynobius lichenatus | Caudata | LC | Semi-aquatic | 20.639753 | 33.56336 | 29.84130 | 37.01878 |
Hynobius lichenatus | Caudata | LC | Semi-aquatic | 26.836039 | 34.41211 | 30.92956 | 38.38441 |
Hynobius tokyoensis | Caudata | VU | Semi-aquatic | 25.026301 | 34.09683 | 30.28714 | 37.69600 |
Hynobius tokyoensis | Caudata | VU | Semi-aquatic | 22.345886 | 33.73032 | 29.81448 | 37.06123 |
Hynobius tokyoensis | Caudata | VU | Semi-aquatic | 27.738905 | 34.46773 | 30.57374 | 38.17382 |
Hynobius nigrescens | Caudata | LC | Ground-dwelling | 23.767976 | 33.74118 | 30.18025 | 37.24878 |
Hynobius nigrescens | Caudata | LC | Ground-dwelling | 20.732203 | 33.33150 | 29.94438 | 36.97165 |
Hynobius nigrescens | Caudata | LC | Ground-dwelling | 26.916798 | 34.16611 | 30.56035 | 37.73131 |
Hynobius takedai | Caudata | EN | Semi-aquatic | 23.363994 | 33.89992 | 30.31707 | 37.64701 |
Hynobius takedai | Caudata | EN | Semi-aquatic | 20.295963 | 33.48095 | 29.66471 | 36.78406 |
Hynobius takedai | Caudata | EN | Semi-aquatic | 26.463697 | 34.32323 | 30.63455 | 38.27466 |
Hynobius stejnegeri | Caudata | NT | Semi-aquatic | 26.324972 | 34.34867 | 30.35496 | 37.56571 |
Hynobius stejnegeri | Caudata | NT | Semi-aquatic | 23.871159 | 34.01318 | 30.18080 | 37.27911 |
Hynobius stejnegeri | Caudata | NT | Semi-aquatic | 28.279359 | 34.61588 | 30.95623 | 38.39502 |
Hynobius amjiensis | Caudata | EN | Semi-aquatic | 27.023498 | 34.37122 | 30.36776 | 38.13475 |
Hynobius amjiensis | Caudata | EN | Semi-aquatic | 23.814076 | 33.93695 | 30.18690 | 37.77242 |
Hynobius amjiensis | Caudata | EN | Semi-aquatic | 30.088377 | 34.78593 | 30.64450 | 38.65326 |
Hynobius chinensis | Caudata | DD | Semi-aquatic | 24.055123 | 33.99228 | 30.45544 | 37.97074 |
Hynobius chinensis | Caudata | DD | Semi-aquatic | 21.299542 | 33.61739 | 30.15416 | 37.62719 |
Hynobius chinensis | Caudata | DD | Semi-aquatic | 27.652570 | 34.48169 | 30.62743 | 38.43367 |
Hynobius guabangshanensis | Caudata | CR | Semi-aquatic | 27.388480 | 34.36449 | 30.70815 | 38.69678 |
Hynobius guabangshanensis | Caudata | CR | Semi-aquatic | 26.110503 | 34.19196 | 30.48927 | 38.38205 |
Hynobius guabangshanensis | Caudata | CR | Semi-aquatic | 29.759298 | 34.68457 | 30.90593 | 39.15447 |
Hynobius maoershanensis | Caudata | CR | Aquatic | 26.288031 | 34.21192 | 30.07031 | 38.15505 |
Hynobius maoershanensis | Caudata | CR | Aquatic | 24.994406 | 34.03632 | 29.95732 | 37.92325 |
Hynobius maoershanensis | Caudata | CR | Aquatic | 28.845152 | 34.55903 | 30.23693 | 38.44207 |
Hynobius yiwuensis | Caudata | LC | Semi-aquatic | 26.634167 | 34.32987 | 30.47863 | 37.91833 |
Hynobius yiwuensis | Caudata | LC | Semi-aquatic | 24.336361 | 34.02189 | 30.31938 | 37.61611 |
Hynobius yiwuensis | Caudata | LC | Semi-aquatic | 29.052173 | 34.65395 | 30.63496 | 38.21116 |
Hynobius hidamontanus | Caudata | EN | Semi-aquatic | 22.821809 | 33.69041 | 30.33258 | 37.33742 |
Hynobius hidamontanus | Caudata | EN | Semi-aquatic | 19.710231 | 33.26936 | 29.89719 | 36.72472 |
Hynobius hidamontanus | Caudata | EN | Semi-aquatic | 26.049053 | 34.12712 | 30.58487 | 37.82956 |
Hynobius katoi | Caudata | EN | Semi-aquatic | 25.270600 | 34.15730 | 30.62764 | 38.28586 |
Hynobius katoi | Caudata | EN | Semi-aquatic | 22.691466 | 33.81234 | 30.34840 | 37.85176 |
Hynobius katoi | Caudata | EN | Semi-aquatic | 27.934563 | 34.51362 | 30.65560 | 38.43103 |
Hynobius naevius | Caudata | EN | Ground-dwelling | 25.737015 | 33.91322 | 30.09130 | 38.01480 |
Hynobius naevius | Caudata | EN | Ground-dwelling | 23.195199 | 33.57116 | 29.58546 | 37.37156 |
Hynobius naevius | Caudata | EN | Ground-dwelling | 28.046263 | 34.22399 | 30.31367 | 38.39209 |
Hynobius dunni | Caudata | VU | Semi-aquatic | 26.365524 | 34.25344 | 30.81119 | 38.30467 |
Hynobius dunni | Caudata | VU | Semi-aquatic | 23.865471 | 33.91185 | 30.45851 | 37.66517 |
Hynobius dunni | Caudata | VU | Semi-aquatic | 28.352327 | 34.52490 | 30.88120 | 38.60554 |
Hynobius nebulosus | Caudata | LC | Semi-aquatic | 25.628023 | 34.22301 | 30.28934 | 37.76123 |
Hynobius nebulosus | Caudata | LC | Semi-aquatic | 23.093755 | 33.87175 | 29.93538 | 37.29888 |
Hynobius nebulosus | Caudata | LC | Semi-aquatic | 28.053129 | 34.55914 | 30.83283 | 38.44098 |
Hynobius tsuensis | Caudata | NT | Semi-aquatic | 25.390618 | 34.11548 | 30.39272 | 37.84400 |
Hynobius tsuensis | Caudata | NT | Semi-aquatic | 22.797802 | 33.76212 | 30.14338 | 37.43170 |
Hynobius tsuensis | Caudata | NT | Semi-aquatic | 27.992222 | 34.47004 | 30.51437 | 38.19159 |
Hynobius okiensis | Caudata | EN | Ground-dwelling | 25.307304 | 33.84693 | 30.04022 | 37.50418 |
Hynobius okiensis | Caudata | EN | Ground-dwelling | 22.164381 | 33.42723 | 29.52936 | 36.89518 |
Hynobius okiensis | Caudata | EN | Ground-dwelling | 27.588234 | 34.15152 | 30.21886 | 37.80963 |
Hynobius leechii | Caudata | LC | Ground-dwelling | 21.674546 | 33.36454 | 29.98666 | 36.82902 |
Hynobius leechii | Caudata | LC | Ground-dwelling | 18.197042 | 32.88672 | 29.64095 | 36.38731 |
Hynobius leechii | Caudata | LC | Ground-dwelling | 25.186836 | 33.84714 | 30.24844 | 37.16506 |
Hynobius yangi | Caudata | EN | Semi-aquatic | 23.935584 | 33.94789 | 30.72986 | 37.71220 |
Hynobius yangi | Caudata | EN | Semi-aquatic | 21.353051 | 33.60245 | 30.13765 | 36.98361 |
Hynobius yangi | Caudata | EN | Semi-aquatic | 26.972592 | 34.35413 | 31.00811 | 38.25260 |
Hynobius quelpaertensis | Caudata | VU | Semi-aquatic | 24.105347 | 34.02325 | 30.17415 | 37.33271 |
Hynobius quelpaertensis | Caudata | VU | Semi-aquatic | 21.319622 | 33.64176 | 29.88348 | 36.98138 |
Hynobius quelpaertensis | Caudata | VU | Semi-aquatic | 27.170250 | 34.44298 | 30.66905 | 37.95869 |
Hynobius turkestanicus | Caudata | DD | Semi-aquatic | 14.669952 | 32.66335 | 28.97926 | 36.61273 |
Hynobius turkestanicus | Caudata | DD | Semi-aquatic | 12.532507 | 32.37405 | 28.39615 | 36.06416 |
Hynobius turkestanicus | Caudata | DD | Semi-aquatic | 17.462010 | 33.04125 | 28.57122 | 36.14932 |
Hynobius arisanensis | Caudata | EN | Semi-aquatic | 27.492343 | 34.13531 | 30.95181 | 37.74821 |
Hynobius arisanensis | Caudata | EN | Semi-aquatic | 26.776238 | 34.03740 | 30.84525 | 37.58965 |
Hynobius arisanensis | Caudata | EN | Semi-aquatic | 28.627154 | 34.29046 | 30.93682 | 37.84401 |
Hynobius sonani | Caudata | EN | Semi-aquatic | 27.421271 | 34.21319 | 31.06965 | 37.74398 |
Hynobius sonani | Caudata | EN | Semi-aquatic | 26.671168 | 34.11001 | 30.88164 | 37.47437 |
Hynobius sonani | Caudata | EN | Semi-aquatic | 28.582367 | 34.37291 | 30.96299 | 37.72119 |
Hynobius formosanus | Caudata | EN | Semi-aquatic | 26.977134 | 34.11182 | 30.67595 | 37.27599 |
Hynobius formosanus | Caudata | EN | Semi-aquatic | 26.083575 | 33.99047 | 30.60056 | 37.15294 |
Hynobius formosanus | Caudata | EN | Semi-aquatic | 28.273584 | 34.28787 | 31.16095 | 37.84579 |
Hynobius boulengeri | Caudata | EN | Semi-aquatic | 25.823880 | 34.25372 | 30.58939 | 37.96484 |
Hynobius boulengeri | Caudata | EN | Semi-aquatic | 23.406145 | 33.92387 | 30.30217 | 37.51869 |
Hynobius boulengeri | Caudata | EN | Semi-aquatic | 28.181935 | 34.57543 | 30.81904 | 38.46421 |
Hynobius kimurae | Caudata | LC | Fossorial | 24.620921 | 34.83621 | 31.27132 | 38.52198 |
Hynobius kimurae | Caudata | LC | Fossorial | 21.691446 | 34.43834 | 30.82341 | 37.99320 |
Hynobius kimurae | Caudata | LC | Fossorial | 27.492894 | 35.22627 | 31.70819 | 39.02553 |
Hynobius retardatus | Caudata | LC | Semi-aquatic | 19.580668 | 33.36882 | 30.00962 | 37.43726 |
Hynobius retardatus | Caudata | LC | Semi-aquatic | 16.430170 | 32.94142 | 29.35540 | 36.71295 |
Hynobius retardatus | Caudata | LC | Semi-aquatic | 23.121665 | 33.84920 | 30.53155 | 38.09545 |
Pachyhynobius shangchengensis | Caudata | VU | Semi-aquatic | 27.802632 | 34.76706 | 30.38412 | 38.79234 |
Pachyhynobius shangchengensis | Caudata | VU | Semi-aquatic | 25.023885 | 34.38806 | 30.31626 | 38.59776 |
Pachyhynobius shangchengensis | Caudata | VU | Semi-aquatic | 30.906723 | 35.19043 | 31.04827 | 39.67363 |
Salamandrella keyserlingii | Caudata | LC | Ground-dwelling | 14.968386 | 32.89928 | 29.26134 | 37.43656 |
Salamandrella keyserlingii | Caudata | LC | Ground-dwelling | 10.423342 | 32.28634 | 28.50592 | 36.71562 |
Salamandrella keyserlingii | Caudata | LC | Ground-dwelling | 20.751913 | 33.67923 | 30.03586 | 38.40180 |
Ranodon sibiricus | Caudata | EN | Stream-dwelling | 14.590021 | 32.21971 | 27.92382 | 36.72161 |
Ranodon sibiricus | Caudata | EN | Stream-dwelling | 12.333758 | 31.91624 | 27.46270 | 36.24563 |
Ranodon sibiricus | Caudata | EN | Stream-dwelling | 18.256669 | 32.71289 | 28.56597 | 37.45130 |
Onychodactylus fischeri | Caudata | LC | Semi-aquatic | 21.301436 | 34.53897 | 29.17657 | 39.94769 |
Onychodactylus fischeri | Caudata | LC | Semi-aquatic | 17.729588 | 34.06454 | 28.54037 | 39.27104 |
Onychodactylus fischeri | Caudata | LC | Semi-aquatic | 24.818000 | 35.00605 | 29.55164 | 40.28968 |
Onychodactylus japonicus | Caudata | LC | Semi-aquatic | 24.915063 | 35.03917 | 29.32636 | 40.08976 |
Onychodactylus japonicus | Caudata | LC | Semi-aquatic | 22.131205 | 34.66938 | 29.26611 | 39.92726 |
Onychodactylus japonicus | Caudata | LC | Semi-aquatic | 27.686719 | 35.40733 | 30.15665 | 40.92591 |
Andrias japonicus | Caudata | VU | Stream-dwelling | 25.334521 | 35.32426 | 30.71143 | 39.58948 |
Andrias japonicus | Caudata | VU | Stream-dwelling | 22.646036 | 34.97885 | 30.29540 | 39.16240 |
Andrias japonicus | Caudata | VU | Stream-dwelling | 27.853375 | 35.64787 | 31.07609 | 40.05871 |
Andrias davidianus | Caudata | CR | Aquatic | 25.322713 | 36.14523 | 31.43210 | 40.49294 |
Andrias davidianus | Caudata | CR | Aquatic | 23.184325 | 35.87155 | 31.26949 | 40.22206 |
Andrias davidianus | Caudata | CR | Aquatic | 28.159878 | 36.50834 | 31.68684 | 40.94049 |
Siren intermedia | Caudata | LC | Aquatic | 26.337962 | 35.48521 | 29.09146 | 42.15996 |
Siren intermedia | Caudata | LC | Aquatic | 23.861535 | 35.16095 | 29.01395 | 42.06290 |
Siren intermedia | Caudata | LC | Aquatic | 29.335729 | 35.87773 | 29.60854 | 42.58024 |
Siren lacertina | Caudata | LC | Semi-aquatic | 26.656419 | 35.71246 | 29.30136 | 42.01761 |
Siren lacertina | Caudata | LC | Semi-aquatic | 24.073295 | 35.36963 | 29.02425 | 41.66731 |
Siren lacertina | Caudata | LC | Semi-aquatic | 29.408680 | 36.07773 | 29.73770 | 42.49653 |
Pseudobranchus striatus | Caudata | LC | Aquatic | 27.312418 | 35.59588 | 29.46481 | 42.05609 |
Pseudobranchus striatus | Caudata | LC | Aquatic | 25.922049 | 35.41381 | 29.11033 | 41.63879 |
Pseudobranchus striatus | Caudata | LC | Aquatic | 29.571249 | 35.89167 | 29.72698 | 42.33517 |
Pseudobranchus axanthus | Caudata | LC | Semi-aquatic | 27.778431 | 35.78503 | 28.62874 | 41.88091 |
Pseudobranchus axanthus | Caudata | LC | Semi-aquatic | 26.688177 | 35.64237 | 28.46874 | 41.72868 |
Pseudobranchus axanthus | Caudata | LC | Semi-aquatic | 29.572423 | 36.01977 | 28.81141 | 42.12543 |
Chioglossa lusitanica | Caudata | NT | Semi-aquatic | 19.044365 | 35.85757 | 31.29532 | 40.46455 |
Chioglossa lusitanica | Caudata | NT | Semi-aquatic | 17.409104 | 35.63783 | 31.11381 | 40.32187 |
Chioglossa lusitanica | Caudata | NT | Semi-aquatic | 21.738599 | 36.21961 | 31.85541 | 41.03084 |
Mertensiella caucasica | Caudata | VU | Semi-aquatic | 19.300742 | 35.83005 | 31.28308 | 40.10379 |
Mertensiella caucasica | Caudata | VU | Semi-aquatic | 16.761439 | 35.48602 | 30.83536 | 39.73164 |
Mertensiella caucasica | Caudata | VU | Semi-aquatic | 22.342683 | 36.24218 | 31.55002 | 40.45644 |
Lyciasalamandra antalyana | Caudata | EN | Ground-dwelling | 23.579020 | 35.62344 | 31.85041 | 39.24588 |
Lyciasalamandra antalyana | Caudata | EN | Ground-dwelling | 21.603998 | 35.35364 | 31.84289 | 39.21241 |
Lyciasalamandra antalyana | Caudata | EN | Ground-dwelling | 26.233059 | 35.98599 | 32.21109 | 39.64939 |
Lyciasalamandra helverseni | Caudata | VU | Ground-dwelling | 24.136644 | 35.64391 | 32.22285 | 39.50726 |
Lyciasalamandra helverseni | Caudata | VU | Ground-dwelling | 22.699055 | 35.44836 | 31.97532 | 39.20778 |
Lyciasalamandra helverseni | Caudata | VU | Ground-dwelling | 25.894297 | 35.88299 | 32.44824 | 39.75259 |
Lyciasalamandra fazilae | Caudata | EN | Ground-dwelling | 22.542634 | 35.42734 | 31.98116 | 39.19099 |
Lyciasalamandra fazilae | Caudata | EN | Ground-dwelling | 20.687162 | 35.17888 | 31.58944 | 38.71403 |
Lyciasalamandra fazilae | Caudata | EN | Ground-dwelling | 25.316532 | 35.79878 | 32.34638 | 39.69256 |
Lyciasalamandra flavimembris | Caudata | EN | Ground-dwelling | 23.491706 | 35.54410 | 32.07950 | 38.98586 |
Lyciasalamandra flavimembris | Caudata | EN | Ground-dwelling | 21.836145 | 35.31403 | 32.07015 | 38.91563 |
Lyciasalamandra flavimembris | Caudata | EN | Ground-dwelling | 26.062384 | 35.90135 | 32.43695 | 39.36988 |
Lyciasalamandra atifi | Caudata | EN | Ground-dwelling | 22.584693 | 35.36549 | 31.38971 | 38.74180 |
Lyciasalamandra atifi | Caudata | EN | Ground-dwelling | 20.479864 | 35.07448 | 31.66548 | 39.01389 |
Lyciasalamandra atifi | Caudata | EN | Ground-dwelling | 25.536700 | 35.77362 | 31.96529 | 39.40311 |
Lyciasalamandra luschani | Caudata | VU | Ground-dwelling | 22.305012 | 35.34563 | 31.57761 | 38.95435 |
Lyciasalamandra luschani | Caudata | VU | Ground-dwelling | 20.312141 | 35.07217 | 31.30812 | 38.66997 |
Lyciasalamandra luschani | Caudata | VU | Ground-dwelling | 25.093101 | 35.72821 | 31.77314 | 39.17156 |
Salamandra algira | Caudata | VU | Semi-aquatic | 22.549496 | 35.51955 | 32.54451 | 38.69306 |
Salamandra algira | Caudata | VU | Semi-aquatic | 20.868324 | 35.28571 | 32.29662 | 38.42705 |
Salamandra algira | Caudata | VU | Semi-aquatic | 25.163653 | 35.88317 | 32.56582 | 38.81588 |
Salamandra infraimmaculata | Caudata | NT | Ground-dwelling | 21.660153 | 35.18202 | 32.45738 | 37.89520 |
Salamandra infraimmaculata | Caudata | NT | Ground-dwelling | 19.918206 | 34.93963 | 32.51918 | 37.90435 |
Salamandra infraimmaculata | Caudata | NT | Ground-dwelling | 24.361012 | 35.55784 | 32.74666 | 38.31573 |
Salamandra corsica | Caudata | LC | Ground-dwelling | 23.532117 | 35.43880 | 32.57001 | 38.55974 |
Salamandra corsica | Caudata | LC | Ground-dwelling | 21.506855 | 35.16159 | 32.25644 | 38.17679 |
Salamandra corsica | Caudata | LC | Ground-dwelling | 26.682481 | 35.87000 | 32.95838 | 39.14542 |
Salamandra lanzai | Caudata | CR | Ground-dwelling | 19.772886 | 34.94224 | 31.98775 | 38.34614 |
Salamandra lanzai | Caudata | CR | Ground-dwelling | 17.098564 | 34.58043 | 31.37893 | 37.71482 |
Salamandra lanzai | Caudata | CR | Ground-dwelling | 23.886563 | 35.49878 | 32.51422 | 38.95229 |
Salamandra atra | Caudata | LC | Ground-dwelling | 19.400307 | 34.82977 | 31.66663 | 37.85087 |
Salamandra atra | Caudata | LC | Ground-dwelling | 16.235625 | 34.40506 | 31.16276 | 37.28804 |
Salamandra atra | Caudata | LC | Ground-dwelling | 23.614163 | 35.39529 | 32.27342 | 38.55347 |
Calotriton arnoldi | Caudata | CR | Stream-dwelling | 22.509444 | 36.17188 | 32.68984 | 39.71137 |
Calotriton arnoldi | Caudata | CR | Stream-dwelling | 20.449937 | 35.89283 | 32.58266 | 39.51987 |
Calotriton arnoldi | Caudata | CR | Stream-dwelling | 24.896636 | 36.49533 | 32.87023 | 40.00280 |
Calotriton asper | Caudata | LC | Aquatic | 20.227614 | 36.68063 | 33.21702 | 39.94072 |
Calotriton asper | Caudata | LC | Aquatic | 17.819185 | 36.35191 | 33.02826 | 39.64352 |
Calotriton asper | Caudata | LC | Aquatic | 23.521418 | 37.13020 | 33.77648 | 40.55303 |
Triturus carnifex | Caudata | LC | Semi-aquatic | 20.346780 | 36.89485 | 34.01043 | 39.86252 |
Triturus carnifex | Caudata | LC | Semi-aquatic | 17.696673 | 36.53983 | 33.47017 | 39.22632 |
Triturus carnifex | Caudata | LC | Semi-aquatic | 24.242453 | 37.41673 | 34.47280 | 40.52998 |
Triturus karelinii | Caudata | LC | Semi-aquatic | 19.706316 | 36.83355 | 34.16924 | 39.56873 |
Triturus karelinii | Caudata | LC | Semi-aquatic | 17.626584 | 36.54896 | 33.45208 | 38.82424 |
Triturus karelinii | Caudata | LC | Semi-aquatic | 22.953008 | 37.27782 | 34.53668 | 40.00476 |
Triturus marmoratus | Caudata | LC | Semi-aquatic | 19.396648 | 36.65845 | 34.11465 | 39.56520 |
Triturus marmoratus | Caudata | LC | Semi-aquatic | 17.384616 | 36.39158 | 33.75050 | 39.12641 |
Triturus marmoratus | Caudata | LC | Semi-aquatic | 22.645465 | 37.08936 | 34.22907 | 39.90685 |
Neurergus crocatus | Caudata | VU | Aquatic | 21.036661 | 36.80615 | 33.51007 | 40.35801 |
Neurergus crocatus | Caudata | VU | Aquatic | 19.240213 | 36.55816 | 33.30481 | 40.03129 |
Neurergus crocatus | Caudata | VU | Aquatic | 23.565503 | 37.15523 | 33.72773 | 40.81580 |
Neurergus kaiseri | Caudata | VU | Semi-aquatic | 23.122558 | 37.08648 | 33.96123 | 40.42171 |
Neurergus kaiseri | Caudata | VU | Semi-aquatic | 21.444492 | 36.85472 | 33.74530 | 40.15772 |
Neurergus kaiseri | Caudata | VU | Semi-aquatic | 25.491245 | 37.41364 | 34.29361 | 40.89622 |
Neurergus strauchii | Caudata | VU | Semi-aquatic | 20.031021 | 36.71354 | 33.12697 | 40.07215 |
Neurergus strauchii | Caudata | VU | Semi-aquatic | 17.975200 | 36.43203 | 32.97609 | 39.84011 |
Neurergus strauchii | Caudata | VU | Semi-aquatic | 22.403682 | 37.03844 | 33.26530 | 40.33246 |
Ommatotriton ophryticus | Caudata | NT | Ground-dwelling | 19.403227 | 36.38888 | 32.87657 | 39.89817 |
Ommatotriton ophryticus | Caudata | NT | Ground-dwelling | 17.090301 | 36.07268 | 32.59042 | 39.55767 |
Ommatotriton ophryticus | Caudata | NT | Ground-dwelling | 22.787408 | 36.85152 | 33.34084 | 40.45198 |
Ommatotriton vittatus | Caudata | LC | Semi-aquatic | 23.502736 | 37.11174 | 33.68739 | 40.74191 |
Ommatotriton vittatus | Caudata | LC | Semi-aquatic | 21.886694 | 36.88954 | 33.54535 | 40.60768 |
Ommatotriton vittatus | Caudata | LC | Semi-aquatic | 25.622938 | 37.40326 | 33.81874 | 40.99561 |
Lissotriton helveticus | Caudata | LC | Semi-aquatic | 17.755528 | 36.42678 | 33.22570 | 39.90137 |
Lissotriton helveticus | Caudata | LC | Semi-aquatic | 15.768889 | 36.15848 | 32.69264 | 39.38987 |
Lissotriton helveticus | Caudata | LC | Semi-aquatic | 21.257335 | 36.89969 | 33.38278 | 40.11847 |
Lissotriton italicus | Caudata | LC | Semi-aquatic | 23.629026 | 37.18996 | 33.54881 | 40.67529 |
Lissotriton italicus | Caudata | LC | Semi-aquatic | 20.772038 | 36.80225 | 33.21281 | 40.19482 |
Lissotriton italicus | Caudata | LC | Semi-aquatic | 26.626485 | 37.59674 | 33.83142 | 41.04257 |
Lissotriton montandoni | Caudata | LC | Ground-dwelling | 18.173405 | 36.16746 | 32.61969 | 39.39259 |
Lissotriton montandoni | Caudata | LC | Ground-dwelling | 15.017013 | 35.75068 | 32.10696 | 38.89376 |
Lissotriton montandoni | Caudata | LC | Ground-dwelling | 24.369317 | 36.98559 | 33.20130 | 40.33719 |
Lissotriton vulgaris | Caudata | LC | Semi-aquatic | 14.375703 | 35.92355 | 32.63109 | 39.41392 |
Lissotriton vulgaris | Caudata | LC | Semi-aquatic | 11.763266 | 35.56836 | 32.40946 | 39.25582 |
Lissotriton vulgaris | Caudata | LC | Semi-aquatic | 18.249830 | 36.45029 | 33.24418 | 40.12681 |
Ichthyosaura alpestris | Caudata | LC | Ground-dwelling | 18.641722 | 36.27928 | 32.69716 | 40.09198 |
Ichthyosaura alpestris | Caudata | LC | Ground-dwelling | 16.153349 | 35.93925 | 32.60297 | 39.79186 |
Ichthyosaura alpestris | Caudata | LC | Ground-dwelling | 23.227641 | 36.90594 | 32.97422 | 40.70350 |
Cynops ensicauda | Caudata | VU | Semi-aquatic | 27.381519 | 37.75752 | 34.38306 | 40.94157 |
Cynops ensicauda | Caudata | VU | Semi-aquatic | 26.604964 | 37.65162 | 34.27831 | 40.78899 |
Cynops ensicauda | Caudata | VU | Semi-aquatic | 28.390640 | 37.89512 | 34.50385 | 41.10922 |
Cynops pyrrhogaster | Caudata | NT | Aquatic | 24.852248 | 37.37101 | 33.94361 | 40.59014 |
Cynops pyrrhogaster | Caudata | NT | Aquatic | 22.101081 | 36.99981 | 33.74446 | 40.26850 |
Cynops pyrrhogaster | Caudata | NT | Aquatic | 27.541053 | 37.73379 | 34.44885 | 41.26027 |
Laotriton laoensis | Caudata | EN | Aquatic | 26.845246 | 37.52325 | 34.16986 | 40.76439 |
Laotriton laoensis | Caudata | EN | Aquatic | 25.911110 | 37.39801 | 34.12971 | 40.58572 |
Laotriton laoensis | Caudata | EN | Aquatic | 28.787353 | 37.78363 | 34.51551 | 41.27567 |
Pachytriton brevipes | Caudata | LC | Aquatic | 26.553818 | 37.49423 | 34.37210 | 40.92708 |
Pachytriton brevipes | Caudata | LC | Aquatic | 24.883425 | 37.27194 | 34.19266 | 40.58945 |
Pachytriton brevipes | Caudata | LC | Aquatic | 28.782368 | 37.79081 | 34.57761 | 41.34642 |
Paramesotriton caudopunctatus | Caudata | NT | Aquatic | 26.513015 | 37.38053 | 34.22987 | 40.57992 |
Paramesotriton caudopunctatus | Caudata | NT | Aquatic | 25.220921 | 37.20582 | 34.10730 | 40.39257 |
Paramesotriton caudopunctatus | Caudata | NT | Aquatic | 28.914044 | 37.70517 | 34.45214 | 40.94977 |
Paramesotriton deloustali | Caudata | LC | Aquatic | 25.938842 | 37.27991 | 34.06264 | 40.22574 |
Paramesotriton deloustali | Caudata | LC | Aquatic | 24.837136 | 37.13151 | 33.90894 | 40.02066 |
Paramesotriton deloustali | Caudata | LC | Aquatic | 27.884247 | 37.54194 | 34.28832 | 40.62807 |
Paramesotriton fuzhongensis | Caudata | VU | Semi-aquatic | 27.216061 | 37.58476 | 34.29345 | 40.70097 |
Paramesotriton fuzhongensis | Caudata | VU | Semi-aquatic | 25.938318 | 37.41103 | 34.17003 | 40.54199 |
Paramesotriton fuzhongensis | Caudata | VU | Semi-aquatic | 29.691611 | 37.92136 | 34.42127 | 41.04155 |
Paramesotriton hongkongensis | Caudata | NT | Ground-dwelling | 27.630748 | 37.36913 | 34.20504 | 40.58012 |
Paramesotriton hongkongensis | Caudata | NT | Ground-dwelling | 26.708353 | 37.24415 | 34.08556 | 40.38843 |
Paramesotriton hongkongensis | Caudata | NT | Ground-dwelling | 29.414606 | 37.61084 | 34.22929 | 40.78385 |
Euproctus montanus | Caudata | LC | Ground-dwelling | 23.532117 | 36.85611 | 32.82965 | 40.58566 |
Euproctus montanus | Caudata | LC | Ground-dwelling | 21.506855 | 36.57928 | 32.55208 | 40.29267 |
Euproctus montanus | Caudata | LC | Ground-dwelling | 26.682481 | 37.28673 | 33.19516 | 41.10953 |
Euproctus platycephalus | Caudata | VU | Semi-aquatic | 23.865179 | 37.00479 | 32.89255 | 41.07446 |
Euproctus platycephalus | Caudata | VU | Semi-aquatic | 21.949143 | 36.74580 | 32.44399 | 40.55708 |
Euproctus platycephalus | Caudata | VU | Semi-aquatic | 26.857045 | 37.40921 | 32.99921 | 41.30253 |
Notophthalmus meridionalis | Caudata | VU | Semi-aquatic | 25.152904 | 38.29614 | 34.95021 | 41.57212 |
Notophthalmus meridionalis | Caudata | VU | Semi-aquatic | 24.335231 | 38.18543 | 34.89511 | 41.48485 |
Notophthalmus meridionalis | Caudata | VU | Semi-aquatic | 26.922969 | 38.53582 | 35.20711 | 41.94920 |
Notophthalmus perstriatus | Caudata | NT | Semi-aquatic | 27.406003 | 38.70784 | 35.38185 | 42.04157 |
Notophthalmus perstriatus | Caudata | NT | Semi-aquatic | 25.994006 | 38.51348 | 35.22060 | 41.75886 |
Notophthalmus perstriatus | Caudata | NT | Semi-aquatic | 29.669364 | 39.01940 | 35.77879 | 42.66368 |
Taricha torosa | Caudata | NT | Ground-dwelling | 19.394957 | 36.27202 | 32.82613 | 39.49979 |
Taricha torosa | Caudata | NT | Ground-dwelling | 17.919351 | 36.06988 | 32.70646 | 39.31509 |
Taricha torosa | Caudata | NT | Ground-dwelling | 21.820055 | 36.60424 | 32.97653 | 39.75591 |
Taricha rivularis | Caudata | VU | Ground-dwelling | 17.796742 | 36.10349 | 32.81703 | 39.66092 |
Taricha rivularis | Caudata | VU | Ground-dwelling | 16.346624 | 35.90499 | 32.49490 | 39.38474 |
Taricha rivularis | Caudata | VU | Ground-dwelling | 20.078952 | 36.41588 | 33.11332 | 39.97114 |
Echinotriton andersoni | Caudata | VU | Ground-dwelling | 27.367725 | 37.22229 | 33.36819 | 40.55842 |
Echinotriton andersoni | Caudata | VU | Ground-dwelling | 26.559688 | 37.11277 | 33.27980 | 40.42533 |
Echinotriton andersoni | Caudata | VU | Ground-dwelling | 28.353332 | 37.35589 | 33.45652 | 40.72075 |
Echinotriton chinhaiensis | Caudata | CR | Semi-aquatic | 26.351463 | 37.28423 | 33.95366 | 41.04664 |
Echinotriton chinhaiensis | Caudata | CR | Semi-aquatic | 24.088634 | 36.97810 | 33.69637 | 40.69185 |
Echinotriton chinhaiensis | Caudata | CR | Semi-aquatic | 28.619276 | 37.59104 | 34.12794 | 41.37891 |
Tylototriton asperrimus | Caudata | NT | Ground-dwelling | 26.474420 | 37.02463 | 33.69916 | 40.90623 |
Tylototriton asperrimus | Caudata | NT | Ground-dwelling | 25.250611 | 36.85968 | 33.63888 | 40.72575 |
Tylototriton asperrimus | Caudata | NT | Ground-dwelling | 28.596531 | 37.31065 | 33.74521 | 41.16043 |
Tylototriton notialis | Caudata | VU | Ground-dwelling | 27.686933 | 37.18225 | 33.83094 | 40.84407 |
Tylototriton notialis | Caudata | VU | Ground-dwelling | 26.775401 | 37.05991 | 33.77367 | 40.73175 |
Tylototriton notialis | Caudata | VU | Ground-dwelling | 29.514904 | 37.42758 | 33.94987 | 41.07824 |
Tylototriton hainanensis | Caudata | EN | Ground-dwelling | 27.794919 | 37.19376 | 33.38936 | 40.40427 |
Tylototriton hainanensis | Caudata | EN | Ground-dwelling | 27.188240 | 37.11293 | 33.44355 | 40.40221 |
Tylototriton hainanensis | Caudata | EN | Ground-dwelling | 28.913777 | 37.34283 | 33.73336 | 40.80714 |
Tylototriton wenxianensis | Caudata | VU | Ground-dwelling | 23.446987 | 36.63425 | 33.00006 | 39.96457 |
Tylototriton wenxianensis | Caudata | VU | Ground-dwelling | 21.294301 | 36.35105 | 32.76468 | 39.67740 |
Tylototriton wenxianensis | Caudata | VU | Ground-dwelling | 26.053318 | 36.97713 | 33.30989 | 40.35587 |
Tylototriton vietnamensis | Caudata | VU | Semi-aquatic | 27.388502 | 37.42443 | 33.97289 | 40.75585 |
Tylototriton vietnamensis | Caudata | VU | Semi-aquatic | 26.204023 | 37.26654 | 33.78798 | 40.50288 |
Tylototriton vietnamensis | Caudata | VU | Semi-aquatic | 29.366287 | 37.68808 | 34.28164 | 41.19839 |
Tylototriton shanjing | Caudata | VU | Ground-dwelling | 21.860850 | 36.42967 | 32.95176 | 39.70437 |
Tylototriton shanjing | Caudata | VU | Ground-dwelling | 20.797073 | 36.28721 | 32.85871 | 39.55628 |
Tylototriton shanjing | Caudata | VU | Ground-dwelling | 23.928350 | 36.70654 | 33.09728 | 39.94609 |
Tylototriton verrucosus | Caudata | NT | Semi-aquatic | 22.809680 | 36.80155 | 33.43001 | 40.09445 |
Tylototriton verrucosus | Caudata | NT | Semi-aquatic | 21.860530 | 36.67621 | 33.26904 | 39.87363 |
Tylototriton verrucosus | Caudata | NT | Semi-aquatic | 24.712695 | 37.05286 | 33.72004 | 40.48564 |
Pleurodeles poireti | Caudata | EN | Ground-dwelling | 24.337916 | 36.75952 | 33.56639 | 40.00669 |
Pleurodeles poireti | Caudata | EN | Ground-dwelling | 22.426724 | 36.50020 | 33.38799 | 39.69743 |
Pleurodeles poireti | Caudata | EN | Ground-dwelling | 27.215990 | 37.15004 | 33.67907 | 40.37439 |
Salamandrina perspicillata | Caudata | EN | Ground-dwelling | 21.394760 | 36.24628 | 32.18640 | 40.63590 |
Salamandrina perspicillata | Caudata | EN | Ground-dwelling | 18.270485 | 35.82049 | 31.61757 | 40.04972 |
Salamandrina perspicillata | Caudata | EN | Ground-dwelling | 25.768973 | 36.84241 | 32.59954 | 41.23425 |
Salamandrina terdigitata | Caudata | LC | Ground-dwelling | 24.218244 | 36.63323 | 32.36375 | 40.76606 |
Salamandrina terdigitata | Caudata | LC | Ground-dwelling | 22.091411 | 36.34067 | 32.04531 | 40.36532 |
Salamandrina terdigitata | Caudata | LC | Ground-dwelling | 27.153363 | 37.03697 | 32.61263 | 41.14871 |
Ambystoma altamirani | Caudata | EN | Stream-dwelling | 19.615331 | 35.70638 | 32.71802 | 38.53675 |
Ambystoma altamirani | Caudata | EN | Stream-dwelling | 18.329823 | 35.54858 | 32.65581 | 38.44889 |
Ambystoma altamirani | Caudata | EN | Stream-dwelling | 22.683425 | 36.08299 | 33.05686 | 38.94164 |
Ambystoma amblycephalum | Caudata | CR | Semi-aquatic | 22.111518 | 37.00322 | 33.97678 | 40.19229 |
Ambystoma amblycephalum | Caudata | CR | Semi-aquatic | 20.992462 | 36.86364 | 33.69850 | 39.86157 |
Ambystoma amblycephalum | Caudata | CR | Semi-aquatic | 24.196224 | 37.26326 | 34.25114 | 40.55678 |
Ambystoma lermaense | Caudata | EN | Aquatic | 21.732772 | 36.80342 | 33.83051 | 40.11800 |
Ambystoma lermaense | Caudata | EN | Aquatic | 20.545475 | 36.65665 | 33.73393 | 40.02499 |
Ambystoma lermaense | Caudata | EN | Aquatic | 24.329851 | 37.12447 | 33.95360 | 40.36454 |
Ambystoma andersoni | Caudata | CR | Stream-dwelling | 22.111518 | 36.35185 | 33.80355 | 38.89535 |
Ambystoma andersoni | Caudata | CR | Stream-dwelling | 20.992462 | 36.20847 | 33.78409 | 38.79605 |
Ambystoma andersoni | Caudata | CR | Stream-dwelling | 24.196224 | 36.61895 | 33.98564 | 39.19775 |
Ambystoma mexicanum | Caudata | CR | Aquatic | 20.553017 | 36.92141 | 34.59936 | 39.62312 |
Ambystoma mexicanum | Caudata | CR | Aquatic | 19.305069 | 36.76330 | 34.47785 | 39.43597 |
Ambystoma mexicanum | Caudata | CR | Aquatic | 23.352564 | 37.27611 | 34.68915 | 39.85300 |
Ambystoma rosaceum | Caudata | LC | Semi-aquatic | 23.655020 | 37.39026 | 34.82691 | 40.12289 |
Ambystoma rosaceum | Caudata | LC | Semi-aquatic | 21.865186 | 37.16292 | 34.77323 | 39.87703 |
Ambystoma rosaceum | Caudata | LC | Semi-aquatic | 26.404602 | 37.73950 | 35.11770 | 40.69268 |
Ambystoma dumerilii | Caudata | CR | Aquatic | 22.111518 | 37.08874 | 34.63416 | 39.95318 |
Ambystoma dumerilii | Caudata | CR | Aquatic | 20.992462 | 36.94963 | 34.44026 | 39.67226 |
Ambystoma dumerilii | Caudata | CR | Aquatic | 24.196224 | 37.34789 | 34.84531 | 40.30797 |
Ambystoma ordinarium | Caudata | EN | Ground-dwelling | 22.798887 | 36.99374 | 34.79560 | 39.74632 |
Ambystoma ordinarium | Caudata | EN | Ground-dwelling | 21.773397 | 36.86660 | 34.69569 | 39.58134 |
Ambystoma ordinarium | Caudata | EN | Ground-dwelling | 24.878725 | 37.25157 | 34.94115 | 40.06490 |
Ambystoma annulatum | Caudata | LC | Fossorial | 24.495982 | 38.06575 | 35.13570 | 41.14200 |
Ambystoma annulatum | Caudata | LC | Fossorial | 21.579467 | 37.70384 | 34.62315 | 40.45269 |
Ambystoma annulatum | Caudata | LC | Fossorial | 29.163238 | 38.64490 | 35.48256 | 41.75050 |
Ambystoma bishopi | Caudata | EN | Ground-dwelling | 27.833478 | 37.51522 | 34.85718 | 40.81046 |
Ambystoma bishopi | Caudata | EN | Ground-dwelling | 26.222832 | 37.31456 | 34.30379 | 40.21542 |
Ambystoma bishopi | Caudata | EN | Ground-dwelling | 30.498691 | 37.84727 | 34.95896 | 41.11080 |
Ambystoma cingulatum | Caudata | EN | Fossorial | 26.970515 | 38.34715 | 35.29685 | 41.30582 |
Ambystoma cingulatum | Caudata | EN | Fossorial | 25.453413 | 38.16004 | 35.24469 | 41.11337 |
Ambystoma cingulatum | Caudata | EN | Fossorial | 29.368997 | 38.64297 | 35.48680 | 41.62317 |
Ambystoma barbouri | Caudata | NT | Ground-dwelling | 25.326857 | 37.35908 | 34.55853 | 40.67119 |
Ambystoma barbouri | Caudata | NT | Ground-dwelling | 22.815747 | 37.04971 | 34.22885 | 40.15223 |
Ambystoma barbouri | Caudata | NT | Ground-dwelling | 28.670606 | 37.77103 | 34.54274 | 40.96772 |
Ambystoma texanum | Caudata | LC | Semi-aquatic | 25.273197 | 37.54073 | 34.57367 | 40.69466 |
Ambystoma texanum | Caudata | LC | Semi-aquatic | 22.847202 | 37.23925 | 34.44452 | 40.44392 |
Ambystoma texanum | Caudata | LC | Semi-aquatic | 28.710980 | 37.96794 | 34.95930 | 41.37272 |
Ambystoma flavipiperatum | Caudata | EN | Ground-dwelling | 24.233007 | 37.06770 | 34.09895 | 40.03989 |
Ambystoma flavipiperatum | Caudata | EN | Ground-dwelling | 23.145344 | 36.93362 | 33.95158 | 39.82434 |
Ambystoma flavipiperatum | Caudata | EN | Ground-dwelling | 26.034679 | 37.28980 | 34.34195 | 40.40184 |
Ambystoma gracile | Caudata | LC | Ground-dwelling | 15.778065 | 35.85125 | 33.01781 | 38.36821 |
Ambystoma gracile | Caudata | LC | Ground-dwelling | 13.476280 | 35.56338 | 32.79019 | 38.12087 |
Ambystoma gracile | Caudata | LC | Ground-dwelling | 19.419445 | 36.30667 | 33.63531 | 38.99990 |
Ambystoma granulosum | Caudata | EN | Aquatic | 22.115868 | 36.94102 | 33.90949 | 40.35925 |
Ambystoma granulosum | Caudata | EN | Aquatic | 21.048851 | 36.80645 | 33.75052 | 40.19450 |
Ambystoma granulosum | Caudata | EN | Aquatic | 24.466554 | 37.23747 | 34.06230 | 40.65179 |
Ambystoma leorae | Caudata | CR | Aquatic | 21.490704 | 36.79825 | 33.76027 | 39.97848 |
Ambystoma leorae | Caudata | CR | Aquatic | 20.280314 | 36.64728 | 33.62740 | 39.75988 |
Ambystoma leorae | Caudata | CR | Aquatic | 24.021704 | 37.11393 | 33.74686 | 40.04470 |
Ambystoma taylori | Caudata | CR | Aquatic | 21.030433 | 36.75448 | 33.47279 | 40.01775 |
Ambystoma taylori | Caudata | CR | Aquatic | 19.480693 | 36.56257 | 33.01093 | 39.54611 |
Ambystoma taylori | Caudata | CR | Aquatic | 24.144250 | 37.14007 | 33.75600 | 40.37525 |
Ambystoma silvense | Caudata | DD | Aquatic | 22.917116 | 36.19651 | 33.31645 | 38.91547 |
Ambystoma silvense | Caudata | DD | Aquatic | 21.025568 | 35.95896 | 33.14116 | 38.64336 |
Ambystoma silvense | Caudata | DD | Aquatic | 25.749016 | 36.55215 | 33.63457 | 39.51773 |
Ambystoma rivulare | Caudata | EN | Aquatic | 21.550794 | 37.13917 | 34.19219 | 39.91271 |
Ambystoma rivulare | Caudata | EN | Aquatic | 20.442078 | 37.00451 | 34.03707 | 39.73663 |
Ambystoma rivulare | Caudata | EN | Aquatic | 24.122326 | 37.45147 | 34.71730 | 40.44879 |
Ambystoma velasci | Caudata | LC | Ground-dwelling | 23.279619 | 36.84990 | 34.04418 | 40.00667 |
Ambystoma velasci | Caudata | LC | Ground-dwelling | 21.876246 | 36.67337 | 33.89451 | 39.86545 |
Ambystoma velasci | Caudata | LC | Ground-dwelling | 25.646373 | 37.14761 | 34.32536 | 40.51855 |
Dicamptodon ensatus | Caudata | NT | Semi-aquatic | 18.477839 | 31.60809 | 27.91896 | 34.95626 |
Dicamptodon ensatus | Caudata | NT | Semi-aquatic | 17.131768 | 31.42309 | 27.69169 | 34.72407 |
Dicamptodon ensatus | Caudata | NT | Semi-aquatic | 20.670130 | 31.90938 | 28.49975 | 35.53874 |
Dicamptodon aterrimus | Caudata | LC | Semi-aquatic | 16.684228 | 31.31712 | 27.72846 | 34.97271 |
Dicamptodon aterrimus | Caudata | LC | Semi-aquatic | 13.920399 | 30.93613 | 27.40828 | 34.65456 |
Dicamptodon aterrimus | Caudata | LC | Semi-aquatic | 20.698372 | 31.87046 | 28.13859 | 35.32643 |
Dicamptodon copei | Caudata | LC | Semi-aquatic | 16.969340 | 31.37820 | 27.43981 | 34.56485 |
Dicamptodon copei | Caudata | LC | Semi-aquatic | 14.889016 | 31.09284 | 27.25683 | 34.33394 |
Dicamptodon copei | Caudata | LC | Semi-aquatic | 20.185185 | 31.81932 | 28.32539 | 35.43469 |
Necturus punctatus | Caudata | LC | Aquatic | 25.833479 | 35.13186 | 31.23067 | 39.04733 |
Necturus punctatus | Caudata | LC | Aquatic | 22.067821 | 34.64711 | 30.85021 | 38.43999 |
Necturus punctatus | Caudata | LC | Aquatic | 29.136903 | 35.55711 | 31.54132 | 39.67679 |
Necturus lewisi | Caudata | NT | Aquatic | 26.066702 | 35.20635 | 31.22629 | 38.93210 |
Necturus lewisi | Caudata | NT | Aquatic | 19.428102 | 34.33638 | 30.81967 | 38.08710 |
Necturus lewisi | Caudata | NT | Aquatic | 28.828452 | 35.56827 | 31.46421 | 39.39591 |
Necturus beyeri | Caudata | LC | Aquatic | 27.464115 | 35.33182 | 32.11446 | 38.45888 |
Necturus beyeri | Caudata | LC | Aquatic | 25.782646 | 35.11017 | 31.97794 | 38.17837 |
Necturus beyeri | Caudata | LC | Aquatic | 30.190295 | 35.69120 | 32.38068 | 39.02412 |
Necturus alabamensis | Caudata | EN | Aquatic | 27.392819 | 35.30300 | 32.25178 | 38.49274 |
Necturus alabamensis | Caudata | EN | Aquatic | 25.349557 | 35.03711 | 31.92357 | 38.00629 |
Necturus alabamensis | Caudata | EN | Aquatic | 30.418364 | 35.69671 | 32.31682 | 38.90878 |
Rhyacotriton kezeri | Caudata | NT | Semi-aquatic | 17.630772 | 30.56197 | 26.70429 | 33.89411 |
Rhyacotriton kezeri | Caudata | NT | Semi-aquatic | 15.632682 | 30.28796 | 26.64473 | 33.85831 |
Rhyacotriton kezeri | Caudata | NT | Semi-aquatic | 20.681293 | 30.98031 | 27.14454 | 34.32943 |
Rhyacotriton cascadae | Caudata | NT | Semi-aquatic | 17.676792 | 30.56943 | 27.00639 | 34.22711 |
Rhyacotriton cascadae | Caudata | NT | Semi-aquatic | 15.531486 | 30.27715 | 26.68208 | 33.86950 |
Rhyacotriton cascadae | Caudata | NT | Semi-aquatic | 20.926359 | 31.01214 | 27.52008 | 34.79620 |
Amphiuma pholeter | Caudata | NT | Aquatic | 27.731965 | 36.93221 | 32.46042 | 40.79259 |
Amphiuma pholeter | Caudata | NT | Aquatic | 26.287091 | 36.75211 | 32.37106 | 40.66336 |
Amphiuma pholeter | Caudata | NT | Aquatic | 30.116185 | 37.22940 | 32.66585 | 41.17074 |
Amphiuma means | Caudata | LC | Aquatic | 26.941668 | 36.70985 | 32.99874 | 41.16383 |
Amphiuma means | Caudata | LC | Aquatic | 24.524353 | 36.41650 | 32.52171 | 40.62172 |
Amphiuma means | Caudata | LC | Aquatic | 29.689155 | 37.04326 | 33.14679 | 41.37827 |
Aneides vagrans | Caudata | LC | Ground-dwelling | 15.749502 | 33.26239 | 30.37897 | 36.70212 |
Aneides vagrans | Caudata | LC | Ground-dwelling | 14.008509 | 33.04075 | 30.31470 | 36.70546 |
Aneides vagrans | Caudata | LC | Ground-dwelling | 18.403752 | 33.60030 | 30.67754 | 37.05613 |
Aneides flavipunctatus | Caudata | LC | Ground-dwelling | 17.531037 | 33.45574 | 30.17515 | 37.02457 |
Aneides flavipunctatus | Caudata | LC | Ground-dwelling | 16.046648 | 33.27088 | 29.95448 | 36.75151 |
Aneides flavipunctatus | Caudata | LC | Ground-dwelling | 19.819500 | 33.74074 | 30.48381 | 37.35172 |
Aneides lugubris | Caudata | LC | Arboreal | 19.493360 | 33.59514 | 30.03936 | 37.38176 |
Aneides lugubris | Caudata | LC | Arboreal | 18.006691 | 33.41304 | 29.94118 | 37.21560 |
Aneides lugubris | Caudata | LC | Arboreal | 21.866622 | 33.88583 | 30.49767 | 37.95381 |
Aneides hardii | Caudata | NT | Ground-dwelling | 21.188520 | 33.91308 | 29.97041 | 37.37851 |
Aneides hardii | Caudata | NT | Ground-dwelling | 19.087205 | 33.65187 | 29.71935 | 37.08903 |
Aneides hardii | Caudata | NT | Ground-dwelling | 24.293512 | 34.29905 | 30.20940 | 37.96314 |
Desmognathus abditus | Caudata | NT | Semi-aquatic | 26.065836 | 35.24706 | 32.44391 | 38.34873 |
Desmognathus abditus | Caudata | NT | Semi-aquatic | 23.920627 | 34.97729 | 32.13343 | 37.89341 |
Desmognathus abditus | Caudata | NT | Semi-aquatic | 29.084441 | 35.62667 | 32.76909 | 38.89581 |
Desmognathus welteri | Caudata | LC | Semi-aquatic | 25.689480 | 35.26184 | 32.29822 | 38.09925 |
Desmognathus welteri | Caudata | LC | Semi-aquatic | 23.391171 | 34.96683 | 32.08264 | 37.71558 |
Desmognathus welteri | Caudata | LC | Semi-aquatic | 28.760338 | 35.65601 | 32.62720 | 38.70151 |
Desmognathus apalachicolae | Caudata | LC | Semi-aquatic | 27.734318 | 35.47065 | 32.39366 | 38.24124 |
Desmognathus apalachicolae | Caudata | LC | Semi-aquatic | 26.019837 | 35.25411 | 32.22025 | 37.94598 |
Desmognathus apalachicolae | Caudata | LC | Semi-aquatic | 30.431986 | 35.81136 | 32.77035 | 38.84716 |
Desmognathus auriculatus | Caudata | LC | Semi-aquatic | 25.528113 | 35.14619 | 32.37151 | 38.12458 |
Desmognathus auriculatus | Caudata | LC | Semi-aquatic | 21.471380 | 34.62711 | 31.88597 | 37.46602 |
Desmognathus auriculatus | Caudata | LC | Semi-aquatic | 28.894858 | 35.57698 | 32.72771 | 38.73546 |
Desmognathus santeetlah | Caudata | NT | Semi-aquatic | 26.273694 | 35.20776 | 32.59456 | 38.15662 |
Desmognathus santeetlah | Caudata | NT | Semi-aquatic | 24.260429 | 34.95428 | 32.47917 | 37.91297 |
Desmognathus santeetlah | Caudata | NT | Semi-aquatic | 29.241377 | 35.58141 | 32.70491 | 38.45627 |
Desmognathus imitator | Caudata | NT | Semi-aquatic | 26.192376 | 35.24706 | 32.28898 | 38.28803 |
Desmognathus imitator | Caudata | NT | Semi-aquatic | 24.161092 | 34.98963 | 32.13298 | 37.94026 |
Desmognathus imitator | Caudata | NT | Semi-aquatic | 29.189508 | 35.62689 | 32.44991 | 38.74012 |
Desmognathus aeneus | Caudata | NT | Semi-aquatic | 27.207502 | 35.13467 | 32.17292 | 38.72030 |
Desmognathus aeneus | Caudata | NT | Semi-aquatic | 25.204992 | 34.88232 | 31.85342 | 38.29531 |
Desmognathus aeneus | Caudata | NT | Semi-aquatic | 30.200526 | 35.51184 | 32.25793 | 39.02976 |
Desmognathus folkertsi | Caudata | DD | Semi-aquatic | 26.649141 | 34.64094 | 31.71488 | 37.85969 |
Desmognathus folkertsi | Caudata | DD | Semi-aquatic | 24.608151 | 34.38316 | 31.44359 | 37.41514 |
Desmognathus folkertsi | Caudata | DD | Semi-aquatic | 29.595138 | 35.01302 | 31.96770 | 38.32212 |
Desmognathus marmoratus | Caudata | LC | Semi-aquatic | 26.114378 | 34.63356 | 31.78553 | 38.02580 |
Desmognathus marmoratus | Caudata | LC | Semi-aquatic | 23.999980 | 34.36352 | 31.67792 | 37.73469 |
Desmognathus marmoratus | Caudata | LC | Semi-aquatic | 29.105408 | 35.01557 | 31.91318 | 38.43541 |
Desmognathus wrighti | Caudata | LC | Ground-dwelling | 25.971147 | 34.73215 | 30.88387 | 38.15570 |
Desmognathus wrighti | Caudata | LC | Ground-dwelling | 23.791040 | 34.45394 | 30.79199 | 38.00949 |
Desmognathus wrighti | Caudata | LC | Ground-dwelling | 28.984412 | 35.11669 | 31.25545 | 38.79480 |
Phaeognathus hubrichti | Caudata | EN | Ground-dwelling | 27.921885 | 34.95503 | 30.75156 | 39.19067 |
Phaeognathus hubrichti | Caudata | EN | Ground-dwelling | 26.303381 | 34.75316 | 30.70447 | 39.00677 |
Phaeognathus hubrichti | Caudata | EN | Ground-dwelling | 30.663819 | 35.29702 | 31.13177 | 39.79836 |
Plethodon albagula | Caudata | LC | Ground-dwelling | 25.328605 | 35.09039 | 32.56517 | 38.02811 |
Plethodon albagula | Caudata | LC | Ground-dwelling | 23.157961 | 34.81833 | 32.28261 | 37.52979 |
Plethodon albagula | Caudata | LC | Ground-dwelling | 28.903138 | 35.53840 | 32.88817 | 38.67833 |
Plethodon sequoyah | Caudata | DD | Ground-dwelling | 26.579884 | 35.25396 | 32.16976 | 37.79117 |
Plethodon sequoyah | Caudata | DD | Ground-dwelling | 24.499953 | 34.99993 | 32.52320 | 37.91978 |
Plethodon sequoyah | Caudata | DD | Ground-dwelling | 29.901534 | 35.65965 | 32.67765 | 38.54300 |
Plethodon kisatchie | Caudata | LC | Ground-dwelling | 27.242773 | 35.33890 | 32.10593 | 37.79613 |
Plethodon kisatchie | Caudata | LC | Ground-dwelling | 25.496794 | 35.12471 | 31.95364 | 37.51233 |
Plethodon kisatchie | Caudata | LC | Ground-dwelling | 30.046590 | 35.68288 | 32.47274 | 38.41145 |
Plethodon kiamichi | Caudata | VU | Ground-dwelling | 26.407276 | 35.20751 | 32.50085 | 38.10081 |
Plethodon kiamichi | Caudata | VU | Ground-dwelling | 24.464077 | 34.96592 | 32.25464 | 37.65443 |
Plethodon kiamichi | Caudata | VU | Ground-dwelling | 29.501864 | 35.59226 | 32.58934 | 38.41834 |
Plethodon amplus | Caudata | EN | Ground-dwelling | 26.327453 | 35.12304 | 32.23592 | 37.51883 |
Plethodon amplus | Caudata | EN | Ground-dwelling | 24.232726 | 34.86031 | 32.26940 | 37.39448 |
Plethodon amplus | Caudata | EN | Ground-dwelling | 29.276985 | 35.49299 | 32.76097 | 38.26234 |
Plethodon meridianus | Caudata | EN | Ground-dwelling | 26.338843 | 35.11299 | 32.31703 | 37.71584 |
Plethodon meridianus | Caudata | EN | Ground-dwelling | 24.181198 | 34.84303 | 32.14519 | 37.43028 |
Plethodon meridianus | Caudata | EN | Ground-dwelling | 29.327622 | 35.48694 | 32.43914 | 38.13676 |
Plethodon metcalfi | Caudata | LC | Ground-dwelling | 26.385290 | 35.04252 | 32.61082 | 37.56280 |
Plethodon metcalfi | Caudata | LC | Ground-dwelling | 24.339535 | 34.79242 | 32.54939 | 37.31315 |
Plethodon metcalfi | Caudata | LC | Ground-dwelling | 29.329800 | 35.40250 | 33.14387 | 38.37623 |
Plethodon aureolus | Caudata | DD | Ground-dwelling | 26.246814 | 35.16961 | 32.74509 | 37.71444 |
Plethodon aureolus | Caudata | DD | Ground-dwelling | 24.274280 | 34.92436 | 32.45250 | 37.21213 |
Plethodon aureolus | Caudata | DD | Ground-dwelling | 29.223574 | 35.53973 | 32.77518 | 38.06714 |
Plethodon cheoah | Caudata | VU | Ground-dwelling | 26.057299 | 35.15469 | 32.73946 | 37.84198 |
Plethodon cheoah | Caudata | VU | Ground-dwelling | 24.089459 | 34.90777 | 32.52144 | 37.47709 |
Plethodon cheoah | Caudata | VU | Ground-dwelling | 29.102032 | 35.53674 | 32.99793 | 38.43800 |
Plethodon shermani | Caudata | NT | Ground-dwelling | 26.380923 | 35.11251 | 32.22193 | 37.47138 |
Plethodon shermani | Caudata | NT | Ground-dwelling | 24.385570 | 34.87100 | 31.95287 | 37.07934 |
Plethodon shermani | Caudata | NT | Ground-dwelling | 29.347428 | 35.47155 | 32.72605 | 38.26621 |
Plethodon fourchensis | Caudata | NT | Ground-dwelling | 26.535050 | 35.29330 | 32.91664 | 38.28632 |
Plethodon fourchensis | Caudata | NT | Ground-dwelling | 24.472091 | 35.03791 | 32.50115 | 37.69869 |
Plethodon fourchensis | Caudata | NT | Ground-dwelling | 29.808076 | 35.69848 | 33.22665 | 38.88572 |
Plethodon kentucki | Caudata | LC | Ground-dwelling | 25.189633 | 35.16262 | 32.40380 | 37.89011 |
Plethodon kentucki | Caudata | LC | Ground-dwelling | 22.744583 | 34.85588 | 32.14561 | 37.39689 |
Plethodon kentucki | Caudata | LC | Ground-dwelling | 28.363678 | 35.56080 | 32.89505 | 38.59913 |
Plethodon petraeus | Caudata | VU | Ground-dwelling | 26.604361 | 35.19179 | 32.37012 | 38.15554 |
Plethodon petraeus | Caudata | VU | Ground-dwelling | 24.430927 | 34.92464 | 32.27676 | 37.80004 |
Plethodon petraeus | Caudata | VU | Ground-dwelling | 29.722571 | 35.57507 | 32.77471 | 38.91425 |
Plethodon angusticlavius | Caudata | LC | Semi-aquatic | 24.517993 | 34.75256 | 31.57106 | 37.64238 |
Plethodon angusticlavius | Caudata | LC | Semi-aquatic | 22.324019 | 34.48070 | 31.34811 | 37.34586 |
Plethodon angusticlavius | Caudata | LC | Semi-aquatic | 29.192601 | 35.33180 | 31.89780 | 38.32790 |
Plethodon ventralis | Caudata | LC | Ground-dwelling | 26.776138 | 34.75342 | 31.92034 | 37.78720 |
Plethodon ventralis | Caudata | LC | Ground-dwelling | 24.706252 | 34.49833 | 31.42861 | 37.16653 |
Plethodon ventralis | Caudata | LC | Ground-dwelling | 29.833267 | 35.13017 | 32.37002 | 38.49175 |
Plethodon welleri | Caudata | EN | Ground-dwelling | 25.686366 | 34.90363 | 31.59787 | 37.95601 |
Plethodon welleri | Caudata | EN | Ground-dwelling | 23.392948 | 34.61496 | 31.56546 | 37.71421 |
Plethodon welleri | Caudata | EN | Ground-dwelling | 28.774108 | 35.29229 | 31.95764 | 38.44899 |
Plethodon websteri | Caudata | LC | Ground-dwelling | 27.330521 | 35.22962 | 32.14318 | 38.70136 |
Plethodon websteri | Caudata | LC | Ground-dwelling | 25.452605 | 34.99953 | 32.12657 | 38.56664 |
Plethodon websteri | Caudata | LC | Ground-dwelling | 30.203742 | 35.58167 | 32.19601 | 38.99022 |
Plethodon shenandoah | Caudata | VU | Ground-dwelling | 24.926073 | 35.26221 | 32.51681 | 37.73952 |
Plethodon shenandoah | Caudata | VU | Ground-dwelling | 21.955077 | 34.89722 | 32.54120 | 37.58267 |
Plethodon shenandoah | Caudata | VU | Ground-dwelling | 28.059673 | 35.64719 | 32.89292 | 38.47548 |
Plethodon electromorphus | Caudata | LC | Ground-dwelling | 23.259677 | 34.87618 | 32.54014 | 37.54377 |
Plethodon electromorphus | Caudata | LC | Ground-dwelling | 20.510275 | 34.53081 | 32.16500 | 37.01680 |
Plethodon electromorphus | Caudata | LC | Ground-dwelling | 27.610082 | 35.42268 | 32.60694 | 37.96243 |
Plethodon nettingi | Caudata | NT | Ground-dwelling | 24.355642 | 34.98474 | 32.10385 | 37.68882 |
Plethodon nettingi | Caudata | NT | Ground-dwelling | 21.319478 | 34.60981 | 32.01161 | 37.34777 |
Plethodon nettingi | Caudata | NT | Ground-dwelling | 27.662741 | 35.39313 | 32.51906 | 38.46653 |
Plethodon hoffmani | Caudata | LC | Ground-dwelling | 21.457193 | 34.60631 | 32.20176 | 37.47807 |
Plethodon hoffmani | Caudata | LC | Ground-dwelling | 18.919309 | 34.29382 | 31.90563 | 37.04354 |
Plethodon hoffmani | Caudata | LC | Ground-dwelling | 25.878865 | 35.15075 | 32.29790 | 38.01548 |
Plethodon sherando | Caudata | VU | Ground-dwelling | 25.055749 | 35.07341 | 31.89280 | 37.98518 |
Plethodon sherando | Caudata | VU | Ground-dwelling | 22.277467 | 34.73007 | 31.95410 | 37.91767 |
Plethodon sherando | Caudata | VU | Ground-dwelling | 28.347050 | 35.48015 | 32.21748 | 38.50484 |
Plethodon asupak | Caudata | EN | Ground-dwelling | 18.332335 | 33.61642 | 30.46932 | 37.52952 |
Plethodon asupak | Caudata | EN | Ground-dwelling | 16.704266 | 33.41149 | 30.32026 | 37.32368 |
Plethodon asupak | Caudata | EN | Ground-dwelling | 20.884111 | 33.93763 | 30.67041 | 37.77184 |
Plethodon elongatus | Caudata | LC | Ground-dwelling | 18.238875 | 33.71715 | 29.85446 | 37.43316 |
Plethodon elongatus | Caudata | LC | Ground-dwelling | 16.544105 | 33.50638 | 29.72937 | 37.28030 |
Plethodon elongatus | Caudata | LC | Ground-dwelling | 20.853234 | 34.04229 | 30.08186 | 37.69792 |
Plethodon stormi | Caudata | EN | Ground-dwelling | 18.328294 | 33.71895 | 30.07594 | 37.23551 |
Plethodon stormi | Caudata | EN | Ground-dwelling | 16.605451 | 33.50156 | 30.03342 | 37.22925 |
Plethodon stormi | Caudata | EN | Ground-dwelling | 21.054044 | 34.06289 | 30.42779 | 37.53241 |
Plethodon idahoensis | Caudata | LC | Semi-aquatic | 16.871688 | 33.76430 | 29.89733 | 37.47454 |
Plethodon idahoensis | Caudata | LC | Semi-aquatic | 13.994735 | 33.40941 | 29.72156 | 37.19118 |
Plethodon idahoensis | Caudata | LC | Semi-aquatic | 21.079327 | 34.28336 | 30.56620 | 38.15081 |
Plethodon vandykei | Caudata | LC | Ground-dwelling | 16.901606 | 33.53817 | 29.79143 | 37.30450 |
Plethodon vandykei | Caudata | LC | Ground-dwelling | 14.771489 | 33.27871 | 29.49784 | 36.99759 |
Plethodon vandykei | Caudata | LC | Ground-dwelling | 20.178134 | 33.93727 | 30.23786 | 37.75714 |
Plethodon larselli | Caudata | LC | Ground-dwelling | 17.658988 | 33.60807 | 29.42530 | 37.09974 |
Plethodon larselli | Caudata | LC | Ground-dwelling | 15.407035 | 33.32691 | 29.29776 | 36.93907 |
Plethodon larselli | Caudata | LC | Ground-dwelling | 21.077058 | 34.03481 | 29.92352 | 37.66213 |
Plethodon neomexicanus | Caudata | EN | Ground-dwelling | 18.928693 | 33.73415 | 30.19418 | 37.35249 |
Plethodon neomexicanus | Caudata | EN | Ground-dwelling | 16.509370 | 33.42954 | 29.81088 | 37.04957 |
Plethodon neomexicanus | Caudata | EN | Ground-dwelling | 22.646397 | 34.20224 | 30.75034 | 38.01425 |
Hydromantes brunus | Caudata | NT | Ground-dwelling | 17.989651 | 33.83009 | 29.54118 | 38.24557 |
Hydromantes brunus | Caudata | NT | Ground-dwelling | 16.517098 | 33.64513 | 29.26556 | 37.98606 |
Hydromantes brunus | Caudata | NT | Ground-dwelling | 20.519513 | 34.14785 | 29.86093 | 38.67022 |
Hydromantes platycephalus | Caudata | LC | Ground-dwelling | 18.780108 | 33.93232 | 29.30822 | 37.99802 |
Hydromantes platycephalus | Caudata | LC | Ground-dwelling | 17.229382 | 33.73878 | 28.89155 | 37.50432 |
Hydromantes platycephalus | Caudata | LC | Ground-dwelling | 21.449133 | 34.26544 | 29.58561 | 38.28204 |
Hydromantes shastae | Caudata | NT | Ground-dwelling | 18.451567 | 33.87520 | 30.14274 | 38.42688 |
Hydromantes shastae | Caudata | NT | Ground-dwelling | 16.591564 | 33.64457 | 29.90801 | 38.10294 |
Hydromantes shastae | Caudata | NT | Ground-dwelling | 21.282352 | 34.22621 | 30.52432 | 38.94829 |
Karsenia koreana | Caudata | LC | Ground-dwelling | 23.834674 | 34.61853 | 30.69109 | 39.53315 |
Karsenia koreana | Caudata | LC | Ground-dwelling | 21.109871 | 34.27487 | 30.32452 | 39.15076 |
Karsenia koreana | Caudata | LC | Ground-dwelling | 26.916593 | 35.00723 | 30.81151 | 39.73643 |
Eurycea junaluska | Caudata | VU | Semi-aquatic | 26.246814 | 36.99819 | 34.18973 | 39.77658 |
Eurycea junaluska | Caudata | VU | Semi-aquatic | 24.274280 | 36.77651 | 34.05923 | 39.48544 |
Eurycea junaluska | Caudata | VU | Semi-aquatic | 29.223574 | 37.33273 | 34.39320 | 40.27905 |
Eurycea cirrigera | Caudata | LC | Semi-aquatic | 25.767720 | 36.87424 | 33.99712 | 39.39573 |
Eurycea cirrigera | Caudata | LC | Semi-aquatic | 23.005356 | 36.57670 | 33.68556 | 38.98803 |
Eurycea cirrigera | Caudata | LC | Semi-aquatic | 29.215723 | 37.24563 | 34.21785 | 39.91499 |
Eurycea wilderae | Caudata | LC | Semi-aquatic | 26.013007 | 36.93620 | 34.47359 | 40.25382 |
Eurycea wilderae | Caudata | LC | Semi-aquatic | 23.793695 | 36.69493 | 34.26819 | 39.80126 |
Eurycea wilderae | Caudata | LC | Semi-aquatic | 29.058022 | 37.26725 | 34.12010 | 40.18577 |
Eurycea guttolineata | Caudata | LC | Semi-aquatic | 26.360718 | 37.17117 | 34.76746 | 40.21583 |
Eurycea guttolineata | Caudata | LC | Semi-aquatic | 23.813474 | 36.89695 | 34.12218 | 39.32971 |
Eurycea guttolineata | Caudata | LC | Semi-aquatic | 29.378417 | 37.49604 | 34.78734 | 40.54058 |
Eurycea chisholmensis | Caudata | VU | Aquatic | 26.458913 | 37.04911 | 34.10412 | 40.08552 |
Eurycea chisholmensis | Caudata | VU | Aquatic | 25.240115 | 36.91297 | 34.04985 | 39.97936 |
Eurycea chisholmensis | Caudata | VU | Aquatic | 29.148276 | 37.34951 | 34.55414 | 40.76615 |
Eurycea tonkawae | Caudata | EN | Aquatic | 26.500352 | 37.07940 | 33.95452 | 39.86182 |
Eurycea tonkawae | Caudata | EN | Aquatic | 25.286696 | 36.94646 | 33.82381 | 39.60075 |
Eurycea tonkawae | Caudata | EN | Aquatic | 29.192627 | 37.37430 | 34.22280 | 40.40373 |
Eurycea naufragia | Caudata | CR | Semi-aquatic | 26.500352 | 37.14239 | 34.48920 | 39.94266 |
Eurycea naufragia | Caudata | CR | Semi-aquatic | 25.286696 | 37.00713 | 34.38782 | 39.70663 |
Eurycea naufragia | Caudata | CR | Semi-aquatic | 29.192627 | 37.44244 | 34.51216 | 40.23206 |
Eurycea tridentifera | Caudata | VU | Aquatic | 26.065686 | 37.01229 | 34.42293 | 39.57737 |
Eurycea tridentifera | Caudata | VU | Aquatic | 25.250112 | 36.92236 | 34.35093 | 39.44814 |
Eurycea tridentifera | Caudata | VU | Aquatic | 27.927802 | 37.21760 | 34.43542 | 39.77577 |
Eurycea pterophila | Caudata | DD | Aquatic | 26.304041 | 37.09103 | 34.48678 | 39.55199 |
Eurycea pterophila | Caudata | DD | Aquatic | 25.379846 | 36.98852 | 34.41661 | 39.41049 |
Eurycea pterophila | Caudata | DD | Aquatic | 28.275515 | 37.30972 | 34.55199 | 39.81604 |
Eurycea troglodytes | Caudata | DD | Aquatic | 26.048467 | 37.04554 | 34.20986 | 39.72961 |
Eurycea troglodytes | Caudata | DD | Aquatic | 25.213379 | 36.95409 | 33.97148 | 39.42395 |
Eurycea troglodytes | Caudata | DD | Aquatic | 27.911227 | 37.24952 | 34.32100 | 40.04138 |
Eurycea waterlooensis | Caudata | VU | Aquatic | 26.500352 | 37.07039 | 34.56300 | 40.22644 |
Eurycea waterlooensis | Caudata | VU | Aquatic | 25.286696 | 36.93420 | 34.03485 | 39.62929 |
Eurycea waterlooensis | Caudata | VU | Aquatic | 29.192627 | 37.37252 | 34.21077 | 40.06958 |
Eurycea tynerensis | Caudata | NT | Aquatic | 23.454899 | 36.73914 | 33.66295 | 39.89543 |
Eurycea tynerensis | Caudata | NT | Aquatic | 21.324026 | 36.50932 | 33.47715 | 39.54851 |
Eurycea tynerensis | Caudata | NT | Aquatic | 28.911408 | 37.32764 | 33.93092 | 40.58769 |
Urspelerpes brucei | Caudata | LC | Fossorial | 26.649141 | 37.35631 | 33.13347 | 40.38157 |
Urspelerpes brucei | Caudata | LC | Fossorial | 24.608151 | 37.12320 | 32.96432 | 40.05089 |
Urspelerpes brucei | Caudata | LC | Fossorial | 29.595138 | 37.69279 | 33.41767 | 40.84521 |
Stereochilus marginatus | Caudata | LC | Semi-aquatic | 25.739655 | 35.74573 | 32.59929 | 38.78617 |
Stereochilus marginatus | Caudata | LC | Semi-aquatic | 21.972107 | 35.30290 | 32.26401 | 38.17513 |
Stereochilus marginatus | Caudata | LC | Semi-aquatic | 28.972676 | 36.12574 | 32.90517 | 39.37655 |
Batrachoseps gregarius | Caudata | LC | Ground-dwelling | 18.901773 | 34.47136 | 30.26645 | 38.85713 |
Batrachoseps gregarius | Caudata | LC | Ground-dwelling | 17.394208 | 34.29135 | 29.94595 | 38.54362 |
Batrachoseps gregarius | Caudata | LC | Ground-dwelling | 21.550710 | 34.78767 | 30.45087 | 39.09158 |
Batrachoseps nigriventris | Caudata | LC | Ground-dwelling | 20.445312 | 34.70324 | 30.72980 | 39.18591 |
Batrachoseps nigriventris | Caudata | LC | Ground-dwelling | 18.944563 | 34.52232 | 30.14615 | 38.60750 |
Batrachoseps nigriventris | Caudata | LC | Ground-dwelling | 22.803200 | 34.98748 | 30.77971 | 39.18893 |
Batrachoseps stebbinsi | Caudata | VU | Ground-dwelling | 19.043339 | 34.52367 | 30.40667 | 38.99515 |
Batrachoseps stebbinsi | Caudata | VU | Ground-dwelling | 17.367509 | 34.32285 | 30.12212 | 38.74905 |
Batrachoseps stebbinsi | Caudata | VU | Ground-dwelling | 21.870191 | 34.86243 | 30.62351 | 39.19850 |
Batrachoseps simatus | Caudata | VU | Ground-dwelling | 17.583327 | 34.30196 | 29.97420 | 39.07323 |
Batrachoseps simatus | Caudata | VU | Ground-dwelling | 15.897419 | 34.10125 | 29.16915 | 38.33123 |
Batrachoseps simatus | Caudata | VU | Ground-dwelling | 20.596336 | 34.66066 | 30.23721 | 39.38591 |
Batrachoseps kawia | Caudata | NT | Ground-dwelling | 15.572224 | 34.08225 | 29.98588 | 38.81533 |
Batrachoseps kawia | Caudata | NT | Ground-dwelling | 13.908856 | 33.88116 | 29.00234 | 37.86750 |
Batrachoseps kawia | Caudata | NT | Ground-dwelling | 18.776325 | 34.46962 | 30.30527 | 39.14059 |
Batrachoseps relictus | Caudata | DD | Ground-dwelling | 17.583327 | 34.25657 | 29.84350 | 39.06773 |
Batrachoseps relictus | Caudata | DD | Ground-dwelling | 15.897419 | 34.05838 | 29.69146 | 38.95554 |
Batrachoseps relictus | Caudata | DD | Ground-dwelling | 20.596336 | 34.61079 | 30.19877 | 39.59909 |
Batrachoseps diabolicus | Caudata | DD | Ground-dwelling | 20.142281 | 34.67178 | 30.51594 | 39.17819 |
Batrachoseps diabolicus | Caudata | DD | Ground-dwelling | 18.752207 | 34.50602 | 30.25689 | 38.91561 |
Batrachoseps diabolicus | Caudata | DD | Ground-dwelling | 22.528577 | 34.95633 | 30.87695 | 39.63058 |
Batrachoseps regius | Caudata | VU | Ground-dwelling | 21.274720 | 34.77636 | 30.52353 | 39.09367 |
Batrachoseps regius | Caudata | VU | Ground-dwelling | 19.919791 | 34.61447 | 30.45690 | 39.01011 |
Batrachoseps regius | Caudata | VU | Ground-dwelling | 23.549664 | 35.04816 | 30.83411 | 39.43220 |
Batrachoseps gabrieli | Caudata | DD | Ground-dwelling | 19.904945 | 34.62617 | 30.23484 | 38.88701 |
Batrachoseps gabrieli | Caudata | DD | Ground-dwelling | 18.173037 | 34.42538 | 29.99823 | 38.66193 |
Batrachoseps gabrieli | Caudata | DD | Ground-dwelling | 22.890779 | 34.97233 | 30.73679 | 39.38933 |
Batrachoseps gavilanensis | Caudata | LC | Ground-dwelling | 19.537068 | 34.56860 | 30.18936 | 38.69116 |
Batrachoseps gavilanensis | Caudata | LC | Ground-dwelling | 18.242612 | 34.41435 | 30.09084 | 38.56993 |
Batrachoseps gavilanensis | Caudata | LC | Ground-dwelling | 21.723828 | 34.82918 | 30.14175 | 38.70329 |
Batrachoseps incognitus | Caudata | DD | Ground-dwelling | 19.200816 | 34.58273 | 30.37054 | 39.23429 |
Batrachoseps incognitus | Caudata | DD | Ground-dwelling | 17.945820 | 34.43226 | 30.23602 | 39.10855 |
Batrachoseps incognitus | Caudata | DD | Ground-dwelling | 21.397707 | 34.84612 | 30.68554 | 39.50955 |
Batrachoseps minor | Caudata | DD | Ground-dwelling | 19.703588 | 34.56445 | 30.23499 | 39.18088 |
Batrachoseps minor | Caudata | DD | Ground-dwelling | 18.422359 | 34.41134 | 30.09455 | 39.03477 |
Batrachoseps minor | Caudata | DD | Ground-dwelling | 22.108248 | 34.85181 | 30.49443 | 39.42780 |
Batrachoseps major | Caudata | LC | Ground-dwelling | 21.228278 | 34.80440 | 30.80253 | 39.66955 |
Batrachoseps major | Caudata | LC | Ground-dwelling | 19.579335 | 34.60992 | 30.06127 | 38.91682 |
Batrachoseps major | Caudata | LC | Ground-dwelling | 23.806568 | 35.10849 | 31.02517 | 40.01028 |
Batrachoseps pacificus | Caudata | LC | Ground-dwelling | 19.092654 | 34.52440 | 30.26329 | 38.83155 |
Batrachoseps pacificus | Caudata | LC | Ground-dwelling | 17.794184 | 34.37102 | 30.13643 | 38.69922 |
Batrachoseps pacificus | Caudata | LC | Ground-dwelling | 21.558753 | 34.81569 | 30.31028 | 39.04070 |
Batrachoseps luciae | Caudata | LC | Ground-dwelling | 19.179298 | 34.51251 | 29.91268 | 39.08918 |
Batrachoseps luciae | Caudata | LC | Ground-dwelling | 17.892191 | 34.35900 | 29.77534 | 38.89716 |
Batrachoseps luciae | Caudata | LC | Ground-dwelling | 21.285465 | 34.76370 | 29.83696 | 39.05983 |
Batrachoseps robustus | Caudata | NT | Ground-dwelling | 19.075432 | 34.53782 | 30.08340 | 38.90065 |
Batrachoseps robustus | Caudata | NT | Ground-dwelling | 17.480082 | 34.34392 | 29.88217 | 38.70014 |
Batrachoseps robustus | Caudata | NT | Ground-dwelling | 21.813122 | 34.87056 | 30.54157 | 39.40266 |
Batrachoseps attenuatus | Caudata | LC | Ground-dwelling | 18.771211 | 34.50808 | 30.34917 | 38.98927 |
Batrachoseps attenuatus | Caudata | LC | Ground-dwelling | 17.297972 | 34.33253 | 30.19768 | 38.81353 |
Batrachoseps attenuatus | Caudata | LC | Ground-dwelling | 21.117565 | 34.78768 | 30.42850 | 39.11360 |
Batrachoseps campi | Caudata | NT | Ground-dwelling | 17.838213 | 34.49529 | 30.39707 | 39.15334 |
Batrachoseps campi | Caudata | NT | Ground-dwelling | 16.254887 | 34.30435 | 30.10570 | 38.80214 |
Batrachoseps campi | Caudata | NT | Ground-dwelling | 20.648948 | 34.83424 | 30.78058 | 39.56293 |
Batrachoseps wrighti | Caudata | NT | Ground-dwelling | 17.816881 | 34.48280 | 30.06391 | 38.65667 |
Batrachoseps wrighti | Caudata | NT | Ground-dwelling | 15.792631 | 34.24010 | 29.90965 | 38.54438 |
Batrachoseps wrighti | Caudata | NT | Ground-dwelling | 20.959635 | 34.85962 | 30.44623 | 39.06384 |
Bolitoglossa adspersa | Caudata | NT | Ground-dwelling | 23.104446 | 34.98331 | 30.97128 | 39.24956 |
Bolitoglossa adspersa | Caudata | NT | Ground-dwelling | 22.275600 | 34.88301 | 30.80424 | 39.06034 |
Bolitoglossa adspersa | Caudata | NT | Ground-dwelling | 24.747226 | 35.18213 | 31.07516 | 39.36201 |
Bolitoglossa medemi | Caudata | LC | Arboreal | 26.390359 | 35.21171 | 30.88817 | 39.54648 |
Bolitoglossa medemi | Caudata | LC | Arboreal | 25.731534 | 35.13096 | 30.84223 | 39.48250 |
Bolitoglossa medemi | Caudata | LC | Arboreal | 27.738999 | 35.37701 | 31.12393 | 39.83451 |
Bolitoglossa alberchi | Caudata | VU | Arboreal | 27.237701 | 35.37561 | 30.91578 | 39.54371 |
Bolitoglossa alberchi | Caudata | VU | Arboreal | 26.286179 | 35.26196 | 30.79710 | 39.33554 |
Bolitoglossa alberchi | Caudata | VU | Arboreal | 29.192015 | 35.60905 | 31.02206 | 39.70918 |
Bolitoglossa altamazonica | Caudata | LC | Arboreal | 26.682991 | 35.28726 | 30.73422 | 39.57715 |
Bolitoglossa altamazonica | Caudata | LC | Arboreal | 25.915625 | 35.19344 | 30.71794 | 39.56067 |
Bolitoglossa altamazonica | Caudata | LC | Arboreal | 28.186575 | 35.47109 | 30.84249 | 39.79244 |
Bolitoglossa peruviana | Caudata | DD | Arboreal | 24.021783 | 34.97329 | 30.67440 | 39.37384 |
Bolitoglossa peruviana | Caudata | DD | Arboreal | 23.410536 | 34.90027 | 30.65348 | 39.31846 |
Bolitoglossa peruviana | Caudata | DD | Arboreal | 25.363768 | 35.13359 | 30.96757 | 39.71623 |
Bolitoglossa palmata | Caudata | LC | Arboreal | 22.770970 | 34.79641 | 30.09686 | 38.69939 |
Bolitoglossa palmata | Caudata | LC | Arboreal | 21.263331 | 34.61728 | 29.99879 | 38.53190 |
Bolitoglossa palmata | Caudata | LC | Arboreal | 24.898342 | 35.04916 | 30.22267 | 38.92714 |
Bolitoglossa alvaradoi | Caudata | VU | Arboreal | 24.957708 | 35.11272 | 30.64151 | 39.10051 |
Bolitoglossa alvaradoi | Caudata | VU | Arboreal | 24.191000 | 35.01974 | 30.49370 | 38.93452 |
Bolitoglossa alvaradoi | Caudata | VU | Arboreal | 26.352285 | 35.28184 | 30.89949 | 39.39004 |
Bolitoglossa dofleini | Caudata | NT | Ground-dwelling | 26.212985 | 35.43357 | 30.83818 | 39.45083 |
Bolitoglossa dofleini | Caudata | NT | Ground-dwelling | 25.429183 | 35.33935 | 30.79578 | 39.34316 |
Bolitoglossa dofleini | Caudata | NT | Ground-dwelling | 27.890247 | 35.63518 | 31.12157 | 39.88182 |
Bolitoglossa anthracina | Caudata | EN | Ground-dwelling | 27.911209 | 35.61174 | 31.18192 | 39.62679 |
Bolitoglossa anthracina | Caudata | EN | Ground-dwelling | 27.288770 | 35.53570 | 31.06570 | 39.50260 |
Bolitoglossa anthracina | Caudata | EN | Ground-dwelling | 28.936857 | 35.73703 | 31.28989 | 39.82880 |
Bolitoglossa biseriata | Caudata | LC | Arboreal | 25.811450 | 35.18528 | 31.08834 | 39.52029 |
Bolitoglossa biseriata | Caudata | LC | Arboreal | 25.026529 | 35.09052 | 30.98263 | 39.39375 |
Bolitoglossa biseriata | Caudata | LC | Arboreal | 27.202696 | 35.35324 | 31.37306 | 39.93925 |
Bolitoglossa sima | Caudata | LC | Arboreal | 23.921100 | 34.94343 | 30.99082 | 39.42173 |
Bolitoglossa sima | Caudata | LC | Arboreal | 22.707937 | 34.80021 | 30.86726 | 39.29325 |
Bolitoglossa sima | Caudata | LC | Arboreal | 25.766620 | 35.16131 | 31.01961 | 39.48147 |
Bolitoglossa borburata | Caudata | VU | Ground-dwelling | 26.532132 | 35.47015 | 30.93559 | 40.12780 |
Bolitoglossa borburata | Caudata | VU | Ground-dwelling | 25.800733 | 35.38139 | 30.45111 | 39.61432 |
Bolitoglossa borburata | Caudata | VU | Ground-dwelling | 27.991576 | 35.64726 | 30.53764 | 39.76539 |
Bolitoglossa bramei | Caudata | LC | Ground-dwelling | 24.247729 | 35.21864 | 30.50539 | 39.26144 |
Bolitoglossa bramei | Caudata | LC | Ground-dwelling | 23.486497 | 35.12752 | 30.40706 | 39.13436 |
Bolitoglossa bramei | Caudata | LC | Ground-dwelling | 25.406800 | 35.35739 | 30.81927 | 39.57696 |
Bolitoglossa pesrubra | Caudata | LC | Ground-dwelling | 17.078254 | 34.35081 | 30.55468 | 38.72647 |
Bolitoglossa pesrubra | Caudata | LC | Ground-dwelling | 15.980470 | 34.22181 | 30.35526 | 38.51643 |
Bolitoglossa pesrubra | Caudata | LC | Ground-dwelling | 18.397641 | 34.50584 | 30.66481 | 38.85919 |
Bolitoglossa capitana | Caudata | CR | Ground-dwelling | 24.790993 | 35.19517 | 31.16065 | 39.73758 |
Bolitoglossa capitana | Caudata | CR | Ground-dwelling | 24.132263 | 35.11798 | 31.05604 | 39.57457 |
Bolitoglossa capitana | Caudata | CR | Ground-dwelling | 26.160418 | 35.35564 | 31.09233 | 39.69657 |
Bolitoglossa carri | Caudata | CR | Arboreal | 23.908967 | 34.97309 | 30.61625 | 39.17951 |
Bolitoglossa carri | Caudata | CR | Arboreal | 22.710840 | 34.82815 | 30.50993 | 39.00226 |
Bolitoglossa carri | Caudata | CR | Arboreal | 26.336413 | 35.26674 | 31.07279 | 39.76891 |
Bolitoglossa oresbia | Caudata | CR | Arboreal | 23.908967 | 34.93657 | 30.74117 | 39.20932 |
Bolitoglossa oresbia | Caudata | CR | Arboreal | 22.710840 | 34.79280 | 30.57624 | 38.99990 |
Bolitoglossa oresbia | Caudata | CR | Arboreal | 26.336413 | 35.22785 | 31.10228 | 39.75543 |
Bolitoglossa celaque | Caudata | CR | Ground-dwelling | 25.840884 | 35.35581 | 31.11349 | 40.35209 |
Bolitoglossa celaque | Caudata | CR | Ground-dwelling | 24.717977 | 35.22130 | 30.68418 | 39.84983 |
Bolitoglossa celaque | Caudata | CR | Ground-dwelling | 28.038361 | 35.61903 | 31.21823 | 40.44772 |
Bolitoglossa synoria | Caudata | CR | Arboreal | 27.096784 | 35.34092 | 30.90926 | 40.12996 |
Bolitoglossa synoria | Caudata | CR | Arboreal | 26.234483 | 35.23804 | 30.86136 | 40.02520 |
Bolitoglossa synoria | Caudata | CR | Arboreal | 28.925176 | 35.55905 | 31.00267 | 40.38658 |
Bolitoglossa heiroreias | Caudata | EN | Ground-dwelling | 27.096784 | 35.46863 | 30.83960 | 39.57693 |
Bolitoglossa heiroreias | Caudata | EN | Ground-dwelling | 26.234483 | 35.36452 | 30.71761 | 39.43406 |
Bolitoglossa heiroreias | Caudata | EN | Ground-dwelling | 28.925176 | 35.68938 | 31.01997 | 39.87986 |
Bolitoglossa cerroensis | Caudata | LC | Ground-dwelling | 17.078254 | 34.20237 | 30.28211 | 38.66169 |
Bolitoglossa cerroensis | Caudata | LC | Ground-dwelling | 15.980470 | 34.06838 | 30.07467 | 38.48652 |
Bolitoglossa cerroensis | Caudata | LC | Ground-dwelling | 18.397641 | 34.36340 | 30.39264 | 38.78378 |
Bolitoglossa epimela | Caudata | DD | Arboreal | 22.320708 | 34.72588 | 30.57092 | 38.86727 |
Bolitoglossa epimela | Caudata | DD | Arboreal | 21.414495 | 34.61666 | 30.49134 | 38.76069 |
Bolitoglossa epimela | Caudata | DD | Arboreal | 23.754809 | 34.89873 | 30.68181 | 39.13991 |
Bolitoglossa marmorea | Caudata | EN | Arboreal | 27.911209 | 35.43929 | 31.09105 | 39.68310 |
Bolitoglossa marmorea | Caudata | EN | Arboreal | 27.288770 | 35.36349 | 31.22643 | 39.81248 |
Bolitoglossa marmorea | Caudata | EN | Arboreal | 28.936857 | 35.56418 | 31.29764 | 39.96155 |
Bolitoglossa chica | Caudata | CR | Arboreal | 24.406710 | 35.01566 | 30.86756 | 39.63079 |
Bolitoglossa chica | Caudata | CR | Arboreal | 23.404282 | 34.89326 | 30.87123 | 39.57571 |
Bolitoglossa chica | Caudata | CR | Arboreal | 26.113428 | 35.22405 | 31.16156 | 40.03394 |
Bolitoglossa colonnea | Caudata | LC | Arboreal | 26.127683 | 35.24848 | 31.49992 | 40.22002 |
Bolitoglossa colonnea | Caudata | LC | Arboreal | 25.430495 | 35.16375 | 31.44197 | 40.12086 |
Bolitoglossa colonnea | Caudata | LC | Arboreal | 27.423500 | 35.40596 | 31.73102 | 40.51143 |
Bolitoglossa nigrescens | Caudata | DD | Ground-dwelling | 22.371743 | 34.98784 | 30.53653 | 39.07266 |
Bolitoglossa nigrescens | Caudata | DD | Ground-dwelling | 21.457006 | 34.87713 | 30.70071 | 39.22082 |
Bolitoglossa nigrescens | Caudata | DD | Ground-dwelling | 23.844119 | 35.16604 | 30.87267 | 39.50236 |
Bolitoglossa compacta | Caudata | EN | Arboreal | 27.832466 | 35.43971 | 30.74173 | 39.64104 |
Bolitoglossa compacta | Caudata | EN | Arboreal | 27.239510 | 35.36921 | 30.66472 | 39.54541 |
Bolitoglossa compacta | Caudata | EN | Arboreal | 28.911379 | 35.56798 | 30.82485 | 39.82585 |
Bolitoglossa robusta | Caudata | VU | Ground-dwelling | 25.977403 | 35.47364 | 31.19764 | 39.89501 |
Bolitoglossa robusta | Caudata | VU | Ground-dwelling | 25.272793 | 35.38776 | 31.06968 | 39.78689 |
Bolitoglossa robusta | Caudata | VU | Ground-dwelling | 27.360886 | 35.64227 | 31.42480 | 40.19942 |
Bolitoglossa schizodactyla | Caudata | LC | Arboreal | 26.330875 | 35.27701 | 30.78766 | 39.31063 |
Bolitoglossa schizodactyla | Caudata | LC | Arboreal | 25.675851 | 35.19757 | 30.75014 | 39.24672 |
Bolitoglossa schizodactyla | Caudata | LC | Arboreal | 27.510668 | 35.42009 | 30.93624 | 39.53896 |
Bolitoglossa conanti | Caudata | VU | Arboreal | 26.148464 | 35.22243 | 31.28753 | 39.26524 |
Bolitoglossa conanti | Caudata | VU | Arboreal | 25.307816 | 35.11921 | 31.25193 | 39.16097 |
Bolitoglossa conanti | Caudata | VU | Arboreal | 27.964329 | 35.44539 | 31.63386 | 39.73685 |
Bolitoglossa diaphora | Caudata | EN | Arboreal | 25.174190 | 35.11562 | 31.18741 | 39.93222 |
Bolitoglossa diaphora | Caudata | EN | Arboreal | 24.673669 | 35.05551 | 31.09669 | 39.80464 |
Bolitoglossa diaphora | Caudata | EN | Arboreal | 26.575538 | 35.28389 | 31.27134 | 40.10363 |
Bolitoglossa dunni | Caudata | EN | Arboreal | 25.174190 | 35.11426 | 30.92986 | 39.59178 |
Bolitoglossa dunni | Caudata | EN | Arboreal | 24.673669 | 35.05414 | 30.89466 | 39.49260 |
Bolitoglossa dunni | Caudata | EN | Arboreal | 26.575538 | 35.28258 | 30.66091 | 39.40415 |
Bolitoglossa copia | Caudata | CR | Ground-dwelling | 27.670287 | 35.58532 | 31.22816 | 39.79837 |
Bolitoglossa copia | Caudata | CR | Ground-dwelling | 27.090947 | 35.51542 | 31.17880 | 39.71661 |
Bolitoglossa copia | Caudata | CR | Ground-dwelling | 28.836217 | 35.72598 | 31.35783 | 40.04885 |
Bolitoglossa cuchumatana | Caudata | EN | Ground-dwelling | 24.642523 | 35.22424 | 30.60117 | 39.17109 |
Bolitoglossa cuchumatana | Caudata | EN | Ground-dwelling | 23.462785 | 35.08178 | 30.63314 | 39.21691 |
Bolitoglossa cuchumatana | Caudata | EN | Ground-dwelling | 26.942640 | 35.50200 | 30.84670 | 39.53489 |
Bolitoglossa helmrichi | Caudata | VU | Arboreal | 26.005871 | 35.19982 | 30.81362 | 39.61764 |
Bolitoglossa helmrichi | Caudata | VU | Arboreal | 25.026780 | 35.08378 | 30.48407 | 39.21137 |
Bolitoglossa helmrichi | Caudata | VU | Arboreal | 28.021294 | 35.43868 | 30.80550 | 39.71478 |
Bolitoglossa cuna | Caudata | EN | Arboreal | 27.549063 | 35.45351 | 31.41074 | 40.34125 |
Bolitoglossa cuna | Caudata | EN | Arboreal | 26.904992 | 35.37451 | 31.38900 | 40.30576 |
Bolitoglossa cuna | Caudata | EN | Arboreal | 28.900670 | 35.61929 | 31.23444 | 40.23387 |
Bolitoglossa suchitanensis | Caudata | CR | Arboreal | 27.096784 | 35.28821 | 31.12412 | 39.35962 |
Bolitoglossa suchitanensis | Caudata | CR | Arboreal | 26.234483 | 35.18483 | 31.15057 | 39.36831 |
Bolitoglossa suchitanensis | Caudata | CR | Arboreal | 28.925176 | 35.50743 | 31.21625 | 39.51478 |
Bolitoglossa morio | Caudata | VU | Arboreal | 24.846943 | 35.04774 | 31.01080 | 39.57398 |
Bolitoglossa morio | Caudata | VU | Arboreal | 23.863817 | 34.93006 | 30.89933 | 39.39398 |
Bolitoglossa morio | Caudata | VU | Arboreal | 26.981897 | 35.30329 | 31.37273 | 40.05535 |
Bolitoglossa flavimembris | Caudata | EN | Arboreal | 25.222340 | 35.19911 | 30.93962 | 39.33669 |
Bolitoglossa flavimembris | Caudata | EN | Arboreal | 24.309797 | 35.08879 | 30.82855 | 39.21632 |
Bolitoglossa flavimembris | Caudata | EN | Arboreal | 27.326458 | 35.45347 | 31.14535 | 39.63180 |
Bolitoglossa decora | Caudata | CR | Arboreal | 26.312208 | 35.20180 | 30.68583 | 39.37752 |
Bolitoglossa decora | Caudata | CR | Arboreal | 25.824153 | 35.14355 | 30.72594 | 39.41637 |
Bolitoglossa decora | Caudata | CR | Arboreal | 27.366036 | 35.32758 | 30.76828 | 39.55372 |
Bolitoglossa digitigrada | Caudata | DD | Ground-dwelling | 15.448306 | 34.10244 | 29.81702 | 38.42198 |
Bolitoglossa digitigrada | Caudata | DD | Ground-dwelling | 14.520308 | 33.99129 | 29.63551 | 38.29733 |
Bolitoglossa digitigrada | Caudata | DD | Ground-dwelling | 16.818757 | 34.26657 | 30.06941 | 38.69383 |
Bolitoglossa diminuta | Caudata | LC | Arboreal | 17.078254 | 34.22742 | 29.96037 | 38.26091 |
Bolitoglossa diminuta | Caudata | LC | Arboreal | 15.980470 | 34.09258 | 29.84105 | 38.11369 |
Bolitoglossa diminuta | Caudata | LC | Arboreal | 18.397641 | 34.38948 | 30.11417 | 38.43173 |
Bolitoglossa engelhardti | Caudata | EN | Arboreal | 24.633966 | 34.96880 | 30.65901 | 39.43141 |
Bolitoglossa engelhardti | Caudata | EN | Arboreal | 23.618004 | 34.84840 | 30.53232 | 39.25932 |
Bolitoglossa engelhardti | Caudata | EN | Arboreal | 26.880464 | 35.23501 | 30.89848 | 39.60737 |
Bolitoglossa equatoriana | Caudata | LC | Arboreal | 25.365179 | 35.05685 | 30.61224 | 39.82813 |
Bolitoglossa equatoriana | Caudata | LC | Arboreal | 24.571701 | 34.96142 | 30.54913 | 39.69941 |
Bolitoglossa equatoriana | Caudata | LC | Arboreal | 26.871302 | 35.23797 | 30.42281 | 39.79666 |
Bolitoglossa paraensis | Caudata | DD | Arboreal | 27.676071 | 35.37636 | 30.93952 | 39.57167 |
Bolitoglossa paraensis | Caudata | DD | Arboreal | 27.084479 | 35.30577 | 30.86549 | 39.49188 |
Bolitoglossa paraensis | Caudata | DD | Arboreal | 28.983180 | 35.53233 | 31.09880 | 39.79730 |
Bolitoglossa flaviventris | Caudata | EN | Arboreal | 25.222340 | 35.18237 | 30.71776 | 39.81854 |
Bolitoglossa flaviventris | Caudata | EN | Arboreal | 24.309797 | 35.07349 | 30.64675 | 39.68103 |
Bolitoglossa flaviventris | Caudata | EN | Arboreal | 27.326458 | 35.43341 | 30.76871 | 40.02539 |
Bolitoglossa franklini | Caudata | VU | Arboreal | 25.222340 | 35.17053 | 30.47776 | 39.30023 |
Bolitoglossa franklini | Caudata | VU | Arboreal | 24.309797 | 35.05763 | 30.35030 | 39.13141 |
Bolitoglossa franklini | Caudata | VU | Arboreal | 27.326458 | 35.43085 | 30.56248 | 39.54217 |
Bolitoglossa lincolni | Caudata | NT | Arboreal | 25.541296 | 35.18215 | 30.56244 | 39.31233 |
Bolitoglossa lincolni | Caudata | NT | Arboreal | 24.487814 | 35.05363 | 30.63908 | 39.31988 |
Bolitoglossa lincolni | Caudata | NT | Arboreal | 27.633587 | 35.43741 | 30.92104 | 39.67590 |
Bolitoglossa gomezi | Caudata | EN | Arboreal | 22.494731 | 34.74684 | 30.33331 | 38.97324 |
Bolitoglossa gomezi | Caudata | EN | Arboreal | 21.634620 | 34.64387 | 30.57653 | 39.20420 |
Bolitoglossa gomezi | Caudata | EN | Arboreal | 23.667249 | 34.88721 | 30.52361 | 39.11398 |
Bolitoglossa gracilis | Caudata | LC | Arboreal | 22.320708 | 34.68406 | 30.90667 | 39.57449 |
Bolitoglossa gracilis | Caudata | LC | Arboreal | 21.414495 | 34.57757 | 30.78196 | 39.43103 |
Bolitoglossa gracilis | Caudata | LC | Arboreal | 23.754809 | 34.85258 | 31.00803 | 39.63903 |
Bolitoglossa subpalmata | Caudata | LC | Arboreal | 24.025703 | 34.87655 | 30.54039 | 38.90847 |
Bolitoglossa subpalmata | Caudata | LC | Arboreal | 23.191250 | 34.77727 | 30.46502 | 38.77660 |
Bolitoglossa subpalmata | Caudata | LC | Arboreal | 25.507747 | 35.05288 | 30.88522 | 39.28440 |
Bolitoglossa tica | Caudata | DD | Arboreal | 22.371743 | 34.63398 | 30.21204 | 38.86329 |
Bolitoglossa tica | Caudata | DD | Arboreal | 21.457006 | 34.52685 | 30.10716 | 38.73845 |
Bolitoglossa tica | Caudata | DD | Arboreal | 23.844119 | 34.80640 | 30.26890 | 38.93953 |
Bolitoglossa guaramacalensis | Caudata | EN | Ground-dwelling | 26.628438 | 35.50648 | 31.24099 | 39.66156 |
Bolitoglossa guaramacalensis | Caudata | EN | Ground-dwelling | 25.765485 | 35.40362 | 31.13605 | 39.51317 |
Bolitoglossa guaramacalensis | Caudata | EN | Ground-dwelling | 28.169923 | 35.69023 | 31.28863 | 39.74083 |
Bolitoglossa hartwegi | Caudata | VU | Ground-dwelling | 27.278733 | 35.53184 | 31.43895 | 40.08831 |
Bolitoglossa hartwegi | Caudata | VU | Ground-dwelling | 26.237393 | 35.40692 | 31.34855 | 39.91876 |
Bolitoglossa hartwegi | Caudata | VU | Ground-dwelling | 29.095216 | 35.74974 | 31.59444 | 40.37622 |
Bolitoglossa hermosa | Caudata | LC | Arboreal | 24.137970 | 34.98858 | 31.00794 | 39.30924 |
Bolitoglossa hermosa | Caudata | LC | Arboreal | 23.061969 | 34.86214 | 30.88406 | 39.15699 |
Bolitoglossa hermosa | Caudata | LC | Arboreal | 25.815825 | 35.18573 | 30.96312 | 39.28331 |
Bolitoglossa riletti | Caudata | EN | Arboreal | 25.238949 | 35.16256 | 30.98324 | 39.38863 |
Bolitoglossa riletti | Caudata | EN | Arboreal | 24.040375 | 35.01849 | 30.84185 | 39.21493 |
Bolitoglossa riletti | Caudata | EN | Arboreal | 27.197672 | 35.39800 | 31.30687 | 39.81754 |
Bolitoglossa zapoteca | Caudata | EN | Ground-dwelling | 27.361306 | 35.49903 | 30.80433 | 39.43897 |
Bolitoglossa zapoteca | Caudata | EN | Ground-dwelling | 26.340347 | 35.37887 | 30.74089 | 39.35139 |
Bolitoglossa zapoteca | Caudata | EN | Ground-dwelling | 29.216114 | 35.71732 | 31.06845 | 39.72600 |
Bolitoglossa hiemalis | Caudata | VU | Arboreal | 24.017258 | 35.03420 | 30.84070 | 39.17382 |
Bolitoglossa hiemalis | Caudata | VU | Arboreal | 23.300537 | 34.94698 | 30.75629 | 39.07909 |
Bolitoglossa hiemalis | Caudata | VU | Arboreal | 25.278806 | 35.18773 | 30.96590 | 39.35996 |
Bolitoglossa hypacra | Caudata | EN | Ground-dwelling | 25.973775 | 35.32825 | 30.74666 | 39.53677 |
Bolitoglossa hypacra | Caudata | EN | Ground-dwelling | 25.275238 | 35.24469 | 30.68593 | 39.44303 |
Bolitoglossa hypacra | Caudata | EN | Ground-dwelling | 27.319325 | 35.48920 | 30.90089 | 39.71734 |
Bolitoglossa indio | Caudata | EN | Ground-dwelling | 27.713529 | 35.68234 | 31.45496 | 40.16908 |
Bolitoglossa indio | Caudata | EN | Ground-dwelling | 26.973037 | 35.59130 | 31.64746 | 40.28967 |
Bolitoglossa indio | Caudata | EN | Ground-dwelling | 29.311442 | 35.87879 | 31.78227 | 40.64605 |
Bolitoglossa insularis | Caudata | CR | Arboreal | 27.162478 | 35.30403 | 30.94163 | 39.43041 |
Bolitoglossa insularis | Caudata | CR | Arboreal | 26.299723 | 35.20207 | 30.92144 | 39.34298 |
Bolitoglossa insularis | Caudata | CR | Arboreal | 29.073735 | 35.52992 | 31.08289 | 39.64188 |
Bolitoglossa jacksoni | Caudata | CR | Ground-dwelling | 22.235597 | 34.83321 | 30.58481 | 39.00574 |
Bolitoglossa jacksoni | Caudata | CR | Ground-dwelling | 20.945471 | 34.67689 | 30.41810 | 38.79011 |
Bolitoglossa jacksoni | Caudata | CR | Ground-dwelling | 24.805021 | 35.14455 | 30.96448 | 39.49051 |
Bolitoglossa nicefori | Caudata | LC | Arboreal | 23.392915 | 34.81900 | 30.46568 | 38.99029 |
Bolitoglossa nicefori | Caudata | LC | Arboreal | 22.591262 | 34.72276 | 30.38629 | 38.87841 |
Bolitoglossa nicefori | Caudata | LC | Arboreal | 24.955324 | 35.00656 | 30.56769 | 39.13009 |
Bolitoglossa lignicolor | Caudata | LC | Arboreal | 25.438060 | 35.13590 | 30.63068 | 39.21194 |
Bolitoglossa lignicolor | Caudata | LC | Arboreal | 24.779460 | 35.05599 | 30.57690 | 39.12432 |
Bolitoglossa lignicolor | Caudata | LC | Arboreal | 26.660145 | 35.28418 | 30.71227 | 39.31218 |
Bolitoglossa longissima | Caudata | CR | Arboreal | 26.355801 | 35.28898 | 31.22455 | 39.70665 |
Bolitoglossa longissima | Caudata | CR | Arboreal | 25.562400 | 35.19192 | 30.93511 | 39.43654 |
Bolitoglossa longissima | Caudata | CR | Arboreal | 27.958590 | 35.48504 | 31.42238 | 39.89423 |
Bolitoglossa porrasorum | Caudata | EN | Arboreal | 26.157984 | 35.19758 | 30.46435 | 39.35828 |
Bolitoglossa porrasorum | Caudata | EN | Arboreal | 25.537721 | 35.12410 | 30.53870 | 39.39840 |
Bolitoglossa porrasorum | Caudata | EN | Arboreal | 27.383776 | 35.34280 | 30.57640 | 39.51686 |
Bolitoglossa lozanoi | Caudata | LC | Arboreal | 24.038090 | 34.99894 | 30.77165 | 39.08894 |
Bolitoglossa lozanoi | Caudata | LC | Arboreal | 23.230685 | 34.90206 | 30.68013 | 38.97552 |
Bolitoglossa lozanoi | Caudata | LC | Arboreal | 25.626365 | 35.18951 | 30.94551 | 39.31205 |
Bolitoglossa macrinii | Caudata | EN | Ground-dwelling | 26.842515 | 35.47729 | 30.75062 | 39.64033 |
Bolitoglossa macrinii | Caudata | EN | Ground-dwelling | 25.741835 | 35.34390 | 30.57534 | 39.40785 |
Bolitoglossa macrinii | Caudata | EN | Ground-dwelling | 28.551868 | 35.68446 | 30.88447 | 39.80482 |
Bolitoglossa oaxacensis | Caudata | EN | Ground-dwelling | 26.023477 | 35.32478 | 30.88212 | 39.34976 |
Bolitoglossa oaxacensis | Caudata | EN | Ground-dwelling | 24.851257 | 35.18407 | 30.78955 | 39.21537 |
Bolitoglossa oaxacensis | Caudata | EN | Ground-dwelling | 27.875192 | 35.54705 | 31.01554 | 39.61435 |
Bolitoglossa magnifica | Caudata | EN | Ground-dwelling | 27.911209 | 35.64890 | 31.17737 | 40.04380 |
Bolitoglossa magnifica | Caudata | EN | Ground-dwelling | 27.288770 | 35.57389 | 31.12025 | 39.91482 |
Bolitoglossa magnifica | Caudata | EN | Ground-dwelling | 28.936857 | 35.77251 | 31.03784 | 39.93042 |
Bolitoglossa meliana | Caudata | EN | Ground-dwelling | 24.519544 | 35.23354 | 30.38593 | 39.47395 |
Bolitoglossa meliana | Caudata | EN | Ground-dwelling | 23.559542 | 35.11696 | 30.48449 | 39.56384 |
Bolitoglossa meliana | Caudata | EN | Ground-dwelling | 26.706480 | 35.49911 | 30.72609 | 39.87842 |
Bolitoglossa mexicana | Caudata | LC | Arboreal | 26.584167 | 35.30733 | 30.53466 | 39.38677 |
Bolitoglossa mexicana | Caudata | LC | Arboreal | 25.706929 | 35.20089 | 30.40229 | 39.21883 |
Bolitoglossa mexicana | Caudata | LC | Arboreal | 28.333355 | 35.51958 | 31.02070 | 39.91040 |
Bolitoglossa odonnelli | Caudata | NT | Arboreal | 25.832357 | 35.19421 | 31.23598 | 39.95928 |
Bolitoglossa odonnelli | Caudata | NT | Arboreal | 24.998926 | 35.09487 | 31.09523 | 39.78909 |
Bolitoglossa odonnelli | Caudata | NT | Arboreal | 27.644046 | 35.41015 | 31.19533 | 39.91028 |
Bolitoglossa minutula | Caudata | EN | Arboreal | 24.247729 | 35.01371 | 30.50970 | 39.25992 |
Bolitoglossa minutula | Caudata | EN | Arboreal | 23.486497 | 34.92262 | 30.78829 | 39.51149 |
Bolitoglossa minutula | Caudata | EN | Arboreal | 25.406800 | 35.15240 | 31.05208 | 39.85073 |
Bolitoglossa sooyorum | Caudata | EN | Arboreal | 17.078254 | 34.13260 | 29.86778 | 38.50935 |
Bolitoglossa sooyorum | Caudata | EN | Arboreal | 15.980470 | 33.99916 | 29.72471 | 38.37854 |
Bolitoglossa sooyorum | Caudata | EN | Arboreal | 18.397641 | 34.29299 | 30.00018 | 38.66036 |
Bolitoglossa mombachoensis | Caudata | VU | Arboreal | 27.162478 | 35.37057 | 30.96166 | 39.54794 |
Bolitoglossa mombachoensis | Caudata | VU | Arboreal | 26.299723 | 35.26812 | 30.91518 | 39.45349 |
Bolitoglossa mombachoensis | Caudata | VU | Arboreal | 29.073735 | 35.59751 | 31.27283 | 39.99782 |
Bolitoglossa striatula | Caudata | LC | Arboreal | 26.476833 | 35.28560 | 30.77859 | 39.48750 |
Bolitoglossa striatula | Caudata | LC | Arboreal | 25.652683 | 35.18542 | 30.76018 | 39.38711 |
Bolitoglossa striatula | Caudata | LC | Arboreal | 28.119961 | 35.48533 | 31.05886 | 39.91183 |
Bolitoglossa mulleri | Caudata | VU | Ground-dwelling | 25.273823 | 35.25818 | 30.68451 | 39.08185 |
Bolitoglossa mulleri | Caudata | VU | Ground-dwelling | 24.145710 | 35.12099 | 30.66099 | 39.08851 |
Bolitoglossa mulleri | Caudata | VU | Ground-dwelling | 27.517964 | 35.53108 | 30.89036 | 39.28229 |
Bolitoglossa yucatana | Caudata | LC | Ground-dwelling | 27.510293 | 35.61376 | 31.36443 | 39.76292 |
Bolitoglossa yucatana | Caudata | LC | Ground-dwelling | 26.836915 | 35.53164 | 31.29243 | 39.66366 |
Bolitoglossa yucatana | Caudata | LC | Ground-dwelling | 29.031504 | 35.79927 | 31.62647 | 40.05597 |
Bolitoglossa orestes | Caudata | EN | Ground-dwelling | 26.263875 | 35.41348 | 31.08314 | 39.38362 |
Bolitoglossa orestes | Caudata | EN | Ground-dwelling | 25.397043 | 35.30990 | 30.91061 | 39.16553 |
Bolitoglossa orestes | Caudata | EN | Ground-dwelling | 27.823709 | 35.59987 | 31.25672 | 39.60354 |
Bolitoglossa rufescens | Caudata | LC | Arboreal | 26.017936 | 35.19433 | 31.05070 | 39.58492 |
Bolitoglossa rufescens | Caudata | LC | Arboreal | 24.972865 | 35.06692 | 30.91499 | 39.37757 |
Bolitoglossa rufescens | Caudata | LC | Arboreal | 28.108668 | 35.44922 | 30.83367 | 39.42684 |
Bolitoglossa obscura | Caudata | DD | Ground-dwelling | 17.078254 | 34.27630 | 29.96090 | 38.18613 |
Bolitoglossa obscura | Caudata | DD | Ground-dwelling | 15.980470 | 34.14536 | 29.90277 | 38.14652 |
Bolitoglossa obscura | Caudata | DD | Ground-dwelling | 18.397641 | 34.43368 | 30.14435 | 38.36616 |
Bolitoglossa occidentalis | Caudata | LC | Arboreal | 26.573443 | 35.29689 | 30.78648 | 39.49233 |
Bolitoglossa occidentalis | Caudata | LC | Arboreal | 25.605584 | 35.18155 | 30.76943 | 39.37137 |
Bolitoglossa occidentalis | Caudata | LC | Arboreal | 28.541205 | 35.53139 | 31.20426 | 39.96011 |
Bolitoglossa pandi | Caudata | EN | Ground-dwelling | 25.022654 | 35.25046 | 31.15821 | 39.39936 |
Bolitoglossa pandi | Caudata | EN | Ground-dwelling | 24.422681 | 35.17752 | 31.04436 | 39.23660 |
Bolitoglossa pandi | Caudata | EN | Ground-dwelling | 26.346708 | 35.41144 | 31.23284 | 39.59674 |
Bolitoglossa phalarosoma | Caudata | NT | Ground-dwelling | 23.364733 | 35.03215 | 30.89031 | 39.16410 |
Bolitoglossa phalarosoma | Caudata | NT | Ground-dwelling | 22.528890 | 34.93009 | 30.79543 | 39.07119 |
Bolitoglossa phalarosoma | Caudata | NT | Ground-dwelling | 24.874656 | 35.21650 | 30.99830 | 39.35627 |
Bolitoglossa platydactyla | Caudata | LC | Arboreal | 25.090175 | 35.16029 | 30.70698 | 39.42875 |
Bolitoglossa platydactyla | Caudata | LC | Arboreal | 24.125277 | 35.04466 | 30.66159 | 39.32817 |
Bolitoglossa platydactyla | Caudata | LC | Arboreal | 27.133150 | 35.40511 | 31.07349 | 39.81849 |
Bolitoglossa ramosi | Caudata | NT | Arboreal | 23.911067 | 34.96740 | 30.88382 | 39.54989 |
Bolitoglossa ramosi | Caudata | NT | Arboreal | 23.105038 | 34.87080 | 30.80625 | 39.42866 |
Bolitoglossa ramosi | Caudata | NT | Arboreal | 25.393507 | 35.14507 | 30.98691 | 39.78898 |
Bolitoglossa rostrata | Caudata | NT | Arboreal | 25.797952 | 35.18348 | 30.59110 | 39.36042 |
Bolitoglossa rostrata | Caudata | NT | Arboreal | 24.749793 | 35.05728 | 30.41864 | 39.17313 |
Bolitoglossa rostrata | Caudata | NT | Arboreal | 27.845269 | 35.42998 | 30.95123 | 39.87711 |
Bolitoglossa salvinii | Caudata | VU | Arboreal | 26.475215 | 35.30468 | 30.83719 | 39.46520 |
Bolitoglossa salvinii | Caudata | VU | Arboreal | 25.674497 | 35.20788 | 30.72474 | 39.34276 |
Bolitoglossa salvinii | Caudata | VU | Arboreal | 28.370070 | 35.53375 | 31.06618 | 39.85865 |
Bolitoglossa savagei | Caudata | NT | Arboreal | 26.777894 | 35.26613 | 30.96957 | 39.84644 |
Bolitoglossa savagei | Caudata | NT | Arboreal | 25.908244 | 35.16202 | 30.99405 | 39.78914 |
Bolitoglossa savagei | Caudata | NT | Arboreal | 28.696471 | 35.49582 | 31.02133 | 40.04950 |
Bolitoglossa silverstonei | Caudata | DD | Arboreal | 25.728540 | 35.16457 | 30.64833 | 39.64899 |
Bolitoglossa silverstonei | Caudata | DD | Arboreal | 25.006141 | 35.07682 | 30.09760 | 39.10763 |
Bolitoglossa silverstonei | Caudata | DD | Arboreal | 27.084885 | 35.32934 | 30.91700 | 39.95342 |
Bolitoglossa sombra | Caudata | NT | Arboreal | 27.832466 | 35.49996 | 31.05187 | 39.79579 |
Bolitoglossa sombra | Caudata | NT | Arboreal | 27.239510 | 35.42880 | 31.61862 | 40.31692 |
Bolitoglossa sombra | Caudata | NT | Arboreal | 28.911379 | 35.62943 | 31.78340 | 40.59815 |
Bolitoglossa stuarti | Caudata | VU | Arboreal | 25.737105 | 35.10937 | 30.74658 | 39.56235 |
Bolitoglossa stuarti | Caudata | VU | Arboreal | 24.619651 | 34.97544 | 30.83956 | 39.65508 |
Bolitoglossa stuarti | Caudata | VU | Arboreal | 27.816738 | 35.35863 | 31.09861 | 39.91187 |
Bolitoglossa tatamae | Caudata | EN | Arboreal | 24.913367 | 35.12589 | 30.83062 | 39.56315 |
Bolitoglossa tatamae | Caudata | EN | Arboreal | 24.197155 | 35.03803 | 30.69720 | 39.39427 |
Bolitoglossa tatamae | Caudata | EN | Arboreal | 26.314412 | 35.29777 | 30.96234 | 39.91973 |
Bolitoglossa taylori | Caudata | EN | Arboreal | 26.997239 | 35.31378 | 31.21176 | 40.24168 |
Bolitoglossa taylori | Caudata | EN | Arboreal | 26.294779 | 35.22926 | 31.12623 | 40.13309 |
Bolitoglossa taylori | Caudata | EN | Arboreal | 28.463507 | 35.49019 | 30.95139 | 40.07419 |
Bolitoglossa vallecula | Caudata | LC | Arboreal | 22.986816 | 34.93531 | 30.26888 | 39.09249 |
Bolitoglossa vallecula | Caudata | LC | Arboreal | 22.092048 | 34.82751 | 30.24301 | 39.01530 |
Bolitoglossa vallecula | Caudata | LC | Arboreal | 24.542988 | 35.12279 | 30.39545 | 39.31201 |
Bolitoglossa veracrucis | Caudata | EN | Arboreal | 27.352265 | 35.33793 | 30.56874 | 39.12892 |
Bolitoglossa veracrucis | Caudata | EN | Arboreal | 26.475358 | 35.23170 | 30.45205 | 39.00318 |
Bolitoglossa veracrucis | Caudata | EN | Arboreal | 29.147645 | 35.55542 | 30.88736 | 39.66617 |
Bolitoglossa walkeri | Caudata | NT | Arboreal | 23.478062 | 34.89561 | 30.85437 | 39.42294 |
Bolitoglossa walkeri | Caudata | NT | Arboreal | 22.554985 | 34.78310 | 30.68427 | 39.22247 |
Bolitoglossa walkeri | Caudata | NT | Arboreal | 25.033465 | 35.08518 | 30.87217 | 39.48876 |
Ixalotriton niger | Caudata | EN | Ground-dwelling | 27.384785 | 35.54318 | 30.86945 | 40.04090 |
Ixalotriton niger | Caudata | EN | Ground-dwelling | 26.395290 | 35.42162 | 31.05059 | 40.13487 |
Ixalotriton niger | Caudata | EN | Ground-dwelling | 29.371363 | 35.78724 | 31.30594 | 40.57942 |
Ixalotriton parvus | Caudata | CR | Arboreal | 27.781178 | 35.37719 | 30.70105 | 39.90558 |
Ixalotriton parvus | Caudata | CR | Arboreal | 26.782294 | 35.25976 | 30.49021 | 39.68866 |
Ixalotriton parvus | Caudata | CR | Arboreal | 29.726741 | 35.60590 | 30.78599 | 40.07889 |
Parvimolge townsendi | Caudata | VU | Ground-dwelling | 24.717194 | 35.17182 | 30.40310 | 39.28268 |
Parvimolge townsendi | Caudata | VU | Ground-dwelling | 23.702399 | 35.05121 | 30.50925 | 39.35846 |
Parvimolge townsendi | Caudata | VU | Ground-dwelling | 26.977841 | 35.44050 | 30.72771 | 39.69925 |
Pseudoeurycea ahuitzotl | Caudata | CR | Ground-dwelling | 24.137970 | 35.25775 | 30.59386 | 39.46091 |
Pseudoeurycea ahuitzotl | Caudata | CR | Ground-dwelling | 23.061969 | 35.12727 | 30.47786 | 39.28474 |
Pseudoeurycea ahuitzotl | Caudata | CR | Ground-dwelling | 25.815825 | 35.46122 | 31.10808 | 40.10693 |
Pseudoeurycea altamontana | Caudata | EN | Ground-dwelling | 20.553017 | 34.65244 | 30.31493 | 39.18365 |
Pseudoeurycea altamontana | Caudata | EN | Ground-dwelling | 19.305069 | 34.50530 | 30.14820 | 38.96279 |
Pseudoeurycea altamontana | Caudata | EN | Ground-dwelling | 23.352564 | 34.98253 | 30.37159 | 39.41615 |
Pseudoeurycea robertsi | Caudata | CR | Ground-dwelling | 19.615331 | 34.63337 | 30.52731 | 39.19204 |
Pseudoeurycea robertsi | Caudata | CR | Ground-dwelling | 18.329823 | 34.47796 | 30.33527 | 38.99367 |
Pseudoeurycea robertsi | Caudata | CR | Ground-dwelling | 22.683425 | 35.00428 | 30.85306 | 39.47471 |
Pseudoeurycea longicauda | Caudata | EN | Ground-dwelling | 23.486257 | 35.07007 | 30.58291 | 39.39425 |
Pseudoeurycea longicauda | Caudata | EN | Ground-dwelling | 22.554332 | 34.95845 | 30.43786 | 39.21993 |
Pseudoeurycea longicauda | Caudata | EN | Ground-dwelling | 25.561227 | 35.31860 | 30.72132 | 39.53769 |
Pseudoeurycea tenchalli | Caudata | CR | Ground-dwelling | 25.149511 | 35.25967 | 30.81880 | 39.42530 |
Pseudoeurycea tenchalli | Caudata | CR | Ground-dwelling | 24.010788 | 35.12420 | 30.77142 | 39.39358 |
Pseudoeurycea tenchalli | Caudata | CR | Ground-dwelling | 27.212280 | 35.50507 | 30.84841 | 39.63001 |
Pseudoeurycea cochranae | Caudata | VU | Ground-dwelling | 24.991356 | 35.28454 | 30.75466 | 39.35541 |
Pseudoeurycea cochranae | Caudata | VU | Ground-dwelling | 23.789311 | 35.13926 | 30.68776 | 39.20439 |
Pseudoeurycea cochranae | Caudata | VU | Ground-dwelling | 27.204941 | 35.55206 | 31.37432 | 40.16663 |
Pseudoeurycea gadovii | Caudata | VU | Ground-dwelling | 22.413670 | 34.89100 | 30.69428 | 39.55121 |
Pseudoeurycea gadovii | Caudata | VU | Ground-dwelling | 21.104264 | 34.73587 | 30.56290 | 39.38931 |
Pseudoeurycea gadovii | Caudata | VU | Ground-dwelling | 24.985766 | 35.19573 | 31.14395 | 40.04636 |
Pseudoeurycea melanomolga | Caudata | EN | Ground-dwelling | 21.030433 | 34.74899 | 30.01318 | 38.82508 |
Pseudoeurycea melanomolga | Caudata | EN | Ground-dwelling | 19.480693 | 34.56163 | 30.28738 | 39.15724 |
Pseudoeurycea melanomolga | Caudata | EN | Ground-dwelling | 24.144250 | 35.12544 | 30.29650 | 39.22563 |
Pseudoeurycea amuzga | Caudata | EN | Ground-dwelling | 25.300025 | 35.23242 | 30.72480 | 39.55947 |
Pseudoeurycea amuzga | Caudata | EN | Ground-dwelling | 24.408169 | 35.12381 | 30.93003 | 39.78421 |
Pseudoeurycea amuzga | Caudata | EN | Ground-dwelling | 27.074161 | 35.44848 | 30.94573 | 39.86164 |
Pseudoeurycea aquatica | Caudata | CR | Aquatic | 22.187059 | 35.03636 | 31.08905 | 39.59817 |
Pseudoeurycea aquatica | Caudata | CR | Aquatic | 20.787577 | 34.86895 | 30.84180 | 39.27383 |
Pseudoeurycea aquatica | Caudata | CR | Aquatic | 25.070986 | 35.38136 | 31.24002 | 39.83497 |
Pseudoeurycea aurantia | Caudata | CR | Ground-dwelling | 22.187059 | 34.98883 | 30.37413 | 39.01849 |
Pseudoeurycea aurantia | Caudata | CR | Ground-dwelling | 20.787577 | 34.82269 | 30.18557 | 38.75336 |
Pseudoeurycea aurantia | Caudata | CR | Ground-dwelling | 25.070986 | 35.33120 | 31.14050 | 39.86077 |
Pseudoeurycea juarezi | Caudata | EN | Ground-dwelling | 24.589991 | 35.26643 | 30.93494 | 39.85432 |
Pseudoeurycea juarezi | Caudata | EN | Ground-dwelling | 23.425321 | 35.12773 | 30.83240 | 39.68232 |
Pseudoeurycea juarezi | Caudata | EN | Ground-dwelling | 27.093143 | 35.56452 | 31.13919 | 40.15964 |
Pseudoeurycea saltator | Caudata | CR | Arboreal | 22.187059 | 34.83657 | 30.20544 | 38.72297 |
Pseudoeurycea saltator | Caudata | CR | Arboreal | 20.787577 | 34.66655 | 30.08073 | 38.54307 |
Pseudoeurycea saltator | Caudata | CR | Arboreal | 25.070986 | 35.18694 | 30.49886 | 39.24434 |
Pseudoeurycea ruficauda | Caudata | EN | Arboreal | 24.443279 | 34.98897 | 30.83099 | 39.10497 |
Pseudoeurycea ruficauda | Caudata | EN | Arboreal | 23.278941 | 34.85182 | 30.60067 | 38.88921 |
Pseudoeurycea ruficauda | Caudata | EN | Arboreal | 26.911302 | 35.27968 | 31.02535 | 39.44806 |
Pseudoeurycea goebeli | Caudata | CR | Ground-dwelling | 26.803492 | 35.49715 | 30.87457 | 39.77967 |
Pseudoeurycea goebeli | Caudata | CR | Ground-dwelling | 26.173613 | 35.42112 | 30.76497 | 39.67587 |
Pseudoeurycea goebeli | Caudata | CR | Ground-dwelling | 28.607938 | 35.71498 | 30.86611 | 39.83378 |
Pseudoeurycea rex | Caudata | VU | Ground-dwelling | 24.633966 | 35.19680 | 30.64885 | 39.65976 |
Pseudoeurycea rex | Caudata | VU | Ground-dwelling | 23.618004 | 35.07482 | 30.54144 | 39.47437 |
Pseudoeurycea rex | Caudata | VU | Ground-dwelling | 26.880464 | 35.46652 | 30.80295 | 39.95842 |
Pseudoeurycea conanti | Caudata | EN | Ground-dwelling | 24.514372 | 35.10069 | 30.67014 | 39.27929 |
Pseudoeurycea conanti | Caudata | EN | Ground-dwelling | 23.204283 | 34.94347 | 30.63494 | 39.13107 |
Pseudoeurycea conanti | Caudata | EN | Ground-dwelling | 26.765556 | 35.37085 | 30.89782 | 39.57504 |
Pseudoeurycea mystax | Caudata | EN | Ground-dwelling | 24.774182 | 35.13277 | 30.61550 | 39.17705 |
Pseudoeurycea mystax | Caudata | EN | Ground-dwelling | 23.563962 | 34.98902 | 30.50548 | 38.98796 |
Pseudoeurycea mystax | Caudata | EN | Ground-dwelling | 27.143550 | 35.41421 | 31.02129 | 39.68189 |
Pseudoeurycea obesa | Caudata | CR | Ground-dwelling | 26.699499 | 35.41104 | 30.82699 | 39.60662 |
Pseudoeurycea obesa | Caudata | CR | Ground-dwelling | 25.770306 | 35.29762 | 31.00757 | 39.71805 |
Pseudoeurycea obesa | Caudata | CR | Ground-dwelling | 28.751617 | 35.66153 | 30.92813 | 39.77166 |
Pseudoeurycea werleri | Caudata | EN | Ground-dwelling | 25.379722 | 35.31005 | 31.46567 | 39.93294 |
Pseudoeurycea werleri | Caudata | EN | Ground-dwelling | 24.254452 | 35.17430 | 31.00865 | 39.44184 |
Pseudoeurycea werleri | Caudata | EN | Ground-dwelling | 27.728353 | 35.59339 | 31.52641 | 40.03590 |
Pseudoeurycea firscheini | Caudata | EN | Ground-dwelling | 24.719872 | 35.11201 | 30.79013 | 39.54507 |
Pseudoeurycea firscheini | Caudata | EN | Ground-dwelling | 23.551785 | 34.97260 | 30.37604 | 39.12896 |
Pseudoeurycea firscheini | Caudata | EN | Ground-dwelling | 26.791345 | 35.35923 | 30.90839 | 39.69837 |
Pseudoeurycea leprosa | Caudata | LC | Ground-dwelling | 22.966849 | 34.96653 | 30.89106 | 39.83682 |
Pseudoeurycea leprosa | Caudata | LC | Ground-dwelling | 21.786564 | 34.82630 | 30.71161 | 39.60840 |
Pseudoeurycea leprosa | Caudata | LC | Ground-dwelling | 25.391282 | 35.25456 | 30.74970 | 39.78640 |
Pseudoeurycea nigromaculata | Caudata | EN | Arboreal | 25.625820 | 35.17494 | 30.23345 | 39.09463 |
Pseudoeurycea nigromaculata | Caudata | EN | Arboreal | 24.758384 | 35.07048 | 30.22338 | 38.98426 |
Pseudoeurycea nigromaculata | Caudata | EN | Arboreal | 27.499985 | 35.40062 | 30.36487 | 39.33782 |
Pseudoeurycea lynchi | Caudata | EN | Ground-dwelling | 24.055532 | 35.15398 | 30.56550 | 39.41000 |
Pseudoeurycea lynchi | Caudata | EN | Ground-dwelling | 23.063302 | 35.03238 | 30.45743 | 39.29298 |
Pseudoeurycea lynchi | Caudata | EN | Ground-dwelling | 26.448747 | 35.44728 | 30.84216 | 39.79659 |
Pseudoeurycea lineola | Caudata | EN | Ground-dwelling | 24.476973 | 35.21468 | 31.22094 | 39.74932 |
Pseudoeurycea lineola | Caudata | EN | Ground-dwelling | 23.438962 | 35.09093 | 31.10031 | 39.63225 |
Pseudoeurycea lineola | Caudata | EN | Ground-dwelling | 26.661051 | 35.47506 | 31.31181 | 39.94144 |
Pseudoeurycea mixcoatl | Caudata | CR | Ground-dwelling | 25.149511 | 35.25062 | 30.57227 | 39.72639 |
Pseudoeurycea mixcoatl | Caudata | CR | Ground-dwelling | 24.010788 | 35.11380 | 30.45492 | 39.54899 |
Pseudoeurycea mixcoatl | Caudata | CR | Ground-dwelling | 27.212280 | 35.49846 | 30.55978 | 39.86192 |
Pseudoeurycea mixteca | Caudata | VU | Ground-dwelling | 24.224858 | 35.15984 | 30.59981 | 39.63252 |
Pseudoeurycea mixteca | Caudata | VU | Ground-dwelling | 22.972593 | 35.01163 | 30.61413 | 39.56327 |
Pseudoeurycea mixteca | Caudata | VU | Ground-dwelling | 26.439691 | 35.42196 | 30.76967 | 39.90744 |
Pseudoeurycea orchileucos | Caudata | EN | Ground-dwelling | 22.187059 | 34.97597 | 30.83480 | 39.08133 |
Pseudoeurycea orchileucos | Caudata | EN | Ground-dwelling | 20.787577 | 34.80449 | 30.68949 | 38.90969 |
Pseudoeurycea orchileucos | Caudata | EN | Ground-dwelling | 25.070986 | 35.32935 | 30.98558 | 39.46140 |
Pseudoeurycea orchimelas | Caudata | EN | Ground-dwelling | 26.976054 | 35.46618 | 31.29224 | 39.62897 |
Pseudoeurycea orchimelas | Caudata | EN | Ground-dwelling | 25.987890 | 35.34792 | 31.21118 | 39.50528 |
Pseudoeurycea orchimelas | Caudata | EN | Ground-dwelling | 29.057037 | 35.71522 | 31.47850 | 40.05363 |
Pseudoeurycea papenfussi | Caudata | EN | Ground-dwelling | 22.187059 | 34.87952 | 30.51918 | 38.83367 |
Pseudoeurycea papenfussi | Caudata | EN | Ground-dwelling | 20.787577 | 34.70873 | 30.60218 | 38.83949 |
Pseudoeurycea papenfussi | Caudata | EN | Ground-dwelling | 25.070986 | 35.23149 | 30.83784 | 39.19086 |
Pseudoeurycea smithi | Caudata | CR | Ground-dwelling | 22.187059 | 34.83949 | 30.59216 | 39.07690 |
Pseudoeurycea smithi | Caudata | CR | Ground-dwelling | 20.787577 | 34.67215 | 30.38878 | 38.80339 |
Pseudoeurycea smithi | Caudata | CR | Ground-dwelling | 25.070986 | 35.18433 | 30.91421 | 39.49563 |
Pseudoeurycea tlahcuiloh | Caudata | CR | Ground-dwelling | 24.137970 | 35.14986 | 30.72557 | 39.23862 |
Pseudoeurycea tlahcuiloh | Caudata | CR | Ground-dwelling | 23.061969 | 35.02065 | 30.66427 | 39.10573 |
Pseudoeurycea tlahcuiloh | Caudata | CR | Ground-dwelling | 25.815825 | 35.35133 | 31.12756 | 39.74576 |
Pseudoeurycea tlilicxitl | Caudata | EN | Ground-dwelling | 20.553017 | 34.72330 | 29.80561 | 38.65428 |
Pseudoeurycea tlilicxitl | Caudata | EN | Ground-dwelling | 19.305069 | 34.56990 | 29.70782 | 38.51696 |
Pseudoeurycea tlilicxitl | Caudata | EN | Ground-dwelling | 23.352564 | 35.06742 | 30.18787 | 39.09370 |
Bradytriton silus | Caudata | EN | Ground-dwelling | 25.133942 | 35.21329 | 30.49709 | 39.39136 |
Bradytriton silus | Caudata | EN | Ground-dwelling | 23.951557 | 35.06842 | 30.50377 | 39.37957 |
Bradytriton silus | Caudata | EN | Ground-dwelling | 27.288650 | 35.47729 | 30.66454 | 39.68695 |
Oedipina alfaroi | Caudata | VU | Ground-dwelling | 24.131713 | 35.02411 | 30.88905 | 39.22035 |
Oedipina alfaroi | Caudata | VU | Ground-dwelling | 23.339747 | 34.92699 | 30.86997 | 39.14655 |
Oedipina alfaroi | Caudata | VU | Ground-dwelling | 25.465173 | 35.18763 | 31.09974 | 39.46698 |
Oedipina alleni | Caudata | LC | Ground-dwelling | 24.812458 | 35.11638 | 30.65251 | 38.95522 |
Oedipina alleni | Caudata | LC | Ground-dwelling | 24.080462 | 35.02944 | 30.78256 | 39.02653 |
Oedipina alleni | Caudata | LC | Ground-dwelling | 26.063102 | 35.26493 | 30.87298 | 39.24241 |
Oedipina savagei | Caudata | VU | Ground-dwelling | 25.400711 | 35.18010 | 30.95917 | 39.60720 |
Oedipina savagei | Caudata | VU | Ground-dwelling | 24.702420 | 35.09620 | 30.87973 | 39.51543 |
Oedipina savagei | Caudata | VU | Ground-dwelling | 26.627661 | 35.32752 | 31.06114 | 39.76933 |
Oedipina altura | Caudata | DD | Ground-dwelling | 17.078254 | 34.19768 | 29.93437 | 38.31924 |
Oedipina altura | Caudata | DD | Ground-dwelling | 15.980470 | 34.06743 | 29.85039 | 38.28725 |
Oedipina altura | Caudata | DD | Ground-dwelling | 18.397641 | 34.35422 | 30.12565 | 38.49205 |
Oedipina carablanca | Caudata | EN | Ground-dwelling | 27.563161 | 35.52715 | 31.39525 | 39.70687 |
Oedipina carablanca | Caudata | EN | Ground-dwelling | 26.848520 | 35.44030 | 31.31670 | 39.61008 |
Oedipina carablanca | Caudata | EN | Ground-dwelling | 29.111976 | 35.71536 | 31.54356 | 40.00489 |
Oedipina elongata | Caudata | LC | Ground-dwelling | 26.747678 | 35.32669 | 31.12628 | 39.79818 |
Oedipina elongata | Caudata | LC | Ground-dwelling | 25.913884 | 35.22669 | 30.91937 | 39.53451 |
Oedipina elongata | Caudata | LC | Ground-dwelling | 28.351710 | 35.51907 | 31.21410 | 40.01728 |
Oedipina collaris | Caudata | DD | Ground-dwelling | 24.954444 | 35.08892 | 30.54317 | 38.93402 |
Oedipina collaris | Caudata | DD | Ground-dwelling | 24.240736 | 35.00424 | 30.44976 | 38.81741 |
Oedipina collaris | Caudata | DD | Ground-dwelling | 26.102308 | 35.22510 | 30.49099 | 38.92414 |
Oedipina complex | Caudata | LC | Ground-dwelling | 25.648593 | 35.23746 | 31.09555 | 39.85717 |
Oedipina complex | Caudata | LC | Ground-dwelling | 24.908303 | 35.14743 | 30.46180 | 39.18669 |
Oedipina complex | Caudata | LC | Ground-dwelling | 27.038724 | 35.40653 | 31.15403 | 39.99686 |
Oedipina maritima | Caudata | CR | Ground-dwelling | 28.074263 | 35.56530 | 30.91791 | 39.91747 |
Oedipina maritima | Caudata | CR | Ground-dwelling | 27.498756 | 35.49655 | 30.79890 | 39.73878 |
Oedipina maritima | Caudata | CR | Ground-dwelling | 29.176158 | 35.69693 | 31.08507 | 40.13868 |
Oedipina parvipes | Caudata | LC | Ground-dwelling | 26.800096 | 35.37376 | 31.08396 | 40.23188 |
Oedipina parvipes | Caudata | LC | Ground-dwelling | 26.168207 | 35.29983 | 31.08185 | 40.23542 |
Oedipina parvipes | Caudata | LC | Ground-dwelling | 28.045564 | 35.51948 | 31.20505 | 40.37220 |
Oedipina cyclocauda | Caudata | NT | Ground-dwelling | 25.548408 | 35.25634 | 31.01673 | 39.29143 |
Oedipina cyclocauda | Caudata | NT | Ground-dwelling | 24.810554 | 35.16763 | 30.86075 | 39.12149 |
Oedipina cyclocauda | Caudata | NT | Ground-dwelling | 26.869200 | 35.41513 | 31.07392 | 39.40697 |
Oedipina pseudouniformis | Caudata | DD | Ground-dwelling | 22.320708 | 34.89581 | 30.75409 | 39.00275 |
Oedipina pseudouniformis | Caudata | DD | Ground-dwelling | 21.414495 | 34.78542 | 30.62830 | 38.81281 |
Oedipina pseudouniformis | Caudata | DD | Ground-dwelling | 23.754809 | 35.07050 | 30.90806 | 39.18876 |
Oedipina gephyra | Caudata | CR | Ground-dwelling | 26.003759 | 35.28816 | 31.04723 | 39.63134 |
Oedipina gephyra | Caudata | CR | Ground-dwelling | 25.251289 | 35.19870 | 30.97657 | 39.51535 |
Oedipina gephyra | Caudata | CR | Ground-dwelling | 27.401517 | 35.45432 | 31.09844 | 39.77004 |
Oedipina tomasi | Caudata | CR | Ground-dwelling | 25.174190 | 35.14749 | 30.75543 | 39.37824 |
Oedipina tomasi | Caudata | CR | Ground-dwelling | 24.673669 | 35.08737 | 30.76029 | 39.38712 |
Oedipina tomasi | Caudata | CR | Ground-dwelling | 26.575538 | 35.31581 | 31.01597 | 39.65095 |
Oedipina gracilis | Caudata | EN | Ground-dwelling | 24.957708 | 35.15847 | 30.69288 | 38.97085 |
Oedipina gracilis | Caudata | EN | Ground-dwelling | 24.191000 | 35.06629 | 30.63786 | 38.88792 |
Oedipina gracilis | Caudata | EN | Ground-dwelling | 26.352285 | 35.32613 | 30.88301 | 39.36875 |
Oedipina pacificensis | Caudata | LC | Fossorial | 24.812458 | 36.04030 | 31.76270 | 40.42771 |
Oedipina pacificensis | Caudata | LC | Fossorial | 24.080462 | 35.95059 | 31.69703 | 40.35751 |
Oedipina pacificensis | Caudata | LC | Fossorial | 26.063102 | 36.19357 | 31.98851 | 40.68339 |
Oedipina uniformis | Caudata | LC | Ground-dwelling | 26.054620 | 35.19454 | 31.11749 | 39.14785 |
Oedipina uniformis | Caudata | LC | Ground-dwelling | 25.378578 | 35.11488 | 31.04175 | 39.08452 |
Oedipina uniformis | Caudata | LC | Ground-dwelling | 27.394190 | 35.35238 | 31.21160 | 39.27057 |
Oedipina grandis | Caudata | EN | Fossorial | 27.911209 | 36.53240 | 32.02413 | 41.08911 |
Oedipina grandis | Caudata | EN | Fossorial | 27.288770 | 36.45684 | 32.00200 | 41.02573 |
Oedipina grandis | Caudata | EN | Fossorial | 28.936857 | 36.65690 | 32.09534 | 41.18815 |
Oedipina poelzi | Caudata | EN | Ground-dwelling | 24.935585 | 35.21318 | 30.82379 | 39.52368 |
Oedipina poelzi | Caudata | EN | Ground-dwelling | 24.126823 | 35.11595 | 30.98165 | 39.66791 |
Oedipina poelzi | Caudata | EN | Ground-dwelling | 26.453459 | 35.39565 | 30.93882 | 39.66728 |
Oedipina ignea | Caudata | EN | Ground-dwelling | 25.615545 | 35.27012 | 30.92005 | 39.58623 |
Oedipina ignea | Caudata | EN | Ground-dwelling | 24.554433 | 35.14063 | 30.90862 | 39.52601 |
Oedipina ignea | Caudata | EN | Ground-dwelling | 27.766650 | 35.53261 | 31.54408 | 40.30729 |
Oedipina paucidentata | Caudata | DD | Ground-dwelling | 17.078254 | 34.26286 | 29.81957 | 37.89246 |
Oedipina paucidentata | Caudata | DD | Ground-dwelling | 15.980470 | 34.13126 | 29.89976 | 38.03413 |
Oedipina paucidentata | Caudata | DD | Ground-dwelling | 18.397641 | 34.42103 | 30.16357 | 38.27298 |
Oedipina stenopodia | Caudata | EN | Ground-dwelling | 26.803492 | 35.41333 | 31.33847 | 39.77189 |
Oedipina stenopodia | Caudata | EN | Ground-dwelling | 26.173613 | 35.33534 | 31.27353 | 39.68699 |
Oedipina stenopodia | Caudata | EN | Ground-dwelling | 28.607938 | 35.63676 | 31.21463 | 39.67180 |
Oedipina taylori | Caudata | EN | Ground-dwelling | 27.403781 | 35.40730 | 31.44584 | 39.84225 |
Oedipina taylori | Caudata | EN | Ground-dwelling | 26.680869 | 35.32110 | 31.35850 | 39.76967 |
Oedipina taylori | Caudata | EN | Ground-dwelling | 29.231942 | 35.62529 | 31.66606 | 40.07151 |
Nototriton abscondens | Caudata | LC | Ground-dwelling | 24.935585 | 35.21677 | 30.91653 | 39.16317 |
Nototriton abscondens | Caudata | LC | Ground-dwelling | 24.126823 | 35.11953 | 30.79951 | 39.03155 |
Nototriton abscondens | Caudata | LC | Ground-dwelling | 26.453459 | 35.39928 | 30.95411 | 39.37607 |
Nototriton gamezi | Caudata | LC | Ground-dwelling | 27.435694 | 35.50320 | 31.14383 | 39.48458 |
Nototriton gamezi | Caudata | LC | Ground-dwelling | 26.744760 | 35.42052 | 31.09451 | 39.39504 |
Nototriton gamezi | Caudata | LC | Ground-dwelling | 29.013624 | 35.69201 | 31.25204 | 39.67412 |
Nototriton picadoi | Caudata | LC | Ground-dwelling | 24.102216 | 35.09437 | 31.16732 | 39.62626 |
Nototriton picadoi | Caudata | LC | Ground-dwelling | 23.254177 | 34.99195 | 30.80858 | 39.19978 |
Nototriton picadoi | Caudata | LC | Ground-dwelling | 25.600071 | 35.27528 | 31.38285 | 39.86616 |
Nototriton guanacaste | Caudata | LC | Ground-dwelling | 26.434550 | 35.34958 | 31.44165 | 39.81764 |
Nototriton guanacaste | Caudata | LC | Ground-dwelling | 25.923240 | 35.28934 | 31.30420 | 39.63927 |
Nototriton guanacaste | Caudata | LC | Ground-dwelling | 27.889612 | 35.52100 | 31.60876 | 40.01070 |
Nototriton saslaya | Caudata | CR | Ground-dwelling | 26.701304 | 35.40229 | 30.89597 | 39.51179 |
Nototriton saslaya | Caudata | CR | Ground-dwelling | 25.767451 | 35.29109 | 30.76647 | 39.35218 |
Nototriton saslaya | Caudata | CR | Ground-dwelling | 28.472922 | 35.61326 | 30.94255 | 39.65444 |
Nototriton barbouri | Caudata | EN | Ground-dwelling | 26.003759 | 35.41049 | 30.57404 | 39.18262 |
Nototriton barbouri | Caudata | EN | Ground-dwelling | 25.251289 | 35.31889 | 30.48947 | 39.05792 |
Nototriton barbouri | Caudata | EN | Ground-dwelling | 27.401517 | 35.58064 | 30.75732 | 39.50405 |
Nototriton brodiei | Caudata | EN | Ground-dwelling | 25.174190 | 35.25709 | 30.80968 | 39.34890 |
Nototriton brodiei | Caudata | EN | Ground-dwelling | 24.673669 | 35.19740 | 30.74649 | 39.28398 |
Nototriton brodiei | Caudata | EN | Ground-dwelling | 26.575538 | 35.42419 | 30.87427 | 39.43708 |
Nototriton stuarti | Caudata | CR | Ground-dwelling | 25.174190 | 35.32483 | 31.59102 | 39.94256 |
Nototriton stuarti | Caudata | CR | Ground-dwelling | 24.673669 | 35.26447 | 31.53616 | 39.87749 |
Nototriton stuarti | Caudata | CR | Ground-dwelling | 26.575538 | 35.49384 | 31.83944 | 40.34208 |
Nototriton limnospectator | Caudata | EN | Ground-dwelling | 24.874925 | 35.18750 | 30.95235 | 39.64100 |
Nototriton limnospectator | Caudata | EN | Ground-dwelling | 23.714409 | 35.04904 | 30.80020 | 39.47147 |
Nototriton limnospectator | Caudata | EN | Ground-dwelling | 27.187387 | 35.46339 | 31.08439 | 39.85907 |
Nototriton lignicola | Caudata | EN | Ground-dwelling | 25.408311 | 35.26468 | 30.99877 | 39.49669 |
Nototriton lignicola | Caudata | EN | Ground-dwelling | 24.595427 | 35.16722 | 30.99740 | 39.44017 |
Nototriton lignicola | Caudata | EN | Ground-dwelling | 27.034655 | 35.45967 | 30.99148 | 39.62265 |
Nototriton major | Caudata | EN | Ground-dwelling | 17.078254 | 34.26313 | 29.90175 | 38.31570 |
Nototriton major | Caudata | EN | Ground-dwelling | 15.980470 | 34.13046 | 29.97559 | 38.37209 |
Nototriton major | Caudata | EN | Ground-dwelling | 18.397641 | 34.42259 | 29.97594 | 38.46382 |
Nototriton richardi | Caudata | LC | Ground-dwelling | 27.499428 | 35.48252 | 31.50925 | 39.83374 |
Nototriton richardi | Caudata | LC | Ground-dwelling | 26.796640 | 35.39946 | 31.45134 | 39.76652 |
Nototriton richardi | Caudata | LC | Ground-dwelling | 29.062800 | 35.66727 | 31.25656 | 39.65275 |
Nototriton tapanti | Caudata | LC | Ground-dwelling | 22.320708 | 34.85496 | 31.19654 | 39.52787 |
Nototriton tapanti | Caudata | LC | Ground-dwelling | 21.414495 | 34.74662 | 31.07065 | 39.34644 |
Nototriton tapanti | Caudata | LC | Ground-dwelling | 23.754809 | 35.02641 | 31.26543 | 39.65787 |
Dendrotriton bromeliacius | Caudata | CR | Arboreal | 24.519544 | 34.98821 | 30.72702 | 39.45293 |
Dendrotriton bromeliacius | Caudata | CR | Arboreal | 23.559542 | 34.87252 | 30.46506 | 39.15991 |
Dendrotriton bromeliacius | Caudata | CR | Arboreal | 26.706480 | 35.25177 | 30.85248 | 39.71146 |
Dendrotriton megarhinus | Caudata | VU | Arboreal | 26.988391 | 35.31345 | 30.86001 | 39.43195 |
Dendrotriton megarhinus | Caudata | VU | Arboreal | 26.008286 | 35.19440 | 30.87397 | 39.40978 |
Dendrotriton megarhinus | Caudata | VU | Arboreal | 29.015985 | 35.55972 | 31.02020 | 39.78407 |
Dendrotriton xolocalcae | Caudata | VU | Arboreal | 24.862809 | 35.02580 | 30.68418 | 39.10196 |
Dendrotriton xolocalcae | Caudata | VU | Arboreal | 23.734928 | 34.88692 | 30.39449 | 38.79599 |
Dendrotriton xolocalcae | Caudata | VU | Arboreal | 27.228431 | 35.31708 | 30.97977 | 39.48723 |
Dendrotriton sanctibarbarus | Caudata | CR | Arboreal | 25.840884 | 35.17701 | 30.90036 | 39.54325 |
Dendrotriton sanctibarbarus | Caudata | CR | Arboreal | 24.717977 | 35.04157 | 30.84604 | 39.34009 |
Dendrotriton sanctibarbarus | Caudata | CR | Arboreal | 28.038361 | 35.44204 | 31.66823 | 40.36774 |
Dendrotriton chujorum | Caudata | CR | Arboreal | 22.235597 | 34.74006 | 30.82170 | 39.20634 |
Dendrotriton chujorum | Caudata | CR | Arboreal | 20.945471 | 34.58181 | 30.68202 | 38.96773 |
Dendrotriton chujorum | Caudata | CR | Arboreal | 24.805021 | 35.05522 | 31.03836 | 39.62176 |
Dendrotriton cuchumatanus | Caudata | CR | Arboreal | 22.235597 | 34.68750 | 30.46039 | 39.32745 |
Dendrotriton cuchumatanus | Caudata | CR | Arboreal | 20.945471 | 34.53046 | 30.21538 | 39.11171 |
Dendrotriton cuchumatanus | Caudata | CR | Arboreal | 24.805021 | 35.00026 | 30.77303 | 39.62566 |
Dendrotriton kekchiorum | Caudata | CR | Arboreal | 24.942963 | 35.04176 | 30.61595 | 39.23663 |
Dendrotriton kekchiorum | Caudata | CR | Arboreal | 23.795138 | 34.90349 | 30.41507 | 38.97447 |
Dendrotriton kekchiorum | Caudata | CR | Arboreal | 27.309028 | 35.32677 | 31.09267 | 39.77595 |
Dendrotriton rabbi | Caudata | CR | Arboreal | 22.235597 | 34.72239 | 30.85500 | 39.26511 |
Dendrotriton rabbi | Caudata | CR | Arboreal | 20.945471 | 34.56598 | 30.74043 | 39.18460 |
Dendrotriton rabbi | Caudata | CR | Arboreal | 24.805021 | 35.03390 | 31.08435 | 39.67521 |
Nyctanolis pernix | Caudata | VU | Ground-dwelling | 24.642523 | 35.11718 | 31.07225 | 38.98787 |
Nyctanolis pernix | Caudata | VU | Ground-dwelling | 23.462785 | 34.97327 | 31.03959 | 38.93836 |
Nyctanolis pernix | Caudata | VU | Ground-dwelling | 26.942640 | 35.39776 | 31.31133 | 39.39023 |
Chiropterotriton arboreus | Caudata | CR | Arboreal | 22.077838 | 34.20437 | 31.01687 | 37.46926 |
Chiropterotriton arboreus | Caudata | CR | Arboreal | 21.016877 | 34.07568 | 30.79862 | 37.16940 |
Chiropterotriton arboreus | Caudata | CR | Arboreal | 24.274752 | 34.47083 | 31.34086 | 37.81038 |
Chiropterotriton cracens | Caudata | VU | Arboreal | 23.698697 | 34.31879 | 31.85928 | 37.02972 |
Chiropterotriton cracens | Caudata | VU | Arboreal | 22.747751 | 34.20092 | 31.76443 | 36.84915 |
Chiropterotriton cracens | Caudata | VU | Arboreal | 25.180769 | 34.50249 | 31.80905 | 37.06620 |
Chiropterotriton terrestris | Caudata | CR | Ground-dwelling | 22.077838 | 34.46538 | 30.99449 | 37.49638 |
Chiropterotriton terrestris | Caudata | CR | Ground-dwelling | 21.016877 | 34.33439 | 30.85948 | 37.32183 |
Chiropterotriton terrestris | Caudata | CR | Ground-dwelling | 24.274752 | 34.73661 | 31.22037 | 37.83317 |
Chiropterotriton priscus | Caudata | NT | Ground-dwelling | 23.288691 | 34.72451 | 31.24491 | 38.07281 |
Chiropterotriton priscus | Caudata | NT | Ground-dwelling | 22.231798 | 34.59406 | 31.15509 | 37.92531 |
Chiropterotriton priscus | Caudata | NT | Ground-dwelling | 25.328582 | 34.97631 | 31.43337 | 38.35021 |
Chiropterotriton chiropterus | Caudata | CR | Arboreal | 23.244262 | 34.50282 | 30.62522 | 38.14049 |
Chiropterotriton chiropterus | Caudata | CR | Arboreal | 22.216878 | 34.37541 | 30.77501 | 38.29074 |
Chiropterotriton chiropterus | Caudata | CR | Arboreal | 25.550622 | 34.78884 | 30.64386 | 38.33335 |
Chiropterotriton chondrostega | Caudata | EN | Ground-dwelling | 22.550090 | 34.57342 | 31.05395 | 38.08330 |
Chiropterotriton chondrostega | Caudata | EN | Ground-dwelling | 21.502083 | 34.44641 | 30.95623 | 37.94136 |
Chiropterotriton chondrostega | Caudata | EN | Ground-dwelling | 24.904622 | 34.85879 | 31.35002 | 38.53009 |
Chiropterotriton magnipes | Caudata | EN | Ground-dwelling | 24.474273 | 34.76564 | 30.97572 | 38.22472 |
Chiropterotriton magnipes | Caudata | EN | Ground-dwelling | 23.571806 | 34.65677 | 30.86763 | 38.10652 |
Chiropterotriton magnipes | Caudata | EN | Ground-dwelling | 26.257997 | 34.98082 | 31.10828 | 38.44870 |
Chiropterotriton dimidiatus | Caudata | VU | Ground-dwelling | 22.077838 | 34.65508 | 30.90632 | 38.44427 |
Chiropterotriton dimidiatus | Caudata | VU | Ground-dwelling | 21.016877 | 34.52699 | 30.91520 | 38.42708 |
Chiropterotriton dimidiatus | Caudata | VU | Ground-dwelling | 24.274752 | 34.92030 | 31.03914 | 38.68415 |
Chiropterotriton orculus | Caudata | VU | Ground-dwelling | 22.199797 | 34.57509 | 31.10511 | 38.53873 |
Chiropterotriton orculus | Caudata | VU | Ground-dwelling | 20.990831 | 34.43141 | 30.97357 | 38.38861 |
Chiropterotriton orculus | Caudata | VU | Ground-dwelling | 24.695382 | 34.87168 | 31.29802 | 38.85910 |
Chiropterotriton lavae | Caudata | CR | Arboreal | 23.244262 | 34.59643 | 30.50407 | 37.74519 |
Chiropterotriton lavae | Caudata | CR | Arboreal | 22.216878 | 34.47380 | 30.43532 | 37.65727 |
Chiropterotriton lavae | Caudata | CR | Arboreal | 25.550622 | 34.87172 | 31.30673 | 38.60904 |
Cryptotriton alvarezdeltoroi | Caudata | EN | Ground-dwelling | 27.695251 | 35.39757 | 31.14504 | 39.29474 |
Cryptotriton alvarezdeltoroi | Caudata | EN | Ground-dwelling | 26.712363 | 35.27866 | 31.08062 | 39.18802 |
Cryptotriton alvarezdeltoroi | Caudata | EN | Ground-dwelling | 29.467457 | 35.61196 | 31.48867 | 39.71989 |
Cryptotriton monzoni | Caudata | CR | Arboreal | 27.096784 | 35.13247 | 31.04201 | 39.19878 |
Cryptotriton monzoni | Caudata | CR | Arboreal | 26.234483 | 35.02879 | 30.94709 | 39.04795 |
Cryptotriton monzoni | Caudata | CR | Arboreal | 28.925176 | 35.35230 | 30.89847 | 39.16676 |
Cryptotriton nasalis | Caudata | EN | Arboreal | 25.174190 | 34.85629 | 30.65542 | 38.87314 |
Cryptotriton nasalis | Caudata | EN | Arboreal | 24.673669 | 34.79531 | 30.59103 | 38.76717 |
Cryptotriton nasalis | Caudata | EN | Arboreal | 26.575538 | 35.02704 | 30.83569 | 39.17099 |
Cryptotriton sierraminensis | Caudata | CR | Arboreal | 26.481996 | 35.14281 | 31.32636 | 39.33309 |
Cryptotriton sierraminensis | Caudata | CR | Arboreal | 25.605134 | 35.03727 | 31.11031 | 39.11746 |
Cryptotriton sierraminensis | Caudata | CR | Arboreal | 28.318240 | 35.36383 | 31.38469 | 39.59300 |
Cryptotriton veraepacis | Caudata | CR | Arboreal | 24.942963 | 34.88728 | 31.02030 | 38.90510 |
Cryptotriton veraepacis | Caudata | CR | Arboreal | 23.795138 | 34.74815 | 30.85757 | 38.66062 |
Cryptotriton veraepacis | Caudata | CR | Arboreal | 27.309028 | 35.17406 | 31.09860 | 39.14649 |
Thorius adelos | Caudata | NT | Arboreal | 22.187059 | 34.58717 | 30.58465 | 38.98240 |
Thorius adelos | Caudata | NT | Arboreal | 20.787577 | 34.42169 | 30.40880 | 38.78879 |
Thorius adelos | Caudata | NT | Arboreal | 25.070986 | 34.92818 | 30.84952 | 39.28171 |
Thorius arboreus | Caudata | CR | Arboreal | 22.187059 | 34.60860 | 30.70423 | 38.84761 |
Thorius arboreus | Caudata | CR | Arboreal | 20.787577 | 34.43614 | 30.24366 | 38.37761 |
Thorius arboreus | Caudata | CR | Arboreal | 25.070986 | 34.96400 | 31.00298 | 39.13299 |
Thorius macdougalli | Caudata | EN | Ground-dwelling | 22.187059 | 34.70274 | 30.41431 | 38.69112 |
Thorius macdougalli | Caudata | EN | Ground-dwelling | 20.787577 | 34.53098 | 30.29199 | 38.52984 |
Thorius macdougalli | Caudata | EN | Ground-dwelling | 25.070986 | 35.05668 | 30.81350 | 39.27175 |
Thorius aureus | Caudata | CR | Ground-dwelling | 22.187059 | 34.82912 | 30.90350 | 38.88064 |
Thorius aureus | Caudata | CR | Ground-dwelling | 20.787577 | 34.65880 | 30.37956 | 38.32547 |
Thorius aureus | Caudata | CR | Ground-dwelling | 25.070986 | 35.18009 | 31.32051 | 39.40600 |
Thorius boreas | Caudata | EN | Ground-dwelling | 22.187059 | 34.79861 | 30.45309 | 38.67966 |
Thorius boreas | Caudata | EN | Ground-dwelling | 20.787577 | 34.62768 | 30.28322 | 38.52838 |
Thorius boreas | Caudata | EN | Ground-dwelling | 25.070986 | 35.15086 | 30.67647 | 39.11949 |
Thorius grandis | Caudata | CR | Ground-dwelling | 24.137970 | 35.00942 | 30.71961 | 38.86272 |
Thorius grandis | Caudata | CR | Ground-dwelling | 23.061969 | 34.88124 | 30.65556 | 38.74416 |
Thorius grandis | Caudata | CR | Ground-dwelling | 25.815825 | 35.20928 | 30.87380 | 39.11064 |
Thorius omiltemi | Caudata | EN | Ground-dwelling | 25.149511 | 35.17733 | 30.74769 | 39.11412 |
Thorius omiltemi | Caudata | EN | Ground-dwelling | 24.010788 | 35.04070 | 30.85527 | 39.20625 |
Thorius omiltemi | Caudata | EN | Ground-dwelling | 27.212280 | 35.42484 | 31.03341 | 39.44244 |
Thorius pulmonaris | Caudata | CR | Ground-dwelling | 22.187059 | 34.78136 | 30.55252 | 38.70845 |
Thorius pulmonaris | Caudata | CR | Ground-dwelling | 20.787577 | 34.61263 | 30.39386 | 38.52633 |
Thorius pulmonaris | Caudata | CR | Ground-dwelling | 25.070986 | 35.12907 | 30.75196 | 39.04075 |
Thorius minutissimus | Caudata | CR | Ground-dwelling | 27.361306 | 35.38407 | 31.04392 | 39.78330 |
Thorius minutissimus | Caudata | CR | Ground-dwelling | 26.340347 | 35.26072 | 30.57681 | 39.26327 |
Thorius minutissimus | Caudata | CR | Ground-dwelling | 29.216114 | 35.60816 | 30.70565 | 39.54737 |
Thorius narisovalis | Caudata | EN | Ground-dwelling | 23.738601 | 34.94286 | 30.67390 | 38.98176 |
Thorius narisovalis | Caudata | EN | Ground-dwelling | 22.398714 | 34.78313 | 30.60922 | 38.85234 |
Thorius narisovalis | Caudata | EN | Ground-dwelling | 26.200700 | 35.23637 | 30.82909 | 39.33164 |
Thorius papaloae | Caudata | CR | Ground-dwelling | 22.187059 | 34.86285 | 31.18167 | 38.86476 |
Thorius papaloae | Caudata | CR | Ground-dwelling | 20.787577 | 34.69437 | 30.99891 | 38.68802 |
Thorius papaloae | Caudata | CR | Ground-dwelling | 25.070986 | 35.21004 | 31.11057 | 38.89295 |
Thorius dubitus | Caudata | CR | Ground-dwelling | 24.719872 | 35.11888 | 30.44746 | 38.93436 |
Thorius dubitus | Caudata | CR | Ground-dwelling | 23.551785 | 34.97809 | 30.57560 | 38.98913 |
Thorius dubitus | Caudata | CR | Ground-dwelling | 26.791345 | 35.36855 | 30.72155 | 39.29531 |
Thorius troglodytes | Caudata | EN | Fossorial | 22.875152 | 35.83325 | 31.47806 | 39.78481 |
Thorius troglodytes | Caudata | EN | Fossorial | 21.516239 | 35.67088 | 31.34168 | 39.64189 |
Thorius troglodytes | Caudata | EN | Fossorial | 25.467797 | 36.14305 | 31.91119 | 40.36030 |
Thorius insperatus | Caudata | CR | Ground-dwelling | 22.187059 | 34.87339 | 30.72564 | 39.01049 |
Thorius insperatus | Caudata | CR | Ground-dwelling | 20.787577 | 34.70082 | 30.43959 | 38.71561 |
Thorius insperatus | Caudata | CR | Ground-dwelling | 25.070986 | 35.22903 | 30.77653 | 39.12583 |
Thorius minydemus | Caudata | EN | Ground-dwelling | 23.244262 | 34.93930 | 30.75076 | 38.84836 |
Thorius minydemus | Caudata | EN | Ground-dwelling | 22.216878 | 34.81164 | 30.64993 | 38.69949 |
Thorius minydemus | Caudata | EN | Ground-dwelling | 25.550622 | 35.22587 | 30.94268 | 39.14523 |
Thorius spilogaster | Caudata | CR | Fossorial | 24.719872 | 36.02264 | 31.49252 | 40.35067 |
Thorius spilogaster | Caudata | CR | Fossorial | 23.551785 | 35.88168 | 31.41644 | 40.19467 |
Thorius spilogaster | Caudata | CR | Fossorial | 26.791345 | 36.27261 | 31.73839 | 40.71803 |
Thorius pennatulus | Caudata | EN | Ground-dwelling | 24.476973 | 35.09819 | 31.00933 | 39.48960 |
Thorius pennatulus | Caudata | EN | Ground-dwelling | 23.438962 | 34.97078 | 30.91662 | 39.34239 |
Thorius pennatulus | Caudata | EN | Ground-dwelling | 26.661051 | 35.36628 | 30.99022 | 39.51685 |
Thorius smithi | Caudata | CR | Ground-dwelling | 22.187059 | 34.79895 | 31.04648 | 39.28336 |
Thorius smithi | Caudata | CR | Ground-dwelling | 20.787577 | 34.62894 | 30.88081 | 39.02792 |
Thorius smithi | Caudata | CR | Ground-dwelling | 25.070986 | 35.14930 | 31.04125 | 39.51790 |
Thorius infernalis | Caudata | CR | Semi-aquatic | 24.137970 | 35.25370 | 31.21227 | 39.44786 |
Thorius infernalis | Caudata | CR | Semi-aquatic | 23.061969 | 35.12384 | 30.76119 | 38.87722 |
Thorius infernalis | Caudata | CR | Semi-aquatic | 25.815825 | 35.45620 | 31.30200 | 39.57284 |
Thorius magnipes | Caudata | CR | Arboreal | 24.719872 | 34.93816 | 30.35709 | 38.86765 |
Thorius magnipes | Caudata | CR | Arboreal | 23.551785 | 34.79738 | 30.84544 | 39.27575 |
Thorius magnipes | Caudata | CR | Arboreal | 26.791345 | 35.18783 | 30.59397 | 39.14873 |
Thorius schmidti | Caudata | CR | Ground-dwelling | 24.719872 | 35.05188 | 31.18046 | 39.25238 |
Thorius schmidti | Caudata | CR | Ground-dwelling | 23.551785 | 34.91287 | 31.05702 | 39.13089 |
Thorius schmidti | Caudata | CR | Ground-dwelling | 26.791345 | 35.29842 | 31.22067 | 39.38598 |
Thorius narismagnus | Caudata | CR | Fossorial | 26.881155 | 36.32457 | 31.35000 | 40.12783 |
Thorius narismagnus | Caudata | CR | Fossorial | 25.933953 | 36.20923 | 31.79196 | 40.53939 |
Thorius narismagnus | Caudata | CR | Fossorial | 28.925281 | 36.57347 | 31.85861 | 40.68456 |
Thorius lunaris | Caudata | CR | Ground-dwelling | 24.719872 | 35.12869 | 30.83256 | 39.51765 |
Thorius lunaris | Caudata | CR | Ground-dwelling | 23.551785 | 34.98680 | 30.78447 | 39.45586 |
Thorius lunaris | Caudata | CR | Ground-dwelling | 26.791345 | 35.38031 | 30.36844 | 39.13842 |
Thorius munificus | Caudata | CR | Ground-dwelling | 21.030433 | 34.58208 | 30.76742 | 38.97898 |
Thorius munificus | Caudata | CR | Ground-dwelling | 19.480693 | 34.39888 | 30.50510 | 38.67117 |
Thorius munificus | Caudata | CR | Ground-dwelling | 24.144250 | 34.95017 | 30.80324 | 39.10017 |
Ascaphus montanus | Anura | LC | Stream-dwelling | 17.062328 | 31.46533 | 28.25988 | 34.54120 |
Ascaphus montanus | Anura | LC | Stream-dwelling | 14.311735 | 31.06348 | 28.08504 | 34.21491 |
Ascaphus montanus | Anura | LC | Stream-dwelling | 21.051179 | 32.04807 | 29.05547 | 35.60638 |
Leiopelma hochstetteri | Anura | LC | Semi-aquatic | 19.105510 | 34.80956 | 27.64607 | 41.56082 |
Leiopelma hochstetteri | Anura | LC | Semi-aquatic | 17.722214 | 34.61218 | 27.17095 | 41.13331 |
Leiopelma hochstetteri | Anura | LC | Semi-aquatic | 21.235573 | 35.11349 | 27.99423 | 41.78423 |
Leiopelma archeyi | Anura | CR | Ground-dwelling | 19.026968 | 34.50413 | 28.17334 | 41.83428 |
Leiopelma archeyi | Anura | CR | Ground-dwelling | 17.629798 | 34.30304 | 27.95315 | 41.53968 |
Leiopelma archeyi | Anura | CR | Ground-dwelling | 21.192988 | 34.81588 | 28.23054 | 41.87064 |
Leiopelma pakeka | Anura | VU | Ground-dwelling | 16.884389 | 34.22400 | 27.82927 | 41.04566 |
Leiopelma pakeka | Anura | VU | Ground-dwelling | 15.246833 | 33.99400 | 27.55254 | 40.83182 |
Leiopelma pakeka | Anura | VU | Ground-dwelling | 18.923271 | 34.51037 | 28.21378 | 41.39011 |
Leiopelma hamiltoni | Anura | VU | Ground-dwelling | 18.298231 | 34.41810 | 27.29126 | 40.63997 |
Leiopelma hamiltoni | Anura | VU | Ground-dwelling | 16.839979 | 34.21006 | 27.65434 | 41.00002 |
Leiopelma hamiltoni | Anura | VU | Ground-dwelling | 20.376600 | 34.71459 | 27.60100 | 40.88086 |
Barbourula kalimantanensis | Anura | EN | Aquatic | 29.096779 | 37.52719 | 31.37350 | 44.81816 |
Barbourula kalimantanensis | Anura | EN | Aquatic | 28.314058 | 37.41874 | 31.22543 | 44.64701 |
Barbourula kalimantanensis | Anura | EN | Aquatic | 30.599071 | 37.73533 | 31.51441 | 45.05557 |
Barbourula busuangensis | Anura | NT | Aquatic | 27.678080 | 37.48777 | 30.31451 | 43.64625 |
Barbourula busuangensis | Anura | NT | Aquatic | 27.245368 | 37.42698 | 30.23887 | 43.57427 |
Barbourula busuangensis | Anura | NT | Aquatic | 28.615860 | 37.61952 | 31.16081 | 44.43060 |
Bombina orientalis | Anura | LC | Semi-aquatic | 21.266223 | 36.70480 | 30.58136 | 43.89261 |
Bombina orientalis | Anura | LC | Semi-aquatic | 17.928969 | 36.23026 | 29.90425 | 43.33646 |
Bombina orientalis | Anura | LC | Semi-aquatic | 24.868130 | 37.21698 | 30.93959 | 44.06260 |
Bombina bombina | Anura | LC | Aquatic | 19.017954 | 36.23315 | 29.94178 | 43.36069 |
Bombina bombina | Anura | LC | Aquatic | 16.105965 | 35.82769 | 29.39129 | 42.74555 |
Bombina bombina | Anura | LC | Aquatic | 23.678600 | 36.88209 | 30.25738 | 43.77261 |
Bombina variegata | Anura | LC | Aquatic | 19.574345 | 36.35973 | 30.10326 | 43.10654 |
Bombina variegata | Anura | LC | Aquatic | 16.933640 | 35.98534 | 29.79792 | 42.78726 |
Bombina variegata | Anura | LC | Aquatic | 23.895101 | 36.97231 | 30.60286 | 43.59536 |
Bombina lichuanensis | Anura | VU | Aquatic | 23.811531 | 36.92876 | 29.98615 | 43.01811 |
Bombina lichuanensis | Anura | VU | Aquatic | 21.719264 | 36.63372 | 29.78367 | 42.71473 |
Bombina lichuanensis | Anura | VU | Aquatic | 26.049218 | 37.24431 | 30.30400 | 43.40775 |
Latonia nigriventer | Anura | CR | Semi-aquatic | 23.592772 | 37.24927 | 33.31598 | 41.26804 |
Latonia nigriventer | Anura | CR | Semi-aquatic | 22.339542 | 37.06381 | 33.11181 | 41.01841 |
Latonia nigriventer | Anura | CR | Semi-aquatic | 24.986566 | 37.45554 | 33.60725 | 41.65036 |
Discoglossus montalentii | Anura | NT | Stream-dwelling | 23.532117 | 36.42180 | 32.85295 | 40.28161 |
Discoglossus montalentii | Anura | NT | Stream-dwelling | 21.506855 | 36.12372 | 32.55367 | 39.92974 |
Discoglossus montalentii | Anura | NT | Stream-dwelling | 26.682481 | 36.88548 | 33.09994 | 40.65076 |
Discoglossus sardus | Anura | LC | Semi-aquatic | 23.754228 | 37.65683 | 34.67545 | 40.52804 |
Discoglossus sardus | Anura | LC | Semi-aquatic | 21.795436 | 37.36900 | 34.33021 | 40.08189 |
Discoglossus sardus | Anura | LC | Semi-aquatic | 26.787989 | 38.10262 | 35.03843 | 41.04384 |
Rhinophrynus dorsalis | Anura | LC | Ground-dwelling | 26.657065 | 37.09434 | 31.29274 | 44.35227 |
Rhinophrynus dorsalis | Anura | LC | Ground-dwelling | 25.846516 | 36.98244 | 30.08683 | 43.18503 |
Rhinophrynus dorsalis | Anura | LC | Ground-dwelling | 28.397323 | 37.33461 | 31.43758 | 44.57042 |
Hymenochirus boettgeri | Anura | LC | Aquatic | 27.291905 | 37.30618 | 30.90470 | 43.55382 |
Hymenochirus boettgeri | Anura | LC | Aquatic | 26.541996 | 37.20286 | 30.77892 | 43.46257 |
Hymenochirus boettgeri | Anura | LC | Aquatic | 28.937141 | 37.53285 | 31.12038 | 43.74915 |
Hymenochirus feae | Anura | DD | Aquatic | 27.779440 | 37.40973 | 31.47090 | 44.09663 |
Hymenochirus feae | Anura | DD | Aquatic | 26.971792 | 37.29577 | 31.33628 | 43.91904 |
Hymenochirus feae | Anura | DD | Aquatic | 29.489972 | 37.65111 | 31.38502 | 44.09098 |
Hymenochirus boulengeri | Anura | DD | Aquatic | 27.055135 | 37.39008 | 31.31778 | 44.23678 |
Hymenochirus boulengeri | Anura | DD | Aquatic | 26.262997 | 37.27689 | 31.18420 | 44.10051 |
Hymenochirus boulengeri | Anura | DD | Aquatic | 28.652846 | 37.61836 | 30.98833 | 44.08036 |
Hymenochirus curtipes | Anura | LC | Semi-aquatic | 27.885377 | 37.47325 | 31.00981 | 43.92310 |
Hymenochirus curtipes | Anura | LC | Semi-aquatic | 27.089994 | 37.36315 | 30.95132 | 43.85626 |
Hymenochirus curtipes | Anura | LC | Semi-aquatic | 29.607357 | 37.71162 | 31.13410 | 44.17434 |
Pseudhymenochirus merlini | Anura | LC | Aquatic | 27.235913 | 37.36118 | 30.92768 | 43.14958 |
Pseudhymenochirus merlini | Anura | LC | Aquatic | 26.443998 | 37.25020 | 30.69086 | 42.90001 |
Pseudhymenochirus merlini | Anura | LC | Aquatic | 28.973739 | 37.60471 | 31.16194 | 43.36102 |
Xenopus amieti | Anura | VU | Aquatic | 26.187407 | 36.76796 | 33.05908 | 40.80562 |
Xenopus amieti | Anura | VU | Aquatic | 25.516049 | 36.67420 | 32.90951 | 40.65675 |
Xenopus amieti | Anura | VU | Aquatic | 27.610767 | 36.96674 | 33.21614 | 40.96243 |
Xenopus longipes | Anura | CR | Aquatic | 25.529022 | 36.67830 | 33.17781 | 40.73974 |
Xenopus longipes | Anura | CR | Aquatic | 24.726769 | 36.56579 | 33.10673 | 40.62934 |
Xenopus longipes | Anura | CR | Aquatic | 27.197252 | 36.91227 | 32.90002 | 40.56185 |
Xenopus boumbaensis | Anura | NT | Stream-dwelling | 27.027331 | 36.15440 | 32.41940 | 40.42374 |
Xenopus boumbaensis | Anura | NT | Stream-dwelling | 26.316955 | 36.05270 | 32.29781 | 40.28084 |
Xenopus boumbaensis | Anura | NT | Stream-dwelling | 28.468720 | 36.36077 | 32.67714 | 40.71371 |
Xenopus itombwensis | Anura | EN | Aquatic | 24.143899 | 36.49185 | 32.67994 | 40.81105 |
Xenopus itombwensis | Anura | EN | Aquatic | 23.402584 | 36.38640 | 32.57233 | 40.66557 |
Xenopus itombwensis | Anura | EN | Aquatic | 26.105081 | 36.77084 | 32.95892 | 41.14697 |
Xenopus wittei | Anura | LC | Aquatic | 23.248631 | 36.27375 | 31.96381 | 39.83120 |
Xenopus wittei | Anura | LC | Aquatic | 22.596636 | 36.18265 | 31.82901 | 39.69550 |
Xenopus wittei | Anura | LC | Aquatic | 24.723337 | 36.47981 | 32.12221 | 40.07828 |
Xenopus andrei | Anura | LC | Aquatic | 26.969819 | 36.89462 | 32.56914 | 40.34685 |
Xenopus andrei | Anura | LC | Aquatic | 26.297591 | 36.79897 | 33.00160 | 40.74776 |
Xenopus andrei | Anura | LC | Aquatic | 28.463049 | 37.10710 | 33.13180 | 41.02756 |
Xenopus fraseri | Anura | DD | Aquatic | 28.084892 | 37.01870 | 33.50445 | 41.38011 |
Xenopus fraseri | Anura | DD | Aquatic | 27.400160 | 36.92268 | 33.46105 | 41.31800 |
Xenopus fraseri | Anura | DD | Aquatic | 29.688712 | 37.24360 | 33.73385 | 41.69611 |
Xenopus pygmaeus | Anura | LC | Aquatic | 27.354072 | 36.86515 | 32.84388 | 40.74234 |
Xenopus pygmaeus | Anura | LC | Aquatic | 26.595714 | 36.76172 | 32.75457 | 40.53558 |
Xenopus pygmaeus | Anura | LC | Aquatic | 28.981403 | 37.08707 | 32.86549 | 40.92179 |
Xenopus gilli | Anura | EN | Ground-dwelling | 20.397272 | 35.73431 | 32.27212 | 39.21170 |
Xenopus gilli | Anura | EN | Ground-dwelling | 19.105333 | 35.55239 | 31.99993 | 38.89809 |
Xenopus gilli | Anura | EN | Ground-dwelling | 22.950470 | 36.09384 | 32.50243 | 39.51552 |
Xenopus petersii | Anura | LC | Aquatic | 25.101104 | 36.59058 | 32.87613 | 39.70921 |
Xenopus petersii | Anura | LC | Aquatic | 24.059763 | 36.44433 | 33.32157 | 40.09693 |
Xenopus petersii | Anura | LC | Aquatic | 27.282153 | 36.89691 | 33.62857 | 40.59072 |
Xenopus victorianus | Anura | LC | Aquatic | 23.279228 | 36.34125 | 33.16511 | 39.24289 |
Xenopus victorianus | Anura | LC | Aquatic | 22.489742 | 36.22991 | 33.09624 | 39.13711 |
Xenopus victorianus | Anura | LC | Aquatic | 24.964321 | 36.57889 | 33.23039 | 39.47123 |
Xenopus lenduensis | Anura | CR | Aquatic | 25.415737 | 36.61522 | 32.94264 | 40.47341 |
Xenopus lenduensis | Anura | CR | Aquatic | 24.602350 | 36.50054 | 32.84658 | 40.35800 |
Xenopus lenduensis | Anura | CR | Aquatic | 27.056930 | 36.84660 | 33.15487 | 40.70757 |
Xenopus vestitus | Anura | LC | Aquatic | 22.981895 | 36.27369 | 32.85106 | 40.28876 |
Xenopus vestitus | Anura | LC | Aquatic | 22.354939 | 36.18569 | 32.68970 | 40.12436 |
Xenopus vestitus | Anura | LC | Aquatic | 24.383053 | 36.47035 | 32.87419 | 40.36030 |
Xenopus borealis | Anura | LC | Aquatic | 21.388931 | 36.20860 | 32.19988 | 40.37259 |
Xenopus borealis | Anura | LC | Aquatic | 20.546510 | 36.09171 | 31.94887 | 40.06479 |
Xenopus borealis | Anura | LC | Aquatic | 23.221793 | 36.46292 | 32.37355 | 40.55238 |
Xenopus clivii | Anura | LC | Aquatic | 22.298307 | 36.19571 | 32.01104 | 40.21163 |
Xenopus clivii | Anura | LC | Aquatic | 21.376220 | 36.06625 | 31.87898 | 40.03889 |
Xenopus clivii | Anura | LC | Aquatic | 24.071564 | 36.44468 | 32.08680 | 40.36561 |
Xenopus largeni | Anura | EN | Aquatic | 20.653207 | 36.03140 | 31.85667 | 40.41253 |
Xenopus largeni | Anura | EN | Aquatic | 19.714422 | 35.89881 | 31.65764 | 40.18632 |
Xenopus largeni | Anura | EN | Aquatic | 22.578642 | 36.30334 | 32.08657 | 40.74699 |
Xenopus ruwenzoriensis | Anura | DD | Aquatic | 24.029257 | 36.56623 | 31.86165 | 40.76228 |
Xenopus ruwenzoriensis | Anura | DD | Aquatic | 23.297012 | 36.46285 | 31.62216 | 40.54358 |
Xenopus ruwenzoriensis | Anura | DD | Aquatic | 25.800773 | 36.81636 | 32.18723 | 41.15898 |
Xenopus muelleri | Anura | LC | Aquatic | 23.988443 | 36.43874 | 31.65002 | 40.74583 |
Xenopus muelleri | Anura | LC | Aquatic | 22.980163 | 36.29965 | 31.49536 | 40.61962 |
Xenopus muelleri | Anura | LC | Aquatic | 26.026939 | 36.71995 | 31.99939 | 41.15546 |
Xenopus epitropicalis | Anura | LC | Aquatic | 27.250462 | 37.18557 | 32.54222 | 42.53644 |
Xenopus epitropicalis | Anura | LC | Aquatic | 26.483887 | 37.07785 | 32.37973 | 42.36874 |
Xenopus epitropicalis | Anura | LC | Aquatic | 28.961576 | 37.42600 | 32.61891 | 42.75241 |
Xenopus tropicalis | Anura | LC | Aquatic | 27.384725 | 37.18537 | 32.15880 | 42.57950 |
Xenopus tropicalis | Anura | LC | Aquatic | 26.663045 | 37.08307 | 31.56764 | 41.95676 |
Xenopus tropicalis | Anura | LC | Aquatic | 29.072581 | 37.42462 | 31.74428 | 42.24171 |
Pipa arrabali | Anura | LC | Aquatic | 27.574394 | 38.55685 | 33.29601 | 44.05685 |
Pipa arrabali | Anura | LC | Aquatic | 26.876212 | 38.46111 | 33.15898 | 43.90139 |
Pipa arrabali | Anura | LC | Aquatic | 29.107346 | 38.76704 | 33.49077 | 44.37102 |
Pipa myersi | Anura | EN | Aquatic | 27.812573 | 38.49912 | 33.01714 | 44.21386 |
Pipa myersi | Anura | EN | Aquatic | 27.084203 | 38.40033 | 32.95085 | 44.12368 |
Pipa myersi | Anura | EN | Aquatic | 29.356453 | 38.70854 | 32.97137 | 44.27329 |
Pipa parva | Anura | LC | Aquatic | 26.388054 | 38.35060 | 32.87627 | 44.11424 |
Pipa parva | Anura | LC | Aquatic | 25.587971 | 38.24237 | 32.71945 | 43.98089 |
Pipa parva | Anura | LC | Aquatic | 27.838960 | 38.54686 | 33.06451 | 44.35605 |
Pipa pipa | Anura | LC | Aquatic | 27.263623 | 38.50394 | 33.36100 | 44.17746 |
Pipa pipa | Anura | LC | Aquatic | 26.539509 | 38.40604 | 33.31227 | 44.05612 |
Pipa pipa | Anura | LC | Aquatic | 28.814614 | 38.71362 | 32.89152 | 43.94045 |
Pipa aspera | Anura | LC | Aquatic | 27.258508 | 38.54229 | 33.05140 | 44.18717 |
Pipa aspera | Anura | LC | Aquatic | 26.630980 | 38.45585 | 32.96881 | 44.08691 |
Pipa aspera | Anura | LC | Aquatic | 28.841925 | 38.76041 | 33.39792 | 44.51144 |
Pipa snethlageae | Anura | LC | Aquatic | 28.365067 | 38.64267 | 33.11478 | 44.21160 |
Pipa snethlageae | Anura | LC | Aquatic | 27.658188 | 38.54427 | 32.89038 | 43.96525 |
Pipa snethlageae | Anura | LC | Aquatic | 29.930306 | 38.86054 | 33.23662 | 44.31936 |
Scaphiopus hurterii | Anura | LC | Fossorial | 26.454918 | 36.47580 | 33.11839 | 39.53267 |
Scaphiopus hurterii | Anura | LC | Fossorial | 25.002000 | 36.25365 | 33.25583 | 39.58451 |
Scaphiopus hurterii | Anura | LC | Fossorial | 28.956377 | 36.85828 | 33.42033 | 40.08714 |
Spea multiplicata | Anura | LC | Ground-dwelling | 21.918075 | 36.39043 | 33.17791 | 40.73424 |
Spea multiplicata | Anura | LC | Ground-dwelling | 20.140203 | 36.13853 | 32.92622 | 40.37093 |
Spea multiplicata | Anura | LC | Ground-dwelling | 24.725882 | 36.78827 | 33.10431 | 40.77553 |
Spea bombifrons | Anura | LC | Aquatic | 21.264741 | 36.63334 | 33.16616 | 39.65340 |
Spea bombifrons | Anura | LC | Aquatic | 18.757039 | 36.27223 | 32.94172 | 39.32425 |
Spea bombifrons | Anura | LC | Aquatic | 24.742127 | 37.13408 | 33.57482 | 40.22991 |
Spea intermontana | Anura | LC | Aquatic | 17.185550 | 36.08541 | 32.38909 | 39.02539 |
Spea intermontana | Anura | LC | Aquatic | 14.958374 | 35.76385 | 32.55889 | 39.18244 |
Spea intermontana | Anura | LC | Aquatic | 20.662306 | 36.58737 | 32.97397 | 39.77011 |
Pelodytes caucasicus | Anura | NT | Semi-aquatic | 19.896328 | 36.10820 | 32.25005 | 40.11674 |
Pelodytes caucasicus | Anura | NT | Semi-aquatic | 17.136690 | 35.74621 | 32.02123 | 39.80663 |
Pelodytes caucasicus | Anura | NT | Semi-aquatic | 23.110526 | 36.52983 | 32.81607 | 40.78288 |
Oreolalax chuanbeiensis | Anura | EN | Ground-dwelling | 18.632878 | 36.49646 | 31.15309 | 41.90681 |
Oreolalax chuanbeiensis | Anura | EN | Ground-dwelling | 16.038714 | 36.14173 | 30.63922 | 41.40185 |
Oreolalax chuanbeiensis | Anura | EN | Ground-dwelling | 21.550110 | 36.89537 | 31.41170 | 42.20264 |
Oreolalax nanjiangensis | Anura | VU | Stream-dwelling | 20.105036 | 36.10220 | 30.40170 | 41.76015 |
Oreolalax nanjiangensis | Anura | VU | Stream-dwelling | 17.482836 | 35.74421 | 30.01218 | 41.39843 |
Oreolalax nanjiangensis | Anura | VU | Stream-dwelling | 23.243675 | 36.53069 | 31.11799 | 42.48824 |
Oreolalax omeimontis | Anura | EN | Ground-dwelling | 21.331557 | 36.82200 | 31.42803 | 42.18111 |
Oreolalax omeimontis | Anura | EN | Ground-dwelling | 19.542290 | 36.57587 | 31.30632 | 42.06231 |
Oreolalax omeimontis | Anura | EN | Ground-dwelling | 23.446248 | 37.11288 | 31.63436 | 42.36091 |
Oreolalax popei | Anura | LC | Ground-dwelling | 19.525253 | 36.63101 | 31.22316 | 42.35757 |
Oreolalax popei | Anura | LC | Ground-dwelling | 17.082496 | 36.29134 | 30.73305 | 41.83028 |
Oreolalax popei | Anura | LC | Ground-dwelling | 22.351348 | 37.02399 | 31.51403 | 42.63559 |
Oreolalax multipunctatus | Anura | EN | Ground-dwelling | 19.414441 | 36.58867 | 30.82165 | 41.81807 |
Oreolalax multipunctatus | Anura | EN | Ground-dwelling | 17.213646 | 36.28429 | 30.36213 | 41.34964 |
Oreolalax multipunctatus | Anura | EN | Ground-dwelling | 21.898695 | 36.93225 | 31.10388 | 42.18964 |
Oreolalax granulosus | Anura | NT | Stream-dwelling | 22.537233 | 36.36646 | 30.71619 | 41.64265 |
Oreolalax granulosus | Anura | NT | Stream-dwelling | 21.553350 | 36.23284 | 30.57354 | 41.46928 |
Oreolalax granulosus | Anura | NT | Stream-dwelling | 24.556818 | 36.64074 | 30.80726 | 41.74855 |
Oreolalax jingdongensis | Anura | VU | Stream-dwelling | 22.030846 | 36.39794 | 30.55269 | 41.63428 |
Oreolalax jingdongensis | Anura | VU | Stream-dwelling | 20.964411 | 36.25208 | 30.42599 | 41.47069 |
Oreolalax jingdongensis | Anura | VU | Stream-dwelling | 24.225222 | 36.69809 | 31.06380 | 42.20519 |
Oreolalax liangbeiensis | Anura | CR | Ground-dwelling | 20.706935 | 36.83599 | 31.27221 | 41.95369 |
Oreolalax liangbeiensis | Anura | CR | Ground-dwelling | 19.102920 | 36.61553 | 31.07375 | 41.75997 |
Oreolalax liangbeiensis | Anura | CR | Ground-dwelling | 22.692973 | 37.10894 | 31.30849 | 42.07546 |
Oreolalax major | Anura | LC | Ground-dwelling | 19.734979 | 36.71329 | 31.16762 | 42.19151 |
Oreolalax major | Anura | LC | Ground-dwelling | 17.486685 | 36.40519 | 30.91069 | 41.88517 |
Oreolalax major | Anura | LC | Ground-dwelling | 22.311030 | 37.06631 | 31.58142 | 42.63637 |
Oreolalax rugosus | Anura | LC | Semi-aquatic | 20.431982 | 36.99866 | 31.69328 | 42.66189 |
Oreolalax rugosus | Anura | LC | Semi-aquatic | 19.035803 | 36.80717 | 31.45299 | 42.42256 |
Oreolalax rugosus | Anura | LC | Semi-aquatic | 22.561326 | 37.29070 | 32.11927 | 43.05614 |
Oreolalax xiangchengensis | Anura | LC | Stream-dwelling | 16.232959 | 35.57579 | 29.96325 | 41.40720 |
Oreolalax xiangchengensis | Anura | LC | Stream-dwelling | 14.720009 | 35.37088 | 29.71869 | 41.08711 |
Oreolalax xiangchengensis | Anura | LC | Stream-dwelling | 18.494559 | 35.88210 | 29.83776 | 41.37780 |
Oreolalax puxiongensis | Anura | EN | Semi-aquatic | 20.706935 | 37.02354 | 30.82840 | 42.24289 |
Oreolalax puxiongensis | Anura | EN | Semi-aquatic | 19.102920 | 36.80526 | 30.59245 | 42.02339 |
Oreolalax puxiongensis | Anura | EN | Semi-aquatic | 22.692973 | 37.29381 | 30.98041 | 42.36475 |
Oreolalax lichuanensis | Anura | LC | Ground-dwelling | 25.304338 | 37.41380 | 32.09416 | 43.40181 |
Oreolalax lichuanensis | Anura | LC | Ground-dwelling | 23.234226 | 37.12732 | 31.46491 | 42.68094 |
Oreolalax lichuanensis | Anura | LC | Ground-dwelling | 27.846713 | 37.76564 | 32.46994 | 43.78755 |
Oreolalax pingii | Anura | EN | Ground-dwelling | 20.880198 | 36.82403 | 30.84241 | 41.68443 |
Oreolalax pingii | Anura | EN | Ground-dwelling | 19.399173 | 36.61764 | 30.56303 | 41.43041 |
Oreolalax pingii | Anura | EN | Ground-dwelling | 22.850314 | 37.09858 | 31.17582 | 42.06453 |
Oreolalax schmidti | Anura | NT | Ground-dwelling | 19.614375 | 36.62034 | 31.24550 | 41.56767 |
Oreolalax schmidti | Anura | NT | Ground-dwelling | 17.534419 | 36.34084 | 30.83127 | 41.28720 |
Oreolalax schmidti | Anura | NT | Ground-dwelling | 22.030587 | 36.94503 | 31.44509 | 41.82563 |
Oreolalax rhodostigmatus | Anura | VU | Ground-dwelling | 25.002790 | 37.36745 | 31.92374 | 43.18027 |
Oreolalax rhodostigmatus | Anura | VU | Ground-dwelling | 22.975382 | 37.09163 | 31.25081 | 42.46264 |
Oreolalax rhodostigmatus | Anura | VU | Ground-dwelling | 27.494028 | 37.70636 | 32.18891 | 43.55018 |
Scutiger adungensis | Anura | DD | Stream-dwelling | 17.149009 | 35.64453 | 30.55012 | 41.02700 |
Scutiger adungensis | Anura | DD | Stream-dwelling | 15.802182 | 35.45725 | 30.23099 | 40.71103 |
Scutiger adungensis | Anura | DD | Stream-dwelling | 19.156182 | 35.92363 | 30.69642 | 41.18139 |
Scutiger boulengeri | Anura | LC | Stream-dwelling | 12.465362 | 35.05040 | 29.43893 | 40.70760 |
Scutiger boulengeri | Anura | LC | Stream-dwelling | 10.053052 | 34.72203 | 29.13460 | 40.42255 |
Scutiger boulengeri | Anura | LC | Stream-dwelling | 15.297854 | 35.43597 | 29.71264 | 40.87503 |
Scutiger muliensis | Anura | EN | Stream-dwelling | 17.350242 | 35.68435 | 30.15967 | 41.06090 |
Scutiger muliensis | Anura | EN | Stream-dwelling | 15.907821 | 35.48857 | 30.43337 | 41.35031 |
Scutiger muliensis | Anura | EN | Stream-dwelling | 19.584018 | 35.98755 | 30.67837 | 41.55383 |
Scutiger tuberculatus | Anura | VU | Stream-dwelling | 20.611774 | 36.14873 | 31.07334 | 41.58414 |
Scutiger tuberculatus | Anura | VU | Stream-dwelling | 19.054256 | 35.93567 | 30.98150 | 41.51008 |
Scutiger tuberculatus | Anura | VU | Stream-dwelling | 22.660180 | 36.42893 | 31.25842 | 41.82693 |
Scutiger mammatus | Anura | LC | Stream-dwelling | 12.102934 | 35.00611 | 29.28525 | 40.56349 |
Scutiger mammatus | Anura | LC | Stream-dwelling | 9.808691 | 34.69050 | 28.95319 | 40.28667 |
Scutiger mammatus | Anura | LC | Stream-dwelling | 14.932263 | 35.39533 | 29.61635 | 40.78051 |
Scutiger brevipes | Anura | DD | Stream-dwelling | 15.064913 | 35.35770 | 30.10662 | 40.74064 |
Scutiger brevipes | Anura | DD | Stream-dwelling | 13.136959 | 35.08804 | 30.02801 | 40.61055 |
Scutiger brevipes | Anura | DD | Stream-dwelling | 17.351601 | 35.67754 | 30.34909 | 40.97143 |
Scutiger chintingensis | Anura | VU | Stream-dwelling | 21.331557 | 36.19555 | 31.32613 | 41.89026 |
Scutiger chintingensis | Anura | VU | Stream-dwelling | 19.542290 | 35.94690 | 30.92664 | 41.43192 |
Scutiger chintingensis | Anura | VU | Stream-dwelling | 23.446248 | 36.48943 | 31.46215 | 42.00514 |
Scutiger glandulatus | Anura | LC | Ground-dwelling | 15.159680 | 36.01571 | 30.88538 | 41.44368 |
Scutiger glandulatus | Anura | LC | Ground-dwelling | 12.996325 | 35.71525 | 30.55132 | 41.27588 |
Scutiger glandulatus | Anura | LC | Ground-dwelling | 17.790909 | 36.38114 | 31.12730 | 41.83937 |
Scutiger gongshanensis | Anura | LC | Semi-aquatic | 18.421810 | 36.75194 | 31.68979 | 42.17563 |
Scutiger gongshanensis | Anura | LC | Semi-aquatic | 17.233382 | 36.59021 | 31.48817 | 42.03444 |
Scutiger gongshanensis | Anura | LC | Semi-aquatic | 20.333876 | 37.01214 | 32.03871 | 42.46717 |
Scutiger jiulongensis | Anura | EN | Semi-aquatic | 17.781630 | 36.61167 | 31.52866 | 42.07554 |
Scutiger jiulongensis | Anura | EN | Semi-aquatic | 15.771343 | 36.33925 | 31.29248 | 41.82095 |
Scutiger jiulongensis | Anura | EN | Semi-aquatic | 20.218503 | 36.94189 | 31.77212 | 42.45841 |
Scutiger liupanensis | Anura | EN | Stream-dwelling | 20.137011 | 36.03532 | 30.57377 | 41.41825 |
Scutiger liupanensis | Anura | EN | Stream-dwelling | 17.511283 | 35.67874 | 30.07901 | 40.98751 |
Scutiger liupanensis | Anura | EN | Stream-dwelling | 23.508651 | 36.49321 | 31.08243 | 41.98651 |
Scutiger nepalensis | Anura | VU | Stream-dwelling | 16.240811 | 35.61047 | 30.36465 | 40.77794 |
Scutiger nepalensis | Anura | VU | Stream-dwelling | 14.201692 | 35.32845 | 30.12757 | 40.56441 |
Scutiger nepalensis | Anura | VU | Stream-dwelling | 19.106280 | 36.00677 | 30.49147 | 40.85546 |
Scutiger ningshanensis | Anura | LC | Stream-dwelling | 23.296088 | 36.51943 | 30.96449 | 42.04505 |
Scutiger ningshanensis | Anura | LC | Stream-dwelling | 20.532944 | 36.13479 | 30.47049 | 41.60952 |
Scutiger ningshanensis | Anura | LC | Stream-dwelling | 27.036373 | 37.04009 | 31.51918 | 42.67832 |
Scutiger nyingchiensis | Anura | LC | Stream-dwelling | 13.979409 | 35.28298 | 29.68853 | 40.28674 |
Scutiger nyingchiensis | Anura | LC | Stream-dwelling | 11.995824 | 35.01090 | 29.79099 | 40.40518 |
Scutiger nyingchiensis | Anura | LC | Stream-dwelling | 16.774621 | 35.66637 | 29.87881 | 40.37693 |
Scutiger pingwuensis | Anura | EN | Stream-dwelling | 19.647578 | 35.95208 | 30.51242 | 41.25913 |
Scutiger pingwuensis | Anura | EN | Stream-dwelling | 17.134883 | 35.61161 | 30.26211 | 41.02228 |
Scutiger pingwuensis | Anura | EN | Stream-dwelling | 22.524272 | 36.34187 | 30.80987 | 41.66801 |
Scutiger sikimmensis | Anura | LC | Stream-dwelling | 17.224167 | 35.61621 | 30.01843 | 40.36685 |
Scutiger sikimmensis | Anura | LC | Stream-dwelling | 15.863153 | 35.42554 | 29.76477 | 40.25812 |
Scutiger sikimmensis | Anura | LC | Stream-dwelling | 19.611445 | 35.95065 | 30.26357 | 40.55911 |
Leptobrachella baluensis | Anura | LC | Ground-dwelling | 26.935514 | 37.48202 | 31.52312 | 42.29090 |
Leptobrachella baluensis | Anura | LC | Ground-dwelling | 26.316600 | 37.39825 | 31.40967 | 42.15900 |
Leptobrachella baluensis | Anura | LC | Ground-dwelling | 28.162487 | 37.64809 | 31.61924 | 42.40341 |
Leptobrachella brevicrus | Anura | LC | Stream-dwelling | 27.086462 | 37.01628 | 31.43972 | 42.50315 |
Leptobrachella brevicrus | Anura | LC | Stream-dwelling | 26.556259 | 36.94268 | 31.47101 | 42.55987 |
Leptobrachella brevicrus | Anura | LC | Stream-dwelling | 28.322808 | 37.18789 | 31.57733 | 42.63490 |
Leptobrachella mjobergi | Anura | DD | Ground-dwelling | 27.207972 | 37.55515 | 32.12523 | 43.33455 |
Leptobrachella mjobergi | Anura | DD | Ground-dwelling | 26.793682 | 37.49978 | 32.07465 | 43.27043 |
Leptobrachella mjobergi | Anura | DD | Ground-dwelling | 27.965940 | 37.65645 | 32.21778 | 43.45187 |
Leptobrachella natunae | Anura | DD | Stream-dwelling | 27.443786 | 37.00954 | 31.37788 | 42.82441 |
Leptobrachella natunae | Anura | DD | Stream-dwelling | 26.999324 | 36.94908 | 31.27502 | 42.70756 |
Leptobrachella natunae | Anura | DD | Stream-dwelling | 28.214218 | 37.11434 | 31.46493 | 42.93842 |
Leptobrachella palmata | Anura | CR | Stream-dwelling | 28.251650 | 37.04446 | 31.58999 | 42.28575 |
Leptobrachella palmata | Anura | CR | Stream-dwelling | 27.794743 | 36.98257 | 31.57578 | 42.26071 |
Leptobrachella palmata | Anura | CR | Stream-dwelling | 29.494495 | 37.21280 | 31.70660 | 42.42319 |
Leptobrachella parva | Anura | LC | Ground-dwelling | 27.450199 | 37.66828 | 32.10878 | 43.13978 |
Leptobrachella parva | Anura | LC | Ground-dwelling | 26.884928 | 37.59092 | 32.07901 | 43.05200 |
Leptobrachella parva | Anura | LC | Ground-dwelling | 28.705602 | 37.84008 | 32.10526 | 43.24530 |
Leptobrachella serasanae | Anura | NT | Ground-dwelling | 27.727539 | 37.64507 | 31.91565 | 42.72273 |
Leptobrachella serasanae | Anura | NT | Ground-dwelling | 27.132025 | 37.56547 | 31.83468 | 42.67289 |
Leptobrachella serasanae | Anura | NT | Ground-dwelling | 28.951407 | 37.80865 | 32.07649 | 42.86296 |
Leptobrachium abbotti | Anura | LC | Ground-dwelling | 27.698796 | 37.51499 | 31.93219 | 43.18314 |
Leptobrachium abbotti | Anura | LC | Ground-dwelling | 27.061335 | 37.42906 | 31.94160 | 43.17394 |
Leptobrachium abbotti | Anura | LC | Ground-dwelling | 29.004963 | 37.69106 | 32.08627 | 43.36568 |
Leptobrachium gunungense | Anura | LC | Ground-dwelling | 27.024307 | 37.51725 | 31.66559 | 42.71233 |
Leptobrachium gunungense | Anura | LC | Ground-dwelling | 26.595031 | 37.45927 | 31.61865 | 42.69280 |
Leptobrachium gunungense | Anura | LC | Ground-dwelling | 27.949343 | 37.64218 | 31.76415 | 42.84997 |
Leptobrachium montanum | Anura | LC | Ground-dwelling | 27.555015 | 37.58517 | 31.92610 | 42.87734 |
Leptobrachium montanum | Anura | LC | Ground-dwelling | 26.916703 | 37.49771 | 31.87904 | 42.81990 |
Leptobrachium montanum | Anura | LC | Ground-dwelling | 28.913322 | 37.77127 | 32.09035 | 42.99958 |
Leptobrachium hasseltii | Anura | LC | Ground-dwelling | 27.580949 | 37.60600 | 32.46158 | 43.19170 |
Leptobrachium hasseltii | Anura | LC | Ground-dwelling | 26.958626 | 37.52084 | 32.27142 | 42.99956 |
Leptobrachium hasseltii | Anura | LC | Ground-dwelling | 28.840347 | 37.77834 | 32.61605 | 43.30672 |
Leptobrachium smithi | Anura | LC | Ground-dwelling | 27.622594 | 37.65749 | 32.12994 | 42.76387 |
Leptobrachium smithi | Anura | LC | Ground-dwelling | 26.807194 | 37.54451 | 32.15386 | 42.70069 |
Leptobrachium smithi | Anura | LC | Ground-dwelling | 29.359123 | 37.89808 | 32.21675 | 42.97144 |
Leptobrachium hendricksoni | Anura | LC | Ground-dwelling | 28.134864 | 37.70217 | 32.48756 | 43.47036 |
Leptobrachium hendricksoni | Anura | LC | Ground-dwelling | 27.463206 | 37.61113 | 32.39294 | 43.35674 |
Leptobrachium hendricksoni | Anura | LC | Ground-dwelling | 29.536202 | 37.89212 | 32.70280 | 43.83778 |
Leptobrachium nigrops | Anura | LC | Ground-dwelling | 28.394416 | 37.72381 | 32.30381 | 43.51403 |
Leptobrachium nigrops | Anura | LC | Ground-dwelling | 27.738270 | 37.63529 | 32.28099 | 43.49734 |
Leptobrachium nigrops | Anura | LC | Ground-dwelling | 29.713749 | 37.90182 | 32.43573 | 43.71730 |
Leptobrachium ailaonicum | Anura | LC | Ground-dwelling | 23.394604 | 37.21318 | 31.37256 | 42.65228 |
Leptobrachium ailaonicum | Anura | LC | Ground-dwelling | 22.386658 | 37.07649 | 31.24720 | 42.44693 |
Leptobrachium ailaonicum | Anura | LC | Ground-dwelling | 25.465492 | 37.49403 | 31.88101 | 43.24536 |
Leptobrachium boringii | Anura | EN | Ground-dwelling | 22.786221 | 37.06498 | 31.71625 | 42.16705 |
Leptobrachium boringii | Anura | EN | Ground-dwelling | 20.917801 | 36.80999 | 31.60653 | 42.06191 |
Leptobrachium boringii | Anura | EN | Ground-dwelling | 25.151088 | 37.38772 | 31.96459 | 42.58135 |
Leptobrachium leishanense | Anura | EN | Ground-dwelling | 25.769995 | 37.43407 | 32.07557 | 42.83944 |
Leptobrachium leishanense | Anura | EN | Ground-dwelling | 24.497611 | 37.26076 | 31.94888 | 42.70038 |
Leptobrachium leishanense | Anura | EN | Ground-dwelling | 28.047797 | 37.74432 | 32.42565 | 43.30152 |
Leptobrachium liui | Anura | LC | Ground-dwelling | 27.172840 | 37.66711 | 32.60323 | 43.63222 |
Leptobrachium liui | Anura | LC | Ground-dwelling | 25.796811 | 37.48128 | 32.28307 | 43.25327 |
Leptobrachium liui | Anura | LC | Ground-dwelling | 29.583745 | 37.99270 | 32.70558 | 43.77232 |
Leptobrachium chapaense | Anura | LC | Ground-dwelling | 24.353354 | 37.27652 | 31.84241 | 42.80433 |
Leptobrachium chapaense | Anura | LC | Ground-dwelling | 23.374265 | 37.14326 | 31.71552 | 42.64731 |
Leptobrachium chapaense | Anura | LC | Ground-dwelling | 26.398240 | 37.55484 | 31.98512 | 43.03338 |
Leptobrachium huashen | Anura | LC | Ground-dwelling | 22.998975 | 37.11238 | 32.02906 | 42.89203 |
Leptobrachium huashen | Anura | LC | Ground-dwelling | 21.999615 | 36.97655 | 31.89530 | 42.67103 |
Leptobrachium huashen | Anura | LC | Ground-dwelling | 25.045117 | 37.39048 | 32.05690 | 42.96256 |
Leptobrachium promustache | Anura | EN | Stream-dwelling | 25.500432 | 36.75267 | 31.69301 | 42.05273 |
Leptobrachium promustache | Anura | EN | Stream-dwelling | 24.463648 | 36.61137 | 31.60713 | 41.88290 |
Leptobrachium promustache | Anura | EN | Stream-dwelling | 27.451252 | 37.01855 | 31.99186 | 42.38978 |
Leptobrachium banae | Anura | LC | Ground-dwelling | 27.814077 | 37.68549 | 32.40052 | 43.21208 |
Leptobrachium banae | Anura | LC | Ground-dwelling | 26.905008 | 37.56055 | 32.36771 | 43.16640 |
Leptobrachium banae | Anura | LC | Ground-dwelling | 29.541577 | 37.92290 | 32.43476 | 43.28108 |
Leptobrachium buchardi | Anura | EN | Ground-dwelling | 28.429363 | 37.78493 | 32.68892 | 43.73846 |
Leptobrachium buchardi | Anura | EN | Ground-dwelling | 27.427371 | 37.64807 | 32.59036 | 43.56955 |
Leptobrachium buchardi | Anura | EN | Ground-dwelling | 30.308497 | 38.04161 | 32.68400 | 43.84399 |
Leptobrachium ngoclinhense | Anura | EN | Ground-dwelling | 27.647134 | 37.63744 | 31.96204 | 43.00650 |
Leptobrachium ngoclinhense | Anura | EN | Ground-dwelling | 26.659697 | 37.50292 | 31.82988 | 42.86151 |
Leptobrachium ngoclinhense | Anura | EN | Ground-dwelling | 29.428639 | 37.88013 | 32.18791 | 43.25379 |
Leptobrachium hainanense | Anura | VU | Ground-dwelling | 27.973108 | 37.71887 | 32.12293 | 42.84645 |
Leptobrachium hainanense | Anura | VU | Ground-dwelling | 27.367922 | 37.63707 | 32.05267 | 42.74674 |
Leptobrachium hainanense | Anura | VU | Ground-dwelling | 29.095461 | 37.87056 | 32.11690 | 42.91606 |
Leptobrachium mouhoti | Anura | LC | Ground-dwelling | 28.128180 | 37.79012 | 32.43505 | 43.21208 |
Leptobrachium mouhoti | Anura | LC | Ground-dwelling | 27.101017 | 37.64949 | 32.24781 | 42.97992 |
Leptobrachium mouhoti | Anura | LC | Ground-dwelling | 29.954752 | 38.04020 | 32.78924 | 43.62492 |
Leptobrachium pullum | Anura | LC | Ground-dwelling | 28.014092 | 37.71275 | 32.03845 | 43.13706 |
Leptobrachium pullum | Anura | LC | Ground-dwelling | 27.052053 | 37.58241 | 31.89480 | 42.98988 |
Leptobrachium pullum | Anura | LC | Ground-dwelling | 29.773359 | 37.95111 | 32.19658 | 43.35847 |
Leptobrachium xanthops | Anura | EN | Stream-dwelling | 27.398082 | 37.02652 | 31.63289 | 42.41333 |
Leptobrachium xanthops | Anura | EN | Stream-dwelling | 26.443812 | 36.89608 | 31.22208 | 42.04330 |
Leptobrachium xanthops | Anura | EN | Stream-dwelling | 29.147029 | 37.26558 | 31.49933 | 42.35430 |
Leptobrachium xanthospilum | Anura | EN | Stream-dwelling | 27.001410 | 37.02609 | 31.20296 | 42.44350 |
Leptobrachium xanthospilum | Anura | EN | Stream-dwelling | 26.005306 | 36.89139 | 31.14829 | 42.34705 |
Leptobrachium xanthospilum | Anura | EN | Stream-dwelling | 28.753804 | 37.26305 | 31.29913 | 42.66151 |
Leptobrachium leucops | Anura | VU | Ground-dwelling | 28.175925 | 37.79502 | 31.99939 | 42.98295 |
Leptobrachium leucops | Anura | VU | Ground-dwelling | 27.169330 | 37.65743 | 32.66430 | 43.60293 |
Leptobrachium leucops | Anura | VU | Ground-dwelling | 29.908032 | 38.03176 | 32.25191 | 43.31151 |
Megophrys kobayashii | Anura | LC | Ground-dwelling | 27.355101 | 37.60002 | 32.52275 | 43.13999 |
Megophrys kobayashii | Anura | LC | Ground-dwelling | 26.788195 | 37.52209 | 32.41089 | 43.00807 |
Megophrys kobayashii | Anura | LC | Ground-dwelling | 28.477535 | 37.75433 | 32.61742 | 43.30960 |
Megophrys ligayae | Anura | NT | Ground-dwelling | 27.659089 | 37.65928 | 32.80860 | 42.87257 |
Megophrys ligayae | Anura | NT | Ground-dwelling | 27.243458 | 37.60111 | 32.73862 | 42.79545 |
Megophrys ligayae | Anura | NT | Ground-dwelling | 28.633065 | 37.79560 | 33.07434 | 43.12396 |
Megophrys montana | Anura | LC | Ground-dwelling | 27.241860 | 37.51384 | 32.65982 | 43.25006 |
Megophrys montana | Anura | LC | Ground-dwelling | 26.619222 | 37.42760 | 32.58124 | 43.16788 |
Megophrys montana | Anura | LC | Ground-dwelling | 28.489779 | 37.68667 | 32.58925 | 43.15402 |
Megophrys nasuta | Anura | LC | Ground-dwelling | 28.098417 | 37.61849 | 32.08103 | 42.75383 |
Megophrys nasuta | Anura | LC | Ground-dwelling | 27.458862 | 37.52976 | 31.88248 | 42.52948 |
Megophrys nasuta | Anura | LC | Ground-dwelling | 29.422792 | 37.80223 | 32.14703 | 42.88806 |
Megophrys stejnegeri | Anura | LC | Ground-dwelling | 27.412649 | 37.58261 | 32.32159 | 42.91893 |
Megophrys stejnegeri | Anura | LC | Ground-dwelling | 26.897312 | 37.51150 | 32.24858 | 42.83330 |
Megophrys stejnegeri | Anura | LC | Ground-dwelling | 28.489388 | 37.73119 | 32.42226 | 43.13316 |
Pelobates fuscus | Anura | LC | Ground-dwelling | 18.298481 | 37.21005 | 33.79365 | 40.81927 |
Pelobates fuscus | Anura | LC | Ground-dwelling | 15.388016 | 36.82438 | 33.35040 | 40.45472 |
Pelobates fuscus | Anura | LC | Ground-dwelling | 23.253530 | 37.86665 | 34.13024 | 41.33261 |
Pelobates syriacus | Anura | LC | Fossorial | 20.230138 | 38.51915 | 34.60137 | 41.83676 |
Pelobates syriacus | Anura | LC | Fossorial | 18.446065 | 38.27858 | 34.43524 | 41.54138 |
Pelobates syriacus | Anura | LC | Fossorial | 23.303427 | 38.93356 | 34.90104 | 42.36709 |
Pelobates varaldii | Anura | EN | Fossorial | 22.475028 | 38.97489 | 35.67156 | 41.99097 |
Pelobates varaldii | Anura | EN | Fossorial | 21.105990 | 38.78960 | 35.62592 | 41.82929 |
Pelobates varaldii | Anura | EN | Fossorial | 25.051458 | 39.32361 | 35.87302 | 42.32328 |
Hadromophryne natalensis | Anura | LC | Stream-dwelling | 22.172363 | 35.83821 | 28.78339 | 42.03104 |
Hadromophryne natalensis | Anura | LC | Stream-dwelling | 20.883641 | 35.65716 | 28.74357 | 42.03048 |
Hadromophryne natalensis | Anura | LC | Stream-dwelling | 24.344933 | 36.14344 | 29.00269 | 42.25375 |
Heleophryne hewitti | Anura | EN | Ground-dwelling | 21.140698 | 36.18998 | 29.98008 | 42.67159 |
Heleophryne hewitti | Anura | EN | Ground-dwelling | 19.675221 | 35.98442 | 29.73312 | 42.49033 |
Heleophryne hewitti | Anura | EN | Ground-dwelling | 23.635260 | 36.53987 | 30.77107 | 43.61849 |
Heleophryne orientalis | Anura | LC | Stream-dwelling | 21.257283 | 35.61720 | 29.12261 | 41.56000 |
Heleophryne orientalis | Anura | LC | Stream-dwelling | 19.700220 | 35.40158 | 28.98194 | 41.44331 |
Heleophryne orientalis | Anura | LC | Stream-dwelling | 23.845278 | 35.97559 | 29.51941 | 41.94130 |
Heleophryne purcelli | Anura | LC | Stream-dwelling | 20.461482 | 35.48953 | 29.16919 | 41.98181 |
Heleophryne purcelli | Anura | LC | Stream-dwelling | 19.089764 | 35.29727 | 28.86076 | 41.71517 |
Heleophryne purcelli | Anura | LC | Stream-dwelling | 23.196806 | 35.87292 | 29.17424 | 41.99295 |
Heleophryne regis | Anura | LC | Stream-dwelling | 20.979607 | 35.51532 | 29.33320 | 42.24833 |
Heleophryne regis | Anura | LC | Stream-dwelling | 19.408928 | 35.29674 | 29.02899 | 42.03835 |
Heleophryne regis | Anura | LC | Stream-dwelling | 23.589656 | 35.87855 | 29.58381 | 42.50260 |
Heleophryne rosei | Anura | CR | Stream-dwelling | 20.209458 | 35.38871 | 28.77093 | 41.51612 |
Heleophryne rosei | Anura | CR | Stream-dwelling | 18.876407 | 35.20536 | 28.62996 | 41.37194 |
Heleophryne rosei | Anura | CR | Stream-dwelling | 23.098046 | 35.78602 | 29.24705 | 41.95665 |
Philoria pughi | Anura | EN | Stream-dwelling | 22.996696 | 31.38176 | 28.61644 | 34.20535 |
Philoria pughi | Anura | EN | Stream-dwelling | 21.515672 | 31.14411 | 28.45762 | 33.92249 |
Philoria pughi | Anura | EN | Stream-dwelling | 25.497317 | 31.78301 | 28.87077 | 34.70553 |
Philoria kundagungan | Anura | EN | Ground-dwelling | 23.254138 | 33.20820 | 29.90864 | 36.42128 |
Philoria kundagungan | Anura | EN | Ground-dwelling | 21.777520 | 32.98152 | 29.74202 | 36.10394 |
Philoria kundagungan | Anura | EN | Ground-dwelling | 25.747962 | 33.59103 | 30.54998 | 37.32309 |
Philoria richmondensis | Anura | EN | Ground-dwelling | 23.068345 | 33.24067 | 30.02506 | 36.30928 |
Philoria richmondensis | Anura | EN | Ground-dwelling | 21.601952 | 33.01216 | 29.94723 | 36.18755 |
Philoria richmondensis | Anura | EN | Ground-dwelling | 25.603207 | 33.63566 | 30.41088 | 36.83894 |
Limnodynastes convexiusculus | Anura | LC | Semi-aquatic | 27.283305 | 36.41473 | 33.16628 | 39.73341 |
Limnodynastes convexiusculus | Anura | LC | Semi-aquatic | 26.354972 | 36.27655 | 33.09517 | 39.56245 |
Limnodynastes convexiusculus | Anura | LC | Semi-aquatic | 29.141358 | 36.69131 | 33.55988 | 40.17763 |
Limnodynastes lignarius | Anura | LC | Ground-dwelling | 27.926154 | 36.45647 | 33.53367 | 39.96807 |
Limnodynastes lignarius | Anura | LC | Ground-dwelling | 27.020006 | 36.32045 | 33.40358 | 39.80721 |
Limnodynastes lignarius | Anura | LC | Ground-dwelling | 29.777049 | 36.73431 | 33.34150 | 40.00840 |
Limnodynastes depressus | Anura | LC | Ground-dwelling | 27.965034 | 35.49580 | 32.17465 | 38.41668 |
Limnodynastes depressus | Anura | LC | Ground-dwelling | 27.076421 | 35.35912 | 32.16631 | 38.31696 |
Limnodynastes depressus | Anura | LC | Ground-dwelling | 29.822843 | 35.78154 | 32.44046 | 38.82789 |
Limnodynastes terraereginae | Anura | LC | Semi-aquatic | 24.292058 | 36.19110 | 33.38741 | 38.62868 |
Limnodynastes terraereginae | Anura | LC | Semi-aquatic | 22.978021 | 35.99395 | 33.23473 | 38.35744 |
Limnodynastes terraereginae | Anura | LC | Semi-aquatic | 26.691558 | 36.55112 | 33.52156 | 39.00482 |
Limnodynastes dumerilii | Anura | LC | Ground-dwelling | 20.020825 | 35.20999 | 32.73213 | 37.97433 |
Limnodynastes dumerilii | Anura | LC | Ground-dwelling | 18.259028 | 34.94401 | 32.48661 | 37.73902 |
Limnodynastes dumerilii | Anura | LC | Ground-dwelling | 23.046207 | 35.66673 | 33.12807 | 38.40667 |
Limnodynastes interioris | Anura | LC | Semi-aquatic | 21.179487 | 35.65820 | 33.18487 | 38.45802 |
Limnodynastes interioris | Anura | LC | Semi-aquatic | 19.245800 | 35.36336 | 32.92347 | 38.10163 |
Limnodynastes interioris | Anura | LC | Semi-aquatic | 24.429094 | 36.15367 | 33.43958 | 38.91527 |
Lechriodus aganoposis | Anura | LC | Ground-dwelling | 26.515807 | 38.27235 | 35.10490 | 41.86077 |
Lechriodus aganoposis | Anura | LC | Ground-dwelling | 25.665364 | 38.14684 | 35.00529 | 41.72814 |
Lechriodus aganoposis | Anura | LC | Ground-dwelling | 27.974721 | 38.48765 | 35.12957 | 41.97872 |
Lechriodus melanopyga | Anura | LC | Ground-dwelling | 26.996446 | 38.41272 | 35.21139 | 41.75258 |
Lechriodus melanopyga | Anura | LC | Ground-dwelling | 26.243506 | 38.30220 | 35.07638 | 41.54096 |
Lechriodus melanopyga | Anura | LC | Ground-dwelling | 28.362972 | 38.61329 | 35.03731 | 41.70273 |
Lechriodus fletcheri | Anura | LC | Ground-dwelling | 22.398282 | 37.34333 | 33.89052 | 40.64892 |
Lechriodus fletcheri | Anura | LC | Ground-dwelling | 21.015283 | 37.13953 | 33.61463 | 40.35259 |
Lechriodus fletcheri | Anura | LC | Ground-dwelling | 24.589159 | 37.66620 | 34.40756 | 41.31859 |
Lechriodus platyceps | Anura | LC | Ground-dwelling | 26.813659 | 37.93415 | 34.60927 | 41.23115 |
Lechriodus platyceps | Anura | LC | Ground-dwelling | 26.172609 | 37.83926 | 34.68178 | 41.23562 |
Lechriodus platyceps | Anura | LC | Ground-dwelling | 28.089212 | 38.12297 | 34.78208 | 41.54550 |
Platyplectrum spenceri | Anura | LC | Ground-dwelling | 24.021179 | 37.04715 | 33.64490 | 40.64676 |
Platyplectrum spenceri | Anura | LC | Ground-dwelling | 22.283374 | 36.78384 | 33.55147 | 40.50496 |
Platyplectrum spenceri | Anura | LC | Ground-dwelling | 26.807581 | 37.46934 | 34.03600 | 41.11036 |
Heleioporus albopunctatus | Anura | LC | Fossorial | 20.721896 | 35.46601 | 31.36531 | 39.22779 |
Heleioporus albopunctatus | Anura | LC | Fossorial | 19.098688 | 35.22364 | 31.08429 | 38.92713 |
Heleioporus albopunctatus | Anura | LC | Fossorial | 24.030074 | 35.95995 | 32.24135 | 40.06325 |
Heleioporus barycragus | Anura | LC | Fossorial | 20.087936 | 35.38360 | 31.26162 | 39.35667 |
Heleioporus barycragus | Anura | LC | Fossorial | 18.509452 | 35.14428 | 30.95125 | 39.07098 |
Heleioporus barycragus | Anura | LC | Fossorial | 23.382190 | 35.88304 | 31.77914 | 39.90695 |
Heleioporus australiacus | Anura | VU | Fossorial | 19.841335 | 35.34353 | 31.26608 | 39.22552 |
Heleioporus australiacus | Anura | VU | Fossorial | 18.113833 | 35.08204 | 31.16094 | 39.05894 |
Heleioporus australiacus | Anura | VU | Fossorial | 22.506165 | 35.74691 | 31.40407 | 39.54230 |
Heleioporus eyrei | Anura | LC | Fossorial | 20.094598 | 35.32059 | 31.17670 | 39.14883 |
Heleioporus eyrei | Anura | LC | Fossorial | 18.581940 | 35.08948 | 30.82038 | 38.89209 |
Heleioporus eyrei | Anura | LC | Fossorial | 23.148271 | 35.78713 | 31.63147 | 39.72696 |
Heleioporus inornatus | Anura | LC | Fossorial | 19.432567 | 35.25211 | 31.45445 | 39.40960 |
Heleioporus inornatus | Anura | LC | Fossorial | 17.998095 | 35.03611 | 31.22237 | 39.17541 |
Heleioporus inornatus | Anura | LC | Fossorial | 22.246677 | 35.67585 | 31.73902 | 39.82021 |
Heleioporus psammophilus | Anura | LC | Fossorial | 20.232684 | 35.33351 | 31.25881 | 39.21683 |
Heleioporus psammophilus | Anura | LC | Fossorial | 18.697446 | 35.10066 | 31.11170 | 38.95073 |
Heleioporus psammophilus | Anura | LC | Fossorial | 23.327167 | 35.80285 | 31.68303 | 39.74225 |
Neobatrachus albipes | Anura | LC | Ground-dwelling | 20.096290 | 34.12403 | 30.51563 | 37.76046 |
Neobatrachus albipes | Anura | LC | Ground-dwelling | 18.547128 | 33.89093 | 30.28613 | 37.50436 |
Neobatrachus albipes | Anura | LC | Ground-dwelling | 23.301094 | 34.60625 | 31.02255 | 38.30426 |
Neobatrachus kunapalari | Anura | LC | Ground-dwelling | 20.739877 | 34.22747 | 30.48666 | 37.97073 |
Neobatrachus kunapalari | Anura | LC | Ground-dwelling | 19.130663 | 33.97839 | 30.24851 | 37.66288 |
Neobatrachus kunapalari | Anura | LC | Ground-dwelling | 24.122119 | 34.75098 | 31.18205 | 38.78474 |
Neobatrachus aquilonius | Anura | LC | Ground-dwelling | 26.662043 | 34.71687 | 31.05655 | 38.02974 |
Neobatrachus aquilonius | Anura | LC | Ground-dwelling | 25.416230 | 34.52580 | 30.83849 | 37.71749 |
Neobatrachus aquilonius | Anura | LC | Ground-dwelling | 28.749941 | 35.03709 | 31.17812 | 38.26955 |
Neobatrachus wilsmorei | Anura | LC | Ground-dwelling | 22.568354 | 34.17387 | 30.45825 | 37.75759 |
Neobatrachus wilsmorei | Anura | LC | Ground-dwelling | 20.905624 | 33.91462 | 30.28500 | 37.46183 |
Neobatrachus wilsmorei | Anura | LC | Ground-dwelling | 25.739780 | 34.66837 | 30.76964 | 38.31278 |
Neobatrachus sutor | Anura | LC | Ground-dwelling | 22.246476 | 33.95545 | 30.57421 | 37.49560 |
Neobatrachus sutor | Anura | LC | Ground-dwelling | 20.547795 | 33.69412 | 30.41306 | 37.20667 |
Neobatrachus sutor | Anura | LC | Ground-dwelling | 25.411921 | 34.44243 | 30.77847 | 37.91342 |
Neobatrachus fulvus | Anura | LC | Ground-dwelling | 25.092937 | 34.32716 | 30.95650 | 37.37284 |
Neobatrachus fulvus | Anura | LC | Ground-dwelling | 23.536429 | 34.08634 | 31.01929 | 37.32558 |
Neobatrachus fulvus | Anura | LC | Ground-dwelling | 27.628459 | 34.71946 | 31.38122 | 37.96692 |
Neobatrachus pelobatoides | Anura | LC | Ground-dwelling | 20.257054 | 33.63912 | 30.11061 | 36.69553 |
Neobatrachus pelobatoides | Anura | LC | Ground-dwelling | 18.697751 | 33.39970 | 30.17182 | 36.73153 |
Neobatrachus pelobatoides | Anura | LC | Ground-dwelling | 23.500847 | 34.13718 | 30.81352 | 37.53269 |
Notaden bennettii | Anura | LC | Ground-dwelling | 23.210089 | 35.19796 | 31.17844 | 39.87515 |
Notaden bennettii | Anura | LC | Ground-dwelling | 21.586957 | 34.95582 | 31.08536 | 39.69676 |
Notaden bennettii | Anura | LC | Ground-dwelling | 26.035185 | 35.61940 | 31.45413 | 40.27523 |
Notaden melanoscaphus | Anura | LC | Ground-dwelling | 27.596281 | 35.81670 | 31.68726 | 40.58213 |
Notaden melanoscaphus | Anura | LC | Ground-dwelling | 26.614950 | 35.66724 | 30.68255 | 39.51011 |
Notaden melanoscaphus | Anura | LC | Ground-dwelling | 29.562287 | 36.11612 | 31.83479 | 40.79944 |
Notaden weigeli | Anura | LC | Fossorial | 27.806553 | 36.87589 | 32.58634 | 41.73535 |
Notaden weigeli | Anura | LC | Fossorial | 27.081922 | 36.76466 | 32.51490 | 41.59960 |
Notaden weigeli | Anura | LC | Fossorial | 29.441316 | 37.12683 | 32.68580 | 41.96728 |
Notaden nichollsi | Anura | LC | Fossorial | 24.779023 | 36.36611 | 32.18657 | 41.10436 |
Notaden nichollsi | Anura | LC | Fossorial | 23.116779 | 36.11590 | 31.40386 | 40.30722 |
Notaden nichollsi | Anura | LC | Fossorial | 27.352006 | 36.75340 | 32.30858 | 41.29841 |
Arenophryne rotunda | Anura | LC | Fossorial | 24.014023 | 37.01512 | 33.59275 | 40.82080 |
Arenophryne rotunda | Anura | LC | Fossorial | 22.310826 | 36.75278 | 33.38244 | 40.63375 |
Arenophryne rotunda | Anura | LC | Fossorial | 26.701130 | 37.42902 | 34.08055 | 41.37069 |
Metacrinia nichollsi | Anura | LC | Ground-dwelling | 18.741857 | 35.13821 | 31.80587 | 39.23375 |
Metacrinia nichollsi | Anura | LC | Ground-dwelling | 17.430397 | 34.93923 | 31.50495 | 38.94187 |
Metacrinia nichollsi | Anura | LC | Ground-dwelling | 21.167909 | 35.50629 | 31.92418 | 39.46136 |
Myobatrachus gouldii | Anura | LC | Fossorial | 20.295099 | 36.32799 | 32.83611 | 40.09925 |
Myobatrachus gouldii | Anura | LC | Fossorial | 18.720299 | 36.08498 | 32.18017 | 39.42206 |
Myobatrachus gouldii | Anura | LC | Fossorial | 23.551868 | 36.83053 | 33.26228 | 40.62774 |
Pseudophryne australis | Anura | VU | Ground-dwelling | 21.053330 | 36.74521 | 34.09868 | 39.55364 |
Pseudophryne australis | Anura | VU | Ground-dwelling | 19.518898 | 36.51610 | 33.93523 | 39.27341 |
Pseudophryne australis | Anura | VU | Ground-dwelling | 23.460460 | 37.10463 | 34.34656 | 39.98101 |
Pseudophryne occidentalis | Anura | LC | Ground-dwelling | 21.198709 | 36.25270 | 33.53242 | 38.66946 |
Pseudophryne occidentalis | Anura | LC | Ground-dwelling | 19.578549 | 36.01249 | 33.39345 | 38.44278 |
Pseudophryne occidentalis | Anura | LC | Ground-dwelling | 24.534646 | 36.74730 | 33.92512 | 39.27630 |
Pseudophryne coriacea | Anura | LC | Ground-dwelling | 22.548203 | 35.89661 | 32.76833 | 39.27161 |
Pseudophryne coriacea | Anura | LC | Ground-dwelling | 21.145806 | 35.68016 | 32.54869 | 39.00371 |
Pseudophryne coriacea | Anura | LC | Ground-dwelling | 24.814203 | 36.24634 | 33.07013 | 39.67281 |
Pseudophryne covacevichae | Anura | EN | Ground-dwelling | 25.096658 | 36.28569 | 32.92698 | 39.69216 |
Pseudophryne covacevichae | Anura | EN | Ground-dwelling | 24.041192 | 36.12513 | 32.80166 | 39.46570 |
Pseudophryne covacevichae | Anura | EN | Ground-dwelling | 26.972135 | 36.57099 | 33.22568 | 40.20584 |
Pseudophryne guentheri | Anura | LC | Ground-dwelling | 20.555715 | 34.86434 | 32.00340 | 37.48600 |
Pseudophryne guentheri | Anura | LC | Ground-dwelling | 18.991763 | 34.62350 | 31.82076 | 37.27820 |
Pseudophryne guentheri | Anura | LC | Ground-dwelling | 23.745614 | 35.35559 | 32.54203 | 38.10538 |
Pseudophryne douglasi | Anura | LC | Aquatic | 25.161909 | 35.99473 | 32.84600 | 39.15821 |
Pseudophryne douglasi | Anura | LC | Aquatic | 23.592177 | 35.75487 | 32.60568 | 38.84860 |
Pseudophryne douglasi | Anura | LC | Aquatic | 27.737807 | 36.38835 | 33.14156 | 39.61738 |
Pseudophryne pengilleyi | Anura | CR | Stream-dwelling | 19.261589 | 34.72713 | 31.57721 | 38.29536 |
Pseudophryne pengilleyi | Anura | CR | Stream-dwelling | 17.296047 | 34.43419 | 30.76491 | 37.40833 |
Pseudophryne pengilleyi | Anura | CR | Stream-dwelling | 22.460332 | 35.20385 | 31.77895 | 38.60873 |
Pseudophryne raveni | Anura | LC | Ground-dwelling | 23.994463 | 35.99709 | 32.38232 | 39.47506 |
Pseudophryne raveni | Anura | LC | Ground-dwelling | 22.705383 | 35.80388 | 32.40682 | 39.46857 |
Pseudophryne raveni | Anura | LC | Ground-dwelling | 26.243957 | 36.33426 | 32.80223 | 40.06650 |
Spicospina flammocaerulea | Anura | VU | Semi-aquatic | 18.361767 | 34.91743 | 30.92015 | 39.22037 |
Spicospina flammocaerulea | Anura | VU | Semi-aquatic | 17.104306 | 34.72811 | 30.56691 | 38.82700 |
Spicospina flammocaerulea | Anura | VU | Semi-aquatic | 20.714905 | 35.27170 | 30.97102 | 39.33675 |
Uperoleia altissima | Anura | LC | Ground-dwelling | 25.916897 | 35.72614 | 32.61487 | 39.71355 |
Uperoleia altissima | Anura | LC | Ground-dwelling | 24.779931 | 35.55312 | 32.41516 | 39.45684 |
Uperoleia altissima | Anura | LC | Ground-dwelling | 27.986141 | 36.04105 | 32.80507 | 40.06344 |
Uperoleia littlejohni | Anura | LC | Ground-dwelling | 25.465719 | 35.68502 | 32.34386 | 39.06677 |
Uperoleia littlejohni | Anura | LC | Ground-dwelling | 24.207229 | 35.49299 | 32.06482 | 38.73350 |
Uperoleia littlejohni | Anura | LC | Ground-dwelling | 27.846339 | 36.04826 | 32.51415 | 39.39353 |
Uperoleia orientalis | Anura | DD | Ground-dwelling | 27.542531 | 35.98522 | 32.52387 | 39.50670 |
Uperoleia orientalis | Anura | DD | Ground-dwelling | 26.402106 | 35.81318 | 32.35863 | 39.34813 |
Uperoleia orientalis | Anura | DD | Ground-dwelling | 29.777245 | 36.32234 | 32.83171 | 39.89516 |
Uperoleia arenicola | Anura | LC | Ground-dwelling | 28.308302 | 36.12066 | 32.25429 | 39.93318 |
Uperoleia arenicola | Anura | LC | Ground-dwelling | 27.371803 | 35.97926 | 32.11219 | 39.69601 |
Uperoleia arenicola | Anura | LC | Ground-dwelling | 30.057508 | 36.38478 | 32.50548 | 40.32568 |
Uperoleia borealis | Anura | LC | Ground-dwelling | 27.427403 | 35.90863 | 32.36400 | 39.45178 |
Uperoleia borealis | Anura | LC | Ground-dwelling | 26.452055 | 35.76351 | 32.39243 | 39.45722 |
Uperoleia borealis | Anura | LC | Ground-dwelling | 29.399443 | 36.20205 | 32.53375 | 39.71093 |
Uperoleia crassa | Anura | LC | Semi-aquatic | 27.804363 | 36.28368 | 32.92692 | 40.16207 |
Uperoleia crassa | Anura | LC | Semi-aquatic | 27.053206 | 36.16894 | 32.65808 | 39.87205 |
Uperoleia crassa | Anura | LC | Semi-aquatic | 29.457894 | 36.53626 | 32.98109 | 40.33044 |
Uperoleia inundata | Anura | LC | Ground-dwelling | 27.828604 | 35.99790 | 32.44396 | 39.33330 |
Uperoleia inundata | Anura | LC | Ground-dwelling | 26.860967 | 35.85310 | 32.38625 | 39.25688 |
Uperoleia inundata | Anura | LC | Ground-dwelling | 29.708003 | 36.27914 | 32.70324 | 39.72586 |
Uperoleia russelli | Anura | LC | Ground-dwelling | 24.381793 | 35.52300 | 31.73319 | 39.16990 |
Uperoleia russelli | Anura | LC | Ground-dwelling | 22.739283 | 35.27333 | 31.44186 | 38.84919 |
Uperoleia russelli | Anura | LC | Ground-dwelling | 27.209242 | 35.95278 | 32.13487 | 39.70762 |
Uperoleia talpa | Anura | LC | Ground-dwelling | 27.491391 | 36.03839 | 32.06257 | 39.77105 |
Uperoleia talpa | Anura | LC | Ground-dwelling | 26.518495 | 35.88879 | 31.90788 | 39.59259 |
Uperoleia talpa | Anura | LC | Ground-dwelling | 29.303692 | 36.31707 | 32.36852 | 40.13041 |
Uperoleia aspera | Anura | LC | Ground-dwelling | 27.760070 | 36.04318 | 32.49008 | 40.14203 |
Uperoleia aspera | Anura | LC | Ground-dwelling | 26.860537 | 35.90487 | 32.43923 | 40.07456 |
Uperoleia aspera | Anura | LC | Ground-dwelling | 29.568121 | 36.32117 | 32.70310 | 40.43166 |
Uperoleia lithomoda | Anura | LC | Ground-dwelling | 27.310559 | 35.86772 | 32.32825 | 39.98099 |
Uperoleia lithomoda | Anura | LC | Ground-dwelling | 26.294669 | 35.71179 | 32.01635 | 39.59380 |
Uperoleia lithomoda | Anura | LC | Ground-dwelling | 29.318382 | 36.17592 | 32.67013 | 40.35343 |
Uperoleia trachyderma | Anura | LC | Ground-dwelling | 26.778073 | 35.86241 | 31.98474 | 39.35727 |
Uperoleia trachyderma | Anura | LC | Ground-dwelling | 25.404650 | 35.65128 | 31.71264 | 39.12048 |
Uperoleia trachyderma | Anura | LC | Ground-dwelling | 28.956057 | 36.19722 | 32.37102 | 39.96341 |
Uperoleia minima | Anura | LC | Ground-dwelling | 27.780039 | 36.00905 | 32.09514 | 39.94206 |
Uperoleia minima | Anura | LC | Ground-dwelling | 27.036499 | 35.89638 | 32.24172 | 40.02974 |
Uperoleia minima | Anura | LC | Ground-dwelling | 29.451546 | 36.26234 | 32.36981 | 40.23944 |
Uperoleia glandulosa | Anura | LC | Ground-dwelling | 26.199597 | 35.76190 | 31.87268 | 39.77956 |
Uperoleia glandulosa | Anura | LC | Ground-dwelling | 24.891284 | 35.56574 | 31.63709 | 39.50041 |
Uperoleia glandulosa | Anura | LC | Ground-dwelling | 28.380390 | 36.08887 | 32.13827 | 40.11401 |
Uperoleia martini | Anura | DD | Ground-dwelling | 18.933984 | 34.65284 | 31.07386 | 38.04895 |
Uperoleia martini | Anura | DD | Ground-dwelling | 17.116167 | 34.37618 | 30.87117 | 37.84211 |
Uperoleia martini | Anura | DD | Ground-dwelling | 21.667991 | 35.06895 | 31.62583 | 38.64044 |
Uperoleia daviesae | Anura | EN | Ground-dwelling | 28.063551 | 36.08228 | 31.87735 | 39.86421 |
Uperoleia daviesae | Anura | EN | Ground-dwelling | 27.372574 | 35.97751 | 31.79333 | 39.79908 |
Uperoleia daviesae | Anura | EN | Ground-dwelling | 29.348685 | 36.27714 | 31.99610 | 40.11323 |
Uperoleia micromeles | Anura | LC | Ground-dwelling | 25.088051 | 35.56844 | 31.90848 | 39.39294 |
Uperoleia micromeles | Anura | LC | Ground-dwelling | 23.368547 | 35.30670 | 31.80860 | 39.23188 |
Uperoleia micromeles | Anura | LC | Ground-dwelling | 27.532534 | 35.94054 | 32.14136 | 39.86294 |
Uperoleia mjobergii | Anura | LC | Ground-dwelling | 27.736069 | 35.91810 | 31.69549 | 39.39216 |
Uperoleia mjobergii | Anura | LC | Ground-dwelling | 26.814554 | 35.77826 | 31.65008 | 39.22131 |
Uperoleia mjobergii | Anura | LC | Ground-dwelling | 29.550357 | 36.19341 | 32.37408 | 40.13420 |
Uperoleia mimula | Anura | LC | Ground-dwelling | 26.474436 | 35.72535 | 31.96447 | 39.76535 |
Uperoleia mimula | Anura | LC | Ground-dwelling | 25.434563 | 35.56646 | 31.83568 | 39.56456 |
Uperoleia mimula | Anura | LC | Ground-dwelling | 28.560931 | 36.04416 | 32.05719 | 40.01306 |
Uperoleia fusca | Anura | LC | Ground-dwelling | 23.240009 | 34.87866 | 31.67816 | 37.78729 |
Uperoleia fusca | Anura | LC | Ground-dwelling | 21.875057 | 34.67152 | 31.52448 | 37.61802 |
Uperoleia fusca | Anura | LC | Ground-dwelling | 25.562684 | 35.23116 | 31.87378 | 38.16884 |
Uperoleia tyleri | Anura | DD | Ground-dwelling | 20.120083 | 34.47178 | 31.05938 | 37.32697 |
Uperoleia tyleri | Anura | DD | Ground-dwelling | 18.435409 | 34.21664 | 30.78533 | 37.00090 |
Uperoleia tyleri | Anura | DD | Ground-dwelling | 22.736174 | 34.86799 | 31.47614 | 37.77006 |
Geocrinia alba | Anura | CR | Ground-dwelling | 19.744900 | 34.55428 | 31.49145 | 37.61241 |
Geocrinia alba | Anura | CR | Ground-dwelling | 18.327374 | 34.33627 | 31.26706 | 37.35626 |
Geocrinia alba | Anura | CR | Ground-dwelling | 22.394314 | 34.96174 | 31.79818 | 38.06811 |
Geocrinia vitellina | Anura | VU | Ground-dwelling | 19.685310 | 34.52616 | 31.20095 | 37.38990 |
Geocrinia vitellina | Anura | VU | Ground-dwelling | 18.315960 | 34.31147 | 31.18194 | 37.19359 |
Geocrinia vitellina | Anura | VU | Ground-dwelling | 22.270738 | 34.93153 | 31.47887 | 37.87365 |
Geocrinia lutea | Anura | LC | Ground-dwelling | 18.450765 | 34.36024 | 31.19594 | 37.26471 |
Geocrinia lutea | Anura | LC | Ground-dwelling | 17.224069 | 34.17080 | 31.08745 | 37.05899 |
Geocrinia lutea | Anura | LC | Ground-dwelling | 20.847528 | 34.73038 | 31.51392 | 37.71928 |
Geocrinia rosea | Anura | LC | Ground-dwelling | 18.929360 | 34.44285 | 31.54064 | 37.44868 |
Geocrinia rosea | Anura | LC | Ground-dwelling | 17.617432 | 34.24073 | 31.30799 | 37.17507 |
Geocrinia rosea | Anura | LC | Ground-dwelling | 21.402880 | 34.82393 | 31.88919 | 37.90265 |
Geocrinia leai | Anura | LC | Ground-dwelling | 19.334531 | 34.41152 | 31.88549 | 37.08894 |
Geocrinia leai | Anura | LC | Ground-dwelling | 17.909987 | 34.18793 | 31.79384 | 36.96366 |
Geocrinia leai | Anura | LC | Ground-dwelling | 22.103380 | 34.84610 | 32.30301 | 37.68109 |
Paracrinia haswelli | Anura | LC | Stream-dwelling | 20.121316 | 34.31082 | 30.29931 | 37.90741 |
Paracrinia haswelli | Anura | LC | Stream-dwelling | 18.475229 | 34.06024 | 30.05626 | 37.60456 |
Paracrinia haswelli | Anura | LC | Stream-dwelling | 22.643332 | 34.69475 | 30.73495 | 38.42725 |
Crinia bilingua | Anura | LC | Semi-aquatic | 27.736505 | 36.91094 | 33.03045 | 41.23395 |
Crinia bilingua | Anura | LC | Semi-aquatic | 26.766313 | 36.76643 | 32.82718 | 40.98927 |
Crinia bilingua | Anura | LC | Semi-aquatic | 29.677076 | 37.19999 | 33.38855 | 41.61313 |
Crinia remota | Anura | LC | Ground-dwelling | 27.413768 | 36.54041 | 32.97027 | 40.16182 |
Crinia remota | Anura | LC | Ground-dwelling | 26.387838 | 36.38680 | 32.84312 | 39.97248 |
Crinia remota | Anura | LC | Ground-dwelling | 29.381207 | 36.83499 | 33.21411 | 40.57042 |
Crinia deserticola | Anura | LC | Ground-dwelling | 25.542211 | 36.36920 | 32.99493 | 39.85933 |
Crinia deserticola | Anura | LC | Ground-dwelling | 24.135900 | 36.15983 | 32.77329 | 39.62551 |
Crinia deserticola | Anura | LC | Ground-dwelling | 27.935868 | 36.72555 | 33.30325 | 40.24560 |
Crinia riparia | Anura | LC | Stream-dwelling | 21.089805 | 35.18069 | 31.95761 | 38.13699 |
Crinia riparia | Anura | LC | Stream-dwelling | 19.125103 | 34.88655 | 31.77381 | 37.87871 |
Crinia riparia | Anura | LC | Stream-dwelling | 24.692362 | 35.72003 | 32.43303 | 38.73763 |
Crinia georgiana | Anura | LC | Ground-dwelling | 19.527298 | 35.50576 | 32.20290 | 38.72610 |
Crinia georgiana | Anura | LC | Ground-dwelling | 18.059943 | 35.28597 | 32.03818 | 38.47473 |
Crinia georgiana | Anura | LC | Ground-dwelling | 22.502454 | 35.95139 | 32.19347 | 38.82691 |
Crinia glauerti | Anura | LC | Ground-dwelling | 19.334531 | 35.44542 | 32.45352 | 38.46573 |
Crinia glauerti | Anura | LC | Ground-dwelling | 17.909987 | 35.23107 | 32.32135 | 38.32904 |
Crinia glauerti | Anura | LC | Ground-dwelling | 22.103380 | 35.86207 | 32.72857 | 38.91811 |
Crinia insignifera | Anura | LC | Ground-dwelling | 20.334412 | 35.66043 | 32.37958 | 38.79285 |
Crinia insignifera | Anura | LC | Ground-dwelling | 18.740435 | 35.42362 | 32.20761 | 38.55994 |
Crinia insignifera | Anura | LC | Ground-dwelling | 23.510075 | 36.13223 | 32.71232 | 39.31193 |
Crinia pseudinsignifera | Anura | LC | Ground-dwelling | 20.131541 | 35.63682 | 32.13891 | 38.48466 |
Crinia pseudinsignifera | Anura | LC | Ground-dwelling | 18.585292 | 35.40445 | 32.38789 | 38.68548 |
Crinia pseudinsignifera | Anura | LC | Ground-dwelling | 23.324502 | 36.11666 | 33.24242 | 39.67182 |
Crinia subinsignifera | Anura | LC | Ground-dwelling | 18.956876 | 35.48159 | 32.86660 | 39.09948 |
Crinia subinsignifera | Anura | LC | Ground-dwelling | 17.588661 | 35.27863 | 32.64159 | 38.86413 |
Crinia subinsignifera | Anura | LC | Ground-dwelling | 21.746946 | 35.89547 | 32.49929 | 38.85265 |
Crinia sloanei | Anura | DD | Ground-dwelling | 21.188168 | 35.77451 | 32.65108 | 39.01508 |
Crinia sloanei | Anura | DD | Ground-dwelling | 19.230552 | 35.48173 | 32.41989 | 38.62815 |
Crinia sloanei | Anura | DD | Ground-dwelling | 24.511334 | 36.27152 | 32.67823 | 39.20470 |
Crinia tinnula | Anura | VU | Ground-dwelling | 22.886405 | 36.12815 | 33.01845 | 39.28683 |
Crinia tinnula | Anura | VU | Ground-dwelling | 21.573182 | 35.93206 | 32.94293 | 39.12115 |
Crinia tinnula | Anura | VU | Ground-dwelling | 24.982141 | 36.44107 | 33.30502 | 39.72613 |
Crinia nimbus | Anura | LC | Ground-dwelling | 15.858751 | 34.65397 | 30.54207 | 38.79665 |
Crinia nimbus | Anura | LC | Ground-dwelling | 14.373099 | 34.43018 | 30.49154 | 38.75476 |
Crinia nimbus | Anura | LC | Ground-dwelling | 18.198845 | 35.00647 | 30.58397 | 38.87508 |
Crinia tasmaniensis | Anura | NT | Aquatic | 16.268857 | 34.88690 | 30.89718 | 39.10055 |
Crinia tasmaniensis | Anura | NT | Aquatic | 14.709859 | 34.65018 | 30.65420 | 38.85933 |
Crinia tasmaniensis | Anura | NT | Aquatic | 18.738647 | 35.26191 | 31.09960 | 39.32025 |
Taudactylus eungellensis | Anura | EN | Stream-dwelling | 25.276510 | 35.01775 | 30.59236 | 39.56341 |
Taudactylus eungellensis | Anura | EN | Stream-dwelling | 24.054857 | 34.83322 | 30.41891 | 39.37655 |
Taudactylus eungellensis | Anura | EN | Stream-dwelling | 27.592228 | 35.36753 | 30.92115 | 39.92886 |
Taudactylus liemi | Anura | LC | Semi-aquatic | 25.276510 | 35.79719 | 31.48448 | 40.78179 |
Taudactylus liemi | Anura | LC | Semi-aquatic | 24.054857 | 35.61400 | 31.30040 | 40.62862 |
Taudactylus liemi | Anura | LC | Semi-aquatic | 27.592228 | 36.14443 | 31.69050 | 41.11143 |
Taudactylus pleione | Anura | CR | Ground-dwelling | 24.127771 | 35.55291 | 31.08048 | 40.36841 |
Taudactylus pleione | Anura | CR | Ground-dwelling | 23.021721 | 35.38370 | 30.87474 | 40.14769 |
Taudactylus pleione | Anura | CR | Ground-dwelling | 26.050714 | 35.84709 | 31.08431 | 40.38689 |
Mixophyes balbus | Anura | VU | Stream-dwelling | 21.116497 | 32.56317 | 29.00874 | 36.10935 |
Mixophyes balbus | Anura | VU | Stream-dwelling | 19.551960 | 32.32557 | 28.89273 | 35.93636 |
Mixophyes balbus | Anura | VU | Stream-dwelling | 23.570674 | 32.93588 | 29.36013 | 36.56197 |
Mixophyes carbinensis | Anura | LC | Stream-dwelling | 26.587820 | 33.37832 | 29.96433 | 37.20821 |
Mixophyes carbinensis | Anura | LC | Stream-dwelling | 25.348285 | 33.19124 | 29.80454 | 37.07021 |
Mixophyes carbinensis | Anura | LC | Stream-dwelling | 28.875060 | 33.72354 | 30.23152 | 37.57247 |
Mixophyes coggeri | Anura | LC | Ground-dwelling | 25.799549 | 33.88130 | 30.37864 | 37.28848 |
Mixophyes coggeri | Anura | LC | Ground-dwelling | 24.767030 | 33.72763 | 30.19482 | 37.02609 |
Mixophyes coggeri | Anura | LC | Ground-dwelling | 27.658562 | 34.15797 | 30.86818 | 37.91676 |
Mixophyes schevilli | Anura | LC | Stream-dwelling | 25.919597 | 33.30971 | 29.81463 | 37.15229 |
Mixophyes schevilli | Anura | LC | Stream-dwelling | 24.862524 | 33.15038 | 29.72090 | 37.00309 |
Mixophyes schevilli | Anura | LC | Stream-dwelling | 27.828630 | 33.59745 | 29.81129 | 37.21959 |
Mixophyes fleayi | Anura | EN | Semi-aquatic | 23.402606 | 33.79303 | 30.21307 | 37.33420 |
Mixophyes fleayi | Anura | EN | Semi-aquatic | 22.028422 | 33.58762 | 30.04351 | 37.07116 |
Mixophyes fleayi | Anura | EN | Semi-aquatic | 25.740085 | 34.14244 | 30.39613 | 37.63256 |
Mixophyes iteratus | Anura | EN | Stream-dwelling | 22.347547 | 32.45383 | 29.00577 | 35.25302 |
Mixophyes iteratus | Anura | EN | Stream-dwelling | 20.917811 | 32.23966 | 28.90047 | 35.09538 |
Mixophyes iteratus | Anura | EN | Stream-dwelling | 24.665037 | 32.80099 | 29.33773 | 35.69929 |
Mixophyes hihihorlo | Anura | DD | Ground-dwelling | 27.414332 | 34.26024 | 30.28493 | 38.02029 |
Mixophyes hihihorlo | Anura | DD | Ground-dwelling | 26.588272 | 34.13699 | 30.14651 | 37.83486 |
Mixophyes hihihorlo | Anura | DD | Ground-dwelling | 29.236805 | 34.53215 | 30.73456 | 38.53138 |
Calyptocephalella gayi | Anura | VU | Semi-aquatic | 17.988099 | 35.40059 | 30.09608 | 41.09697 |
Calyptocephalella gayi | Anura | VU | Semi-aquatic | 16.085231 | 35.12224 | 29.97761 | 40.90306 |
Calyptocephalella gayi | Anura | VU | Semi-aquatic | 21.562559 | 35.92345 | 31.34021 | 42.31675 |
Telmatobufo bullocki | Anura | EN | Stream-dwelling | 17.747011 | 34.56221 | 29.26919 | 40.22557 |
Telmatobufo bullocki | Anura | EN | Stream-dwelling | 15.993370 | 34.30746 | 29.02944 | 39.98229 |
Telmatobufo bullocki | Anura | EN | Stream-dwelling | 21.273967 | 35.07457 | 29.75363 | 40.82780 |
Telmatobufo venustus | Anura | EN | Stream-dwelling | 15.450278 | 34.21796 | 28.42599 | 40.12130 |
Telmatobufo venustus | Anura | EN | Stream-dwelling | 13.417904 | 33.92514 | 28.16678 | 39.90663 |
Telmatobufo venustus | Anura | EN | Stream-dwelling | 20.886672 | 35.00121 | 29.11933 | 40.54603 |
Telmatobufo australis | Anura | LC | Stream-dwelling | 15.878790 | 34.26171 | 28.91393 | 40.71264 |
Telmatobufo australis | Anura | LC | Stream-dwelling | 13.758505 | 33.95485 | 28.61017 | 40.48049 |
Telmatobufo australis | Anura | LC | Stream-dwelling | 20.016717 | 34.86058 | 29.29007 | 41.11940 |
Adelphobates castaneoticus | Anura | LC | Ground-dwelling | 27.705562 | 36.41111 | 32.83848 | 40.55376 |
Adelphobates castaneoticus | Anura | LC | Ground-dwelling | 26.984020 | 36.30993 | 32.80688 | 40.50580 |
Adelphobates castaneoticus | Anura | LC | Ground-dwelling | 29.265903 | 36.62991 | 32.97258 | 40.79692 |
Adelphobates galactonotus | Anura | LC | Ground-dwelling | 27.829513 | 36.28643 | 32.07900 | 40.18042 |
Adelphobates galactonotus | Anura | LC | Ground-dwelling | 27.112522 | 36.18829 | 32.22677 | 40.30321 |
Adelphobates galactonotus | Anura | LC | Ground-dwelling | 29.441503 | 36.50708 | 32.18172 | 40.37281 |
Adelphobates quinquevittatus | Anura | LC | Ground-dwelling | 28.479833 | 36.55501 | 32.49208 | 39.85712 |
Adelphobates quinquevittatus | Anura | LC | Ground-dwelling | 27.709247 | 36.44761 | 32.42809 | 39.73057 |
Adelphobates quinquevittatus | Anura | LC | Ground-dwelling | 30.089914 | 36.77944 | 32.64051 | 40.14238 |
Dendrobates truncatus | Anura | LC | Ground-dwelling | 25.810177 | 35.98302 | 32.65971 | 39.20618 |
Dendrobates truncatus | Anura | LC | Ground-dwelling | 25.089176 | 35.88360 | 32.69212 | 39.20524 |
Dendrobates truncatus | Anura | LC | Ground-dwelling | 27.370746 | 36.19820 | 32.80784 | 39.45374 |
Dendrobates leucomelas | Anura | LC | Ground-dwelling | 26.798309 | 36.21944 | 32.59562 | 39.54060 |
Dendrobates leucomelas | Anura | LC | Ground-dwelling | 26.084568 | 36.12005 | 32.57215 | 39.48433 |
Dendrobates leucomelas | Anura | LC | Ground-dwelling | 28.325306 | 36.43206 | 32.85638 | 39.90847 |
Dendrobates tinctorius | Anura | LC | Ground-dwelling | 27.353690 | 36.23479 | 33.03350 | 40.21422 |
Dendrobates tinctorius | Anura | LC | Ground-dwelling | 26.739905 | 36.15030 | 33.02927 | 40.13859 |
Dendrobates tinctorius | Anura | LC | Ground-dwelling | 28.809912 | 36.43526 | 33.11012 | 40.40164 |
Dendrobates nubeculosus | Anura | DD | Ground-dwelling | 27.023773 | 36.22801 | 32.69094 | 39.71728 |
Dendrobates nubeculosus | Anura | DD | Ground-dwelling | 26.364103 | 36.13712 | 32.65671 | 39.66923 |
Dendrobates nubeculosus | Anura | DD | Ground-dwelling | 28.432172 | 36.42207 | 32.92957 | 39.95881 |
Oophaga vicentei | Anura | EN | Arboreal | 27.076166 | 34.01407 | 31.05287 | 36.99065 |
Oophaga vicentei | Anura | EN | Arboreal | 26.459668 | 33.92875 | 31.00479 | 36.89136 |
Oophaga vicentei | Anura | EN | Arboreal | 28.344435 | 34.18958 | 31.12002 | 37.20281 |
Oophaga sylvatica | Anura | NT | Ground-dwelling | 24.263679 | 34.03898 | 31.02473 | 36.96162 |
Oophaga sylvatica | Anura | NT | Ground-dwelling | 23.234930 | 33.89095 | 30.80174 | 36.72864 |
Oophaga sylvatica | Anura | NT | Ground-dwelling | 25.914935 | 34.27657 | 31.19737 | 37.24841 |
Oophaga occultator | Anura | CR | Ground-dwelling | 25.597617 | 34.13953 | 31.16740 | 37.34330 |
Oophaga occultator | Anura | CR | Ground-dwelling | 24.953236 | 34.04878 | 31.07422 | 37.20506 |
Oophaga occultator | Anura | CR | Ground-dwelling | 26.739957 | 34.30040 | 31.14760 | 37.37507 |
Oophaga granulifera | Anura | VU | Ground-dwelling | 25.400711 | 34.62454 | 31.29691 | 37.97425 |
Oophaga granulifera | Anura | VU | Ground-dwelling | 24.702420 | 34.52830 | 31.19092 | 37.86410 |
Oophaga granulifera | Anura | VU | Ground-dwelling | 26.627661 | 34.79366 | 31.43885 | 38.17341 |
Minyobates steyermarki | Anura | CR | Arboreal | 27.310817 | 36.41299 | 32.37966 | 40.56245 |
Minyobates steyermarki | Anura | CR | Arboreal | 26.682569 | 36.32563 | 32.36762 | 40.48211 |
Minyobates steyermarki | Anura | CR | Arboreal | 28.771641 | 36.61611 | 32.59259 | 40.89337 |
Andinobates altobueyensis | Anura | DD | Ground-dwelling | 26.557207 | 37.31174 | 33.65797 | 41.15724 |
Andinobates altobueyensis | Anura | DD | Ground-dwelling | 25.921998 | 37.22590 | 33.56012 | 41.05153 |
Andinobates altobueyensis | Anura | DD | Ground-dwelling | 27.873963 | 37.48968 | 33.83047 | 41.37637 |
Andinobates bombetes | Anura | VU | Ground-dwelling | 23.362438 | 36.90843 | 33.10151 | 40.78521 |
Andinobates bombetes | Anura | VU | Ground-dwelling | 22.562962 | 36.80009 | 32.99755 | 40.68591 |
Andinobates bombetes | Anura | VU | Ground-dwelling | 24.839549 | 37.10860 | 33.26529 | 40.96867 |
Andinobates tolimensis | Anura | VU | Ground-dwelling | 23.073459 | 36.88589 | 33.02308 | 40.60582 |
Andinobates tolimensis | Anura | VU | Ground-dwelling | 22.320721 | 36.78357 | 32.93950 | 40.48971 |
Andinobates tolimensis | Anura | VU | Ground-dwelling | 24.583693 | 37.09119 | 33.39446 | 41.01340 |
Andinobates virolinensis | Anura | VU | Ground-dwelling | 23.778204 | 36.95976 | 33.05651 | 40.83030 |
Andinobates virolinensis | Anura | VU | Ground-dwelling | 23.054804 | 36.86297 | 32.97376 | 40.71555 |
Andinobates virolinensis | Anura | VU | Ground-dwelling | 25.399391 | 37.17670 | 33.14729 | 40.99860 |
Andinobates opisthomelas | Anura | VU | Ground-dwelling | 24.617418 | 37.10621 | 32.91545 | 40.77926 |
Andinobates opisthomelas | Anura | VU | Ground-dwelling | 23.815290 | 36.99731 | 32.85602 | 40.69191 |
Andinobates opisthomelas | Anura | VU | Ground-dwelling | 26.081448 | 37.30497 | 33.12240 | 41.04234 |
Andinobates claudiae | Anura | DD | Ground-dwelling | 27.753723 | 37.43746 | 33.40244 | 41.45747 |
Andinobates claudiae | Anura | DD | Ground-dwelling | 27.190251 | 37.36135 | 33.34261 | 41.37828 |
Andinobates claudiae | Anura | DD | Ground-dwelling | 28.885900 | 37.59040 | 33.52264 | 41.65651 |
Andinobates minutus | Anura | LC | Ground-dwelling | 26.435461 | 37.24507 | 33.53531 | 41.09003 |
Andinobates minutus | Anura | LC | Ground-dwelling | 25.777337 | 37.15661 | 33.39361 | 40.90994 |
Andinobates minutus | Anura | LC | Ground-dwelling | 27.740983 | 37.42055 | 33.64959 | 41.29054 |
Andinobates daleswansoni | Anura | EN | Ground-dwelling | 24.023434 | 36.88066 | 33.06286 | 40.62497 |
Andinobates daleswansoni | Anura | EN | Ground-dwelling | 23.377045 | 36.79317 | 32.97969 | 40.52672 |
Andinobates daleswansoni | Anura | EN | Ground-dwelling | 25.418792 | 37.06953 | 33.21965 | 40.84679 |
Andinobates dorisswansonae | Anura | VU | Ground-dwelling | 23.073459 | 36.84616 | 33.00487 | 40.65440 |
Andinobates dorisswansonae | Anura | VU | Ground-dwelling | 22.320721 | 36.74239 | 32.89474 | 40.51274 |
Andinobates dorisswansonae | Anura | VU | Ground-dwelling | 24.583693 | 37.05435 | 32.90732 | 40.59466 |
Andinobates fulguritus | Anura | LC | Ground-dwelling | 26.159691 | 37.30840 | 33.42962 | 41.30409 |
Andinobates fulguritus | Anura | LC | Ground-dwelling | 25.489333 | 37.21802 | 32.98808 | 40.79168 |
Andinobates fulguritus | Anura | LC | Ground-dwelling | 27.493852 | 37.48826 | 33.40505 | 41.31525 |
Ranitomeya amazonica | Anura | DD | Arboreal | 27.813623 | 37.55259 | 33.87223 | 41.88042 |
Ranitomeya amazonica | Anura | DD | Arboreal | 27.086561 | 37.45407 | 33.75196 | 41.67275 |
Ranitomeya amazonica | Anura | DD | Arboreal | 29.154053 | 37.73422 | 33.61355 | 41.77050 |
Ranitomeya benedicta | Anura | VU | Ground-dwelling | 25.383775 | 37.40872 | 33.71150 | 41.17419 |
Ranitomeya benedicta | Anura | VU | Ground-dwelling | 24.727105 | 37.31790 | 33.51108 | 40.92515 |
Ranitomeya benedicta | Anura | VU | Ground-dwelling | 26.712434 | 37.59248 | 33.85294 | 41.40723 |
Ranitomeya fantastica | Anura | VU | Arboreal | 24.460869 | 37.07482 | 33.05149 | 40.76076 |
Ranitomeya fantastica | Anura | VU | Arboreal | 23.770824 | 36.98058 | 33.03068 | 40.75094 |
Ranitomeya fantastica | Anura | VU | Arboreal | 25.887710 | 37.26968 | 33.33448 | 41.03169 |
Ranitomeya summersi | Anura | EN | Ground-dwelling | 24.021783 | 37.14839 | 33.27010 | 40.64781 |
Ranitomeya summersi | Anura | EN | Ground-dwelling | 23.410536 | 37.06585 | 33.14486 | 40.49155 |
Ranitomeya summersi | Anura | EN | Ground-dwelling | 25.363768 | 37.32961 | 33.47787 | 40.94976 |
Ranitomeya reticulata | Anura | LC | Ground-dwelling | 27.157578 | 37.58199 | 34.00433 | 41.56884 |
Ranitomeya reticulata | Anura | LC | Ground-dwelling | 26.371019 | 37.47368 | 33.87794 | 41.42534 |
Ranitomeya reticulata | Anura | LC | Ground-dwelling | 28.646810 | 37.78707 | 34.02890 | 41.58493 |
Ranitomeya uakarii | Anura | LC | Ground-dwelling | 25.237949 | 37.35182 | 33.81188 | 41.28929 |
Ranitomeya uakarii | Anura | LC | Ground-dwelling | 24.505254 | 37.25099 | 33.73338 | 41.14597 |
Ranitomeya uakarii | Anura | LC | Ground-dwelling | 26.528797 | 37.52945 | 33.87249 | 41.44257 |
Ranitomeya ventrimaculata | Anura | LC | Arboreal | 27.848883 | 37.53703 | 33.44483 | 41.32554 |
Ranitomeya ventrimaculata | Anura | LC | Arboreal | 27.139249 | 37.44129 | 33.28694 | 41.14495 |
Ranitomeya ventrimaculata | Anura | LC | Arboreal | 29.360098 | 37.74093 | 33.53865 | 41.51554 |
Ranitomeya variabilis | Anura | DD | Arboreal | 24.344348 | 36.98080 | 32.98776 | 40.54552 |
Ranitomeya variabilis | Anura | DD | Arboreal | 23.718874 | 36.89689 | 32.92531 | 40.47550 |
Ranitomeya variabilis | Anura | DD | Arboreal | 25.665115 | 37.15800 | 33.36727 | 40.96332 |
Ranitomeya flavovittata | Anura | LC | Arboreal | 28.577810 | 37.85179 | 34.12725 | 41.46419 |
Ranitomeya flavovittata | Anura | LC | Arboreal | 27.842852 | 37.75054 | 34.01558 | 41.29271 |
Ranitomeya flavovittata | Anura | LC | Arboreal | 29.874090 | 38.03036 | 34.22213 | 41.59546 |
Ranitomeya vanzolinii | Anura | LC | Arboreal | 24.846715 | 37.28615 | 33.95789 | 41.30685 |
Ranitomeya vanzolinii | Anura | LC | Arboreal | 24.150535 | 37.19224 | 33.99611 | 41.34194 |
Ranitomeya vanzolinii | Anura | LC | Arboreal | 26.088358 | 37.45365 | 33.98755 | 41.35129 |
Ranitomeya imitator | Anura | LC | Arboreal | 25.003805 | 37.29341 | 33.59714 | 40.89953 |
Ranitomeya imitator | Anura | LC | Arboreal | 24.325970 | 37.20124 | 33.53343 | 40.84403 |
Ranitomeya imitator | Anura | LC | Arboreal | 26.389385 | 37.48180 | 33.77044 | 41.14108 |
Excidobates captivus | Anura | VU | Stream-dwelling | 24.641712 | 36.21136 | 32.74046 | 40.04692 |
Excidobates captivus | Anura | VU | Stream-dwelling | 23.801243 | 36.09689 | 32.71189 | 39.92926 |
Excidobates captivus | Anura | VU | Stream-dwelling | 26.321295 | 36.44010 | 32.66095 | 40.05540 |
Excidobates mysteriosus | Anura | EN | Arboreal | 22.164010 | 36.30799 | 32.69987 | 40.28308 |
Excidobates mysteriosus | Anura | EN | Arboreal | 21.259620 | 36.18429 | 32.68353 | 40.28854 |
Excidobates mysteriosus | Anura | EN | Arboreal | 23.969227 | 36.55492 | 32.92553 | 40.62075 |
Phyllobates aurotaenia | Anura | LC | Ground-dwelling | 25.603259 | 36.77277 | 32.46459 | 40.72775 |
Phyllobates aurotaenia | Anura | LC | Ground-dwelling | 24.897882 | 36.67687 | 32.35991 | 40.60835 |
Phyllobates aurotaenia | Anura | LC | Ground-dwelling | 26.964915 | 36.95789 | 32.57638 | 40.97765 |
Phyllobates terribilis | Anura | EN | Ground-dwelling | 25.849112 | 36.86057 | 32.87274 | 41.26156 |
Phyllobates terribilis | Anura | EN | Ground-dwelling | 25.206177 | 36.77020 | 32.93602 | 41.32570 |
Phyllobates terribilis | Anura | EN | Ground-dwelling | 27.028950 | 37.02641 | 33.04696 | 41.41911 |
Phyllobates bicolor | Anura | EN | Ground-dwelling | 24.872899 | 36.63482 | 32.08500 | 40.59020 |
Phyllobates bicolor | Anura | EN | Ground-dwelling | 24.153339 | 36.53677 | 32.05564 | 40.53014 |
Phyllobates bicolor | Anura | EN | Ground-dwelling | 26.181845 | 36.81319 | 32.19779 | 40.75063 |
Phyllobates lugubris | Anura | LC | Ground-dwelling | 26.338311 | 36.92181 | 32.71173 | 40.97155 |
Phyllobates lugubris | Anura | LC | Ground-dwelling | 25.658948 | 36.82804 | 32.56637 | 40.81946 |
Phyllobates lugubris | Anura | LC | Ground-dwelling | 27.617273 | 37.09834 | 32.83663 | 41.11256 |
Phyllobates vittatus | Anura | VU | Stream-dwelling | 23.779541 | 35.94489 | 31.57088 | 40.22381 |
Phyllobates vittatus | Anura | VU | Stream-dwelling | 23.011027 | 35.83933 | 31.41820 | 40.09785 |
Phyllobates vittatus | Anura | VU | Stream-dwelling | 25.105183 | 36.12698 | 31.76350 | 40.46068 |
Hyloxalus aeruginosus | Anura | DD | Stream-dwelling | 20.305860 | 35.63767 | 31.60179 | 39.58739 |
Hyloxalus aeruginosus | Anura | DD | Stream-dwelling | 19.198666 | 35.48755 | 31.53302 | 39.48819 |
Hyloxalus aeruginosus | Anura | DD | Stream-dwelling | 22.523955 | 35.93841 | 31.77066 | 39.79775 |
Hyloxalus anthracinus | Anura | CR | Ground-dwelling | 20.535827 | 36.21121 | 32.20982 | 40.39386 |
Hyloxalus anthracinus | Anura | CR | Ground-dwelling | 18.480343 | 35.93475 | 32.14254 | 40.20558 |
Hyloxalus anthracinus | Anura | CR | Ground-dwelling | 23.090691 | 36.55483 | 32.56725 | 40.78049 |
Hyloxalus awa | Anura | LC | Ground-dwelling | 23.817831 | 36.95002 | 34.05913 | 40.16874 |
Hyloxalus awa | Anura | LC | Ground-dwelling | 22.642589 | 36.79159 | 34.06588 | 40.08952 |
Hyloxalus awa | Anura | LC | Ground-dwelling | 25.673478 | 37.20016 | 34.23382 | 40.40416 |
Hyloxalus azureiventris | Anura | EN | Ground-dwelling | 24.344348 | 36.84605 | 33.26462 | 41.25748 |
Hyloxalus azureiventris | Anura | EN | Ground-dwelling | 23.718874 | 36.76044 | 33.17247 | 41.17469 |
Hyloxalus azureiventris | Anura | EN | Ground-dwelling | 25.665115 | 37.02681 | 33.33391 | 41.39456 |
Hyloxalus chlorocraspedus | Anura | DD | Arboreal | 25.932989 | 36.86388 | 33.10599 | 41.18882 |
Hyloxalus chlorocraspedus | Anura | DD | Arboreal | 25.330486 | 36.78269 | 33.03446 | 41.07318 |
Hyloxalus chlorocraspedus | Anura | DD | Arboreal | 27.081686 | 37.01866 | 33.08844 | 41.31549 |
Hyloxalus betancuri | Anura | DD | Stream-dwelling | 25.746102 | 36.36829 | 32.26257 | 39.79342 |
Hyloxalus betancuri | Anura | DD | Stream-dwelling | 24.994043 | 36.26780 | 32.24918 | 39.79453 |
Hyloxalus betancuri | Anura | DD | Stream-dwelling | 26.951857 | 36.52942 | 32.42981 | 40.09054 |
Hyloxalus sauli | Anura | LC | Ground-dwelling | 24.741534 | 37.59176 | 34.52059 | 41.23736 |
Hyloxalus sauli | Anura | LC | Ground-dwelling | 23.892298 | 37.47744 | 34.43138 | 41.08925 |
Hyloxalus sauli | Anura | LC | Ground-dwelling | 26.304859 | 37.80219 | 34.79983 | 41.57131 |
Hyloxalus borjai | Anura | DD | Stream-dwelling | 21.959825 | 35.87948 | 31.62809 | 40.00521 |
Hyloxalus borjai | Anura | DD | Stream-dwelling | 20.686309 | 35.70505 | 31.58862 | 39.89556 |
Hyloxalus borjai | Anura | DD | Stream-dwelling | 23.846526 | 36.13791 | 31.79019 | 40.20114 |
Hyloxalus breviquartus | Anura | LC | Ground-dwelling | 23.745967 | 36.71951 | 32.46973 | 40.63417 |
Hyloxalus breviquartus | Anura | LC | Ground-dwelling | 22.866727 | 36.59808 | 32.32579 | 40.47141 |
Hyloxalus breviquartus | Anura | LC | Ground-dwelling | 25.305233 | 36.93486 | 32.58445 | 40.77341 |
Hyloxalus cevallosi | Anura | EN | Ground-dwelling | 25.453202 | 36.90090 | 32.71613 | 40.54998 |
Hyloxalus cevallosi | Anura | EN | Ground-dwelling | 24.665251 | 36.79430 | 32.60124 | 40.42119 |
Hyloxalus cevallosi | Anura | EN | Ground-dwelling | 26.933381 | 37.10114 | 33.35615 | 41.20719 |
Hyloxalus chocoensis | Anura | EN | Ground-dwelling | 25.302234 | 37.02431 | 33.35094 | 41.54058 |
Hyloxalus chocoensis | Anura | EN | Ground-dwelling | 24.581574 | 36.92438 | 33.28902 | 41.42489 |
Hyloxalus chocoensis | Anura | EN | Ground-dwelling | 26.663928 | 37.21312 | 32.74380 | 41.00212 |
Hyloxalus craspedoceps | Anura | DD | Stream-dwelling | 24.021783 | 36.12185 | 32.35665 | 40.45448 |
Hyloxalus craspedoceps | Anura | DD | Stream-dwelling | 23.410536 | 36.03684 | 32.26488 | 40.33839 |
Hyloxalus craspedoceps | Anura | DD | Stream-dwelling | 25.363768 | 36.30850 | 32.62911 | 40.75591 |
Hyloxalus delatorreae | Anura | CR | Stream-dwelling | 20.556552 | 35.63501 | 31.64333 | 39.45199 |
Hyloxalus delatorreae | Anura | CR | Stream-dwelling | 18.946918 | 35.41296 | 31.58816 | 39.39713 |
Hyloxalus delatorreae | Anura | CR | Stream-dwelling | 22.778661 | 35.94155 | 32.04914 | 39.90634 |
Hyloxalus eleutherodactylus | Anura | DD | Stream-dwelling | 24.021783 | 36.18138 | 31.78435 | 39.93197 |
Hyloxalus eleutherodactylus | Anura | DD | Stream-dwelling | 23.410536 | 36.09818 | 31.72103 | 39.84180 |
Hyloxalus eleutherodactylus | Anura | DD | Stream-dwelling | 25.363768 | 36.36403 | 31.92136 | 40.10099 |
Hyloxalus exasperatus | Anura | DD | Ground-dwelling | 23.049225 | 36.78704 | 32.66011 | 40.70620 |
Hyloxalus exasperatus | Anura | DD | Ground-dwelling | 21.493692 | 36.56956 | 32.40662 | 40.36032 |
Hyloxalus exasperatus | Anura | DD | Ground-dwelling | 25.325715 | 37.10532 | 32.95240 | 41.17287 |
Hyloxalus excisus | Anura | DD | Semi-aquatic | 21.959825 | 36.78240 | 33.08352 | 40.57083 |
Hyloxalus excisus | Anura | DD | Semi-aquatic | 20.686309 | 36.60481 | 32.99124 | 40.43996 |
Hyloxalus excisus | Anura | DD | Semi-aquatic | 23.846526 | 37.04550 | 33.35383 | 40.84183 |
Hyloxalus faciopunctulatus | Anura | DD | Ground-dwelling | 29.099921 | 37.52373 | 33.32273 | 41.13541 |
Hyloxalus faciopunctulatus | Anura | DD | Ground-dwelling | 28.343957 | 37.42136 | 33.21370 | 40.99622 |
Hyloxalus faciopunctulatus | Anura | DD | Ground-dwelling | 30.693206 | 37.73948 | 33.51891 | 41.52323 |
Hyloxalus fallax | Anura | DD | Ground-dwelling | 25.005479 | 36.96667 | 33.08033 | 41.00228 |
Hyloxalus fallax | Anura | DD | Ground-dwelling | 23.606320 | 36.77603 | 32.87668 | 40.74253 |
Hyloxalus fallax | Anura | DD | Ground-dwelling | 26.955510 | 37.23237 | 33.11741 | 41.08267 |
Hyloxalus fascianigrus | Anura | VU | Ground-dwelling | 24.810914 | 36.96066 | 33.07127 | 41.00770 |
Hyloxalus fascianigrus | Anura | VU | Ground-dwelling | 24.108127 | 36.86396 | 33.01876 | 40.92914 |
Hyloxalus fascianigrus | Anura | VU | Ground-dwelling | 26.070488 | 37.13395 | 33.25575 | 41.25849 |
Hyloxalus fuliginosus | Anura | DD | Stream-dwelling | 23.546002 | 36.13306 | 32.83044 | 40.57450 |
Hyloxalus fuliginosus | Anura | DD | Stream-dwelling | 22.594071 | 36.00346 | 32.71023 | 40.42751 |
Hyloxalus fuliginosus | Anura | DD | Stream-dwelling | 25.371396 | 36.38157 | 32.81951 | 40.59317 |
Hyloxalus idiomelus | Anura | DD | Stream-dwelling | 21.422387 | 35.87937 | 32.04961 | 39.77419 |
Hyloxalus idiomelus | Anura | DD | Stream-dwelling | 20.467645 | 35.75014 | 31.87296 | 39.60799 |
Hyloxalus idiomelus | Anura | DD | Stream-dwelling | 23.163460 | 36.11503 | 32.29642 | 40.14471 |
Hyloxalus infraguttatus | Anura | NT | Ground-dwelling | 24.385251 | 36.95080 | 32.73133 | 40.67212 |
Hyloxalus infraguttatus | Anura | NT | Ground-dwelling | 23.291528 | 36.79911 | 32.53004 | 40.49153 |
Hyloxalus infraguttatus | Anura | NT | Ground-dwelling | 26.265697 | 37.21159 | 32.88823 | 40.98930 |
Hyloxalus insulatus | Anura | VU | Stream-dwelling | 22.228727 | 35.95817 | 32.20217 | 40.01458 |
Hyloxalus insulatus | Anura | VU | Stream-dwelling | 21.440334 | 35.84849 | 31.77516 | 39.57526 |
Hyloxalus insulatus | Anura | VU | Stream-dwelling | 23.646201 | 36.15536 | 32.37291 | 40.17216 |
Hyloxalus lehmanni | Anura | NT | Ground-dwelling | 23.776868 | 36.73800 | 32.74674 | 40.37959 |
Hyloxalus lehmanni | Anura | NT | Ground-dwelling | 22.778050 | 36.60233 | 32.58758 | 40.13149 |
Hyloxalus lehmanni | Anura | NT | Ground-dwelling | 25.381163 | 36.95592 | 33.04913 | 40.76617 |
Hyloxalus leucophaeus | Anura | DD | Stream-dwelling | 22.538913 | 35.94931 | 32.35179 | 40.37398 |
Hyloxalus leucophaeus | Anura | DD | Stream-dwelling | 21.736625 | 35.84022 | 32.23568 | 40.26632 |
Hyloxalus leucophaeus | Anura | DD | Stream-dwelling | 23.802966 | 36.12119 | 32.53473 | 40.57362 |
Hyloxalus sordidatus | Anura | DD | Stream-dwelling | 22.722179 | 35.95402 | 31.79165 | 39.68561 |
Hyloxalus sordidatus | Anura | DD | Stream-dwelling | 21.916600 | 35.84408 | 31.71966 | 39.59345 |
Hyloxalus sordidatus | Anura | DD | Stream-dwelling | 24.276297 | 36.16610 | 32.21952 | 40.15643 |
Hyloxalus littoralis | Anura | LC | Ground-dwelling | 20.979647 | 36.51212 | 33.17944 | 40.89856 |
Hyloxalus littoralis | Anura | LC | Ground-dwelling | 20.005122 | 36.38141 | 33.07480 | 40.74551 |
Hyloxalus littoralis | Anura | LC | Ground-dwelling | 22.897432 | 36.76934 | 33.30089 | 41.11539 |
Hyloxalus mittermeieri | Anura | DD | Stream-dwelling | 20.305860 | 35.62245 | 31.68054 | 39.62248 |
Hyloxalus mittermeieri | Anura | DD | Stream-dwelling | 19.198666 | 35.47224 | 31.72086 | 39.71707 |
Hyloxalus mittermeieri | Anura | DD | Stream-dwelling | 22.523955 | 35.92339 | 31.96472 | 40.01773 |
Hyloxalus mystax | Anura | DD | Stream-dwelling | 25.562622 | 36.38543 | 32.05814 | 40.02551 |
Hyloxalus mystax | Anura | DD | Stream-dwelling | 24.507041 | 36.24339 | 32.01719 | 39.95272 |
Hyloxalus mystax | Anura | DD | Stream-dwelling | 27.560739 | 36.65431 | 32.34437 | 40.41202 |
Hyloxalus parcus | Anura | DD | Stream-dwelling | 24.698762 | 36.30763 | 32.26067 | 40.18116 |
Hyloxalus parcus | Anura | DD | Stream-dwelling | 23.813822 | 36.18705 | 32.17773 | 40.08947 |
Hyloxalus parcus | Anura | DD | Stream-dwelling | 26.444972 | 36.54558 | 32.39591 | 40.31849 |
Hyloxalus patitae | Anura | DD | Stream-dwelling | 22.618688 | 36.03421 | 31.89944 | 40.19713 |
Hyloxalus patitae | Anura | DD | Stream-dwelling | 21.958574 | 35.94501 | 31.81563 | 40.08414 |
Hyloxalus patitae | Anura | DD | Stream-dwelling | 23.898670 | 36.20718 | 32.03274 | 40.38357 |
Hyloxalus pinguis | Anura | EN | Ground-dwelling | 22.833468 | 36.62174 | 32.67717 | 40.37324 |
Hyloxalus pinguis | Anura | EN | Ground-dwelling | 21.394430 | 36.42485 | 32.45979 | 40.16636 |
Hyloxalus pinguis | Anura | EN | Ground-dwelling | 24.669687 | 36.87298 | 32.87087 | 40.70549 |
Hyloxalus pulcherrimus | Anura | DD | Stream-dwelling | 21.108641 | 35.66594 | 31.57655 | 39.62284 |
Hyloxalus pulcherrimus | Anura | DD | Stream-dwelling | 20.363794 | 35.56513 | 31.37124 | 39.43775 |
Hyloxalus pulcherrimus | Anura | DD | Stream-dwelling | 22.363404 | 35.83574 | 31.68928 | 39.78582 |
Hyloxalus pumilus | Anura | DD | Stream-dwelling | 25.562622 | 36.38086 | 32.49746 | 40.52615 |
Hyloxalus pumilus | Anura | DD | Stream-dwelling | 24.507041 | 36.23671 | 32.28630 | 40.32618 |
Hyloxalus pumilus | Anura | DD | Stream-dwelling | 27.560739 | 36.65371 | 32.39177 | 40.54525 |
Hyloxalus ramosi | Anura | EN | Ground-dwelling | 23.687173 | 36.78483 | 32.86605 | 40.85935 |
Hyloxalus ramosi | Anura | EN | Ground-dwelling | 22.753999 | 36.65853 | 32.85121 | 40.75408 |
Hyloxalus ramosi | Anura | EN | Ground-dwelling | 25.296937 | 37.00270 | 32.95540 | 40.95070 |
Hyloxalus ruizi | Anura | CR | Ground-dwelling | 24.790993 | 36.88748 | 33.10651 | 40.85164 |
Hyloxalus ruizi | Anura | CR | Ground-dwelling | 24.132263 | 36.79796 | 32.97995 | 40.72012 |
Hyloxalus ruizi | Anura | CR | Ground-dwelling | 26.160418 | 37.07357 | 33.34885 | 41.12052 |
Hyloxalus saltuarius | Anura | DD | Ground-dwelling | 25.253417 | 37.08809 | 33.28325 | 41.23321 |
Hyloxalus saltuarius | Anura | DD | Ground-dwelling | 24.621379 | 37.00188 | 33.22187 | 41.13985 |
Hyloxalus saltuarius | Anura | DD | Ground-dwelling | 26.713953 | 37.28730 | 33.45743 | 41.48146 |
Hyloxalus shuar | Anura | NT | Ground-dwelling | 23.752163 | 36.80813 | 32.41104 | 40.80419 |
Hyloxalus shuar | Anura | NT | Ground-dwelling | 22.478259 | 36.63300 | 32.43206 | 40.73666 |
Hyloxalus shuar | Anura | NT | Ground-dwelling | 25.717108 | 37.07828 | 32.61620 | 41.08668 |
Hyloxalus spilotogaster | Anura | DD | Ground-dwelling | 24.022160 | 36.74925 | 32.86647 | 40.73685 |
Hyloxalus spilotogaster | Anura | DD | Ground-dwelling | 23.320574 | 36.65327 | 32.89265 | 40.68839 |
Hyloxalus spilotogaster | Anura | DD | Ground-dwelling | 25.414498 | 36.93975 | 33.11338 | 41.03046 |
Hyloxalus subpunctatus | Anura | LC | Ground-dwelling | 22.992371 | 36.64562 | 32.38844 | 40.32590 |
Hyloxalus subpunctatus | Anura | LC | Ground-dwelling | 22.118649 | 36.52730 | 32.32800 | 40.24245 |
Hyloxalus subpunctatus | Anura | LC | Ground-dwelling | 24.751450 | 36.88383 | 32.45637 | 40.54606 |
Hyloxalus sylvaticus | Anura | EN | Stream-dwelling | 22.602751 | 35.95868 | 31.65177 | 39.71253 |
Hyloxalus sylvaticus | Anura | EN | Stream-dwelling | 21.868814 | 35.85967 | 31.59231 | 39.64662 |
Hyloxalus sylvaticus | Anura | EN | Stream-dwelling | 24.173626 | 36.17062 | 31.86257 | 39.92873 |
Hyloxalus utcubambensis | Anura | DD | Ground-dwelling | 21.823777 | 36.44674 | 32.55541 | 40.23545 |
Hyloxalus utcubambensis | Anura | DD | Ground-dwelling | 21.050210 | 36.34131 | 32.49454 | 40.16743 |
Hyloxalus utcubambensis | Anura | DD | Ground-dwelling | 23.083185 | 36.61840 | 32.73105 | 40.42206 |
Hyloxalus vergeli | Anura | VU | Ground-dwelling | 22.708986 | 36.76823 | 32.70850 | 40.69548 |
Hyloxalus vergeli | Anura | VU | Ground-dwelling | 21.862202 | 36.65463 | 32.60011 | 40.52534 |
Hyloxalus vergeli | Anura | VU | Ground-dwelling | 24.338987 | 36.98690 | 32.68426 | 40.75847 |
Ameerega rubriventris | Anura | EN | Ground-dwelling | 23.535775 | 37.82356 | 34.33977 | 41.00104 |
Ameerega rubriventris | Anura | EN | Ground-dwelling | 22.914830 | 37.73847 | 34.12721 | 40.72563 |
Ameerega rubriventris | Anura | EN | Ground-dwelling | 24.751708 | 37.99019 | 34.06859 | 40.76637 |
Ameerega macero | Anura | LC | Ground-dwelling | 23.100063 | 37.77731 | 34.57354 | 40.97454 |
Ameerega macero | Anura | LC | Ground-dwelling | 22.432701 | 37.68597 | 34.52937 | 40.91931 |
Ameerega macero | Anura | LC | Ground-dwelling | 24.227672 | 37.93165 | 34.64815 | 41.02200 |
Ameerega bassleri | Anura | VU | Ground-dwelling | 23.605042 | 37.78972 | 34.74204 | 41.09825 |
Ameerega bassleri | Anura | VU | Ground-dwelling | 22.870243 | 37.68965 | 34.57796 | 40.94740 |
Ameerega bassleri | Anura | VU | Ground-dwelling | 25.057733 | 37.98756 | 34.91698 | 41.40444 |
Ameerega berohoka | Anura | LC | Ground-dwelling | 27.567874 | 38.41479 | 35.38922 | 41.87919 |
Ameerega berohoka | Anura | LC | Ground-dwelling | 26.461140 | 38.26392 | 35.25337 | 41.68336 |
Ameerega berohoka | Anura | LC | Ground-dwelling | 29.685594 | 38.70348 | 35.45957 | 41.97950 |
Ameerega bilinguis | Anura | LC | Ground-dwelling | 26.506009 | 38.24359 | 34.88825 | 41.55929 |
Ameerega bilinguis | Anura | LC | Ground-dwelling | 25.685729 | 38.12880 | 34.80892 | 41.47312 |
Ameerega bilinguis | Anura | LC | Ground-dwelling | 28.018111 | 38.45519 | 35.11213 | 41.86163 |
Ameerega boliviana | Anura | NT | Ground-dwelling | 20.052093 | 37.37992 | 34.37928 | 40.96969 |
Ameerega boliviana | Anura | NT | Ground-dwelling | 19.244638 | 37.27035 | 34.23759 | 40.80155 |
Ameerega boliviana | Anura | NT | Ground-dwelling | 21.354360 | 37.55662 | 34.57087 | 41.20762 |
Ameerega braccata | Anura | LC | Ground-dwelling | 27.974622 | 38.45621 | 34.95891 | 41.66494 |
Ameerega braccata | Anura | LC | Ground-dwelling | 26.936676 | 38.31467 | 34.67935 | 41.34194 |
Ameerega braccata | Anura | LC | Ground-dwelling | 30.111574 | 38.74761 | 35.13168 | 42.03216 |
Ameerega flavopicta | Anura | LC | Stream-dwelling | 26.738666 | 37.68896 | 34.35287 | 40.92605 |
Ameerega flavopicta | Anura | LC | Stream-dwelling | 25.677939 | 37.54108 | 34.26131 | 40.75048 |
Ameerega flavopicta | Anura | LC | Stream-dwelling | 28.834142 | 37.98111 | 34.48005 | 41.33119 |
Ameerega cainarachi | Anura | EN | Stream-dwelling | 24.326099 | 37.40107 | 34.06309 | 41.15088 |
Ameerega cainarachi | Anura | EN | Stream-dwelling | 23.709835 | 37.31578 | 34.09700 | 41.16245 |
Ameerega cainarachi | Anura | EN | Stream-dwelling | 25.613448 | 37.57921 | 34.36375 | 41.41866 |
Ameerega smaragdina | Anura | DD | Ground-dwelling | 21.012652 | 37.53030 | 34.42801 | 40.80297 |
Ameerega smaragdina | Anura | DD | Ground-dwelling | 20.177954 | 37.41606 | 34.26364 | 40.57620 |
Ameerega smaragdina | Anura | DD | Ground-dwelling | 22.689323 | 37.75975 | 34.46013 | 40.97277 |
Ameerega petersi | Anura | LC | Ground-dwelling | 24.417577 | 38.01033 | 34.62243 | 41.19236 |
Ameerega petersi | Anura | LC | Ground-dwelling | 23.770082 | 37.92172 | 34.55357 | 41.09793 |
Ameerega petersi | Anura | LC | Ground-dwelling | 25.666806 | 38.18127 | 34.75814 | 41.44594 |
Ameerega picta | Anura | LC | Ground-dwelling | 27.460103 | 38.49244 | 35.31266 | 41.71293 |
Ameerega picta | Anura | LC | Ground-dwelling | 26.640599 | 38.38044 | 35.26109 | 41.63907 |
Ameerega picta | Anura | LC | Ground-dwelling | 29.163633 | 38.72525 | 35.61547 | 42.15916 |
Ameerega parvula | Anura | LC | Ground-dwelling | 26.302450 | 38.19039 | 34.96175 | 41.30982 |
Ameerega parvula | Anura | LC | Ground-dwelling | 25.405835 | 38.06731 | 34.93474 | 41.21938 |
Ameerega parvula | Anura | LC | Ground-dwelling | 27.946405 | 38.41606 | 35.08991 | 41.56734 |
Ameerega pongoensis | Anura | VU | Stream-dwelling | 24.892541 | 37.38435 | 34.21730 | 40.79298 |
Ameerega pongoensis | Anura | VU | Stream-dwelling | 24.256721 | 37.29723 | 33.99164 | 40.51863 |
Ameerega pongoensis | Anura | VU | Stream-dwelling | 26.202237 | 37.56379 | 34.52299 | 41.19865 |
Ameerega planipaleae | Anura | CR | Stream-dwelling | 21.012652 | 36.90404 | 34.11992 | 40.47065 |
Ameerega planipaleae | Anura | CR | Stream-dwelling | 20.177954 | 36.78881 | 34.01303 | 40.40175 |
Ameerega planipaleae | Anura | CR | Stream-dwelling | 22.689323 | 37.13549 | 34.25266 | 40.70333 |
Ameerega pulchripecta | Anura | LC | Ground-dwelling | 27.236622 | 38.42390 | 35.38399 | 41.54282 |
Ameerega pulchripecta | Anura | LC | Ground-dwelling | 26.690475 | 38.34981 | 35.33759 | 41.44883 |
Ameerega pulchripecta | Anura | LC | Ground-dwelling | 28.461765 | 38.59009 | 35.46053 | 41.62603 |
Ameerega simulans | Anura | LC | Ground-dwelling | 20.601790 | 37.45839 | 33.90142 | 40.44266 |
Ameerega simulans | Anura | LC | Ground-dwelling | 19.671627 | 37.33061 | 33.83500 | 40.34065 |
Ameerega simulans | Anura | LC | Ground-dwelling | 21.694986 | 37.60857 | 34.11307 | 40.61028 |
Ameerega yungicola | Anura | LC | Ground-dwelling | 20.079143 | 37.35963 | 33.98331 | 40.44131 |
Ameerega yungicola | Anura | LC | Ground-dwelling | 19.323211 | 37.25684 | 33.88976 | 40.35762 |
Ameerega yungicola | Anura | LC | Ground-dwelling | 21.365322 | 37.53452 | 34.10997 | 40.54595 |
Ameerega silverstonei | Anura | EN | Ground-dwelling | 23.837271 | 37.76954 | 34.56228 | 40.94640 |
Ameerega silverstonei | Anura | EN | Ground-dwelling | 23.193486 | 37.68332 | 34.32335 | 40.68745 |
Ameerega silverstonei | Anura | EN | Ground-dwelling | 25.205765 | 37.95282 | 34.61705 | 41.04417 |
Colostethus agilis | Anura | EN | Stream-dwelling | 24.316552 | 36.39590 | 32.43834 | 40.63692 |
Colostethus agilis | Anura | EN | Stream-dwelling | 23.429703 | 36.27143 | 32.30751 | 40.42396 |
Colostethus agilis | Anura | EN | Stream-dwelling | 25.720288 | 36.59290 | 32.60342 | 40.86723 |
Colostethus furviventris | Anura | DD | Ground-dwelling | 25.746102 | 37.30187 | 33.71436 | 41.06484 |
Colostethus furviventris | Anura | DD | Ground-dwelling | 24.994043 | 37.19828 | 33.47241 | 40.77371 |
Colostethus furviventris | Anura | DD | Ground-dwelling | 26.951857 | 37.46794 | 33.80547 | 41.17187 |
Colostethus imbricolus | Anura | EN | Stream-dwelling | 26.040462 | 36.67459 | 32.67524 | 40.48364 |
Colostethus imbricolus | Anura | EN | Stream-dwelling | 25.341635 | 36.58136 | 32.78186 | 40.56290 |
Colostethus imbricolus | Anura | EN | Stream-dwelling | 27.430096 | 36.85999 | 32.97760 | 40.81750 |
Colostethus inguinalis | Anura | LC | Stream-dwelling | 25.982879 | 36.62933 | 33.01655 | 40.98167 |
Colostethus inguinalis | Anura | LC | Stream-dwelling | 25.304070 | 36.53709 | 33.04373 | 40.93085 |
Colostethus inguinalis | Anura | LC | Stream-dwelling | 27.324883 | 36.81169 | 33.10582 | 41.17036 |
Colostethus panamansis | Anura | LC | Stream-dwelling | 27.055383 | 36.85483 | 32.96832 | 40.92519 |
Colostethus panamansis | Anura | LC | Stream-dwelling | 26.468504 | 36.77426 | 32.79705 | 40.77737 |
Colostethus panamansis | Anura | LC | Stream-dwelling | 28.278097 | 37.02268 | 33.14970 | 41.05871 |
Colostethus latinasus | Anura | CR | Stream-dwelling | 26.181906 | 36.60492 | 32.36351 | 40.46486 |
Colostethus latinasus | Anura | CR | Stream-dwelling | 25.505355 | 36.51078 | 32.31918 | 40.39347 |
Colostethus latinasus | Anura | CR | Stream-dwelling | 27.570562 | 36.79813 | 32.71525 | 40.88669 |
Colostethus pratti | Anura | LC | Ground-dwelling | 26.946339 | 37.37681 | 33.09772 | 41.24893 |
Colostethus pratti | Anura | LC | Ground-dwelling | 26.313464 | 37.28975 | 33.01617 | 41.13554 |
Colostethus pratti | Anura | LC | Ground-dwelling | 28.198882 | 37.54910 | 33.15508 | 41.33712 |
Colostethus lynchi | Anura | DD | Stream-dwelling | 25.952777 | 36.67182 | 32.22017 | 40.28211 |
Colostethus lynchi | Anura | DD | Stream-dwelling | 25.296430 | 36.58120 | 32.12768 | 40.15552 |
Colostethus lynchi | Anura | DD | Stream-dwelling | 27.263195 | 36.85274 | 32.70109 | 40.84360 |
Colostethus mertensi | Anura | VU | Stream-dwelling | 22.768671 | 36.18303 | 32.32186 | 40.33596 |
Colostethus mertensi | Anura | VU | Stream-dwelling | 21.751043 | 36.04383 | 32.22091 | 40.16633 |
Colostethus mertensi | Anura | VU | Stream-dwelling | 24.401367 | 36.40636 | 32.76186 | 40.88896 |
Colostethus poecilonotus | Anura | DD | Stream-dwelling | 20.305860 | 35.81731 | 31.86562 | 39.56176 |
Colostethus poecilonotus | Anura | DD | Stream-dwelling | 19.198666 | 35.66549 | 31.77027 | 39.42355 |
Colostethus poecilonotus | Anura | DD | Stream-dwelling | 22.523955 | 36.12144 | 31.99868 | 39.80892 |
Colostethus ruthveni | Anura | NT | Ground-dwelling | 26.756267 | 37.34223 | 33.59395 | 42.01331 |
Colostethus ruthveni | Anura | NT | Ground-dwelling | 25.955280 | 37.23342 | 33.08536 | 41.45838 |
Colostethus ruthveni | Anura | NT | Ground-dwelling | 28.451154 | 37.57249 | 33.72505 | 42.23356 |
Colostethus thorntoni | Anura | VU | Stream-dwelling | 23.499493 | 36.31618 | 32.09565 | 39.93106 |
Colostethus thorntoni | Anura | VU | Stream-dwelling | 22.573781 | 36.18637 | 32.01860 | 39.82937 |
Colostethus thorntoni | Anura | VU | Stream-dwelling | 25.034323 | 36.53140 | 32.16462 | 40.07510 |
Colostethus ucumari | Anura | EN | Stream-dwelling | 21.124264 | 35.91798 | 32.15080 | 40.09177 |
Colostethus ucumari | Anura | EN | Stream-dwelling | 20.218761 | 35.79310 | 32.00806 | 39.91885 |
Colostethus ucumari | Anura | EN | Stream-dwelling | 22.820677 | 36.15193 | 32.46600 | 40.49602 |
Epipedobates narinensis | Anura | DD | Ground-dwelling | 25.496327 | 38.32718 | 35.72023 | 40.72854 |
Epipedobates narinensis | Anura | DD | Ground-dwelling | 24.785097 | 38.23002 | 35.65408 | 40.60330 |
Epipedobates narinensis | Anura | DD | Ground-dwelling | 26.774574 | 38.50179 | 35.83237 | 41.00069 |
Silverstoneia erasmios | Anura | EN | Ground-dwelling | 24.913367 | 37.80064 | 34.37137 | 41.21328 |
Silverstoneia erasmios | Anura | EN | Ground-dwelling | 24.197155 | 37.70245 | 34.31128 | 41.10446 |
Silverstoneia erasmios | Anura | EN | Ground-dwelling | 26.314412 | 37.99272 | 34.52811 | 41.48936 |
Silverstoneia flotator | Anura | LC | Ground-dwelling | 26.678667 | 37.98109 | 34.55750 | 41.54717 |
Silverstoneia flotator | Anura | LC | Ground-dwelling | 26.052883 | 37.89734 | 34.34482 | 41.29319 |
Silverstoneia flotator | Anura | LC | Ground-dwelling | 27.905836 | 38.14534 | 34.69035 | 41.73935 |
Silverstoneia nubicola | Anura | VU | Ground-dwelling | 26.340464 | 38.01298 | 34.43087 | 41.56825 |
Silverstoneia nubicola | Anura | VU | Ground-dwelling | 25.691292 | 37.92380 | 34.32883 | 41.43749 |
Silverstoneia nubicola | Anura | VU | Ground-dwelling | 27.632735 | 38.19051 | 34.57332 | 41.75456 |
Allobates algorei | Anura | NT | Ground-dwelling | 24.535906 | 37.00980 | 32.84743 | 40.99107 |
Allobates algorei | Anura | NT | Ground-dwelling | 23.638196 | 36.88717 | 32.79229 | 40.90561 |
Allobates algorei | Anura | NT | Ground-dwelling | 26.090234 | 37.22212 | 32.97898 | 41.19885 |
Allobates bromelicola | Anura | VU | Ground-dwelling | 26.826561 | 37.38646 | 33.31057 | 41.75527 |
Allobates bromelicola | Anura | VU | Ground-dwelling | 26.155457 | 37.29429 | 32.88163 | 41.28816 |
Allobates bromelicola | Anura | VU | Ground-dwelling | 28.382836 | 37.60019 | 33.47817 | 41.97785 |
Allobates brunneus | Anura | LC | Ground-dwelling | 28.120738 | 37.56653 | 33.64603 | 41.99768 |
Allobates brunneus | Anura | LC | Ground-dwelling | 27.396328 | 37.46635 | 33.40070 | 41.69869 |
Allobates brunneus | Anura | LC | Ground-dwelling | 29.730662 | 37.78918 | 33.94244 | 42.33573 |
Allobates crombiei | Anura | LC | Ground-dwelling | 27.961768 | 37.41198 | 33.43891 | 41.57247 |
Allobates crombiei | Anura | LC | Ground-dwelling | 27.157145 | 37.30256 | 33.40116 | 41.42773 |
Allobates crombiei | Anura | LC | Ground-dwelling | 29.679512 | 37.64559 | 33.73279 | 41.97756 |
Allobates caeruleodactylus | Anura | DD | Ground-dwelling | 28.573192 | 37.62994 | 33.37344 | 41.55880 |
Allobates caeruleodactylus | Anura | DD | Ground-dwelling | 27.880860 | 37.53353 | 33.19851 | 41.34664 |
Allobates caeruleodactylus | Anura | DD | Ground-dwelling | 30.219675 | 37.85922 | 33.65580 | 41.89507 |
Allobates caribe | Anura | CR | Ground-dwelling | 26.880586 | 37.36582 | 33.22132 | 41.30783 |
Allobates caribe | Anura | CR | Ground-dwelling | 26.247396 | 37.27899 | 33.20747 | 41.26243 |
Allobates caribe | Anura | CR | Ground-dwelling | 28.358386 | 37.56849 | 33.51599 | 41.55898 |
Allobates chalcopis | Anura | CR | Ground-dwelling | 27.218899 | 37.52366 | 33.62247 | 41.52884 |
Allobates chalcopis | Anura | CR | Ground-dwelling | 26.729963 | 37.45580 | 33.57367 | 41.46621 |
Allobates chalcopis | Anura | CR | Ground-dwelling | 28.004252 | 37.63266 | 33.66128 | 41.66786 |
Allobates subfolionidificans | Anura | VU | Ground-dwelling | 29.482752 | 37.31461 | 34.11831 | 40.66989 |
Allobates subfolionidificans | Anura | VU | Ground-dwelling | 28.433878 | 37.16819 | 33.93377 | 40.40296 |
Allobates subfolionidificans | Anura | VU | Ground-dwelling | 31.290311 | 37.56694 | 34.36353 | 41.05118 |
Allobates fratisenescus | Anura | VU | Ground-dwelling | 24.284469 | 36.95366 | 32.98743 | 41.30947 |
Allobates fratisenescus | Anura | VU | Ground-dwelling | 23.142847 | 36.79594 | 32.78549 | 41.04125 |
Allobates fratisenescus | Anura | VU | Ground-dwelling | 26.108177 | 37.20563 | 33.17860 | 41.54134 |
Allobates fuscellus | Anura | DD | Ground-dwelling | 28.852832 | 37.66544 | 33.86497 | 42.20445 |
Allobates fuscellus | Anura | DD | Ground-dwelling | 28.070421 | 37.55802 | 33.70369 | 42.04961 |
Allobates fuscellus | Anura | DD | Ground-dwelling | 30.450612 | 37.88481 | 34.09141 | 42.52116 |
Allobates gasconi | Anura | DD | Ground-dwelling | 28.506417 | 37.54026 | 33.70918 | 42.00180 |
Allobates gasconi | Anura | DD | Ground-dwelling | 27.726622 | 37.43224 | 33.44224 | 41.73658 |
Allobates gasconi | Anura | DD | Ground-dwelling | 30.044050 | 37.75326 | 33.76570 | 42.13545 |
Allobates marchesianus | Anura | LC | Ground-dwelling | 28.102613 | 37.59663 | 33.67477 | 41.74883 |
Allobates marchesianus | Anura | LC | Ground-dwelling | 27.357098 | 37.49360 | 33.49514 | 41.56557 |
Allobates marchesianus | Anura | LC | Ground-dwelling | 29.698989 | 37.81725 | 33.84027 | 41.94906 |
Allobates goianus | Anura | DD | Ground-dwelling | 26.424331 | 37.30238 | 33.76310 | 41.74060 |
Allobates goianus | Anura | DD | Ground-dwelling | 25.171885 | 37.13109 | 32.94268 | 40.86211 |
Allobates goianus | Anura | DD | Ground-dwelling | 28.607335 | 37.60093 | 33.83426 | 42.03402 |
Allobates granti | Anura | LC | Ground-dwelling | 27.280786 | 37.40325 | 32.85119 | 41.14244 |
Allobates granti | Anura | LC | Ground-dwelling | 26.673692 | 37.32138 | 32.84639 | 41.05673 |
Allobates granti | Anura | LC | Ground-dwelling | 28.905770 | 37.62240 | 33.01664 | 41.41493 |
Allobates ornatus | Anura | DD | Ground-dwelling | 24.021783 | 37.01908 | 33.04931 | 40.72132 |
Allobates ornatus | Anura | DD | Ground-dwelling | 23.410536 | 36.93493 | 32.95916 | 40.64463 |
Allobates ornatus | Anura | DD | Ground-dwelling | 25.363768 | 37.20382 | 33.20018 | 40.89352 |
Allobates humilis | Anura | EN | Ground-dwelling | 26.672843 | 37.25137 | 33.11506 | 41.10297 |
Allobates humilis | Anura | EN | Ground-dwelling | 25.823888 | 37.13595 | 32.97365 | 40.96810 |
Allobates humilis | Anura | EN | Ground-dwelling | 28.219786 | 37.46168 | 33.32526 | 41.29705 |
Allobates pittieri | Anura | LC | Ground-dwelling | 26.290122 | 37.21045 | 33.03423 | 41.21917 |
Allobates pittieri | Anura | LC | Ground-dwelling | 25.564104 | 37.11031 | 32.86722 | 41.04775 |
Allobates pittieri | Anura | LC | Ground-dwelling | 27.729306 | 37.40898 | 33.03493 | 41.27875 |
Allobates juanii | Anura | EN | Ground-dwelling | 23.210805 | 36.83465 | 32.71188 | 40.38823 |
Allobates juanii | Anura | EN | Ground-dwelling | 22.314408 | 36.71240 | 32.58716 | 40.21583 |
Allobates juanii | Anura | EN | Ground-dwelling | 24.894311 | 37.06424 | 32.93607 | 40.71756 |
Allobates kingsburyi | Anura | EN | Ground-dwelling | 22.772920 | 36.82553 | 32.83511 | 40.53236 |
Allobates kingsburyi | Anura | EN | Ground-dwelling | 21.184011 | 36.60717 | 32.72617 | 40.43432 |
Allobates kingsburyi | Anura | EN | Ground-dwelling | 24.943916 | 37.12390 | 33.41956 | 41.19098 |
Allobates mandelorum | Anura | EN | Ground-dwelling | 27.030356 | 37.45167 | 33.20831 | 41.23980 |
Allobates mandelorum | Anura | EN | Ground-dwelling | 26.334644 | 37.35609 | 33.20126 | 41.12757 |
Allobates mandelorum | Anura | EN | Ground-dwelling | 28.598041 | 37.66706 | 33.58803 | 41.73559 |
Allobates masniger | Anura | DD | Ground-dwelling | 27.678760 | 37.53839 | 33.47501 | 41.70541 |
Allobates masniger | Anura | DD | Ground-dwelling | 26.997061 | 37.44385 | 33.66088 | 41.83909 |
Allobates masniger | Anura | DD | Ground-dwelling | 29.360599 | 37.77165 | 33.55531 | 41.83273 |
Allobates nidicola | Anura | DD | Ground-dwelling | 28.504213 | 37.57377 | 33.41396 | 41.92583 |
Allobates nidicola | Anura | DD | Ground-dwelling | 27.793841 | 37.47584 | 33.28554 | 41.76399 |
Allobates nidicola | Anura | DD | Ground-dwelling | 30.186407 | 37.80566 | 33.58163 | 42.15036 |
Allobates melanolaemus | Anura | LC | Ground-dwelling | 28.932901 | 37.61452 | 33.46802 | 41.63473 |
Allobates melanolaemus | Anura | LC | Ground-dwelling | 28.139204 | 37.50727 | 33.40975 | 41.54100 |
Allobates melanolaemus | Anura | LC | Ground-dwelling | 30.390737 | 37.81152 | 33.51329 | 41.70618 |
Allobates myersi | Anura | LC | Ground-dwelling | 28.195502 | 37.60193 | 33.55179 | 41.41558 |
Allobates myersi | Anura | LC | Ground-dwelling | 27.472395 | 37.50191 | 33.50412 | 41.34374 |
Allobates myersi | Anura | LC | Ground-dwelling | 29.709770 | 37.81140 | 33.73282 | 41.67804 |
Allobates niputidea | Anura | LC | Ground-dwelling | 26.150164 | 37.31785 | 33.56691 | 41.66229 |
Allobates niputidea | Anura | LC | Ground-dwelling | 25.425303 | 37.21881 | 33.41468 | 41.57081 |
Allobates niputidea | Anura | LC | Ground-dwelling | 27.723564 | 37.53284 | 33.66255 | 41.84191 |
Allobates olfersioides | Anura | VU | Ground-dwelling | 25.309400 | 36.97433 | 33.05404 | 41.02138 |
Allobates olfersioides | Anura | VU | Ground-dwelling | 24.379212 | 36.84969 | 32.90139 | 40.85285 |
Allobates olfersioides | Anura | VU | Ground-dwelling | 26.992015 | 37.19978 | 33.21865 | 41.31198 |
Allobates paleovarzensis | Anura | NT | Ground-dwelling | 28.491840 | 37.64343 | 33.24550 | 41.78715 |
Allobates paleovarzensis | Anura | NT | Ground-dwelling | 27.796802 | 37.54814 | 32.82579 | 41.36240 |
Allobates paleovarzensis | Anura | NT | Ground-dwelling | 30.022806 | 37.85332 | 33.35543 | 42.04052 |
Allobates sumtuosus | Anura | DD | Ground-dwelling | 27.448925 | 37.46134 | 33.44220 | 41.95320 |
Allobates sumtuosus | Anura | DD | Ground-dwelling | 26.758152 | 37.36589 | 33.31459 | 41.77547 |
Allobates sumtuosus | Anura | DD | Ground-dwelling | 28.907016 | 37.66282 | 33.42974 | 42.09375 |
Allobates sanmartini | Anura | DD | Ground-dwelling | 26.516499 | 37.45728 | 33.52882 | 42.09407 |
Allobates sanmartini | Anura | DD | Ground-dwelling | 25.598703 | 37.33072 | 33.23271 | 41.82437 |
Allobates sanmartini | Anura | DD | Ground-dwelling | 28.318282 | 37.70573 | 33.72449 | 42.36329 |
Allobates talamancae | Anura | LC | Ground-dwelling | 26.134645 | 37.24778 | 33.06079 | 41.16751 |
Allobates talamancae | Anura | LC | Ground-dwelling | 25.426255 | 37.15243 | 32.97966 | 41.05074 |
Allobates talamancae | Anura | LC | Ground-dwelling | 27.490013 | 37.43023 | 33.46210 | 41.63192 |
Allobates vanzolinius | Anura | LC | Ground-dwelling | 28.998456 | 37.70409 | 34.14957 | 41.93820 |
Allobates vanzolinius | Anura | LC | Ground-dwelling | 28.198149 | 37.59312 | 34.03506 | 41.76083 |
Allobates vanzolinius | Anura | LC | Ground-dwelling | 30.610220 | 37.92757 | 34.29442 | 42.22062 |
Allobates wayuu | Anura | LC | Ground-dwelling | 26.810229 | 37.32468 | 33.18301 | 41.53712 |
Allobates wayuu | Anura | LC | Ground-dwelling | 26.314569 | 37.25669 | 33.04779 | 41.36509 |
Allobates wayuu | Anura | LC | Ground-dwelling | 27.717967 | 37.44920 | 33.15825 | 41.55420 |
Allobates undulatus | Anura | VU | Ground-dwelling | 26.759197 | 37.27855 | 33.49855 | 42.18932 |
Allobates undulatus | Anura | VU | Ground-dwelling | 26.094635 | 37.18786 | 33.32053 | 41.99135 |
Allobates undulatus | Anura | VU | Ground-dwelling | 28.102812 | 37.46191 | 33.68002 | 42.39787 |
Anomaloglossus ayarzaguenai | Anura | VU | Stream-dwelling | 25.413875 | 36.48134 | 31.61290 | 41.02405 |
Anomaloglossus ayarzaguenai | Anura | VU | Stream-dwelling | 24.575085 | 36.36522 | 31.33978 | 40.74720 |
Anomaloglossus ayarzaguenai | Anura | VU | Stream-dwelling | 26.912863 | 36.68886 | 31.78707 | 41.23346 |
Anomaloglossus baeobatrachus | Anura | DD | Ground-dwelling | 27.491256 | 37.45175 | 32.92547 | 42.02316 |
Anomaloglossus baeobatrachus | Anura | DD | Ground-dwelling | 26.853892 | 37.36200 | 32.80379 | 41.91611 |
Anomaloglossus baeobatrachus | Anura | DD | Ground-dwelling | 29.002275 | 37.66454 | 33.09789 | 42.32564 |
Anomaloglossus beebei | Anura | EN | Arboreal | 26.634291 | 37.12867 | 32.68433 | 41.28854 |
Anomaloglossus beebei | Anura | EN | Arboreal | 25.965013 | 37.03637 | 32.59317 | 41.19699 |
Anomaloglossus beebei | Anura | EN | Arboreal | 28.137979 | 37.33605 | 33.00811 | 41.57927 |
Anomaloglossus roraima | Anura | EN | Ground-dwelling | 26.386750 | 37.30057 | 33.30227 | 42.09429 |
Anomaloglossus roraima | Anura | EN | Ground-dwelling | 25.707210 | 37.20647 | 32.87488 | 41.65678 |
Anomaloglossus roraima | Anura | EN | Ground-dwelling | 27.920527 | 37.51296 | 33.28154 | 42.16788 |
Anomaloglossus breweri | Anura | NT | Semi-aquatic | 25.635717 | 37.43141 | 33.00713 | 41.92782 |
Anomaloglossus breweri | Anura | NT | Semi-aquatic | 24.877378 | 37.32705 | 33.02859 | 41.98579 |
Anomaloglossus breweri | Anura | NT | Semi-aquatic | 27.417978 | 37.67666 | 33.15230 | 42.29720 |
Anomaloglossus degranvillei | Anura | CR | Stream-dwelling | 27.532084 | 36.88640 | 32.45138 | 41.94789 |
Anomaloglossus degranvillei | Anura | CR | Stream-dwelling | 26.866417 | 36.79340 | 32.35217 | 41.83941 |
Anomaloglossus degranvillei | Anura | CR | Stream-dwelling | 29.442491 | 37.15331 | 32.76865 | 42.37143 |
Anomaloglossus kaiei | Anura | EN | Ground-dwelling | 26.634291 | 37.37961 | 33.14940 | 42.07372 |
Anomaloglossus kaiei | Anura | EN | Ground-dwelling | 25.965013 | 37.28770 | 33.09890 | 42.01131 |
Anomaloglossus kaiei | Anura | EN | Ground-dwelling | 28.137979 | 37.58610 | 33.32394 | 42.26898 |
Anomaloglossus guanayensis | Anura | NT | Stream-dwelling | 26.759197 | 36.75859 | 32.12590 | 41.67116 |
Anomaloglossus guanayensis | Anura | NT | Stream-dwelling | 26.094635 | 36.66699 | 32.24449 | 41.67377 |
Anomaloglossus guanayensis | Anura | NT | Stream-dwelling | 28.102812 | 36.94380 | 32.37716 | 41.95374 |
Anomaloglossus murisipanensis | Anura | VU | Ground-dwelling | 25.635717 | 37.18289 | 32.54757 | 42.10173 |
Anomaloglossus murisipanensis | Anura | VU | Ground-dwelling | 24.877378 | 37.07741 | 32.39284 | 41.94304 |
Anomaloglossus murisipanensis | Anura | VU | Ground-dwelling | 27.417978 | 37.43080 | 32.66778 | 42.28989 |
Anomaloglossus parimae | Anura | DD | Stream-dwelling | 25.955113 | 36.66054 | 32.50079 | 41.74572 |
Anomaloglossus parimae | Anura | DD | Stream-dwelling | 25.288524 | 36.56763 | 32.42164 | 41.64949 |
Anomaloglossus parimae | Anura | DD | Stream-dwelling | 27.413210 | 36.86378 | 32.67393 | 41.95621 |
Anomaloglossus parkerae | Anura | DD | Ground-dwelling | 25.457948 | 37.12351 | 32.17596 | 41.45265 |
Anomaloglossus parkerae | Anura | DD | Ground-dwelling | 24.682403 | 37.01650 | 32.07898 | 41.30471 |
Anomaloglossus parkerae | Anura | DD | Ground-dwelling | 27.292061 | 37.37657 | 32.40372 | 41.74277 |
Anomaloglossus praderioi | Anura | EN | Ground-dwelling | 26.386750 | 37.36626 | 32.91816 | 41.81289 |
Anomaloglossus praderioi | Anura | EN | Ground-dwelling | 25.707210 | 37.27167 | 32.81413 | 41.67904 |
Anomaloglossus praderioi | Anura | EN | Ground-dwelling | 27.920527 | 37.57975 | 33.13442 | 42.09194 |
Anomaloglossus rufulus | Anura | NT | Ground-dwelling | 25.263245 | 37.13873 | 32.40085 | 41.62809 |
Anomaloglossus rufulus | Anura | NT | Ground-dwelling | 24.500720 | 37.03361 | 32.32053 | 41.53056 |
Anomaloglossus rufulus | Anura | NT | Ground-dwelling | 27.093739 | 37.39108 | 32.60690 | 41.86221 |
Anomaloglossus shrevei | Anura | NT | Stream-dwelling | 25.661020 | 36.58448 | 32.20989 | 41.43899 |
Anomaloglossus shrevei | Anura | NT | Stream-dwelling | 25.001401 | 36.49250 | 32.08500 | 41.30777 |
Anomaloglossus shrevei | Anura | NT | Stream-dwelling | 27.238038 | 36.80437 | 32.60513 | 41.89653 |
Anomaloglossus stepheni | Anura | LC | Ground-dwelling | 28.386617 | 37.64411 | 33.00845 | 42.07257 |
Anomaloglossus stepheni | Anura | LC | Ground-dwelling | 27.661530 | 37.54497 | 32.94918 | 41.95989 |
Anomaloglossus stepheni | Anura | LC | Ground-dwelling | 30.037180 | 37.86979 | 33.25674 | 42.46686 |
Anomaloglossus tamacuarensis | Anura | DD | Stream-dwelling | 26.992680 | 36.77301 | 31.70618 | 41.19854 |
Anomaloglossus tamacuarensis | Anura | DD | Stream-dwelling | 26.321889 | 36.68079 | 31.59642 | 41.12956 |
Anomaloglossus tamacuarensis | Anura | DD | Stream-dwelling | 28.425982 | 36.97006 | 31.88013 | 41.34592 |
Anomaloglossus tepuyensis | Anura | DD | Stream-dwelling | 25.824577 | 36.59900 | 32.11845 | 41.39198 |
Anomaloglossus tepuyensis | Anura | DD | Stream-dwelling | 25.051367 | 36.49288 | 32.02742 | 41.31801 |
Anomaloglossus tepuyensis | Anura | DD | Stream-dwelling | 27.554962 | 36.83648 | 32.05081 | 41.32979 |
Anomaloglossus triunfo | Anura | DD | Stream-dwelling | 26.013438 | 36.60452 | 32.04389 | 41.02320 |
Anomaloglossus triunfo | Anura | DD | Stream-dwelling | 25.225357 | 36.49660 | 31.93628 | 40.89173 |
Anomaloglossus triunfo | Anura | DD | Stream-dwelling | 27.691946 | 36.83436 | 32.21524 | 41.18824 |
Anomaloglossus wothuja | Anura | LC | Stream-dwelling | 27.706177 | 36.84386 | 31.98166 | 41.40984 |
Anomaloglossus wothuja | Anura | LC | Stream-dwelling | 27.079627 | 36.75830 | 31.98756 | 41.35905 |
Anomaloglossus wothuja | Anura | LC | Stream-dwelling | 28.967034 | 37.01605 | 32.21648 | 41.68624 |
Rheobates palmatus | Anura | LC | Stream-dwelling | 23.788444 | 36.16782 | 31.49854 | 40.66473 |
Rheobates palmatus | Anura | LC | Stream-dwelling | 22.991140 | 36.05954 | 31.35427 | 40.53291 |
Rheobates palmatus | Anura | LC | Stream-dwelling | 25.399594 | 36.38662 | 31.63740 | 40.83776 |
Rheobates pseudopalmatus | Anura | LC | Stream-dwelling | 24.915942 | 36.39466 | 31.90703 | 41.07116 |
Rheobates pseudopalmatus | Anura | LC | Stream-dwelling | 24.133256 | 36.28623 | 31.91666 | 41.05232 |
Rheobates pseudopalmatus | Anura | LC | Stream-dwelling | 26.439125 | 36.60569 | 32.05633 | 41.31629 |
Aromobates saltuensis | Anura | EN | Stream-dwelling | 24.579676 | 36.38292 | 31.31282 | 40.65204 |
Aromobates saltuensis | Anura | EN | Stream-dwelling | 23.598329 | 36.24837 | 31.19135 | 40.46163 |
Aromobates saltuensis | Anura | EN | Stream-dwelling | 26.226024 | 36.60863 | 31.45863 | 40.82844 |
Aromobates capurinensis | Anura | DD | Stream-dwelling | 25.445939 | 36.64247 | 32.24912 | 41.77978 |
Aromobates capurinensis | Anura | DD | Stream-dwelling | 24.543351 | 36.51604 | 32.11892 | 41.60679 |
Aromobates capurinensis | Anura | DD | Stream-dwelling | 27.031556 | 36.86459 | 32.57792 | 42.09153 |
Aromobates duranti | Anura | CR | Stream-dwelling | 25.445939 | 36.56859 | 31.40244 | 41.12467 |
Aromobates duranti | Anura | CR | Stream-dwelling | 24.543351 | 36.44459 | 31.31477 | 41.02014 |
Aromobates duranti | Anura | CR | Stream-dwelling | 27.031556 | 36.78643 | 31.58839 | 41.34381 |
Aromobates mayorgai | Anura | EN | Stream-dwelling | 26.081594 | 36.63712 | 31.81066 | 41.09441 |
Aromobates mayorgai | Anura | EN | Stream-dwelling | 25.212821 | 36.51773 | 31.72995 | 40.96891 |
Aromobates mayorgai | Anura | EN | Stream-dwelling | 27.650603 | 36.85275 | 31.76496 | 41.05151 |
Aromobates meridensis | Anura | CR | Stream-dwelling | 25.445939 | 36.62567 | 31.53570 | 41.02760 |
Aromobates meridensis | Anura | CR | Stream-dwelling | 24.543351 | 36.50117 | 31.44299 | 40.90194 |
Aromobates meridensis | Anura | CR | Stream-dwelling | 27.031556 | 36.84438 | 31.76894 | 41.32405 |
Aromobates molinarii | Anura | CR | Stream-dwelling | 25.445939 | 36.52794 | 31.56869 | 41.15689 |
Aromobates molinarii | Anura | CR | Stream-dwelling | 24.543351 | 36.40286 | 31.81051 | 41.38192 |
Aromobates molinarii | Anura | CR | Stream-dwelling | 27.031556 | 36.74766 | 31.87249 | 41.43145 |
Aromobates orostoma | Anura | CR | Stream-dwelling | 25.445939 | 36.58857 | 31.96655 | 41.08546 |
Aromobates orostoma | Anura | CR | Stream-dwelling | 24.543351 | 36.46473 | 31.96834 | 41.05510 |
Aromobates orostoma | Anura | CR | Stream-dwelling | 27.031556 | 36.80612 | 32.03587 | 41.21811 |
Mannophryne caquetio | Anura | EN | Stream-dwelling | 26.384918 | 36.64089 | 31.97920 | 41.31105 |
Mannophryne caquetio | Anura | EN | Stream-dwelling | 25.623372 | 36.53578 | 31.88271 | 41.14377 |
Mannophryne caquetio | Anura | EN | Stream-dwelling | 27.795946 | 36.83564 | 31.76874 | 41.22095 |
Mannophryne collaris | Anura | EN | Stream-dwelling | 25.445939 | 36.53734 | 31.96976 | 41.34452 |
Mannophryne collaris | Anura | EN | Stream-dwelling | 24.543351 | 36.41472 | 32.09406 | 41.45051 |
Mannophryne collaris | Anura | EN | Stream-dwelling | 27.031556 | 36.75274 | 32.14595 | 41.52391 |
Mannophryne herminae | Anura | NT | Stream-dwelling | 26.678151 | 36.60811 | 31.59377 | 40.87988 |
Mannophryne herminae | Anura | NT | Stream-dwelling | 25.963270 | 36.51041 | 31.57012 | 40.88154 |
Mannophryne herminae | Anura | NT | Stream-dwelling | 28.180786 | 36.81347 | 31.71006 | 41.03844 |
Mannophryne larandina | Anura | DD | Ground-dwelling | 26.628438 | 37.29463 | 32.28193 | 41.91852 |
Mannophryne larandina | Anura | DD | Ground-dwelling | 25.765485 | 37.17717 | 32.19613 | 41.81092 |
Mannophryne larandina | Anura | DD | Ground-dwelling | 28.169923 | 37.50445 | 32.55339 | 42.24371 |
Mannophryne yustizi | Anura | EN | Stream-dwelling | 25.203531 | 36.38518 | 31.83880 | 41.35730 |
Mannophryne yustizi | Anura | EN | Stream-dwelling | 24.273673 | 36.25842 | 31.75071 | 41.22635 |
Mannophryne yustizi | Anura | EN | Stream-dwelling | 27.056592 | 36.63779 | 32.42327 | 41.96146 |
Mannophryne lamarcai | Anura | EN | Stream-dwelling | 26.357961 | 36.67559 | 32.01436 | 41.14088 |
Mannophryne lamarcai | Anura | EN | Stream-dwelling | 25.399787 | 36.54241 | 32.24356 | 41.33766 |
Mannophryne lamarcai | Anura | EN | Stream-dwelling | 27.780686 | 36.87335 | 32.00603 | 41.16661 |
Mannophryne cordilleriana | Anura | VU | Stream-dwelling | 26.717248 | 36.68680 | 32.04723 | 41.48599 |
Mannophryne cordilleriana | Anura | VU | Stream-dwelling | 25.882292 | 36.57186 | 31.99673 | 41.38486 |
Mannophryne cordilleriana | Anura | VU | Stream-dwelling | 28.269649 | 36.90049 | 32.17931 | 41.67724 |
Mannophryne leonardoi | Anura | NT | Stream-dwelling | 26.795104 | 36.62424 | 32.19464 | 41.02258 |
Mannophryne leonardoi | Anura | NT | Stream-dwelling | 25.994402 | 36.51557 | 32.13340 | 40.90627 |
Mannophryne leonardoi | Anura | NT | Stream-dwelling | 28.468857 | 36.85140 | 32.48223 | 41.34611 |
Mannophryne trinitatis | Anura | LC | Stream-dwelling | 26.327489 | 36.70633 | 32.40629 | 41.46887 |
Mannophryne trinitatis | Anura | LC | Stream-dwelling | 25.811870 | 36.63577 | 32.31696 | 41.39014 |
Mannophryne trinitatis | Anura | LC | Stream-dwelling | 27.134356 | 36.81676 | 32.52232 | 41.64253 |
Mannophryne venezuelensis | Anura | NT | Stream-dwelling | 26.606700 | 36.68744 | 32.09977 | 41.28640 |
Mannophryne venezuelensis | Anura | NT | Stream-dwelling | 25.982069 | 36.60210 | 32.05123 | 41.19668 |
Mannophryne venezuelensis | Anura | NT | Stream-dwelling | 27.907344 | 36.86512 | 32.21101 | 41.39645 |
Mannophryne neblina | Anura | CR | Stream-dwelling | 26.826561 | 36.67091 | 32.25826 | 41.63817 |
Mannophryne neblina | Anura | CR | Stream-dwelling | 26.155457 | 36.57814 | 32.15788 | 41.54929 |
Mannophryne neblina | Anura | CR | Stream-dwelling | 28.382836 | 36.88604 | 32.35968 | 41.87121 |
Mannophryne oblitterata | Anura | NT | Stream-dwelling | 26.386163 | 36.68022 | 32.14666 | 41.20647 |
Mannophryne oblitterata | Anura | NT | Stream-dwelling | 25.388181 | 36.54241 | 32.05867 | 41.08905 |
Mannophryne oblitterata | Anura | NT | Stream-dwelling | 27.914767 | 36.89131 | 32.28224 | 41.51243 |
Mannophryne olmonae | Anura | VU | Stream-dwelling | 26.614467 | 36.68621 | 32.23632 | 41.55977 |
Mannophryne olmonae | Anura | VU | Stream-dwelling | 26.237296 | 36.63515 | 32.20509 | 41.50485 |
Mannophryne olmonae | Anura | VU | Stream-dwelling | 27.226432 | 36.76905 | 32.31044 | 41.65579 |
Mannophryne riveroi | Anura | EN | Stream-dwelling | 26.479711 | 36.71939 | 32.00601 | 41.12594 |
Mannophryne riveroi | Anura | EN | Stream-dwelling | 25.877888 | 36.63719 | 31.93433 | 41.02438 |
Mannophryne riveroi | Anura | EN | Stream-dwelling | 27.645281 | 36.87859 | 32.14219 | 41.26875 |
Mannophryne speeri | Anura | CR | Stream-dwelling | 25.203531 | 36.47591 | 31.93907 | 41.10120 |
Mannophryne speeri | Anura | CR | Stream-dwelling | 24.273673 | 36.34690 | 31.86270 | 40.94645 |
Mannophryne speeri | Anura | CR | Stream-dwelling | 27.056592 | 36.73301 | 32.14058 | 41.42411 |
Mannophryne trujillensis | Anura | EN | Stream-dwelling | 26.628438 | 36.63362 | 32.10246 | 41.30573 |
Mannophryne trujillensis | Anura | EN | Stream-dwelling | 25.765485 | 36.51526 | 31.99856 | 41.17278 |
Mannophryne trujillensis | Anura | EN | Stream-dwelling | 28.169923 | 36.84503 | 31.94643 | 41.25460 |
Cryptobatrachus boulengeri | Anura | VU | Stream-dwelling | 26.883206 | 37.33956 | 33.04484 | 42.05045 |
Cryptobatrachus boulengeri | Anura | VU | Stream-dwelling | 26.042323 | 37.22468 | 32.89808 | 41.88823 |
Cryptobatrachus boulengeri | Anura | VU | Stream-dwelling | 28.606507 | 37.57500 | 33.10443 | 42.27792 |
Cryptobatrachus fuhrmanni | Anura | LC | Stream-dwelling | 24.032837 | 36.94634 | 32.52709 | 41.61557 |
Cryptobatrachus fuhrmanni | Anura | LC | Stream-dwelling | 23.204153 | 36.83585 | 32.52732 | 41.65608 |
Cryptobatrachus fuhrmanni | Anura | LC | Stream-dwelling | 25.656273 | 37.16279 | 32.57892 | 41.77947 |
Hemiphractus bubalus | Anura | VU | Arboreal | 24.217651 | 37.41282 | 32.85182 | 42.29430 |
Hemiphractus bubalus | Anura | VU | Arboreal | 23.173596 | 37.27553 | 32.75781 | 42.14640 |
Hemiphractus bubalus | Anura | VU | Arboreal | 25.926944 | 37.63759 | 33.31421 | 42.80799 |
Hemiphractus proboscideus | Anura | LC | Arboreal | 27.117610 | 37.77194 | 33.17365 | 42.44868 |
Hemiphractus proboscideus | Anura | LC | Arboreal | 26.333956 | 37.66811 | 33.07381 | 42.34394 |
Hemiphractus proboscideus | Anura | LC | Arboreal | 28.647001 | 37.97456 | 33.40471 | 42.67958 |
Hemiphractus fasciatus | Anura | VU | Arboreal | 24.643213 | 37.57306 | 32.71837 | 42.05942 |
Hemiphractus fasciatus | Anura | VU | Arboreal | 23.691015 | 37.44602 | 32.91539 | 42.26208 |
Hemiphractus fasciatus | Anura | VU | Arboreal | 26.203205 | 37.78120 | 32.96076 | 42.31456 |
Hemiphractus johnsoni | Anura | EN | Arboreal | 22.376189 | 37.16360 | 32.67205 | 41.71635 |
Hemiphractus johnsoni | Anura | EN | Arboreal | 21.363649 | 37.03015 | 32.64973 | 41.67787 |
Hemiphractus johnsoni | Anura | EN | Arboreal | 24.075556 | 37.38758 | 32.75943 | 41.86529 |
Hemiphractus scutatus | Anura | LC | Arboreal | 26.498078 | 37.65793 | 32.72479 | 42.32475 |
Hemiphractus scutatus | Anura | LC | Arboreal | 25.713051 | 37.55442 | 32.63749 | 42.20390 |
Hemiphractus scutatus | Anura | LC | Arboreal | 27.987675 | 37.85434 | 32.89831 | 42.49520 |
Hemiphractus helioi | Anura | LC | Arboreal | 22.447713 | 37.25435 | 33.08700 | 42.18843 |
Hemiphractus helioi | Anura | LC | Arboreal | 21.595085 | 37.14093 | 32.87985 | 41.97583 |
Hemiphractus helioi | Anura | LC | Arboreal | 23.697654 | 37.42061 | 32.89558 | 42.00862 |
Flectonotus fitzgeraldi | Anura | LC | Arboreal | 26.602142 | 37.57643 | 33.12670 | 42.36760 |
Flectonotus fitzgeraldi | Anura | LC | Arboreal | 26.059772 | 37.50557 | 33.06382 | 42.28579 |
Flectonotus fitzgeraldi | Anura | LC | Arboreal | 27.657000 | 37.71424 | 33.24887 | 42.56114 |
Flectonotus pygmaeus | Anura | LC | Arboreal | 25.796205 | 37.53649 | 33.24723 | 42.65816 |
Flectonotus pygmaeus | Anura | LC | Arboreal | 24.968484 | 37.42561 | 33.11154 | 42.51893 |
Flectonotus pygmaeus | Anura | LC | Arboreal | 27.323497 | 37.74107 | 33.45718 | 42.92951 |
Stefania ackawaio | Anura | VU | Arboreal | 26.634291 | 37.63030 | 32.66781 | 42.10100 |
Stefania ackawaio | Anura | VU | Arboreal | 25.965013 | 37.54118 | 32.57439 | 41.97404 |
Stefania ackawaio | Anura | VU | Arboreal | 28.137979 | 37.83052 | 33.25764 | 42.84914 |
Stefania marahuaquensis | Anura | NT | Ground-dwelling | 25.661020 | 37.67291 | 32.75268 | 41.94031 |
Stefania marahuaquensis | Anura | NT | Ground-dwelling | 25.001401 | 37.58460 | 32.62658 | 41.75883 |
Stefania marahuaquensis | Anura | NT | Ground-dwelling | 27.238038 | 37.88404 | 33.18767 | 42.39640 |
Stefania ayangannae | Anura | VU | Arboreal | 26.634291 | 37.54130 | 33.08476 | 41.79176 |
Stefania ayangannae | Anura | VU | Arboreal | 25.965013 | 37.45320 | 33.00805 | 41.70586 |
Stefania ayangannae | Anura | VU | Arboreal | 28.137979 | 37.73923 | 33.33835 | 42.09737 |
Stefania coxi | Anura | VU | Arboreal | 26.634291 | 37.65354 | 32.59323 | 41.99648 |
Stefania coxi | Anura | VU | Arboreal | 25.965013 | 37.56483 | 32.55542 | 41.89104 |
Stefania coxi | Anura | VU | Arboreal | 28.137979 | 37.85283 | 33.02329 | 42.44280 |
Stefania riveroi | Anura | VU | Ground-dwelling | 26.386750 | 37.69413 | 32.90637 | 42.26045 |
Stefania riveroi | Anura | VU | Ground-dwelling | 25.707210 | 37.60515 | 32.81050 | 42.11302 |
Stefania riveroi | Anura | VU | Ground-dwelling | 27.920527 | 37.89497 | 33.43111 | 42.92310 |
Stefania riae | Anura | NT | Arboreal | 25.500814 | 37.52668 | 33.17546 | 42.08302 |
Stefania riae | Anura | NT | Arboreal | 24.675066 | 37.41690 | 33.11660 | 42.04214 |
Stefania riae | Anura | NT | Arboreal | 27.054357 | 37.73320 | 33.28620 | 42.24470 |
Stefania oculosa | Anura | VU | Ground-dwelling | 25.413875 | 37.59599 | 33.03714 | 42.02917 |
Stefania oculosa | Anura | VU | Ground-dwelling | 24.575085 | 37.48384 | 32.59092 | 41.56573 |
Stefania oculosa | Anura | VU | Ground-dwelling | 26.912863 | 37.79640 | 33.25404 | 42.23722 |
Stefania breweri | Anura | VU | Arboreal | 28.111650 | 37.91992 | 33.62607 | 42.55202 |
Stefania breweri | Anura | VU | Arboreal | 27.458676 | 37.83388 | 33.54591 | 42.41053 |
Stefania breweri | Anura | VU | Arboreal | 29.455754 | 38.09701 | 33.54011 | 42.56028 |
Stefania goini | Anura | NT | Ground-dwelling | 25.661020 | 37.78796 | 33.14066 | 42.42681 |
Stefania goini | Anura | NT | Ground-dwelling | 25.001401 | 37.69886 | 33.08100 | 42.34006 |
Stefania goini | Anura | NT | Ground-dwelling | 27.238038 | 38.00098 | 33.20479 | 42.52092 |
Stefania evansi | Anura | DD | Stream-dwelling | 26.865673 | 37.20132 | 32.68343 | 41.50811 |
Stefania evansi | Anura | DD | Stream-dwelling | 26.225045 | 37.11592 | 32.59609 | 41.42258 |
Stefania evansi | Anura | DD | Stream-dwelling | 28.253708 | 37.38635 | 32.85045 | 41.70156 |
Stefania scalae | Anura | LC | Stream-dwelling | 25.972272 | 37.05522 | 32.20838 | 41.76644 |
Stefania scalae | Anura | LC | Stream-dwelling | 25.232928 | 36.95776 | 31.98058 | 41.48656 |
Stefania scalae | Anura | LC | Stream-dwelling | 27.661667 | 37.27793 | 32.61301 | 42.16315 |
Stefania tamacuarina | Anura | DD | Stream-dwelling | 27.072310 | 37.24898 | 32.67976 | 42.00385 |
Stefania tamacuarina | Anura | DD | Stream-dwelling | 26.418052 | 37.16255 | 32.89252 | 42.22242 |
Stefania tamacuarina | Anura | DD | Stream-dwelling | 28.545199 | 37.44355 | 32.97430 | 42.34783 |
Stefania roraimae | Anura | EN | Ground-dwelling | 26.386750 | 37.75607 | 33.29143 | 42.38941 |
Stefania roraimae | Anura | EN | Ground-dwelling | 25.707210 | 37.66414 | 33.26652 | 42.29206 |
Stefania roraimae | Anura | EN | Ground-dwelling | 27.920527 | 37.96358 | 33.50537 | 42.75065 |
Stefania woodleyi | Anura | DD | Stream-dwelling | 26.881832 | 37.24090 | 32.62935 | 42.07250 |
Stefania woodleyi | Anura | DD | Stream-dwelling | 26.222816 | 37.15226 | 32.55024 | 41.96340 |
Stefania woodleyi | Anura | DD | Stream-dwelling | 28.355431 | 37.43911 | 32.87844 | 42.43980 |
Stefania percristata | Anura | VU | Arboreal | 25.413875 | 37.47056 | 33.13447 | 41.88376 |
Stefania percristata | Anura | VU | Arboreal | 24.575085 | 37.35811 | 33.22759 | 41.98452 |
Stefania percristata | Anura | VU | Arboreal | 26.912863 | 37.67152 | 33.30710 | 42.10240 |
Stefania schuberti | Anura | NT | Ground-dwelling | 25.824577 | 37.69403 | 32.78361 | 41.81757 |
Stefania schuberti | Anura | NT | Ground-dwelling | 25.051367 | 37.58994 | 32.71536 | 41.68722 |
Stefania schuberti | Anura | NT | Ground-dwelling | 27.554962 | 37.92699 | 33.26768 | 42.42928 |
Stefania ginesi | Anura | NT | Arboreal | 25.263245 | 37.54264 | 32.79218 | 42.22064 |
Stefania ginesi | Anura | NT | Arboreal | 24.500720 | 37.44106 | 32.64865 | 42.05325 |
Stefania ginesi | Anura | NT | Arboreal | 27.093739 | 37.78650 | 33.09487 | 42.51033 |
Stefania satelles | Anura | NT | Ground-dwelling | 25.349143 | 37.62226 | 33.07153 | 42.31458 |
Stefania satelles | Anura | NT | Ground-dwelling | 24.533076 | 37.51392 | 32.97476 | 42.14579 |
Stefania satelles | Anura | NT | Ground-dwelling | 27.207084 | 37.86893 | 33.02044 | 42.33924 |
Fritziana fissilis | Anura | LC | Arboreal | 25.669723 | 37.53352 | 32.68794 | 41.80074 |
Fritziana fissilis | Anura | LC | Arboreal | 24.521960 | 37.38272 | 32.60795 | 41.68678 |
Fritziana fissilis | Anura | LC | Arboreal | 27.671297 | 37.79649 | 32.98721 | 42.13759 |
Fritziana ohausi | Anura | LC | Arboreal | 25.616699 | 37.59332 | 32.98776 | 41.98091 |
Fritziana ohausi | Anura | LC | Arboreal | 24.489874 | 37.44778 | 32.87971 | 41.80921 |
Fritziana ohausi | Anura | LC | Arboreal | 27.582205 | 37.84718 | 33.28183 | 42.33130 |
Fritziana goeldii | Anura | LC | Arboreal | 25.662704 | 37.59251 | 33.12623 | 42.10705 |
Fritziana goeldii | Anura | LC | Arboreal | 24.421013 | 37.42588 | 33.01120 | 41.93533 |
Fritziana goeldii | Anura | LC | Arboreal | 27.857608 | 37.88707 | 33.51839 | 42.53586 |
Gastrotheca abdita | Anura | DD | Arboreal | 24.022160 | 37.63809 | 33.83510 | 41.90718 |
Gastrotheca abdita | Anura | DD | Arboreal | 23.320574 | 37.54689 | 33.69977 | 41.70557 |
Gastrotheca abdita | Anura | DD | Arboreal | 25.414498 | 37.81907 | 33.90407 | 42.07892 |
Gastrotheca andaquiensis | Anura | LC | Arboreal | 23.607521 | 37.59061 | 33.86483 | 41.71603 |
Gastrotheca andaquiensis | Anura | LC | Arboreal | 22.421691 | 37.43867 | 33.71436 | 41.50587 |
Gastrotheca andaquiensis | Anura | LC | Arboreal | 25.395027 | 37.81964 | 34.05860 | 41.95621 |
Gastrotheca albolineata | Anura | LC | Arboreal | 25.709907 | 37.91815 | 33.71869 | 41.55348 |
Gastrotheca albolineata | Anura | LC | Arboreal | 24.771074 | 37.79624 | 33.62995 | 41.40622 |
Gastrotheca albolineata | Anura | LC | Arboreal | 27.416044 | 38.13970 | 33.87996 | 41.85131 |
Gastrotheca ernestoi | Anura | DD | Arboreal | 25.993696 | 38.07310 | 34.23001 | 42.05221 |
Gastrotheca ernestoi | Anura | DD | Arboreal | 24.808276 | 37.91750 | 34.13221 | 41.85355 |
Gastrotheca ernestoi | Anura | DD | Arboreal | 27.957763 | 38.33090 | 34.49509 | 42.53489 |
Gastrotheca fulvorufa | Anura | DD | Arboreal | 25.510287 | 37.83898 | 33.95335 | 41.98463 |
Gastrotheca fulvorufa | Anura | DD | Arboreal | 24.567625 | 37.71530 | 33.84774 | 41.85771 |
Gastrotheca fulvorufa | Anura | DD | Arboreal | 27.163123 | 38.05585 | 34.13851 | 42.23225 |
Gastrotheca microdiscus | Anura | LC | Arboreal | 25.462667 | 37.94296 | 34.25409 | 42.73057 |
Gastrotheca microdiscus | Anura | LC | Arboreal | 24.253698 | 37.78469 | 33.65119 | 42.02590 |
Gastrotheca microdiscus | Anura | LC | Arboreal | 27.513175 | 38.21141 | 34.37686 | 42.97582 |
Gastrotheca bufona | Anura | VU | Arboreal | 24.179372 | 37.79899 | 33.64487 | 41.47990 |
Gastrotheca bufona | Anura | VU | Arboreal | 23.316419 | 37.68750 | 33.47567 | 41.29014 |
Gastrotheca bufona | Anura | VU | Arboreal | 25.664184 | 37.99082 | 33.81631 | 41.67263 |
Gastrotheca orophylax | Anura | VU | Arboreal | 22.791091 | 37.68313 | 34.49252 | 40.82993 |
Gastrotheca orophylax | Anura | VU | Arboreal | 21.484109 | 37.51041 | 34.39054 | 40.68227 |
Gastrotheca orophylax | Anura | VU | Arboreal | 24.670803 | 37.93155 | 34.90902 | 41.32403 |
Gastrotheca plumbea | Anura | VU | Arboreal | 23.223041 | 37.78160 | 33.88368 | 40.65253 |
Gastrotheca plumbea | Anura | VU | Arboreal | 21.587392 | 37.56774 | 33.72187 | 40.43211 |
Gastrotheca plumbea | Anura | VU | Arboreal | 25.446872 | 38.07235 | 34.52185 | 41.37279 |
Gastrotheca monticola | Anura | LC | Arboreal | 21.747264 | 37.44508 | 33.95924 | 41.00984 |
Gastrotheca monticola | Anura | LC | Arboreal | 20.827583 | 37.32549 | 33.62468 | 40.61672 |
Gastrotheca monticola | Anura | LC | Arboreal | 23.384710 | 37.65802 | 34.12778 | 41.24162 |
Gastrotheca antoniiochoai | Anura | DD | Stream-dwelling | 15.323045 | 36.06617 | 32.90611 | 39.60943 |
Gastrotheca antoniiochoai | Anura | DD | Stream-dwelling | 11.264668 | 35.54350 | 32.11744 | 38.77233 |
Gastrotheca antoniiochoai | Anura | DD | Stream-dwelling | 17.134228 | 36.29943 | 32.79354 | 39.52090 |
Gastrotheca excubitor | Anura | VU | Arboreal | 17.705656 | 36.81392 | 33.86950 | 40.00784 |
Gastrotheca excubitor | Anura | VU | Arboreal | 15.001934 | 36.46414 | 33.34344 | 39.46655 |
Gastrotheca excubitor | Anura | VU | Arboreal | 19.268942 | 37.01615 | 33.78091 | 39.98384 |
Gastrotheca ochoai | Anura | EN | Arboreal | 16.918302 | 36.71585 | 33.58932 | 39.92000 |
Gastrotheca ochoai | Anura | EN | Arboreal | 13.275282 | 36.25079 | 33.02268 | 39.36043 |
Gastrotheca ochoai | Anura | EN | Arboreal | 18.757121 | 36.95059 | 33.83438 | 40.20475 |
Gastrotheca rebeccae | Anura | EN | Arboreal | 17.246028 | 36.81561 | 33.33731 | 39.95209 |
Gastrotheca rebeccae | Anura | EN | Arboreal | 15.244695 | 36.55537 | 33.01514 | 39.61772 |
Gastrotheca rebeccae | Anura | EN | Arboreal | 18.862491 | 37.02581 | 33.43556 | 40.13247 |
Gastrotheca christiani | Anura | CR | Arboreal | 22.860302 | 37.44982 | 34.62309 | 40.50251 |
Gastrotheca christiani | Anura | CR | Arboreal | 21.222878 | 37.23694 | 34.16802 | 39.97414 |
Gastrotheca christiani | Anura | CR | Arboreal | 25.222075 | 37.75688 | 34.63708 | 40.64186 |
Gastrotheca lauzuricae | Anura | CR | Arboreal | 14.331934 | 36.35406 | 33.30852 | 39.18375 |
Gastrotheca lauzuricae | Anura | CR | Arboreal | 13.213313 | 36.21126 | 33.10274 | 39.01162 |
Gastrotheca lauzuricae | Anura | CR | Arboreal | 16.050315 | 36.57343 | 33.60070 | 39.49942 |
Gastrotheca chrysosticta | Anura | EN | Arboreal | 22.553662 | 37.40507 | 34.48754 | 40.25723 |
Gastrotheca chrysosticta | Anura | EN | Arboreal | 21.163167 | 37.22639 | 34.24243 | 39.93147 |
Gastrotheca chrysosticta | Anura | EN | Arboreal | 24.457455 | 37.64971 | 34.55380 | 40.46934 |
Gastrotheca gracilis | Anura | EN | Arboreal | 20.714070 | 37.22316 | 34.41048 | 40.28460 |
Gastrotheca gracilis | Anura | EN | Arboreal | 19.225121 | 37.03209 | 34.00442 | 39.81657 |
Gastrotheca gracilis | Anura | EN | Arboreal | 23.338879 | 37.55999 | 34.60930 | 40.66084 |
Gastrotheca griswoldi | Anura | LC | Ground-dwelling | 17.308438 | 36.88076 | 33.94141 | 40.19404 |
Gastrotheca griswoldi | Anura | LC | Ground-dwelling | 16.342441 | 36.75623 | 33.78029 | 40.03584 |
Gastrotheca griswoldi | Anura | LC | Ground-dwelling | 18.874583 | 37.08265 | 33.76622 | 39.98663 |
Gastrotheca marsupiata | Anura | LC | Arboreal | 17.130552 | 36.76955 | 33.69524 | 39.79388 |
Gastrotheca marsupiata | Anura | LC | Arboreal | 15.686602 | 36.58867 | 33.39542 | 39.48368 |
Gastrotheca marsupiata | Anura | LC | Arboreal | 19.151325 | 37.02270 | 34.32181 | 40.39310 |
Gastrotheca peruana | Anura | LC | Ground-dwelling | 18.951691 | 37.13293 | 34.26562 | 39.80884 |
Gastrotheca peruana | Anura | LC | Ground-dwelling | 17.915550 | 36.99722 | 34.30075 | 39.81810 |
Gastrotheca peruana | Anura | LC | Ground-dwelling | 20.878892 | 37.38536 | 34.58415 | 40.18192 |
Gastrotheca zeugocystis | Anura | DD | Ground-dwelling | 15.191863 | 36.68676 | 33.87992 | 39.80472 |
Gastrotheca zeugocystis | Anura | DD | Ground-dwelling | 13.688102 | 36.49201 | 33.68740 | 39.59658 |
Gastrotheca zeugocystis | Anura | DD | Ground-dwelling | 18.280341 | 37.08675 | 34.30580 | 40.30583 |
Gastrotheca argenteovirens | Anura | LC | Stream-dwelling | 24.052975 | 37.66082 | 34.58199 | 40.98309 |
Gastrotheca argenteovirens | Anura | LC | Stream-dwelling | 23.067408 | 37.53171 | 34.50049 | 40.81289 |
Gastrotheca argenteovirens | Anura | LC | Stream-dwelling | 25.554222 | 37.85749 | 34.68652 | 41.24235 |
Gastrotheca trachyceps | Anura | EN | Arboreal | 22.833468 | 37.95556 | 34.86188 | 40.87301 |
Gastrotheca trachyceps | Anura | EN | Arboreal | 21.394430 | 37.77152 | 34.83919 | 40.80007 |
Gastrotheca trachyceps | Anura | EN | Arboreal | 24.669687 | 38.19040 | 35.05127 | 41.16320 |
Gastrotheca aureomaculata | Anura | EN | Arboreal | 23.977690 | 38.15411 | 35.00949 | 41.19806 |
Gastrotheca aureomaculata | Anura | EN | Arboreal | 22.933899 | 38.01841 | 34.85873 | 40.98658 |
Gastrotheca aureomaculata | Anura | EN | Arboreal | 25.566312 | 38.36063 | 35.39995 | 41.69464 |
Gastrotheca ruizi | Anura | NT | Arboreal | 24.280282 | 38.12066 | 35.11058 | 41.11136 |
Gastrotheca ruizi | Anura | NT | Arboreal | 23.402296 | 38.00590 | 35.07912 | 41.05871 |
Gastrotheca ruizi | Anura | NT | Arboreal | 25.677250 | 38.30326 | 35.19771 | 41.28221 |
Gastrotheca dunni | Anura | LC | Arboreal | 21.959825 | 37.81441 | 34.72116 | 40.97095 |
Gastrotheca dunni | Anura | LC | Arboreal | 20.686309 | 37.64960 | 34.71824 | 40.87551 |
Gastrotheca dunni | Anura | LC | Arboreal | 23.846526 | 38.05857 | 34.53763 | 40.90736 |
Gastrotheca nicefori | Anura | LC | Arboreal | 24.626986 | 38.14620 | 34.59021 | 41.21576 |
Gastrotheca nicefori | Anura | LC | Arboreal | 23.807739 | 38.04084 | 34.66828 | 41.28432 |
Gastrotheca nicefori | Anura | LC | Arboreal | 26.177372 | 38.34558 | 34.78829 | 41.46306 |
Gastrotheca ovifera | Anura | VU | Arboreal | 26.532132 | 38.30396 | 34.90293 | 41.99735 |
Gastrotheca ovifera | Anura | VU | Arboreal | 25.800733 | 38.20895 | 34.87100 | 41.95135 |
Gastrotheca ovifera | Anura | VU | Arboreal | 27.991576 | 38.49356 | 35.05096 | 42.20893 |
Gastrotheca phalarosa | Anura | DD | Arboreal | 22.538913 | 37.83005 | 34.41325 | 41.21022 |
Gastrotheca phalarosa | Anura | DD | Arboreal | 21.736625 | 37.72769 | 34.35498 | 41.13954 |
Gastrotheca phalarosa | Anura | DD | Arboreal | 23.802966 | 37.99133 | 34.29831 | 41.12373 |
Gastrotheca atympana | Anura | VU | Arboreal | 18.941621 | 37.22553 | 32.87283 | 40.77231 |
Gastrotheca atympana | Anura | VU | Arboreal | 18.119049 | 37.11725 | 32.71937 | 40.62229 |
Gastrotheca atympana | Anura | VU | Arboreal | 20.438975 | 37.42265 | 33.07028 | 40.97732 |
Gastrotheca testudinea | Anura | LC | Arboreal | 20.902227 | 37.49949 | 33.72443 | 41.46743 |
Gastrotheca testudinea | Anura | LC | Arboreal | 19.729171 | 37.34209 | 33.59599 | 41.27611 |
Gastrotheca testudinea | Anura | LC | Arboreal | 22.492906 | 37.71293 | 34.31538 | 42.09386 |
Gastrotheca pacchamama | Anura | EN | Ground-dwelling | 17.829095 | 37.20008 | 33.02195 | 41.11436 |
Gastrotheca pacchamama | Anura | EN | Ground-dwelling | 16.184600 | 36.98090 | 32.88410 | 41.03277 |
Gastrotheca pacchamama | Anura | EN | Ground-dwelling | 19.376701 | 37.40635 | 33.33172 | 41.34342 |
Gastrotheca carinaceps | Anura | DD | Arboreal | 21.012652 | 37.32746 | 33.59293 | 41.34548 |
Gastrotheca carinaceps | Anura | DD | Arboreal | 20.177954 | 37.21744 | 33.42265 | 41.18814 |
Gastrotheca carinaceps | Anura | DD | Arboreal | 22.689323 | 37.54845 | 33.72136 | 41.52642 |
Gastrotheca cornuta | Anura | EN | Arboreal | 25.451583 | 37.94078 | 33.85333 | 41.67368 |
Gastrotheca cornuta | Anura | EN | Arboreal | 24.620696 | 37.83115 | 33.71435 | 41.50649 |
Gastrotheca cornuta | Anura | EN | Arboreal | 26.923123 | 38.13493 | 34.02953 | 41.86348 |
Gastrotheca dendronastes | Anura | EN | Arboreal | 24.522106 | 37.79704 | 33.95188 | 41.63315 |
Gastrotheca dendronastes | Anura | EN | Arboreal | 23.826275 | 37.70633 | 33.81252 | 41.46474 |
Gastrotheca dendronastes | Anura | EN | Arboreal | 25.878795 | 37.97391 | 34.02894 | 41.84975 |
Gastrotheca helenae | Anura | EN | Ground-dwelling | 22.264420 | 37.63549 | 33.37592 | 41.10597 |
Gastrotheca helenae | Anura | EN | Ground-dwelling | 21.177532 | 37.49360 | 33.23833 | 40.95054 |
Gastrotheca helenae | Anura | EN | Ground-dwelling | 23.874959 | 37.84573 | 33.51724 | 41.32830 |
Gastrotheca longipes | Anura | LC | Arboreal | 24.482638 | 37.92193 | 33.59010 | 41.49434 |
Gastrotheca longipes | Anura | LC | Arboreal | 23.595858 | 37.80627 | 33.54721 | 41.36634 |
Gastrotheca longipes | Anura | LC | Arboreal | 26.146223 | 38.13889 | 34.39798 | 42.43297 |
Gastrotheca guentheri | Anura | DD | Arboreal | 25.065123 | 37.87942 | 33.98412 | 41.71032 |
Gastrotheca guentheri | Anura | DD | Arboreal | 24.244506 | 37.77402 | 33.75089 | 41.42304 |
Gastrotheca guentheri | Anura | DD | Arboreal | 26.451483 | 38.05748 | 34.13694 | 41.90842 |
Gastrotheca weinlandii | Anura | LC | Arboreal | 24.029081 | 37.74652 | 34.04036 | 41.46887 |
Gastrotheca weinlandii | Anura | LC | Arboreal | 23.011476 | 37.61376 | 33.95259 | 41.37462 |
Gastrotheca weinlandii | Anura | LC | Arboreal | 25.695273 | 37.96390 | 34.09096 | 41.71064 |
Gastrotheca flamma | Anura | DD | Arboreal | 24.870493 | 37.82404 | 33.77570 | 41.81021 |
Gastrotheca flamma | Anura | DD | Arboreal | 23.992743 | 37.71015 | 33.77422 | 41.75427 |
Gastrotheca flamma | Anura | DD | Arboreal | 26.744182 | 38.06715 | 34.12923 | 42.24473 |
Gastrotheca walkeri | Anura | VU | Arboreal | 26.532132 | 38.02815 | 33.89034 | 41.68898 |
Gastrotheca walkeri | Anura | VU | Arboreal | 25.800733 | 37.93170 | 33.78348 | 41.53310 |
Gastrotheca walkeri | Anura | VU | Arboreal | 27.991576 | 38.22060 | 34.23878 | 42.09306 |
Gastrotheca espeletia | Anura | EN | Arboreal | 23.534709 | 37.66749 | 33.91343 | 41.81801 |
Gastrotheca espeletia | Anura | EN | Arboreal | 22.542747 | 37.53909 | 33.79631 | 41.67228 |
Gastrotheca espeletia | Anura | EN | Arboreal | 25.040373 | 37.86239 | 34.11909 | 42.04227 |
Gastrotheca galeata | Anura | DD | Ground-dwelling | 22.602751 | 37.72169 | 33.81860 | 41.82972 |
Gastrotheca galeata | Anura | DD | Ground-dwelling | 21.868814 | 37.62641 | 33.49450 | 41.52072 |
Gastrotheca galeata | Anura | DD | Ground-dwelling | 24.173626 | 37.92561 | 34.00618 | 42.03386 |
Gastrotheca ossilaginis | Anura | DD | Arboreal | 22.538913 | 37.51019 | 34.06255 | 42.08105 |
Gastrotheca ossilaginis | Anura | DD | Arboreal | 21.736625 | 37.40673 | 33.98800 | 41.96026 |
Gastrotheca ossilaginis | Anura | DD | Arboreal | 23.802966 | 37.67319 | 34.07453 | 42.14060 |
Gastrotheca piperata | Anura | LC | Arboreal | 18.373837 | 37.04515 | 33.15834 | 41.01258 |
Gastrotheca piperata | Anura | LC | Arboreal | 17.415068 | 36.91912 | 33.23009 | 41.05473 |
Gastrotheca piperata | Anura | LC | Arboreal | 19.848472 | 37.23899 | 33.48893 | 41.41834 |
Gastrotheca psychrophila | Anura | EN | Ground-dwelling | 22.504554 | 37.67771 | 33.46522 | 41.54370 |
Gastrotheca psychrophila | Anura | EN | Ground-dwelling | 21.223948 | 37.51173 | 33.29215 | 41.39273 |
Gastrotheca psychrophila | Anura | EN | Ground-dwelling | 24.506837 | 37.93723 | 34.19401 | 42.28625 |
Gastrotheca stictopleura | Anura | EN | Arboreal | 19.881692 | 37.16628 | 33.35857 | 41.36288 |
Gastrotheca stictopleura | Anura | EN | Arboreal | 18.893809 | 37.03642 | 33.21148 | 41.19866 |
Gastrotheca stictopleura | Anura | EN | Arboreal | 21.876961 | 37.42858 | 33.65682 | 41.70771 |
Gastrotheca splendens | Anura | DD | Arboreal | 22.415740 | 37.46816 | 33.47740 | 41.11743 |
Gastrotheca splendens | Anura | DD | Arboreal | 21.616824 | 37.36208 | 33.38575 | 41.01398 |
Gastrotheca splendens | Anura | DD | Arboreal | 23.646629 | 37.63159 | 33.73234 | 41.38699 |
Gastrotheca williamsoni | Anura | DD | Stream-dwelling | 26.678151 | 37.60154 | 33.74478 | 41.97307 |
Gastrotheca williamsoni | Anura | DD | Stream-dwelling | 25.963270 | 37.51096 | 33.54007 | 41.75501 |
Gastrotheca williamsoni | Anura | DD | Stream-dwelling | 28.180786 | 37.79195 | 33.92385 | 42.17617 |
Gastrotheca fissipes | Anura | LC | Arboreal | 25.224460 | 37.88710 | 33.65003 | 41.94992 |
Gastrotheca fissipes | Anura | LC | Arboreal | 24.339358 | 37.77151 | 33.55762 | 41.82386 |
Gastrotheca fissipes | Anura | LC | Arboreal | 26.805589 | 38.09358 | 33.81773 | 42.26494 |
Ceuthomantis aracamuni | Anura | VU | Stream-dwelling | 26.913050 | 36.56902 | 31.87456 | 41.27159 |
Ceuthomantis aracamuni | Anura | VU | Stream-dwelling | 26.225726 | 36.47717 | 31.80477 | 41.12033 |
Ceuthomantis aracamuni | Anura | VU | Stream-dwelling | 28.306766 | 36.75527 | 31.97850 | 41.44558 |
Ceuthomantis cavernibardus | Anura | DD | Ground-dwelling | 27.072310 | 37.10032 | 32.41592 | 42.20452 |
Ceuthomantis cavernibardus | Anura | DD | Ground-dwelling | 26.418052 | 37.01049 | 32.13495 | 41.88212 |
Ceuthomantis cavernibardus | Anura | DD | Ground-dwelling | 28.545199 | 37.30255 | 32.48763 | 42.40060 |
Ceuthomantis duellmani | Anura | NT | Ground-dwelling | 25.413875 | 36.91018 | 32.61481 | 42.10754 |
Ceuthomantis duellmani | Anura | NT | Ground-dwelling | 24.575085 | 36.79435 | 32.34468 | 41.84689 |
Ceuthomantis duellmani | Anura | NT | Ground-dwelling | 26.912863 | 37.11720 | 32.48030 | 42.02508 |
Brachycephalus alipioi | Anura | DD | Ground-dwelling | 25.625862 | 36.83366 | 32.05042 | 41.55223 |
Brachycephalus alipioi | Anura | DD | Ground-dwelling | 24.800864 | 36.71991 | 32.00265 | 41.45716 |
Brachycephalus alipioi | Anura | DD | Ground-dwelling | 27.220602 | 37.05354 | 32.04364 | 41.71116 |
Brachycephalus hermogenesi | Anura | LC | Ground-dwelling | 25.588294 | 36.83606 | 32.14037 | 41.72617 |
Brachycephalus hermogenesi | Anura | LC | Ground-dwelling | 24.142601 | 36.63813 | 31.94449 | 41.45696 |
Brachycephalus hermogenesi | Anura | LC | Ground-dwelling | 28.017215 | 37.16862 | 31.80506 | 41.52812 |
Brachycephalus nodoterga | Anura | DD | Ground-dwelling | 25.767088 | 36.84341 | 31.92693 | 41.66587 |
Brachycephalus nodoterga | Anura | DD | Ground-dwelling | 24.218770 | 36.63181 | 31.79109 | 41.50632 |
Brachycephalus nodoterga | Anura | DD | Ground-dwelling | 28.316567 | 37.19183 | 32.10523 | 41.96731 |
Brachycephalus vertebralis | Anura | DD | Ground-dwelling | 25.654426 | 36.85374 | 32.20182 | 41.41786 |
Brachycephalus vertebralis | Anura | DD | Ground-dwelling | 24.464173 | 36.68919 | 32.00998 | 41.21367 |
Brachycephalus vertebralis | Anura | DD | Ground-dwelling | 27.716517 | 37.13882 | 32.75795 | 41.95520 |
Brachycephalus ephippium | Anura | LC | Ground-dwelling | 25.392441 | 36.71862 | 32.30113 | 41.50732 |
Brachycephalus ephippium | Anura | LC | Ground-dwelling | 24.460908 | 36.59249 | 32.13576 | 41.37292 |
Brachycephalus ephippium | Anura | LC | Ground-dwelling | 27.079962 | 36.94711 | 32.48966 | 41.79048 |
Brachycephalus brunneus | Anura | DD | Ground-dwelling | 23.836674 | 36.58408 | 31.89989 | 41.28251 |
Brachycephalus brunneus | Anura | DD | Ground-dwelling | 21.947547 | 36.32356 | 31.52150 | 40.91538 |
Brachycephalus brunneus | Anura | DD | Ground-dwelling | 26.445416 | 36.94384 | 32.21506 | 41.65613 |
Brachycephalus izecksohni | Anura | DD | Ground-dwelling | 24.139907 | 36.59224 | 31.31153 | 41.15452 |
Brachycephalus izecksohni | Anura | DD | Ground-dwelling | 22.399972 | 36.35408 | 31.50845 | 41.33311 |
Brachycephalus izecksohni | Anura | DD | Ground-dwelling | 26.818981 | 36.95896 | 31.69913 | 41.59764 |
Brachycephalus ferruginus | Anura | DD | Ground-dwelling | 23.836674 | 36.56123 | 31.93624 | 41.50384 |
Brachycephalus ferruginus | Anura | DD | Ground-dwelling | 21.947547 | 36.30645 | 31.75992 | 41.32976 |
Brachycephalus ferruginus | Anura | DD | Ground-dwelling | 26.445416 | 36.91306 | 32.12157 | 41.73880 |
Brachycephalus pernix | Anura | DD | Ground-dwelling | 23.836674 | 36.58833 | 31.63633 | 41.08831 |
Brachycephalus pernix | Anura | DD | Ground-dwelling | 21.947547 | 36.33060 | 31.44464 | 40.87218 |
Brachycephalus pernix | Anura | DD | Ground-dwelling | 26.445416 | 36.94423 | 32.01154 | 41.54640 |
Brachycephalus pombali | Anura | DD | Ground-dwelling | 23.836674 | 36.60516 | 32.33764 | 41.34476 |
Brachycephalus pombali | Anura | DD | Ground-dwelling | 21.947547 | 36.34738 | 32.08964 | 41.08722 |
Brachycephalus pombali | Anura | DD | Ground-dwelling | 26.445416 | 36.96113 | 32.54780 | 41.79608 |
Brachycephalus didactylus | Anura | LC | Ground-dwelling | 25.646276 | 36.81493 | 32.47120 | 41.34481 |
Brachycephalus didactylus | Anura | LC | Ground-dwelling | 24.606403 | 36.67267 | 32.46556 | 41.27927 |
Brachycephalus didactylus | Anura | LC | Ground-dwelling | 27.443967 | 37.06086 | 32.55027 | 41.53716 |
Ischnocnema bolbodactyla | Anura | LC | Ground-dwelling | 25.580465 | 36.82271 | 31.26556 | 41.30327 |
Ischnocnema bolbodactyla | Anura | LC | Ground-dwelling | 24.284451 | 36.64469 | 31.11325 | 41.15830 |
Ischnocnema bolbodactyla | Anura | LC | Ground-dwelling | 27.689515 | 37.11240 | 31.45322 | 41.51058 |
Ischnocnema octavioi | Anura | LC | Ground-dwelling | 25.863077 | 36.80613 | 31.60265 | 41.43220 |
Ischnocnema octavioi | Anura | LC | Ground-dwelling | 24.710436 | 36.64956 | 31.47284 | 41.22823 |
Ischnocnema octavioi | Anura | LC | Ground-dwelling | 27.717472 | 37.05802 | 31.72894 | 41.59578 |
Ischnocnema verrucosa | Anura | DD | Ground-dwelling | 25.528853 | 36.74970 | 31.71161 | 41.55742 |
Ischnocnema verrucosa | Anura | DD | Ground-dwelling | 24.483642 | 36.60486 | 31.32140 | 41.17381 |
Ischnocnema verrucosa | Anura | DD | Ground-dwelling | 27.492901 | 37.02187 | 32.04796 | 41.92217 |
Ischnocnema juipoca | Anura | LC | Ground-dwelling | 25.737043 | 36.73058 | 32.59887 | 41.82814 |
Ischnocnema juipoca | Anura | LC | Ground-dwelling | 24.506323 | 36.56348 | 32.15185 | 41.36807 |
Ischnocnema juipoca | Anura | LC | Ground-dwelling | 28.119708 | 37.05409 | 32.77111 | 42.13589 |
Ischnocnema spanios | Anura | DD | Ground-dwelling | 24.843556 | 36.70989 | 31.76264 | 41.20184 |
Ischnocnema spanios | Anura | DD | Ground-dwelling | 23.494971 | 36.52292 | 31.67787 | 41.06482 |
Ischnocnema spanios | Anura | DD | Ground-dwelling | 27.086180 | 37.02080 | 32.27276 | 41.82697 |
Ischnocnema holti | Anura | DD | Ground-dwelling | 26.367176 | 36.88853 | 31.76881 | 41.51210 |
Ischnocnema holti | Anura | DD | Ground-dwelling | 25.114381 | 36.71579 | 31.69728 | 41.47413 |
Ischnocnema holti | Anura | DD | Ground-dwelling | 28.661754 | 37.20493 | 32.26904 | 42.07962 |
Ischnocnema lactea | Anura | LC | Ground-dwelling | 25.642797 | 36.78470 | 31.73815 | 41.21959 |
Ischnocnema lactea | Anura | LC | Ground-dwelling | 24.412498 | 36.61371 | 31.64666 | 41.04413 |
Ischnocnema lactea | Anura | LC | Ground-dwelling | 27.885121 | 37.09636 | 31.93561 | 41.56357 |
Ischnocnema epipeda | Anura | NT | Ground-dwelling | 25.507727 | 36.76142 | 32.48315 | 41.76318 |
Ischnocnema epipeda | Anura | NT | Ground-dwelling | 24.733105 | 36.65535 | 32.34891 | 41.63229 |
Ischnocnema epipeda | Anura | NT | Ground-dwelling | 27.100258 | 36.97949 | 32.62228 | 42.01432 |
Ischnocnema erythromera | Anura | DD | Ground-dwelling | 26.332966 | 36.97380 | 31.75612 | 41.41720 |
Ischnocnema erythromera | Anura | DD | Ground-dwelling | 25.152380 | 36.81210 | 31.64560 | 41.27470 |
Ischnocnema erythromera | Anura | DD | Ground-dwelling | 28.199008 | 37.22938 | 31.92641 | 41.66787 |
Ischnocnema guentheri | Anura | LC | Ground-dwelling | 25.448978 | 36.87116 | 31.85924 | 41.43161 |
Ischnocnema guentheri | Anura | LC | Ground-dwelling | 24.033607 | 36.67822 | 32.12052 | 41.65420 |
Ischnocnema guentheri | Anura | LC | Ground-dwelling | 27.810445 | 37.19306 | 32.17427 | 41.83811 |
Ischnocnema henselii | Anura | LC | Ground-dwelling | 25.102238 | 36.80839 | 32.10476 | 41.37060 |
Ischnocnema henselii | Anura | LC | Ground-dwelling | 23.431092 | 36.58121 | 32.12612 | 41.36629 |
Ischnocnema henselii | Anura | LC | Ground-dwelling | 27.601924 | 37.14819 | 32.36610 | 41.68013 |
Ischnocnema izecksohni | Anura | DD | Ground-dwelling | 24.826713 | 36.69914 | 31.88743 | 41.53897 |
Ischnocnema izecksohni | Anura | DD | Ground-dwelling | 23.454470 | 36.51204 | 31.69527 | 41.29425 |
Ischnocnema izecksohni | Anura | DD | Ground-dwelling | 27.381718 | 37.04752 | 32.08770 | 41.84718 |
Ischnocnema nasuta | Anura | LC | Arboreal | 25.586707 | 36.59963 | 31.30577 | 41.29192 |
Ischnocnema nasuta | Anura | LC | Arboreal | 24.406946 | 36.44039 | 31.32333 | 41.25730 |
Ischnocnema nasuta | Anura | LC | Arboreal | 27.809065 | 36.89959 | 32.13168 | 42.26459 |
Ischnocnema oea | Anura | NT | Ground-dwelling | 25.507727 | 36.88262 | 32.15643 | 41.27746 |
Ischnocnema oea | Anura | NT | Ground-dwelling | 24.733105 | 36.77647 | 32.02256 | 41.13560 |
Ischnocnema oea | Anura | NT | Ground-dwelling | 27.100258 | 37.10085 | 32.37677 | 41.47868 |
Ischnocnema gehrti | Anura | DD | Ground-dwelling | 25.405019 | 36.79639 | 31.53132 | 41.17875 |
Ischnocnema gehrti | Anura | DD | Ground-dwelling | 23.841325 | 36.58349 | 31.25951 | 40.89590 |
Ischnocnema gehrti | Anura | DD | Ground-dwelling | 27.977586 | 37.14664 | 31.66115 | 41.56111 |
Ischnocnema gualteri | Anura | LC | Ground-dwelling | 26.332966 | 36.98397 | 32.34377 | 41.77464 |
Ischnocnema gualteri | Anura | LC | Ground-dwelling | 25.152380 | 36.82109 | 32.20465 | 41.54625 |
Ischnocnema gualteri | Anura | LC | Ground-dwelling | 28.199008 | 37.24141 | 32.58324 | 42.07779 |
Ischnocnema hoehnei | Anura | LC | Ground-dwelling | 25.472870 | 36.74960 | 31.94488 | 41.22112 |
Ischnocnema hoehnei | Anura | LC | Ground-dwelling | 24.211605 | 36.57528 | 32.12986 | 41.31081 |
Ischnocnema hoehnei | Anura | LC | Ground-dwelling | 27.609252 | 37.04488 | 32.14892 | 41.56961 |
Ischnocnema venancioi | Anura | LC | Ground-dwelling | 26.101082 | 36.89338 | 32.08394 | 41.59961 |
Ischnocnema venancioi | Anura | LC | Ground-dwelling | 24.918619 | 36.73067 | 31.95728 | 41.48316 |
Ischnocnema venancioi | Anura | LC | Ground-dwelling | 28.024590 | 37.15807 | 32.21563 | 41.86889 |
Ischnocnema parva | Anura | LC | Ground-dwelling | 25.568114 | 36.67770 | 32.78458 | 42.71756 |
Ischnocnema parva | Anura | LC | Ground-dwelling | 24.389995 | 36.51428 | 32.49877 | 42.43241 |
Ischnocnema parva | Anura | LC | Ground-dwelling | 27.630118 | 36.96373 | 31.87794 | 41.91492 |
Ischnocnema sambaqui | Anura | DD | Ground-dwelling | 23.836674 | 36.61756 | 31.92775 | 41.36602 |
Ischnocnema sambaqui | Anura | DD | Ground-dwelling | 21.947547 | 36.35686 | 31.70085 | 41.09758 |
Ischnocnema sambaqui | Anura | DD | Ground-dwelling | 26.445416 | 36.97756 | 32.18993 | 41.78657 |
Ischnocnema manezinho | Anura | NT | Ground-dwelling | 24.386123 | 36.69366 | 32.13717 | 41.08386 |
Ischnocnema manezinho | Anura | NT | Ground-dwelling | 22.684134 | 36.45876 | 31.92177 | 40.84325 |
Ischnocnema manezinho | Anura | NT | Ground-dwelling | 26.960128 | 37.04891 | 32.56838 | 41.56049 |
Ischnocnema nigriventris | Anura | DD | Ground-dwelling | 25.405019 | 36.75419 | 31.90633 | 41.12875 |
Ischnocnema nigriventris | Anura | DD | Ground-dwelling | 23.841325 | 36.53776 | 31.82882 | 40.97930 |
Ischnocnema nigriventris | Anura | DD | Ground-dwelling | 27.977586 | 37.11026 | 32.31762 | 41.55613 |
Ischnocnema paranaensis | Anura | DD | Ground-dwelling | 23.836674 | 36.47514 | 32.22124 | 41.24408 |
Ischnocnema paranaensis | Anura | DD | Ground-dwelling | 21.947547 | 36.21940 | 31.71905 | 40.76311 |
Ischnocnema paranaensis | Anura | DD | Ground-dwelling | 26.445416 | 36.82831 | 32.54988 | 41.61965 |
Ischnocnema penaxavantinho | Anura | DD | Ground-dwelling | 25.837829 | 36.79298 | 31.95098 | 41.16680 |
Ischnocnema penaxavantinho | Anura | DD | Ground-dwelling | 24.666666 | 36.63125 | 31.74473 | 40.90222 |
Ischnocnema penaxavantinho | Anura | DD | Ground-dwelling | 28.114614 | 37.10739 | 32.26591 | 41.55223 |
Ischnocnema pusilla | Anura | DD | Ground-dwelling | 25.654426 | 36.79853 | 32.04343 | 41.42337 |
Ischnocnema pusilla | Anura | DD | Ground-dwelling | 24.464173 | 36.63607 | 31.75792 | 41.09558 |
Ischnocnema pusilla | Anura | DD | Ground-dwelling | 27.716517 | 37.08000 | 32.46389 | 41.76842 |
Ischnocnema randorum | Anura | DD | Ground-dwelling | 24.282093 | 36.72419 | 32.20696 | 41.45030 |
Ischnocnema randorum | Anura | DD | Ground-dwelling | 23.148617 | 36.56656 | 32.09565 | 41.27395 |
Ischnocnema randorum | Anura | DD | Ground-dwelling | 26.194774 | 36.99019 | 32.40778 | 41.78196 |
Adelophryne adiastola | Anura | LC | Ground-dwelling | 28.676719 | 37.51692 | 32.66903 | 41.92997 |
Adelophryne adiastola | Anura | LC | Ground-dwelling | 27.921540 | 37.41159 | 32.63273 | 41.85269 |
Adelophryne adiastola | Anura | LC | Ground-dwelling | 30.168733 | 37.72502 | 32.95141 | 42.25908 |
Adelophryne gutturosa | Anura | LC | Ground-dwelling | 27.149237 | 37.12846 | 32.27530 | 41.89425 |
Adelophryne gutturosa | Anura | LC | Ground-dwelling | 26.514725 | 37.04133 | 32.52852 | 42.13528 |
Adelophryne gutturosa | Anura | LC | Ground-dwelling | 28.657584 | 37.33558 | 33.13531 | 42.79929 |
Adelophryne patamona | Anura | DD | Ground-dwelling | 26.634291 | 37.19782 | 32.43655 | 41.87126 |
Adelophryne patamona | Anura | DD | Ground-dwelling | 25.965013 | 37.10571 | 32.35064 | 41.78193 |
Adelophryne patamona | Anura | DD | Ground-dwelling | 28.137979 | 37.40477 | 32.60425 | 42.04089 |
Adelophryne baturitensis | Anura | VU | Ground-dwelling | 26.264261 | 37.25712 | 32.86782 | 41.77210 |
Adelophryne baturitensis | Anura | VU | Ground-dwelling | 25.309643 | 37.12635 | 32.76819 | 41.60921 |
Adelophryne baturitensis | Anura | VU | Ground-dwelling | 27.548704 | 37.43308 | 33.06777 | 42.05992 |
Adelophryne maranguapensis | Anura | EN | Ground-dwelling | 26.545960 | 37.32583 | 32.71348 | 41.59669 |
Adelophryne maranguapensis | Anura | EN | Ground-dwelling | 25.626366 | 37.20017 | 32.56049 | 41.48176 |
Adelophryne maranguapensis | Anura | EN | Ground-dwelling | 27.859855 | 37.50537 | 32.86698 | 41.81532 |
Adelophryne pachydactyla | Anura | DD | Ground-dwelling | 24.868561 | 36.95647 | 32.36797 | 41.53599 |
Adelophryne pachydactyla | Anura | DD | Ground-dwelling | 23.971055 | 36.83199 | 32.19682 | 41.31835 |
Adelophryne pachydactyla | Anura | DD | Ground-dwelling | 26.562263 | 37.19138 | 32.59835 | 41.73156 |
Phyzelaphryne miriamae | Anura | LC | Ground-dwelling | 28.632279 | 37.39871 | 32.63458 | 42.13202 |
Phyzelaphryne miriamae | Anura | LC | Ground-dwelling | 27.885349 | 37.29835 | 32.48268 | 41.95843 |
Phyzelaphryne miriamae | Anura | LC | Ground-dwelling | 30.243299 | 37.61517 | 32.76882 | 42.41136 |
Diasporus anthrax | Anura | VU | Arboreal | 24.141171 | 37.04701 | 32.78269 | 41.60890 |
Diasporus anthrax | Anura | VU | Arboreal | 23.344372 | 36.93571 | 32.69454 | 41.50294 |
Diasporus anthrax | Anura | VU | Arboreal | 25.650502 | 37.25782 | 32.85316 | 41.69221 |
Diasporus diastema | Anura | LC | Arboreal | 26.741851 | 37.40257 | 33.29885 | 42.09735 |
Diasporus diastema | Anura | LC | Arboreal | 25.993030 | 37.29896 | 33.38043 | 42.12096 |
Diasporus diastema | Anura | LC | Arboreal | 28.178248 | 37.60130 | 33.52213 | 42.29757 |
Diasporus hylaeformis | Anura | LC | Arboreal | 25.901212 | 37.29098 | 32.16971 | 41.40384 |
Diasporus hylaeformis | Anura | LC | Arboreal | 25.164386 | 37.19001 | 32.08507 | 41.26394 |
Diasporus hylaeformis | Anura | LC | Arboreal | 27.272766 | 37.47893 | 32.43467 | 41.76098 |
Diasporus quidditus | Anura | LC | Arboreal | 26.271128 | 37.37268 | 33.45226 | 42.19397 |
Diasporus quidditus | Anura | LC | Arboreal | 25.620688 | 37.28227 | 33.38748 | 42.10256 |
Diasporus quidditus | Anura | LC | Arboreal | 27.580309 | 37.55466 | 33.33611 | 42.17366 |
Diasporus gularis | Anura | LC | Arboreal | 25.137702 | 37.23336 | 32.71365 | 41.41786 |
Diasporus gularis | Anura | LC | Arboreal | 24.231997 | 37.10863 | 32.62240 | 41.32049 |
Diasporus gularis | Anura | LC | Arboreal | 26.698981 | 37.44837 | 32.89322 | 41.64127 |
Diasporus tigrillo | Anura | NT | Arboreal | 17.078254 | 36.11961 | 32.29929 | 40.80858 |
Diasporus tigrillo | Anura | NT | Arboreal | 15.980470 | 35.96860 | 31.66135 | 40.15743 |
Diasporus tigrillo | Anura | NT | Arboreal | 18.397641 | 36.30111 | 32.49060 | 40.99185 |
Diasporus tinker | Anura | LC | Arboreal | 25.700623 | 37.25987 | 32.92142 | 41.51725 |
Diasporus tinker | Anura | LC | Arboreal | 24.998080 | 37.16292 | 32.81326 | 41.36583 |
Diasporus tinker | Anura | LC | Arboreal | 27.045903 | 37.44553 | 32.91944 | 41.59232 |
Diasporus ventrimaculatus | Anura | LC | Arboreal | 22.415988 | 36.85975 | 32.41100 | 40.86453 |
Diasporus ventrimaculatus | Anura | LC | Arboreal | 21.585361 | 36.74578 | 32.37506 | 40.79201 |
Diasporus ventrimaculatus | Anura | LC | Arboreal | 23.641771 | 37.02795 | 32.75532 | 41.23346 |
Diasporus vocator | Anura | LC | Ground-dwelling | 25.845444 | 37.44600 | 33.11512 | 42.14385 |
Diasporus vocator | Anura | LC | Ground-dwelling | 25.189408 | 37.35700 | 32.63760 | 41.65061 |
Diasporus vocator | Anura | LC | Ground-dwelling | 27.019749 | 37.60531 | 33.27156 | 42.36937 |
Eleutherodactylus abbotti | Anura | LC | Ground-dwelling | 27.400210 | 37.93798 | 33.83834 | 42.27899 |
Eleutherodactylus abbotti | Anura | LC | Ground-dwelling | 26.987185 | 37.88156 | 33.76834 | 42.21710 |
Eleutherodactylus abbotti | Anura | LC | Ground-dwelling | 28.099845 | 38.03353 | 33.94430 | 42.39072 |
Eleutherodactylus audanti | Anura | VU | Ground-dwelling | 27.630689 | 37.96762 | 33.47718 | 42.00618 |
Eleutherodactylus audanti | Anura | VU | Ground-dwelling | 27.213623 | 37.91025 | 33.44001 | 41.91048 |
Eleutherodactylus audanti | Anura | VU | Ground-dwelling | 28.262586 | 38.05456 | 33.61927 | 42.19542 |
Eleutherodactylus parabates | Anura | EN | Ground-dwelling | 27.252255 | 37.89269 | 33.80478 | 42.02111 |
Eleutherodactylus parabates | Anura | EN | Ground-dwelling | 26.903471 | 37.84409 | 33.76384 | 41.98277 |
Eleutherodactylus parabates | Anura | EN | Ground-dwelling | 27.812455 | 37.97076 | 33.86572 | 42.07335 |
Eleutherodactylus haitianus | Anura | EN | Ground-dwelling | 26.984112 | 37.89907 | 33.71702 | 41.78092 |
Eleutherodactylus haitianus | Anura | EN | Ground-dwelling | 26.588709 | 37.84387 | 33.67457 | 41.72361 |
Eleutherodactylus haitianus | Anura | EN | Ground-dwelling | 27.649649 | 37.99197 | 33.85320 | 41.89941 |
Eleutherodactylus pituinus | Anura | EN | Ground-dwelling | 27.378150 | 37.94140 | 33.83011 | 42.18204 |
Eleutherodactylus pituinus | Anura | EN | Ground-dwelling | 26.796011 | 37.86012 | 33.77414 | 42.02850 |
Eleutherodactylus pituinus | Anura | EN | Ground-dwelling | 28.182156 | 38.05366 | 33.76394 | 42.14774 |
Eleutherodactylus acmonis | Anura | EN | Ground-dwelling | 27.476555 | 37.96864 | 33.38563 | 41.67186 |
Eleutherodactylus acmonis | Anura | EN | Ground-dwelling | 27.076189 | 37.91361 | 33.35056 | 41.64338 |
Eleutherodactylus acmonis | Anura | EN | Ground-dwelling | 28.133805 | 38.05897 | 33.44319 | 41.72926 |
Eleutherodactylus bresslerae | Anura | CR | Ground-dwelling | 27.431514 | 37.96976 | 33.58540 | 42.16096 |
Eleutherodactylus bresslerae | Anura | CR | Ground-dwelling | 26.983821 | 37.90812 | 33.62979 | 42.17337 |
Eleutherodactylus bresslerae | Anura | CR | Ground-dwelling | 28.117010 | 38.06414 | 33.68025 | 42.24244 |
Eleutherodactylus ricordii | Anura | VU | Ground-dwelling | 27.622878 | 38.00525 | 34.09604 | 42.59712 |
Eleutherodactylus ricordii | Anura | VU | Ground-dwelling | 27.205066 | 37.94780 | 34.03756 | 42.51429 |
Eleutherodactylus ricordii | Anura | VU | Ground-dwelling | 28.280356 | 38.09566 | 34.18386 | 42.72746 |
Eleutherodactylus grahami | Anura | EN | Ground-dwelling | 28.077857 | 37.92730 | 33.79236 | 42.10114 |
Eleutherodactylus grahami | Anura | EN | Ground-dwelling | 27.601933 | 37.86363 | 34.01457 | 42.32057 |
Eleutherodactylus grahami | Anura | EN | Ground-dwelling | 28.909602 | 38.03858 | 33.87461 | 42.21347 |
Eleutherodactylus rhodesi | Anura | CR | Ground-dwelling | 27.507073 | 37.91147 | 33.78532 | 42.21270 |
Eleutherodactylus rhodesi | Anura | CR | Ground-dwelling | 27.090490 | 37.85457 | 33.59124 | 42.01875 |
Eleutherodactylus rhodesi | Anura | CR | Ground-dwelling | 28.249431 | 38.01285 | 33.92084 | 42.34099 |
Eleutherodactylus weinlandi | Anura | LC | Ground-dwelling | 27.184347 | 37.79273 | 33.77371 | 41.98382 |
Eleutherodactylus weinlandi | Anura | LC | Ground-dwelling | 26.782406 | 37.73794 | 33.67026 | 41.86701 |
Eleutherodactylus weinlandi | Anura | LC | Ground-dwelling | 27.886383 | 37.88843 | 33.40395 | 41.64022 |
Eleutherodactylus pictissimus | Anura | LC | Ground-dwelling | 27.546745 | 37.93362 | 33.66850 | 42.29157 |
Eleutherodactylus pictissimus | Anura | LC | Ground-dwelling | 27.112765 | 37.87389 | 33.63375 | 42.25808 |
Eleutherodactylus pictissimus | Anura | LC | Ground-dwelling | 28.202581 | 38.02389 | 33.75950 | 42.37286 |
Eleutherodactylus lentus | Anura | EN | Ground-dwelling | 27.002369 | 37.84032 | 33.23873 | 41.52336 |
Eleutherodactylus lentus | Anura | EN | Ground-dwelling | 26.404526 | 37.75655 | 33.21625 | 41.43324 |
Eleutherodactylus lentus | Anura | EN | Ground-dwelling | 27.754851 | 37.94576 | 33.32724 | 41.65287 |
Eleutherodactylus monensis | Anura | VU | Ground-dwelling | 26.963730 | 37.76572 | 33.20471 | 41.44867 |
Eleutherodactylus monensis | Anura | VU | Ground-dwelling | 26.488202 | 37.70015 | 33.11761 | 41.30274 |
Eleutherodactylus monensis | Anura | VU | Ground-dwelling | 27.567507 | 37.84896 | 33.25527 | 41.57135 |
Eleutherodactylus probolaeus | Anura | EN | Ground-dwelling | 27.190926 | 37.85845 | 33.58875 | 42.08429 |
Eleutherodactylus probolaeus | Anura | EN | Ground-dwelling | 26.803712 | 37.80578 | 33.53062 | 42.01546 |
Eleutherodactylus probolaeus | Anura | EN | Ground-dwelling | 28.006417 | 37.96937 | 33.68152 | 42.19754 |
Eleutherodactylus adelus | Anura | EN | Ground-dwelling | 27.273960 | 38.67580 | 35.41885 | 42.18253 |
Eleutherodactylus adelus | Anura | EN | Ground-dwelling | 26.738942 | 38.60372 | 35.36690 | 42.11713 |
Eleutherodactylus adelus | Anura | EN | Ground-dwelling | 28.087052 | 38.78535 | 35.44760 | 42.24843 |
Eleutherodactylus pezopetrus | Anura | CR | Ground-dwelling | 27.574156 | 38.75585 | 35.43927 | 42.33218 |
Eleutherodactylus pezopetrus | Anura | CR | Ground-dwelling | 27.107815 | 38.69270 | 35.38600 | 42.25353 |
Eleutherodactylus pezopetrus | Anura | CR | Ground-dwelling | 28.274503 | 38.85069 | 35.45248 | 42.38025 |
Eleutherodactylus blairhedgesi | Anura | CR | Ground-dwelling | 27.170199 | 38.74533 | 35.10516 | 42.47806 |
Eleutherodactylus blairhedgesi | Anura | CR | Ground-dwelling | 26.574098 | 38.66593 | 34.94882 | 42.29467 |
Eleutherodactylus blairhedgesi | Anura | CR | Ground-dwelling | 28.159868 | 38.87716 | 35.18671 | 42.63947 |
Eleutherodactylus thomasi | Anura | EN | Ground-dwelling | 27.311573 | 38.81394 | 34.95925 | 42.12947 |
Eleutherodactylus thomasi | Anura | EN | Ground-dwelling | 26.810269 | 38.74507 | 34.89067 | 42.04858 |
Eleutherodactylus thomasi | Anura | EN | Ground-dwelling | 28.209994 | 38.93736 | 35.00149 | 42.27078 |
Eleutherodactylus pinarensis | Anura | EN | Ground-dwelling | 27.326082 | 38.82090 | 35.32606 | 42.24886 |
Eleutherodactylus pinarensis | Anura | EN | Ground-dwelling | 26.782282 | 38.74595 | 35.27585 | 42.12610 |
Eleutherodactylus pinarensis | Anura | EN | Ground-dwelling | 28.221629 | 38.94433 | 35.36699 | 42.35039 |
Eleutherodactylus casparii | Anura | EN | Ground-dwelling | 27.506125 | 39.01159 | 36.01115 | 42.07703 |
Eleutherodactylus casparii | Anura | EN | Ground-dwelling | 27.004505 | 38.94310 | 36.00355 | 42.03020 |
Eleutherodactylus casparii | Anura | EN | Ground-dwelling | 28.418766 | 39.13619 | 36.04587 | 42.18785 |
Eleutherodactylus guanahacabibes | Anura | EN | Ground-dwelling | 27.366571 | 38.87214 | 35.50394 | 42.21616 |
Eleutherodactylus guanahacabibes | Anura | EN | Ground-dwelling | 26.826845 | 38.79990 | 35.54815 | 42.21957 |
Eleutherodactylus guanahacabibes | Anura | EN | Ground-dwelling | 28.173781 | 38.98018 | 35.56895 | 42.32013 |
Eleutherodactylus simulans | Anura | EN | Stream-dwelling | 27.431514 | 38.30331 | 34.84501 | 41.73838 |
Eleutherodactylus simulans | Anura | EN | Stream-dwelling | 26.983821 | 38.24183 | 34.76861 | 41.62356 |
Eleutherodactylus simulans | Anura | EN | Stream-dwelling | 28.117010 | 38.39744 | 34.96057 | 41.89239 |
Eleutherodactylus tonyi | Anura | CR | Ground-dwelling | 27.343027 | 38.83101 | 35.23399 | 41.98519 |
Eleutherodactylus tonyi | Anura | CR | Ground-dwelling | 26.973151 | 38.78098 | 35.36587 | 42.09303 |
Eleutherodactylus tonyi | Anura | CR | Ground-dwelling | 27.938955 | 38.91162 | 35.30707 | 42.11301 |
Eleutherodactylus rogersi | Anura | LC | Ground-dwelling | 27.382195 | 38.91292 | 35.21846 | 42.33540 |
Eleutherodactylus rogersi | Anura | LC | Ground-dwelling | 26.799872 | 38.83339 | 35.19579 | 42.25071 |
Eleutherodactylus rogersi | Anura | LC | Ground-dwelling | 28.360915 | 39.04657 | 35.00932 | 42.20921 |
Eleutherodactylus goini | Anura | VU | Ground-dwelling | 27.341065 | 38.80864 | 35.67351 | 42.28468 |
Eleutherodactylus goini | Anura | VU | Ground-dwelling | 26.808193 | 38.73550 | 35.57747 | 42.15275 |
Eleutherodactylus goini | Anura | VU | Ground-dwelling | 28.173039 | 38.92284 | 35.73830 | 42.44438 |
Eleutherodactylus albipes | Anura | CR | Ground-dwelling | 27.517039 | 38.00198 | 33.76384 | 42.56102 |
Eleutherodactylus albipes | Anura | CR | Ground-dwelling | 27.158080 | 37.95311 | 33.73005 | 42.51405 |
Eleutherodactylus albipes | Anura | CR | Ground-dwelling | 28.169278 | 38.09080 | 33.83818 | 42.68849 |
Eleutherodactylus maestrensis | Anura | DD | Ground-dwelling | 27.500756 | 38.11358 | 33.74443 | 42.31144 |
Eleutherodactylus maestrensis | Anura | DD | Ground-dwelling | 27.145657 | 38.06447 | 33.51502 | 42.04135 |
Eleutherodactylus maestrensis | Anura | DD | Ground-dwelling | 28.131256 | 38.20077 | 33.82589 | 42.40857 |
Eleutherodactylus dimidiatus | Anura | NT | Ground-dwelling | 27.451448 | 38.12238 | 33.67251 | 42.21358 |
Eleutherodactylus dimidiatus | Anura | NT | Ground-dwelling | 26.990056 | 38.05970 | 33.62448 | 42.13838 |
Eleutherodactylus dimidiatus | Anura | NT | Ground-dwelling | 28.226998 | 38.22773 | 34.06140 | 42.63351 |
Eleutherodactylus emiliae | Anura | EN | Ground-dwelling | 27.563189 | 38.15762 | 34.21177 | 42.57439 |
Eleutherodactylus emiliae | Anura | EN | Ground-dwelling | 27.060264 | 38.08864 | 34.14344 | 42.49074 |
Eleutherodactylus emiliae | Anura | EN | Ground-dwelling | 28.504649 | 38.28675 | 34.30269 | 42.69561 |
Eleutherodactylus albolabris | Anura | LC | Arboreal | 25.509532 | 37.51583 | 33.23548 | 41.42255 |
Eleutherodactylus albolabris | Anura | LC | Arboreal | 24.564680 | 37.38465 | 33.15571 | 41.23706 |
Eleutherodactylus albolabris | Anura | LC | Arboreal | 27.320450 | 37.76725 | 33.49645 | 41.80563 |
Eleutherodactylus alcoae | Anura | LC | Ground-dwelling | 27.462306 | 38.10649 | 33.75038 | 42.05848 |
Eleutherodactylus alcoae | Anura | LC | Ground-dwelling | 27.076098 | 38.05318 | 33.73168 | 42.03265 |
Eleutherodactylus alcoae | Anura | LC | Ground-dwelling | 28.088519 | 38.19292 | 33.74339 | 42.06481 |
Eleutherodactylus armstrongi | Anura | EN | Arboreal | 27.462306 | 37.89807 | 34.10030 | 42.09665 |
Eleutherodactylus armstrongi | Anura | EN | Arboreal | 27.076098 | 37.84462 | 34.07652 | 42.04646 |
Eleutherodactylus armstrongi | Anura | EN | Arboreal | 28.088519 | 37.98474 | 34.17478 | 42.25657 |
Eleutherodactylus leoncei | Anura | EN | Ground-dwelling | 27.503677 | 38.02548 | 33.74989 | 42.03164 |
Eleutherodactylus leoncei | Anura | EN | Ground-dwelling | 27.101103 | 37.97041 | 33.64953 | 41.92262 |
Eleutherodactylus leoncei | Anura | EN | Ground-dwelling | 28.141286 | 38.11270 | 33.81093 | 42.10341 |
Eleutherodactylus alticola | Anura | CR | Ground-dwelling | 27.654909 | 36.78838 | 33.80065 | 40.04771 |
Eleutherodactylus alticola | Anura | CR | Ground-dwelling | 27.271497 | 36.73608 | 33.76518 | 39.99610 |
Eleutherodactylus alticola | Anura | CR | Ground-dwelling | 28.285005 | 36.87433 | 33.84430 | 40.17199 |
Eleutherodactylus nubicola | Anura | EN | Ground-dwelling | 27.654909 | 36.76032 | 33.74051 | 39.83605 |
Eleutherodactylus nubicola | Anura | EN | Ground-dwelling | 27.271497 | 36.70707 | 33.70592 | 39.74652 |
Eleutherodactylus nubicola | Anura | EN | Ground-dwelling | 28.285005 | 36.84783 | 33.84003 | 39.99169 |
Eleutherodactylus fuscus | Anura | EN | Ground-dwelling | 27.422557 | 36.68710 | 33.60221 | 39.76222 |
Eleutherodactylus fuscus | Anura | EN | Ground-dwelling | 27.065147 | 36.63816 | 33.56853 | 39.68346 |
Eleutherodactylus fuscus | Anura | EN | Ground-dwelling | 27.986910 | 36.76437 | 33.65541 | 39.87438 |
Eleutherodactylus junori | Anura | CR | Ground-dwelling | 27.386647 | 36.68673 | 34.05498 | 39.77770 |
Eleutherodactylus junori | Anura | CR | Ground-dwelling | 27.038864 | 36.63881 | 34.01733 | 39.72139 |
Eleutherodactylus junori | Anura | CR | Ground-dwelling | 27.934792 | 36.76224 | 34.02529 | 39.79535 |
Eleutherodactylus andrewsi | Anura | EN | Stream-dwelling | 27.654909 | 36.12445 | 32.61938 | 39.37655 |
Eleutherodactylus andrewsi | Anura | EN | Stream-dwelling | 27.271497 | 36.07208 | 32.53813 | 39.26295 |
Eleutherodactylus andrewsi | Anura | EN | Stream-dwelling | 28.285005 | 36.21050 | 32.57363 | 39.39409 |
Eleutherodactylus griphus | Anura | EN | Ground-dwelling | 27.386647 | 36.79479 | 33.96945 | 39.69256 |
Eleutherodactylus griphus | Anura | EN | Ground-dwelling | 27.038864 | 36.74680 | 33.93620 | 39.64686 |
Eleutherodactylus griphus | Anura | EN | Ground-dwelling | 27.934792 | 36.87042 | 34.08191 | 39.84323 |
Eleutherodactylus glaucoreius | Anura | EN | Ground-dwelling | 27.519179 | 36.74410 | 33.52635 | 39.56270 |
Eleutherodactylus glaucoreius | Anura | EN | Ground-dwelling | 27.126436 | 36.69076 | 33.48782 | 39.49882 |
Eleutherodactylus glaucoreius | Anura | EN | Ground-dwelling | 28.142441 | 36.82875 | 33.86768 | 39.95719 |
Eleutherodactylus pantoni | Anura | VU | Ground-dwelling | 27.500008 | 36.81752 | 33.71271 | 39.70826 |
Eleutherodactylus pantoni | Anura | VU | Ground-dwelling | 27.133930 | 36.76702 | 33.66576 | 39.65438 |
Eleutherodactylus pantoni | Anura | VU | Ground-dwelling | 28.086275 | 36.89840 | 33.76262 | 39.80784 |
Eleutherodactylus pentasyringos | Anura | EN | Ground-dwelling | 27.519179 | 36.70521 | 33.88408 | 39.93445 |
Eleutherodactylus pentasyringos | Anura | EN | Ground-dwelling | 27.126436 | 36.65156 | 33.84938 | 39.85450 |
Eleutherodactylus pentasyringos | Anura | EN | Ground-dwelling | 28.142441 | 36.79035 | 33.89186 | 39.99413 |
Eleutherodactylus jamaicensis | Anura | CR | Arboreal | 27.477170 | 36.61991 | 33.56132 | 39.51648 |
Eleutherodactylus jamaicensis | Anura | CR | Arboreal | 27.099192 | 36.56895 | 33.58649 | 39.52526 |
Eleutherodactylus jamaicensis | Anura | CR | Arboreal | 28.073345 | 36.70030 | 33.73067 | 39.72933 |
Eleutherodactylus luteolus | Anura | EN | Ground-dwelling | 27.422557 | 36.78626 | 33.90960 | 40.12384 |
Eleutherodactylus luteolus | Anura | EN | Ground-dwelling | 27.065147 | 36.73758 | 33.91171 | 40.11679 |
Eleutherodactylus luteolus | Anura | EN | Ground-dwelling | 27.986910 | 36.86312 | 33.94691 | 40.20445 |
Eleutherodactylus cavernicola | Anura | CR | Ground-dwelling | 27.433563 | 36.87962 | 33.84760 | 40.17167 |
Eleutherodactylus cavernicola | Anura | CR | Ground-dwelling | 27.043203 | 36.82534 | 33.48384 | 39.79617 |
Eleutherodactylus cavernicola | Anura | CR | Ground-dwelling | 28.036791 | 36.96351 | 33.94416 | 40.30046 |
Eleutherodactylus grabhami | Anura | EN | Ground-dwelling | 27.442930 | 36.94892 | 33.77124 | 40.37236 |
Eleutherodactylus grabhami | Anura | EN | Ground-dwelling | 27.078442 | 36.89801 | 33.66035 | 40.21472 |
Eleutherodactylus grabhami | Anura | EN | Ground-dwelling | 28.015842 | 37.02895 | 33.81166 | 40.46003 |
Eleutherodactylus sisyphodemus | Anura | CR | Ground-dwelling | 27.386647 | 36.72729 | 33.47842 | 40.07058 |
Eleutherodactylus sisyphodemus | Anura | CR | Ground-dwelling | 27.038864 | 36.68121 | 33.37888 | 39.93509 |
Eleutherodactylus sisyphodemus | Anura | CR | Ground-dwelling | 27.934792 | 36.79993 | 33.55448 | 40.17548 |
Eleutherodactylus gundlachi | Anura | EN | Ground-dwelling | 27.509937 | 36.95929 | 33.62056 | 40.34357 |
Eleutherodactylus gundlachi | Anura | EN | Ground-dwelling | 27.101949 | 36.90319 | 33.66374 | 40.36495 |
Eleutherodactylus gundlachi | Anura | EN | Ground-dwelling | 28.182517 | 37.05178 | 33.71843 | 40.49113 |
Eleutherodactylus amadeus | Anura | CR | Ground-dwelling | 27.757701 | 37.96991 | 33.65309 | 42.14194 |
Eleutherodactylus amadeus | Anura | CR | Ground-dwelling | 27.326143 | 37.91092 | 33.62239 | 42.08255 |
Eleutherodactylus amadeus | Anura | CR | Ground-dwelling | 28.383886 | 38.05551 | 33.68846 | 42.22813 |
Eleutherodactylus caribe | Anura | CR | Ground-dwelling | 27.438964 | 37.99720 | 34.08981 | 42.09392 |
Eleutherodactylus caribe | Anura | CR | Ground-dwelling | 27.062001 | 37.94579 | 34.04381 | 42.02613 |
Eleutherodactylus caribe | Anura | CR | Ground-dwelling | 28.070644 | 38.08333 | 34.15414 | 42.20753 |
Eleutherodactylus eunaster | Anura | CR | Arboreal | 27.757701 | 37.84971 | 33.92584 | 42.19567 |
Eleutherodactylus eunaster | Anura | CR | Arboreal | 27.326143 | 37.79056 | 33.84701 | 42.14066 |
Eleutherodactylus eunaster | Anura | CR | Arboreal | 28.383886 | 37.93552 | 34.03168 | 42.29494 |
Eleutherodactylus corona | Anura | CR | Arboreal | 27.438964 | 37.81308 | 33.16688 | 42.25803 |
Eleutherodactylus corona | Anura | CR | Arboreal | 27.062001 | 37.76187 | 33.08326 | 42.17119 |
Eleutherodactylus corona | Anura | CR | Arboreal | 28.070644 | 37.89890 | 33.21534 | 42.32788 |
Eleutherodactylus heminota | Anura | VU | Arboreal | 27.630689 | 37.87534 | 33.78674 | 42.15274 |
Eleutherodactylus heminota | Anura | VU | Arboreal | 27.213623 | 37.81823 | 33.72709 | 42.09436 |
Eleutherodactylus heminota | Anura | VU | Arboreal | 28.262586 | 37.96188 | 34.00437 | 42.31769 |
Eleutherodactylus bakeri | Anura | CR | Arboreal | 27.757701 | 37.93488 | 33.91748 | 42.64353 |
Eleutherodactylus bakeri | Anura | CR | Arboreal | 27.326143 | 37.87465 | 33.91977 | 42.62459 |
Eleutherodactylus bakeri | Anura | CR | Arboreal | 28.383886 | 38.02228 | 34.15526 | 42.89589 |
Eleutherodactylus dolomedes | Anura | CR | Arboreal | 27.438964 | 37.86092 | 33.53881 | 42.00089 |
Eleutherodactylus dolomedes | Anura | CR | Arboreal | 27.062001 | 37.80945 | 33.39412 | 41.86209 |
Eleutherodactylus dolomedes | Anura | CR | Arboreal | 28.070644 | 37.94717 | 33.70375 | 42.17989 |
Eleutherodactylus glaphycompus | Anura | EN | Ground-dwelling | 27.756834 | 38.06268 | 33.52403 | 42.11908 |
Eleutherodactylus glaphycompus | Anura | EN | Ground-dwelling | 27.317007 | 38.00226 | 33.45612 | 42.02136 |
Eleutherodactylus glaphycompus | Anura | EN | Ground-dwelling | 28.412630 | 38.15276 | 33.54251 | 42.16569 |
Eleutherodactylus thorectes | Anura | CR | Ground-dwelling | 27.757701 | 38.10859 | 33.97986 | 42.31490 |
Eleutherodactylus thorectes | Anura | CR | Ground-dwelling | 27.326143 | 38.04863 | 33.92492 | 42.26349 |
Eleutherodactylus thorectes | Anura | CR | Ground-dwelling | 28.383886 | 38.19559 | 34.02412 | 42.40824 |
Eleutherodactylus jugans | Anura | CR | Ground-dwelling | 27.503677 | 38.02329 | 33.82552 | 42.10028 |
Eleutherodactylus jugans | Anura | CR | Ground-dwelling | 27.101103 | 37.96770 | 33.84160 | 42.10514 |
Eleutherodactylus jugans | Anura | CR | Ground-dwelling | 28.141286 | 38.11133 | 33.96220 | 42.26668 |
Eleutherodactylus apostates | Anura | CR | Ground-dwelling | 27.757701 | 38.12514 | 33.60340 | 42.13289 |
Eleutherodactylus apostates | Anura | CR | Ground-dwelling | 27.326143 | 38.06578 | 33.54834 | 42.04336 |
Eleutherodactylus apostates | Anura | CR | Ground-dwelling | 28.383886 | 38.21127 | 33.61053 | 42.14325 |
Eleutherodactylus oxyrhyncus | Anura | CR | Ground-dwelling | 27.756834 | 38.05482 | 33.99434 | 42.32424 |
Eleutherodactylus oxyrhyncus | Anura | CR | Ground-dwelling | 27.317007 | 37.99465 | 33.83542 | 42.17172 |
Eleutherodactylus oxyrhyncus | Anura | CR | Ground-dwelling | 28.412630 | 38.14455 | 34.12764 | 42.36884 |
Eleutherodactylus furcyensis | Anura | CR | Ground-dwelling | 27.503677 | 37.97705 | 33.43712 | 41.63483 |
Eleutherodactylus furcyensis | Anura | CR | Ground-dwelling | 27.101103 | 37.92235 | 33.41727 | 41.58245 |
Eleutherodactylus furcyensis | Anura | CR | Ground-dwelling | 28.141286 | 38.06370 | 33.78878 | 42.02111 |
Eleutherodactylus rufifemoralis | Anura | EN | Ground-dwelling | 27.252255 | 37.99564 | 34.07833 | 41.94279 |
Eleutherodactylus rufifemoralis | Anura | EN | Ground-dwelling | 26.903471 | 37.94868 | 34.01499 | 41.88596 |
Eleutherodactylus rufifemoralis | Anura | EN | Ground-dwelling | 27.812455 | 38.07107 | 34.18497 | 42.05080 |
Eleutherodactylus amplinympha | Anura | EN | Arboreal | 26.353656 | 38.29372 | 34.92439 | 41.78879 |
Eleutherodactylus amplinympha | Anura | EN | Arboreal | 25.843037 | 38.22536 | 34.87762 | 41.75732 |
Eleutherodactylus amplinympha | Anura | EN | Arboreal | 27.130866 | 38.39777 | 35.04495 | 41.95897 |
Eleutherodactylus martinicensis | Anura | NT | Ground-dwelling | 26.963979 | 38.50906 | 35.58190 | 41.95629 |
Eleutherodactylus martinicensis | Anura | NT | Ground-dwelling | 26.447813 | 38.43918 | 35.51281 | 41.88460 |
Eleutherodactylus martinicensis | Anura | NT | Ground-dwelling | 27.750454 | 38.61553 | 35.66351 | 42.08798 |
Eleutherodactylus barlagnei | Anura | EN | Stream-dwelling | 26.706321 | 37.85743 | 34.20147 | 41.56153 |
Eleutherodactylus barlagnei | Anura | EN | Stream-dwelling | 26.197484 | 37.78913 | 34.18565 | 41.48511 |
Eleutherodactylus barlagnei | Anura | EN | Stream-dwelling | 27.482949 | 37.96167 | 34.48892 | 41.88705 |
Eleutherodactylus pinchoni | Anura | EN | Ground-dwelling | 26.706321 | 38.45312 | 34.89622 | 42.05429 |
Eleutherodactylus pinchoni | Anura | EN | Ground-dwelling | 26.197484 | 38.38344 | 34.83862 | 41.98256 |
Eleutherodactylus pinchoni | Anura | EN | Ground-dwelling | 27.482949 | 38.55948 | 34.91702 | 42.13009 |
Eleutherodactylus angustidigitorum | Anura | LC | Ground-dwelling | 24.070575 | 37.45026 | 33.29831 | 41.76469 |
Eleutherodactylus angustidigitorum | Anura | LC | Ground-dwelling | 23.036319 | 37.30838 | 33.23850 | 41.68955 |
Eleutherodactylus angustidigitorum | Anura | LC | Ground-dwelling | 25.869554 | 37.69705 | 33.60659 | 42.14860 |
Eleutherodactylus cochranae | Anura | LC | Arboreal | 27.010929 | 39.37044 | 36.50505 | 42.75183 |
Eleutherodactylus cochranae | Anura | LC | Arboreal | 26.472971 | 39.29707 | 36.51291 | 42.74653 |
Eleutherodactylus cochranae | Anura | LC | Arboreal | 27.729291 | 39.46841 | 36.13223 | 42.44250 |
Eleutherodactylus hedricki | Anura | EN | Arboreal | 26.882112 | 39.33826 | 36.54976 | 42.96646 |
Eleutherodactylus hedricki | Anura | EN | Arboreal | 26.344935 | 39.26494 | 35.95748 | 42.36403 |
Eleutherodactylus hedricki | Anura | EN | Arboreal | 27.616751 | 39.43854 | 36.57276 | 43.04077 |
Eleutherodactylus schwartzi | Anura | EN | Arboreal | 27.246704 | 39.59199 | 36.79548 | 42.47399 |
Eleutherodactylus schwartzi | Anura | EN | Arboreal | 26.571018 | 39.50014 | 36.82609 | 42.46612 |
Eleutherodactylus schwartzi | Anura | EN | Arboreal | 28.104304 | 39.70856 | 36.87175 | 42.59492 |
Eleutherodactylus gryllus | Anura | CR | Ground-dwelling | 26.834978 | 39.43389 | 36.07397 | 42.60283 |
Eleutherodactylus gryllus | Anura | CR | Ground-dwelling | 26.247976 | 39.35447 | 36.00053 | 42.49018 |
Eleutherodactylus gryllus | Anura | CR | Ground-dwelling | 27.603780 | 39.53791 | 36.15408 | 42.76391 |
Eleutherodactylus cooki | Anura | EN | Ground-dwelling | 26.882112 | 39.38543 | 35.99214 | 42.73988 |
Eleutherodactylus cooki | Anura | EN | Ground-dwelling | 26.344935 | 39.31112 | 35.75832 | 42.49433 |
Eleutherodactylus cooki | Anura | EN | Ground-dwelling | 27.616751 | 39.48704 | 36.07027 | 42.86998 |
Eleutherodactylus locustus | Anura | EN | Ground-dwelling | 26.882112 | 39.40817 | 36.42367 | 42.60098 |
Eleutherodactylus locustus | Anura | EN | Ground-dwelling | 26.344935 | 39.33461 | 36.35051 | 42.51918 |
Eleutherodactylus locustus | Anura | EN | Ground-dwelling | 27.616751 | 39.50878 | 36.52340 | 42.72951 |
Eleutherodactylus atkinsi | Anura | LC | Ground-dwelling | 27.419634 | 38.03357 | 33.99350 | 42.08072 |
Eleutherodactylus atkinsi | Anura | LC | Ground-dwelling | 26.937499 | 37.96625 | 33.95335 | 42.02560 |
Eleutherodactylus atkinsi | Anura | LC | Ground-dwelling | 28.245246 | 38.14885 | 34.12438 | 42.25244 |
Eleutherodactylus intermedius | Anura | EN | Ground-dwelling | 27.645267 | 37.91723 | 33.82886 | 42.09917 |
Eleutherodactylus intermedius | Anura | EN | Ground-dwelling | 27.213706 | 37.85836 | 33.76040 | 42.04339 |
Eleutherodactylus intermedius | Anura | EN | Ground-dwelling | 28.298620 | 38.00637 | 33.92767 | 42.20277 |
Eleutherodactylus varleyi | Anura | LC | Arboreal | 27.427776 | 37.76929 | 33.64997 | 41.78705 |
Eleutherodactylus varleyi | Anura | LC | Arboreal | 26.944155 | 37.70247 | 33.56628 | 41.69433 |
Eleutherodactylus varleyi | Anura | LC | Arboreal | 28.253231 | 37.88335 | 33.75737 | 41.94532 |
Eleutherodactylus cubanus | Anura | CR | Ground-dwelling | 27.517039 | 38.03987 | 33.92592 | 42.38036 |
Eleutherodactylus cubanus | Anura | CR | Ground-dwelling | 27.158080 | 37.99046 | 33.79955 | 42.25012 |
Eleutherodactylus cubanus | Anura | CR | Ground-dwelling | 28.169278 | 38.12965 | 33.99468 | 42.48233 |
Eleutherodactylus iberia | Anura | CR | Ground-dwelling | 27.431514 | 37.95661 | 33.92481 | 42.10068 |
Eleutherodactylus iberia | Anura | CR | Ground-dwelling | 26.983821 | 37.89588 | 33.89208 | 42.01547 |
Eleutherodactylus iberia | Anura | CR | Ground-dwelling | 28.117010 | 38.04960 | 33.84350 | 42.06182 |
Eleutherodactylus jaumei | Anura | CR | Ground-dwelling | 27.517039 | 38.01534 | 33.35577 | 41.95066 |
Eleutherodactylus jaumei | Anura | CR | Ground-dwelling | 27.158080 | 37.96608 | 33.87203 | 42.45126 |
Eleutherodactylus jaumei | Anura | CR | Ground-dwelling | 28.169278 | 38.10484 | 33.44096 | 42.10678 |
Eleutherodactylus limbatus | Anura | VU | Ground-dwelling | 27.417305 | 37.94309 | 33.76556 | 42.28485 |
Eleutherodactylus limbatus | Anura | VU | Ground-dwelling | 26.942713 | 37.87854 | 33.15774 | 41.64647 |
Eleutherodactylus limbatus | Anura | VU | Ground-dwelling | 28.200992 | 38.04968 | 33.79474 | 42.35293 |
Eleutherodactylus orientalis | Anura | CR | Ground-dwelling | 27.431514 | 37.96401 | 33.67998 | 42.00550 |
Eleutherodactylus orientalis | Anura | CR | Ground-dwelling | 26.983821 | 37.90337 | 33.60788 | 41.91230 |
Eleutherodactylus orientalis | Anura | CR | Ground-dwelling | 28.117010 | 38.05685 | 33.87245 | 42.20368 |
Eleutherodactylus etheridgei | Anura | EN | Ground-dwelling | 27.824399 | 38.00377 | 33.85152 | 42.18551 |
Eleutherodactylus etheridgei | Anura | EN | Ground-dwelling | 27.362674 | 37.94142 | 33.84033 | 42.15992 |
Eleutherodactylus etheridgei | Anura | EN | Ground-dwelling | 28.473107 | 38.09138 | 33.97701 | 42.31537 |
Eleutherodactylus auriculatoides | Anura | VU | Arboreal | 26.894731 | 37.74198 | 33.71812 | 42.01786 |
Eleutherodactylus auriculatoides | Anura | VU | Arboreal | 26.483788 | 37.68534 | 33.66287 | 41.94312 |
Eleutherodactylus auriculatoides | Anura | VU | Arboreal | 27.595380 | 37.83856 | 33.74190 | 42.14530 |
Eleutherodactylus montanus | Anura | EN | Arboreal | 26.894731 | 37.75855 | 33.45852 | 41.62557 |
Eleutherodactylus montanus | Anura | EN | Arboreal | 26.483788 | 37.70195 | 33.40460 | 41.56504 |
Eleutherodactylus montanus | Anura | EN | Arboreal | 27.595380 | 37.85504 | 33.69320 | 41.88622 |
Eleutherodactylus patriciae | Anura | EN | Ground-dwelling | 26.984112 | 37.98411 | 34.17666 | 42.35802 |
Eleutherodactylus patriciae | Anura | EN | Ground-dwelling | 26.588709 | 37.92986 | 34.01789 | 42.18961 |
Eleutherodactylus patriciae | Anura | EN | Ground-dwelling | 27.649649 | 38.07544 | 34.26716 | 42.45186 |
Eleutherodactylus fowleri | Anura | CR | Arboreal | 27.503677 | 37.80645 | 33.70541 | 41.79004 |
Eleutherodactylus fowleri | Anura | CR | Arboreal | 27.101103 | 37.75071 | 33.65227 | 41.69667 |
Eleutherodactylus fowleri | Anura | CR | Arboreal | 28.141286 | 37.89473 | 33.64164 | 41.74385 |
Eleutherodactylus lamprotes | Anura | CR | Arboreal | 27.757701 | 37.85909 | 33.92489 | 42.20764 |
Eleutherodactylus lamprotes | Anura | CR | Arboreal | 27.326143 | 37.79843 | 33.88133 | 42.16080 |
Eleutherodactylus lamprotes | Anura | CR | Arboreal | 28.383886 | 37.94710 | 34.01589 | 42.33584 |
Eleutherodactylus guantanamera | Anura | VU | Arboreal | 27.693437 | 37.84137 | 33.72959 | 41.93891 |
Eleutherodactylus guantanamera | Anura | VU | Arboreal | 27.236390 | 37.77857 | 33.64933 | 41.84731 |
Eleutherodactylus guantanamera | Anura | VU | Arboreal | 28.354408 | 37.93218 | 33.79442 | 42.06484 |
Eleutherodactylus ionthus | Anura | EN | Arboreal | 27.605181 | 37.77767 | 33.53314 | 41.73071 |
Eleutherodactylus ionthus | Anura | EN | Arboreal | 27.202932 | 37.72288 | 33.49242 | 41.69885 |
Eleutherodactylus ionthus | Anura | EN | Arboreal | 28.244745 | 37.86480 | 33.61610 | 41.86277 |
Eleutherodactylus varians | Anura | VU | Arboreal | 27.377792 | 37.80442 | 33.83221 | 42.29192 |
Eleutherodactylus varians | Anura | VU | Arboreal | 26.866437 | 37.73400 | 33.78480 | 42.24916 |
Eleutherodactylus varians | Anura | VU | Arboreal | 28.259254 | 37.92581 | 33.76978 | 42.27666 |
Eleutherodactylus leberi | Anura | EN | Arboreal | 27.500756 | 37.92693 | 33.40816 | 41.77717 |
Eleutherodactylus leberi | Anura | EN | Arboreal | 27.145657 | 37.87905 | 33.35886 | 41.73440 |
Eleutherodactylus leberi | Anura | EN | Arboreal | 28.131256 | 38.01194 | 33.63555 | 42.06869 |
Eleutherodactylus melacara | Anura | EN | Arboreal | 27.468813 | 37.88264 | 33.26165 | 41.88220 |
Eleutherodactylus melacara | Anura | EN | Arboreal | 27.112540 | 37.83440 | 33.39943 | 42.00526 |
Eleutherodactylus melacara | Anura | EN | Arboreal | 28.129738 | 37.97212 | 33.35597 | 41.97714 |
Eleutherodactylus sommeri | Anura | EN | Arboreal | 27.250553 | 37.81698 | 33.83250 | 42.21512 |
Eleutherodactylus sommeri | Anura | EN | Arboreal | 26.884252 | 37.76705 | 34.17338 | 42.55791 |
Eleutherodactylus sommeri | Anura | EN | Arboreal | 27.923157 | 37.90867 | 33.93161 | 42.30696 |
Eleutherodactylus wetmorei | Anura | VU | Arboreal | 27.630689 | 37.87792 | 33.71166 | 41.93249 |
Eleutherodactylus wetmorei | Anura | VU | Arboreal | 27.213623 | 37.82049 | 33.70808 | 41.88896 |
Eleutherodactylus wetmorei | Anura | VU | Arboreal | 28.262586 | 37.96493 | 33.83039 | 42.13790 |
Eleutherodactylus auriculatus | Anura | LC | Arboreal | 27.411046 | 37.77642 | 33.42139 | 41.77051 |
Eleutherodactylus auriculatus | Anura | LC | Arboreal | 26.932036 | 37.71143 | 33.28378 | 41.62292 |
Eleutherodactylus auriculatus | Anura | LC | Arboreal | 28.218889 | 37.88604 | 33.45967 | 41.85246 |
Eleutherodactylus principalis | Anura | EN | Arboreal | 27.502835 | 37.77125 | 33.64924 | 42.01601 |
Eleutherodactylus principalis | Anura | EN | Arboreal | 27.045818 | 37.70930 | 33.61266 | 41.95399 |
Eleutherodactylus principalis | Anura | EN | Arboreal | 28.195756 | 37.86516 | 33.77156 | 42.18683 |
Eleutherodactylus glamyrus | Anura | EN | Arboreal | 27.517039 | 37.87240 | 33.59794 | 42.27378 |
Eleutherodactylus glamyrus | Anura | EN | Arboreal | 27.158080 | 37.82260 | 33.54311 | 42.18939 |
Eleutherodactylus glamyrus | Anura | EN | Arboreal | 28.169278 | 37.96290 | 33.00969 | 41.71051 |
Eleutherodactylus bartonsmithi | Anura | CR | Arboreal | 27.502835 | 37.88201 | 33.53867 | 41.75654 |
Eleutherodactylus bartonsmithi | Anura | CR | Arboreal | 27.045818 | 37.81873 | 33.48205 | 41.72233 |
Eleutherodactylus bartonsmithi | Anura | CR | Arboreal | 28.195756 | 37.97797 | 33.63475 | 41.83467 |
Eleutherodactylus mariposa | Anura | CR | Arboreal | 27.574156 | 37.88887 | 33.59151 | 42.16784 |
Eleutherodactylus mariposa | Anura | CR | Arboreal | 27.107815 | 37.82536 | 33.61616 | 42.18390 |
Eleutherodactylus mariposa | Anura | CR | Arboreal | 28.274503 | 37.98424 | 33.66536 | 42.25294 |
Eleutherodactylus ronaldi | Anura | VU | Arboreal | 27.547111 | 37.83101 | 33.76545 | 42.32004 |
Eleutherodactylus ronaldi | Anura | VU | Arboreal | 27.145706 | 37.77632 | 33.69370 | 42.26394 |
Eleutherodactylus ronaldi | Anura | VU | Arboreal | 28.198770 | 37.91981 | 33.87224 | 42.44762 |
Eleutherodactylus eileenae | Anura | NT | Arboreal | 27.363101 | 37.87146 | 33.59345 | 42.30991 |
Eleutherodactylus eileenae | Anura | NT | Arboreal | 26.848209 | 37.80032 | 33.56554 | 42.27157 |
Eleutherodactylus eileenae | Anura | NT | Arboreal | 28.247183 | 37.99360 | 33.64137 | 42.37574 |
Eleutherodactylus ruthae | Anura | EN | Ground-dwelling | 27.153500 | 37.78521 | 33.92216 | 42.21180 |
Eleutherodactylus ruthae | Anura | EN | Ground-dwelling | 26.765864 | 37.73338 | 33.89384 | 42.13314 |
Eleutherodactylus ruthae | Anura | EN | Ground-dwelling | 27.886435 | 37.88323 | 33.96822 | 42.27117 |
Eleutherodactylus hypostenor | Anura | EN | Fossorial | 27.315909 | 38.82498 | 34.74208 | 42.93100 |
Eleutherodactylus hypostenor | Anura | EN | Fossorial | 26.964779 | 38.77764 | 34.71267 | 42.89522 |
Eleutherodactylus hypostenor | Anura | EN | Fossorial | 27.897720 | 38.90344 | 34.86970 | 43.05431 |
Eleutherodactylus parapelates | Anura | CR | Fossorial | 27.757701 | 38.94550 | 35.09368 | 43.14904 |
Eleutherodactylus parapelates | Anura | CR | Fossorial | 27.326143 | 38.88637 | 35.07370 | 43.08630 |
Eleutherodactylus parapelates | Anura | CR | Fossorial | 28.383886 | 39.03130 | 35.07801 | 43.18303 |
Eleutherodactylus chlorophenax | Anura | CR | Ground-dwelling | 27.757701 | 38.04096 | 34.03022 | 42.17989 |
Eleutherodactylus chlorophenax | Anura | CR | Ground-dwelling | 27.326143 | 37.98076 | 33.99507 | 42.11691 |
Eleutherodactylus chlorophenax | Anura | CR | Ground-dwelling | 28.383886 | 38.12831 | 34.13789 | 42.33276 |
Eleutherodactylus nortoni | Anura | CR | Arboreal | 27.630689 | 37.81625 | 34.17306 | 42.61014 |
Eleutherodactylus nortoni | Anura | CR | Arboreal | 27.213623 | 37.75966 | 34.19528 | 42.61264 |
Eleutherodactylus nortoni | Anura | CR | Arboreal | 28.262586 | 37.90198 | 34.41072 | 42.87075 |
Eleutherodactylus inoptatus | Anura | NT | Ground-dwelling | 27.304693 | 37.91646 | 33.49937 | 41.76799 |
Eleutherodactylus inoptatus | Anura | NT | Ground-dwelling | 26.901219 | 37.86051 | 33.45812 | 41.69280 |
Eleutherodactylus inoptatus | Anura | NT | Ground-dwelling | 27.992162 | 38.01177 | 33.78115 | 42.07225 |
Eleutherodactylus brevirostris | Anura | CR | Ground-dwelling | 27.757701 | 38.06051 | 34.18678 | 42.70085 |
Eleutherodactylus brevirostris | Anura | CR | Ground-dwelling | 27.326143 | 38.00091 | 34.16912 | 42.59850 |
Eleutherodactylus brevirostris | Anura | CR | Ground-dwelling | 28.383886 | 38.14698 | 34.17313 | 42.76268 |
Eleutherodactylus ventrilineatus | Anura | CR | Ground-dwelling | 27.757701 | 37.98100 | 34.00717 | 42.33035 |
Eleutherodactylus ventrilineatus | Anura | CR | Ground-dwelling | 27.326143 | 37.92246 | 33.96025 | 42.26948 |
Eleutherodactylus ventrilineatus | Anura | CR | Ground-dwelling | 28.383886 | 38.06594 | 34.07042 | 42.44317 |
Eleutherodactylus glandulifer | Anura | CR | Stream-dwelling | 27.757701 | 37.26691 | 32.94464 | 41.51391 |
Eleutherodactylus glandulifer | Anura | CR | Stream-dwelling | 27.326143 | 37.20849 | 33.08733 | 41.61344 |
Eleutherodactylus glandulifer | Anura | CR | Stream-dwelling | 28.383886 | 37.35168 | 33.00692 | 41.61270 |
Eleutherodactylus sciagraphus | Anura | CR | Ground-dwelling | 27.438964 | 37.89204 | 33.47779 | 41.95276 |
Eleutherodactylus sciagraphus | Anura | CR | Ground-dwelling | 27.062001 | 37.84108 | 33.63185 | 42.06479 |
Eleutherodactylus sciagraphus | Anura | CR | Ground-dwelling | 28.070644 | 37.97744 | 33.53385 | 42.05850 |
Eleutherodactylus counouspeus | Anura | EN | Ground-dwelling | 27.757701 | 38.00253 | 34.04333 | 42.20948 |
Eleutherodactylus counouspeus | Anura | EN | Ground-dwelling | 27.326143 | 37.94388 | 33.98788 | 42.16979 |
Eleutherodactylus counouspeus | Anura | EN | Ground-dwelling | 28.383886 | 38.08763 | 34.12326 | 42.29203 |
Eleutherodactylus cuneatus | Anura | LC | Ground-dwelling | 27.547111 | 37.93354 | 33.29865 | 42.16831 |
Eleutherodactylus cuneatus | Anura | LC | Ground-dwelling | 27.145706 | 37.87824 | 33.26863 | 42.11628 |
Eleutherodactylus cuneatus | Anura | LC | Ground-dwelling | 28.198770 | 38.02331 | 33.48435 | 42.37660 |
Eleutherodactylus turquinensis | Anura | CR | Stream-dwelling | 27.468813 | 37.19199 | 32.33549 | 41.08855 |
Eleutherodactylus turquinensis | Anura | CR | Stream-dwelling | 27.112540 | 37.14383 | 32.27848 | 41.01915 |
Eleutherodactylus turquinensis | Anura | CR | Stream-dwelling | 28.129738 | 37.28135 | 32.44127 | 41.21728 |
Eleutherodactylus cystignathoides | Anura | LC | Ground-dwelling | 24.171416 | 37.43305 | 33.42886 | 41.74271 |
Eleutherodactylus cystignathoides | Anura | LC | Ground-dwelling | 23.252503 | 37.30673 | 33.25871 | 41.53671 |
Eleutherodactylus cystignathoides | Anura | LC | Ground-dwelling | 26.117205 | 37.70055 | 33.70345 | 42.10846 |
Eleutherodactylus nitidus | Anura | LC | Ground-dwelling | 24.124119 | 37.55621 | 33.76598 | 42.11847 |
Eleutherodactylus nitidus | Anura | LC | Ground-dwelling | 22.984547 | 37.40050 | 33.53469 | 41.84603 |
Eleutherodactylus nitidus | Anura | LC | Ground-dwelling | 26.189102 | 37.83836 | 33.77603 | 42.23510 |
Eleutherodactylus pipilans | Anura | LC | Ground-dwelling | 26.506092 | 37.80538 | 33.85767 | 42.04067 |
Eleutherodactylus pipilans | Anura | LC | Ground-dwelling | 25.466879 | 37.66268 | 33.68351 | 41.80708 |
Eleutherodactylus pipilans | Anura | LC | Ground-dwelling | 28.408486 | 38.06662 | 34.35359 | 42.61837 |
Eleutherodactylus marnockii | Anura | LC | Ground-dwelling | 24.331598 | 37.65426 | 33.77826 | 41.72828 |
Eleutherodactylus marnockii | Anura | LC | Ground-dwelling | 23.039646 | 37.47234 | 33.61294 | 41.57716 |
Eleutherodactylus marnockii | Anura | LC | Ground-dwelling | 26.618583 | 37.97630 | 33.82733 | 41.92162 |
Eleutherodactylus symingtoni | Anura | CR | Ground-dwelling | 27.298995 | 37.90976 | 33.91913 | 42.02384 |
Eleutherodactylus symingtoni | Anura | CR | Ground-dwelling | 26.762429 | 37.83572 | 33.96741 | 42.03033 |
Eleutherodactylus symingtoni | Anura | CR | Ground-dwelling | 28.199300 | 38.03400 | 33.98712 | 42.09387 |
Eleutherodactylus zeus | Anura | EN | Ground-dwelling | 27.330522 | 37.82379 | 33.61619 | 41.80075 |
Eleutherodactylus zeus | Anura | EN | Ground-dwelling | 26.793698 | 37.75091 | 33.56857 | 41.73112 |
Eleutherodactylus zeus | Anura | EN | Ground-dwelling | 28.140611 | 37.93378 | 33.68435 | 41.93185 |
Eleutherodactylus dennisi | Anura | LC | Ground-dwelling | 23.752709 | 37.42364 | 33.30567 | 41.35343 |
Eleutherodactylus dennisi | Anura | LC | Ground-dwelling | 22.865035 | 37.30113 | 33.30478 | 41.32852 |
Eleutherodactylus dennisi | Anura | LC | Ground-dwelling | 25.482996 | 37.66244 | 33.47074 | 41.54767 |
Eleutherodactylus dilatus | Anura | LC | Ground-dwelling | 25.149511 | 37.62193 | 33.85213 | 41.89351 |
Eleutherodactylus dilatus | Anura | LC | Ground-dwelling | 24.010788 | 37.46549 | 33.61091 | 41.66997 |
Eleutherodactylus dilatus | Anura | LC | Ground-dwelling | 27.212280 | 37.90532 | 33.98087 | 42.13979 |
Eleutherodactylus diplasius | Anura | CR | Arboreal | 27.757701 | 37.74073 | 33.66659 | 41.90295 |
Eleutherodactylus diplasius | Anura | CR | Arboreal | 27.326143 | 37.68068 | 33.62307 | 41.83242 |
Eleutherodactylus diplasius | Anura | CR | Arboreal | 28.383886 | 37.82785 | 33.72158 | 42.00331 |
Eleutherodactylus flavescens | Anura | NT | Ground-dwelling | 27.030132 | 37.88829 | 33.98555 | 42.09690 |
Eleutherodactylus flavescens | Anura | NT | Ground-dwelling | 26.614189 | 37.83105 | 33.93354 | 42.02281 |
Eleutherodactylus flavescens | Anura | NT | Ground-dwelling | 27.769712 | 37.99009 | 34.04331 | 42.23707 |
Eleutherodactylus grandis | Anura | EN | Ground-dwelling | 19.615331 | 36.77860 | 33.19574 | 41.22327 |
Eleutherodactylus grandis | Anura | EN | Ground-dwelling | 18.329823 | 36.60294 | 32.91457 | 40.96941 |
Eleutherodactylus grandis | Anura | EN | Ground-dwelling | 22.683425 | 37.19786 | 33.60993 | 41.57461 |
Eleutherodactylus greyi | Anura | EN | Ground-dwelling | 27.444280 | 37.89112 | 33.89576 | 42.25564 |
Eleutherodactylus greyi | Anura | EN | Ground-dwelling | 26.949059 | 37.82283 | 33.70485 | 42.04996 |
Eleutherodactylus greyi | Anura | EN | Ground-dwelling | 28.344212 | 38.01523 | 33.99431 | 42.38745 |
Eleutherodactylus guttilatus | Anura | LC | Ground-dwelling | 22.606563 | 37.34310 | 33.12237 | 41.82118 |
Eleutherodactylus guttilatus | Anura | LC | Ground-dwelling | 21.377241 | 37.17609 | 32.94225 | 41.61712 |
Eleutherodactylus guttilatus | Anura | LC | Ground-dwelling | 24.917707 | 37.65706 | 33.53198 | 42.28686 |
Eleutherodactylus interorbitalis | Anura | LC | Ground-dwelling | 24.724626 | 37.66010 | 33.30328 | 41.75103 |
Eleutherodactylus interorbitalis | Anura | LC | Ground-dwelling | 22.934026 | 37.41355 | 33.14718 | 41.44103 |
Eleutherodactylus interorbitalis | Anura | LC | Ground-dwelling | 27.288960 | 38.01320 | 33.73311 | 42.31741 |
Eleutherodactylus juanariveroi | Anura | CR | Arboreal | 26.929247 | 37.74150 | 33.57819 | 42.15773 |
Eleutherodactylus juanariveroi | Anura | CR | Arboreal | 26.441893 | 37.67458 | 33.52828 | 42.07921 |
Eleutherodactylus juanariveroi | Anura | CR | Arboreal | 27.629723 | 37.83770 | 33.61204 | 42.22206 |
Eleutherodactylus klinikowskii | Anura | EN | Arboreal | 27.330522 | 37.77634 | 33.88263 | 42.15973 |
Eleutherodactylus klinikowskii | Anura | EN | Arboreal | 26.793698 | 37.70307 | 33.81965 | 42.08605 |
Eleutherodactylus klinikowskii | Anura | EN | Arboreal | 28.140611 | 37.88692 | 33.91234 | 42.27091 |
Eleutherodactylus zugi | Anura | EN | Ground-dwelling | 27.316613 | 37.94843 | 34.15420 | 41.91822 |
Eleutherodactylus zugi | Anura | EN | Ground-dwelling | 26.779634 | 37.87446 | 34.09438 | 41.85135 |
Eleutherodactylus zugi | Anura | EN | Ground-dwelling | 28.198275 | 38.06989 | 34.24043 | 42.06095 |
Eleutherodactylus paralius | Anura | NT | Ground-dwelling | 27.083968 | 37.97643 | 33.99634 | 42.11636 |
Eleutherodactylus paralius | Anura | NT | Ground-dwelling | 26.695195 | 37.92298 | 33.95930 | 42.04341 |
Eleutherodactylus paralius | Anura | NT | Ground-dwelling | 27.772900 | 38.07116 | 34.00062 | 42.15043 |
Eleutherodactylus leprus | Anura | LC | Ground-dwelling | 26.291434 | 37.68616 | 33.10839 | 41.57014 |
Eleutherodactylus leprus | Anura | LC | Ground-dwelling | 25.315199 | 37.55420 | 33.00739 | 41.42191 |
Eleutherodactylus leprus | Anura | LC | Ground-dwelling | 28.240626 | 37.94963 | 33.36077 | 41.87505 |
Eleutherodactylus longipes | Anura | LC | Ground-dwelling | 23.437894 | 37.41780 | 33.16369 | 41.39772 |
Eleutherodactylus longipes | Anura | LC | Ground-dwelling | 22.437962 | 37.28262 | 32.92269 | 41.06750 |
Eleutherodactylus longipes | Anura | LC | Ground-dwelling | 25.422248 | 37.68605 | 32.97982 | 41.23712 |
Eleutherodactylus maurus | Anura | VU | Ground-dwelling | 23.358394 | 37.31359 | 33.19046 | 41.19318 |
Eleutherodactylus maurus | Anura | VU | Ground-dwelling | 22.294787 | 37.16589 | 33.12067 | 41.08325 |
Eleutherodactylus maurus | Anura | VU | Ground-dwelling | 25.628096 | 37.62877 | 33.66345 | 41.70244 |
Eleutherodactylus michaelschmidi | Anura | EN | Ground-dwelling | 27.500756 | 37.89181 | 33.61034 | 41.76405 |
Eleutherodactylus michaelschmidi | Anura | EN | Ground-dwelling | 27.145657 | 37.84369 | 33.62776 | 41.76887 |
Eleutherodactylus michaelschmidi | Anura | EN | Ground-dwelling | 28.131256 | 37.97724 | 33.70146 | 41.86663 |
Eleutherodactylus minutus | Anura | EN | Ground-dwelling | 26.894731 | 37.86565 | 33.70005 | 42.04604 |
Eleutherodactylus minutus | Anura | EN | Ground-dwelling | 26.483788 | 37.81061 | 33.41248 | 41.73692 |
Eleutherodactylus minutus | Anura | EN | Ground-dwelling | 27.595380 | 37.95948 | 33.73962 | 42.11457 |
Eleutherodactylus poolei | Anura | CR | Ground-dwelling | 27.507073 | 37.89405 | 33.16109 | 41.97337 |
Eleutherodactylus poolei | Anura | CR | Ground-dwelling | 27.090490 | 37.83728 | 33.14253 | 41.90996 |
Eleutherodactylus poolei | Anura | CR | Ground-dwelling | 28.249431 | 37.99520 | 33.56813 | 42.45364 |
Eleutherodactylus modestus | Anura | LC | Ground-dwelling | 26.138164 | 37.80708 | 33.58313 | 41.86982 |
Eleutherodactylus modestus | Anura | LC | Ground-dwelling | 25.111717 | 37.66233 | 33.42692 | 41.74719 |
Eleutherodactylus modestus | Anura | LC | Ground-dwelling | 27.823414 | 38.04473 | 33.83000 | 42.19097 |
Eleutherodactylus notidodes | Anura | EN | Ground-dwelling | 27.252255 | 37.99116 | 33.69105 | 42.04020 |
Eleutherodactylus notidodes | Anura | EN | Ground-dwelling | 26.903471 | 37.94316 | 33.65234 | 41.98315 |
Eleutherodactylus notidodes | Anura | EN | Ground-dwelling | 27.812455 | 38.06826 | 33.91940 | 42.31324 |
Eleutherodactylus pallidus | Anura | LC | Ground-dwelling | 25.291519 | 37.72272 | 33.82849 | 41.93025 |
Eleutherodactylus pallidus | Anura | LC | Ground-dwelling | 24.052316 | 37.55445 | 33.75645 | 41.82587 |
Eleutherodactylus pallidus | Anura | LC | Ground-dwelling | 27.218678 | 37.98440 | 34.09889 | 42.27934 |
Eleutherodactylus paulsoni | Anura | CR | Ground-dwelling | 27.757701 | 37.96849 | 33.92343 | 42.11704 |
Eleutherodactylus paulsoni | Anura | CR | Ground-dwelling | 27.326143 | 37.90935 | 33.57351 | 41.77899 |
Eleutherodactylus paulsoni | Anura | CR | Ground-dwelling | 28.383886 | 38.05430 | 33.97610 | 42.17247 |
Eleutherodactylus unicolor | Anura | CR | Ground-dwelling | 26.834978 | 37.16277 | 33.25140 | 41.14370 |
Eleutherodactylus unicolor | Anura | CR | Ground-dwelling | 26.247976 | 37.08157 | 33.22815 | 41.10998 |
Eleutherodactylus unicolor | Anura | CR | Ground-dwelling | 27.603780 | 37.26911 | 33.31026 | 41.24831 |
Eleutherodactylus verruculatus | Anura | DD | Ground-dwelling | 25.458091 | 36.97776 | 33.17158 | 40.72123 |
Eleutherodactylus verruculatus | Anura | DD | Ground-dwelling | 24.953062 | 36.90756 | 33.09351 | 40.60144 |
Eleutherodactylus verruculatus | Anura | DD | Ground-dwelling | 26.956993 | 37.18613 | 33.34179 | 40.96600 |
Eleutherodactylus riparius | Anura | LC | Ground-dwelling | 27.368783 | 37.90629 | 34.02937 | 42.31561 |
Eleutherodactylus riparius | Anura | LC | Ground-dwelling | 26.874710 | 37.83926 | 33.97515 | 42.25677 |
Eleutherodactylus riparius | Anura | LC | Ground-dwelling | 28.229471 | 38.02305 | 34.24007 | 42.53348 |
Eleutherodactylus rivularis | Anura | CR | Stream-dwelling | 27.500756 | 37.32726 | 33.14739 | 41.46394 |
Eleutherodactylus rivularis | Anura | CR | Stream-dwelling | 27.145657 | 37.27782 | 33.09142 | 41.39982 |
Eleutherodactylus rivularis | Anura | CR | Stream-dwelling | 28.131256 | 37.41504 | 33.27018 | 41.57877 |
Eleutherodactylus rubrimaculatus | Anura | LC | Arboreal | 26.080394 | 37.64328 | 33.19484 | 41.67092 |
Eleutherodactylus rubrimaculatus | Anura | LC | Arboreal | 25.121260 | 37.51162 | 33.04487 | 41.48077 |
Eleutherodactylus rubrimaculatus | Anura | LC | Arboreal | 28.107199 | 37.92149 | 33.49163 | 42.04463 |
Eleutherodactylus rufescens | Anura | VU | Ground-dwelling | 24.670883 | 37.57015 | 34.05073 | 42.29395 |
Eleutherodactylus rufescens | Anura | VU | Ground-dwelling | 23.708554 | 37.43853 | 33.86335 | 42.12533 |
Eleutherodactylus rufescens | Anura | VU | Ground-dwelling | 26.321401 | 37.79588 | 34.19416 | 42.50674 |
Eleutherodactylus saxatilis | Anura | NT | Ground-dwelling | 24.000338 | 37.44744 | 33.14974 | 41.18733 |
Eleutherodactylus saxatilis | Anura | NT | Ground-dwelling | 22.542409 | 37.24674 | 32.97944 | 40.94738 |
Eleutherodactylus saxatilis | Anura | NT | Ground-dwelling | 26.476743 | 37.78835 | 33.70285 | 41.87539 |
Eleutherodactylus semipalmatus | Anura | CR | Stream-dwelling | 27.438964 | 37.36623 | 32.94556 | 41.32157 |
Eleutherodactylus semipalmatus | Anura | CR | Stream-dwelling | 27.062001 | 37.31437 | 32.92878 | 41.29788 |
Eleutherodactylus semipalmatus | Anura | CR | Stream-dwelling | 28.070644 | 37.45314 | 33.03236 | 41.42608 |
Eleutherodactylus syristes | Anura | LC | Ground-dwelling | 25.471965 | 37.57358 | 32.97015 | 41.36953 |
Eleutherodactylus syristes | Anura | LC | Ground-dwelling | 24.318876 | 37.42060 | 32.92401 | 41.28084 |
Eleutherodactylus syristes | Anura | LC | Ground-dwelling | 27.400088 | 37.82938 | 33.43703 | 41.83690 |
Eleutherodactylus teretistes | Anura | VU | Ground-dwelling | 25.869161 | 37.75989 | 33.78431 | 42.11787 |
Eleutherodactylus teretistes | Anura | VU | Ground-dwelling | 24.642081 | 37.59570 | 33.74216 | 42.08251 |
Eleutherodactylus teretistes | Anura | VU | Ground-dwelling | 27.702420 | 38.00517 | 34.03295 | 42.37283 |
Eleutherodactylus tetajulia | Anura | CR | Ground-dwelling | 27.431514 | 37.85795 | 33.64501 | 41.98775 |
Eleutherodactylus tetajulia | Anura | CR | Ground-dwelling | 26.983821 | 37.79766 | 33.58490 | 41.91706 |
Eleutherodactylus tetajulia | Anura | CR | Ground-dwelling | 28.117010 | 37.95025 | 33.70847 | 42.08722 |
Eleutherodactylus toa | Anura | EN | Stream-dwelling | 27.502835 | 37.39119 | 33.61654 | 41.99826 |
Eleutherodactylus toa | Anura | EN | Stream-dwelling | 27.045818 | 37.32837 | 33.55302 | 41.91950 |
Eleutherodactylus toa | Anura | EN | Stream-dwelling | 28.195756 | 37.48645 | 33.62624 | 42.03111 |
Eleutherodactylus verrucipes | Anura | LC | Ground-dwelling | 23.039285 | 37.38795 | 33.69937 | 41.58005 |
Eleutherodactylus verrucipes | Anura | LC | Ground-dwelling | 21.998929 | 37.24380 | 33.61445 | 41.45043 |
Eleutherodactylus verrucipes | Anura | LC | Ground-dwelling | 25.156353 | 37.68128 | 34.03790 | 42.04934 |
Eleutherodactylus warreni | Anura | CR | Ground-dwelling | 27.457000 | 38.03624 | 33.16938 | 42.20527 |
Eleutherodactylus warreni | Anura | CR | Ground-dwelling | 27.043154 | 37.97935 | 33.13967 | 42.11002 |
Eleutherodactylus warreni | Anura | CR | Ground-dwelling | 28.209663 | 38.13969 | 33.47460 | 42.57245 |
Craugastor stadelmani | Anura | CR | Stream-dwelling | 26.157984 | 36.15347 | 32.13090 | 40.54967 |
Craugastor stadelmani | Anura | CR | Stream-dwelling | 25.537721 | 36.06789 | 32.05556 | 40.45688 |
Craugastor stadelmani | Anura | CR | Stream-dwelling | 27.383776 | 36.32258 | 32.27721 | 40.77787 |
Craugastor alfredi | Anura | LC | Arboreal | 26.687911 | 36.57191 | 32.37737 | 41.62430 |
Craugastor alfredi | Anura | LC | Arboreal | 25.709218 | 36.43573 | 32.32577 | 41.46610 |
Craugastor alfredi | Anura | LC | Arboreal | 28.663450 | 36.84680 | 32.20936 | 41.53289 |
Craugastor amniscola | Anura | VU | Stream-dwelling | 25.562245 | 35.89882 | 31.84888 | 40.13486 |
Craugastor amniscola | Anura | VU | Stream-dwelling | 24.442707 | 35.74422 | 31.30850 | 39.61236 |
Craugastor amniscola | Anura | VU | Stream-dwelling | 27.699077 | 36.19389 | 32.17253 | 40.60179 |
Craugastor batrachylus | Anura | DD | Ground-dwelling | 23.698697 | 36.30319 | 31.79964 | 40.42244 |
Craugastor batrachylus | Anura | DD | Ground-dwelling | 22.747751 | 36.17223 | 31.66715 | 40.23164 |
Craugastor batrachylus | Anura | DD | Ground-dwelling | 25.180769 | 36.50730 | 31.96021 | 40.61499 |
Craugastor cuaquero | Anura | DD | Ground-dwelling | 27.435694 | 36.84272 | 32.64723 | 41.21532 |
Craugastor cuaquero | Anura | DD | Ground-dwelling | 26.744760 | 36.74699 | 32.33361 | 40.91218 |
Craugastor cuaquero | Anura | DD | Ground-dwelling | 29.013624 | 37.06133 | 32.84732 | 41.46155 |
Craugastor melanostictus | Anura | LC | Ground-dwelling | 26.230091 | 36.69066 | 32.63053 | 41.43897 |
Craugastor melanostictus | Anura | LC | Ground-dwelling | 25.537512 | 36.59383 | 32.08115 | 40.85224 |
Craugastor melanostictus | Anura | LC | Ground-dwelling | 27.554387 | 36.87580 | 32.18847 | 41.06657 |
Craugastor emcelae | Anura | CR | Ground-dwelling | 27.832466 | 36.88163 | 32.45585 | 41.57324 |
Craugastor emcelae | Anura | CR | Ground-dwelling | 27.239510 | 36.79837 | 32.58143 | 41.61611 |
Craugastor emcelae | Anura | CR | Ground-dwelling | 28.911379 | 37.03313 | 32.54955 | 41.74673 |
Craugastor angelicus | Anura | CR | Stream-dwelling | 27.435694 | 36.28603 | 32.17607 | 40.71632 |
Craugastor angelicus | Anura | CR | Stream-dwelling | 26.744760 | 36.19135 | 32.03771 | 40.58294 |
Craugastor angelicus | Anura | CR | Stream-dwelling | 29.013624 | 36.50226 | 32.46023 | 40.97262 |
Craugastor rugulosus | Anura | LC | Stream-dwelling | 26.166859 | 35.93758 | 31.39850 | 40.46642 |
Craugastor rugulosus | Anura | LC | Stream-dwelling | 25.119011 | 35.79259 | 31.18834 | 40.17140 |
Craugastor rugulosus | Anura | LC | Stream-dwelling | 28.074969 | 36.20162 | 31.60389 | 40.75618 |
Craugastor ranoides | Anura | CR | Stream-dwelling | 27.170788 | 36.06027 | 32.04382 | 40.65734 |
Craugastor ranoides | Anura | CR | Stream-dwelling | 26.414929 | 35.95821 | 31.93932 | 40.54280 |
Craugastor ranoides | Anura | CR | Stream-dwelling | 28.642577 | 36.25901 | 32.24731 | 40.93955 |
Craugastor fleischmanni | Anura | CR | Stream-dwelling | 27.435694 | 36.21438 | 31.81653 | 40.35120 |
Craugastor fleischmanni | Anura | CR | Stream-dwelling | 26.744760 | 36.11776 | 31.69806 | 40.22501 |
Craugastor fleischmanni | Anura | CR | Stream-dwelling | 29.013624 | 36.43504 | 32.05816 | 40.65934 |
Craugastor rupinius | Anura | LC | Ground-dwelling | 26.294641 | 36.55968 | 32.19575 | 40.98991 |
Craugastor rupinius | Anura | LC | Ground-dwelling | 25.414930 | 36.43857 | 32.11703 | 40.85316 |
Craugastor rupinius | Anura | LC | Ground-dwelling | 28.268043 | 36.83137 | 32.34689 | 41.29669 |
Craugastor obesus | Anura | CR | Stream-dwelling | 27.832466 | 36.28235 | 31.96036 | 40.63566 |
Craugastor obesus | Anura | CR | Stream-dwelling | 27.239510 | 36.20064 | 32.08863 | 40.76618 |
Craugastor obesus | Anura | CR | Stream-dwelling | 28.911379 | 36.43102 | 32.12264 | 40.79348 |
Craugastor megacephalus | Anura | LC | Ground-dwelling | 26.676648 | 36.59791 | 32.02938 | 41.19196 |
Craugastor megacephalus | Anura | LC | Ground-dwelling | 25.908889 | 36.49249 | 31.91880 | 41.08459 |
Craugastor megacephalus | Anura | LC | Ground-dwelling | 28.150381 | 36.80027 | 32.24369 | 41.46696 |
Craugastor aphanus | Anura | EN | Ground-dwelling | 25.174190 | 36.63329 | 32.11649 | 40.77932 |
Craugastor aphanus | Anura | EN | Ground-dwelling | 24.673669 | 36.56378 | 32.04098 | 40.71735 |
Craugastor aphanus | Anura | EN | Ground-dwelling | 26.575538 | 36.82793 | 32.28454 | 40.97283 |
Craugastor augusti | Anura | LC | Ground-dwelling | 23.875269 | 36.27047 | 31.75598 | 40.49115 |
Craugastor augusti | Anura | LC | Ground-dwelling | 22.511487 | 36.08622 | 31.70286 | 40.36511 |
Craugastor augusti | Anura | LC | Ground-dwelling | 26.215592 | 36.58664 | 32.42739 | 41.20574 |
Craugastor tarahumaraensis | Anura | LC | Ground-dwelling | 24.092450 | 36.35375 | 31.87983 | 40.35778 |
Craugastor tarahumaraensis | Anura | LC | Ground-dwelling | 22.265757 | 36.10095 | 31.63505 | 40.10054 |
Craugastor tarahumaraensis | Anura | LC | Ground-dwelling | 26.827993 | 36.73232 | 32.65735 | 41.25931 |
Craugastor polymniae | Anura | NT | Arboreal | 22.187059 | 35.99115 | 31.77299 | 40.43669 |
Craugastor polymniae | Anura | NT | Arboreal | 20.787577 | 35.79603 | 31.17805 | 39.83977 |
Craugastor polymniae | Anura | NT | Arboreal | 25.070986 | 36.39324 | 31.96707 | 40.67742 |
Craugastor aurilegulus | Anura | VU | Stream-dwelling | 26.042835 | 35.97361 | 31.79254 | 40.97242 |
Craugastor aurilegulus | Anura | VU | Stream-dwelling | 25.461351 | 35.89390 | 31.75999 | 40.87677 |
Craugastor aurilegulus | Anura | VU | Stream-dwelling | 27.331187 | 36.15022 | 31.84364 | 41.02241 |
Craugastor azueroensis | Anura | EN | Stream-dwelling | 26.103002 | 36.10663 | 31.63080 | 40.65021 |
Craugastor azueroensis | Anura | EN | Stream-dwelling | 25.648867 | 36.04430 | 32.07456 | 41.09967 |
Craugastor azueroensis | Anura | EN | Stream-dwelling | 27.073797 | 36.23988 | 31.76677 | 40.75987 |
Craugastor vocalis | Anura | LC | Arboreal | 24.771381 | 36.41940 | 31.60102 | 40.34343 |
Craugastor vocalis | Anura | LC | Arboreal | 23.452022 | 36.23665 | 31.44751 | 40.09778 |
Craugastor vocalis | Anura | LC | Arboreal | 26.830108 | 36.70457 | 31.83655 | 40.73152 |
Craugastor berkenbuschii | Anura | LC | Stream-dwelling | 24.855419 | 35.89164 | 31.21890 | 40.53888 |
Craugastor berkenbuschii | Anura | LC | Stream-dwelling | 23.829782 | 35.74912 | 31.26155 | 40.49460 |
Craugastor berkenbuschii | Anura | LC | Stream-dwelling | 26.991313 | 36.18843 | 31.26322 | 40.57720 |
Craugastor vulcani | Anura | EN | Stream-dwelling | 26.976054 | 36.11351 | 31.73179 | 40.59200 |
Craugastor vulcani | Anura | EN | Stream-dwelling | 25.987890 | 35.97714 | 31.65470 | 40.44566 |
Craugastor vulcani | Anura | EN | Stream-dwelling | 29.057037 | 36.40069 | 31.88612 | 40.94595 |
Craugastor bocourti | Anura | EN | Arboreal | 25.712479 | 36.44917 | 32.23012 | 40.67098 |
Craugastor bocourti | Anura | EN | Arboreal | 24.700136 | 36.31027 | 32.17465 | 40.59486 |
Craugastor bocourti | Anura | EN | Arboreal | 27.813634 | 36.73745 | 32.49064 | 41.00008 |
Craugastor spatulatus | Anura | EN | Ground-dwelling | 24.535477 | 36.43587 | 32.42618 | 41.31646 |
Craugastor spatulatus | Anura | EN | Ground-dwelling | 23.369889 | 36.27497 | 32.19500 | 41.04430 |
Craugastor spatulatus | Anura | EN | Ground-dwelling | 26.871316 | 36.75832 | 32.05223 | 41.09265 |
Craugastor stuarti | Anura | VU | Stream-dwelling | 25.625041 | 35.89594 | 31.52917 | 40.42682 |
Craugastor stuarti | Anura | VU | Stream-dwelling | 24.633625 | 35.75841 | 31.37778 | 40.24473 |
Craugastor stuarti | Anura | VU | Stream-dwelling | 27.725457 | 36.18731 | 31.75660 | 40.81066 |
Craugastor uno | Anura | VU | Ground-dwelling | 25.726642 | 36.61779 | 32.12601 | 40.93531 |
Craugastor uno | Anura | VU | Ground-dwelling | 24.686571 | 36.47263 | 31.98694 | 40.74312 |
Craugastor uno | Anura | VU | Ground-dwelling | 27.475809 | 36.86192 | 32.40676 | 41.34831 |
Craugastor xucanebi | Anura | VU | Ground-dwelling | 25.102391 | 36.51264 | 32.22235 | 41.06912 |
Craugastor xucanebi | Anura | VU | Ground-dwelling | 23.998372 | 36.35965 | 32.13826 | 40.93169 |
Craugastor xucanebi | Anura | VU | Ground-dwelling | 27.286540 | 36.81531 | 32.24718 | 41.16409 |
Craugastor bransfordii | Anura | LC | Ground-dwelling | 26.555226 | 36.71705 | 32.08978 | 40.80797 |
Craugastor bransfordii | Anura | LC | Ground-dwelling | 25.763672 | 36.60908 | 31.97542 | 40.67438 |
Craugastor bransfordii | Anura | LC | Ground-dwelling | 28.039375 | 36.91948 | 32.39936 | 41.17403 |
Craugastor polyptychus | Anura | LC | Ground-dwelling | 24.131713 | 36.40361 | 32.07772 | 40.61241 |
Craugastor polyptychus | Anura | LC | Ground-dwelling | 23.339747 | 36.29507 | 31.99560 | 40.47810 |
Craugastor polyptychus | Anura | LC | Ground-dwelling | 25.465173 | 36.58635 | 32.20318 | 40.84799 |
Craugastor underwoodi | Anura | LC | Ground-dwelling | 25.530710 | 36.55928 | 32.38208 | 41.04292 |
Craugastor underwoodi | Anura | LC | Ground-dwelling | 24.759212 | 36.45406 | 32.24376 | 40.90464 |
Craugastor underwoodi | Anura | LC | Ground-dwelling | 26.950139 | 36.75287 | 32.61521 | 41.28415 |
Craugastor lauraster | Anura | LC | Ground-dwelling | 26.531699 | 36.71428 | 32.13858 | 40.94168 |
Craugastor lauraster | Anura | LC | Ground-dwelling | 25.681981 | 36.59483 | 32.18038 | 40.89739 |
Craugastor lauraster | Anura | LC | Ground-dwelling | 28.159554 | 36.94311 | 32.21650 | 41.10758 |
Craugastor stejnegerianus | Anura | LC | Ground-dwelling | 23.861533 | 36.32430 | 32.28697 | 41.08111 |
Craugastor stejnegerianus | Anura | LC | Ground-dwelling | 23.129436 | 36.22262 | 31.64321 | 40.47109 |
Craugastor stejnegerianus | Anura | LC | Ground-dwelling | 24.987270 | 36.48066 | 32.31859 | 41.16813 |
Craugastor persimilis | Anura | LC | Ground-dwelling | 24.131713 | 36.45914 | 32.24895 | 40.78318 |
Craugastor persimilis | Anura | LC | Ground-dwelling | 23.339747 | 36.34993 | 32.12123 | 40.61718 |
Craugastor persimilis | Anura | LC | Ground-dwelling | 25.465173 | 36.64301 | 32.17953 | 40.72857 |
Craugastor brocchi | Anura | VU | Stream-dwelling | 25.102391 | 35.94088 | 31.96685 | 40.65643 |
Craugastor brocchi | Anura | VU | Stream-dwelling | 23.998372 | 35.78856 | 31.81194 | 40.49718 |
Craugastor brocchi | Anura | VU | Stream-dwelling | 27.286540 | 36.24222 | 32.29974 | 41.04198 |
Craugastor gollmeri | Anura | LC | Ground-dwelling | 26.571542 | 36.73268 | 32.78833 | 41.11098 |
Craugastor gollmeri | Anura | LC | Ground-dwelling | 25.927097 | 36.64318 | 32.76248 | 41.06016 |
Craugastor gollmeri | Anura | LC | Ground-dwelling | 27.840940 | 36.90897 | 32.84275 | 41.25349 |
Craugastor chac | Anura | LC | Ground-dwelling | 26.186148 | 36.62896 | 32.41279 | 40.85769 |
Craugastor chac | Anura | LC | Ground-dwelling | 25.451583 | 36.52743 | 32.23746 | 40.65948 |
Craugastor chac | Anura | LC | Ground-dwelling | 27.751310 | 36.84529 | 32.42954 | 40.99931 |
Craugastor lineatus | Anura | LC | Ground-dwelling | 26.030103 | 36.67931 | 32.43616 | 40.64627 |
Craugastor lineatus | Anura | LC | Ground-dwelling | 24.988083 | 36.53099 | 32.36198 | 40.48347 |
Craugastor lineatus | Anura | LC | Ground-dwelling | 28.121426 | 36.97699 | 33.05283 | 41.38148 |
Craugastor laticeps | Anura | LC | Ground-dwelling | 26.587118 | 36.70380 | 32.72581 | 41.21170 |
Craugastor laticeps | Anura | LC | Ground-dwelling | 25.679437 | 36.57790 | 32.64132 | 41.15787 |
Craugastor laticeps | Anura | LC | Ground-dwelling | 28.396260 | 36.95475 | 32.85856 | 41.52245 |
Craugastor mimus | Anura | LC | Ground-dwelling | 26.335831 | 36.68875 | 32.52497 | 41.11047 |
Craugastor mimus | Anura | LC | Ground-dwelling | 25.537053 | 36.57760 | 32.44447 | 40.99532 |
Craugastor mimus | Anura | LC | Ground-dwelling | 27.890734 | 36.90513 | 32.46954 | 41.29412 |
Craugastor noblei | Anura | LC | Ground-dwelling | 26.594464 | 36.79981 | 32.31968 | 40.87174 |
Craugastor noblei | Anura | LC | Ground-dwelling | 25.831108 | 36.69275 | 32.34553 | 40.92458 |
Craugastor noblei | Anura | LC | Ground-dwelling | 28.081620 | 37.00839 | 32.76356 | 41.37757 |
Craugastor campbelli | Anura | CR | Arboreal | 25.174190 | 36.42024 | 31.77843 | 40.54537 |
Craugastor campbelli | Anura | CR | Arboreal | 24.673669 | 36.35032 | 31.76365 | 40.48904 |
Craugastor campbelli | Anura | CR | Arboreal | 26.575538 | 36.61602 | 31.92269 | 40.79030 |
Craugastor decoratus | Anura | LC | Arboreal | 24.125784 | 36.24920 | 31.85931 | 40.67741 |
Craugastor decoratus | Anura | LC | Arboreal | 23.108000 | 36.10736 | 31.61752 | 40.41396 |
Craugastor decoratus | Anura | LC | Arboreal | 26.321910 | 36.55525 | 32.05885 | 40.95143 |
Craugastor charadra | Anura | VU | Stream-dwelling | 26.148464 | 35.98993 | 31.36290 | 39.96207 |
Craugastor charadra | Anura | VU | Stream-dwelling | 25.307816 | 35.87555 | 31.28385 | 39.82167 |
Craugastor charadra | Anura | VU | Stream-dwelling | 27.964329 | 36.23702 | 32.03241 | 40.71794 |
Craugastor opimus | Anura | LC | Ground-dwelling | 26.271128 | 36.61031 | 32.58921 | 41.20819 |
Craugastor opimus | Anura | LC | Ground-dwelling | 25.620688 | 36.52045 | 32.48580 | 41.04678 |
Craugastor opimus | Anura | LC | Ground-dwelling | 27.580309 | 36.79118 | 32.77408 | 41.42816 |
Craugastor chingopetaca | Anura | VU | Ground-dwelling | 27.433662 | 36.89419 | 32.39548 | 41.08223 |
Craugastor chingopetaca | Anura | VU | Ground-dwelling | 26.650433 | 36.78567 | 32.30974 | 40.95364 |
Craugastor chingopetaca | Anura | VU | Ground-dwelling | 28.989401 | 37.10974 | 32.44742 | 41.25697 |
Craugastor hobartsmithi | Anura | LC | Ground-dwelling | 25.039750 | 36.48694 | 31.72124 | 40.52232 |
Craugastor hobartsmithi | Anura | LC | Ground-dwelling | 23.951101 | 36.33928 | 31.69162 | 40.39861 |
Craugastor hobartsmithi | Anura | LC | Ground-dwelling | 26.920237 | 36.74202 | 32.02880 | 40.94488 |
Craugastor pelorus | Anura | VU | Stream-dwelling | 27.695251 | 36.32526 | 32.10854 | 41.00794 |
Craugastor pelorus | Anura | VU | Stream-dwelling | 26.712363 | 36.18712 | 32.05670 | 40.94350 |
Craugastor pelorus | Anura | VU | Stream-dwelling | 29.467457 | 36.57434 | 32.18562 | 41.31528 |
Craugastor coffeus | Anura | CR | Ground-dwelling | 25.828093 | 36.49045 | 32.53557 | 41.12956 |
Craugastor coffeus | Anura | CR | Ground-dwelling | 25.139401 | 36.39713 | 32.32180 | 40.93322 |
Craugastor coffeus | Anura | CR | Ground-dwelling | 27.446889 | 36.70980 | 32.71183 | 41.38832 |
Craugastor pozo | Anura | CR | Ground-dwelling | 26.988391 | 36.72960 | 32.14618 | 40.83388 |
Craugastor pozo | Anura | CR | Ground-dwelling | 26.008286 | 36.59487 | 32.02707 | 40.69534 |
Craugastor pozo | Anura | CR | Ground-dwelling | 29.015985 | 37.00833 | 32.43530 | 41.09074 |
Craugastor talamancae | Anura | LC | Arboreal | 26.694613 | 37.35327 | 33.93248 | 40.89412 |
Craugastor talamancae | Anura | LC | Arboreal | 25.990772 | 37.25660 | 33.84519 | 40.78321 |
Craugastor talamancae | Anura | LC | Arboreal | 28.023234 | 37.53575 | 34.00710 | 41.03151 |
Craugastor raniformis | Anura | LC | Ground-dwelling | 25.850393 | 37.41887 | 33.93658 | 40.83244 |
Craugastor raniformis | Anura | LC | Ground-dwelling | 25.128789 | 37.31966 | 33.93593 | 40.80058 |
Craugastor raniformis | Anura | LC | Ground-dwelling | 27.347098 | 37.62463 | 33.97489 | 40.89684 |
Craugastor taurus | Anura | EN | Stream-dwelling | 27.253173 | 35.97650 | 31.48454 | 40.33196 |
Craugastor taurus | Anura | EN | Stream-dwelling | 26.703919 | 35.90086 | 31.44345 | 40.23455 |
Craugastor taurus | Anura | EN | Stream-dwelling | 28.282085 | 36.11818 | 31.55790 | 40.51445 |
Craugastor cyanochthebius | Anura | EN | Arboreal | 25.174190 | 36.38335 | 32.52923 | 41.15050 |
Craugastor cyanochthebius | Anura | EN | Arboreal | 24.673669 | 36.31455 | 32.47743 | 41.03133 |
Craugastor cyanochthebius | Anura | EN | Arboreal | 26.575538 | 36.57599 | 32.67425 | 41.36823 |
Craugastor silvicola | Anura | DD | Ground-dwelling | 27.781178 | 36.88434 | 32.83725 | 41.22243 |
Craugastor silvicola | Anura | DD | Ground-dwelling | 26.782294 | 36.74988 | 32.73986 | 41.07343 |
Craugastor silvicola | Anura | DD | Ground-dwelling | 29.726741 | 37.14621 | 32.96757 | 41.42429 |
Craugastor escoces | Anura | CR | Stream-dwelling | 27.435694 | 36.17624 | 31.91866 | 41.14677 |
Craugastor escoces | Anura | CR | Stream-dwelling | 26.744760 | 36.08229 | 31.84587 | 41.05531 |
Craugastor escoces | Anura | CR | Stream-dwelling | 29.013624 | 36.39080 | 32.08490 | 41.49300 |
Craugastor nefrens | Anura | CR | Arboreal | 25.174190 | 36.47133 | 32.07402 | 41.07225 |
Craugastor nefrens | Anura | CR | Arboreal | 24.673669 | 36.40325 | 31.80807 | 40.80915 |
Craugastor nefrens | Anura | CR | Arboreal | 26.575538 | 36.66194 | 32.27637 | 41.27723 |
Craugastor podiciferus | Anura | LC | Ground-dwelling | 25.530710 | 36.54365 | 31.96263 | 40.55972 |
Craugastor podiciferus | Anura | LC | Ground-dwelling | 24.759212 | 36.43717 | 31.92660 | 40.48289 |
Craugastor podiciferus | Anura | LC | Ground-dwelling | 26.950139 | 36.73956 | 32.17384 | 40.82124 |
Craugastor glaucus | Anura | EN | Ground-dwelling | 26.975420 | 36.82713 | 32.65646 | 41.65762 |
Craugastor glaucus | Anura | EN | Ground-dwelling | 25.877101 | 36.67648 | 32.53329 | 41.56217 |
Craugastor glaucus | Anura | EN | Ground-dwelling | 28.732078 | 37.06806 | 33.06542 | 42.26616 |
Craugastor monnichorum | Anura | EN | Ground-dwelling | 26.873222 | 36.79851 | 32.31316 | 41.79847 |
Craugastor monnichorum | Anura | EN | Ground-dwelling | 26.223180 | 36.70792 | 32.21824 | 41.71798 |
Craugastor monnichorum | Anura | EN | Ground-dwelling | 28.107506 | 36.97053 | 32.48624 | 41.95130 |
Craugastor greggi | Anura | EN | Stream-dwelling | 23.549203 | 35.75376 | 31.07290 | 39.77995 |
Craugastor greggi | Anura | EN | Stream-dwelling | 22.340200 | 35.58792 | 31.07679 | 39.74133 |
Craugastor greggi | Anura | EN | Stream-dwelling | 26.016726 | 36.09224 | 31.46406 | 40.33670 |
Craugastor guerreroensis | Anura | EN | Ground-dwelling | 25.149511 | 36.48310 | 31.98387 | 40.33210 |
Craugastor guerreroensis | Anura | EN | Ground-dwelling | 24.010788 | 36.33073 | 31.86143 | 40.19271 |
Craugastor guerreroensis | Anura | EN | Ground-dwelling | 27.212280 | 36.75912 | 32.12862 | 40.60689 |
Craugastor montanus | Anura | EN | Ground-dwelling | 26.520262 | 36.65416 | 32.49433 | 40.87779 |
Craugastor montanus | Anura | EN | Ground-dwelling | 25.489154 | 36.51355 | 32.25794 | 40.58028 |
Craugastor montanus | Anura | EN | Ground-dwelling | 28.646972 | 36.94420 | 32.66323 | 41.13286 |
Craugastor gulosus | Anura | CR | Ground-dwelling | 24.247729 | 36.42039 | 32.03111 | 40.52855 |
Craugastor gulosus | Anura | CR | Ground-dwelling | 23.486497 | 36.31341 | 31.96121 | 40.42565 |
Craugastor gulosus | Anura | CR | Ground-dwelling | 25.406800 | 36.58327 | 32.12213 | 40.75747 |
Craugastor laevissimus | Anura | EN | Stream-dwelling | 26.352782 | 36.12660 | 31.93896 | 40.84247 |
Craugastor laevissimus | Anura | EN | Stream-dwelling | 25.474455 | 36.00416 | 31.82074 | 40.73260 |
Craugastor laevissimus | Anura | EN | Stream-dwelling | 28.064507 | 36.36522 | 32.09791 | 41.11497 |
Craugastor inachus | Anura | CR | Stream-dwelling | 26.789390 | 36.18858 | 31.97472 | 40.87995 |
Craugastor inachus | Anura | CR | Stream-dwelling | 25.919808 | 36.06825 | 31.90715 | 40.76268 |
Craugastor inachus | Anura | CR | Stream-dwelling | 28.621708 | 36.44215 | 31.90198 | 40.83842 |
Craugastor mexicanus | Anura | LC | Ground-dwelling | 24.620359 | 35.87407 | 32.00891 | 39.92524 |
Craugastor mexicanus | Anura | LC | Ground-dwelling | 23.545905 | 35.72273 | 31.90552 | 39.75993 |
Craugastor mexicanus | Anura | LC | Ground-dwelling | 26.763966 | 36.17599 | 32.55553 | 40.57763 |
Craugastor omiltemanus | Anura | LC | Ground-dwelling | 25.273746 | 35.99871 | 32.18725 | 39.88633 |
Craugastor omiltemanus | Anura | LC | Ground-dwelling | 24.305333 | 35.86389 | 32.10790 | 39.73997 |
Craugastor omiltemanus | Anura | LC | Ground-dwelling | 27.098261 | 36.25272 | 32.39714 | 40.20004 |
Craugastor rugosus | Anura | LC | Ground-dwelling | 24.812458 | 35.99552 | 32.19753 | 39.83524 |
Craugastor rugosus | Anura | LC | Ground-dwelling | 24.080462 | 35.89414 | 32.13678 | 39.75209 |
Craugastor rugosus | Anura | LC | Ground-dwelling | 26.063102 | 36.16873 | 32.25977 | 39.98201 |
Craugastor tabasarae | Anura | CR | Arboreal | 26.496631 | 38.49818 | 34.85949 | 42.43516 |
Craugastor tabasarae | Anura | CR | Arboreal | 25.880173 | 38.41487 | 34.73615 | 42.27571 |
Craugastor tabasarae | Anura | CR | Arboreal | 27.758337 | 38.66870 | 35.13815 | 42.79212 |
Craugastor rayo | Anura | EN | Stream-dwelling | 17.078254 | 36.79190 | 33.22630 | 40.40869 |
Craugastor rayo | Anura | EN | Stream-dwelling | 15.980470 | 36.64232 | 33.11900 | 40.27349 |
Craugastor rayo | Anura | EN | Stream-dwelling | 18.397641 | 36.97167 | 33.26401 | 40.45163 |
Craugastor matudai | Anura | EN | Ground-dwelling | 25.833150 | 36.53566 | 31.98040 | 40.37254 |
Craugastor matudai | Anura | EN | Ground-dwelling | 24.954271 | 36.41699 | 31.86559 | 40.20397 |
Craugastor matudai | Anura | EN | Ground-dwelling | 27.918184 | 36.81717 | 32.29833 | 40.77243 |
Craugastor yucatanensis | Anura | NT | Ground-dwelling | 27.483354 | 36.80013 | 32.69873 | 41.25119 |
Craugastor yucatanensis | Anura | NT | Ground-dwelling | 26.932033 | 36.72532 | 32.76990 | 41.27142 |
Craugastor yucatanensis | Anura | NT | Ground-dwelling | 28.746322 | 36.97150 | 32.92594 | 41.49724 |
Craugastor megalotympanum | Anura | EN | Ground-dwelling | 26.976054 | 36.86592 | 32.79459 | 41.25762 |
Craugastor megalotympanum | Anura | EN | Ground-dwelling | 25.987890 | 36.72738 | 32.52635 | 40.94033 |
Craugastor megalotympanum | Anura | EN | Ground-dwelling | 29.057037 | 37.15767 | 33.07784 | 41.64178 |
Craugastor rivulus | Anura | VU | Stream-dwelling | 24.553518 | 35.88312 | 31.93735 | 40.51472 |
Craugastor rivulus | Anura | VU | Stream-dwelling | 23.448581 | 35.73412 | 31.78396 | 40.36017 |
Craugastor rivulus | Anura | VU | Stream-dwelling | 26.810763 | 36.18750 | 32.16880 | 40.88934 |
Craugastor milesi | Anura | CR | Stream-dwelling | 25.174190 | 35.90385 | 30.98796 | 39.76353 |
Craugastor milesi | Anura | CR | Stream-dwelling | 24.673669 | 35.83471 | 31.04189 | 39.81129 |
Craugastor milesi | Anura | CR | Stream-dwelling | 26.575538 | 36.09742 | 31.13560 | 39.96322 |
Craugastor sandersoni | Anura | EN | Stream-dwelling | 26.249736 | 36.03261 | 31.90457 | 40.80463 |
Craugastor sandersoni | Anura | EN | Stream-dwelling | 25.599837 | 35.94399 | 31.59773 | 40.42379 |
Craugastor sandersoni | Anura | EN | Stream-dwelling | 27.688254 | 36.22877 | 32.10765 | 41.05191 |
Craugastor occidentalis | Anura | LC | Ground-dwelling | 24.889488 | 36.43791 | 31.99800 | 40.47750 |
Craugastor occidentalis | Anura | LC | Ground-dwelling | 23.731591 | 36.27831 | 31.84125 | 40.29267 |
Craugastor occidentalis | Anura | LC | Ground-dwelling | 26.783504 | 36.69899 | 32.04548 | 40.58444 |
Craugastor palenque | Anura | VU | Stream-dwelling | 26.141881 | 36.06628 | 32.01360 | 40.36357 |
Craugastor palenque | Anura | VU | Stream-dwelling | 25.047294 | 35.91488 | 31.81134 | 40.15098 |
Craugastor palenque | Anura | VU | Stream-dwelling | 28.225005 | 36.35442 | 32.32013 | 40.70259 |
Craugastor pygmaeus | Anura | LC | Ground-dwelling | 25.763724 | 36.60695 | 32.19512 | 40.97218 |
Craugastor pygmaeus | Anura | LC | Ground-dwelling | 24.691322 | 36.46035 | 32.04895 | 40.74616 |
Craugastor pygmaeus | Anura | LC | Ground-dwelling | 27.758900 | 36.87971 | 32.55237 | 41.41199 |
Craugastor pechorum | Anura | EN | Stream-dwelling | 26.206645 | 36.14974 | 31.47951 | 40.28147 |
Craugastor pechorum | Anura | EN | Stream-dwelling | 25.785031 | 36.09098 | 31.44275 | 40.22065 |
Craugastor pechorum | Anura | EN | Stream-dwelling | 27.279702 | 36.29930 | 31.54711 | 40.42597 |
Craugastor rostralis | Anura | VU | Ground-dwelling | 26.148464 | 36.66501 | 32.58640 | 41.03761 |
Craugastor rostralis | Anura | VU | Ground-dwelling | 25.307816 | 36.54924 | 32.49429 | 40.87387 |
Craugastor rostralis | Anura | VU | Ground-dwelling | 27.964329 | 36.91509 | 32.81185 | 41.28558 |
Craugastor sabrinus | Anura | NT | Ground-dwelling | 26.440361 | 36.68242 | 32.51126 | 41.18411 |
Craugastor sabrinus | Anura | NT | Ground-dwelling | 25.739439 | 36.58601 | 32.45787 | 41.11862 |
Craugastor sabrinus | Anura | NT | Ground-dwelling | 27.933426 | 36.88777 | 32.59516 | 41.34035 |
Craugastor psephosypharus | Anura | NT | Ground-dwelling | 26.194195 | 36.65221 | 32.49835 | 41.04082 |
Craugastor psephosypharus | Anura | NT | Ground-dwelling | 25.426972 | 36.54513 | 32.34769 | 40.84795 |
Craugastor psephosypharus | Anura | NT | Ground-dwelling | 27.856319 | 36.88419 | 32.57443 | 41.13048 |
Craugastor taylori | Anura | CR | Ground-dwelling | 28.032287 | 36.92886 | 32.93764 | 41.59927 |
Craugastor taylori | Anura | CR | Ground-dwelling | 26.957643 | 36.77875 | 32.69252 | 41.31479 |
Craugastor taylori | Anura | CR | Ground-dwelling | 29.772279 | 37.17192 | 33.16710 | 41.86128 |
Craugastor emleni | Anura | EN | Ground-dwelling | 25.238943 | 36.53697 | 32.19226 | 40.85840 |
Craugastor emleni | Anura | EN | Ground-dwelling | 24.139830 | 36.38559 | 32.08574 | 40.72164 |
Craugastor emleni | Anura | EN | Ground-dwelling | 27.350544 | 36.82780 | 32.49702 | 41.29446 |
Craugastor daryi | Anura | EN | Stream-dwelling | 24.942963 | 35.51610 | 31.15249 | 40.26574 |
Craugastor daryi | Anura | EN | Stream-dwelling | 23.795138 | 35.35949 | 31.05671 | 40.20360 |
Craugastor daryi | Anura | EN | Stream-dwelling | 27.309028 | 35.83893 | 31.15466 | 40.37764 |
Haddadus aramunha | Anura | DD | Ground-dwelling | 24.351994 | 35.60063 | 30.79633 | 39.89179 |
Haddadus aramunha | Anura | DD | Ground-dwelling | 23.147698 | 35.42966 | 30.62313 | 39.69133 |
Haddadus aramunha | Anura | DD | Ground-dwelling | 26.920740 | 35.96530 | 31.25672 | 40.49947 |
Haddadus plicifer | Anura | DD | Ground-dwelling | 25.709735 | 35.74899 | 31.03488 | 40.36778 |
Haddadus plicifer | Anura | DD | Ground-dwelling | 24.760959 | 35.61943 | 30.91174 | 40.20867 |
Haddadus plicifer | Anura | DD | Ground-dwelling | 27.080743 | 35.93621 | 31.21283 | 40.61501 |
Haddadus binotatus | Anura | LC | Ground-dwelling | 25.339133 | 35.77685 | 31.74326 | 40.72369 |
Haddadus binotatus | Anura | LC | Ground-dwelling | 24.137531 | 35.60710 | 31.62758 | 40.57941 |
Haddadus binotatus | Anura | LC | Ground-dwelling | 27.519307 | 36.08486 | 31.41608 | 40.48455 |
Atopophrynus syntomopus | Anura | CR | Stream-dwelling | 22.792552 | 33.67482 | 29.22227 | 37.33194 |
Atopophrynus syntomopus | Anura | CR | Stream-dwelling | 22.040989 | 33.56697 | 29.10107 | 37.21255 |
Atopophrynus syntomopus | Anura | CR | Stream-dwelling | 24.304586 | 33.89180 | 29.34874 | 37.51892 |
Lynchius flavomaculatus | Anura | DD | Ground-dwelling | 22.742062 | 34.26082 | 30.08175 | 38.44831 |
Lynchius flavomaculatus | Anura | DD | Ground-dwelling | 21.460819 | 34.08012 | 29.66914 | 38.01255 |
Lynchius flavomaculatus | Anura | DD | Ground-dwelling | 24.767746 | 34.54652 | 30.31456 | 38.74638 |
Lynchius parkeri | Anura | EN | Ground-dwelling | 22.602751 | 34.28007 | 30.23212 | 38.42326 |
Lynchius parkeri | Anura | EN | Ground-dwelling | 21.868814 | 34.17569 | 30.18836 | 38.37124 |
Lynchius parkeri | Anura | EN | Ground-dwelling | 24.173626 | 34.50350 | 30.56869 | 38.74243 |
Lynchius nebulanastes | Anura | EN | Ground-dwelling | 22.602751 | 34.21934 | 30.37133 | 38.59161 |
Lynchius nebulanastes | Anura | EN | Ground-dwelling | 21.868814 | 34.11510 | 30.27170 | 38.49838 |
Lynchius nebulanastes | Anura | EN | Ground-dwelling | 24.173626 | 34.44245 | 30.55624 | 38.76520 |
Lynchius simmonsi | Anura | VU | Ground-dwelling | 25.562622 | 34.62274 | 30.00812 | 38.33353 |
Lynchius simmonsi | Anura | VU | Ground-dwelling | 24.507041 | 34.47320 | 30.03594 | 38.34445 |
Lynchius simmonsi | Anura | VU | Ground-dwelling | 27.560739 | 34.90581 | 30.45847 | 38.87327 |
Oreobates choristolemma | Anura | VU | Ground-dwelling | 19.856727 | 33.48506 | 30.30149 | 36.46649 |
Oreobates choristolemma | Anura | VU | Ground-dwelling | 19.013765 | 33.36403 | 30.15380 | 36.31959 |
Oreobates choristolemma | Anura | VU | Ground-dwelling | 21.131850 | 33.66812 | 30.51120 | 36.75677 |
Oreobates sanderi | Anura | LC | Ground-dwelling | 18.861890 | 33.21633 | 30.28297 | 36.22298 |
Oreobates sanderi | Anura | LC | Ground-dwelling | 18.013589 | 33.09372 | 30.18112 | 36.11591 |
Oreobates sanderi | Anura | LC | Ground-dwelling | 20.247963 | 33.41667 | 30.41639 | 36.43106 |
Oreobates sanctaecrucis | Anura | LC | Ground-dwelling | 22.189247 | 33.93373 | 30.67108 | 37.51032 |
Oreobates sanctaecrucis | Anura | LC | Ground-dwelling | 21.309440 | 33.80669 | 30.56707 | 37.33150 |
Oreobates sanctaecrucis | Anura | LC | Ground-dwelling | 23.466538 | 34.11817 | 30.75281 | 37.61671 |
Oreobates discoidalis | Anura | DD | Ground-dwelling | 19.670437 | 34.07215 | 30.85872 | 37.43333 |
Oreobates discoidalis | Anura | DD | Ground-dwelling | 18.211891 | 33.86413 | 30.72297 | 37.33407 |
Oreobates discoidalis | Anura | DD | Ground-dwelling | 22.144370 | 34.42499 | 31.08715 | 37.66980 |
Oreobates ibischi | Anura | LC | Ground-dwelling | 21.619057 | 34.29997 | 30.83119 | 37.76973 |
Oreobates ibischi | Anura | LC | Ground-dwelling | 20.678880 | 34.16530 | 30.61952 | 37.51092 |
Oreobates ibischi | Anura | LC | Ground-dwelling | 23.050134 | 34.50496 | 30.82582 | 37.80324 |
Oreobates madidi | Anura | LC | Ground-dwelling | 20.815031 | 34.48618 | 31.39103 | 37.72363 |
Oreobates madidi | Anura | LC | Ground-dwelling | 20.183546 | 34.39793 | 31.28745 | 37.62858 |
Oreobates madidi | Anura | LC | Ground-dwelling | 22.055989 | 34.65961 | 31.53620 | 37.95521 |
Oreobates crepitans | Anura | DD | Ground-dwelling | 27.892401 | 35.03800 | 31.28975 | 38.82344 |
Oreobates crepitans | Anura | DD | Ground-dwelling | 26.829170 | 34.88492 | 31.04958 | 38.54479 |
Oreobates crepitans | Anura | DD | Ground-dwelling | 29.894754 | 35.32628 | 31.51441 | 39.09297 |
Oreobates heterodactylus | Anura | DD | Ground-dwelling | 28.046074 | 34.98612 | 31.10517 | 38.34517 |
Oreobates heterodactylus | Anura | DD | Ground-dwelling | 27.148540 | 34.85871 | 30.96311 | 38.15680 |
Oreobates heterodactylus | Anura | DD | Ground-dwelling | 29.941233 | 35.25515 | 31.38808 | 38.75003 |
Oreobates zongoensis | Anura | CR | Ground-dwelling | 17.757819 | 33.49932 | 30.17727 | 37.31992 |
Oreobates zongoensis | Anura | CR | Ground-dwelling | 16.741006 | 33.35552 | 29.91385 | 36.99840 |
Oreobates zongoensis | Anura | CR | Ground-dwelling | 19.207708 | 33.70437 | 29.86227 | 37.01176 |
Oreobates ayacucho | Anura | EN | Ground-dwelling | 19.043751 | 32.80493 | 29.54974 | 36.14077 |
Oreobates ayacucho | Anura | EN | Ground-dwelling | 15.969081 | 32.36155 | 28.80845 | 35.42452 |
Oreobates ayacucho | Anura | EN | Ground-dwelling | 20.906225 | 33.07350 | 29.79903 | 36.45717 |
Oreobates pereger | Anura | EN | Ground-dwelling | 16.619574 | 32.52162 | 28.75218 | 35.65270 |
Oreobates pereger | Anura | EN | Ground-dwelling | 15.677156 | 32.38513 | 28.63811 | 35.55203 |
Oreobates pereger | Anura | EN | Ground-dwelling | 18.068780 | 32.73152 | 29.01351 | 35.89930 |
Oreobates lehri | Anura | EN | Ground-dwelling | 17.961728 | 31.52022 | 28.77266 | 34.83740 |
Oreobates lehri | Anura | EN | Ground-dwelling | 16.016319 | 31.23213 | 28.39424 | 34.52460 |
Oreobates lehri | Anura | EN | Ground-dwelling | 19.489051 | 31.74641 | 28.91864 | 35.03790 |
Oreobates saxatilis | Anura | LC | Ground-dwelling | 20.868354 | 35.55145 | 32.33963 | 38.27294 |
Oreobates saxatilis | Anura | LC | Ground-dwelling | 20.147525 | 35.44897 | 32.24990 | 38.12056 |
Oreobates saxatilis | Anura | LC | Ground-dwelling | 22.086454 | 35.72462 | 32.45976 | 38.40906 |
Oreobates lundbergi | Anura | EN | Ground-dwelling | 21.012652 | 33.91546 | 30.37467 | 37.74839 |
Oreobates lundbergi | Anura | EN | Ground-dwelling | 20.177954 | 33.79830 | 30.30907 | 37.70923 |
Oreobates lundbergi | Anura | EN | Ground-dwelling | 22.689323 | 34.15081 | 30.74332 | 38.19100 |
Phrynopus auriculatus | Anura | DD | Ground-dwelling | 21.012652 | 34.01036 | 29.91124 | 37.80405 |
Phrynopus auriculatus | Anura | DD | Ground-dwelling | 20.177954 | 33.88862 | 29.78549 | 37.62579 |
Phrynopus auriculatus | Anura | DD | Ground-dwelling | 22.689323 | 34.25490 | 29.82640 | 37.76449 |
Phrynopus barthlenae | Anura | EN | Ground-dwelling | 18.964672 | 33.71436 | 29.53921 | 37.76549 |
Phrynopus barthlenae | Anura | EN | Ground-dwelling | 18.049350 | 33.58465 | 29.23104 | 37.51791 |
Phrynopus barthlenae | Anura | EN | Ground-dwelling | 20.714852 | 33.96237 | 29.77006 | 38.01113 |
Phrynopus horstpauli | Anura | EN | Arboreal | 19.199032 | 33.61571 | 29.65586 | 37.80558 |
Phrynopus horstpauli | Anura | EN | Arboreal | 18.184274 | 33.46867 | 29.46878 | 37.60309 |
Phrynopus horstpauli | Anura | EN | Arboreal | 21.218805 | 33.90836 | 29.82049 | 38.00273 |
Phrynopus bracki | Anura | DD | Ground-dwelling | 21.012652 | 34.01233 | 29.86177 | 38.03787 |
Phrynopus bracki | Anura | DD | Ground-dwelling | 20.177954 | 33.89262 | 29.74840 | 37.92535 |
Phrynopus bracki | Anura | DD | Ground-dwelling | 22.689323 | 34.25281 | 30.30942 | 38.46034 |
Phrynopus bufoides | Anura | DD | Ground-dwelling | 21.012652 | 34.01453 | 30.40637 | 38.47271 |
Phrynopus bufoides | Anura | DD | Ground-dwelling | 20.177954 | 33.89516 | 30.29247 | 38.35548 |
Phrynopus bufoides | Anura | DD | Ground-dwelling | 22.689323 | 34.25430 | 30.75137 | 38.82988 |
Phrynopus dagmarae | Anura | EN | Ground-dwelling | 19.652437 | 33.89844 | 30.14566 | 38.23772 |
Phrynopus dagmarae | Anura | EN | Ground-dwelling | 18.682694 | 33.75989 | 29.99959 | 38.11602 |
Phrynopus dagmarae | Anura | EN | Ground-dwelling | 21.586434 | 34.17475 | 30.29766 | 38.49001 |
Phrynopus heimorum | Anura | CR | Ground-dwelling | 17.078267 | 33.56578 | 28.90040 | 37.52524 |
Phrynopus heimorum | Anura | CR | Ground-dwelling | 15.868726 | 33.39220 | 28.62623 | 37.33976 |
Phrynopus heimorum | Anura | CR | Ground-dwelling | 19.497596 | 33.91297 | 29.30676 | 37.99515 |
Phrynopus juninensis | Anura | CR | Ground-dwelling | 16.870590 | 33.46965 | 29.35649 | 37.15876 |
Phrynopus juninensis | Anura | CR | Ground-dwelling | 16.060145 | 33.35586 | 29.28431 | 37.04266 |
Phrynopus juninensis | Anura | CR | Ground-dwelling | 18.188627 | 33.65470 | 29.44305 | 37.34757 |
Phrynopus kauneorum | Anura | EN | Ground-dwelling | 19.316212 | 33.88081 | 29.97320 | 37.86878 |
Phrynopus kauneorum | Anura | EN | Ground-dwelling | 18.251736 | 33.72903 | 29.81955 | 37.69948 |
Phrynopus kauneorum | Anura | EN | Ground-dwelling | 21.470781 | 34.18801 | 30.27474 | 38.21311 |
Phrynopus kotosh | Anura | DD | Ground-dwelling | 15.191863 | 33.24500 | 29.15182 | 37.39459 |
Phrynopus kotosh | Anura | DD | Ground-dwelling | 13.688102 | 33.03302 | 29.00740 | 37.25543 |
Phrynopus kotosh | Anura | DD | Ground-dwelling | 18.280341 | 33.68038 | 29.51052 | 37.80762 |
Phrynopus miroslawae | Anura | DD | Ground-dwelling | 21.012652 | 34.10603 | 29.69516 | 37.93137 |
Phrynopus miroslawae | Anura | DD | Ground-dwelling | 20.177954 | 33.98599 | 29.56798 | 37.81198 |
Phrynopus miroslawae | Anura | DD | Ground-dwelling | 22.689323 | 34.34714 | 30.22146 | 38.58145 |
Phrynopus montium | Anura | EN | Ground-dwelling | 16.870590 | 33.53255 | 29.15870 | 37.63714 |
Phrynopus montium | Anura | EN | Ground-dwelling | 16.060145 | 33.41508 | 29.15440 | 37.61154 |
Phrynopus montium | Anura | EN | Ground-dwelling | 18.188627 | 33.72358 | 29.56699 | 38.02433 |
Phrynopus nicoleae | Anura | DD | Ground-dwelling | 21.012652 | 34.03735 | 30.12442 | 38.05088 |
Phrynopus nicoleae | Anura | DD | Ground-dwelling | 20.177954 | 33.91833 | 29.96133 | 37.87091 |
Phrynopus nicoleae | Anura | DD | Ground-dwelling | 22.689323 | 34.27642 | 30.33115 | 38.35893 |
Phrynopus oblivius | Anura | DD | Ground-dwelling | 16.870590 | 33.50889 | 29.41950 | 37.30780 |
Phrynopus oblivius | Anura | DD | Ground-dwelling | 16.060145 | 33.39216 | 29.38387 | 37.30112 |
Phrynopus oblivius | Anura | DD | Ground-dwelling | 18.188627 | 33.69873 | 29.72455 | 37.60643 |
Phrynopus paucari | Anura | DD | Ground-dwelling | 21.012652 | 33.96301 | 29.96284 | 38.42637 |
Phrynopus paucari | Anura | DD | Ground-dwelling | 20.177954 | 33.84318 | 29.86487 | 38.29706 |
Phrynopus paucari | Anura | DD | Ground-dwelling | 22.689323 | 34.20373 | 30.12810 | 38.57403 |
Phrynopus peruanus | Anura | CR | Ground-dwelling | 16.870590 | 33.42961 | 29.65596 | 37.65034 |
Phrynopus peruanus | Anura | CR | Ground-dwelling | 16.060145 | 33.31530 | 29.57991 | 37.57790 |
Phrynopus peruanus | Anura | CR | Ground-dwelling | 18.188627 | 33.61552 | 29.80282 | 37.82390 |
Phrynopus pesantesi | Anura | DD | Ground-dwelling | 21.012652 | 33.99360 | 29.97210 | 38.07162 |
Phrynopus pesantesi | Anura | DD | Ground-dwelling | 20.177954 | 33.87424 | 29.95131 | 38.01025 |
Phrynopus pesantesi | Anura | DD | Ground-dwelling | 22.689323 | 34.23336 | 30.19074 | 38.30501 |
Phrynopus tautzorum | Anura | DD | Ground-dwelling | 18.964672 | 33.80719 | 29.45153 | 37.62682 |
Phrynopus tautzorum | Anura | DD | Ground-dwelling | 18.049350 | 33.67606 | 29.36041 | 37.55436 |
Phrynopus tautzorum | Anura | DD | Ground-dwelling | 20.714852 | 34.05794 | 29.64472 | 37.83423 |
Phrynopus thompsoni | Anura | DD | Ground-dwelling | 22.355543 | 34.23207 | 30.41859 | 38.36797 |
Phrynopus thompsoni | Anura | DD | Ground-dwelling | 21.452041 | 34.10354 | 29.89115 | 37.86841 |
Phrynopus thompsoni | Anura | DD | Ground-dwelling | 23.805729 | 34.43838 | 30.53135 | 38.45882 |
Phrynopus tribulosus | Anura | LC | Ground-dwelling | 21.012652 | 33.97823 | 30.08301 | 38.38849 |
Phrynopus tribulosus | Anura | LC | Ground-dwelling | 20.177954 | 33.85978 | 29.68414 | 37.94688 |
Phrynopus tribulosus | Anura | LC | Ground-dwelling | 22.689323 | 34.21617 | 30.06583 | 38.43298 |
Pristimantis aaptus | Anura | LC | Ground-dwelling | 29.039133 | 35.10955 | 30.73904 | 39.38729 |
Pristimantis aaptus | Anura | LC | Ground-dwelling | 28.269760 | 34.99961 | 30.67030 | 39.26107 |
Pristimantis aaptus | Anura | LC | Ground-dwelling | 30.584570 | 35.33038 | 30.58480 | 39.38811 |
Pristimantis acatallelus | Anura | LC | Arboreal | 24.572330 | 34.46784 | 30.44543 | 38.60913 |
Pristimantis acatallelus | Anura | LC | Arboreal | 23.758611 | 34.35390 | 30.20272 | 38.32504 |
Pristimantis acatallelus | Anura | LC | Arboreal | 25.974912 | 34.66424 | 30.52432 | 38.73123 |
Pristimantis acerus | Anura | EN | Arboreal | 21.046238 | 33.97128 | 30.08055 | 38.10965 |
Pristimantis acerus | Anura | EN | Arboreal | 18.738360 | 33.64825 | 29.55032 | 37.64102 |
Pristimantis acerus | Anura | EN | Arboreal | 23.735443 | 34.34768 | 30.38505 | 38.43515 |
Pristimantis lymani | Anura | LC | Arboreal | 23.671049 | 36.82719 | 33.89765 | 40.39585 |
Pristimantis lymani | Anura | LC | Arboreal | 22.748657 | 36.70087 | 33.70964 | 40.16190 |
Pristimantis lymani | Anura | LC | Arboreal | 25.326737 | 37.05394 | 34.09740 | 40.63508 |
Pristimantis achuar | Anura | LC | Ground-dwelling | 25.686350 | 34.73270 | 30.57974 | 38.88569 |
Pristimantis achuar | Anura | LC | Ground-dwelling | 24.911090 | 34.62164 | 30.49153 | 38.79537 |
Pristimantis achuar | Anura | LC | Ground-dwelling | 27.204444 | 34.95017 | 30.73215 | 39.15124 |
Pristimantis actinolaimus | Anura | EN | Arboreal | 22.792552 | 34.25340 | 30.18865 | 38.60330 |
Pristimantis actinolaimus | Anura | EN | Arboreal | 22.040989 | 34.14509 | 30.10981 | 38.48196 |
Pristimantis actinolaimus | Anura | EN | Arboreal | 24.304586 | 34.47131 | 30.31676 | 38.82061 |
Pristimantis acuminatus | Anura | LC | Arboreal | 25.157192 | 34.49675 | 30.24858 | 38.81338 |
Pristimantis acuminatus | Anura | LC | Arboreal | 24.267496 | 34.37163 | 30.14492 | 38.58738 |
Pristimantis acuminatus | Anura | LC | Arboreal | 26.841638 | 34.73362 | 30.19597 | 38.91882 |
Pristimantis acutirostris | Anura | EN | Arboreal | 22.013728 | 34.03582 | 29.70604 | 37.99699 |
Pristimantis acutirostris | Anura | EN | Arboreal | 21.137557 | 33.91227 | 29.64624 | 37.90102 |
Pristimantis acutirostris | Anura | EN | Arboreal | 23.830870 | 34.29205 | 30.19092 | 38.63723 |
Pristimantis adiastolus | Anura | LC | Arboreal | 21.012652 | 34.07320 | 29.72009 | 37.97937 |
Pristimantis adiastolus | Anura | LC | Arboreal | 20.177954 | 33.95584 | 29.61418 | 37.84521 |
Pristimantis adiastolus | Anura | LC | Arboreal | 22.689323 | 34.30893 | 30.42856 | 38.72838 |
Pristimantis aemulatus | Anura | EN | Arboreal | 26.219010 | 34.71762 | 30.56875 | 39.00126 |
Pristimantis aemulatus | Anura | EN | Arboreal | 25.544335 | 34.62121 | 30.50238 | 38.92359 |
Pristimantis aemulatus | Anura | EN | Arboreal | 27.553766 | 34.90835 | 30.62812 | 39.17987 |
Pristimantis affinis | Anura | EN | Arboreal | 22.977523 | 34.26556 | 30.15078 | 38.39937 |
Pristimantis affinis | Anura | EN | Arboreal | 22.085246 | 34.13770 | 30.06755 | 38.26585 |
Pristimantis affinis | Anura | EN | Arboreal | 24.609919 | 34.49946 | 30.29154 | 38.54644 |
Pristimantis alalocophus | Anura | EN | Arboreal | 22.355465 | 34.05815 | 29.74594 | 37.80765 |
Pristimantis alalocophus | Anura | EN | Arboreal | 21.502710 | 33.93687 | 29.73067 | 37.77894 |
Pristimantis alalocophus | Anura | EN | Arboreal | 23.944685 | 34.28417 | 29.96577 | 38.00323 |
Pristimantis albertus | Anura | VU | Ground-dwelling | 18.941621 | 33.82405 | 29.95712 | 37.38715 |
Pristimantis albertus | Anura | VU | Ground-dwelling | 18.119049 | 33.70618 | 29.91859 | 37.30436 |
Pristimantis albertus | Anura | VU | Ground-dwelling | 20.438975 | 34.03862 | 30.12583 | 37.59303 |
Pristimantis altae | Anura | LC | Arboreal | 25.960264 | 34.77083 | 30.41408 | 38.87839 |
Pristimantis altae | Anura | LC | Arboreal | 25.278068 | 34.67448 | 30.35653 | 38.79611 |
Pristimantis altae | Anura | LC | Arboreal | 27.293748 | 34.95916 | 30.33828 | 38.87600 |
Pristimantis pardalis | Anura | LC | Arboreal | 26.213930 | 34.81361 | 30.62844 | 39.46572 |
Pristimantis pardalis | Anura | LC | Arboreal | 25.594181 | 34.72614 | 30.56978 | 39.39033 |
Pristimantis pardalis | Anura | LC | Arboreal | 27.359794 | 34.97535 | 30.72331 | 39.59191 |
Pristimantis altamazonicus | Anura | LC | Ground-dwelling | 27.031913 | 34.99466 | 31.04272 | 39.46721 |
Pristimantis altamazonicus | Anura | LC | Ground-dwelling | 26.266986 | 34.88623 | 30.21962 | 38.56859 |
Pristimantis altamazonicus | Anura | LC | Ground-dwelling | 28.523877 | 35.20615 | 31.22290 | 39.65088 |
Pristimantis altamnis | Anura | LC | Arboreal | 23.680922 | 34.37378 | 30.34119 | 38.52663 |
Pristimantis altamnis | Anura | LC | Arboreal | 22.694324 | 34.23481 | 30.23334 | 38.35361 |
Pristimantis altamnis | Anura | LC | Arboreal | 25.357132 | 34.60990 | 30.34241 | 38.69103 |
Pristimantis kichwarum | Anura | LC | Ground-dwelling | 24.408453 | 34.67509 | 30.10881 | 38.55509 |
Pristimantis kichwarum | Anura | LC | Ground-dwelling | 23.230029 | 34.50719 | 30.35857 | 38.71119 |
Pristimantis kichwarum | Anura | LC | Ground-dwelling | 26.235757 | 34.93543 | 30.43921 | 38.99592 |
Pristimantis amydrotus | Anura | DD | Arboreal | 24.352695 | 34.40969 | 30.34538 | 38.20769 |
Pristimantis amydrotus | Anura | DD | Arboreal | 23.754925 | 34.32672 | 30.22978 | 38.07138 |
Pristimantis amydrotus | Anura | DD | Arboreal | 25.398234 | 34.55479 | 30.47500 | 38.39960 |
Pristimantis anemerus | Anura | DD | Arboreal | 22.602751 | 34.25539 | 29.97225 | 38.00619 |
Pristimantis anemerus | Anura | DD | Arboreal | 21.868814 | 34.15085 | 29.95437 | 37.93684 |
Pristimantis anemerus | Anura | DD | Arboreal | 24.173626 | 34.47914 | 30.68234 | 38.68062 |
Pristimantis angustilineatus | Anura | EN | Arboreal | 24.179450 | 34.47698 | 30.32860 | 38.77181 |
Pristimantis angustilineatus | Anura | EN | Arboreal | 23.449222 | 34.37376 | 30.24867 | 38.67655 |
Pristimantis angustilineatus | Anura | EN | Arboreal | 25.556092 | 34.67157 | 30.41164 | 38.91453 |
Pristimantis brevifrons | Anura | LC | Arboreal | 23.713568 | 34.39530 | 30.32835 | 38.33647 |
Pristimantis brevifrons | Anura | LC | Arboreal | 22.821458 | 34.26804 | 30.20385 | 38.17876 |
Pristimantis brevifrons | Anura | LC | Arboreal | 25.223076 | 34.61064 | 30.39697 | 38.47552 |
Pristimantis aniptopalmatus | Anura | LC | Ground-dwelling | 21.012652 | 34.15531 | 30.11950 | 38.00808 |
Pristimantis aniptopalmatus | Anura | LC | Ground-dwelling | 20.177954 | 34.03598 | 30.14572 | 38.01749 |
Pristimantis aniptopalmatus | Anura | LC | Ground-dwelling | 22.689323 | 34.39500 | 30.40744 | 38.31425 |
Pristimantis anolirex | Anura | VU | Arboreal | 23.060547 | 34.32415 | 30.51750 | 38.66482 |
Pristimantis anolirex | Anura | VU | Arboreal | 22.206096 | 34.20364 | 30.41838 | 38.52757 |
Pristimantis anolirex | Anura | VU | Arboreal | 24.664197 | 34.55033 | 30.29244 | 38.38450 |
Pristimantis lutitus | Anura | EN | Arboreal | 23.327220 | 34.37517 | 29.93415 | 38.12172 |
Pristimantis lutitus | Anura | EN | Arboreal | 22.462145 | 34.25364 | 30.29606 | 38.39445 |
Pristimantis lutitus | Anura | EN | Arboreal | 24.851831 | 34.58936 | 30.32168 | 38.54001 |
Pristimantis merostictus | Anura | VU | Arboreal | 22.734574 | 34.22936 | 30.49005 | 38.85186 |
Pristimantis merostictus | Anura | VU | Arboreal | 21.871461 | 34.10639 | 30.39725 | 38.71931 |
Pristimantis merostictus | Anura | VU | Arboreal | 24.442473 | 34.47268 | 30.73088 | 39.16724 |
Pristimantis apiculatus | Anura | EN | Ground-dwelling | 22.593496 | 34.26410 | 30.42427 | 38.38001 |
Pristimantis apiculatus | Anura | EN | Ground-dwelling | 21.178511 | 34.06238 | 30.19841 | 38.12431 |
Pristimantis apiculatus | Anura | EN | Ground-dwelling | 24.575191 | 34.54661 | 30.75755 | 38.75523 |
Pristimantis appendiculatus | Anura | LC | Ground-dwelling | 22.483509 | 34.27781 | 30.20122 | 38.33023 |
Pristimantis appendiculatus | Anura | LC | Ground-dwelling | 21.107539 | 34.08122 | 29.59152 | 37.75804 |
Pristimantis appendiculatus | Anura | LC | Ground-dwelling | 24.413477 | 34.55356 | 30.45434 | 38.58182 |
Pristimantis aquilonaris | Anura | LC | Ground-dwelling | 23.179600 | 34.50506 | 30.27892 | 38.62305 |
Pristimantis aquilonaris | Anura | LC | Ground-dwelling | 22.448026 | 34.40006 | 30.15212 | 38.45000 |
Pristimantis aquilonaris | Anura | LC | Ground-dwelling | 24.714297 | 34.72534 | 30.67776 | 39.09065 |
Pristimantis ardalonychus | Anura | EN | Arboreal | 22.288852 | 34.22237 | 29.78936 | 37.85894 |
Pristimantis ardalonychus | Anura | EN | Arboreal | 21.448609 | 34.10325 | 29.67064 | 37.67658 |
Pristimantis ardalonychus | Anura | EN | Arboreal | 23.896896 | 34.45034 | 30.32368 | 38.39555 |
Pristimantis atrabracus | Anura | DD | Arboreal | 24.022160 | 34.48676 | 30.56426 | 38.45298 |
Pristimantis atrabracus | Anura | DD | Arboreal | 23.320574 | 34.38811 | 30.48664 | 38.32372 |
Pristimantis atrabracus | Anura | DD | Arboreal | 25.414498 | 34.68254 | 30.82044 | 38.78316 |
Pristimantis atratus | Anura | VU | Arboreal | 22.988492 | 34.21290 | 29.81781 | 38.14454 |
Pristimantis atratus | Anura | VU | Arboreal | 21.711177 | 34.03459 | 29.63000 | 37.94195 |
Pristimantis atratus | Anura | VU | Arboreal | 24.998861 | 34.49356 | 30.19876 | 38.56826 |
Pristimantis aurantiguttatus | Anura | EN | Arboreal | 25.972630 | 34.65158 | 30.62616 | 39.02690 |
Pristimantis aurantiguttatus | Anura | EN | Arboreal | 25.278269 | 34.55369 | 30.54555 | 38.92076 |
Pristimantis aurantiguttatus | Anura | EN | Arboreal | 27.256273 | 34.83254 | 30.88337 | 39.29297 |
Pristimantis aureolineatus | Anura | LC | Arboreal | 26.342184 | 34.67411 | 30.49502 | 38.75775 |
Pristimantis aureolineatus | Anura | LC | Arboreal | 25.534500 | 34.55906 | 30.32558 | 38.61717 |
Pristimantis aureolineatus | Anura | LC | Arboreal | 27.873033 | 34.89218 | 30.54139 | 38.93515 |
Pristimantis aureoventris | Anura | EN | Arboreal | 26.386750 | 34.67572 | 30.11012 | 38.38870 |
Pristimantis aureoventris | Anura | EN | Arboreal | 25.707210 | 34.57772 | 30.35676 | 38.59143 |
Pristimantis aureoventris | Anura | EN | Arboreal | 27.920527 | 34.89691 | 30.28885 | 38.57628 |
Pristimantis jester | Anura | LC | Arboreal | 26.634291 | 34.65556 | 30.57482 | 38.58968 |
Pristimantis jester | Anura | LC | Arboreal | 25.965013 | 34.56226 | 30.64641 | 38.63229 |
Pristimantis jester | Anura | LC | Arboreal | 28.137979 | 34.86517 | 30.70554 | 38.76052 |
Pristimantis avicuporum | Anura | LC | Ground-dwelling | 24.022160 | 34.50055 | 30.64190 | 38.43581 |
Pristimantis avicuporum | Anura | LC | Ground-dwelling | 23.320574 | 34.40042 | 30.51734 | 38.23436 |
Pristimantis avicuporum | Anura | LC | Ground-dwelling | 25.414498 | 34.69927 | 30.48030 | 38.35263 |
Pristimantis avius | Anura | DD | Arboreal | 27.072310 | 34.78597 | 30.69830 | 38.84302 |
Pristimantis avius | Anura | DD | Arboreal | 26.418052 | 34.69503 | 30.58907 | 38.71295 |
Pristimantis avius | Anura | DD | Arboreal | 28.545199 | 34.99071 | 30.71020 | 38.93963 |
Pristimantis bacchus | Anura | EN | Arboreal | 22.245615 | 34.22505 | 30.55056 | 38.53386 |
Pristimantis bacchus | Anura | EN | Arboreal | 21.369508 | 34.09954 | 30.41217 | 38.38741 |
Pristimantis bacchus | Anura | EN | Arboreal | 24.109886 | 34.49213 | 30.68437 | 38.77153 |
Pristimantis baiotis | Anura | NT | Arboreal | 26.219010 | 34.74211 | 30.91033 | 39.14084 |
Pristimantis baiotis | Anura | NT | Arboreal | 25.544335 | 34.64671 | 30.44108 | 38.71135 |
Pristimantis baiotis | Anura | NT | Arboreal | 27.553766 | 34.93084 | 31.01045 | 39.26250 |
Pristimantis balionotus | Anura | EN | Arboreal | 22.504554 | 34.02182 | 29.84869 | 38.07747 |
Pristimantis balionotus | Anura | EN | Arboreal | 21.223948 | 33.83938 | 29.70118 | 37.87599 |
Pristimantis balionotus | Anura | EN | Arboreal | 24.506837 | 34.30707 | 30.47053 | 38.72668 |
Pristimantis bambu | Anura | EN | Arboreal | 20.535827 | 33.82364 | 29.75352 | 38.16257 |
Pristimantis bambu | Anura | EN | Arboreal | 18.480343 | 33.53381 | 29.46804 | 37.82867 |
Pristimantis bambu | Anura | EN | Arboreal | 23.090691 | 34.18389 | 29.95680 | 38.41940 |
Pristimantis simonbolivari | Anura | EN | Ground-dwelling | 22.287150 | 34.28886 | 30.20170 | 38.36469 |
Pristimantis simonbolivari | Anura | EN | Ground-dwelling | 20.278491 | 34.00580 | 29.97896 | 38.12438 |
Pristimantis simonbolivari | Anura | EN | Ground-dwelling | 24.609385 | 34.61610 | 30.63900 | 38.81502 |
Pristimantis baryecuus | Anura | EN | Arboreal | 23.049225 | 34.25176 | 30.13858 | 38.25375 |
Pristimantis baryecuus | Anura | EN | Arboreal | 21.493692 | 34.03000 | 30.01488 | 38.06049 |
Pristimantis baryecuus | Anura | EN | Arboreal | 25.325715 | 34.57629 | 30.64328 | 38.76356 |
Pristimantis batrachites | Anura | EN | Arboreal | 22.264420 | 34.17694 | 30.12528 | 38.52806 |
Pristimantis batrachites | Anura | EN | Arboreal | 21.177532 | 34.02353 | 29.49466 | 37.86437 |
Pristimantis batrachites | Anura | EN | Arboreal | 23.874959 | 34.40425 | 30.33275 | 38.69770 |
Pristimantis bearsei | Anura | DD | Stream-dwelling | 24.021783 | 33.94191 | 29.86222 | 38.13167 |
Pristimantis bearsei | Anura | DD | Stream-dwelling | 23.410536 | 33.85621 | 29.79135 | 37.99964 |
Pristimantis bearsei | Anura | DD | Stream-dwelling | 25.363768 | 34.13007 | 30.19004 | 38.51804 |
Pristimantis bellator | Anura | LC | Arboreal | 23.179600 | 34.22305 | 29.93314 | 38.05116 |
Pristimantis bellator | Anura | LC | Arboreal | 22.448026 | 34.11904 | 30.06144 | 38.11884 |
Pristimantis bellator | Anura | LC | Arboreal | 24.714297 | 34.44126 | 30.16659 | 38.26483 |
Pristimantis bellona | Anura | EN | Arboreal | 26.219010 | 34.64442 | 30.27943 | 38.86874 |
Pristimantis bellona | Anura | EN | Arboreal | 25.544335 | 34.54850 | 30.54758 | 39.10216 |
Pristimantis bellona | Anura | EN | Arboreal | 27.553766 | 34.83417 | 30.41455 | 38.99300 |
Pristimantis bicumulus | Anura | VU | Ground-dwelling | 26.436249 | 34.82670 | 30.88824 | 39.45775 |
Pristimantis bicumulus | Anura | VU | Ground-dwelling | 25.696256 | 34.72239 | 30.28009 | 38.78013 |
Pristimantis bicumulus | Anura | VU | Ground-dwelling | 27.808205 | 35.02009 | 30.69972 | 39.26697 |
Pristimantis bipunctatus | Anura | LC | Ground-dwelling | 19.976128 | 33.98973 | 29.99129 | 38.19581 |
Pristimantis bipunctatus | Anura | LC | Ground-dwelling | 19.223006 | 33.88435 | 30.07166 | 38.26997 |
Pristimantis bipunctatus | Anura | LC | Ground-dwelling | 21.307373 | 34.17599 | 30.24347 | 38.43839 |
Pristimantis boulengeri | Anura | LC | Arboreal | 23.686461 | 34.35241 | 30.33294 | 38.57141 |
Pristimantis boulengeri | Anura | LC | Arboreal | 22.845272 | 34.23190 | 30.21957 | 38.43679 |
Pristimantis boulengeri | Anura | LC | Arboreal | 25.170339 | 34.56498 | 30.48381 | 38.80888 |
Pristimantis simoterus | Anura | NT | Ground-dwelling | 22.409385 | 34.35771 | 30.06335 | 38.10925 |
Pristimantis simoterus | Anura | NT | Ground-dwelling | 21.593296 | 34.24228 | 29.94562 | 37.95124 |
Pristimantis simoterus | Anura | NT | Ground-dwelling | 23.972185 | 34.57878 | 30.68539 | 38.75472 |
Pristimantis chloronotus | Anura | LC | Arboreal | 22.707101 | 34.22063 | 30.57147 | 38.60041 |
Pristimantis chloronotus | Anura | LC | Arboreal | 21.283172 | 34.01856 | 30.45725 | 38.43618 |
Pristimantis chloronotus | Anura | LC | Arboreal | 24.660567 | 34.49784 | 30.58284 | 38.71843 |
Pristimantis bromeliaceus | Anura | LC | Arboreal | 22.726174 | 34.07975 | 30.21097 | 38.27126 |
Pristimantis bromeliaceus | Anura | LC | Arboreal | 21.601468 | 33.92068 | 30.06104 | 38.10153 |
Pristimantis bromeliaceus | Anura | LC | Arboreal | 24.591966 | 34.34364 | 30.42481 | 38.55281 |
Pristimantis buckleyi | Anura | LC | Arboreal | 24.010244 | 32.87561 | 29.48595 | 35.88307 |
Pristimantis buckleyi | Anura | LC | Arboreal | 23.059260 | 32.73865 | 29.37751 | 35.73381 |
Pristimantis buckleyi | Anura | LC | Arboreal | 25.542663 | 33.09632 | 29.80236 | 36.27317 |
Pristimantis cabrerai | Anura | DD | Arboreal | 24.174982 | 34.39999 | 29.92438 | 37.98597 |
Pristimantis cabrerai | Anura | DD | Arboreal | 23.319443 | 34.27771 | 29.84647 | 37.87942 |
Pristimantis cabrerai | Anura | DD | Arboreal | 25.697440 | 34.61760 | 30.23983 | 38.29576 |
Pristimantis cacao | Anura | CR | Ground-dwelling | 22.833468 | 34.38660 | 30.10236 | 38.10599 |
Pristimantis cacao | Anura | CR | Ground-dwelling | 21.394430 | 34.18346 | 30.16904 | 38.15893 |
Pristimantis cacao | Anura | CR | Ground-dwelling | 24.669687 | 34.64582 | 30.36132 | 38.42442 |
Pristimantis caeruleonotus | Anura | DD | Arboreal | 23.756449 | 34.39480 | 30.31894 | 38.24923 |
Pristimantis caeruleonotus | Anura | DD | Arboreal | 23.027238 | 34.29156 | 30.24740 | 38.11708 |
Pristimantis caeruleonotus | Anura | DD | Arboreal | 25.254968 | 34.60695 | 30.51640 | 38.52532 |
Pristimantis cajamarcensis | Anura | LC | Arboreal | 22.991138 | 34.28047 | 30.64624 | 38.91066 |
Pristimantis cajamarcensis | Anura | LC | Arboreal | 22.017909 | 34.14167 | 30.39068 | 38.62060 |
Pristimantis cajamarcensis | Anura | LC | Arboreal | 24.646383 | 34.51654 | 30.85542 | 39.05128 |
Pristimantis calcaratus | Anura | VU | Ground-dwelling | 24.339054 | 34.68355 | 30.41811 | 38.90782 |
Pristimantis calcaratus | Anura | VU | Ground-dwelling | 23.604569 | 34.57833 | 30.36736 | 38.80784 |
Pristimantis calcaratus | Anura | VU | Ground-dwelling | 25.715244 | 34.88069 | 30.52898 | 39.03777 |
Pristimantis calcarulatus | Anura | VU | Arboreal | 23.075663 | 34.13627 | 30.01111 | 38.04836 |
Pristimantis calcarulatus | Anura | VU | Arboreal | 21.392822 | 33.89830 | 29.64206 | 37.72983 |
Pristimantis calcarulatus | Anura | VU | Arboreal | 25.301338 | 34.45101 | 30.38770 | 38.42820 |
Pristimantis cantitans | Anura | NT | Ground-dwelling | 26.831723 | 34.83620 | 30.67728 | 38.73318 |
Pristimantis cantitans | Anura | NT | Ground-dwelling | 26.139692 | 34.73943 | 30.50582 | 38.52862 |
Pristimantis cantitans | Anura | NT | Ground-dwelling | 28.163382 | 35.02241 | 30.86041 | 39.03941 |
Pristimantis capitonis | Anura | EN | Ground-dwelling | 23.825667 | 34.57513 | 30.40487 | 38.44424 |
Pristimantis capitonis | Anura | EN | Ground-dwelling | 22.732519 | 34.42068 | 30.31865 | 38.37570 |
Pristimantis capitonis | Anura | EN | Ground-dwelling | 25.431194 | 34.80197 | 30.66911 | 38.78223 |
Pristimantis caprifer | Anura | CR | Arboreal | 24.837390 | 34.53676 | 30.53870 | 38.91361 |
Pristimantis caprifer | Anura | CR | Arboreal | 23.969348 | 34.41433 | 30.50089 | 38.83895 |
Pristimantis caprifer | Anura | CR | Arboreal | 26.230072 | 34.73320 | 30.73132 | 39.15679 |
Pristimantis carlossanchezi | Anura | EN | Arboreal | 24.007236 | 34.33917 | 30.09767 | 38.25607 |
Pristimantis carlossanchezi | Anura | EN | Arboreal | 23.230464 | 34.23063 | 29.99464 | 38.10443 |
Pristimantis carlossanchezi | Anura | EN | Arboreal | 25.516152 | 34.55002 | 30.63664 | 38.84751 |
Pristimantis carmelitae | Anura | EN | Ground-dwelling | 27.897278 | 35.09879 | 31.23703 | 39.03216 |
Pristimantis carmelitae | Anura | EN | Ground-dwelling | 27.110966 | 34.98765 | 31.17241 | 38.97621 |
Pristimantis carmelitae | Anura | EN | Ground-dwelling | 29.700198 | 35.35362 | 31.52580 | 39.31287 |
Pristimantis carranguerorum | Anura | EN | Ground-dwelling | 22.392831 | 34.34621 | 29.86434 | 38.17373 |
Pristimantis carranguerorum | Anura | EN | Ground-dwelling | 21.447444 | 34.21565 | 29.72707 | 38.01330 |
Pristimantis carranguerorum | Anura | EN | Ground-dwelling | 24.281794 | 34.60707 | 30.05241 | 38.47556 |
Pristimantis lynchi | Anura | LC | Ground-dwelling | 22.086222 | 34.25730 | 30.59396 | 38.67543 |
Pristimantis lynchi | Anura | LC | Ground-dwelling | 21.163068 | 34.12758 | 30.50379 | 38.58059 |
Pristimantis lynchi | Anura | LC | Ground-dwelling | 23.928784 | 34.51620 | 30.80346 | 38.79485 |
Pristimantis caryophyllaceus | Anura | LC | Ground-dwelling | 26.549979 | 34.91624 | 30.93823 | 38.87939 |
Pristimantis caryophyllaceus | Anura | LC | Ground-dwelling | 25.902489 | 34.82659 | 30.73137 | 38.61342 |
Pristimantis caryophyllaceus | Anura | LC | Ground-dwelling | 27.827762 | 35.09317 | 30.83727 | 38.80019 |
Pristimantis celator | Anura | VU | Arboreal | 23.429248 | 34.20941 | 29.80826 | 38.29308 |
Pristimantis celator | Anura | VU | Arboreal | 22.044582 | 34.01340 | 29.59618 | 38.02781 |
Pristimantis celator | Anura | VU | Arboreal | 25.366739 | 34.48368 | 30.02022 | 38.53051 |
Pristimantis cerasinus | Anura | LC | Ground-dwelling | 26.664791 | 34.85186 | 30.77100 | 38.97919 |
Pristimantis cerasinus | Anura | LC | Ground-dwelling | 25.971906 | 34.75340 | 30.70910 | 38.87458 |
Pristimantis cerasinus | Anura | LC | Ground-dwelling | 28.040362 | 35.04734 | 30.95989 | 39.22905 |
Pristimantis ceuthospilus | Anura | VU | Arboreal | 23.477723 | 34.35351 | 30.34824 | 38.42296 |
Pristimantis ceuthospilus | Anura | VU | Arboreal | 22.811870 | 34.25822 | 30.25164 | 38.30838 |
Pristimantis ceuthospilus | Anura | VU | Arboreal | 24.785930 | 34.54075 | 30.48644 | 38.60925 |
Pristimantis chalceus | Anura | LC | Arboreal | 25.016800 | 34.68018 | 30.79160 | 38.83983 |
Pristimantis chalceus | Anura | LC | Arboreal | 24.095836 | 34.54832 | 30.63561 | 38.62126 |
Pristimantis chalceus | Anura | LC | Arboreal | 26.596979 | 34.90644 | 31.21156 | 39.34912 |
Pristimantis charlottevillensis | Anura | VU | Ground-dwelling | 26.614467 | 34.96423 | 30.42481 | 39.00504 |
Pristimantis charlottevillensis | Anura | VU | Ground-dwelling | 26.237296 | 34.91027 | 30.38868 | 38.95127 |
Pristimantis charlottevillensis | Anura | VU | Ground-dwelling | 27.226432 | 35.05179 | 30.60367 | 39.19468 |
Pristimantis chiastonotus | Anura | LC | Ground-dwelling | 27.259062 | 34.98596 | 30.66837 | 39.19917 |
Pristimantis chiastonotus | Anura | LC | Ground-dwelling | 26.673794 | 34.90282 | 30.59385 | 39.06058 |
Pristimantis chiastonotus | Anura | LC | Ground-dwelling | 28.671630 | 35.18664 | 30.78255 | 39.42391 |
Pristimantis chimu | Anura | DD | Arboreal | 24.352695 | 34.43472 | 30.02579 | 38.76580 |
Pristimantis chimu | Anura | DD | Arboreal | 23.754925 | 34.34877 | 29.93031 | 38.58733 |
Pristimantis chimu | Anura | DD | Arboreal | 25.398234 | 34.58506 | 30.11906 | 38.92574 |
Pristimantis chrysops | Anura | CR | Arboreal | 24.417562 | 34.39928 | 30.46564 | 38.53773 |
Pristimantis chrysops | Anura | CR | Arboreal | 23.685573 | 34.29603 | 30.19599 | 38.25416 |
Pristimantis chrysops | Anura | CR | Arboreal | 25.735753 | 34.58523 | 30.66501 | 38.77350 |
Pristimantis citriogaster | Anura | EN | Stream-dwelling | 23.542316 | 33.90918 | 30.08697 | 38.15098 |
Pristimantis citriogaster | Anura | EN | Stream-dwelling | 22.509152 | 33.76522 | 30.02705 | 38.02583 |
Pristimantis citriogaster | Anura | EN | Stream-dwelling | 25.319874 | 34.15685 | 30.17210 | 38.38245 |
Pristimantis malkini | Anura | LC | Ground-dwelling | 27.193479 | 35.07929 | 30.69123 | 38.90050 |
Pristimantis malkini | Anura | LC | Ground-dwelling | 26.443221 | 34.97283 | 30.67651 | 38.84999 |
Pristimantis malkini | Anura | LC | Ground-dwelling | 28.677050 | 35.28980 | 30.95797 | 39.23438 |
Pristimantis colodactylus | Anura | LC | Arboreal | 23.160770 | 34.29037 | 30.24958 | 38.39026 |
Pristimantis colodactylus | Anura | LC | Arboreal | 21.979410 | 34.12374 | 30.16381 | 38.33586 |
Pristimantis colodactylus | Anura | LC | Arboreal | 25.068134 | 34.55940 | 30.42218 | 38.67698 |
Pristimantis colomai | Anura | VU | Arboreal | 23.330496 | 36.22224 | 33.31815 | 39.15309 |
Pristimantis colomai | Anura | VU | Arboreal | 22.323155 | 36.08049 | 33.12070 | 38.88152 |
Pristimantis colomai | Anura | VU | Arboreal | 24.940923 | 36.44886 | 33.45242 | 39.42722 |
Pristimantis colonensis | Anura | VU | Arboreal | 23.981957 | 34.43916 | 30.23747 | 38.50712 |
Pristimantis colonensis | Anura | VU | Arboreal | 23.052156 | 34.30606 | 30.14374 | 38.36504 |
Pristimantis colonensis | Anura | VU | Arboreal | 25.509285 | 34.65778 | 30.47073 | 38.79432 |
Pristimantis colostichos | Anura | EN | Ground-dwelling | 25.445939 | 34.65672 | 30.97358 | 39.26949 |
Pristimantis colostichos | Anura | EN | Ground-dwelling | 24.543351 | 34.52846 | 30.85363 | 39.11096 |
Pristimantis colostichos | Anura | EN | Ground-dwelling | 27.031556 | 34.88204 | 31.03971 | 39.43073 |
Pristimantis condor | Anura | LC | Arboreal | 23.311117 | 34.25034 | 29.94285 | 38.24762 |
Pristimantis condor | Anura | LC | Arboreal | 22.035996 | 34.07334 | 29.85431 | 38.12017 |
Pristimantis condor | Anura | LC | Arboreal | 25.326878 | 34.53014 | 30.31582 | 38.71231 |
Pristimantis paramerus | Anura | EN | Ground-dwelling | 26.263875 | 34.85695 | 30.80219 | 39.16588 |
Pristimantis paramerus | Anura | EN | Ground-dwelling | 25.397043 | 34.73490 | 30.80546 | 39.10780 |
Pristimantis paramerus | Anura | EN | Ground-dwelling | 27.823709 | 35.07659 | 31.13764 | 39.68441 |
Pristimantis cordovae | Anura | EN | Ground-dwelling | 20.556919 | 34.11460 | 29.90124 | 37.98216 |
Pristimantis cordovae | Anura | EN | Ground-dwelling | 19.506305 | 33.96370 | 29.81582 | 37.89221 |
Pristimantis cordovae | Anura | EN | Ground-dwelling | 22.430522 | 34.38372 | 30.21587 | 38.32939 |
Pristimantis corniger | Anura | EN | Ground-dwelling | 24.992331 | 34.60495 | 30.99966 | 39.01850 |
Pristimantis corniger | Anura | EN | Ground-dwelling | 24.247535 | 34.49821 | 30.85362 | 38.85249 |
Pristimantis corniger | Anura | EN | Ground-dwelling | 26.442817 | 34.81282 | 31.24379 | 39.34960 |
Pristimantis coronatus | Anura | DD | Ground-dwelling | 23.179600 | 34.33344 | 30.52303 | 38.65119 |
Pristimantis coronatus | Anura | DD | Ground-dwelling | 22.448026 | 34.22936 | 30.40995 | 38.50791 |
Pristimantis coronatus | Anura | DD | Ground-dwelling | 24.714297 | 34.55178 | 30.74476 | 38.91087 |
Pristimantis corrugatus | Anura | LC | Arboreal | 21.317805 | 34.03494 | 29.91480 | 37.89332 |
Pristimantis corrugatus | Anura | LC | Arboreal | 20.433028 | 33.90803 | 29.76544 | 37.76474 |
Pristimantis corrugatus | Anura | LC | Arboreal | 22.896775 | 34.26142 | 30.19886 | 38.21138 |
Pristimantis cosnipatae | Anura | CR | Arboreal | 15.323045 | 33.11466 | 29.66928 | 37.58529 |
Pristimantis cosnipatae | Anura | CR | Arboreal | 11.264668 | 32.54185 | 28.82278 | 36.79743 |
Pristimantis cosnipatae | Anura | CR | Arboreal | 17.134228 | 33.37030 | 29.82468 | 37.77350 |
Pristimantis cremnobates | Anura | EN | Stream-dwelling | 23.546002 | 33.89001 | 29.82434 | 38.28508 |
Pristimantis cremnobates | Anura | EN | Stream-dwelling | 22.594071 | 33.75068 | 29.62756 | 38.03839 |
Pristimantis cremnobates | Anura | EN | Stream-dwelling | 25.371396 | 34.15718 | 30.14633 | 38.61948 |
Pristimantis labiosus | Anura | LC | Arboreal | 24.249070 | 34.62663 | 31.35458 | 38.01418 |
Pristimantis labiosus | Anura | LC | Arboreal | 23.217829 | 34.47998 | 31.24729 | 37.92246 |
Pristimantis labiosus | Anura | LC | Arboreal | 25.871481 | 34.85734 | 31.37424 | 38.07073 |
Pristimantis cristinae | Anura | EN | Arboreal | 26.777894 | 34.67114 | 30.58692 | 38.91208 |
Pristimantis cristinae | Anura | EN | Arboreal | 25.908244 | 34.54817 | 30.64371 | 38.91564 |
Pristimantis cristinae | Anura | EN | Arboreal | 28.696471 | 34.94244 | 30.74103 | 39.12890 |
Pristimantis croceoinguinis | Anura | LC | Arboreal | 25.903712 | 34.74138 | 30.71841 | 39.18676 |
Pristimantis croceoinguinis | Anura | LC | Arboreal | 24.925246 | 34.60235 | 30.46100 | 38.86824 |
Pristimantis croceoinguinis | Anura | LC | Arboreal | 27.579527 | 34.97949 | 30.94337 | 39.47720 |
Pristimantis crucifer | Anura | NT | Arboreal | 23.941795 | 34.55121 | 30.78043 | 39.28934 |
Pristimantis crucifer | Anura | NT | Arboreal | 22.700272 | 34.37480 | 30.70270 | 39.13514 |
Pristimantis crucifer | Anura | NT | Arboreal | 25.745944 | 34.80756 | 31.20572 | 39.83995 |
Pristimantis cruciocularis | Anura | LC | Ground-dwelling | 21.156071 | 34.14586 | 30.29072 | 38.06187 |
Pristimantis cruciocularis | Anura | LC | Ground-dwelling | 20.506724 | 34.05244 | 30.20756 | 37.98177 |
Pristimantis cruciocularis | Anura | LC | Ground-dwelling | 22.335073 | 34.31547 | 30.42880 | 38.24224 |
Pristimantis cruentus | Anura | LC | Arboreal | 26.705662 | 34.85383 | 30.91546 | 39.08452 |
Pristimantis cruentus | Anura | LC | Arboreal | 26.082475 | 34.76582 | 30.85797 | 38.96091 |
Pristimantis cruentus | Anura | LC | Arboreal | 27.963286 | 35.03144 | 31.10946 | 39.34185 |
Pristimantis cryophilius | Anura | EN | Ground-dwelling | 23.499563 | 34.46851 | 30.34545 | 38.17918 |
Pristimantis cryophilius | Anura | EN | Ground-dwelling | 22.018834 | 34.25973 | 30.12350 | 37.93346 |
Pristimantis cryophilius | Anura | EN | Ground-dwelling | 25.735214 | 34.78373 | 30.63646 | 38.53589 |
Pristimantis cryptomelas | Anura | NT | Ground-dwelling | 22.924202 | 34.41749 | 30.33643 | 38.51673 |
Pristimantis cryptomelas | Anura | NT | Ground-dwelling | 21.737450 | 34.24886 | 30.10999 | 38.25149 |
Pristimantis cryptomelas | Anura | NT | Ground-dwelling | 24.861322 | 34.69275 | 30.62144 | 38.86212 |
Pristimantis cuentasi | Anura | EN | Ground-dwelling | 26.506328 | 34.79041 | 30.92966 | 38.65005 |
Pristimantis cuentasi | Anura | EN | Ground-dwelling | 25.603521 | 34.66178 | 30.77565 | 38.43208 |
Pristimantis cuentasi | Anura | EN | Ground-dwelling | 28.419449 | 35.06297 | 31.06658 | 38.95098 |
Pristimantis cuneirostris | Anura | DD | Arboreal | 24.022160 | 34.40784 | 29.95144 | 38.09359 |
Pristimantis cuneirostris | Anura | DD | Arboreal | 23.320574 | 34.30726 | 29.86603 | 37.97676 |
Pristimantis cuneirostris | Anura | DD | Arboreal | 25.414498 | 34.60744 | 30.01469 | 38.20236 |
Pristimantis gentryi | Anura | EN | Ground-dwelling | 22.853210 | 34.65838 | 31.22732 | 37.49244 |
Pristimantis gentryi | Anura | EN | Ground-dwelling | 20.944706 | 34.38684 | 31.00098 | 37.16865 |
Pristimantis gentryi | Anura | EN | Ground-dwelling | 25.231795 | 34.99679 | 31.93172 | 38.34656 |
Pristimantis truebae | Anura | EN | Arboreal | 22.318862 | 34.42729 | 31.27464 | 37.38557 |
Pristimantis truebae | Anura | EN | Arboreal | 20.406089 | 34.15354 | 31.10444 | 37.12869 |
Pristimantis truebae | Anura | EN | Arboreal | 24.773074 | 34.77852 | 31.66047 | 37.90209 |
Pristimantis degener | Anura | EN | Arboreal | 22.975794 | 34.19357 | 30.05879 | 38.27218 |
Pristimantis degener | Anura | EN | Arboreal | 21.781938 | 34.02195 | 29.89262 | 38.08157 |
Pristimantis degener | Anura | EN | Arboreal | 24.793926 | 34.45494 | 30.44170 | 38.71789 |
Pristimantis deinops | Anura | CR | Arboreal | 24.417562 | 34.45385 | 30.43635 | 38.18589 |
Pristimantis deinops | Anura | CR | Arboreal | 23.685573 | 34.35076 | 30.30567 | 38.02210 |
Pristimantis deinops | Anura | CR | Arboreal | 25.735753 | 34.63950 | 30.51373 | 38.40039 |
Pristimantis delicatus | Anura | EN | Arboreal | 27.897278 | 34.85096 | 30.66110 | 39.23335 |
Pristimantis delicatus | Anura | EN | Arboreal | 27.110966 | 34.74168 | 30.53666 | 39.08333 |
Pristimantis delicatus | Anura | EN | Arboreal | 29.700198 | 35.10153 | 30.82891 | 39.50431 |
Pristimantis delius | Anura | DD | Ground-dwelling | 27.084551 | 34.94307 | 30.63372 | 38.87507 |
Pristimantis delius | Anura | DD | Ground-dwelling | 26.337291 | 34.83778 | 30.52618 | 38.73299 |
Pristimantis delius | Anura | DD | Ground-dwelling | 28.778389 | 35.18173 | 30.89328 | 39.28470 |
Pristimantis dendrobatoides | Anura | LC | Arboreal | 26.764062 | 34.82612 | 30.63974 | 39.08426 |
Pristimantis dendrobatoides | Anura | LC | Arboreal | 26.075433 | 34.72647 | 30.56736 | 38.92857 |
Pristimantis dendrobatoides | Anura | LC | Arboreal | 28.279628 | 35.04542 | 31.12184 | 39.74576 |
Pristimantis devillei | Anura | EN | Arboreal | 21.675664 | 34.00809 | 29.71798 | 37.85831 |
Pristimantis devillei | Anura | EN | Arboreal | 19.896150 | 33.75539 | 29.69793 | 37.84055 |
Pristimantis devillei | Anura | EN | Arboreal | 24.116448 | 34.35468 | 30.18104 | 38.43745 |
Pristimantis surdus | Anura | EN | Ground-dwelling | 20.180939 | 33.95595 | 29.64856 | 38.07109 |
Pristimantis surdus | Anura | EN | Ground-dwelling | 18.072574 | 33.65835 | 29.60069 | 38.00656 |
Pristimantis surdus | Anura | EN | Ground-dwelling | 22.820081 | 34.32847 | 30.07674 | 38.46457 |
Pristimantis diadematus | Anura | LC | Arboreal | 24.658588 | 34.46421 | 30.13112 | 38.54083 |
Pristimantis diadematus | Anura | LC | Arboreal | 23.933778 | 34.35882 | 30.09494 | 38.45817 |
Pristimantis diadematus | Anura | LC | Arboreal | 26.034137 | 34.66423 | 30.18349 | 38.63748 |
Pristimantis diaphonus | Anura | CR | Arboreal | 24.817867 | 34.55225 | 30.61548 | 38.74058 |
Pristimantis diaphonus | Anura | CR | Arboreal | 24.070609 | 34.44402 | 30.47235 | 38.60751 |
Pristimantis diaphonus | Anura | CR | Arboreal | 26.192700 | 34.75138 | 30.75364 | 38.98555 |
Pristimantis diogenes | Anura | CR | Stream-dwelling | 24.215542 | 33.95836 | 30.22941 | 38.50630 |
Pristimantis diogenes | Anura | CR | Stream-dwelling | 23.173833 | 33.81386 | 30.16889 | 38.36871 |
Pristimantis diogenes | Anura | CR | Stream-dwelling | 25.704822 | 34.16493 | 30.31355 | 38.77284 |
Pristimantis dissimulatus | Anura | EN | Arboreal | 19.805326 | 33.72169 | 30.03704 | 37.85507 |
Pristimantis dissimulatus | Anura | EN | Arboreal | 17.198230 | 33.35844 | 29.86713 | 37.64319 |
Pristimantis dissimulatus | Anura | EN | Arboreal | 22.861501 | 34.14751 | 30.27302 | 38.18823 |
Pristimantis divnae | Anura | LC | Arboreal | 19.219198 | 33.63022 | 29.12357 | 37.62433 |
Pristimantis divnae | Anura | LC | Arboreal | 17.951224 | 33.44948 | 28.82625 | 37.30177 |
Pristimantis divnae | Anura | LC | Arboreal | 20.432261 | 33.80313 | 29.25277 | 37.72805 |
Pristimantis dorsopictus | Anura | VU | Arboreal | 21.402784 | 34.02930 | 29.52262 | 37.86993 |
Pristimantis dorsopictus | Anura | VU | Arboreal | 20.374610 | 33.88472 | 29.41288 | 37.73439 |
Pristimantis dorsopictus | Anura | VU | Arboreal | 23.162627 | 34.27676 | 29.98776 | 38.40382 |
Pristimantis duellmani | Anura | VU | Arboreal | 22.978376 | 34.29265 | 30.17062 | 38.75267 |
Pristimantis duellmani | Anura | VU | Arboreal | 21.697908 | 34.11128 | 30.13861 | 38.57921 |
Pristimantis duellmani | Anura | VU | Arboreal | 24.782432 | 34.54819 | 30.44421 | 39.00833 |
Pristimantis quinquagesimus | Anura | VU | Arboreal | 23.327223 | 34.27916 | 29.99428 | 38.23122 |
Pristimantis quinquagesimus | Anura | VU | Arboreal | 21.979423 | 34.09125 | 29.89050 | 38.06930 |
Pristimantis quinquagesimus | Anura | VU | Arboreal | 25.266682 | 34.54954 | 30.06952 | 38.38945 |
Pristimantis duende | Anura | VU | Ground-dwelling | 24.017258 | 34.53880 | 30.52905 | 38.93309 |
Pristimantis duende | Anura | VU | Ground-dwelling | 23.300537 | 34.43700 | 30.43958 | 38.81863 |
Pristimantis duende | Anura | VU | Ground-dwelling | 25.278806 | 34.71799 | 30.70577 | 39.11346 |
Pristimantis dundeei | Anura | DD | Arboreal | 26.291601 | 34.71984 | 30.81744 | 39.23547 |
Pristimantis dundeei | Anura | DD | Arboreal | 25.333427 | 34.58369 | 30.69088 | 39.09758 |
Pristimantis dundeei | Anura | DD | Arboreal | 28.002644 | 34.96299 | 31.03357 | 39.49627 |
Pristimantis epacrus | Anura | LC | Ground-dwelling | 24.992331 | 34.71441 | 30.31216 | 38.84257 |
Pristimantis epacrus | Anura | LC | Ground-dwelling | 24.247535 | 34.60785 | 30.04620 | 38.58968 |
Pristimantis epacrus | Anura | LC | Ground-dwelling | 26.442817 | 34.92193 | 30.63555 | 39.32977 |
Pristimantis eremitus | Anura | VU | Arboreal | 22.593496 | 34.19340 | 29.99762 | 38.26822 |
Pristimantis eremitus | Anura | VU | Arboreal | 21.178511 | 33.99697 | 29.86623 | 38.08192 |
Pristimantis eremitus | Anura | VU | Arboreal | 24.575191 | 34.46850 | 30.27340 | 38.63034 |
Pristimantis eriphus | Anura | VU | Arboreal | 22.707101 | 34.13983 | 29.73813 | 37.82228 |
Pristimantis eriphus | Anura | VU | Arboreal | 21.283172 | 33.93577 | 29.56535 | 37.59398 |
Pristimantis eriphus | Anura | VU | Arboreal | 24.660567 | 34.41977 | 30.00316 | 38.14279 |
Pristimantis ernesti | Anura | VU | Arboreal | 23.546002 | 34.32353 | 30.37309 | 38.93570 |
Pristimantis ernesti | Anura | VU | Arboreal | 22.594071 | 34.18757 | 30.35013 | 38.83952 |
Pristimantis ernesti | Anura | VU | Arboreal | 25.371396 | 34.58423 | 30.44757 | 39.08883 |
Pristimantis erythropleura | Anura | LC | Arboreal | 24.101908 | 34.33858 | 30.33446 | 38.76529 |
Pristimantis erythropleura | Anura | LC | Arboreal | 23.243963 | 34.21826 | 30.25613 | 38.67724 |
Pristimantis erythropleura | Anura | LC | Arboreal | 25.565703 | 34.54386 | 30.46223 | 38.98982 |
Pristimantis esmeraldas | Anura | LC | Arboreal | 24.558423 | 34.47032 | 30.39158 | 38.73642 |
Pristimantis esmeraldas | Anura | LC | Arboreal | 23.728848 | 34.35316 | 30.25532 | 38.52815 |
Pristimantis esmeraldas | Anura | LC | Arboreal | 26.063523 | 34.68289 | 30.36073 | 38.74373 |
Pristimantis eugeniae | Anura | EN | Arboreal | 22.208003 | 34.14132 | 30.37258 | 38.67770 |
Pristimantis eugeniae | Anura | EN | Arboreal | 20.442740 | 33.89286 | 30.07107 | 38.37765 |
Pristimantis eugeniae | Anura | EN | Arboreal | 24.557603 | 34.47201 | 30.42804 | 38.81783 |
Pristimantis euphronides | Anura | CR | Ground-dwelling | 27.806278 | 35.06838 | 30.91966 | 38.93495 |
Pristimantis euphronides | Anura | CR | Ground-dwelling | 27.273428 | 34.99242 | 30.89072 | 38.84137 |
Pristimantis euphronides | Anura | CR | Ground-dwelling | 28.700806 | 35.19591 | 31.14125 | 39.26192 |
Pristimantis shrevei | Anura | EN | Arboreal | 27.060737 | 34.79600 | 31.02472 | 38.99836 |
Pristimantis shrevei | Anura | EN | Arboreal | 26.593129 | 34.73109 | 30.95526 | 38.89382 |
Pristimantis shrevei | Anura | EN | Arboreal | 27.836829 | 34.90373 | 30.78953 | 38.79922 |
Pristimantis eurydactylus | Anura | LC | Arboreal | 27.790950 | 34.82055 | 30.18437 | 38.92391 |
Pristimantis eurydactylus | Anura | LC | Arboreal | 27.037190 | 34.71408 | 30.32470 | 38.99180 |
Pristimantis eurydactylus | Anura | LC | Arboreal | 29.290254 | 35.03232 | 30.39746 | 39.24554 |
Pristimantis exoristus | Anura | DD | Arboreal | 24.759402 | 34.57099 | 30.02621 | 38.72818 |
Pristimantis exoristus | Anura | DD | Arboreal | 23.927890 | 34.45485 | 29.94189 | 38.57063 |
Pristimantis exoristus | Anura | DD | Arboreal | 26.418105 | 34.80265 | 30.80904 | 39.71625 |
Pristimantis factiosus | Anura | LC | Arboreal | 23.499493 | 34.35775 | 30.55439 | 38.63888 |
Pristimantis factiosus | Anura | LC | Arboreal | 22.573781 | 34.22652 | 30.46185 | 38.50498 |
Pristimantis factiosus | Anura | LC | Arboreal | 25.034323 | 34.57534 | 30.63315 | 38.75044 |
Pristimantis fasciatus | Anura | VU | Arboreal | 26.874786 | 34.91974 | 30.36203 | 38.61797 |
Pristimantis fasciatus | Anura | VU | Arboreal | 26.081905 | 34.80735 | 30.32350 | 38.52150 |
Pristimantis fasciatus | Anura | VU | Arboreal | 28.455309 | 35.14377 | 30.66188 | 39.04089 |
Pristimantis fetosus | Anura | NT | Arboreal | 22.792552 | 34.20344 | 29.91596 | 37.93229 |
Pristimantis fetosus | Anura | NT | Arboreal | 22.040989 | 34.09715 | 30.23514 | 38.22702 |
Pristimantis fetosus | Anura | NT | Arboreal | 24.304586 | 34.41727 | 30.09357 | 38.15210 |
Pristimantis floridus | Anura | DD | Arboreal | 19.805326 | 33.79348 | 29.51323 | 38.18479 |
Pristimantis floridus | Anura | DD | Arboreal | 17.198230 | 33.42267 | 28.93203 | 37.51143 |
Pristimantis floridus | Anura | DD | Arboreal | 22.861501 | 34.22816 | 29.85918 | 38.58832 |
Pristimantis gaigei | Anura | LC | Ground-dwelling | 25.394368 | 34.66556 | 30.52847 | 39.26911 |
Pristimantis gaigei | Anura | LC | Ground-dwelling | 24.663104 | 34.56345 | 30.54406 | 39.24676 |
Pristimantis gaigei | Anura | LC | Ground-dwelling | 26.815339 | 34.86396 | 30.70632 | 39.48102 |
Pristimantis galdi | Anura | LC | Arboreal | 23.395974 | 34.22049 | 30.15007 | 38.58488 |
Pristimantis galdi | Anura | LC | Arboreal | 22.230687 | 34.05488 | 29.93742 | 38.38712 |
Pristimantis galdi | Anura | LC | Arboreal | 25.281915 | 34.48854 | 30.21879 | 38.72546 |
Pristimantis ganonotus | Anura | DD | Arboreal | 20.170576 | 33.90072 | 29.81744 | 38.00724 |
Pristimantis ganonotus | Anura | DD | Arboreal | 17.839286 | 33.57075 | 29.37380 | 37.47385 |
Pristimantis ganonotus | Anura | DD | Arboreal | 22.976096 | 34.29781 | 30.14955 | 38.39102 |
Pristimantis gladiator | Anura | VU | Fossorial | 22.707101 | 35.28857 | 31.14667 | 39.34304 |
Pristimantis gladiator | Anura | VU | Fossorial | 21.283172 | 35.08816 | 30.94202 | 39.11619 |
Pristimantis gladiator | Anura | VU | Fossorial | 24.660567 | 35.56352 | 31.37813 | 39.67636 |
Pristimantis glandulosus | Anura | EN | Ground-dwelling | 21.675664 | 34.22963 | 30.05153 | 38.64058 |
Pristimantis glandulosus | Anura | EN | Ground-dwelling | 19.896150 | 33.97504 | 29.86992 | 38.40622 |
Pristimantis glandulosus | Anura | EN | Ground-dwelling | 24.116448 | 34.57882 | 30.03369 | 38.76233 |
Pristimantis inusitatus | Anura | EN | Arboreal | 21.675664 | 34.06472 | 30.02657 | 38.47563 |
Pristimantis inusitatus | Anura | EN | Arboreal | 19.896150 | 33.81140 | 29.74759 | 38.12429 |
Pristimantis inusitatus | Anura | EN | Arboreal | 24.116448 | 34.41218 | 30.07990 | 38.55580 |
Pristimantis gracilis | Anura | VU | Arboreal | 23.362438 | 34.22071 | 30.13481 | 38.71851 |
Pristimantis gracilis | Anura | VU | Arboreal | 22.562962 | 34.11167 | 30.03784 | 38.61930 |
Pristimantis gracilis | Anura | VU | Arboreal | 24.839549 | 34.42216 | 30.27606 | 38.87394 |
Pristimantis grandiceps | Anura | EN | Arboreal | 22.245615 | 34.12516 | 30.21490 | 38.38860 |
Pristimantis grandiceps | Anura | EN | Arboreal | 21.369508 | 34.00153 | 30.08404 | 38.19364 |
Pristimantis grandiceps | Anura | EN | Arboreal | 24.109886 | 34.38822 | 30.45761 | 38.75350 |
Pristimantis gutturalis | Anura | LC | Arboreal | 27.297582 | 34.95189 | 30.81037 | 39.41616 |
Pristimantis gutturalis | Anura | LC | Arboreal | 26.739014 | 34.87176 | 30.77689 | 39.38047 |
Pristimantis gutturalis | Anura | LC | Arboreal | 28.687231 | 35.15123 | 30.74818 | 39.50496 |
Pristimantis hectus | Anura | VU | Ground-dwelling | 22.641490 | 34.27891 | 30.49128 | 38.28389 |
Pristimantis hectus | Anura | VU | Ground-dwelling | 21.221695 | 34.07570 | 30.20967 | 37.99891 |
Pristimantis hectus | Anura | VU | Ground-dwelling | 24.594090 | 34.55839 | 30.69390 | 38.51735 |
Pristimantis helvolus | Anura | EN | Arboreal | 23.499493 | 34.31299 | 30.11922 | 38.13106 |
Pristimantis helvolus | Anura | EN | Arboreal | 22.573781 | 34.18050 | 29.91654 | 37.91355 |
Pristimantis helvolus | Anura | EN | Arboreal | 25.034323 | 34.53267 | 30.56784 | 38.59505 |
Pristimantis hernandezi | Anura | EN | Arboreal | 24.224885 | 34.37130 | 30.14533 | 38.26031 |
Pristimantis hernandezi | Anura | EN | Arboreal | 23.177962 | 34.22136 | 29.96563 | 38.06015 |
Pristimantis hernandezi | Anura | EN | Arboreal | 25.848876 | 34.60389 | 30.37244 | 38.47317 |
Pristimantis huicundo | Anura | EN | Arboreal | 22.405728 | 34.21767 | 30.04419 | 38.18590 |
Pristimantis huicundo | Anura | EN | Arboreal | 21.240835 | 34.05102 | 29.95754 | 38.00345 |
Pristimantis huicundo | Anura | EN | Arboreal | 24.132230 | 34.46467 | 30.42158 | 38.65322 |
Pristimantis hybotragus | Anura | EN | Arboreal | 24.817867 | 34.46550 | 30.23461 | 38.75253 |
Pristimantis hybotragus | Anura | EN | Arboreal | 24.070609 | 34.36020 | 30.17678 | 38.68384 |
Pristimantis hybotragus | Anura | EN | Arboreal | 26.192700 | 34.65924 | 30.26817 | 38.83462 |
Pristimantis ignicolor | Anura | EN | Arboreal | 21.798297 | 34.05835 | 30.14813 | 37.83575 |
Pristimantis ignicolor | Anura | EN | Arboreal | 20.205317 | 33.83183 | 29.90181 | 37.64540 |
Pristimantis ignicolor | Anura | EN | Arboreal | 23.999839 | 34.37141 | 30.45416 | 38.16938 |
Pristimantis illotus | Anura | NT | Arboreal | 22.003303 | 34.11638 | 29.83349 | 38.27944 |
Pristimantis illotus | Anura | NT | Arboreal | 20.402547 | 33.89006 | 29.85719 | 38.17222 |
Pristimantis illotus | Anura | NT | Arboreal | 24.125637 | 34.41645 | 30.02513 | 38.58335 |
Pristimantis imitatrix | Anura | LC | Ground-dwelling | 22.352696 | 34.36771 | 30.42426 | 38.52424 |
Pristimantis imitatrix | Anura | LC | Ground-dwelling | 21.676980 | 34.27111 | 30.27428 | 38.34884 |
Pristimantis imitatrix | Anura | LC | Ground-dwelling | 23.552463 | 34.53924 | 30.62351 | 38.81150 |
Pristimantis incanus | Anura | EN | Arboreal | 21.798297 | 34.21731 | 30.26479 | 38.58754 |
Pristimantis incanus | Anura | EN | Arboreal | 20.205317 | 33.98992 | 29.91032 | 38.16331 |
Pristimantis incanus | Anura | EN | Arboreal | 23.999839 | 34.53158 | 30.55823 | 38.88202 |
Pristimantis infraguttatus | Anura | DD | Arboreal | 20.305860 | 33.78348 | 29.58874 | 37.55852 |
Pristimantis infraguttatus | Anura | DD | Arboreal | 19.198666 | 33.62499 | 29.42144 | 37.36552 |
Pristimantis infraguttatus | Anura | DD | Arboreal | 22.523955 | 34.10099 | 29.80112 | 37.96796 |
Pristimantis inguinalis | Anura | LC | Arboreal | 27.256605 | 34.87407 | 31.11188 | 38.73713 |
Pristimantis inguinalis | Anura | LC | Arboreal | 26.631380 | 34.78473 | 30.96598 | 38.56298 |
Pristimantis inguinalis | Anura | LC | Arboreal | 28.787866 | 35.09288 | 31.18710 | 38.88030 |
Pristimantis insignitus | Anura | NT | Ground-dwelling | 26.777894 | 34.97479 | 30.58203 | 39.18620 |
Pristimantis insignitus | Anura | NT | Ground-dwelling | 25.908244 | 34.84990 | 30.48503 | 39.01155 |
Pristimantis insignitus | Anura | NT | Ground-dwelling | 28.696471 | 35.25031 | 30.98700 | 39.58877 |
Pristimantis ixalus | Anura | DD | Stream-dwelling | 24.390020 | 33.95596 | 30.00061 | 38.18810 |
Pristimantis ixalus | Anura | DD | Stream-dwelling | 23.746759 | 33.86471 | 29.98475 | 38.10527 |
Pristimantis ixalus | Anura | DD | Stream-dwelling | 25.828703 | 34.16006 | 30.11084 | 38.38716 |
Pristimantis jaimei | Anura | CR | Arboreal | 24.215542 | 34.40254 | 30.01734 | 38.28253 |
Pristimantis jaimei | Anura | CR | Arboreal | 23.173833 | 34.25636 | 30.20812 | 38.41570 |
Pristimantis jaimei | Anura | CR | Arboreal | 25.704822 | 34.61153 | 30.28496 | 38.56224 |
Pristimantis johannesdei | Anura | VU | Arboreal | 25.173220 | 34.56824 | 30.67679 | 38.74325 |
Pristimantis johannesdei | Anura | VU | Arboreal | 24.471974 | 34.46969 | 30.54542 | 38.58730 |
Pristimantis johannesdei | Anura | VU | Arboreal | 26.551608 | 34.76197 | 30.89280 | 38.96830 |
Pristimantis jorgevelosai | Anura | EN | Stream-dwelling | 23.392915 | 33.76127 | 29.22664 | 37.64903 |
Pristimantis jorgevelosai | Anura | EN | Stream-dwelling | 22.591262 | 33.64664 | 29.16454 | 37.55668 |
Pristimantis jorgevelosai | Anura | EN | Stream-dwelling | 24.955324 | 33.98467 | 29.28002 | 37.89056 |
Pristimantis juanchoi | Anura | VU | Arboreal | 24.339054 | 34.50561 | 30.36225 | 38.56226 |
Pristimantis juanchoi | Anura | VU | Arboreal | 23.604569 | 34.40238 | 30.28635 | 38.48130 |
Pristimantis juanchoi | Anura | VU | Arboreal | 25.715244 | 34.69904 | 30.56310 | 38.81513 |
Pristimantis palmeri | Anura | LC | Arboreal | 23.871472 | 34.49804 | 30.24320 | 38.56375 |
Pristimantis palmeri | Anura | LC | Arboreal | 23.018590 | 34.37627 | 30.05293 | 38.37042 |
Pristimantis palmeri | Anura | LC | Arboreal | 25.352109 | 34.70945 | 30.36715 | 38.75533 |
Pristimantis jubatus | Anura | NT | Arboreal | 24.215542 | 34.41559 | 30.18316 | 38.43995 |
Pristimantis jubatus | Anura | NT | Arboreal | 23.173833 | 34.26925 | 30.07200 | 38.26829 |
Pristimantis jubatus | Anura | NT | Arboreal | 25.704822 | 34.62482 | 30.50744 | 38.84031 |
Pristimantis kareliae | Anura | CR | Stream-dwelling | 26.717248 | 34.41659 | 29.73441 | 38.30250 |
Pristimantis kareliae | Anura | CR | Stream-dwelling | 25.882292 | 34.29802 | 29.64775 | 38.18644 |
Pristimantis kareliae | Anura | CR | Stream-dwelling | 28.269649 | 34.63704 | 29.94330 | 38.56744 |
Pristimantis katoptroides | Anura | LC | Arboreal | 23.629382 | 34.30013 | 29.90080 | 37.78276 |
Pristimantis katoptroides | Anura | LC | Arboreal | 22.527274 | 34.14567 | 29.83932 | 37.65788 |
Pristimantis katoptroides | Anura | LC | Arboreal | 25.493829 | 34.56142 | 30.22798 | 38.22190 |
Pristimantis lacrimosus | Anura | LC | Arboreal | 24.378238 | 34.43923 | 30.17703 | 38.47181 |
Pristimantis lacrimosus | Anura | LC | Arboreal | 23.614721 | 34.33230 | 30.42156 | 38.66995 |
Pristimantis lacrimosus | Anura | LC | Arboreal | 25.761182 | 34.63291 | 30.54859 | 38.96316 |
Pristimantis lanthanites | Anura | LC | Ground-dwelling | 26.969595 | 34.96613 | 30.95582 | 39.23602 |
Pristimantis lanthanites | Anura | LC | Ground-dwelling | 26.197368 | 34.85701 | 30.85862 | 39.14097 |
Pristimantis lanthanites | Anura | LC | Ground-dwelling | 28.488592 | 35.18077 | 31.11608 | 39.49358 |
Pristimantis thectopternus | Anura | LC | Arboreal | 23.713568 | 34.25395 | 29.87877 | 38.05355 |
Pristimantis thectopternus | Anura | LC | Arboreal | 22.821458 | 34.13016 | 29.79648 | 37.93797 |
Pristimantis thectopternus | Anura | LC | Arboreal | 25.223076 | 34.46342 | 30.08101 | 38.38248 |
Pristimantis lasalleorum | Anura | EN | Arboreal | 26.219010 | 34.69388 | 30.37897 | 38.68337 |
Pristimantis lasalleorum | Anura | EN | Arboreal | 25.544335 | 34.59860 | 30.20911 | 38.48558 |
Pristimantis lasalleorum | Anura | EN | Arboreal | 27.553766 | 34.88239 | 30.76053 | 39.12012 |
Pristimantis lemur | Anura | VU | Arboreal | 24.201905 | 34.39798 | 30.17090 | 38.47465 |
Pristimantis lemur | Anura | VU | Arboreal | 23.314010 | 34.27133 | 30.05920 | 38.31959 |
Pristimantis lemur | Anura | VU | Arboreal | 25.710667 | 34.61319 | 30.28777 | 38.68171 |
Pristimantis leoni | Anura | LC | Ground-dwelling | 22.787610 | 34.38901 | 30.28553 | 38.14513 |
Pristimantis leoni | Anura | LC | Ground-dwelling | 21.468643 | 34.20302 | 30.17759 | 37.90183 |
Pristimantis leoni | Anura | LC | Ground-dwelling | 24.635865 | 34.64962 | 30.75404 | 38.77271 |
Pristimantis leptolophus | Anura | LC | Arboreal | 24.323068 | 34.43485 | 30.64424 | 38.94779 |
Pristimantis leptolophus | Anura | LC | Arboreal | 23.430470 | 34.30854 | 30.47132 | 38.70508 |
Pristimantis leptolophus | Anura | LC | Arboreal | 25.823682 | 34.64720 | 30.90081 | 39.20537 |
Pristimantis leucopus | Anura | EN | Arboreal | 22.794783 | 34.18840 | 30.15375 | 38.03272 |
Pristimantis leucopus | Anura | EN | Arboreal | 21.708861 | 34.03373 | 30.06243 | 37.87283 |
Pristimantis leucopus | Anura | EN | Arboreal | 24.569008 | 34.44111 | 30.41000 | 38.35005 |
Pristimantis librarius | Anura | DD | Arboreal | 25.523923 | 33.17402 | 30.07424 | 36.32876 |
Pristimantis librarius | Anura | DD | Arboreal | 24.751857 | 33.06365 | 29.80189 | 36.00755 |
Pristimantis librarius | Anura | DD | Arboreal | 27.000038 | 33.38503 | 30.14419 | 36.48974 |
Pristimantis lichenoides | Anura | CR | Stream-dwelling | 22.792552 | 33.79203 | 29.50414 | 37.60682 |
Pristimantis lichenoides | Anura | CR | Stream-dwelling | 22.040989 | 33.68558 | 29.40519 | 37.50311 |
Pristimantis lichenoides | Anura | CR | Stream-dwelling | 24.304586 | 34.00618 | 29.65485 | 37.87053 |
Pristimantis lirellus | Anura | LC | Arboreal | 23.399738 | 34.11624 | 29.90202 | 37.77600 |
Pristimantis lirellus | Anura | LC | Arboreal | 22.607124 | 34.00575 | 29.72119 | 37.56200 |
Pristimantis lirellus | Anura | LC | Arboreal | 24.945947 | 34.33178 | 29.95795 | 37.83555 |
Pristimantis lividus | Anura | EN | Arboreal | 21.675664 | 34.00469 | 29.74648 | 38.14668 |
Pristimantis lividus | Anura | EN | Arboreal | 19.896150 | 33.75182 | 29.66336 | 37.91739 |
Pristimantis lividus | Anura | EN | Arboreal | 24.116448 | 34.35154 | 30.33406 | 38.80582 |
Pristimantis llojsintuta | Anura | LC | Arboreal | 19.341542 | 33.76567 | 29.67659 | 37.68391 |
Pristimantis llojsintuta | Anura | LC | Arboreal | 18.452185 | 33.64158 | 29.56188 | 37.56449 |
Pristimantis llojsintuta | Anura | LC | Arboreal | 20.718589 | 33.95780 | 30.07999 | 38.09435 |
Pristimantis loustes | Anura | EN | Ground-dwelling | 22.975794 | 34.29771 | 30.56054 | 38.79252 |
Pristimantis loustes | Anura | EN | Ground-dwelling | 21.781938 | 34.12837 | 30.41373 | 38.55893 |
Pristimantis loustes | Anura | EN | Ground-dwelling | 24.793926 | 34.55561 | 30.06687 | 38.42087 |
Pristimantis lucasi | Anura | LC | Arboreal | 21.012652 | 33.95856 | 29.58838 | 37.79694 |
Pristimantis lucasi | Anura | LC | Arboreal | 20.177954 | 33.83905 | 29.54191 | 37.68978 |
Pristimantis lucasi | Anura | LC | Arboreal | 22.689323 | 34.19861 | 29.51741 | 37.80226 |
Pristimantis luscombei | Anura | DD | Arboreal | 25.983830 | 34.71780 | 30.49420 | 38.93520 |
Pristimantis luscombei | Anura | DD | Arboreal | 25.209779 | 34.60693 | 30.39943 | 38.80239 |
Pristimantis luscombei | Anura | DD | Arboreal | 27.644080 | 34.95561 | 30.65822 | 39.13671 |
Pristimantis luteolateralis | Anura | NT | Arboreal | 19.805326 | 33.71637 | 29.89308 | 37.98965 |
Pristimantis luteolateralis | Anura | NT | Arboreal | 17.198230 | 33.35113 | 29.48824 | 37.61021 |
Pristimantis luteolateralis | Anura | NT | Arboreal | 22.861501 | 34.14451 | 30.29339 | 38.45051 |
Pristimantis walkeri | Anura | LC | Arboreal | 23.846814 | 34.43980 | 30.11763 | 38.17975 |
Pristimantis walkeri | Anura | LC | Arboreal | 22.589124 | 34.26125 | 30.01249 | 38.05636 |
Pristimantis walkeri | Anura | LC | Arboreal | 25.801638 | 34.71731 | 30.45197 | 38.64884 |
Pristimantis lythrodes | Anura | LC | Arboreal | 29.056341 | 35.15810 | 31.12225 | 39.85280 |
Pristimantis lythrodes | Anura | LC | Arboreal | 28.242148 | 35.04343 | 31.02076 | 39.70684 |
Pristimantis lythrodes | Anura | LC | Arboreal | 30.566952 | 35.37084 | 31.10800 | 39.98450 |
Pristimantis maculosus | Anura | VU | Arboreal | 21.402784 | 34.00536 | 30.28398 | 38.24959 |
Pristimantis maculosus | Anura | VU | Arboreal | 20.374610 | 33.85536 | 29.87277 | 37.78789 |
Pristimantis maculosus | Anura | VU | Arboreal | 23.162627 | 34.26211 | 30.25789 | 38.28235 |
Pristimantis marahuaka | Anura | NT | Ground-dwelling | 25.661020 | 34.70967 | 30.40182 | 38.78630 |
Pristimantis marahuaka | Anura | NT | Ground-dwelling | 25.001401 | 34.61688 | 30.52911 | 38.88923 |
Pristimantis marahuaka | Anura | NT | Ground-dwelling | 27.238038 | 34.93152 | 31.03008 | 39.47523 |
Pristimantis marmoratus | Anura | LC | Ground-dwelling | 27.096911 | 35.02846 | 30.80157 | 39.03172 |
Pristimantis marmoratus | Anura | LC | Ground-dwelling | 26.452339 | 34.93622 | 30.72752 | 38.90263 |
Pristimantis marmoratus | Anura | LC | Ground-dwelling | 28.551607 | 35.23663 | 30.90434 | 39.33680 |
Pristimantis pulvinatus | Anura | LC | Arboreal | 26.410663 | 34.71559 | 30.40636 | 38.60629 |
Pristimantis pulvinatus | Anura | LC | Arboreal | 25.687349 | 34.61373 | 30.34872 | 38.48004 |
Pristimantis pulvinatus | Anura | LC | Arboreal | 27.995839 | 34.93883 | 30.65978 | 38.90436 |
Pristimantis mars | Anura | CR | Ground-dwelling | 22.792552 | 34.35028 | 30.58951 | 38.51825 |
Pristimantis mars | Anura | CR | Ground-dwelling | 22.040989 | 34.24426 | 30.50511 | 38.37954 |
Pristimantis mars | Anura | CR | Ground-dwelling | 24.304586 | 34.56358 | 30.77154 | 38.72890 |
Pristimantis martiae | Anura | LC | Ground-dwelling | 27.079886 | 35.00923 | 30.60067 | 38.92633 |
Pristimantis martiae | Anura | LC | Ground-dwelling | 26.319647 | 34.90065 | 30.53706 | 38.84605 |
Pristimantis martiae | Anura | LC | Ground-dwelling | 28.576106 | 35.22291 | 30.80785 | 39.18660 |
Pristimantis megalops | Anura | NT | Ground-dwelling | 26.777894 | 35.01758 | 31.04322 | 39.20561 |
Pristimantis megalops | Anura | NT | Ground-dwelling | 25.908244 | 34.89641 | 30.80071 | 38.96705 |
Pristimantis megalops | Anura | NT | Ground-dwelling | 28.696471 | 35.28490 | 31.21659 | 39.50817 |
Pristimantis melanogaster | Anura | NT | Ground-dwelling | 21.823777 | 34.19601 | 29.92099 | 38.06761 |
Pristimantis melanogaster | Anura | NT | Ground-dwelling | 21.050210 | 34.08679 | 29.85851 | 37.97619 |
Pristimantis melanogaster | Anura | NT | Ground-dwelling | 23.083185 | 34.37383 | 30.07287 | 38.23802 |
Pristimantis melanoproctus | Anura | DD | Arboreal | 22.264420 | 34.01511 | 30.11169 | 38.05963 |
Pristimantis melanoproctus | Anura | DD | Arboreal | 21.177532 | 33.86264 | 30.18917 | 38.07208 |
Pristimantis melanoproctus | Anura | DD | Arboreal | 23.874959 | 34.24102 | 30.23343 | 38.31770 |
Pristimantis memorans | Anura | DD | Stream-dwelling | 27.072310 | 34.43769 | 30.04968 | 38.50540 |
Pristimantis memorans | Anura | DD | Stream-dwelling | 26.418052 | 34.34433 | 29.90796 | 38.36759 |
Pristimantis memorans | Anura | DD | Stream-dwelling | 28.545199 | 34.64787 | 30.62433 | 39.10448 |
Pristimantis mendax | Anura | LC | Arboreal | 20.823230 | 33.89557 | 29.97401 | 37.75649 |
Pristimantis mendax | Anura | LC | Arboreal | 19.811205 | 33.75386 | 29.87560 | 37.63549 |
Pristimantis mendax | Anura | LC | Arboreal | 22.117339 | 34.07678 | 30.08526 | 37.94575 |
Pristimantis meridionalis | Anura | DD | Arboreal | 20.146531 | 33.85363 | 29.31276 | 37.55741 |
Pristimantis meridionalis | Anura | DD | Arboreal | 19.060773 | 33.69835 | 29.35416 | 37.56005 |
Pristimantis meridionalis | Anura | DD | Arboreal | 22.671692 | 34.21476 | 29.73088 | 38.00830 |
Pristimantis metabates | Anura | EN | Stream-dwelling | 24.792391 | 34.02026 | 29.82498 | 38.02691 |
Pristimantis metabates | Anura | EN | Stream-dwelling | 23.913808 | 33.89581 | 29.72244 | 37.87073 |
Pristimantis metabates | Anura | EN | Stream-dwelling | 26.487618 | 34.26040 | 30.03705 | 38.32825 |
Pristimantis minutulus | Anura | DD | Arboreal | 21.815670 | 33.96563 | 29.96380 | 38.40391 |
Pristimantis minutulus | Anura | DD | Arboreal | 21.068264 | 33.86132 | 29.70985 | 38.13467 |
Pristimantis minutulus | Anura | DD | Arboreal | 23.293997 | 34.17195 | 30.11788 | 38.57611 |
Pristimantis miyatai | Anura | LC | Arboreal | 23.030730 | 34.26630 | 30.34709 | 38.12828 |
Pristimantis miyatai | Anura | LC | Arboreal | 22.170912 | 34.14363 | 30.27427 | 37.99184 |
Pristimantis miyatai | Anura | LC | Arboreal | 24.734881 | 34.50944 | 30.47201 | 38.32211 |
Pristimantis mnionaetes | Anura | EN | Arboreal | 22.354356 | 34.15826 | 29.78016 | 38.35699 |
Pristimantis mnionaetes | Anura | EN | Arboreal | 21.407774 | 34.02411 | 29.45970 | 37.98853 |
Pristimantis mnionaetes | Anura | EN | Arboreal | 24.256757 | 34.42788 | 30.08674 | 38.66231 |
Pristimantis modipeplus | Anura | EN | Arboreal | 22.287150 | 34.10752 | 29.36024 | 37.83369 |
Pristimantis modipeplus | Anura | EN | Arboreal | 20.278491 | 33.82755 | 29.44102 | 37.87843 |
Pristimantis modipeplus | Anura | EN | Arboreal | 24.609385 | 34.43119 | 29.63574 | 38.15002 |
Pristimantis molybrignus | Anura | CR | Arboreal | 24.297884 | 34.35213 | 29.89269 | 38.67722 |
Pristimantis molybrignus | Anura | CR | Arboreal | 23.460990 | 34.23415 | 29.43078 | 38.15926 |
Pristimantis molybrignus | Anura | CR | Arboreal | 25.711770 | 34.55145 | 29.72849 | 38.59122 |
Pristimantis mondolfii | Anura | DD | Arboreal | 22.264420 | 34.12442 | 30.25732 | 38.26142 |
Pristimantis mondolfii | Anura | DD | Arboreal | 21.177532 | 33.97111 | 30.15244 | 38.12933 |
Pristimantis mondolfii | Anura | DD | Arboreal | 23.874959 | 34.35160 | 30.40329 | 38.42560 |
Pristimantis moro | Anura | LC | Arboreal | 27.062872 | 34.83492 | 30.23782 | 38.81192 |
Pristimantis moro | Anura | LC | Arboreal | 26.440747 | 34.74772 | 30.16011 | 38.76204 |
Pristimantis moro | Anura | LC | Arboreal | 28.348893 | 35.01517 | 30.40466 | 39.03681 |
Pristimantis muricatus | Anura | VU | Arboreal | 22.986312 | 34.25910 | 29.94075 | 38.51377 |
Pristimantis muricatus | Anura | VU | Arboreal | 21.456474 | 34.04212 | 29.80784 | 38.30123 |
Pristimantis muricatus | Anura | VU | Arboreal | 25.131200 | 34.56333 | 30.17235 | 38.83746 |
Pristimantis muscosus | Anura | NT | Stream-dwelling | 23.364958 | 33.73276 | 29.68443 | 38.14413 |
Pristimantis muscosus | Anura | NT | Stream-dwelling | 22.463387 | 33.60711 | 29.58083 | 38.04225 |
Pristimantis muscosus | Anura | NT | Stream-dwelling | 25.167216 | 33.98395 | 30.01469 | 38.43028 |
Pristimantis museosus | Anura | VU | Arboreal | 27.143689 | 34.72569 | 31.06784 | 39.38228 |
Pristimantis museosus | Anura | VU | Arboreal | 26.535016 | 34.63900 | 31.06636 | 39.32955 |
Pristimantis museosus | Anura | VU | Arboreal | 28.322437 | 34.89358 | 30.67669 | 39.05288 |
Pristimantis myersi | Anura | LC | Ground-dwelling | 23.798011 | 34.48409 | 30.39714 | 38.54595 |
Pristimantis myersi | Anura | LC | Ground-dwelling | 22.733007 | 34.33290 | 30.19236 | 38.30753 |
Pristimantis myersi | Anura | LC | Ground-dwelling | 25.341396 | 34.70320 | 30.49551 | 38.63447 |
Pristimantis myops | Anura | EN | Arboreal | 24.017258 | 34.53886 | 30.49338 | 39.05449 |
Pristimantis myops | Anura | EN | Arboreal | 23.300537 | 34.43595 | 30.47623 | 39.00008 |
Pristimantis myops | Anura | EN | Arboreal | 25.278806 | 34.72000 | 30.54932 | 39.07108 |
Pristimantis nephophilus | Anura | NT | Arboreal | 23.362375 | 34.28690 | 30.39357 | 38.15635 |
Pristimantis nephophilus | Anura | NT | Arboreal | 22.583969 | 34.17750 | 30.21266 | 37.97341 |
Pristimantis nephophilus | Anura | NT | Arboreal | 24.955619 | 34.51082 | 30.65524 | 38.50250 |
Pristimantis nicefori | Anura | LC | Arboreal | 22.807291 | 34.19088 | 29.78846 | 37.88073 |
Pristimantis nicefori | Anura | LC | Arboreal | 21.891493 | 34.06087 | 29.69954 | 37.81675 |
Pristimantis nicefori | Anura | LC | Arboreal | 24.423414 | 34.42030 | 30.07327 | 38.18593 |
Pristimantis nigrogriseus | Anura | VU | Stream-dwelling | 22.516485 | 33.72669 | 30.19352 | 37.99039 |
Pristimantis nigrogriseus | Anura | VU | Stream-dwelling | 21.000347 | 33.51365 | 29.99758 | 37.75057 |
Pristimantis nigrogriseus | Anura | VU | Stream-dwelling | 24.655648 | 34.02728 | 30.05475 | 37.84115 |
Pristimantis nyctophylax | Anura | VU | Arboreal | 23.033729 | 34.28777 | 30.58966 | 38.52380 |
Pristimantis nyctophylax | Anura | VU | Arboreal | 21.190651 | 34.02465 | 30.20305 | 37.97147 |
Pristimantis nyctophylax | Anura | VU | Arboreal | 25.447074 | 34.63230 | 30.57457 | 38.62702 |
Pristimantis subsigillatus | Anura | LC | Arboreal | 24.854980 | 34.51773 | 30.46238 | 38.32608 |
Pristimantis subsigillatus | Anura | LC | Arboreal | 23.954972 | 34.39191 | 30.38333 | 38.20621 |
Pristimantis subsigillatus | Anura | LC | Arboreal | 26.450712 | 34.74081 | 31.00140 | 38.96563 |
Pristimantis obmutescens | Anura | LC | Arboreal | 23.825667 | 34.33897 | 30.58581 | 38.62879 |
Pristimantis obmutescens | Anura | LC | Arboreal | 22.732519 | 34.18343 | 30.42607 | 38.41056 |
Pristimantis obmutescens | Anura | LC | Arboreal | 25.431194 | 34.56742 | 30.74325 | 38.92735 |
Pristimantis ocellatus | Anura | EN | Arboreal | 24.041569 | 34.35680 | 30.60015 | 38.51295 |
Pristimantis ocellatus | Anura | EN | Arboreal | 23.117262 | 34.22556 | 30.42767 | 38.33217 |
Pristimantis ocellatus | Anura | EN | Arboreal | 25.544805 | 34.57023 | 30.69657 | 38.64956 |
Pristimantis ocreatus | Anura | EN | Fossorial | 22.043563 | 35.29202 | 31.31724 | 39.94894 |
Pristimantis ocreatus | Anura | EN | Fossorial | 20.823650 | 35.11903 | 30.89443 | 39.49158 |
Pristimantis ocreatus | Anura | EN | Fossorial | 23.766620 | 35.53635 | 31.54024 | 40.23703 |
Pristimantis thymelensis | Anura | LC | Ground-dwelling | 22.193201 | 34.36157 | 30.41521 | 38.66041 |
Pristimantis thymelensis | Anura | LC | Ground-dwelling | 20.754678 | 34.15745 | 30.19280 | 38.48747 |
Pristimantis thymelensis | Anura | LC | Ground-dwelling | 24.152256 | 34.63957 | 30.71809 | 38.93798 |
Pristimantis pyrrhomerus | Anura | EN | Ground-dwelling | 23.075663 | 34.46938 | 30.59128 | 39.10195 |
Pristimantis pyrrhomerus | Anura | EN | Ground-dwelling | 21.392822 | 34.23294 | 30.38426 | 38.80185 |
Pristimantis pyrrhomerus | Anura | EN | Ground-dwelling | 25.301338 | 34.78210 | 30.90035 | 39.49896 |
Pristimantis olivaceus | Anura | LC | Arboreal | 20.163525 | 33.85363 | 29.61474 | 37.89987 |
Pristimantis olivaceus | Anura | LC | Arboreal | 19.157461 | 33.71311 | 29.50562 | 37.80115 |
Pristimantis olivaceus | Anura | LC | Arboreal | 21.412036 | 34.02801 | 29.74698 | 38.02924 |
Pristimantis orcesi | Anura | LC | Arboreal | 20.796214 | 33.95409 | 30.10365 | 37.97031 |
Pristimantis orcesi | Anura | LC | Arboreal | 18.725995 | 33.65575 | 29.87727 | 37.65150 |
Pristimantis orcesi | Anura | LC | Arboreal | 23.335059 | 34.31995 | 30.37950 | 38.30059 |
Pristimantis orcus | Anura | LC | Arboreal | 26.394729 | 34.73247 | 30.91893 | 38.86208 |
Pristimantis orcus | Anura | LC | Arboreal | 25.649257 | 34.62752 | 30.83093 | 38.77569 |
Pristimantis orcus | Anura | LC | Arboreal | 27.880927 | 34.94171 | 31.04341 | 39.07509 |
Pristimantis orestes | Anura | EN | Ground-dwelling | 23.407640 | 34.44677 | 30.31037 | 38.32028 |
Pristimantis orestes | Anura | EN | Ground-dwelling | 21.963850 | 34.23986 | 30.36910 | 38.42434 |
Pristimantis orestes | Anura | EN | Ground-dwelling | 25.659722 | 34.76953 | 30.52813 | 38.63238 |
Pristimantis ornatissimus | Anura | EN | Arboreal | 22.986312 | 34.39640 | 30.47824 | 38.79327 |
Pristimantis ornatissimus | Anura | EN | Arboreal | 21.456474 | 34.17837 | 30.29907 | 38.54959 |
Pristimantis ornatissimus | Anura | EN | Arboreal | 25.131200 | 34.70208 | 30.76016 | 39.17976 |
Pristimantis ornatus | Anura | EN | Ground-dwelling | 21.012652 | 34.04553 | 29.79993 | 37.93645 |
Pristimantis ornatus | Anura | EN | Ground-dwelling | 20.177954 | 33.92828 | 29.69219 | 37.80430 |
Pristimantis ornatus | Anura | EN | Ground-dwelling | 22.689323 | 34.28105 | 30.19901 | 38.37842 |
Pristimantis orpacobates | Anura | NT | Arboreal | 24.548500 | 34.52313 | 30.36128 | 38.78861 |
Pristimantis orpacobates | Anura | NT | Arboreal | 23.721586 | 34.40545 | 30.22770 | 38.63169 |
Pristimantis orpacobates | Anura | NT | Arboreal | 25.991336 | 34.72846 | 30.50634 | 39.06066 |
Pristimantis orphnolaimus | Anura | LC | Arboreal | 25.967437 | 34.69431 | 30.63732 | 38.66550 |
Pristimantis orphnolaimus | Anura | LC | Arboreal | 25.186814 | 34.58288 | 30.61755 | 38.62618 |
Pristimantis orphnolaimus | Anura | LC | Arboreal | 27.448762 | 34.90576 | 30.83480 | 38.90359 |
Pristimantis ortizi | Anura | DD | Arboreal | 22.043563 | 34.19019 | 30.18366 | 38.27268 |
Pristimantis ortizi | Anura | DD | Arboreal | 20.823650 | 34.01680 | 29.94421 | 37.96903 |
Pristimantis ortizi | Anura | DD | Arboreal | 23.766620 | 34.43510 | 30.27578 | 38.46485 |
Pristimantis padrecarlosi | Anura | DD | Stream-dwelling | 23.815844 | 33.77914 | 30.22827 | 38.11119 |
Pristimantis padrecarlosi | Anura | DD | Stream-dwelling | 22.972317 | 33.66246 | 30.17210 | 38.04758 |
Pristimantis padrecarlosi | Anura | DD | Stream-dwelling | 25.359876 | 33.99271 | 30.31425 | 38.23119 |
Pristimantis paisa | Anura | LC | Stream-dwelling | 21.402784 | 33.59859 | 29.43048 | 37.93010 |
Pristimantis paisa | Anura | LC | Stream-dwelling | 20.374610 | 33.45209 | 29.34507 | 37.78573 |
Pristimantis paisa | Anura | LC | Stream-dwelling | 23.162627 | 33.84935 | 29.43002 | 38.01461 |
Pristimantis pardalinus | Anura | EN | Ground-dwelling | 16.870590 | 33.53937 | 29.29957 | 38.05171 |
Pristimantis pardalinus | Anura | EN | Ground-dwelling | 16.060145 | 33.42370 | 28.97741 | 37.69456 |
Pristimantis pardalinus | Anura | EN | Ground-dwelling | 18.188627 | 33.72749 | 29.21945 | 38.01188 |
Pristimantis parectatus | Anura | EN | Arboreal | 22.376189 | 34.16972 | 30.12752 | 38.40210 |
Pristimantis parectatus | Anura | EN | Arboreal | 21.363649 | 34.02452 | 30.27209 | 38.53637 |
Pristimantis parectatus | Anura | EN | Arboreal | 24.075556 | 34.41341 | 30.27441 | 38.58730 |
Pristimantis parvillus | Anura | LC | Arboreal | 24.468017 | 34.63258 | 30.64556 | 38.78143 |
Pristimantis parvillus | Anura | LC | Arboreal | 23.238705 | 34.45911 | 30.46691 | 38.53681 |
Pristimantis parvillus | Anura | LC | Arboreal | 26.366107 | 34.90043 | 30.89079 | 39.03027 |
Pristimantis pastazensis | Anura | EN | Arboreal | 22.287150 | 34.19804 | 30.69408 | 38.26924 |
Pristimantis pastazensis | Anura | EN | Arboreal | 20.278491 | 33.91749 | 30.31851 | 37.92189 |
Pristimantis pastazensis | Anura | EN | Arboreal | 24.609385 | 34.52237 | 30.99593 | 38.59308 |
Pristimantis pataikos | Anura | DD | Arboreal | 21.422387 | 33.95593 | 30.19307 | 38.23142 |
Pristimantis pataikos | Anura | DD | Arboreal | 20.467645 | 33.82277 | 30.11283 | 38.10148 |
Pristimantis pataikos | Anura | DD | Arboreal | 23.163460 | 34.19876 | 30.41204 | 38.46836 |
Pristimantis paulodutrai | Anura | LC | Arboreal | 25.025055 | 34.54813 | 30.03651 | 38.25026 |
Pristimantis paulodutrai | Anura | LC | Arboreal | 24.123429 | 34.42204 | 29.86315 | 38.08401 |
Pristimantis paulodutrai | Anura | LC | Arboreal | 26.765543 | 34.79154 | 30.17833 | 38.41719 |
Pristimantis paululus | Anura | LC | Ground-dwelling | 24.484385 | 34.59796 | 30.60890 | 38.79128 |
Pristimantis paululus | Anura | LC | Ground-dwelling | 23.450924 | 34.45215 | 30.42056 | 38.53002 |
Pristimantis paululus | Anura | LC | Ground-dwelling | 26.181884 | 34.83747 | 30.46878 | 38.75170 |
Pristimantis pecki | Anura | DD | Arboreal | 24.034799 | 34.28297 | 30.04799 | 38.20254 |
Pristimantis pecki | Anura | DD | Arboreal | 22.952035 | 34.12918 | 29.92455 | 38.05651 |
Pristimantis pecki | Anura | DD | Arboreal | 25.885246 | 34.54579 | 30.37260 | 38.61899 |
Pristimantis pedimontanus | Anura | VU | Ground-dwelling | 25.359489 | 34.76958 | 30.74174 | 38.70321 |
Pristimantis pedimontanus | Anura | VU | Ground-dwelling | 24.472673 | 34.64383 | 30.66369 | 38.60313 |
Pristimantis pedimontanus | Anura | VU | Ground-dwelling | 26.961144 | 34.99670 | 31.17875 | 39.20772 |
Pristimantis penelopus | Anura | LC | Arboreal | 25.195923 | 34.59820 | 30.25441 | 38.31935 |
Pristimantis penelopus | Anura | LC | Arboreal | 24.440461 | 34.48989 | 30.22907 | 38.22670 |
Pristimantis penelopus | Anura | LC | Arboreal | 26.709090 | 34.81514 | 30.75441 | 38.93074 |
Pristimantis peraticus | Anura | LC | Ground-dwelling | 24.898747 | 34.75505 | 30.60958 | 38.86210 |
Pristimantis peraticus | Anura | LC | Ground-dwelling | 24.206488 | 34.65647 | 30.58354 | 38.76979 |
Pristimantis peraticus | Anura | LC | Ground-dwelling | 26.233951 | 34.94518 | 30.62741 | 38.91406 |
Pristimantis percnopterus | Anura | LC | Arboreal | 23.231951 | 34.23695 | 30.45286 | 38.69086 |
Pristimantis percnopterus | Anura | LC | Arboreal | 22.397080 | 34.11883 | 30.30006 | 38.54340 |
Pristimantis percnopterus | Anura | LC | Arboreal | 24.865708 | 34.46810 | 30.50065 | 38.79726 |
Pristimantis percultus | Anura | EN | Arboreal | 22.504554 | 34.09309 | 30.59031 | 38.47650 |
Pristimantis percultus | Anura | EN | Arboreal | 21.223948 | 33.91371 | 30.46839 | 38.31184 |
Pristimantis percultus | Anura | EN | Arboreal | 24.506837 | 34.37355 | 30.85041 | 38.79925 |
Pristimantis permixtus | Anura | LC | Arboreal | 23.652758 | 34.32760 | 30.68071 | 38.63267 |
Pristimantis permixtus | Anura | LC | Arboreal | 22.826373 | 34.20999 | 30.13598 | 38.08803 |
Pristimantis permixtus | Anura | LC | Arboreal | 25.175497 | 34.54430 | 30.84605 | 38.87180 |
Pristimantis uranobates | Anura | LC | Stream-dwelling | 22.801170 | 33.73971 | 29.60529 | 37.68907 |
Pristimantis uranobates | Anura | LC | Stream-dwelling | 21.907362 | 33.61462 | 29.46710 | 37.51181 |
Pristimantis uranobates | Anura | LC | Stream-dwelling | 24.391156 | 33.96222 | 29.69747 | 37.86207 |
Pristimantis peruvianus | Anura | LC | Ground-dwelling | 27.042358 | 34.90184 | 30.59501 | 39.00242 |
Pristimantis peruvianus | Anura | LC | Ground-dwelling | 26.276651 | 34.79599 | 30.46007 | 38.87875 |
Pristimantis peruvianus | Anura | LC | Ground-dwelling | 28.530492 | 35.10757 | 30.72647 | 39.20517 |
Pristimantis petersi | Anura | NT | Arboreal | 23.717477 | 34.51032 | 30.23417 | 38.65837 |
Pristimantis petersi | Anura | NT | Arboreal | 22.564346 | 34.34534 | 30.02379 | 38.33852 |
Pristimantis petersi | Anura | NT | Arboreal | 25.455238 | 34.75895 | 30.57360 | 39.08447 |
Pristimantis petrobardus | Anura | EN | Arboreal | 22.730668 | 34.23450 | 29.89613 | 37.89429 |
Pristimantis petrobardus | Anura | EN | Arboreal | 22.059360 | 34.13892 | 29.83249 | 37.79534 |
Pristimantis petrobardus | Anura | EN | Arboreal | 23.880819 | 34.39826 | 30.44148 | 38.46863 |
Pristimantis phalaroinguinis | Anura | DD | Arboreal | 24.352695 | 34.48256 | 30.06200 | 38.24328 |
Pristimantis phalaroinguinis | Anura | DD | Arboreal | 23.754925 | 34.39773 | 29.98938 | 38.14837 |
Pristimantis phalaroinguinis | Anura | DD | Arboreal | 25.398234 | 34.63093 | 30.10865 | 38.38447 |
Pristimantis phalarus | Anura | EN | Arboreal | 24.017258 | 34.32725 | 30.65230 | 39.00111 |
Pristimantis phalarus | Anura | EN | Arboreal | 23.300537 | 34.22594 | 30.54199 | 38.87409 |
Pristimantis phalarus | Anura | EN | Arboreal | 25.278806 | 34.50558 | 30.80950 | 39.24223 |
Pristimantis philipi | Anura | DD | Arboreal | 26.647145 | 34.81431 | 30.96382 | 38.94695 |
Pristimantis philipi | Anura | DD | Arboreal | 25.667294 | 34.67529 | 30.86664 | 38.78304 |
Pristimantis philipi | Anura | DD | Arboreal | 28.530719 | 35.08154 | 31.08154 | 39.15984 |
Pristimantis piceus | Anura | LC | Ground-dwelling | 23.406217 | 34.41760 | 30.40122 | 38.42720 |
Pristimantis piceus | Anura | LC | Ground-dwelling | 22.524869 | 34.29191 | 30.29611 | 38.28218 |
Pristimantis piceus | Anura | LC | Ground-dwelling | 24.960578 | 34.63926 | 30.50825 | 38.59390 |
Pristimantis pinguis | Anura | EN | Ground-dwelling | 22.168477 | 34.27288 | 30.21754 | 38.41039 |
Pristimantis pinguis | Anura | EN | Ground-dwelling | 21.462046 | 34.17178 | 30.15476 | 38.29816 |
Pristimantis pinguis | Anura | EN | Ground-dwelling | 23.378595 | 34.44606 | 30.32340 | 38.64195 |
Pristimantis pirrensis | Anura | NT | Arboreal | 26.181906 | 34.72346 | 30.74371 | 38.76180 |
Pristimantis pirrensis | Anura | NT | Arboreal | 25.505355 | 34.62798 | 30.61187 | 38.58701 |
Pristimantis pirrensis | Anura | NT | Arboreal | 27.570562 | 34.91942 | 30.93195 | 38.98224 |
Pristimantis platychilus | Anura | VU | Arboreal | 24.866990 | 34.56659 | 30.51659 | 38.56399 |
Pristimantis platychilus | Anura | VU | Arboreal | 23.990652 | 34.44002 | 30.45227 | 38.45941 |
Pristimantis platychilus | Anura | VU | Arboreal | 26.289028 | 34.77199 | 30.70291 | 38.79743 |
Pristimantis pleurostriatus | Anura | DD | Arboreal | 25.445939 | 34.49760 | 30.50051 | 38.61946 |
Pristimantis pleurostriatus | Anura | DD | Arboreal | 24.543351 | 34.37050 | 30.39141 | 38.45118 |
Pristimantis pleurostriatus | Anura | DD | Arboreal | 27.031556 | 34.72087 | 30.52930 | 38.74984 |
Pristimantis polemistes | Anura | CR | Stream-dwelling | 26.219010 | 34.32193 | 29.98295 | 38.60086 |
Pristimantis polemistes | Anura | CR | Stream-dwelling | 25.544335 | 34.22664 | 29.91224 | 38.48409 |
Pristimantis polemistes | Anura | CR | Stream-dwelling | 27.553766 | 34.51046 | 30.18256 | 38.88302 |
Pristimantis polychrus | Anura | VU | Arboreal | 24.689340 | 34.53317 | 30.20323 | 38.20694 |
Pristimantis polychrus | Anura | VU | Arboreal | 23.973000 | 34.43146 | 30.11748 | 38.08559 |
Pristimantis polychrus | Anura | VU | Arboreal | 26.055510 | 34.72715 | 30.10776 | 38.17813 |
Pristimantis prolatus | Anura | LC | Arboreal | 23.018716 | 34.29329 | 30.00233 | 38.25205 |
Pristimantis prolatus | Anura | LC | Arboreal | 21.678176 | 34.10247 | 30.19625 | 38.46009 |
Pristimantis prolatus | Anura | LC | Arboreal | 25.024877 | 34.57885 | 30.21856 | 38.49449 |
Pristimantis proserpens | Anura | VU | Arboreal | 22.988492 | 34.22544 | 30.09475 | 38.25631 |
Pristimantis proserpens | Anura | VU | Arboreal | 21.711177 | 34.04813 | 29.95593 | 38.02925 |
Pristimantis proserpens | Anura | VU | Arboreal | 24.998861 | 34.50452 | 30.55037 | 38.76587 |
Pristimantis pruinatus | Anura | VU | Arboreal | 26.904248 | 34.85653 | 30.71073 | 39.27012 |
Pristimantis pruinatus | Anura | VU | Arboreal | 26.184749 | 34.75487 | 30.55993 | 39.03776 |
Pristimantis pruinatus | Anura | VU | Arboreal | 28.223952 | 35.04301 | 30.96457 | 39.61818 |
Pristimantis pseudoacuminatus | Anura | LC | Ground-dwelling | 25.455232 | 34.69319 | 30.82662 | 39.13617 |
Pristimantis pseudoacuminatus | Anura | LC | Ground-dwelling | 24.624372 | 34.57675 | 30.77631 | 39.09797 |
Pristimantis pseudoacuminatus | Anura | LC | Ground-dwelling | 26.961897 | 34.90433 | 30.94366 | 39.31593 |
Pristimantis pteridophilus | Anura | EN | Arboreal | 20.180939 | 33.77744 | 29.39868 | 37.72890 |
Pristimantis pteridophilus | Anura | EN | Arboreal | 18.072574 | 33.47356 | 29.26010 | 37.47146 |
Pristimantis pteridophilus | Anura | EN | Arboreal | 22.820081 | 34.15782 | 29.73305 | 38.21246 |
Pristimantis ptochus | Anura | EN | Arboreal | 24.179450 | 34.35397 | 30.29406 | 38.32439 |
Pristimantis ptochus | Anura | EN | Arboreal | 23.449222 | 34.25257 | 30.52122 | 38.54550 |
Pristimantis ptochus | Anura | EN | Arboreal | 25.556092 | 34.54513 | 30.48800 | 38.58132 |
Pristimantis zophus | Anura | NT | Arboreal | 24.635791 | 34.39274 | 29.93377 | 38.10346 |
Pristimantis zophus | Anura | NT | Arboreal | 23.745595 | 34.26829 | 29.85457 | 37.93641 |
Pristimantis zophus | Anura | NT | Arboreal | 26.161725 | 34.60606 | 30.20449 | 38.41575 |
Pristimantis pugnax | Anura | CR | Stream-dwelling | 23.953287 | 33.83668 | 30.02209 | 38.23245 |
Pristimantis pugnax | Anura | CR | Stream-dwelling | 23.036761 | 33.70795 | 29.79125 | 37.99656 |
Pristimantis pugnax | Anura | CR | Stream-dwelling | 25.504116 | 34.05450 | 30.15669 | 38.33717 |
Pristimantis quantus | Anura | EN | Arboreal | 24.017258 | 34.39314 | 30.41071 | 38.77348 |
Pristimantis quantus | Anura | EN | Arboreal | 23.300537 | 34.29138 | 29.78096 | 38.09376 |
Pristimantis quantus | Anura | EN | Arboreal | 25.278806 | 34.57226 | 30.55175 | 39.00522 |
Pristimantis racemus | Anura | VU | Arboreal | 23.602394 | 34.41398 | 30.38368 | 38.49462 |
Pristimantis racemus | Anura | VU | Arboreal | 22.841030 | 34.30546 | 30.30102 | 38.38489 |
Pristimantis racemus | Anura | VU | Arboreal | 25.082707 | 34.62498 | 30.35464 | 38.53310 |
Pristimantis ramagii | Anura | LC | Ground-dwelling | 25.279521 | 34.68520 | 30.66616 | 38.74829 |
Pristimantis ramagii | Anura | LC | Ground-dwelling | 24.365008 | 34.55383 | 30.55051 | 38.64179 |
Pristimantis ramagii | Anura | LC | Ground-dwelling | 26.869239 | 34.91356 | 30.57951 | 38.73879 |
Pristimantis repens | Anura | EN | Ground-dwelling | 24.280282 | 34.42544 | 30.46544 | 38.39757 |
Pristimantis repens | Anura | EN | Ground-dwelling | 23.402296 | 34.30236 | 30.34918 | 38.24012 |
Pristimantis repens | Anura | EN | Ground-dwelling | 25.677250 | 34.62127 | 30.57452 | 38.54863 |
Pristimantis restrepoi | Anura | LC | Ground-dwelling | 24.689340 | 34.59902 | 30.73549 | 38.81060 |
Pristimantis restrepoi | Anura | LC | Ground-dwelling | 23.973000 | 34.49878 | 30.38497 | 38.43233 |
Pristimantis restrepoi | Anura | LC | Ground-dwelling | 26.055510 | 34.79019 | 30.56827 | 38.73993 |
Pristimantis reticulatus | Anura | DD | Arboreal | 26.826561 | 34.78684 | 30.96072 | 38.87379 |
Pristimantis reticulatus | Anura | DD | Arboreal | 26.155457 | 34.69187 | 30.86852 | 38.78104 |
Pristimantis reticulatus | Anura | DD | Arboreal | 28.382836 | 35.00709 | 31.10636 | 39.09825 |
Pristimantis rhabdocnemus | Anura | LC | Arboreal | 21.012652 | 33.94310 | 29.99740 | 38.12133 |
Pristimantis rhabdocnemus | Anura | LC | Arboreal | 20.177954 | 33.82743 | 29.88902 | 38.01451 |
Pristimantis rhabdocnemus | Anura | LC | Arboreal | 22.689323 | 34.17547 | 30.03665 | 38.22977 |
Pristimantis rhabdolaemus | Anura | LC | Arboreal | 17.777785 | 33.47035 | 29.66979 | 37.63922 |
Pristimantis rhabdolaemus | Anura | LC | Arboreal | 16.259792 | 33.25322 | 29.50233 | 37.49033 |
Pristimantis rhabdolaemus | Anura | LC | Arboreal | 19.192063 | 33.67265 | 29.87803 | 37.84021 |
Pristimantis rhodoplichus | Anura | EN | Ground-dwelling | 23.179600 | 34.39572 | 30.36450 | 38.55617 |
Pristimantis rhodoplichus | Anura | EN | Ground-dwelling | 22.448026 | 34.29383 | 30.28817 | 38.44806 |
Pristimantis rhodoplichus | Anura | EN | Ground-dwelling | 24.714297 | 34.60944 | 30.53854 | 38.79468 |
Pristimantis rhodostichus | Anura | LC | Arboreal | 23.740790 | 34.29955 | 30.11154 | 38.08977 |
Pristimantis rhodostichus | Anura | LC | Arboreal | 22.922245 | 34.18471 | 30.07184 | 37.99095 |
Pristimantis rhodostichus | Anura | LC | Arboreal | 25.347201 | 34.52492 | 30.15900 | 38.22631 |
Pristimantis ridens | Anura | LC | Arboreal | 26.540936 | 34.79496 | 30.83128 | 39.45434 |
Pristimantis ridens | Anura | LC | Arboreal | 25.824582 | 34.69246 | 30.76326 | 39.35034 |
Pristimantis ridens | Anura | LC | Arboreal | 27.958067 | 34.99771 | 31.00151 | 39.67983 |
Pristimantis rivasi | Anura | VU | Ground-dwelling | 26.539014 | 34.97459 | 31.03620 | 39.56106 |
Pristimantis rivasi | Anura | VU | Ground-dwelling | 25.711502 | 34.85747 | 30.77094 | 39.28502 |
Pristimantis rivasi | Anura | VU | Ground-dwelling | 28.229537 | 35.21387 | 31.20386 | 39.76785 |
Pristimantis riveroi | Anura | DD | Arboreal | 26.678151 | 34.69771 | 30.34882 | 38.72000 |
Pristimantis riveroi | Anura | DD | Arboreal | 25.963270 | 34.59656 | 30.26886 | 38.63275 |
Pristimantis riveroi | Anura | DD | Arboreal | 28.180786 | 34.91031 | 30.46560 | 38.90339 |
Pristimantis versicolor | Anura | LC | Arboreal | 23.601658 | 34.69973 | 31.37531 | 38.10240 |
Pristimantis versicolor | Anura | LC | Arboreal | 22.518885 | 34.54940 | 31.17271 | 37.84960 |
Pristimantis versicolor | Anura | LC | Arboreal | 25.475904 | 34.95994 | 31.65795 | 38.42990 |
Pristimantis rosadoi | Anura | VU | Arboreal | 23.846699 | 34.39717 | 30.15492 | 38.34278 |
Pristimantis rosadoi | Anura | VU | Arboreal | 22.628820 | 34.22333 | 30.00534 | 38.22209 |
Pristimantis rosadoi | Anura | VU | Arboreal | 25.717057 | 34.66414 | 30.38025 | 38.57495 |
Pristimantis roseus | Anura | LC | Stream-dwelling | 25.853817 | 34.24534 | 30.31894 | 38.34259 |
Pristimantis roseus | Anura | LC | Stream-dwelling | 25.158341 | 34.14535 | 30.11174 | 38.09268 |
Pristimantis roseus | Anura | LC | Stream-dwelling | 27.202289 | 34.43921 | 30.40491 | 38.48310 |
Pristimantis rozei | Anura | DD | Arboreal | 26.826561 | 34.70052 | 30.85507 | 39.45635 |
Pristimantis rozei | Anura | DD | Arboreal | 26.155457 | 34.60837 | 30.76902 | 39.35733 |
Pristimantis rozei | Anura | DD | Arboreal | 28.382836 | 34.91422 | 30.78231 | 39.47520 |
Pristimantis rubicundus | Anura | EN | Arboreal | 22.772920 | 34.14710 | 29.38923 | 38.01148 |
Pristimantis rubicundus | Anura | EN | Arboreal | 21.184011 | 33.92083 | 29.11520 | 37.67063 |
Pristimantis rubicundus | Anura | EN | Arboreal | 24.943916 | 34.45626 | 29.74799 | 38.37341 |
Pristimantis ruedai | Anura | VU | Stream-dwelling | 24.689340 | 34.02234 | 29.77282 | 37.90168 |
Pristimantis ruedai | Anura | VU | Stream-dwelling | 23.973000 | 33.92137 | 29.68894 | 37.80133 |
Pristimantis ruedai | Anura | VU | Stream-dwelling | 26.055510 | 34.21492 | 29.92797 | 38.16374 |
Pristimantis rufioculis | Anura | VU | Arboreal | 23.252891 | 34.25282 | 30.50991 | 38.81349 |
Pristimantis rufioculis | Anura | VU | Arboreal | 22.376702 | 34.12993 | 30.42177 | 38.69024 |
Pristimantis rufioculis | Anura | VU | Arboreal | 24.926272 | 34.48752 | 30.69031 | 39.04095 |
Pristimantis ruidus | Anura | DD | Arboreal | 26.647145 | 34.67555 | 30.52926 | 39.05495 |
Pristimantis ruidus | Anura | DD | Arboreal | 25.667294 | 34.53589 | 30.36030 | 38.83150 |
Pristimantis ruidus | Anura | DD | Arboreal | 28.530719 | 34.94404 | 30.66348 | 39.27898 |
Pristimantis ruthveni | Anura | EN | Ground-dwelling | 26.777894 | 35.01312 | 30.85357 | 39.00011 |
Pristimantis ruthveni | Anura | EN | Ground-dwelling | 25.908244 | 34.88920 | 30.75310 | 38.87377 |
Pristimantis ruthveni | Anura | EN | Ground-dwelling | 28.696471 | 35.28649 | 31.09344 | 39.33756 |
Pristimantis saltissimus | Anura | LC | Arboreal | 26.634291 | 34.63165 | 30.91136 | 38.80913 |
Pristimantis saltissimus | Anura | LC | Arboreal | 25.965013 | 34.53959 | 30.83746 | 38.70259 |
Pristimantis saltissimus | Anura | LC | Arboreal | 28.137979 | 34.83848 | 30.92807 | 38.88781 |
Pristimantis samaipatae | Anura | LC | Arboreal | 22.189247 | 34.10258 | 30.43253 | 38.28911 |
Pristimantis samaipatae | Anura | LC | Arboreal | 21.309440 | 33.97874 | 30.29268 | 38.13336 |
Pristimantis samaipatae | Anura | LC | Arboreal | 23.466538 | 34.28237 | 30.59788 | 38.51514 |
Pristimantis sanctaemartae | Anura | NT | Arboreal | 26.777894 | 34.71721 | 30.68242 | 38.75435 |
Pristimantis sanctaemartae | Anura | NT | Arboreal | 25.908244 | 34.59184 | 30.51307 | 38.58830 |
Pristimantis sanctaemartae | Anura | NT | Arboreal | 28.696471 | 34.99382 | 31.06715 | 39.19182 |
Pristimantis sanguineus | Anura | NT | Arboreal | 24.897171 | 34.55811 | 30.31941 | 38.52809 |
Pristimantis sanguineus | Anura | NT | Arboreal | 24.175650 | 34.45444 | 30.15428 | 38.37968 |
Pristimantis sanguineus | Anura | NT | Arboreal | 26.286305 | 34.75771 | 30.52127 | 38.76797 |
Pristimantis satagius | Anura | EN | Ground-dwelling | 26.219010 | 34.81406 | 30.67477 | 39.05378 |
Pristimantis satagius | Anura | EN | Ground-dwelling | 25.544335 | 34.71822 | 30.56741 | 38.94230 |
Pristimantis satagius | Anura | EN | Ground-dwelling | 27.553766 | 35.00365 | 30.88136 | 39.27976 |
Pristimantis schultei | Anura | VU | Arboreal | 21.993893 | 34.11854 | 29.94031 | 38.37519 |
Pristimantis schultei | Anura | VU | Arboreal | 21.154915 | 34.00115 | 29.60092 | 38.00721 |
Pristimantis schultei | Anura | VU | Arboreal | 23.526206 | 34.33293 | 29.77347 | 38.20407 |
Pristimantis scitulus | Anura | DD | Arboreal | 15.448306 | 33.06912 | 29.24894 | 36.88340 |
Pristimantis scitulus | Anura | DD | Arboreal | 14.520308 | 32.93823 | 29.07454 | 36.72389 |
Pristimantis scitulus | Anura | DD | Arboreal | 16.818757 | 33.26241 | 29.40016 | 37.08311 |
Pristimantis scoloblepharus | Anura | EN | Stream-dwelling | 22.376189 | 33.56620 | 29.77124 | 37.85653 |
Pristimantis scoloblepharus | Anura | EN | Stream-dwelling | 21.363649 | 33.42199 | 29.67678 | 37.72641 |
Pristimantis scoloblepharus | Anura | EN | Stream-dwelling | 24.075556 | 33.80822 | 29.87876 | 38.07493 |
Pristimantis scolodiscus | Anura | VU | Arboreal | 23.522886 | 34.38610 | 30.27264 | 38.42640 |
Pristimantis scolodiscus | Anura | VU | Arboreal | 22.505271 | 34.24066 | 30.13458 | 38.22417 |
Pristimantis scolodiscus | Anura | VU | Arboreal | 25.146421 | 34.61814 | 30.50699 | 38.75757 |
Pristimantis scopaeus | Anura | LC | Arboreal | 22.217802 | 34.07517 | 29.96032 | 37.97356 |
Pristimantis scopaeus | Anura | LC | Arboreal | 21.369450 | 33.95433 | 29.85548 | 37.88903 |
Pristimantis scopaeus | Anura | LC | Arboreal | 23.805985 | 34.30139 | 30.14349 | 38.23488 |
Pristimantis seorsus | Anura | DD | Arboreal | 20.410419 | 33.89434 | 29.66537 | 38.30457 |
Pristimantis seorsus | Anura | DD | Arboreal | 19.911299 | 33.82312 | 29.59476 | 38.24292 |
Pristimantis seorsus | Anura | DD | Arboreal | 21.271727 | 34.01725 | 29.77908 | 38.40178 |
Pristimantis serendipitus | Anura | EN | Ground-dwelling | 22.164010 | 34.25262 | 30.03470 | 38.33026 |
Pristimantis serendipitus | Anura | EN | Ground-dwelling | 21.259620 | 34.12251 | 29.70907 | 37.99730 |
Pristimantis serendipitus | Anura | EN | Ground-dwelling | 23.969227 | 34.51232 | 30.22962 | 38.52231 |
Pristimantis signifer | Anura | CR | Ground-dwelling | 24.017258 | 34.51535 | 30.88252 | 39.01830 |
Pristimantis signifer | Anura | CR | Ground-dwelling | 23.300537 | 34.41309 | 30.73171 | 38.83010 |
Pristimantis signifer | Anura | CR | Ground-dwelling | 25.278806 | 34.69534 | 31.01368 | 39.21855 |
Pristimantis silverstonei | Anura | VU | Arboreal | 24.854555 | 34.59028 | 29.98962 | 38.78604 |
Pristimantis silverstonei | Anura | VU | Arboreal | 24.125762 | 34.48682 | 29.88672 | 38.68078 |
Pristimantis silverstonei | Anura | VU | Arboreal | 26.185464 | 34.77922 | 30.16909 | 39.00070 |
Pristimantis simonsii | Anura | VU | Ground-dwelling | 22.168477 | 34.17159 | 30.08651 | 37.97722 |
Pristimantis simonsii | Anura | VU | Ground-dwelling | 21.462046 | 34.07206 | 30.10667 | 37.94228 |
Pristimantis simonsii | Anura | VU | Ground-dwelling | 23.378595 | 34.34209 | 30.25109 | 38.17614 |
Pristimantis simoteriscus | Anura | EN | Ground-dwelling | 21.124264 | 34.09391 | 30.18220 | 38.43867 |
Pristimantis simoteriscus | Anura | EN | Ground-dwelling | 20.218761 | 33.96724 | 30.07060 | 38.32253 |
Pristimantis simoteriscus | Anura | EN | Ground-dwelling | 22.820677 | 34.33121 | 30.38842 | 38.68514 |
Pristimantis siopelus | Anura | VU | Arboreal | 24.617070 | 34.38751 | 30.51177 | 38.55608 |
Pristimantis siopelus | Anura | VU | Arboreal | 23.951937 | 34.29194 | 30.42459 | 38.46126 |
Pristimantis siopelus | Anura | VU | Arboreal | 25.851409 | 34.56488 | 30.62403 | 38.73206 |
Pristimantis skydmainos | Anura | LC | Arboreal | 23.826240 | 34.34155 | 29.97730 | 38.32720 |
Pristimantis skydmainos | Anura | LC | Arboreal | 23.070129 | 34.23511 | 29.90884 | 38.23237 |
Pristimantis skydmainos | Anura | LC | Arboreal | 25.060167 | 34.51524 | 30.16482 | 38.50770 |
Pristimantis sobetes | Anura | EN | Arboreal | 19.805326 | 33.75827 | 29.69650 | 37.94926 |
Pristimantis sobetes | Anura | EN | Arboreal | 17.198230 | 33.38167 | 29.39324 | 37.48939 |
Pristimantis sobetes | Anura | EN | Arboreal | 22.861501 | 34.19975 | 30.29575 | 38.60203 |
Pristimantis spectabilis | Anura | DD | Arboreal | 21.012652 | 34.01870 | 29.71398 | 38.07031 |
Pristimantis spectabilis | Anura | DD | Arboreal | 20.177954 | 33.90064 | 29.46455 | 37.80358 |
Pristimantis spectabilis | Anura | DD | Arboreal | 22.689323 | 34.25585 | 30.29025 | 38.65953 |
Pristimantis spilogaster | Anura | CR | Arboreal | 24.390020 | 34.44993 | 30.15595 | 38.35259 |
Pristimantis spilogaster | Anura | CR | Arboreal | 23.746759 | 34.35752 | 30.02759 | 38.22518 |
Pristimantis spilogaster | Anura | CR | Arboreal | 25.828703 | 34.65662 | 30.43950 | 38.66469 |
Pristimantis spinosus | Anura | EN | Arboreal | 23.049225 | 34.29174 | 30.04519 | 38.08655 |
Pristimantis spinosus | Anura | EN | Arboreal | 21.493692 | 34.06955 | 29.72523 | 37.71044 |
Pristimantis spinosus | Anura | EN | Arboreal | 25.325715 | 34.61691 | 30.27834 | 38.40663 |
Pristimantis stenodiscus | Anura | CR | Ground-dwelling | 26.826561 | 34.88978 | 31.01114 | 39.36350 |
Pristimantis stenodiscus | Anura | CR | Ground-dwelling | 26.155457 | 34.79429 | 30.80471 | 39.12907 |
Pristimantis stenodiscus | Anura | CR | Ground-dwelling | 28.382836 | 35.11123 | 30.51386 | 39.05048 |
Pristimantis sternothylax | Anura | LC | Arboreal | 23.991462 | 34.36093 | 30.33436 | 38.49140 |
Pristimantis sternothylax | Anura | LC | Arboreal | 23.218412 | 34.25131 | 30.27944 | 38.36013 |
Pristimantis sternothylax | Anura | LC | Arboreal | 25.472846 | 34.57101 | 30.75188 | 38.99812 |
Pristimantis stictoboubonus | Anura | DD | Arboreal | 22.538913 | 34.30476 | 30.75106 | 38.44538 |
Pristimantis stictoboubonus | Anura | DD | Arboreal | 21.736625 | 34.19007 | 30.72094 | 38.39870 |
Pristimantis stictoboubonus | Anura | DD | Arboreal | 23.802966 | 34.48546 | 30.83771 | 38.53368 |
Pristimantis stictogaster | Anura | LC | Ground-dwelling | 21.012652 | 34.24205 | 29.64950 | 37.94381 |
Pristimantis stictogaster | Anura | LC | Ground-dwelling | 20.177954 | 34.12378 | 30.07291 | 38.36259 |
Pristimantis stictogaster | Anura | LC | Ground-dwelling | 22.689323 | 34.47963 | 30.27207 | 38.59533 |
Pristimantis suetus | Anura | VU | Arboreal | 23.687173 | 34.33051 | 30.28114 | 38.04581 |
Pristimantis suetus | Anura | VU | Arboreal | 22.753999 | 34.19845 | 30.19573 | 38.04535 |
Pristimantis suetus | Anura | VU | Arboreal | 25.296937 | 34.55834 | 30.52421 | 38.22694 |
Pristimantis sulculus | Anura | VU | Arboreal | 24.617070 | 34.54260 | 30.54749 | 39.03408 |
Pristimantis sulculus | Anura | VU | Arboreal | 23.951937 | 34.44783 | 30.48569 | 38.89857 |
Pristimantis sulculus | Anura | VU | Arboreal | 25.851409 | 34.71848 | 30.59753 | 39.14046 |
Pristimantis supernatis | Anura | VU | Stream-dwelling | 23.359399 | 33.70523 | 30.12285 | 38.13583 |
Pristimantis supernatis | Anura | VU | Stream-dwelling | 22.255668 | 33.54824 | 30.01927 | 37.99804 |
Pristimantis supernatis | Anura | VU | Stream-dwelling | 24.947702 | 33.93116 | 30.11180 | 38.23131 |
Pristimantis susaguae | Anura | EN | Arboreal | 23.382173 | 34.24749 | 30.10326 | 38.46039 |
Pristimantis susaguae | Anura | EN | Arboreal | 22.612540 | 34.13690 | 30.25681 | 38.52700 |
Pristimantis susaguae | Anura | EN | Arboreal | 25.028162 | 34.48400 | 30.48681 | 38.89485 |
Pristimantis taciturnus | Anura | DD | Stream-dwelling | 22.833468 | 33.69218 | 30.00329 | 38.26455 |
Pristimantis taciturnus | Anura | DD | Stream-dwelling | 21.394430 | 33.48479 | 29.75483 | 37.97914 |
Pristimantis taciturnus | Anura | DD | Stream-dwelling | 24.669687 | 33.95681 | 30.09299 | 38.37349 |
Pristimantis yukpa | Anura | LC | Ground-dwelling | 26.160242 | 36.18247 | 33.29325 | 39.41270 |
Pristimantis yukpa | Anura | LC | Ground-dwelling | 25.324144 | 36.06662 | 33.27491 | 39.36257 |
Pristimantis yukpa | Anura | LC | Ground-dwelling | 27.881412 | 36.42098 | 33.44029 | 39.71564 |
Pristimantis tamsitti | Anura | VU | Arboreal | 24.905302 | 34.57550 | 30.60639 | 38.56853 |
Pristimantis tamsitti | Anura | VU | Arboreal | 24.122920 | 34.46636 | 30.57335 | 38.52288 |
Pristimantis tamsitti | Anura | VU | Arboreal | 26.352438 | 34.77736 | 30.86919 | 38.84613 |
Pristimantis tantanti | Anura | LC | Arboreal | 22.046556 | 34.10983 | 30.01775 | 38.28057 |
Pristimantis tantanti | Anura | LC | Arboreal | 21.477821 | 34.02818 | 29.91377 | 38.17473 |
Pristimantis tantanti | Anura | LC | Arboreal | 23.006501 | 34.24763 | 29.97175 | 38.28696 |
Pristimantis tanyrhynchus | Anura | DD | Arboreal | 20.410419 | 34.00151 | 29.86293 | 37.90646 |
Pristimantis tanyrhynchus | Anura | DD | Arboreal | 19.911299 | 33.92868 | 29.79898 | 37.83847 |
Pristimantis tanyrhynchus | Anura | DD | Arboreal | 21.271727 | 34.12718 | 29.95548 | 37.95717 |
Pristimantis tayrona | Anura | NT | Arboreal | 26.777894 | 34.86142 | 30.83785 | 39.40800 |
Pristimantis tayrona | Anura | NT | Arboreal | 25.908244 | 34.73806 | 30.59829 | 39.14811 |
Pristimantis tayrona | Anura | NT | Arboreal | 28.696471 | 35.13358 | 31.11814 | 39.79707 |
Pristimantis telefericus | Anura | CR | Ground-dwelling | 25.445939 | 34.80473 | 30.78434 | 38.73013 |
Pristimantis telefericus | Anura | CR | Ground-dwelling | 24.543351 | 34.67684 | 30.50827 | 38.39995 |
Pristimantis telefericus | Anura | CR | Ground-dwelling | 27.031556 | 35.02940 | 30.84992 | 38.89265 |
Pristimantis tenebrionis | Anura | EN | Arboreal | 24.046640 | 34.42296 | 30.17896 | 38.33614 |
Pristimantis tenebrionis | Anura | EN | Arboreal | 22.875889 | 34.25598 | 29.98878 | 38.13109 |
Pristimantis tenebrionis | Anura | EN | Arboreal | 25.887767 | 34.68555 | 30.41995 | 38.68253 |
Pristimantis thymalopsoides | Anura | EN | Arboreal | 19.805326 | 33.81550 | 29.55132 | 37.55566 |
Pristimantis thymalopsoides | Anura | EN | Arboreal | 17.198230 | 33.44125 | 29.38111 | 37.43875 |
Pristimantis thymalopsoides | Anura | EN | Arboreal | 22.861501 | 34.25423 | 30.32797 | 38.40327 |
Pristimantis torrenticola | Anura | CR | Arboreal | 22.792552 | 34.25139 | 30.33630 | 38.19076 |
Pristimantis torrenticola | Anura | CR | Arboreal | 22.040989 | 34.14474 | 30.23435 | 38.05675 |
Pristimantis torrenticola | Anura | CR | Arboreal | 24.304586 | 34.46596 | 30.51995 | 38.52689 |
Pristimantis tribulosus | Anura | CR | Arboreal | 22.792552 | 34.19850 | 30.21421 | 38.43425 |
Pristimantis tribulosus | Anura | CR | Arboreal | 22.040989 | 34.09217 | 30.37805 | 38.55959 |
Pristimantis tribulosus | Anura | CR | Arboreal | 24.304586 | 34.41241 | 30.50553 | 38.81172 |
Pristimantis tubernasus | Anura | DD | Arboreal | 25.081242 | 34.57362 | 30.25876 | 38.52579 |
Pristimantis tubernasus | Anura | DD | Arboreal | 24.199220 | 34.44812 | 30.16742 | 38.37627 |
Pristimantis tubernasus | Anura | DD | Arboreal | 26.635088 | 34.79471 | 30.46134 | 38.81944 |
Pristimantis turik | Anura | DD | Arboreal | 27.517901 | 34.93568 | 31.24200 | 39.36492 |
Pristimantis turik | Anura | DD | Arboreal | 26.477539 | 34.78610 | 31.10099 | 39.20042 |
Pristimantis turik | Anura | DD | Arboreal | 29.383272 | 35.20389 | 31.56970 | 39.87386 |
Pristimantis turpinorum | Anura | DD | Arboreal | 26.614467 | 34.79974 | 30.77896 | 39.53558 |
Pristimantis turpinorum | Anura | DD | Arboreal | 26.237296 | 34.74665 | 30.67987 | 39.42946 |
Pristimantis turpinorum | Anura | DD | Arboreal | 27.226432 | 34.88588 | 30.85497 | 39.65789 |
Pristimantis turumiquirensis | Anura | CR | Ground-dwelling | 26.860678 | 34.88288 | 30.74275 | 39.30457 |
Pristimantis turumiquirensis | Anura | CR | Ground-dwelling | 26.190430 | 34.78790 | 30.72987 | 39.21399 |
Pristimantis turumiquirensis | Anura | CR | Ground-dwelling | 28.431470 | 35.10549 | 31.09232 | 39.72632 |
Pristimantis uisae | Anura | VU | Arboreal | 23.113019 | 34.18369 | 30.21515 | 38.08645 |
Pristimantis uisae | Anura | VU | Arboreal | 22.284642 | 34.06736 | 30.17665 | 37.99086 |
Pristimantis uisae | Anura | VU | Arboreal | 24.763755 | 34.41549 | 30.41987 | 38.35410 |
Pristimantis urichi | Anura | LC | Ground-dwelling | 26.423148 | 35.00823 | 30.58936 | 38.91148 |
Pristimantis urichi | Anura | LC | Ground-dwelling | 25.953678 | 34.94059 | 30.49373 | 38.82322 |
Pristimantis urichi | Anura | LC | Ground-dwelling | 27.165048 | 35.11513 | 30.69755 | 39.07122 |
Pristimantis variabilis | Anura | LC | Arboreal | 26.769227 | 34.77124 | 30.30692 | 38.69254 |
Pristimantis variabilis | Anura | LC | Arboreal | 26.005201 | 34.66243 | 30.39181 | 38.70488 |
Pristimantis variabilis | Anura | LC | Arboreal | 28.250858 | 34.98226 | 30.77757 | 39.26434 |
Pristimantis veletis | Anura | CR | Arboreal | 22.792552 | 34.22849 | 29.91012 | 38.08947 |
Pristimantis veletis | Anura | CR | Arboreal | 22.040989 | 34.12102 | 30.12946 | 38.32230 |
Pristimantis veletis | Anura | CR | Arboreal | 24.304586 | 34.44469 | 30.20364 | 38.43577 |
Pristimantis ventriguttatus | Anura | DD | Arboreal | 24.352695 | 34.51875 | 30.48100 | 38.64639 |
Pristimantis ventriguttatus | Anura | DD | Arboreal | 23.754925 | 34.43374 | 30.57696 | 38.71154 |
Pristimantis ventriguttatus | Anura | DD | Arboreal | 25.398234 | 34.66745 | 30.62725 | 38.81609 |
Pristimantis ventrimarmoratus | Anura | LC | Ground-dwelling | 23.742766 | 34.44005 | 29.81031 | 38.07765 |
Pristimantis ventrimarmoratus | Anura | LC | Ground-dwelling | 22.973157 | 34.32980 | 29.73343 | 38.01583 |
Pristimantis ventrimarmoratus | Anura | LC | Ground-dwelling | 25.112705 | 34.63631 | 29.91656 | 38.27475 |
Pristimantis verecundus | Anura | NT | Arboreal | 22.483509 | 34.20830 | 29.94579 | 38.58426 |
Pristimantis verecundus | Anura | NT | Arboreal | 21.107539 | 34.01300 | 30.24879 | 38.82320 |
Pristimantis verecundus | Anura | NT | Arboreal | 24.413477 | 34.48222 | 30.20587 | 38.93408 |
Pristimantis vicarius | Anura | NT | Ground-dwelling | 23.901928 | 34.47603 | 30.90934 | 39.07822 |
Pristimantis vicarius | Anura | NT | Ground-dwelling | 22.941316 | 34.34299 | 30.80168 | 38.96813 |
Pristimantis vicarius | Anura | NT | Ground-dwelling | 25.418278 | 34.68602 | 30.98579 | 39.19366 |
Pristimantis vidua | Anura | EN | Ground-dwelling | 21.252659 | 34.16888 | 30.16416 | 38.13695 |
Pristimantis vidua | Anura | EN | Ground-dwelling | 19.420658 | 33.91093 | 30.01141 | 37.91601 |
Pristimantis vidua | Anura | EN | Ground-dwelling | 23.758706 | 34.52173 | 30.34277 | 38.49399 |
Pristimantis viejas | Anura | LC | Ground-dwelling | 25.102723 | 34.63685 | 30.97893 | 39.00940 |
Pristimantis viejas | Anura | LC | Ground-dwelling | 24.352081 | 34.53137 | 30.96522 | 38.96578 |
Pristimantis viejas | Anura | LC | Ground-dwelling | 26.547289 | 34.83985 | 30.94932 | 39.02539 |
Pristimantis vilarsi | Anura | LC | Ground-dwelling | 27.561659 | 35.00649 | 30.95930 | 39.50424 |
Pristimantis vilarsi | Anura | LC | Ground-dwelling | 26.828745 | 34.90332 | 30.84470 | 39.39315 |
Pristimantis vilarsi | Anura | LC | Ground-dwelling | 29.111961 | 35.22474 | 30.73686 | 39.41390 |
Pristimantis vilcabambae | Anura | DD | Arboreal | 20.410419 | 34.08420 | 30.24589 | 38.02906 |
Pristimantis vilcabambae | Anura | DD | Arboreal | 19.911299 | 34.01357 | 30.24642 | 37.98019 |
Pristimantis vilcabambae | Anura | DD | Arboreal | 21.271727 | 34.20608 | 30.09961 | 37.95432 |
Pristimantis vinhai | Anura | LC | Ground-dwelling | 25.013166 | 34.70152 | 30.46097 | 38.44564 |
Pristimantis vinhai | Anura | LC | Ground-dwelling | 24.113377 | 34.57277 | 30.24082 | 38.24880 |
Pristimantis vinhai | Anura | LC | Ground-dwelling | 26.763900 | 34.95203 | 30.84711 | 38.87896 |
Pristimantis viridicans | Anura | EN | Ground-dwelling | 24.416317 | 34.66834 | 30.56949 | 38.59543 |
Pristimantis viridicans | Anura | EN | Ground-dwelling | 23.472758 | 34.53328 | 30.31204 | 38.28002 |
Pristimantis viridicans | Anura | EN | Ground-dwelling | 25.867448 | 34.87604 | 30.68045 | 38.75255 |
Pristimantis viridis | Anura | EN | Arboreal | 25.973775 | 34.57647 | 30.57911 | 38.85089 |
Pristimantis viridis | Anura | EN | Arboreal | 25.275238 | 34.47730 | 30.50838 | 38.74352 |
Pristimantis viridis | Anura | EN | Arboreal | 27.319325 | 34.76750 | 30.74090 | 39.06340 |
Pristimantis wagteri | Anura | EN | Ground-dwelling | 21.823777 | 34.31717 | 30.36260 | 38.09722 |
Pristimantis wagteri | Anura | EN | Ground-dwelling | 21.050210 | 34.20746 | 30.46802 | 38.11695 |
Pristimantis wagteri | Anura | EN | Ground-dwelling | 23.083185 | 34.49578 | 30.47096 | 38.23430 |
Pristimantis waoranii | Anura | LC | Arboreal | 25.691768 | 34.62690 | 30.26552 | 39.06688 |
Pristimantis waoranii | Anura | LC | Arboreal | 24.948293 | 34.52068 | 30.16051 | 38.97950 |
Pristimantis waoranii | Anura | LC | Arboreal | 27.093538 | 34.82716 | 30.34424 | 39.24732 |
Pristimantis wiensi | Anura | DD | Arboreal | 22.602751 | 34.07540 | 29.81849 | 38.03841 |
Pristimantis wiensi | Anura | DD | Arboreal | 21.868814 | 33.97195 | 29.70320 | 37.93739 |
Pristimantis wiensi | Anura | DD | Arboreal | 24.173626 | 34.29681 | 30.15771 | 38.39843 |
Pristimantis xeniolum | Anura | VU | Arboreal | 24.017258 | 34.41892 | 29.94884 | 38.18726 |
Pristimantis xeniolum | Anura | VU | Arboreal | 23.300537 | 34.31756 | 30.03761 | 38.24179 |
Pristimantis xeniolum | Anura | VU | Arboreal | 25.278806 | 34.59733 | 30.10929 | 38.41818 |
Pristimantis xestus | Anura | VU | Arboreal | 25.728540 | 34.65477 | 30.80504 | 39.21438 |
Pristimantis xestus | Anura | VU | Arboreal | 25.006141 | 34.55331 | 30.72725 | 39.09878 |
Pristimantis xestus | Anura | VU | Arboreal | 27.084885 | 34.84526 | 30.73795 | 39.20036 |
Pristimantis xylochobates | Anura | CR | Arboreal | 24.017258 | 34.42673 | 30.12215 | 38.34542 |
Pristimantis xylochobates | Anura | CR | Arboreal | 23.300537 | 34.32366 | 30.10968 | 38.28091 |
Pristimantis xylochobates | Anura | CR | Arboreal | 25.278806 | 34.60816 | 30.31155 | 38.60251 |
Pristimantis yaviensis | Anura | NT | Ground-dwelling | 26.831723 | 34.85930 | 30.34645 | 38.40694 |
Pristimantis yaviensis | Anura | NT | Ground-dwelling | 26.139692 | 34.76321 | 30.40246 | 38.43624 |
Pristimantis yaviensis | Anura | NT | Ground-dwelling | 28.163382 | 35.04422 | 30.45564 | 38.56199 |
Pristimantis yustizi | Anura | VU | Arboreal | 25.251915 | 34.62936 | 30.70627 | 38.56915 |
Pristimantis yustizi | Anura | VU | Arboreal | 24.328467 | 34.49679 | 30.48474 | 38.32433 |
Pristimantis yustizi | Anura | VU | Arboreal | 26.880536 | 34.86317 | 30.90853 | 38.88983 |
Pristimantis zeuctotylus | Anura | LC | Ground-dwelling | 27.356662 | 34.92971 | 30.47820 | 39.12594 |
Pristimantis zeuctotylus | Anura | LC | Ground-dwelling | 26.725375 | 34.84059 | 30.41710 | 39.01846 |
Pristimantis zeuctotylus | Anura | LC | Ground-dwelling | 28.828048 | 35.13743 | 30.57234 | 39.31522 |
Pristimantis zimmermanae | Anura | LC | Ground-dwelling | 28.244707 | 35.22480 | 30.74010 | 39.14604 |
Pristimantis zimmermanae | Anura | LC | Ground-dwelling | 27.568607 | 35.12851 | 30.75287 | 39.09968 |
Pristimantis zimmermanae | Anura | LC | Ground-dwelling | 29.906803 | 35.46151 | 30.92311 | 39.47371 |
Pristimantis zoilae | Anura | EN | Arboreal | 23.943495 | 34.45789 | 29.95713 | 38.22180 |
Pristimantis zoilae | Anura | EN | Arboreal | 22.852655 | 34.30365 | 30.01600 | 38.23460 |
Pristimantis zoilae | Anura | EN | Arboreal | 25.503091 | 34.67840 | 30.36423 | 38.67594 |
Dischidodactylus colonnelloi | Anura | NT | Ground-dwelling | 25.661020 | 33.45911 | 29.01256 | 37.24329 |
Dischidodactylus colonnelloi | Anura | NT | Ground-dwelling | 25.001401 | 33.36355 | 28.88907 | 37.16063 |
Dischidodactylus colonnelloi | Anura | NT | Ground-dwelling | 27.238038 | 33.68757 | 29.28460 | 37.46413 |
Dischidodactylus duidensis | Anura | NT | Ground-dwelling | 25.661020 | 33.58699 | 29.79250 | 37.88674 |
Dischidodactylus duidensis | Anura | NT | Ground-dwelling | 25.001401 | 33.49229 | 29.71463 | 37.77422 |
Dischidodactylus duidensis | Anura | NT | Ground-dwelling | 27.238038 | 33.81341 | 29.97584 | 38.19527 |
Geobatrachus walkeri | Anura | EN | Ground-dwelling | 26.777894 | 33.66340 | 29.58802 | 38.02865 |
Geobatrachus walkeri | Anura | EN | Ground-dwelling | 25.908244 | 33.53923 | 29.47989 | 37.84647 |
Geobatrachus walkeri | Anura | EN | Ground-dwelling | 28.696471 | 33.93732 | 29.82657 | 38.43059 |
Niceforonia adenobrachia | Anura | EN | Ground-dwelling | 21.124264 | 32.89168 | 28.94523 | 37.33235 |
Niceforonia adenobrachia | Anura | EN | Ground-dwelling | 20.218761 | 32.76219 | 28.30719 | 36.69328 |
Niceforonia adenobrachia | Anura | EN | Ground-dwelling | 22.820677 | 33.13428 | 29.29922 | 37.65399 |
Niceforonia nana | Anura | VU | Ground-dwelling | 23.203191 | 33.29346 | 29.20981 | 37.30457 |
Niceforonia nana | Anura | VU | Ground-dwelling | 22.400613 | 33.17744 | 29.09923 | 37.20074 |
Niceforonia nana | Anura | VU | Ground-dwelling | 24.891970 | 33.53758 | 29.42861 | 37.62428 |
Strabomantis anatipes | Anura | VU | Stream-dwelling | 24.274031 | 32.70113 | 28.11323 | 36.77843 |
Strabomantis anatipes | Anura | VU | Stream-dwelling | 23.341886 | 32.56812 | 28.01285 | 36.63297 |
Strabomantis anatipes | Anura | VU | Stream-dwelling | 25.765650 | 32.91397 | 28.13319 | 36.86982 |
Strabomantis ingeri | Anura | VU | Ground-dwelling | 23.330647 | 33.21560 | 29.15821 | 37.57990 |
Strabomantis ingeri | Anura | VU | Ground-dwelling | 22.500624 | 33.09568 | 29.04391 | 37.44383 |
Strabomantis ingeri | Anura | VU | Ground-dwelling | 24.914615 | 33.44443 | 29.27547 | 37.75941 |
Strabomantis cheiroplethus | Anura | EN | Stream-dwelling | 25.427727 | 32.93907 | 28.53982 | 37.17622 |
Strabomantis cheiroplethus | Anura | EN | Stream-dwelling | 24.711264 | 32.83478 | 28.62068 | 37.17767 |
Strabomantis cheiroplethus | Anura | EN | Stream-dwelling | 26.717328 | 33.12677 | 29.02809 | 37.70430 |
Strabomantis anomalus | Anura | LC | Stream-dwelling | 25.149973 | 32.81412 | 28.36194 | 37.37168 |
Strabomantis anomalus | Anura | LC | Stream-dwelling | 24.349873 | 32.70067 | 28.28241 | 37.25638 |
Strabomantis anomalus | Anura | LC | Stream-dwelling | 26.607868 | 33.02083 | 28.40553 | 37.45721 |
Strabomantis bufoniformis | Anura | EN | Stream-dwelling | 25.996004 | 32.99830 | 28.75069 | 37.49524 |
Strabomantis bufoniformis | Anura | EN | Stream-dwelling | 25.302269 | 32.89747 | 28.64358 | 37.38840 |
Strabomantis bufoniformis | Anura | EN | Stream-dwelling | 27.403180 | 33.20282 | 28.92137 | 37.72000 |
Strabomantis cadenai | Anura | CR | Ground-dwelling | 26.219010 | 33.69336 | 28.98881 | 37.97030 |
Strabomantis cadenai | Anura | CR | Ground-dwelling | 25.544335 | 33.59587 | 28.57837 | 37.53632 |
Strabomantis cadenai | Anura | CR | Ground-dwelling | 27.553766 | 33.88624 | 29.12169 | 38.14323 |
Strabomantis ruizi | Anura | EN | Ground-dwelling | 24.417562 | 33.39401 | 28.97219 | 37.61063 |
Strabomantis ruizi | Anura | EN | Ground-dwelling | 23.685573 | 33.28899 | 28.79635 | 37.43338 |
Strabomantis ruizi | Anura | EN | Ground-dwelling | 25.735753 | 33.58314 | 29.47941 | 38.16695 |
Strabomantis helonotus | Anura | CR | Ground-dwelling | 21.894371 | 33.13501 | 28.83688 | 37.16263 |
Strabomantis helonotus | Anura | CR | Ground-dwelling | 20.214275 | 32.89441 | 28.62633 | 36.89462 |
Strabomantis helonotus | Anura | CR | Ground-dwelling | 24.164051 | 33.46005 | 29.02820 | 37.40896 |
Strabomantis zygodactylus | Anura | LC | Stream-dwelling | 25.432119 | 33.02784 | 28.11316 | 37.24452 |
Strabomantis zygodactylus | Anura | LC | Stream-dwelling | 24.729621 | 32.92807 | 28.11115 | 37.17417 |
Strabomantis zygodactylus | Anura | LC | Stream-dwelling | 26.805242 | 33.22284 | 28.47281 | 37.67527 |
Strabomantis cornutus | Anura | VU | Ground-dwelling | 23.806982 | 33.32818 | 28.93039 | 37.38224 |
Strabomantis cornutus | Anura | VU | Ground-dwelling | 22.706602 | 33.17005 | 28.84496 | 37.31223 |
Strabomantis cornutus | Anura | VU | Ground-dwelling | 25.534857 | 33.57649 | 29.16816 | 37.67159 |
Strabomantis laticorpus | Anura | DD | Ground-dwelling | 27.812573 | 33.93326 | 29.87702 | 38.48955 |
Strabomantis laticorpus | Anura | DD | Ground-dwelling | 27.084203 | 33.82880 | 29.83935 | 38.36717 |
Strabomantis laticorpus | Anura | DD | Ground-dwelling | 29.356453 | 34.15468 | 29.75560 | 38.50602 |
Strabomantis biporcatus | Anura | LC | Ground-dwelling | 26.735490 | 33.80865 | 29.48513 | 38.31717 |
Strabomantis biporcatus | Anura | LC | Ground-dwelling | 25.952444 | 33.69622 | 29.41620 | 38.17739 |
Strabomantis biporcatus | Anura | LC | Ground-dwelling | 28.204327 | 34.01954 | 29.45633 | 38.37503 |
Strabomantis cerastes | Anura | LC | Ground-dwelling | 24.354201 | 33.40703 | 29.54758 | 38.36569 |
Strabomantis cerastes | Anura | LC | Ground-dwelling | 23.483979 | 33.28314 | 29.49495 | 38.29285 |
Strabomantis cerastes | Anura | LC | Ground-dwelling | 25.828695 | 33.61694 | 29.67417 | 38.51440 |
Strabomantis necopinus | Anura | VU | Ground-dwelling | 22.629374 | 33.12116 | 28.53535 | 36.91180 |
Strabomantis necopinus | Anura | VU | Ground-dwelling | 21.664633 | 32.98337 | 28.38121 | 36.72510 |
Strabomantis necopinus | Anura | VU | Ground-dwelling | 24.306895 | 33.36076 | 28.92290 | 37.42598 |
Strabomantis sulcatus | Anura | LC | Ground-dwelling | 26.686038 | 33.76995 | 29.61491 | 38.22812 |
Strabomantis sulcatus | Anura | LC | Ground-dwelling | 25.917489 | 33.65881 | 28.92093 | 37.52582 |
Strabomantis sulcatus | Anura | LC | Ground-dwelling | 28.163458 | 33.98361 | 29.69139 | 38.34133 |
Barycholos pulcher | Anura | LC | Ground-dwelling | 24.983246 | 32.46909 | 28.34700 | 36.35049 |
Barycholos pulcher | Anura | LC | Ground-dwelling | 23.788670 | 32.29338 | 28.13298 | 36.14495 |
Barycholos pulcher | Anura | LC | Ground-dwelling | 26.891631 | 32.74981 | 28.59120 | 36.72768 |
Barycholos ternetzi | Anura | LC | Ground-dwelling | 26.918716 | 32.66654 | 28.62334 | 36.89130 |
Barycholos ternetzi | Anura | LC | Ground-dwelling | 25.806140 | 32.50178 | 28.49461 | 36.70957 |
Barycholos ternetzi | Anura | LC | Ground-dwelling | 29.035613 | 32.98004 | 28.85190 | 37.28955 |
Noblella heyeri | Anura | LC | Ground-dwelling | 22.945956 | 32.31802 | 29.00447 | 36.14894 |
Noblella heyeri | Anura | LC | Ground-dwelling | 21.989481 | 32.18031 | 28.87979 | 35.98528 |
Noblella heyeri | Anura | LC | Ground-dwelling | 24.665310 | 32.56558 | 29.12865 | 36.37212 |
Noblella lochites | Anura | EN | Ground-dwelling | 24.698762 | 32.56842 | 28.84816 | 36.42303 |
Noblella lochites | Anura | EN | Ground-dwelling | 23.813822 | 32.43928 | 28.73720 | 36.28110 |
Noblella lochites | Anura | EN | Ground-dwelling | 26.444972 | 32.82324 | 29.31262 | 36.96463 |
Noblella lynchi | Anura | EN | Ground-dwelling | 23.280537 | 32.14561 | 27.92622 | 35.99230 |
Noblella lynchi | Anura | EN | Ground-dwelling | 22.528599 | 32.03585 | 27.87342 | 35.85578 |
Noblella lynchi | Anura | EN | Ground-dwelling | 24.608732 | 32.33950 | 28.36058 | 36.47895 |
Noblella ritarasquinae | Anura | LC | Ground-dwelling | 18.373837 | 31.48859 | 27.79300 | 35.20623 |
Noblella ritarasquinae | Anura | LC | Ground-dwelling | 17.415068 | 31.34955 | 27.58318 | 35.00511 |
Noblella ritarasquinae | Anura | LC | Ground-dwelling | 19.848472 | 31.70243 | 28.08810 | 35.52570 |
Noblella carrascoicola | Anura | LC | Ground-dwelling | 18.373837 | 31.43564 | 27.59858 | 35.32909 |
Noblella carrascoicola | Anura | LC | Ground-dwelling | 17.415068 | 31.29744 | 27.48651 | 35.16779 |
Noblella carrascoicola | Anura | LC | Ground-dwelling | 19.848472 | 31.64819 | 27.70989 | 35.47900 |
Noblella coloma | Anura | CR | Ground-dwelling | 19.805326 | 31.66349 | 27.88829 | 35.72388 |
Noblella coloma | Anura | CR | Ground-dwelling | 17.198230 | 31.28381 | 27.32538 | 35.16355 |
Noblella coloma | Anura | CR | Ground-dwelling | 22.861501 | 32.10859 | 28.14865 | 35.97115 |
Noblella duellmani | Anura | DD | Ground-dwelling | 21.012652 | 31.77498 | 27.72619 | 35.68454 |
Noblella duellmani | Anura | DD | Ground-dwelling | 20.177954 | 31.65337 | 27.69330 | 35.65408 |
Noblella duellmani | Anura | DD | Ground-dwelling | 22.689323 | 32.01925 | 27.90616 | 35.84477 |
Bryophryne bustamantei | Anura | LC | Ground-dwelling | 18.677429 | 29.45213 | 26.09775 | 32.65872 |
Bryophryne bustamantei | Anura | LC | Ground-dwelling | 16.787942 | 29.16458 | 25.91784 | 32.44133 |
Bryophryne bustamantei | Anura | LC | Ground-dwelling | 20.115611 | 29.67100 | 26.22552 | 32.87735 |
Bryophryne zonalis | Anura | DD | Ground-dwelling | 16.733884 | 29.15890 | 25.96243 | 32.14292 |
Bryophryne zonalis | Anura | DD | Ground-dwelling | 13.215925 | 28.63478 | 25.36870 | 31.47989 |
Bryophryne zonalis | Anura | DD | Ground-dwelling | 18.422273 | 29.41044 | 26.46214 | 32.61343 |
Euparkerella brasiliensis | Anura | LC | Ground-dwelling | 26.332966 | 32.56940 | 28.50364 | 36.60806 |
Euparkerella brasiliensis | Anura | LC | Ground-dwelling | 25.152380 | 32.39901 | 28.35358 | 36.39418 |
Euparkerella brasiliensis | Anura | LC | Ground-dwelling | 28.199008 | 32.83870 | 28.75882 | 36.98707 |
Euparkerella cochranae | Anura | LC | Ground-dwelling | 25.911811 | 32.49211 | 28.39962 | 36.30936 |
Euparkerella cochranae | Anura | LC | Ground-dwelling | 24.894809 | 32.34793 | 28.35094 | 36.19025 |
Euparkerella cochranae | Anura | LC | Ground-dwelling | 27.611345 | 32.73304 | 28.72124 | 36.82387 |
Euparkerella tridactyla | Anura | VU | Ground-dwelling | 25.507727 | 32.49328 | 28.41691 | 36.56582 |
Euparkerella tridactyla | Anura | VU | Ground-dwelling | 24.733105 | 32.38012 | 28.33986 | 36.43282 |
Euparkerella tridactyla | Anura | VU | Ground-dwelling | 27.100258 | 32.72591 | 28.62863 | 36.93107 |
Euparkerella robusta | Anura | VU | Ground-dwelling | 24.842333 | 32.33861 | 28.04213 | 36.44353 |
Euparkerella robusta | Anura | VU | Ground-dwelling | 24.180948 | 32.24426 | 27.68040 | 36.03102 |
Euparkerella robusta | Anura | VU | Ground-dwelling | 26.164946 | 32.52729 | 28.18056 | 36.62509 |
Holoaden bradei | Anura | CR | Ground-dwelling | 26.367176 | 32.59953 | 28.28301 | 36.64100 |
Holoaden bradei | Anura | CR | Ground-dwelling | 25.114381 | 32.41667 | 28.14881 | 36.43560 |
Holoaden bradei | Anura | CR | Ground-dwelling | 28.661754 | 32.93445 | 28.91655 | 37.44933 |
Holoaden pholeter | Anura | DD | Ground-dwelling | 26.644333 | 32.60124 | 28.42050 | 36.51965 |
Holoaden pholeter | Anura | DD | Ground-dwelling | 25.472962 | 32.43146 | 28.20860 | 36.21141 |
Holoaden pholeter | Anura | DD | Ground-dwelling | 28.583817 | 32.88236 | 28.58627 | 36.84237 |
Holoaden luederwaldti | Anura | DD | Ground-dwelling | 25.472870 | 32.49800 | 28.28922 | 36.58354 |
Holoaden luederwaldti | Anura | DD | Ground-dwelling | 24.211605 | 32.31474 | 28.11557 | 36.40168 |
Holoaden luederwaldti | Anura | DD | Ground-dwelling | 27.609252 | 32.80842 | 28.58178 | 36.93728 |
Psychrophrynella bagrecito | Anura | CR | Ground-dwelling | 16.733884 | 30.94233 | 27.29889 | 34.73546 |
Psychrophrynella bagrecito | Anura | CR | Ground-dwelling | 13.215925 | 30.42263 | 26.52307 | 33.91212 |
Psychrophrynella bagrecito | Anura | CR | Ground-dwelling | 18.422273 | 31.19175 | 27.10047 | 34.60753 |
Ceratophrys testudo | Anura | DD | Ground-dwelling | 22.287150 | 39.68058 | 36.03010 | 42.57750 |
Ceratophrys testudo | Anura | DD | Ground-dwelling | 20.278491 | 39.42046 | 36.23329 | 42.71437 |
Ceratophrys testudo | Anura | DD | Ground-dwelling | 24.609385 | 39.98130 | 36.85402 | 43.43895 |
Ceratophrys calcarata | Anura | LC | Fossorial | 26.912919 | 41.23150 | 37.61872 | 44.86473 |
Ceratophrys calcarata | Anura | LC | Fossorial | 26.117619 | 41.12761 | 37.74918 | 44.90636 |
Ceratophrys calcarata | Anura | LC | Fossorial | 28.531160 | 41.44291 | 37.83995 | 45.17865 |
Ceratophrys cornuta | Anura | LC | Ground-dwelling | 27.306555 | 40.35163 | 36.69419 | 44.23068 |
Ceratophrys cornuta | Anura | LC | Ground-dwelling | 26.582524 | 40.25525 | 36.59001 | 44.11386 |
Ceratophrys cornuta | Anura | LC | Ground-dwelling | 28.856670 | 40.55799 | 36.85795 | 44.48768 |
Ceratophrys stolzmanni | Anura | VU | Fossorial | 24.227053 | 40.86159 | 37.26736 | 44.42852 |
Ceratophrys stolzmanni | Anura | VU | Fossorial | 23.100245 | 40.71495 | 37.11498 | 44.21907 |
Ceratophrys stolzmanni | Anura | VU | Fossorial | 26.141456 | 41.11072 | 37.46422 | 44.74290 |
Ceratophrys ornata | Anura | NT | Fossorial | 22.325708 | 40.60146 | 37.57812 | 43.09587 |
Ceratophrys ornata | Anura | NT | Fossorial | 20.471693 | 40.36639 | 37.48330 | 42.91580 |
Ceratophrys ornata | Anura | NT | Fossorial | 25.701678 | 41.02948 | 37.92392 | 43.63373 |
Chacophrys pierottii | Anura | LC | Fossorial | 24.906794 | 41.26153 | 37.75276 | 45.11115 |
Chacophrys pierottii | Anura | LC | Fossorial | 23.390244 | 41.06738 | 37.56273 | 44.83758 |
Chacophrys pierottii | Anura | LC | Fossorial | 27.548416 | 41.59973 | 38.06267 | 45.62694 |
Lepidobatrachus asper | Anura | NT | Ground-dwelling | 26.241797 | 40.86295 | 37.48387 | 44.46010 |
Lepidobatrachus asper | Anura | NT | Ground-dwelling | 24.558029 | 40.64577 | 37.30113 | 44.22816 |
Lepidobatrachus asper | Anura | NT | Ground-dwelling | 29.106683 | 41.23249 | 37.72916 | 44.83065 |
Lepidobatrachus laevis | Anura | LC | Ground-dwelling | 26.617157 | 40.95258 | 37.32792 | 44.50110 |
Lepidobatrachus laevis | Anura | LC | Ground-dwelling | 25.112827 | 40.75857 | 37.01512 | 44.11625 |
Lepidobatrachus laevis | Anura | LC | Ground-dwelling | 29.231053 | 41.28969 | 37.47769 | 44.80339 |
Insuetophrynus acarpicus | Anura | EN | Stream-dwelling | 16.896544 | 36.06734 | 31.64116 | 40.47928 |
Insuetophrynus acarpicus | Anura | EN | Stream-dwelling | 15.001245 | 35.81699 | 31.78964 | 40.74251 |
Insuetophrynus acarpicus | Anura | EN | Stream-dwelling | 20.736999 | 36.57463 | 31.92824 | 40.94481 |
Rhinoderma darwinii | Anura | EN | Ground-dwelling | 14.554910 | 36.34144 | 31.97901 | 41.43277 |
Rhinoderma darwinii | Anura | EN | Ground-dwelling | 12.563284 | 36.07855 | 31.22381 | 40.73742 |
Rhinoderma darwinii | Anura | EN | Ground-dwelling | 18.797760 | 36.90150 | 32.45971 | 41.88116 |
Rhinoderma rufum | Anura | CR | Ground-dwelling | 18.991084 | 36.90260 | 32.16051 | 41.70085 |
Rhinoderma rufum | Anura | CR | Ground-dwelling | 17.298316 | 36.68050 | 32.02506 | 41.59064 |
Rhinoderma rufum | Anura | CR | Ground-dwelling | 22.242324 | 37.32918 | 32.85379 | 42.44393 |
Telmatobius arequipensis | Anura | NT | Aquatic | 15.193694 | 36.68236 | 32.09192 | 41.30746 |
Telmatobius arequipensis | Anura | NT | Aquatic | 13.556787 | 36.46481 | 31.84717 | 41.08771 |
Telmatobius arequipensis | Anura | NT | Aquatic | 17.949445 | 37.04861 | 32.51233 | 41.63361 |
Telmatobius oxycephalus | Anura | EN | Aquatic | 17.826316 | 37.02970 | 32.67250 | 41.76197 |
Telmatobius oxycephalus | Anura | EN | Aquatic | 16.290223 | 36.82373 | 32.55334 | 41.62939 |
Telmatobius oxycephalus | Anura | EN | Aquatic | 20.029840 | 37.32517 | 32.91077 | 41.90414 |
Telmatobius sanborni | Anura | CR | Semi-aquatic | 16.014487 | 36.86840 | 32.50909 | 41.51255 |
Telmatobius sanborni | Anura | CR | Semi-aquatic | 15.217165 | 36.76232 | 32.23376 | 41.30510 |
Telmatobius sanborni | Anura | CR | Semi-aquatic | 17.722618 | 37.09566 | 32.75121 | 41.74317 |
Telmatobius verrucosus | Anura | CR | Aquatic | 18.508470 | 37.11436 | 32.60405 | 41.67782 |
Telmatobius verrucosus | Anura | CR | Aquatic | 17.604262 | 36.99430 | 32.43852 | 41.52764 |
Telmatobius verrucosus | Anura | CR | Aquatic | 19.881487 | 37.29667 | 32.49020 | 41.59882 |
Telmatobius atacamensis | Anura | CR | Aquatic | 14.220559 | 36.42963 | 31.79247 | 40.80227 |
Telmatobius atacamensis | Anura | CR | Aquatic | 12.439452 | 36.19454 | 31.53943 | 40.50389 |
Telmatobius atacamensis | Anura | CR | Aquatic | 16.530001 | 36.73444 | 31.93254 | 40.95520 |
Telmatobius ignavus | Anura | EN | Semi-aquatic | 22.602751 | 37.60799 | 33.22691 | 42.72372 |
Telmatobius ignavus | Anura | EN | Semi-aquatic | 21.868814 | 37.51000 | 32.76997 | 42.23561 |
Telmatobius ignavus | Anura | EN | Semi-aquatic | 24.173626 | 37.81771 | 33.50276 | 43.01317 |
Telmatobius atahualpai | Anura | VU | Semi-aquatic | 20.045323 | 37.34929 | 33.13509 | 42.30656 |
Telmatobius atahualpai | Anura | VU | Semi-aquatic | 19.139180 | 37.22972 | 33.00363 | 42.18682 |
Telmatobius atahualpai | Anura | VU | Semi-aquatic | 21.649656 | 37.56100 | 32.84496 | 41.97336 |
Telmatobius rimac | Anura | VU | Semi-aquatic | 18.771081 | 37.16657 | 32.13361 | 41.48283 |
Telmatobius rimac | Anura | VU | Semi-aquatic | 17.765904 | 37.03758 | 32.60732 | 41.92091 |
Telmatobius rimac | Anura | VU | Semi-aquatic | 20.470933 | 37.38470 | 32.79591 | 42.15209 |
Telmatobius yuracare | Anura | CR | Aquatic | 22.415740 | 37.60445 | 33.32225 | 42.54352 |
Telmatobius yuracare | Anura | CR | Aquatic | 21.616824 | 37.49610 | 33.23388 | 42.40555 |
Telmatobius yuracare | Anura | CR | Aquatic | 23.646629 | 37.77138 | 33.39877 | 42.66805 |
Telmatobius simonsi | Anura | CR | Aquatic | 19.853920 | 37.23824 | 32.65759 | 42.26374 |
Telmatobius simonsi | Anura | CR | Aquatic | 18.872988 | 37.10884 | 32.48728 | 42.02681 |
Telmatobius simonsi | Anura | CR | Aquatic | 21.421424 | 37.44503 | 32.63826 | 42.21254 |
Telmatobius brevipes | Anura | VU | Semi-aquatic | 19.853563 | 37.28437 | 32.78491 | 41.71359 |
Telmatobius brevipes | Anura | VU | Semi-aquatic | 18.839966 | 37.15321 | 32.58524 | 41.44358 |
Telmatobius brevipes | Anura | VU | Semi-aquatic | 21.687513 | 37.52167 | 32.95072 | 41.99740 |
Telmatobius colanensis | Anura | DD | Stream-dwelling | 24.022160 | 36.96643 | 31.98397 | 41.07020 |
Telmatobius colanensis | Anura | DD | Stream-dwelling | 23.320574 | 36.87117 | 31.91433 | 40.95974 |
Telmatobius colanensis | Anura | DD | Stream-dwelling | 25.414498 | 37.15547 | 32.51887 | 41.58486 |
Telmatobius brevirostris | Anura | EN | Semi-aquatic | 19.652437 | 37.33548 | 32.82187 | 42.10282 |
Telmatobius brevirostris | Anura | EN | Semi-aquatic | 18.682694 | 37.20549 | 32.65336 | 42.02176 |
Telmatobius brevirostris | Anura | EN | Semi-aquatic | 21.586434 | 37.59473 | 33.07605 | 42.39690 |
Telmatobius carrillae | Anura | VU | Semi-aquatic | 15.782374 | 36.74297 | 32.35075 | 41.46689 |
Telmatobius carrillae | Anura | VU | Semi-aquatic | 14.481379 | 36.57214 | 32.11483 | 41.18208 |
Telmatobius carrillae | Anura | VU | Semi-aquatic | 18.216587 | 37.06259 | 32.40627 | 41.59612 |
Telmatobius peruvianus | Anura | VU | Semi-aquatic | 14.075589 | 36.52518 | 32.02240 | 41.13452 |
Telmatobius peruvianus | Anura | VU | Semi-aquatic | 12.608172 | 36.32893 | 31.74732 | 40.90648 |
Telmatobius peruvianus | Anura | VU | Semi-aquatic | 16.965293 | 36.91164 | 32.32897 | 41.39697 |
Telmatobius hockingi | Anura | DD | Stream-dwelling | 16.959671 | 36.05219 | 31.82969 | 40.36236 |
Telmatobius hockingi | Anura | DD | Stream-dwelling | 15.614832 | 35.87371 | 31.66360 | 40.23758 |
Telmatobius hockingi | Anura | DD | Stream-dwelling | 19.680108 | 36.41323 | 32.23355 | 40.82085 |
Telmatobius chusmisensis | Anura | EN | Stream-dwelling | 15.196790 | 35.85938 | 31.18952 | 40.23011 |
Telmatobius chusmisensis | Anura | EN | Stream-dwelling | 13.900594 | 35.68812 | 31.06813 | 40.14789 |
Telmatobius chusmisensis | Anura | EN | Stream-dwelling | 17.990400 | 36.22848 | 31.45114 | 40.42196 |
Telmatobius intermedius | Anura | EN | Semi-aquatic | 15.030051 | 36.67614 | 32.46292 | 41.50750 |
Telmatobius intermedius | Anura | EN | Semi-aquatic | 13.966453 | 36.53615 | 32.34220 | 41.40759 |
Telmatobius intermedius | Anura | EN | Semi-aquatic | 16.659162 | 36.89056 | 32.73752 | 41.76536 |
Telmatobius scrocchii | Anura | CR | Aquatic | 20.449819 | 37.34171 | 32.94290 | 42.28887 |
Telmatobius scrocchii | Anura | CR | Aquatic | 18.766404 | 37.11844 | 32.86866 | 42.17252 |
Telmatobius scrocchii | Anura | CR | Aquatic | 23.515187 | 37.74827 | 33.25754 | 42.63713 |
Telmatobius contrerasi | Anura | EN | Stream-dwelling | 20.270425 | 36.56698 | 31.89897 | 40.92427 |
Telmatobius contrerasi | Anura | EN | Stream-dwelling | 18.349399 | 36.31333 | 31.74695 | 40.75535 |
Telmatobius contrerasi | Anura | EN | Stream-dwelling | 24.312645 | 37.10073 | 32.38215 | 41.37160 |
Telmatobius philippii | Anura | CR | Aquatic | 9.961225 | 35.99503 | 30.76698 | 40.49499 |
Telmatobius philippii | Anura | CR | Aquatic | 7.130359 | 35.62496 | 30.67493 | 40.41389 |
Telmatobius philippii | Anura | CR | Aquatic | 12.835139 | 36.37073 | 31.22702 | 40.70760 |
Telmatobius culeus | Anura | EN | Aquatic | 15.986860 | 36.65348 | 32.35237 | 41.39899 |
Telmatobius culeus | Anura | EN | Aquatic | 14.644014 | 36.47614 | 32.22462 | 41.22613 |
Telmatobius culeus | Anura | EN | Aquatic | 18.014112 | 36.92121 | 32.51553 | 41.57780 |
Telmatobius gigas | Anura | EN | Stream-dwelling | 15.285734 | 35.83752 | 31.38277 | 40.14594 |
Telmatobius gigas | Anura | EN | Stream-dwelling | 14.176779 | 35.68960 | 31.21796 | 39.96077 |
Telmatobius gigas | Anura | EN | Stream-dwelling | 17.645707 | 36.15231 | 31.76099 | 40.55746 |
Telmatobius hintoni | Anura | VU | Aquatic | 18.054970 | 36.99024 | 32.64899 | 41.97497 |
Telmatobius hintoni | Anura | VU | Aquatic | 17.011046 | 36.85085 | 32.51169 | 41.81031 |
Telmatobius hintoni | Anura | VU | Aquatic | 19.791575 | 37.22211 | 32.70192 | 42.04104 |
Telmatobius huayra | Anura | VU | Aquatic | 14.670745 | 36.52645 | 32.00361 | 40.76882 |
Telmatobius huayra | Anura | VU | Aquatic | 12.632379 | 36.25668 | 31.60377 | 40.41219 |
Telmatobius huayra | Anura | VU | Aquatic | 16.926552 | 36.82501 | 32.27021 | 41.06467 |
Telmatobius zapahuirensis | Anura | EN | Semi-aquatic | 15.686612 | 36.71382 | 32.44070 | 41.21753 |
Telmatobius zapahuirensis | Anura | EN | Semi-aquatic | 14.375149 | 36.54054 | 32.09372 | 40.89952 |
Telmatobius zapahuirensis | Anura | EN | Semi-aquatic | 19.970399 | 37.27983 | 32.81524 | 41.46537 |
Telmatobius dankoi | Anura | CR | Aquatic | 14.290307 | 36.48186 | 32.05909 | 40.91633 |
Telmatobius dankoi | Anura | CR | Aquatic | 13.096087 | 36.32346 | 31.86669 | 40.77406 |
Telmatobius dankoi | Anura | CR | Aquatic | 16.515169 | 36.77695 | 32.39033 | 41.27147 |
Telmatobius vilamensis | Anura | CR | Semi-aquatic | 14.290307 | 36.59153 | 32.15219 | 40.77352 |
Telmatobius vilamensis | Anura | CR | Semi-aquatic | 13.096087 | 36.43337 | 32.09329 | 40.74231 |
Telmatobius vilamensis | Anura | CR | Semi-aquatic | 16.515169 | 36.88619 | 32.55698 | 41.17988 |
Telmatobius degener | Anura | DD | Semi-aquatic | 22.355543 | 37.55647 | 32.88079 | 41.79309 |
Telmatobius degener | Anura | DD | Semi-aquatic | 21.452041 | 37.43570 | 32.65797 | 41.57281 |
Telmatobius degener | Anura | DD | Semi-aquatic | 23.805729 | 37.75033 | 33.12863 | 42.02051 |
Telmatobius fronteriensis | Anura | CR | Stream-dwelling | 11.652388 | 35.31001 | 30.81920 | 39.63066 |
Telmatobius fronteriensis | Anura | CR | Stream-dwelling | 9.743338 | 35.05904 | 30.51537 | 39.40457 |
Telmatobius fronteriensis | Anura | CR | Stream-dwelling | 14.394633 | 35.67052 | 31.24471 | 40.07397 |
Telmatobius schreiteri | Anura | EN | Aquatic | 19.940675 | 37.18768 | 32.22616 | 41.42327 |
Telmatobius schreiteri | Anura | EN | Aquatic | 18.243868 | 36.96054 | 32.02264 | 41.15716 |
Telmatobius schreiteri | Anura | EN | Aquatic | 22.839281 | 37.57571 | 32.45120 | 41.83656 |
Telmatobius halli | Anura | DD | Semi-aquatic | 9.961225 | 36.04569 | 31.68110 | 40.59236 |
Telmatobius halli | Anura | DD | Semi-aquatic | 7.130359 | 35.67545 | 31.24956 | 40.14571 |
Telmatobius halli | Anura | DD | Semi-aquatic | 12.835139 | 36.42157 | 31.92455 | 40.84113 |
Telmatobius jelskii | Anura | NT | Semi-aquatic | 16.647075 | 36.86423 | 32.55224 | 41.25004 |
Telmatobius jelskii | Anura | NT | Semi-aquatic | 14.606689 | 36.59503 | 32.20584 | 40.88968 |
Telmatobius jelskii | Anura | NT | Semi-aquatic | 18.543168 | 37.11440 | 32.67272 | 41.41995 |
Telmatobius hauthali | Anura | EN | Aquatic | 11.675438 | 36.22020 | 31.35991 | 40.65597 |
Telmatobius hauthali | Anura | EN | Aquatic | 9.273400 | 35.89793 | 31.02244 | 40.45853 |
Telmatobius hauthali | Anura | EN | Aquatic | 16.347204 | 36.84700 | 32.37982 | 41.57654 |
Telmatobius necopinus | Anura | DD | Stream-dwelling | 20.305860 | 36.58888 | 31.97675 | 41.00868 |
Telmatobius necopinus | Anura | DD | Stream-dwelling | 19.198666 | 36.44230 | 31.80656 | 40.86366 |
Telmatobius necopinus | Anura | DD | Stream-dwelling | 22.523955 | 36.88254 | 32.12674 | 41.11372 |
Telmatobius hypselocephalus | Anura | EN | Aquatic | 14.284302 | 36.49755 | 32.21021 | 41.14865 |
Telmatobius hypselocephalus | Anura | EN | Aquatic | 12.509623 | 36.26521 | 31.68270 | 40.61802 |
Telmatobius hypselocephalus | Anura | EN | Aquatic | 16.526495 | 36.79109 | 32.36444 | 41.24121 |
Telmatobius mayoloi | Anura | EN | Aquatic | 21.579756 | 37.50409 | 32.54525 | 41.86552 |
Telmatobius mayoloi | Anura | EN | Aquatic | 20.599594 | 37.37097 | 32.35283 | 41.63721 |
Telmatobius mayoloi | Anura | EN | Aquatic | 23.711532 | 37.79362 | 32.67995 | 42.10434 |
Telmatobius platycephalus | Anura | EN | Aquatic | 15.292144 | 36.53612 | 32.27934 | 41.33460 |
Telmatobius platycephalus | Anura | EN | Aquatic | 13.819084 | 36.33953 | 32.06598 | 41.10572 |
Telmatobius platycephalus | Anura | EN | Aquatic | 17.481591 | 36.82833 | 32.36084 | 41.34000 |
Telmatobius latirostris | Anura | EN | Semi-aquatic | 22.730668 | 37.64105 | 33.34913 | 42.07805 |
Telmatobius latirostris | Anura | EN | Semi-aquatic | 22.059360 | 37.55320 | 33.21743 | 41.95152 |
Telmatobius latirostris | Anura | EN | Semi-aquatic | 23.880819 | 37.79155 | 33.45594 | 42.18283 |
Telmatobius timens | Anura | CR | Semi-aquatic | 16.478668 | 36.82584 | 32.03917 | 40.87240 |
Telmatobius timens | Anura | CR | Semi-aquatic | 14.927917 | 36.62238 | 31.83092 | 40.66628 |
Telmatobius timens | Anura | CR | Semi-aquatic | 17.970679 | 37.02159 | 32.34479 | 41.19377 |
Telmatobius marmoratus | Anura | EN | Semi-aquatic | 15.639570 | 36.73350 | 31.88228 | 40.93930 |
Telmatobius marmoratus | Anura | EN | Semi-aquatic | 13.858206 | 36.49728 | 31.70512 | 40.71169 |
Telmatobius marmoratus | Anura | EN | Semi-aquatic | 17.952909 | 37.04027 | 32.55722 | 41.57864 |
Telmatobius stephani | Anura | EN | Aquatic | 20.569543 | 37.28538 | 32.95766 | 42.30938 |
Telmatobius stephani | Anura | EN | Aquatic | 18.878943 | 37.06397 | 32.77982 | 42.05804 |
Telmatobius stephani | Anura | EN | Aquatic | 23.553602 | 37.67618 | 33.44411 | 42.89638 |
Telmatobius niger | Anura | CR | Semi-aquatic | 23.257081 | 37.75249 | 32.67504 | 42.32632 |
Telmatobius niger | Anura | CR | Semi-aquatic | 21.670766 | 37.53631 | 32.38381 | 41.94037 |
Telmatobius niger | Anura | CR | Semi-aquatic | 25.510048 | 38.05952 | 32.93721 | 42.64908 |
Telmatobius pefauri | Anura | CR | Stream-dwelling | 15.686612 | 35.77395 | 31.26446 | 40.20089 |
Telmatobius pefauri | Anura | CR | Stream-dwelling | 14.375149 | 35.59838 | 30.68769 | 39.61981 |
Telmatobius pefauri | Anura | CR | Stream-dwelling | 19.970399 | 36.34745 | 31.76156 | 40.72440 |
Telmatobius punctatus | Anura | EN | Semi-aquatic | 19.199032 | 37.14159 | 32.80724 | 42.13016 |
Telmatobius punctatus | Anura | EN | Semi-aquatic | 18.184274 | 37.00430 | 32.04797 | 41.39135 |
Telmatobius punctatus | Anura | EN | Semi-aquatic | 21.218805 | 37.41484 | 33.02403 | 42.16945 |
Telmatobius pinguiculus | Anura | EN | Aquatic | 19.070819 | 37.07256 | 32.52056 | 41.67885 |
Telmatobius pinguiculus | Anura | EN | Aquatic | 17.326470 | 36.84181 | 31.93044 | 41.03618 |
Telmatobius pinguiculus | Anura | EN | Aquatic | 22.223454 | 37.48961 | 32.61639 | 41.83340 |
Telmatobius pisanoi | Anura | EN | Aquatic | 13.616642 | 36.34893 | 31.52444 | 40.79732 |
Telmatobius pisanoi | Anura | EN | Aquatic | 11.122906 | 36.02159 | 31.18080 | 40.52454 |
Telmatobius pisanoi | Anura | EN | Aquatic | 18.731234 | 37.02030 | 32.35699 | 41.57563 |
Telmatobius thompsoni | Anura | DD | Semi-aquatic | 22.355543 | 37.65492 | 32.23154 | 41.63945 |
Telmatobius thompsoni | Anura | DD | Semi-aquatic | 21.452041 | 37.53423 | 32.94506 | 42.35988 |
Telmatobius thompsoni | Anura | DD | Semi-aquatic | 23.805729 | 37.84863 | 32.73699 | 42.17760 |
Telmatobius truebae | Anura | VU | Semi-aquatic | 21.563883 | 37.50832 | 33.07346 | 42.20151 |
Telmatobius truebae | Anura | VU | Semi-aquatic | 20.789279 | 37.40536 | 32.97756 | 42.13175 |
Telmatobius truebae | Anura | VU | Semi-aquatic | 22.846839 | 37.67885 | 33.23230 | 42.44657 |
Cycloramphus acangatan | Anura | VU | Ground-dwelling | 25.870686 | 37.57864 | 33.22260 | 42.26001 |
Cycloramphus acangatan | Anura | VU | Ground-dwelling | 24.316403 | 37.37103 | 33.37151 | 42.34540 |
Cycloramphus acangatan | Anura | VU | Ground-dwelling | 28.503224 | 37.93028 | 33.54066 | 42.64059 |
Cycloramphus valae | Anura | DD | Stream-dwelling | 24.552864 | 36.74066 | 32.37220 | 41.33180 |
Cycloramphus valae | Anura | DD | Stream-dwelling | 22.689759 | 36.49510 | 31.67398 | 40.61798 |
Cycloramphus valae | Anura | DD | Stream-dwelling | 27.254547 | 37.09674 | 32.70374 | 41.64326 |
Cycloramphus eleutherodactylus | Anura | DD | Ground-dwelling | 25.752671 | 37.49341 | 33.07930 | 41.65519 |
Cycloramphus eleutherodactylus | Anura | DD | Ground-dwelling | 24.417708 | 37.31427 | 32.89549 | 41.51258 |
Cycloramphus eleutherodactylus | Anura | DD | Ground-dwelling | 28.131597 | 37.81263 | 33.45295 | 42.09378 |
Cycloramphus juimirim | Anura | DD | Stream-dwelling | 26.156402 | 36.96587 | 32.82419 | 41.44348 |
Cycloramphus juimirim | Anura | DD | Stream-dwelling | 24.610234 | 36.75874 | 32.64141 | 41.25312 |
Cycloramphus juimirim | Anura | DD | Stream-dwelling | 28.684670 | 37.30456 | 33.15241 | 41.91831 |
Cycloramphus asper | Anura | DD | Stream-dwelling | 24.385299 | 36.86822 | 32.45574 | 41.18890 |
Cycloramphus asper | Anura | DD | Stream-dwelling | 22.768352 | 36.65003 | 31.83645 | 40.53655 |
Cycloramphus asper | Anura | DD | Stream-dwelling | 26.844732 | 37.20009 | 32.73788 | 41.50384 |
Cycloramphus izecksohni | Anura | DD | Stream-dwelling | 24.533362 | 36.86343 | 32.56902 | 41.32835 |
Cycloramphus izecksohni | Anura | DD | Stream-dwelling | 22.822049 | 36.63156 | 32.29171 | 40.94022 |
Cycloramphus izecksohni | Anura | DD | Stream-dwelling | 27.115138 | 37.21325 | 32.93762 | 41.82079 |
Cycloramphus bolitoglossus | Anura | DD | Ground-dwelling | 24.663094 | 37.48319 | 32.63968 | 41.66320 |
Cycloramphus bolitoglossus | Anura | DD | Ground-dwelling | 22.984008 | 37.25504 | 32.79871 | 41.79707 |
Cycloramphus bolitoglossus | Anura | DD | Ground-dwelling | 27.257925 | 37.83578 | 32.94899 | 42.01328 |
Cycloramphus granulosus | Anura | DD | Stream-dwelling | 25.352651 | 36.91001 | 32.45512 | 41.31123 |
Cycloramphus granulosus | Anura | DD | Stream-dwelling | 24.149127 | 36.74824 | 32.32398 | 41.07395 |
Cycloramphus granulosus | Anura | DD | Stream-dwelling | 27.465932 | 37.19407 | 32.64093 | 41.68100 |
Cycloramphus boraceiensis | Anura | LC | Stream-dwelling | 25.631020 | 37.01670 | 32.82649 | 41.72760 |
Cycloramphus boraceiensis | Anura | LC | Stream-dwelling | 24.460049 | 36.85884 | 32.68852 | 41.54084 |
Cycloramphus boraceiensis | Anura | LC | Stream-dwelling | 27.574008 | 37.27863 | 32.87103 | 41.87820 |
Cycloramphus brasiliensis | Anura | NT | Stream-dwelling | 26.344369 | 37.11469 | 33.02700 | 41.85872 |
Cycloramphus brasiliensis | Anura | NT | Stream-dwelling | 25.139713 | 36.95239 | 32.58565 | 41.34379 |
Cycloramphus brasiliensis | Anura | NT | Stream-dwelling | 28.353257 | 37.38535 | 33.33459 | 42.16965 |
Cycloramphus diringshofeni | Anura | DD | Ground-dwelling | 24.642605 | 37.53535 | 33.42039 | 41.94085 |
Cycloramphus diringshofeni | Anura | DD | Ground-dwelling | 22.960699 | 37.30789 | 33.29546 | 41.76530 |
Cycloramphus diringshofeni | Anura | DD | Ground-dwelling | 27.166853 | 37.87672 | 33.56282 | 42.21003 |
Cycloramphus organensis | Anura | DD | Ground-dwelling | 26.021599 | 37.61220 | 32.94601 | 41.67064 |
Cycloramphus organensis | Anura | DD | Ground-dwelling | 24.831798 | 37.45361 | 32.91930 | 41.56314 |
Cycloramphus organensis | Anura | DD | Ground-dwelling | 27.814199 | 37.85112 | 33.08805 | 41.86387 |
Zachaenus carvalhoi | Anura | DD | Ground-dwelling | 25.507727 | 37.60580 | 33.29313 | 42.35241 |
Zachaenus carvalhoi | Anura | DD | Ground-dwelling | 24.733105 | 37.50051 | 33.18783 | 42.20521 |
Zachaenus carvalhoi | Anura | DD | Ground-dwelling | 27.100258 | 37.82228 | 33.41043 | 42.51577 |
Zachaenus parvulus | Anura | LC | Ground-dwelling | 25.526126 | 37.51316 | 33.30526 | 42.10706 |
Zachaenus parvulus | Anura | LC | Ground-dwelling | 24.521739 | 37.37876 | 33.24498 | 42.02961 |
Zachaenus parvulus | Anura | LC | Ground-dwelling | 27.241002 | 37.74264 | 33.44973 | 42.27427 |
Cycloramphus carvalhoi | Anura | DD | Ground-dwelling | 26.367176 | 37.69988 | 33.55864 | 42.37435 |
Cycloramphus carvalhoi | Anura | DD | Ground-dwelling | 25.114381 | 37.53149 | 33.51811 | 42.26062 |
Cycloramphus carvalhoi | Anura | DD | Ground-dwelling | 28.661754 | 38.00828 | 33.81170 | 42.72473 |
Cycloramphus stejnegeri | Anura | DD | Ground-dwelling | 26.332966 | 37.68033 | 33.05405 | 41.68841 |
Cycloramphus stejnegeri | Anura | DD | Ground-dwelling | 25.152380 | 37.52460 | 32.92322 | 41.54468 |
Cycloramphus stejnegeri | Anura | DD | Ground-dwelling | 28.199008 | 37.92646 | 33.20766 | 41.92822 |
Cycloramphus catarinensis | Anura | DD | Ground-dwelling | 24.562331 | 37.39562 | 32.94342 | 41.76600 |
Cycloramphus catarinensis | Anura | DD | Ground-dwelling | 23.032979 | 37.19145 | 32.62341 | 41.43177 |
Cycloramphus catarinensis | Anura | DD | Ground-dwelling | 27.077593 | 37.73140 | 33.27813 | 42.24130 |
Cycloramphus faustoi | Anura | CR | Stream-dwelling | 24.282093 | 36.78027 | 32.21960 | 41.26160 |
Cycloramphus faustoi | Anura | CR | Stream-dwelling | 23.148617 | 36.62768 | 31.83404 | 40.76727 |
Cycloramphus faustoi | Anura | CR | Stream-dwelling | 26.194774 | 37.03774 | 32.29556 | 41.42035 |
Cycloramphus cedrensis | Anura | DD | Stream-dwelling | 24.642605 | 36.87554 | 32.28489 | 41.18587 |
Cycloramphus cedrensis | Anura | DD | Stream-dwelling | 22.960699 | 36.64919 | 32.10741 | 41.01516 |
Cycloramphus cedrensis | Anura | DD | Stream-dwelling | 27.166853 | 37.21525 | 32.42849 | 41.51293 |
Cycloramphus lutzorum | Anura | DD | Stream-dwelling | 25.409240 | 36.91312 | 32.25544 | 40.96722 |
Cycloramphus lutzorum | Anura | DD | Stream-dwelling | 23.950789 | 36.71870 | 32.02960 | 40.69079 |
Cycloramphus lutzorum | Anura | DD | Stream-dwelling | 27.766121 | 37.22730 | 32.49554 | 41.31451 |
Cycloramphus semipalmatus | Anura | NT | Stream-dwelling | 25.524695 | 36.94662 | 32.67534 | 41.54230 |
Cycloramphus semipalmatus | Anura | NT | Stream-dwelling | 24.056721 | 36.74914 | 32.05140 | 40.93120 |
Cycloramphus semipalmatus | Anura | NT | Stream-dwelling | 27.945969 | 37.27234 | 32.80923 | 41.80087 |
Cycloramphus dubius | Anura | LC | Stream-dwelling | 25.767088 | 36.94137 | 32.69589 | 41.23281 |
Cycloramphus dubius | Anura | LC | Stream-dwelling | 24.218770 | 36.73347 | 32.34058 | 40.79620 |
Cycloramphus dubius | Anura | LC | Stream-dwelling | 28.316567 | 37.28372 | 32.94361 | 41.62668 |
Cycloramphus duseni | Anura | DD | Stream-dwelling | 23.988291 | 36.74882 | 32.49668 | 41.12369 |
Cycloramphus duseni | Anura | DD | Stream-dwelling | 22.173760 | 36.50612 | 32.41688 | 40.95549 |
Cycloramphus duseni | Anura | DD | Stream-dwelling | 26.632199 | 37.10245 | 32.72109 | 41.44637 |
Cycloramphus migueli | Anura | DD | Ground-dwelling | 25.192998 | 37.50521 | 32.67976 | 41.69661 |
Cycloramphus migueli | Anura | DD | Ground-dwelling | 24.420885 | 37.40240 | 32.53340 | 41.53644 |
Cycloramphus migueli | Anura | DD | Ground-dwelling | 26.685840 | 37.70400 | 32.96730 | 42.04390 |
Cycloramphus rhyakonastes | Anura | LC | Stream-dwelling | 23.988291 | 36.66006 | 31.59254 | 40.72622 |
Cycloramphus rhyakonastes | Anura | LC | Stream-dwelling | 22.173760 | 36.41732 | 32.02103 | 41.05782 |
Cycloramphus rhyakonastes | Anura | LC | Stream-dwelling | 26.632199 | 37.01376 | 31.93540 | 41.09714 |
Cycloramphus mirandaribeiroi | Anura | DD | Stream-dwelling | 23.836674 | 36.73189 | 32.42489 | 41.08247 |
Cycloramphus mirandaribeiroi | Anura | DD | Stream-dwelling | 21.947547 | 36.47966 | 32.11129 | 40.84375 |
Cycloramphus mirandaribeiroi | Anura | DD | Stream-dwelling | 26.445416 | 37.08021 | 32.72901 | 41.63390 |
Cycloramphus ohausi | Anura | DD | Stream-dwelling | 26.332966 | 37.10121 | 32.47328 | 41.48609 |
Cycloramphus ohausi | Anura | DD | Stream-dwelling | 25.152380 | 36.94168 | 31.92056 | 40.89542 |
Cycloramphus ohausi | Anura | DD | Stream-dwelling | 28.199008 | 37.35335 | 32.42302 | 41.41334 |
Cycloramphus bandeirensis | Anura | DD | Stream-dwelling | 25.556465 | 37.01507 | 32.40901 | 41.09319 |
Cycloramphus bandeirensis | Anura | DD | Stream-dwelling | 24.708649 | 36.90342 | 32.33151 | 41.02570 |
Cycloramphus bandeirensis | Anura | DD | Stream-dwelling | 27.149076 | 37.22481 | 32.68632 | 41.34704 |
Cycloramphus fuliginosus | Anura | LC | Stream-dwelling | 25.413467 | 36.87536 | 32.70359 | 41.51762 |
Cycloramphus fuliginosus | Anura | LC | Stream-dwelling | 24.543282 | 36.76160 | 32.62653 | 41.45518 |
Cycloramphus fuliginosus | Anura | LC | Stream-dwelling | 27.002577 | 37.08311 | 32.73791 | 41.63983 |
Thoropa lutzi | Anura | EN | Stream-dwelling | 25.770745 | 37.06701 | 32.86424 | 41.92015 |
Thoropa lutzi | Anura | EN | Stream-dwelling | 24.789542 | 36.93698 | 32.82375 | 41.83654 |
Thoropa lutzi | Anura | EN | Stream-dwelling | 27.491832 | 37.29508 | 33.06145 | 42.24076 |
Thoropa megatympanum | Anura | LC | Stream-dwelling | 24.943914 | 36.90395 | 32.47509 | 41.59704 |
Thoropa megatympanum | Anura | LC | Stream-dwelling | 23.717986 | 36.74288 | 32.11817 | 41.23204 |
Thoropa megatympanum | Anura | LC | Stream-dwelling | 27.586350 | 37.25113 | 32.76704 | 41.96854 |
Thoropa miliaris | Anura | LC | Stream-dwelling | 25.286156 | 36.96781 | 32.13413 | 41.60063 |
Thoropa miliaris | Anura | LC | Stream-dwelling | 24.218295 | 36.82634 | 31.99567 | 41.40677 |
Thoropa miliaris | Anura | LC | Stream-dwelling | 27.356202 | 37.24203 | 32.35514 | 41.90440 |
Thoropa petropolitana | Anura | VU | Stream-dwelling | 25.503070 | 37.04978 | 32.68335 | 41.82336 |
Thoropa petropolitana | Anura | VU | Stream-dwelling | 24.375431 | 36.89823 | 32.55936 | 41.67430 |
Thoropa petropolitana | Anura | VU | Stream-dwelling | 27.451605 | 37.31166 | 32.82680 | 42.08833 |
Thoropa saxatilis | Anura | NT | Stream-dwelling | 24.552864 | 36.86619 | 32.34348 | 41.21298 |
Thoropa saxatilis | Anura | NT | Stream-dwelling | 22.689759 | 36.62344 | 32.29718 | 41.09830 |
Thoropa saxatilis | Anura | NT | Stream-dwelling | 27.254547 | 37.21819 | 32.50642 | 41.47741 |
Atelognathus ceii | Anura | DD | Semi-aquatic | 11.222384 | 35.27751 | 31.80433 | 39.09572 |
Atelognathus ceii | Anura | DD | Semi-aquatic | 8.425566 | 34.90704 | 31.37298 | 38.73961 |
Atelognathus ceii | Anura | DD | Semi-aquatic | 16.385938 | 35.96147 | 32.34817 | 39.78666 |
Atelognathus solitarius | Anura | DD | Ground-dwelling | 14.501408 | 35.56340 | 31.97568 | 39.25667 |
Atelognathus solitarius | Anura | DD | Ground-dwelling | 12.124979 | 35.24293 | 31.50891 | 38.76527 |
Atelognathus solitarius | Anura | DD | Ground-dwelling | 19.587023 | 36.24920 | 32.63285 | 40.04405 |
Atelognathus patagonicus | Anura | CR | Semi-aquatic | 16.604413 | 36.10567 | 32.03718 | 39.84986 |
Atelognathus patagonicus | Anura | CR | Semi-aquatic | 14.134320 | 35.77827 | 31.68778 | 39.53575 |
Atelognathus patagonicus | Anura | CR | Semi-aquatic | 21.672151 | 36.77737 | 32.72086 | 40.60177 |
Atelognathus nitoi | Anura | VU | Semi-aquatic | 14.880647 | 35.89949 | 32.54062 | 40.04295 |
Atelognathus nitoi | Anura | VU | Semi-aquatic | 12.461660 | 35.58066 | 32.20235 | 39.79673 |
Atelognathus nitoi | Anura | VU | Semi-aquatic | 20.141416 | 36.59287 | 33.11122 | 40.79366 |
Atelognathus praebasalticus | Anura | EN | Ground-dwelling | 17.087758 | 35.98420 | 32.12073 | 39.68755 |
Atelognathus praebasalticus | Anura | EN | Ground-dwelling | 14.608618 | 35.64836 | 31.76769 | 39.37377 |
Atelognathus praebasalticus | Anura | EN | Ground-dwelling | 21.677408 | 36.60595 | 32.82034 | 40.68179 |
Atelognathus salai | Anura | LC | Semi-aquatic | 10.850744 | 35.35361 | 31.22170 | 39.06609 |
Atelognathus salai | Anura | LC | Semi-aquatic | 8.495264 | 35.03989 | 31.08575 | 38.95226 |
Atelognathus salai | Anura | LC | Semi-aquatic | 16.186460 | 36.06425 | 31.55347 | 39.36630 |
Atelognathus reverberii | Anura | VU | Semi-aquatic | 15.682549 | 36.04866 | 32.52745 | 40.38524 |
Atelognathus reverberii | Anura | VU | Semi-aquatic | 13.183936 | 35.71472 | 32.17548 | 40.00553 |
Atelognathus reverberii | Anura | VU | Semi-aquatic | 20.126926 | 36.64267 | 32.97767 | 40.89173 |
Batrachyla antartandica | Anura | LC | Ground-dwelling | 12.677106 | 35.28408 | 32.57641 | 37.66293 |
Batrachyla antartandica | Anura | LC | Ground-dwelling | 10.862075 | 35.04279 | 32.53416 | 37.64865 |
Batrachyla antartandica | Anura | LC | Ground-dwelling | 16.640417 | 35.81094 | 32.94710 | 38.02179 |
Batrachyla nibaldoi | Anura | LC | Ground-dwelling | 8.346920 | 34.65732 | 32.08548 | 37.62808 |
Batrachyla nibaldoi | Anura | LC | Ground-dwelling | 6.207373 | 34.37321 | 31.76937 | 37.50656 |
Batrachyla nibaldoi | Anura | LC | Ground-dwelling | 13.779818 | 35.37877 | 32.81656 | 38.14254 |
Batrachyla fitzroya | Anura | VU | Ground-dwelling | 14.997248 | 35.59286 | 32.52591 | 38.38383 |
Batrachyla fitzroya | Anura | VU | Ground-dwelling | 12.953649 | 35.31704 | 32.14802 | 37.91645 |
Batrachyla fitzroya | Anura | VU | Ground-dwelling | 19.592119 | 36.21300 | 33.10668 | 39.12065 |
Batrachyla leptopus | Anura | LC | Ground-dwelling | 13.877476 | 35.39866 | 32.63467 | 39.00961 |
Batrachyla leptopus | Anura | LC | Ground-dwelling | 11.934311 | 35.13226 | 32.17344 | 38.53033 |
Batrachyla leptopus | Anura | LC | Ground-dwelling | 17.975538 | 35.96047 | 33.03551 | 39.41284 |
Chaltenobatrachus grandisonae | Anura | LC | Ground-dwelling | 8.356661 | 34.20326 | 31.36386 | 37.36161 |
Chaltenobatrachus grandisonae | Anura | LC | Ground-dwelling | 6.647042 | 33.97510 | 30.92140 | 37.03748 |
Chaltenobatrachus grandisonae | Anura | LC | Ground-dwelling | 12.902482 | 34.80992 | 31.84852 | 37.71157 |
Crossodactylus aeneus | Anura | DD | Stream-dwelling | 25.674941 | 36.44271 | 32.59125 | 39.94240 |
Crossodactylus aeneus | Anura | DD | Stream-dwelling | 24.420123 | 36.27638 | 32.47608 | 39.75906 |
Crossodactylus aeneus | Anura | DD | Stream-dwelling | 27.820343 | 36.72710 | 32.87971 | 40.34448 |
Crossodactylus dantei | Anura | DD | Stream-dwelling | 25.650081 | 36.44274 | 32.72131 | 40.10688 |
Crossodactylus dantei | Anura | DD | Stream-dwelling | 24.850918 | 36.33783 | 32.60152 | 39.92124 |
Crossodactylus dantei | Anura | DD | Stream-dwelling | 26.651856 | 36.57424 | 32.70419 | 40.09127 |
Crossodactylus gaudichaudii | Anura | LC | Stream-dwelling | 25.548146 | 36.43960 | 32.55936 | 39.93193 |
Crossodactylus gaudichaudii | Anura | LC | Stream-dwelling | 24.407231 | 36.28610 | 32.58472 | 39.93530 |
Crossodactylus gaudichaudii | Anura | LC | Stream-dwelling | 27.499490 | 36.70214 | 32.73164 | 40.18306 |
Crossodactylus grandis | Anura | DD | Stream-dwelling | 26.367176 | 36.53954 | 32.76931 | 40.53417 |
Crossodactylus grandis | Anura | DD | Stream-dwelling | 25.114381 | 36.37105 | 32.76373 | 40.40639 |
Crossodactylus grandis | Anura | DD | Stream-dwelling | 28.661754 | 36.84814 | 32.87202 | 40.71056 |
Crossodactylus bokermanni | Anura | DD | Stream-dwelling | 24.239549 | 36.21512 | 32.90374 | 39.84505 |
Crossodactylus bokermanni | Anura | DD | Stream-dwelling | 22.780848 | 36.02137 | 32.79645 | 39.74860 |
Crossodactylus bokermanni | Anura | DD | Stream-dwelling | 26.761978 | 36.55017 | 33.14240 | 40.14830 |
Crossodactylus lutzorum | Anura | DD | Stream-dwelling | 24.710838 | 36.27937 | 33.00430 | 40.05494 |
Crossodactylus lutzorum | Anura | DD | Stream-dwelling | 23.676324 | 36.14212 | 32.80546 | 39.76604 |
Crossodactylus lutzorum | Anura | DD | Stream-dwelling | 26.338296 | 36.49528 | 33.22569 | 40.36434 |
Crossodactylus caramaschii | Anura | LC | Stream-dwelling | 25.870672 | 36.39999 | 33.07167 | 40.08460 |
Crossodactylus caramaschii | Anura | LC | Stream-dwelling | 24.265672 | 36.18692 | 32.88899 | 39.85231 |
Crossodactylus caramaschii | Anura | LC | Stream-dwelling | 28.537490 | 36.75402 | 33.27420 | 40.46241 |
Crossodactylus cyclospinus | Anura | DD | Ground-dwelling | 25.184561 | 37.01676 | 33.01725 | 41.03654 |
Crossodactylus cyclospinus | Anura | DD | Ground-dwelling | 24.168753 | 36.88019 | 32.86543 | 40.82096 |
Crossodactylus cyclospinus | Anura | DD | Ground-dwelling | 27.359020 | 37.30911 | 33.47226 | 41.63329 |
Crossodactylus trachystomus | Anura | DD | Stream-dwelling | 24.826713 | 36.36452 | 32.19321 | 40.16836 |
Crossodactylus trachystomus | Anura | DD | Stream-dwelling | 23.454470 | 36.17845 | 31.83368 | 39.75796 |
Crossodactylus trachystomus | Anura | DD | Stream-dwelling | 27.381718 | 36.71097 | 32.53772 | 40.58228 |
Crossodactylus dispar | Anura | DD | Stream-dwelling | 25.533875 | 36.51505 | 32.61767 | 40.50607 |
Crossodactylus dispar | Anura | DD | Stream-dwelling | 24.250889 | 36.34209 | 32.18451 | 39.99079 |
Crossodactylus dispar | Anura | DD | Stream-dwelling | 27.869936 | 36.82996 | 32.87764 | 40.92461 |
Hylodes amnicola | Anura | DD | Stream-dwelling | 26.021599 | 36.72094 | 32.19567 | 40.81758 |
Hylodes amnicola | Anura | DD | Stream-dwelling | 24.831798 | 36.56272 | 32.03297 | 40.55231 |
Hylodes amnicola | Anura | DD | Stream-dwelling | 27.814199 | 36.95932 | 32.23926 | 40.95451 |
Hylodes mertensi | Anura | DD | Stream-dwelling | 25.405019 | 36.54235 | 32.35264 | 41.32592 |
Hylodes mertensi | Anura | DD | Stream-dwelling | 23.841325 | 36.33258 | 32.09989 | 41.01819 |
Hylodes mertensi | Anura | DD | Stream-dwelling | 27.977586 | 36.88745 | 32.48295 | 41.53663 |
Hylodes asper | Anura | LC | Stream-dwelling | 25.453011 | 36.62641 | 32.68444 | 40.81995 |
Hylodes asper | Anura | LC | Stream-dwelling | 24.100439 | 36.44339 | 32.40742 | 40.52634 |
Hylodes asper | Anura | LC | Stream-dwelling | 27.670875 | 36.92652 | 32.90015 | 41.11320 |
Hylodes meridionalis | Anura | LC | Stream-dwelling | 24.069966 | 36.44475 | 32.66389 | 40.55471 |
Hylodes meridionalis | Anura | LC | Stream-dwelling | 22.280358 | 36.20474 | 32.45223 | 40.29279 |
Hylodes meridionalis | Anura | LC | Stream-dwelling | 26.741763 | 36.80308 | 32.99028 | 40.94573 |
Hylodes babax | Anura | DD | Stream-dwelling | 25.556465 | 36.75895 | 32.56013 | 40.86222 |
Hylodes babax | Anura | DD | Stream-dwelling | 24.708649 | 36.64202 | 32.67933 | 40.93241 |
Hylodes babax | Anura | DD | Stream-dwelling | 27.149076 | 36.97859 | 32.78323 | 41.11382 |
Hylodes vanzolinii | Anura | DD | Stream-dwelling | 25.556465 | 36.66108 | 32.36183 | 40.94310 |
Hylodes vanzolinii | Anura | DD | Stream-dwelling | 24.708649 | 36.54807 | 32.27442 | 40.82331 |
Hylodes vanzolinii | Anura | DD | Stream-dwelling | 27.149076 | 36.87337 | 32.49695 | 41.12832 |
Hylodes cardosoi | Anura | LC | Stream-dwelling | 25.203906 | 36.62160 | 32.24578 | 40.77783 |
Hylodes cardosoi | Anura | LC | Stream-dwelling | 23.507481 | 36.39317 | 32.11357 | 40.61307 |
Hylodes cardosoi | Anura | LC | Stream-dwelling | 27.815633 | 36.97328 | 32.53550 | 41.16970 |
Hylodes charadranaetes | Anura | DD | Stream-dwelling | 26.332966 | 36.79587 | 32.82244 | 41.14696 |
Hylodes charadranaetes | Anura | DD | Stream-dwelling | 25.152380 | 36.63688 | 32.70259 | 41.01466 |
Hylodes charadranaetes | Anura | DD | Stream-dwelling | 28.199008 | 37.04716 | 32.66336 | 41.14172 |
Hylodes dactylocinus | Anura | DD | Stream-dwelling | 26.156402 | 36.61053 | 32.57500 | 41.22279 |
Hylodes dactylocinus | Anura | DD | Stream-dwelling | 24.610234 | 36.40448 | 32.44084 | 40.97581 |
Hylodes dactylocinus | Anura | DD | Stream-dwelling | 28.684670 | 36.94745 | 32.19251 | 40.90325 |
Hylodes perplicatus | Anura | LC | Stream-dwelling | 24.373962 | 36.37507 | 32.20010 | 40.68975 |
Hylodes perplicatus | Anura | LC | Stream-dwelling | 22.622982 | 36.14359 | 31.91269 | 40.34703 |
Hylodes perplicatus | Anura | LC | Stream-dwelling | 26.926374 | 36.71251 | 32.49712 | 41.08040 |
Hylodes fredi | Anura | DD | Stream-dwelling | 24.941675 | 36.56209 | 32.08382 | 40.44568 |
Hylodes fredi | Anura | DD | Stream-dwelling | 23.813964 | 36.41499 | 31.93368 | 40.20831 |
Hylodes fredi | Anura | DD | Stream-dwelling | 26.771280 | 36.80074 | 32.63642 | 41.03098 |
Hylodes pipilans | Anura | DD | Stream-dwelling | 26.644333 | 36.83476 | 32.20891 | 41.05926 |
Hylodes pipilans | Anura | DD | Stream-dwelling | 25.472962 | 36.67717 | 31.86161 | 40.66133 |
Hylodes pipilans | Anura | DD | Stream-dwelling | 28.583817 | 37.09569 | 32.66669 | 41.64321 |
Hylodes glaber | Anura | DD | Stream-dwelling | 26.367176 | 36.70979 | 32.80966 | 41.38422 |
Hylodes glaber | Anura | DD | Stream-dwelling | 25.114381 | 36.54174 | 32.44564 | 40.96520 |
Hylodes glaber | Anura | DD | Stream-dwelling | 28.661754 | 37.01760 | 32.91238 | 41.60038 |
Hylodes lateristrigatus | Anura | LC | Stream-dwelling | 25.534821 | 36.67130 | 32.26052 | 40.57891 |
Hylodes lateristrigatus | Anura | LC | Stream-dwelling | 24.485549 | 36.52860 | 32.13027 | 40.49109 |
Hylodes lateristrigatus | Anura | LC | Stream-dwelling | 27.377067 | 36.92185 | 32.74510 | 41.12928 |
Hylodes heyeri | Anura | DD | Stream-dwelling | 25.318625 | 36.58552 | 32.39533 | 40.86552 |
Hylodes heyeri | Anura | DD | Stream-dwelling | 23.681928 | 36.36359 | 32.18598 | 40.59737 |
Hylodes heyeri | Anura | DD | Stream-dwelling | 27.888597 | 36.93401 | 32.60056 | 41.18846 |
Hylodes regius | Anura | DD | Stream-dwelling | 26.093418 | 36.67016 | 32.66093 | 40.76130 |
Hylodes regius | Anura | DD | Stream-dwelling | 24.816963 | 36.49702 | 32.47728 | 40.51304 |
Hylodes regius | Anura | DD | Stream-dwelling | 28.448837 | 36.98964 | 32.79806 | 41.04588 |
Hylodes magalhaesi | Anura | DD | Stream-dwelling | 25.922392 | 36.73252 | 32.06272 | 40.80583 |
Hylodes magalhaesi | Anura | DD | Stream-dwelling | 24.625678 | 36.55582 | 31.79567 | 40.47079 |
Hylodes magalhaesi | Anura | DD | Stream-dwelling | 28.357659 | 37.06437 | 32.71043 | 41.56039 |
Hylodes ornatus | Anura | LC | Stream-dwelling | 25.579814 | 36.60082 | 32.30140 | 40.94311 |
Hylodes ornatus | Anura | LC | Stream-dwelling | 24.271136 | 36.42508 | 32.07004 | 40.71752 |
Hylodes ornatus | Anura | LC | Stream-dwelling | 27.909886 | 36.91372 | 32.70858 | 41.43400 |
Hylodes sazimai | Anura | DD | Stream-dwelling | 25.579814 | 36.55338 | 32.68752 | 41.15144 |
Hylodes sazimai | Anura | DD | Stream-dwelling | 24.271136 | 36.37997 | 32.52783 | 40.97425 |
Hylodes sazimai | Anura | DD | Stream-dwelling | 27.909886 | 36.86214 | 32.79820 | 41.34289 |
Hylodes uai | Anura | DD | Stream-dwelling | 24.826713 | 36.44863 | 32.13759 | 40.67118 |
Hylodes uai | Anura | DD | Stream-dwelling | 23.454470 | 36.26384 | 31.96153 | 40.39405 |
Hylodes uai | Anura | DD | Stream-dwelling | 27.381718 | 36.79269 | 32.12541 | 40.77481 |
Hylodes otavioi | Anura | DD | Stream-dwelling | 24.239549 | 36.55364 | 32.16111 | 40.69128 |
Hylodes otavioi | Anura | DD | Stream-dwelling | 22.780848 | 36.35483 | 31.97998 | 40.46431 |
Hylodes otavioi | Anura | DD | Stream-dwelling | 26.761978 | 36.89741 | 32.72543 | 41.38941 |
Hylodes phyllodes | Anura | LC | Stream-dwelling | 25.641510 | 36.67000 | 32.20000 | 41.01588 |
Hylodes phyllodes | Anura | LC | Stream-dwelling | 24.284811 | 36.48830 | 32.11392 | 40.86998 |
Hylodes phyllodes | Anura | LC | Stream-dwelling | 27.912555 | 36.97417 | 32.46144 | 41.38943 |
Hylodes nasus | Anura | LC | Stream-dwelling | 25.428903 | 36.68914 | 32.16791 | 41.22220 |
Hylodes nasus | Anura | LC | Stream-dwelling | 24.074573 | 36.50875 | 32.39054 | 41.37467 |
Hylodes nasus | Anura | LC | Stream-dwelling | 27.664363 | 36.98691 | 32.43152 | 41.63252 |
Megaelosia apuana | Anura | DD | Stream-dwelling | 25.625862 | 36.63040 | 32.38642 | 41.30009 |
Megaelosia apuana | Anura | DD | Stream-dwelling | 24.800864 | 36.52103 | 32.34435 | 41.19020 |
Megaelosia apuana | Anura | DD | Stream-dwelling | 27.220602 | 36.84182 | 32.52327 | 41.52963 |
Megaelosia boticariana | Anura | DD | Stream-dwelling | 25.405019 | 36.64326 | 32.40240 | 40.91645 |
Megaelosia boticariana | Anura | DD | Stream-dwelling | 23.841325 | 36.43114 | 32.05251 | 40.49064 |
Megaelosia boticariana | Anura | DD | Stream-dwelling | 27.977586 | 36.99222 | 32.70417 | 41.23818 |
Megaelosia bocainensis | Anura | DD | Stream-dwelling | 26.367176 | 36.75671 | 32.55996 | 41.41511 |
Megaelosia bocainensis | Anura | DD | Stream-dwelling | 25.114381 | 36.58840 | 32.39269 | 41.22578 |
Megaelosia bocainensis | Anura | DD | Stream-dwelling | 28.661754 | 37.06498 | 32.83783 | 41.76189 |
Megaelosia lutzae | Anura | DD | Stream-dwelling | 26.367176 | 36.75872 | 32.19616 | 41.10678 |
Megaelosia lutzae | Anura | DD | Stream-dwelling | 25.114381 | 36.59237 | 32.07303 | 40.91757 |
Megaelosia lutzae | Anura | DD | Stream-dwelling | 28.661754 | 37.06339 | 32.59870 | 41.51152 |
Megaelosia goeldii | Anura | LC | Stream-dwelling | 25.806811 | 36.63551 | 32.82662 | 41.76391 |
Megaelosia goeldii | Anura | LC | Stream-dwelling | 24.566955 | 36.46953 | 32.39193 | 41.24354 |
Megaelosia goeldii | Anura | LC | Stream-dwelling | 27.921085 | 36.91854 | 32.96556 | 41.99901 |
Megaelosia jordanensis | Anura | DD | Ground-dwelling | 25.819660 | 37.23291 | 32.44108 | 41.30268 |
Megaelosia jordanensis | Anura | DD | Ground-dwelling | 24.519545 | 37.05973 | 32.49924 | 41.23675 |
Megaelosia jordanensis | Anura | DD | Ground-dwelling | 28.235919 | 37.55476 | 32.97648 | 41.94243 |
Megaelosia massarti | Anura | DD | Stream-dwelling | 24.843556 | 36.57771 | 32.49641 | 40.90825 |
Megaelosia massarti | Anura | DD | Stream-dwelling | 23.494971 | 36.39564 | 32.40710 | 40.71837 |
Megaelosia massarti | Anura | DD | Stream-dwelling | 27.086180 | 36.88049 | 32.55447 | 41.17825 |
Alsodes australis | Anura | DD | Stream-dwelling | 9.709187 | 32.71135 | 29.76915 | 36.07006 |
Alsodes australis | Anura | DD | Stream-dwelling | 7.989396 | 32.47821 | 29.61017 | 36.00503 |
Alsodes australis | Anura | DD | Stream-dwelling | 14.034646 | 33.29772 | 30.31475 | 36.38267 |
Alsodes verrucosus | Anura | EN | Semi-aquatic | 15.639376 | 34.32259 | 31.36236 | 37.49310 |
Alsodes verrucosus | Anura | EN | Semi-aquatic | 13.378516 | 34.01544 | 31.10247 | 37.22807 |
Alsodes verrucosus | Anura | EN | Semi-aquatic | 20.126996 | 34.93228 | 32.08126 | 38.23012 |
Alsodes monticola | Anura | DD | Stream-dwelling | 10.841345 | 32.83425 | 29.57019 | 36.01178 |
Alsodes monticola | Anura | DD | Stream-dwelling | 9.604596 | 32.66641 | 29.37183 | 35.84528 |
Alsodes monticola | Anura | DD | Stream-dwelling | 14.101632 | 33.27672 | 30.26869 | 36.61720 |
Alsodes valdiviensis | Anura | EN | Semi-aquatic | 16.564311 | 34.47307 | 31.62439 | 37.49814 |
Alsodes valdiviensis | Anura | EN | Semi-aquatic | 14.659050 | 34.21052 | 31.56956 | 37.44358 |
Alsodes valdiviensis | Anura | EN | Semi-aquatic | 20.354248 | 34.99534 | 32.15874 | 38.07906 |
Alsodes barrioi | Anura | EN | Stream-dwelling | 17.482959 | 33.47251 | 30.48158 | 35.95798 |
Alsodes barrioi | Anura | EN | Stream-dwelling | 15.652372 | 33.22469 | 30.30929 | 35.70360 |
Alsodes barrioi | Anura | EN | Stream-dwelling | 21.141548 | 33.96782 | 31.14219 | 36.68346 |
Alsodes norae | Anura | EN | Semi-aquatic | 17.421316 | 34.31834 | 31.63050 | 36.95242 |
Alsodes norae | Anura | EN | Semi-aquatic | 15.411264 | 34.04268 | 31.42453 | 36.67750 |
Alsodes norae | Anura | EN | Semi-aquatic | 21.387021 | 34.86222 | 32.38905 | 37.73370 |
Alsodes kaweshkari | Anura | DD | Semi-aquatic | 6.324433 | 32.84067 | 30.09648 | 35.90056 |
Alsodes kaweshkari | Anura | DD | Semi-aquatic | 4.875182 | 32.64227 | 29.79549 | 35.67090 |
Alsodes kaweshkari | Anura | DD | Semi-aquatic | 10.809819 | 33.45473 | 30.66589 | 36.31057 |
Alsodes igneus | Anura | VU | Stream-dwelling | 16.677714 | 33.40201 | 30.43582 | 36.45003 |
Alsodes igneus | Anura | VU | Stream-dwelling | 14.420214 | 33.09359 | 30.09199 | 36.01541 |
Alsodes igneus | Anura | VU | Stream-dwelling | 21.006551 | 33.99341 | 30.93505 | 36.96281 |
Alsodes pehuenche | Anura | CR | Stream-dwelling | 10.597426 | 32.49998 | 29.67927 | 35.70954 |
Alsodes pehuenche | Anura | CR | Stream-dwelling | 9.021373 | 32.28829 | 29.29846 | 35.37532 |
Alsodes pehuenche | Anura | CR | Stream-dwelling | 18.582843 | 33.57257 | 30.61845 | 36.51406 |
Alsodes hugoi | Anura | VU | Stream-dwelling | 12.440270 | 32.94216 | 29.86405 | 35.85536 |
Alsodes hugoi | Anura | VU | Stream-dwelling | 11.184807 | 32.77017 | 29.71856 | 35.72369 |
Alsodes hugoi | Anura | VU | Stream-dwelling | 19.987145 | 33.97606 | 30.67537 | 36.83526 |
Alsodes tumultuosus | Anura | VU | Stream-dwelling | 18.143251 | 33.72051 | 30.64086 | 36.77001 |
Alsodes tumultuosus | Anura | VU | Stream-dwelling | 16.084502 | 33.43906 | 30.38746 | 36.49719 |
Alsodes tumultuosus | Anura | VU | Stream-dwelling | 21.760292 | 34.21499 | 30.95784 | 37.17693 |
Alsodes montanus | Anura | VU | Stream-dwelling | 16.612901 | 33.52306 | 30.55406 | 36.79840 |
Alsodes montanus | Anura | VU | Stream-dwelling | 14.173729 | 33.18667 | 30.14366 | 36.34039 |
Alsodes montanus | Anura | VU | Stream-dwelling | 20.471290 | 34.05518 | 30.78445 | 37.10261 |
Alsodes vittatus | Anura | DD | Stream-dwelling | 15.713211 | 33.50495 | 30.46920 | 36.81377 |
Alsodes vittatus | Anura | DD | Stream-dwelling | 12.986350 | 33.13256 | 30.03646 | 36.30875 |
Alsodes vittatus | Anura | DD | Stream-dwelling | 20.971815 | 34.22308 | 31.00800 | 37.54295 |
Alsodes nodosus | Anura | NT | Stream-dwelling | 18.521195 | 34.22479 | 30.69875 | 37.45975 |
Alsodes nodosus | Anura | NT | Stream-dwelling | 16.542113 | 33.96168 | 30.72376 | 37.42820 |
Alsodes nodosus | Anura | NT | Stream-dwelling | 21.880400 | 34.67140 | 31.12547 | 37.93101 |
Alsodes vanzolinii | Anura | EN | Stream-dwelling | 17.283153 | 34.09332 | 30.56526 | 37.49419 |
Alsodes vanzolinii | Anura | EN | Stream-dwelling | 15.746344 | 33.88419 | 30.63588 | 37.60437 |
Alsodes vanzolinii | Anura | EN | Stream-dwelling | 20.370244 | 34.51342 | 31.13350 | 38.08661 |
Eupsophus insularis | Anura | CR | Ground-dwelling | 16.954856 | 35.09980 | 31.41961 | 38.78510 |
Eupsophus insularis | Anura | CR | Ground-dwelling | 14.970376 | 34.82981 | 31.11884 | 38.50358 |
Eupsophus insularis | Anura | CR | Ground-dwelling | 20.876711 | 35.63338 | 31.85612 | 39.25967 |
Eupsophus roseus | Anura | LC | Ground-dwelling | 16.925305 | 34.99541 | 31.55785 | 38.58006 |
Eupsophus roseus | Anura | LC | Ground-dwelling | 14.935578 | 34.72700 | 31.23343 | 38.29396 |
Eupsophus roseus | Anura | LC | Ground-dwelling | 20.773333 | 35.51450 | 31.96742 | 39.01213 |
Eupsophus calcaratus | Anura | LC | Ground-dwelling | 11.864670 | 34.31668 | 30.85086 | 37.98669 |
Eupsophus calcaratus | Anura | LC | Ground-dwelling | 10.011536 | 34.07055 | 30.62512 | 37.75491 |
Eupsophus calcaratus | Anura | LC | Ground-dwelling | 16.050931 | 34.87269 | 31.46383 | 38.48940 |
Eupsophus emiliopugini | Anura | LC | Stream-dwelling | 13.193105 | 33.88673 | 29.96495 | 37.34403 |
Eupsophus emiliopugini | Anura | LC | Stream-dwelling | 11.218029 | 33.62489 | 30.11713 | 37.51108 |
Eupsophus emiliopugini | Anura | LC | Stream-dwelling | 17.468451 | 34.45352 | 30.69246 | 38.08364 |
Eupsophus vertebralis | Anura | LC | Stream-dwelling | 16.258042 | 34.32807 | 30.60506 | 38.02348 |
Eupsophus vertebralis | Anura | LC | Stream-dwelling | 14.108474 | 34.03573 | 30.34195 | 37.77258 |
Eupsophus vertebralis | Anura | LC | Stream-dwelling | 20.480590 | 34.90235 | 31.04214 | 38.50973 |
Agalychnis annae | Anura | VU | Arboreal | 25.115515 | 38.93674 | 35.81129 | 41.72969 |
Agalychnis annae | Anura | VU | Arboreal | 24.332976 | 38.82891 | 35.77913 | 41.65564 |
Agalychnis annae | Anura | VU | Arboreal | 26.618399 | 39.14383 | 35.85797 | 41.84763 |
Agalychnis moreletii | Anura | LC | Arboreal | 26.112054 | 39.12302 | 36.20523 | 42.38767 |
Agalychnis moreletii | Anura | LC | Arboreal | 25.180432 | 38.99351 | 35.58581 | 41.70160 |
Agalychnis moreletii | Anura | LC | Arboreal | 28.032555 | 39.39001 | 36.01456 | 42.30256 |
Agalychnis callidryas | Anura | LC | Arboreal | 26.753416 | 39.15479 | 36.21908 | 42.28287 |
Agalychnis callidryas | Anura | LC | Arboreal | 25.964398 | 39.04601 | 36.02834 | 42.02574 |
Agalychnis callidryas | Anura | LC | Arboreal | 28.364579 | 39.37692 | 36.39841 | 42.54960 |
Agalychnis saltator | Anura | LC | Arboreal | 25.702040 | 39.11422 | 35.99521 | 41.97359 |
Agalychnis saltator | Anura | LC | Arboreal | 24.975570 | 39.01308 | 36.03206 | 41.95888 |
Agalychnis saltator | Anura | LC | Arboreal | 27.140744 | 39.31452 | 36.21141 | 42.24766 |
Agalychnis lemur | Anura | CR | Arboreal | 26.273828 | 39.05197 | 35.79413 | 42.84027 |
Agalychnis lemur | Anura | CR | Arboreal | 25.589151 | 38.95740 | 35.65989 | 42.66024 |
Agalychnis lemur | Anura | CR | Arboreal | 27.553991 | 39.22879 | 35.90102 | 43.03591 |
Hylomantis granulosa | Anura | LC | Arboreal | 25.270950 | 38.89854 | 35.45072 | 41.98029 |
Hylomantis granulosa | Anura | LC | Arboreal | 24.303247 | 38.76903 | 35.40601 | 41.85895 |
Hylomantis granulosa | Anura | LC | Arboreal | 26.902370 | 39.11687 | 35.72890 | 42.24326 |
Phasmahyla cochranae | Anura | LC | Arboreal | 25.695014 | 38.86671 | 35.80116 | 42.04729 |
Phasmahyla cochranae | Anura | LC | Arboreal | 24.390130 | 38.68395 | 35.65850 | 41.81147 |
Phasmahyla cochranae | Anura | LC | Arboreal | 28.033172 | 39.19419 | 36.01660 | 42.43179 |
Phasmahyla exilis | Anura | LC | Arboreal | 25.354840 | 38.74064 | 35.87702 | 42.11577 |
Phasmahyla exilis | Anura | LC | Arboreal | 24.563063 | 38.63168 | 35.79438 | 41.96782 |
Phasmahyla exilis | Anura | LC | Arboreal | 26.870334 | 38.94919 | 35.89289 | 42.13211 |
Phasmahyla timbo | Anura | DD | Stream-dwelling | 24.710838 | 38.28313 | 35.34873 | 41.43768 |
Phasmahyla timbo | Anura | DD | Stream-dwelling | 23.676324 | 38.13961 | 35.02402 | 41.05690 |
Phasmahyla timbo | Anura | DD | Stream-dwelling | 26.338296 | 38.50892 | 35.52118 | 41.66924 |
Phasmahyla guttata | Anura | LC | Arboreal | 25.558232 | 38.77202 | 35.39248 | 41.41608 |
Phasmahyla guttata | Anura | LC | Arboreal | 24.252632 | 38.59208 | 35.72673 | 41.71426 |
Phasmahyla guttata | Anura | LC | Arboreal | 27.730262 | 39.07137 | 36.08925 | 42.29809 |
Phasmahyla jandaia | Anura | LC | Stream-dwelling | 25.102654 | 38.17915 | 35.27607 | 41.37073 |
Phasmahyla jandaia | Anura | LC | Stream-dwelling | 23.861637 | 38.01174 | 35.07754 | 41.12101 |
Phasmahyla jandaia | Anura | LC | Stream-dwelling | 27.729649 | 38.53352 | 35.60159 | 41.87868 |
Phyllomedusa araguari | Anura | DD | Arboreal | 25.820310 | 40.25883 | 37.03199 | 43.08055 |
Phyllomedusa araguari | Anura | DD | Arboreal | 24.664943 | 40.10332 | 37.05007 | 42.98900 |
Phyllomedusa araguari | Anura | DD | Arboreal | 28.197867 | 40.57884 | 37.61605 | 43.86806 |
Phyllomedusa venusta | Anura | LC | Arboreal | 26.260654 | 40.16408 | 36.79160 | 43.27258 |
Phyllomedusa venusta | Anura | LC | Arboreal | 25.469369 | 40.05896 | 36.73000 | 43.19599 |
Phyllomedusa venusta | Anura | LC | Arboreal | 27.944861 | 40.38785 | 36.97750 | 43.58409 |
Phyllomedusa bahiana | Anura | LC | Arboreal | 24.932457 | 40.76655 | 38.33906 | 43.24188 |
Phyllomedusa bahiana | Anura | LC | Arboreal | 23.893186 | 40.62898 | 38.23993 | 43.13277 |
Phyllomedusa bahiana | Anura | LC | Arboreal | 26.962639 | 41.03529 | 38.68952 | 43.84212 |
Phyllomedusa distincta | Anura | LC | Arboreal | 25.067966 | 40.84802 | 38.71220 | 43.54248 |
Phyllomedusa distincta | Anura | LC | Arboreal | 23.470733 | 40.63211 | 38.39615 | 43.09247 |
Phyllomedusa distincta | Anura | LC | Arboreal | 27.615004 | 41.19232 | 38.64584 | 43.74677 |
Phyllomedusa boliviana | Anura | LC | Arboreal | 26.408744 | 40.81031 | 37.83216 | 43.96239 |
Phyllomedusa boliviana | Anura | LC | Arboreal | 25.509948 | 40.68885 | 37.73925 | 43.80836 |
Phyllomedusa boliviana | Anura | LC | Arboreal | 28.308086 | 41.06700 | 37.96304 | 44.26474 |
Phyllomedusa neildi | Anura | DD | Arboreal | 26.326467 | 40.90508 | 38.03701 | 43.52440 |
Phyllomedusa neildi | Anura | DD | Arboreal | 25.864250 | 40.84246 | 37.95873 | 43.45164 |
Phyllomedusa neildi | Anura | DD | Arboreal | 27.203251 | 41.02387 | 38.10982 | 43.67435 |
Phyllomedusa trinitatis | Anura | LC | Arboreal | 26.521796 | 40.95576 | 37.80406 | 43.76897 |
Phyllomedusa trinitatis | Anura | LC | Arboreal | 25.725709 | 40.84894 | 37.65022 | 43.54232 |
Phyllomedusa trinitatis | Anura | LC | Arboreal | 28.052076 | 41.16108 | 38.03408 | 44.09121 |
Phyllomedusa tarsius | Anura | LC | Arboreal | 27.350077 | 41.11548 | 38.31643 | 44.22184 |
Phyllomedusa tarsius | Anura | LC | Arboreal | 26.588945 | 41.01144 | 38.21771 | 44.06460 |
Phyllomedusa tarsius | Anura | LC | Arboreal | 28.908976 | 41.32858 | 38.31520 | 44.29450 |
Phyllomedusa bicolor | Anura | LC | Arboreal | 27.587699 | 40.55119 | 37.59770 | 43.60045 |
Phyllomedusa bicolor | Anura | LC | Arboreal | 26.883355 | 40.45536 | 37.66443 | 43.58122 |
Phyllomedusa bicolor | Anura | LC | Arboreal | 29.109259 | 40.75822 | 37.72391 | 43.84985 |
Cruziohyla craspedopus | Anura | LC | Arboreal | 27.598318 | 39.71602 | 36.23156 | 42.73120 |
Cruziohyla craspedopus | Anura | LC | Arboreal | 26.846182 | 39.61585 | 36.11801 | 42.57137 |
Cruziohyla craspedopus | Anura | LC | Arboreal | 29.117114 | 39.91828 | 36.33815 | 42.96006 |
Phrynomedusa appendiculata | Anura | NT | Arboreal | 24.441389 | 39.13175 | 35.55097 | 42.89652 |
Phrynomedusa appendiculata | Anura | NT | Arboreal | 22.652986 | 38.88597 | 35.26021 | 42.60616 |
Phrynomedusa appendiculata | Anura | NT | Arboreal | 27.067197 | 39.49262 | 35.82247 | 43.25344 |
Phrynomedusa bokermanni | Anura | DD | Stream-dwelling | 25.767088 | 38.71252 | 35.28889 | 42.31465 |
Phrynomedusa bokermanni | Anura | DD | Stream-dwelling | 24.218770 | 38.50363 | 35.02597 | 41.99277 |
Phrynomedusa bokermanni | Anura | DD | Stream-dwelling | 28.316567 | 39.05648 | 35.72188 | 42.86669 |
Phrynomedusa marginata | Anura | LC | Arboreal | 25.601723 | 39.21963 | 35.78168 | 43.09243 |
Phrynomedusa marginata | Anura | LC | Arboreal | 24.624627 | 39.08951 | 35.64829 | 42.91828 |
Phrynomedusa marginata | Anura | LC | Arboreal | 27.287469 | 39.44412 | 35.98374 | 43.33329 |
Phrynomedusa vanzolinii | Anura | DD | Stream-dwelling | 25.641510 | 38.76993 | 35.08337 | 42.81430 |
Phrynomedusa vanzolinii | Anura | DD | Stream-dwelling | 24.284811 | 38.58381 | 35.15399 | 42.81075 |
Phrynomedusa vanzolinii | Anura | DD | Stream-dwelling | 27.912555 | 39.08150 | 35.57588 | 43.34474 |
Cyclorana novaehollandiae | Anura | LC | Fossorial | 24.909006 | 40.02273 | 37.03820 | 42.51386 |
Cyclorana novaehollandiae | Anura | LC | Fossorial | 23.491516 | 39.82946 | 36.94079 | 42.25232 |
Cyclorana novaehollandiae | Anura | LC | Fossorial | 27.389116 | 40.36090 | 37.30320 | 42.97037 |
Cyclorana cryptotis | Anura | LC | Fossorial | 27.287575 | 40.15430 | 37.00324 | 43.18915 |
Cyclorana cryptotis | Anura | LC | Fossorial | 26.200182 | 40.00475 | 36.88668 | 42.96899 |
Cyclorana cryptotis | Anura | LC | Fossorial | 29.404718 | 40.44547 | 37.07715 | 43.38074 |
Cyclorana cultripes | Anura | LC | Fossorial | 24.888140 | 39.93348 | 36.77419 | 42.80540 |
Cyclorana cultripes | Anura | LC | Fossorial | 23.305954 | 39.71596 | 36.54968 | 42.46299 |
Cyclorana cultripes | Anura | LC | Fossorial | 27.438477 | 40.28410 | 36.88595 | 43.14838 |
Cyclorana vagitus | Anura | LC | Ground-dwelling | 27.562483 | 39.30884 | 36.21305 | 42.27084 |
Cyclorana vagitus | Anura | LC | Ground-dwelling | 26.599860 | 39.17661 | 36.10898 | 42.06201 |
Cyclorana vagitus | Anura | LC | Ground-dwelling | 29.574898 | 39.58528 | 36.59518 | 42.81283 |
Cyclorana longipes | Anura | LC | Fossorial | 27.452535 | 40.17625 | 37.13194 | 43.18344 |
Cyclorana longipes | Anura | LC | Fossorial | 26.386396 | 40.02829 | 36.89966 | 42.92354 |
Cyclorana longipes | Anura | LC | Fossorial | 29.434273 | 40.45127 | 37.31805 | 43.55620 |
Cyclorana maculosa | Anura | LC | Fossorial | 26.811680 | 40.08447 | 36.78635 | 42.90211 |
Cyclorana maculosa | Anura | LC | Fossorial | 25.474589 | 39.90388 | 36.57947 | 42.61478 |
Cyclorana maculosa | Anura | LC | Fossorial | 28.973068 | 40.37639 | 37.22016 | 43.42453 |
Cyclorana maini | Anura | LC | Fossorial | 23.791571 | 39.67172 | 36.71437 | 42.56125 |
Cyclorana maini | Anura | LC | Fossorial | 22.050940 | 39.43736 | 36.59593 | 42.30650 |
Cyclorana maini | Anura | LC | Fossorial | 26.575643 | 40.04658 | 37.11976 | 43.19339 |
Cyclorana manya | Anura | LC | Ground-dwelling | 27.112114 | 39.21502 | 36.27442 | 42.63283 |
Cyclorana manya | Anura | LC | Ground-dwelling | 26.006404 | 39.06374 | 36.15388 | 42.43070 |
Cyclorana manya | Anura | LC | Ground-dwelling | 29.291925 | 39.51325 | 36.32068 | 42.83202 |
Cyclorana verrucosa | Anura | LC | Ground-dwelling | 23.609954 | 38.65760 | 35.81606 | 41.78533 |
Cyclorana verrucosa | Anura | LC | Ground-dwelling | 22.001141 | 38.44307 | 35.65034 | 41.55142 |
Cyclorana verrucosa | Anura | LC | Ground-dwelling | 26.375075 | 39.02632 | 36.11965 | 42.23005 |
Cyclorana platycephala | Anura | LC | Fossorial | 23.731294 | 39.61063 | 36.73336 | 42.67705 |
Cyclorana platycephala | Anura | LC | Fossorial | 21.992498 | 39.37956 | 36.55489 | 42.44222 |
Cyclorana platycephala | Anura | LC | Fossorial | 26.595725 | 39.99128 | 37.09857 | 43.18595 |
Litoria dahlii | Anura | LC | Semi-aquatic | 27.624838 | 39.42887 | 36.02824 | 42.88721 |
Litoria dahlii | Anura | LC | Semi-aquatic | 26.583707 | 39.28598 | 35.92947 | 42.63727 |
Litoria dahlii | Anura | LC | Semi-aquatic | 29.639722 | 39.70540 | 35.95349 | 43.09446 |
Litoria adelaidensis | Anura | LC | Arboreal | 20.116057 | 37.26771 | 33.46470 | 41.24502 |
Litoria adelaidensis | Anura | LC | Arboreal | 18.618737 | 37.06682 | 33.22196 | 40.97217 |
Litoria adelaidensis | Anura | LC | Arboreal | 23.138976 | 37.67330 | 33.85451 | 41.74652 |
Litoria chloronota | Anura | LC | Semi-aquatic | 27.603582 | 38.70032 | 34.80986 | 42.96517 |
Litoria chloronota | Anura | LC | Semi-aquatic | 26.950469 | 38.60999 | 34.80359 | 42.92252 |
Litoria chloronota | Anura | LC | Semi-aquatic | 28.802742 | 38.86615 | 35.00785 | 43.17707 |
Litoria albolabris | Anura | DD | Arboreal | 25.756987 | 39.43291 | 36.14109 | 42.20540 |
Litoria albolabris | Anura | DD | Arboreal | 25.175346 | 39.35251 | 36.11823 | 42.14761 |
Litoria albolabris | Anura | DD | Arboreal | 26.846334 | 39.58348 | 36.25975 | 42.36725 |
Litoria amboinensis | Anura | LC | Arboreal | 27.000279 | 38.05187 | 34.83015 | 40.55553 |
Litoria amboinensis | Anura | LC | Arboreal | 26.361203 | 37.96262 | 34.79736 | 40.43708 |
Litoria amboinensis | Anura | LC | Arboreal | 28.264158 | 38.22838 | 34.85102 | 40.74991 |
Litoria darlingtoni | Anura | LC | Arboreal | 25.815190 | 37.94712 | 35.21889 | 40.38968 |
Litoria darlingtoni | Anura | LC | Arboreal | 24.942316 | 37.82511 | 35.08369 | 40.18036 |
Litoria darlingtoni | Anura | LC | Arboreal | 27.295085 | 38.15398 | 35.32686 | 40.61089 |
Litoria tyleri | Anura | LC | Arboreal | 21.844695 | 37.50022 | 34.89809 | 40.34361 |
Litoria tyleri | Anura | LC | Arboreal | 20.335698 | 37.28941 | 34.72632 | 40.05527 |
Litoria tyleri | Anura | LC | Arboreal | 24.263891 | 37.83820 | 35.22724 | 40.78622 |
Litoria andiirrmalin | Anura | VU | Stream-dwelling | 27.215800 | 36.91696 | 33.13136 | 40.40904 |
Litoria andiirrmalin | Anura | VU | Stream-dwelling | 26.261522 | 36.78196 | 33.00862 | 40.24641 |
Litoria andiirrmalin | Anura | VU | Stream-dwelling | 29.209068 | 37.19895 | 33.56216 | 40.98197 |
Litoria booroolongensis | Anura | CR | Stream-dwelling | 21.353965 | 35.56407 | 32.67162 | 38.30875 |
Litoria booroolongensis | Anura | CR | Stream-dwelling | 19.677450 | 35.32706 | 32.46352 | 38.08416 |
Litoria booroolongensis | Anura | CR | Stream-dwelling | 24.105150 | 35.95300 | 32.91395 | 38.60082 |
Litoria jungguy | Anura | LC | Stream-dwelling | 26.039683 | 36.14435 | 33.47587 | 39.04278 |
Litoria jungguy | Anura | LC | Stream-dwelling | 24.944620 | 35.99215 | 33.34322 | 38.82066 |
Litoria jungguy | Anura | LC | Stream-dwelling | 28.060802 | 36.42527 | 33.54011 | 39.30851 |
Litoria wilcoxii | Anura | LC | Stream-dwelling | 23.694389 | 35.75520 | 32.87717 | 38.42452 |
Litoria wilcoxii | Anura | LC | Stream-dwelling | 22.345567 | 35.56527 | 32.67952 | 38.14874 |
Litoria wilcoxii | Anura | LC | Stream-dwelling | 26.076068 | 36.09057 | 33.15589 | 38.89115 |
Litoria angiana | Anura | LC | Stream-dwelling | 26.464332 | 37.48020 | 33.37541 | 41.08581 |
Litoria angiana | Anura | LC | Stream-dwelling | 25.657160 | 37.37087 | 33.32399 | 41.00009 |
Litoria angiana | Anura | LC | Stream-dwelling | 27.868348 | 37.67039 | 33.45640 | 41.20118 |
Litoria modica | Anura | LC | Stream-dwelling | 26.675280 | 37.61599 | 33.83573 | 41.39242 |
Litoria modica | Anura | LC | Stream-dwelling | 25.857189 | 37.50258 | 33.66281 | 41.22285 |
Litoria modica | Anura | LC | Stream-dwelling | 28.092338 | 37.81244 | 33.96787 | 41.60465 |
Litoria micromembrana | Anura | LC | Stream-dwelling | 26.534888 | 37.52601 | 33.38889 | 41.46352 |
Litoria micromembrana | Anura | LC | Stream-dwelling | 25.649448 | 37.40598 | 33.30267 | 41.30219 |
Litoria micromembrana | Anura | LC | Stream-dwelling | 27.958990 | 37.71907 | 33.65971 | 41.76655 |
Litoria arfakiana | Anura | LC | Arboreal | 26.686366 | 38.02846 | 34.40023 | 41.92825 |
Litoria arfakiana | Anura | LC | Arboreal | 25.897061 | 37.91919 | 34.26970 | 41.77402 |
Litoria arfakiana | Anura | LC | Arboreal | 28.073212 | 38.22046 | 34.42330 | 41.98979 |
Litoria wollastoni | Anura | LC | Arboreal | 26.490660 | 38.03407 | 34.25586 | 41.83056 |
Litoria wollastoni | Anura | LC | Arboreal | 25.677977 | 37.92314 | 34.10235 | 41.61313 |
Litoria wollastoni | Anura | LC | Arboreal | 27.887788 | 38.22477 | 34.34924 | 42.00374 |
Litoria aruensis | Anura | DD | Arboreal | 26.642976 | 38.07928 | 34.19580 | 41.79179 |
Litoria aruensis | Anura | DD | Arboreal | 26.252276 | 38.02559 | 34.14628 | 41.70515 |
Litoria aruensis | Anura | DD | Arboreal | 27.568124 | 38.20640 | 34.22625 | 41.92021 |
Litoria auae | Anura | LC | Arboreal | 27.088377 | 38.19559 | 34.45195 | 41.80082 |
Litoria auae | Anura | LC | Arboreal | 26.221105 | 38.07498 | 34.34543 | 41.67561 |
Litoria auae | Anura | LC | Arboreal | 28.673883 | 38.41608 | 34.63839 | 42.02422 |
Litoria cyclorhyncha | Anura | LC | Semi-aquatic | 19.510214 | 36.57458 | 33.91738 | 39.29680 |
Litoria cyclorhyncha | Anura | LC | Semi-aquatic | 18.013422 | 36.37107 | 33.93108 | 39.27378 |
Litoria cyclorhyncha | Anura | LC | Semi-aquatic | 22.716455 | 37.01052 | 34.46723 | 39.88940 |
Litoria moorei | Anura | LC | Semi-aquatic | 20.243294 | 36.71012 | 33.86135 | 39.46200 |
Litoria moorei | Anura | LC | Semi-aquatic | 18.742754 | 36.50207 | 33.73175 | 39.25757 |
Litoria moorei | Anura | LC | Semi-aquatic | 23.185369 | 37.11806 | 34.49993 | 40.22996 |
Litoria raniformis | Anura | EN | Semi-aquatic | 18.134790 | 36.44735 | 33.34141 | 39.45247 |
Litoria raniformis | Anura | EN | Semi-aquatic | 16.378747 | 36.20784 | 32.86454 | 38.99161 |
Litoria raniformis | Anura | EN | Semi-aquatic | 21.006190 | 36.83899 | 33.66049 | 39.82832 |
Litoria nudidigita | Anura | LC | Arboreal | 19.394219 | 34.71405 | 32.03605 | 37.12512 |
Litoria nudidigita | Anura | LC | Arboreal | 17.544298 | 34.44962 | 31.83110 | 36.84299 |
Litoria nudidigita | Anura | LC | Arboreal | 22.314923 | 35.13154 | 32.69252 | 37.92467 |
Litoria daviesae | Anura | VU | Stream-dwelling | 21.773096 | 34.96470 | 31.89246 | 37.70067 |
Litoria daviesae | Anura | VU | Stream-dwelling | 20.252034 | 34.75199 | 31.73881 | 37.50123 |
Litoria daviesae | Anura | VU | Stream-dwelling | 24.258350 | 35.31225 | 32.09910 | 38.03747 |
Litoria subglandulosa | Anura | VU | Stream-dwelling | 22.550206 | 34.97809 | 32.02452 | 37.64607 |
Litoria subglandulosa | Anura | VU | Stream-dwelling | 21.072743 | 34.77012 | 31.96886 | 37.52602 |
Litoria subglandulosa | Anura | VU | Stream-dwelling | 25.034127 | 35.32774 | 32.43272 | 38.12067 |
Litoria spenceri | Anura | CR | Stream-dwelling | 19.291667 | 34.41107 | 31.74117 | 36.86167 |
Litoria spenceri | Anura | CR | Stream-dwelling | 17.254203 | 34.12538 | 31.42914 | 36.41900 |
Litoria spenceri | Anura | CR | Stream-dwelling | 22.663549 | 34.88387 | 32.26834 | 37.55351 |
Litoria becki | Anura | LC | Stream-dwelling | 26.444448 | 37.40433 | 33.55088 | 41.43537 |
Litoria becki | Anura | LC | Stream-dwelling | 25.432989 | 37.26576 | 33.47966 | 41.34951 |
Litoria becki | Anura | LC | Stream-dwelling | 27.586057 | 37.56072 | 33.64931 | 41.59225 |
Litoria biakensis | Anura | DD | Arboreal | 27.056076 | 37.99271 | 34.10604 | 41.69499 |
Litoria biakensis | Anura | DD | Arboreal | 26.538262 | 37.92237 | 34.05370 | 41.61649 |
Litoria biakensis | Anura | DD | Arboreal | 28.456682 | 38.18300 | 34.14070 | 41.84129 |
Litoria bibonius | Anura | LC | Arboreal | 27.178121 | 38.04146 | 34.03128 | 41.97518 |
Litoria bibonius | Anura | LC | Arboreal | 26.725102 | 37.97862 | 33.99063 | 41.92157 |
Litoria bibonius | Anura | LC | Arboreal | 28.236662 | 38.18831 | 34.10894 | 42.12848 |
Litoria brevipalmata | Anura | EN | Ground-dwelling | 22.562685 | 37.60855 | 33.99288 | 41.90168 |
Litoria brevipalmata | Anura | EN | Ground-dwelling | 21.160533 | 37.42019 | 33.79413 | 41.67519 |
Litoria brevipalmata | Anura | EN | Ground-dwelling | 24.857236 | 37.91679 | 33.94249 | 41.98373 |
Nyctimystes avocalis | Anura | LC | Stream-dwelling | 27.178121 | 37.60299 | 33.48617 | 41.21885 |
Nyctimystes avocalis | Anura | LC | Stream-dwelling | 26.725102 | 37.54048 | 33.40009 | 41.09222 |
Nyctimystes avocalis | Anura | LC | Stream-dwelling | 28.236662 | 37.74903 | 33.59587 | 41.39685 |
Nyctimystes montanus | Anura | DD | Stream-dwelling | 27.691081 | 37.64203 | 33.32069 | 41.30338 |
Nyctimystes montanus | Anura | DD | Stream-dwelling | 27.058861 | 37.55625 | 33.27438 | 41.22494 |
Nyctimystes montanus | Anura | DD | Stream-dwelling | 28.831284 | 37.79675 | 33.42104 | 41.53381 |
Nyctimystes granti | Anura | LC | Stream-dwelling | 26.811655 | 37.63289 | 33.98075 | 41.78617 |
Nyctimystes granti | Anura | LC | Stream-dwelling | 26.142383 | 37.54178 | 33.90236 | 41.64327 |
Nyctimystes granti | Anura | LC | Stream-dwelling | 28.211262 | 37.82342 | 34.14209 | 42.08028 |
Nyctimystes oktediensis | Anura | LC | Arboreal | 27.036483 | 38.04505 | 34.76744 | 41.80217 |
Nyctimystes oktediensis | Anura | LC | Arboreal | 26.372559 | 37.95436 | 34.73918 | 41.78034 |
Nyctimystes oktediensis | Anura | LC | Arboreal | 28.645698 | 38.26487 | 34.91007 | 42.08325 |
Nyctimystes cheesmani | Anura | LC | Stream-dwelling | 26.009943 | 37.44472 | 33.64086 | 41.37861 |
Nyctimystes cheesmani | Anura | LC | Stream-dwelling | 25.170632 | 37.33090 | 33.51820 | 41.24683 |
Nyctimystes cheesmani | Anura | LC | Stream-dwelling | 27.653771 | 37.66765 | 33.80054 | 41.67637 |
Nyctimystes disruptus | Anura | LC | Stream-dwelling | 25.911299 | 37.47277 | 33.75184 | 41.67021 |
Nyctimystes disruptus | Anura | LC | Stream-dwelling | 24.960118 | 37.34093 | 33.37816 | 41.23090 |
Nyctimystes disruptus | Anura | LC | Stream-dwelling | 27.290163 | 37.66389 | 33.83099 | 41.77832 |
Nyctimystes daymani | Anura | LC | Stream-dwelling | 27.445192 | 37.63094 | 33.85952 | 41.44295 |
Nyctimystes daymani | Anura | LC | Stream-dwelling | 26.825280 | 37.54457 | 33.79541 | 41.32520 |
Nyctimystes daymani | Anura | LC | Stream-dwelling | 28.763956 | 37.81468 | 33.85569 | 41.49897 |
Nyctimystes obsoletus | Anura | DD | Stream-dwelling | 26.147605 | 37.40402 | 33.80681 | 41.34661 |
Nyctimystes obsoletus | Anura | DD | Stream-dwelling | 25.217439 | 37.27558 | 33.72494 | 41.20317 |
Nyctimystes obsoletus | Anura | DD | Stream-dwelling | 27.388036 | 37.57531 | 33.91600 | 41.50588 |
Nyctimystes gularis | Anura | LC | Stream-dwelling | 27.231939 | 37.57635 | 33.79632 | 41.49167 |
Nyctimystes gularis | Anura | LC | Stream-dwelling | 26.334073 | 37.45497 | 33.74673 | 41.42248 |
Nyctimystes gularis | Anura | LC | Stream-dwelling | 28.929734 | 37.80587 | 33.89247 | 41.60576 |
Nyctimystes fluviatilis | Anura | LC | Stream-dwelling | 26.582182 | 37.53743 | 33.85475 | 41.54720 |
Nyctimystes fluviatilis | Anura | LC | Stream-dwelling | 25.916692 | 37.44657 | 33.83046 | 41.51012 |
Nyctimystes fluviatilis | Anura | LC | Stream-dwelling | 27.857058 | 37.71148 | 33.69278 | 41.44300 |
Nyctimystes foricula | Anura | LC | Stream-dwelling | 26.446444 | 37.53858 | 33.47292 | 41.14689 |
Nyctimystes foricula | Anura | LC | Stream-dwelling | 25.445586 | 37.39952 | 33.38429 | 40.97989 |
Nyctimystes foricula | Anura | LC | Stream-dwelling | 27.738100 | 37.71804 | 33.52324 | 41.31828 |
Nyctimystes semipalmatus | Anura | LC | Stream-dwelling | 26.409962 | 37.52984 | 33.91888 | 41.70583 |
Nyctimystes semipalmatus | Anura | LC | Stream-dwelling | 25.478857 | 37.40163 | 33.84689 | 41.49851 |
Nyctimystes semipalmatus | Anura | LC | Stream-dwelling | 27.999986 | 37.74878 | 33.99212 | 41.89583 |
Nyctimystes kuduki | Anura | DD | Stream-dwelling | 26.505276 | 37.51101 | 33.61710 | 41.14843 |
Nyctimystes kuduki | Anura | DD | Stream-dwelling | 25.513007 | 37.37632 | 33.48464 | 40.94638 |
Nyctimystes kuduki | Anura | DD | Stream-dwelling | 28.048503 | 37.72049 | 33.71385 | 41.40365 |
Nyctimystes humeralis | Anura | LC | Stream-dwelling | 26.448427 | 37.50388 | 34.00059 | 41.27818 |
Nyctimystes humeralis | Anura | LC | Stream-dwelling | 25.613376 | 37.39159 | 33.94462 | 41.16645 |
Nyctimystes humeralis | Anura | LC | Stream-dwelling | 27.870543 | 37.69512 | 34.00788 | 41.41332 |
Nyctimystes zweifeli | Anura | LC | Stream-dwelling | 26.588116 | 37.55800 | 33.59949 | 41.49079 |
Nyctimystes zweifeli | Anura | LC | Stream-dwelling | 25.771977 | 37.44571 | 33.89198 | 41.74132 |
Nyctimystes zweifeli | Anura | LC | Stream-dwelling | 28.130705 | 37.77025 | 33.87288 | 41.80745 |
Nyctimystes trachydermis | Anura | LC | Stream-dwelling | 26.973410 | 37.60478 | 34.02400 | 41.59481 |
Nyctimystes trachydermis | Anura | LC | Stream-dwelling | 26.114056 | 37.48880 | 33.88197 | 41.41450 |
Nyctimystes trachydermis | Anura | LC | Stream-dwelling | 28.454733 | 37.80471 | 34.12580 | 41.81736 |
Nyctimystes kubori | Anura | LC | Stream-dwelling | 26.520223 | 37.46843 | 33.77871 | 41.45824 |
Nyctimystes kubori | Anura | LC | Stream-dwelling | 25.620741 | 37.34591 | 33.58799 | 41.24001 |
Nyctimystes kubori | Anura | LC | Stream-dwelling | 27.956674 | 37.66409 | 34.04735 | 41.82590 |
Nyctimystes narinosus | Anura | LC | Stream-dwelling | 25.688679 | 37.41150 | 33.83889 | 41.19470 |
Nyctimystes narinosus | Anura | LC | Stream-dwelling | 24.739428 | 37.27913 | 33.75698 | 41.06210 |
Nyctimystes narinosus | Anura | LC | Stream-dwelling | 27.188957 | 37.62071 | 33.94803 | 41.34674 |
Nyctimystes papua | Anura | LC | Stream-dwelling | 27.066230 | 37.65236 | 33.97135 | 41.80995 |
Nyctimystes papua | Anura | LC | Stream-dwelling | 26.273353 | 37.54294 | 33.46164 | 41.24469 |
Nyctimystes papua | Anura | LC | Stream-dwelling | 28.533130 | 37.85479 | 34.15937 | 41.97053 |
Nyctimystes pulcher | Anura | LC | Stream-dwelling | 26.465922 | 37.58933 | 33.57076 | 41.31591 |
Nyctimystes pulcher | Anura | LC | Stream-dwelling | 25.635089 | 37.47543 | 33.51268 | 41.17608 |
Nyctimystes pulcher | Anura | LC | Stream-dwelling | 27.853511 | 37.77955 | 33.66171 | 41.47166 |
Nyctimystes perimetri | Anura | LC | Stream-dwelling | 27.211163 | 37.62996 | 33.96889 | 41.42886 |
Nyctimystes perimetri | Anura | LC | Stream-dwelling | 26.781256 | 37.57076 | 33.92583 | 41.36464 |
Nyctimystes perimetri | Anura | LC | Stream-dwelling | 28.187362 | 37.76437 | 33.96168 | 41.44406 |
Nyctimystes persimilis | Anura | LC | Stream-dwelling | 27.346472 | 37.66164 | 33.89934 | 41.64492 |
Nyctimystes persimilis | Anura | LC | Stream-dwelling | 26.794731 | 37.58511 | 33.87638 | 41.54851 |
Nyctimystes persimilis | Anura | LC | Stream-dwelling | 28.681968 | 37.84688 | 33.91240 | 41.73041 |
Litoria vocivincens | Anura | LC | Ground-dwelling | 27.163309 | 38.27084 | 34.09153 | 41.71953 |
Litoria vocivincens | Anura | LC | Ground-dwelling | 26.401221 | 38.16619 | 33.96155 | 41.61634 |
Litoria vocivincens | Anura | LC | Ground-dwelling | 28.598310 | 38.46789 | 34.28656 | 41.89685 |
Litoria brongersmai | Anura | LC | Stream-dwelling | 25.545808 | 37.41763 | 33.23150 | 41.17234 |
Litoria brongersmai | Anura | LC | Stream-dwelling | 24.841311 | 37.32108 | 33.27580 | 41.17333 |
Litoria brongersmai | Anura | LC | Stream-dwelling | 26.847901 | 37.59609 | 33.37744 | 41.37202 |
Litoria bulmeri | Anura | LC | Stream-dwelling | 27.073878 | 37.66775 | 33.72551 | 41.26146 |
Litoria bulmeri | Anura | LC | Stream-dwelling | 26.159464 | 37.54294 | 33.75754 | 41.25137 |
Litoria bulmeri | Anura | LC | Stream-dwelling | 28.396109 | 37.84821 | 33.82969 | 41.45734 |
Litoria burrowsi | Anura | NT | Arboreal | 15.992274 | 36.59594 | 32.75623 | 40.11487 |
Litoria burrowsi | Anura | NT | Arboreal | 14.430284 | 36.38176 | 32.50571 | 39.85238 |
Litoria burrowsi | Anura | NT | Arboreal | 18.451495 | 36.93314 | 33.23396 | 40.64788 |
Litoria rivicola | Anura | LC | Stream-dwelling | 27.117428 | 37.69016 | 33.89180 | 41.37352 |
Litoria rivicola | Anura | LC | Stream-dwelling | 26.564193 | 37.61474 | 33.81287 | 41.29315 |
Litoria rivicola | Anura | LC | Stream-dwelling | 28.292618 | 37.85038 | 33.95280 | 41.48190 |
Litoria gilleni | Anura | LC | Arboreal | 23.345479 | 38.51069 | 36.02429 | 41.09603 |
Litoria gilleni | Anura | LC | Arboreal | 21.188363 | 38.21394 | 35.76954 | 40.74419 |
Litoria gilleni | Anura | LC | Arboreal | 26.293768 | 38.91627 | 35.91035 | 41.31787 |
Litoria splendida | Anura | LC | Arboreal | 27.632432 | 39.09186 | 36.37637 | 41.67036 |
Litoria splendida | Anura | LC | Arboreal | 26.728402 | 38.96864 | 36.39058 | 41.60359 |
Litoria splendida | Anura | LC | Arboreal | 29.549262 | 39.35313 | 36.53192 | 41.97126 |
Litoria cavernicola | Anura | DD | Arboreal | 27.390362 | 39.01716 | 36.21825 | 41.78523 |
Litoria cavernicola | Anura | DD | Arboreal | 26.479370 | 38.89473 | 36.08143 | 41.57818 |
Litoria cavernicola | Anura | DD | Arboreal | 29.404664 | 39.28789 | 36.63643 | 42.32450 |
Litoria xanthomera | Anura | LC | Arboreal | 25.839243 | 39.20207 | 36.58475 | 41.55239 |
Litoria xanthomera | Anura | LC | Arboreal | 24.751165 | 39.05630 | 36.42988 | 41.30810 |
Litoria xanthomera | Anura | LC | Arboreal | 27.798001 | 39.46449 | 36.76078 | 41.89910 |
Litoria kumae | Anura | LC | Arboreal | 25.678539 | 38.93144 | 36.21951 | 41.90421 |
Litoria kumae | Anura | LC | Arboreal | 24.815076 | 38.81614 | 36.05250 | 41.69539 |
Litoria kumae | Anura | LC | Arboreal | 27.282440 | 39.14560 | 36.45601 | 42.20517 |
Litoria capitula | Anura | DD | Arboreal | 27.296984 | 38.13979 | 34.14783 | 41.81088 |
Litoria capitula | Anura | DD | Arboreal | 26.789861 | 38.07009 | 34.33203 | 41.97640 |
Litoria capitula | Anura | DD | Arboreal | 28.276008 | 38.27433 | 34.22441 | 41.95911 |
Litoria chrisdahli | Anura | LC | Arboreal | 25.985811 | 37.98871 | 34.07722 | 41.69190 |
Litoria chrisdahli | Anura | LC | Arboreal | 25.442405 | 37.91367 | 34.02958 | 41.63080 |
Litoria chrisdahli | Anura | LC | Arboreal | 26.744245 | 38.09345 | 34.14371 | 41.82795 |
Litoria christianbergmanni | Anura | LC | Arboreal | 27.130951 | 38.22412 | 34.47958 | 42.20337 |
Litoria christianbergmanni | Anura | LC | Arboreal | 26.549154 | 38.14356 | 34.44227 | 42.13206 |
Litoria christianbergmanni | Anura | LC | Arboreal | 28.263035 | 38.38089 | 34.27044 | 42.06637 |
Litoria congenita | Anura | LC | Arboreal | 27.084061 | 39.11730 | 35.88783 | 42.08858 |
Litoria congenita | Anura | LC | Arboreal | 26.410753 | 39.02489 | 35.81229 | 41.98077 |
Litoria congenita | Anura | LC | Arboreal | 28.517589 | 39.31403 | 36.03375 | 42.37605 |
Litoria dentata | Anura | LC | Arboreal | 22.305697 | 38.51300 | 35.29350 | 41.54138 |
Litoria dentata | Anura | LC | Arboreal | 20.868296 | 38.31267 | 35.17101 | 41.40102 |
Litoria dentata | Anura | LC | Arboreal | 24.637648 | 38.83801 | 35.76895 | 42.22166 |
Litoria electrica | Anura | LC | Arboreal | 25.673100 | 39.13670 | 36.22580 | 42.15218 |
Litoria electrica | Anura | LC | Arboreal | 24.213813 | 38.93632 | 35.84683 | 41.68810 |
Litoria electrica | Anura | LC | Arboreal | 28.112077 | 39.47160 | 36.37019 | 42.45854 |
Litoria contrastens | Anura | LC | Semi-aquatic | 26.517079 | 38.30159 | 34.27794 | 42.16703 |
Litoria contrastens | Anura | LC | Semi-aquatic | 25.450240 | 38.15430 | 34.14062 | 42.04762 |
Litoria contrastens | Anura | LC | Semi-aquatic | 27.863476 | 38.48749 | 34.48757 | 42.40720 |
Litoria cooloolensis | Anura | EN | Arboreal | 23.691788 | 37.69393 | 33.92635 | 41.38838 |
Litoria cooloolensis | Anura | EN | Arboreal | 22.456931 | 37.52400 | 33.78370 | 41.19816 |
Litoria cooloolensis | Anura | EN | Arboreal | 25.652452 | 37.96373 | 34.19862 | 41.74182 |
Litoria coplandi | Anura | LC | Arboreal | 27.299125 | 38.33684 | 34.50400 | 41.66819 |
Litoria coplandi | Anura | LC | Arboreal | 26.186109 | 38.18039 | 34.47681 | 41.63155 |
Litoria coplandi | Anura | LC | Arboreal | 29.309242 | 38.61938 | 34.74004 | 41.99472 |
Litoria watjulumensis | Anura | LC | Ground-dwelling | 27.396426 | 38.43298 | 34.93221 | 41.94519 |
Litoria watjulumensis | Anura | LC | Ground-dwelling | 26.387478 | 38.29407 | 34.83680 | 41.77660 |
Litoria watjulumensis | Anura | LC | Ground-dwelling | 29.411491 | 38.71042 | 35.16312 | 42.30493 |
Litoria dayi | Anura | EN | Stream-dwelling | 25.919597 | 37.55055 | 33.71085 | 41.20559 |
Litoria dayi | Anura | EN | Stream-dwelling | 24.862524 | 37.40389 | 33.55962 | 40.99877 |
Litoria dayi | Anura | EN | Stream-dwelling | 27.828630 | 37.81541 | 34.00329 | 41.67117 |
Litoria nannotis | Anura | LC | Stream-dwelling | 25.877782 | 37.53569 | 33.70810 | 41.48396 |
Litoria nannotis | Anura | LC | Stream-dwelling | 24.780826 | 37.38664 | 33.64452 | 41.32000 |
Litoria nannotis | Anura | LC | Stream-dwelling | 27.871139 | 37.80654 | 33.89654 | 41.78858 |
Litoria rheocola | Anura | EN | Arboreal | 26.052659 | 38.02770 | 34.40136 | 41.91439 |
Litoria rheocola | Anura | EN | Arboreal | 25.041473 | 37.88943 | 34.28180 | 41.72743 |
Litoria rheocola | Anura | EN | Arboreal | 27.882701 | 38.27794 | 34.47307 | 42.10047 |
Litoria dorsalis | Anura | LC | Arboreal | 27.104054 | 38.09080 | 33.75092 | 41.64642 |
Litoria dorsalis | Anura | LC | Arboreal | 26.259566 | 37.97678 | 33.66564 | 41.53486 |
Litoria dorsalis | Anura | LC | Arboreal | 28.648582 | 38.29933 | 33.99970 | 41.93140 |
Litoria microbelos | Anura | LC | Ground-dwelling | 27.608266 | 38.40176 | 34.11002 | 42.07100 |
Litoria microbelos | Anura | LC | Ground-dwelling | 26.710171 | 38.27825 | 34.00527 | 41.88810 |
Litoria microbelos | Anura | LC | Ground-dwelling | 29.403945 | 38.64871 | 34.31508 | 42.44366 |
Litoria longirostris | Anura | LC | Arboreal | 27.348775 | 38.10843 | 33.52970 | 41.64645 |
Litoria longirostris | Anura | LC | Arboreal | 26.621133 | 38.00937 | 33.47374 | 41.52993 |
Litoria longirostris | Anura | LC | Arboreal | 29.170020 | 38.35637 | 33.62877 | 41.83458 |
Litoria meiriana | Anura | LC | Semi-aquatic | 27.816916 | 38.60929 | 34.58117 | 42.64387 |
Litoria meiriana | Anura | LC | Semi-aquatic | 26.869156 | 38.47969 | 34.44692 | 42.48241 |
Litoria meiriana | Anura | LC | Semi-aquatic | 29.740484 | 38.87233 | 34.74711 | 42.91147 |
Litoria dorsivena | Anura | LC | Stream-dwelling | 26.425281 | 37.54959 | 32.99746 | 41.09434 |
Litoria dorsivena | Anura | LC | Stream-dwelling | 25.719298 | 37.45394 | 33.43277 | 41.51846 |
Litoria dorsivena | Anura | LC | Stream-dwelling | 27.851124 | 37.74278 | 33.85516 | 42.06898 |
Litoria dux | Anura | LC | Arboreal | 25.605869 | 37.89086 | 34.18867 | 42.01596 |
Litoria dux | Anura | LC | Arboreal | 24.666225 | 37.76091 | 34.11568 | 41.88699 |
Litoria dux | Anura | LC | Arboreal | 26.887969 | 38.06818 | 34.26111 | 42.11529 |
Litoria infrafrenata | Anura | LC | Arboreal | 27.137771 | 38.07730 | 34.16278 | 41.97496 |
Litoria infrafrenata | Anura | LC | Arboreal | 26.466473 | 37.98274 | 34.02155 | 41.83591 |
Litoria infrafrenata | Anura | LC | Arboreal | 28.446958 | 38.26171 | 34.37094 | 42.20476 |
Litoria elkeae | Anura | LC | Arboreal | 26.516389 | 37.92308 | 34.28716 | 42.31276 |
Litoria elkeae | Anura | LC | Arboreal | 25.849933 | 37.83163 | 34.20809 | 42.19477 |
Litoria elkeae | Anura | LC | Arboreal | 27.829352 | 38.10326 | 34.05155 | 42.13146 |
Litoria exophthalmia | Anura | LC | Stream-dwelling | 26.308480 | 37.40620 | 33.45287 | 41.22463 |
Litoria exophthalmia | Anura | LC | Stream-dwelling | 25.369937 | 37.27872 | 33.35193 | 41.07614 |
Litoria exophthalmia | Anura | LC | Stream-dwelling | 27.737291 | 37.60027 | 33.71094 | 41.58428 |
Litoria genimaculata | Anura | LC | Arboreal | 26.744536 | 37.43715 | 34.10581 | 41.55148 |
Litoria genimaculata | Anura | LC | Arboreal | 25.977376 | 37.32971 | 33.99146 | 41.40716 |
Litoria genimaculata | Anura | LC | Arboreal | 28.123263 | 37.63023 | 34.18274 | 41.73054 |
Litoria everetti | Anura | DD | Arboreal | 27.319213 | 38.12433 | 34.37277 | 41.94910 |
Litoria everetti | Anura | DD | Arboreal | 26.753456 | 38.04766 | 34.34992 | 41.88750 |
Litoria everetti | Anura | DD | Arboreal | 28.503164 | 38.28476 | 34.48504 | 42.17437 |
Litoria littlejohni | Anura | LC | Arboreal | 20.766294 | 34.87213 | 32.51506 | 37.58900 |
Litoria littlejohni | Anura | LC | Arboreal | 19.180838 | 34.65546 | 32.23701 | 37.20551 |
Litoria littlejohni | Anura | LC | Arboreal | 23.212992 | 35.20649 | 32.73813 | 37.94018 |
Litoria paraewingi | Anura | LC | Arboreal | 19.599805 | 34.53619 | 32.20810 | 36.97326 |
Litoria paraewingi | Anura | LC | Arboreal | 17.584777 | 34.25555 | 32.12253 | 36.80595 |
Litoria paraewingi | Anura | LC | Arboreal | 23.061074 | 35.01826 | 32.79510 | 37.69949 |
Litoria revelata | Anura | LC | Arboreal | 22.507060 | 35.05986 | 32.42733 | 37.38154 |
Litoria revelata | Anura | LC | Arboreal | 21.108630 | 34.86710 | 32.37989 | 37.32301 |
Litoria revelata | Anura | LC | Arboreal | 24.777939 | 35.37290 | 32.74931 | 37.82728 |
Litoria jervisiensis | Anura | LC | Arboreal | 20.294613 | 35.10150 | 32.76235 | 37.92291 |
Litoria jervisiensis | Anura | LC | Arboreal | 18.652494 | 34.87025 | 32.50012 | 37.56399 |
Litoria jervisiensis | Anura | LC | Arboreal | 22.856304 | 35.46224 | 33.03995 | 38.27954 |
Litoria olongburensis | Anura | VU | Arboreal | 23.405152 | 38.72577 | 35.74547 | 41.52810 |
Litoria olongburensis | Anura | VU | Arboreal | 22.117937 | 38.55660 | 35.63135 | 41.35601 |
Litoria olongburensis | Anura | VU | Arboreal | 25.482876 | 38.99884 | 36.23964 | 42.17520 |
Litoria flavescens | Anura | LC | Arboreal | 27.496748 | 38.04636 | 34.34445 | 41.65039 |
Litoria flavescens | Anura | LC | Arboreal | 27.054862 | 37.98578 | 34.31929 | 41.59625 |
Litoria flavescens | Anura | LC | Arboreal | 28.559885 | 38.19213 | 34.41657 | 41.79245 |
Litoria latopalmata | Anura | LC | Ground-dwelling | 24.042716 | 36.76841 | 34.25658 | 39.67520 |
Litoria latopalmata | Anura | LC | Ground-dwelling | 22.568944 | 36.55754 | 33.85997 | 39.18722 |
Litoria latopalmata | Anura | LC | Ground-dwelling | 26.633909 | 37.13916 | 34.48596 | 40.04925 |
Litoria tornieri | Anura | LC | Ground-dwelling | 27.804055 | 37.37954 | 34.14717 | 40.41863 |
Litoria tornieri | Anura | LC | Ground-dwelling | 26.857101 | 37.24496 | 34.01739 | 40.21452 |
Litoria tornieri | Anura | LC | Ground-dwelling | 29.693068 | 37.64801 | 34.15671 | 40.63936 |
Litoria inermis | Anura | LC | Ground-dwelling | 26.413601 | 37.15910 | 34.11190 | 40.57062 |
Litoria inermis | Anura | LC | Ground-dwelling | 25.234983 | 36.99389 | 33.97154 | 40.35814 |
Litoria inermis | Anura | LC | Ground-dwelling | 28.582365 | 37.46312 | 34.12584 | 40.69760 |
Litoria pallida | Anura | LC | Ground-dwelling | 27.053580 | 37.20744 | 34.16709 | 40.38576 |
Litoria pallida | Anura | LC | Ground-dwelling | 25.959883 | 37.05539 | 33.87849 | 40.00689 |
Litoria pallida | Anura | LC | Ground-dwelling | 29.119423 | 37.49465 | 34.47722 | 40.81732 |
Litoria fuscula | Anura | DD | Stream-dwelling | 23.777654 | 37.26833 | 33.52539 | 41.08438 |
Litoria fuscula | Anura | DD | Stream-dwelling | 22.879292 | 37.14248 | 33.34572 | 40.86753 |
Litoria fuscula | Anura | DD | Stream-dwelling | 25.403142 | 37.49602 | 33.72242 | 41.35246 |
Litoria graminea | Anura | LC | Arboreal | 26.950747 | 38.01964 | 33.92042 | 41.79960 |
Litoria graminea | Anura | LC | Arboreal | 25.961851 | 37.88585 | 33.77536 | 41.58575 |
Litoria graminea | Anura | LC | Arboreal | 28.437675 | 38.22080 | 33.93094 | 41.87668 |
Litoria havina | Anura | LC | Arboreal | 27.418294 | 38.06346 | 34.60721 | 42.37053 |
Litoria havina | Anura | LC | Arboreal | 26.694859 | 37.96389 | 34.55931 | 42.25811 |
Litoria havina | Anura | LC | Arboreal | 28.925106 | 38.27086 | 34.74359 | 42.60759 |
Litoria multiplica | Anura | LC | Stream-dwelling | 25.815190 | 37.47468 | 33.67472 | 41.27800 |
Litoria multiplica | Anura | LC | Stream-dwelling | 24.942316 | 37.35393 | 33.61921 | 41.13160 |
Litoria multiplica | Anura | LC | Stream-dwelling | 27.295085 | 37.67941 | 33.76882 | 41.52621 |
Litoria hilli | Anura | LC | Arboreal | 27.211163 | 38.24327 | 34.54127 | 42.08701 |
Litoria hilli | Anura | LC | Arboreal | 26.781256 | 38.18422 | 34.51563 | 42.03018 |
Litoria hilli | Anura | LC | Arboreal | 28.187362 | 38.37734 | 34.53330 | 42.17791 |
Litoria humboldtorum | Anura | LC | Arboreal | 26.688517 | 38.08487 | 34.25504 | 41.99693 |
Litoria humboldtorum | Anura | LC | Arboreal | 26.270311 | 38.02761 | 34.17214 | 41.90860 |
Litoria humboldtorum | Anura | LC | Arboreal | 27.623932 | 38.21294 | 34.36505 | 42.18294 |
Litoria hunti | Anura | LC | Arboreal | 26.722188 | 37.94646 | 33.83549 | 41.64186 |
Litoria hunti | Anura | LC | Arboreal | 26.125286 | 37.86413 | 34.20093 | 42.01499 |
Litoria hunti | Anura | LC | Arboreal | 27.862948 | 38.10380 | 33.96969 | 41.84143 |
Litoria impura | Anura | LC | Arboreal | 27.101565 | 38.12392 | 34.03950 | 42.13854 |
Litoria impura | Anura | LC | Arboreal | 26.396064 | 38.02608 | 33.96458 | 42.02120 |
Litoria impura | Anura | LC | Arboreal | 28.589923 | 38.33032 | 34.29450 | 42.47994 |
Litoria thesaurensis | Anura | LC | Arboreal | 27.159628 | 38.09128 | 34.20651 | 42.04659 |
Litoria thesaurensis | Anura | LC | Arboreal | 26.472515 | 37.99683 | 34.17019 | 41.99261 |
Litoria thesaurensis | Anura | LC | Arboreal | 28.418798 | 38.26438 | 34.33198 | 42.27878 |
Litoria iris | Anura | LC | Arboreal | 26.261570 | 37.98121 | 34.08186 | 41.76840 |
Litoria iris | Anura | LC | Arboreal | 25.438501 | 37.86870 | 33.97342 | 41.65658 |
Litoria iris | Anura | LC | Arboreal | 27.758504 | 38.18583 | 34.18951 | 41.98041 |
Litoria majikthise | Anura | LC | Arboreal | 27.502423 | 38.09609 | 34.43794 | 42.03699 |
Litoria majikthise | Anura | LC | Arboreal | 26.907733 | 38.01522 | 34.36547 | 41.92057 |
Litoria majikthise | Anura | LC | Arboreal | 29.052931 | 38.30694 | 34.62684 | 42.34915 |
Litoria pronimia | Anura | LC | Arboreal | 25.926862 | 37.97795 | 34.25761 | 41.62535 |
Litoria pronimia | Anura | LC | Arboreal | 25.098278 | 37.86560 | 34.19080 | 41.49240 |
Litoria pronimia | Anura | LC | Arboreal | 27.493739 | 38.19041 | 34.46210 | 41.95817 |
Litoria spartacus | Anura | DD | Arboreal | 26.959804 | 38.14499 | 34.18335 | 41.90539 |
Litoria spartacus | Anura | DD | Arboreal | 26.050639 | 38.02208 | 34.07888 | 41.76585 |
Litoria spartacus | Anura | DD | Arboreal | 28.642654 | 38.37248 | 34.30470 | 42.18371 |
Litoria leucova | Anura | LC | Stream-dwelling | 27.614602 | 37.68379 | 33.70693 | 41.44504 |
Litoria leucova | Anura | LC | Stream-dwelling | 26.684459 | 37.55808 | 33.59874 | 41.30609 |
Litoria leucova | Anura | LC | Stream-dwelling | 28.994251 | 37.87025 | 33.86773 | 41.70540 |
Litoria longicrus | Anura | DD | Arboreal | 27.380483 | 38.07072 | 33.97536 | 42.08925 |
Litoria longicrus | Anura | DD | Arboreal | 26.816070 | 37.99377 | 33.90607 | 41.95757 |
Litoria longicrus | Anura | DD | Arboreal | 28.404724 | 38.21034 | 34.04979 | 42.25503 |
Litoria lorica | Anura | CR | Stream-dwelling | 26.415710 | 37.49070 | 33.59735 | 41.52407 |
Litoria lorica | Anura | CR | Stream-dwelling | 25.165581 | 37.31420 | 33.19933 | 41.04809 |
Litoria lorica | Anura | CR | Stream-dwelling | 28.731015 | 37.81760 | 34.00048 | 41.90788 |
Litoria louisiadensis | Anura | LC | Stream-dwelling | 27.383830 | 37.61593 | 33.86790 | 41.66393 |
Litoria louisiadensis | Anura | LC | Stream-dwelling | 26.980179 | 37.56060 | 33.69913 | 41.47777 |
Litoria louisiadensis | Anura | LC | Stream-dwelling | 28.297311 | 37.74113 | 33.97883 | 41.83021 |
Litoria lutea | Anura | LC | Arboreal | 27.643834 | 38.19249 | 34.65627 | 42.14973 |
Litoria lutea | Anura | LC | Arboreal | 27.166766 | 38.12672 | 34.63755 | 42.11834 |
Litoria lutea | Anura | LC | Arboreal | 28.621872 | 38.32732 | 34.77843 | 42.29154 |
Litoria macki | Anura | LC | Stream-dwelling | 23.777654 | 37.23573 | 32.96972 | 40.90800 |
Litoria macki | Anura | LC | Stream-dwelling | 22.879292 | 37.11276 | 32.87631 | 40.78205 |
Litoria macki | Anura | LC | Stream-dwelling | 25.403142 | 37.45823 | 33.30910 | 41.27893 |
Litoria mareku | Anura | DD | Arboreal | 27.845401 | 38.19619 | 34.26184 | 42.16152 |
Litoria mareku | Anura | DD | Arboreal | 27.169969 | 38.10251 | 34.17583 | 42.01719 |
Litoria mareku | Anura | DD | Arboreal | 29.078135 | 38.36716 | 34.32657 | 42.34024 |
Litoria megalops | Anura | DD | Stream-dwelling | 23.777654 | 37.24203 | 33.38287 | 41.13894 |
Litoria megalops | Anura | DD | Stream-dwelling | 22.879292 | 37.11797 | 33.28457 | 40.92395 |
Litoria megalops | Anura | DD | Stream-dwelling | 25.403142 | 37.46650 | 33.37087 | 41.26777 |
Litoria mucro | Anura | LC | Arboreal | 26.823704 | 38.05448 | 34.14514 | 41.82863 |
Litoria mucro | Anura | LC | Arboreal | 26.200244 | 37.96907 | 34.10942 | 41.71824 |
Litoria mucro | Anura | LC | Arboreal | 27.962764 | 38.21051 | 34.13326 | 41.90204 |
Litoria multicolor | Anura | DD | Arboreal | 27.768241 | 38.21804 | 34.47910 | 42.22821 |
Litoria multicolor | Anura | DD | Arboreal | 27.114415 | 38.12906 | 34.38086 | 42.09061 |
Litoria multicolor | Anura | DD | Arboreal | 28.954709 | 38.37951 | 34.58712 | 42.35339 |
Litoria myola | Anura | CR | Stream-dwelling | 26.415710 | 37.42679 | 33.44921 | 41.15155 |
Litoria myola | Anura | CR | Stream-dwelling | 25.165581 | 37.25727 | 33.30799 | 40.95206 |
Litoria myola | Anura | CR | Stream-dwelling | 28.731015 | 37.74076 | 33.87720 | 41.78081 |
Litoria mystax | Anura | DD | Arboreal | 25.083099 | 37.93069 | 34.04080 | 41.45087 |
Litoria mystax | Anura | DD | Arboreal | 24.397038 | 37.83618 | 33.92008 | 41.30396 |
Litoria mystax | Anura | DD | Arboreal | 26.341138 | 38.10398 | 34.28714 | 41.76714 |
Litoria napaea | Anura | LC | Stream-dwelling | 25.656315 | 37.50164 | 33.22373 | 40.97655 |
Litoria napaea | Anura | LC | Stream-dwelling | 24.937079 | 37.40323 | 33.10520 | 40.84896 |
Litoria napaea | Anura | LC | Stream-dwelling | 26.983215 | 37.68320 | 33.42897 | 41.25291 |
Litoria nigropunctata | Anura | LC | Arboreal | 26.727601 | 38.12841 | 33.84543 | 41.69932 |
Litoria nigropunctata | Anura | LC | Arboreal | 25.999451 | 38.02881 | 33.87191 | 41.71101 |
Litoria nigropunctata | Anura | LC | Arboreal | 27.939323 | 38.29416 | 34.00419 | 41.87919 |
Litoria prora | Anura | LC | Arboreal | 27.586725 | 38.21264 | 34.58119 | 42.40400 |
Litoria prora | Anura | LC | Arboreal | 26.740677 | 38.09671 | 34.18669 | 41.94211 |
Litoria prora | Anura | LC | Arboreal | 29.191270 | 38.43251 | 34.68611 | 42.60655 |
Litoria obtusirostris | Anura | DD | Arboreal | 26.716865 | 38.06659 | 34.56735 | 41.91833 |
Litoria obtusirostris | Anura | DD | Arboreal | 26.327417 | 38.01250 | 34.50019 | 41.84034 |
Litoria obtusirostris | Anura | DD | Arboreal | 27.580709 | 38.18659 | 34.52081 | 41.90802 |
Litoria oenicolen | Anura | LC | Stream-dwelling | 26.632623 | 37.51041 | 33.94329 | 41.52370 |
Litoria oenicolen | Anura | LC | Stream-dwelling | 25.496537 | 37.35656 | 33.64265 | 41.14257 |
Litoria oenicolen | Anura | LC | Stream-dwelling | 27.846221 | 37.67476 | 34.01367 | 41.62689 |
Litoria ollauro | Anura | LC | Arboreal | 27.445192 | 38.19540 | 34.31802 | 42.05709 |
Litoria ollauro | Anura | LC | Arboreal | 26.825280 | 38.11154 | 34.22486 | 41.94012 |
Litoria ollauro | Anura | LC | Arboreal | 28.763956 | 38.37380 | 34.35324 | 42.28242 |
Litoria personata | Anura | LC | Ground-dwelling | 28.278140 | 38.45662 | 34.77033 | 41.91612 |
Litoria personata | Anura | LC | Ground-dwelling | 27.215188 | 38.30894 | 34.79469 | 41.87653 |
Litoria personata | Anura | LC | Ground-dwelling | 30.228598 | 38.72759 | 35.05414 | 42.26963 |
Litoria pratti | Anura | DD | Stream-dwelling | 27.684188 | 37.81520 | 34.07899 | 41.67550 |
Litoria pratti | Anura | DD | Stream-dwelling | 27.023635 | 37.72467 | 33.94252 | 41.51591 |
Litoria pratti | Anura | DD | Stream-dwelling | 28.894540 | 37.98107 | 34.26019 | 41.87851 |
Litoria purpureolata | Anura | LC | Arboreal | 25.988046 | 37.98382 | 34.25646 | 41.95173 |
Litoria purpureolata | Anura | LC | Arboreal | 25.252203 | 37.88478 | 34.18549 | 41.85825 |
Litoria purpureolata | Anura | LC | Arboreal | 27.260956 | 38.15515 | 34.20263 | 42.05004 |
Litoria pygmaea | Anura | LC | Arboreal | 26.958411 | 38.03127 | 34.01743 | 41.86862 |
Litoria pygmaea | Anura | LC | Arboreal | 26.234908 | 37.93313 | 33.89233 | 41.68217 |
Litoria pygmaea | Anura | LC | Arboreal | 28.352211 | 38.22033 | 34.20418 | 42.07956 |
Litoria quadrilineata | Anura | DD | Arboreal | 27.151257 | 38.21235 | 34.43386 | 42.31437 |
Litoria quadrilineata | Anura | DD | Arboreal | 26.630080 | 38.14045 | 34.36518 | 42.24890 |
Litoria quadrilineata | Anura | DD | Arboreal | 28.550003 | 38.40531 | 34.61066 | 42.55939 |
Litoria rara | Anura | DD | Arboreal | 26.358868 | 38.07072 | 34.50333 | 42.23835 |
Litoria rara | Anura | DD | Arboreal | 25.887808 | 38.00555 | 34.45363 | 42.16542 |
Litoria rara | Anura | DD | Arboreal | 27.535294 | 38.23347 | 34.63929 | 42.43089 |
Litoria richardsi | Anura | LC | Arboreal | 26.003827 | 37.88705 | 34.13606 | 41.67584 |
Litoria richardsi | Anura | LC | Arboreal | 25.058996 | 37.76036 | 34.07715 | 41.56323 |
Litoria richardsi | Anura | LC | Arboreal | 27.556283 | 38.09522 | 34.45311 | 42.02919 |
Litoria rubrops | Anura | LC | Arboreal | 27.431321 | 38.20656 | 34.84367 | 42.25103 |
Litoria rubrops | Anura | LC | Arboreal | 26.992459 | 38.14690 | 34.80789 | 42.19552 |
Litoria rubrops | Anura | LC | Arboreal | 28.476924 | 38.34871 | 34.91377 | 42.38755 |
Litoria sanguinolenta | Anura | LC | Arboreal | 27.395970 | 38.10820 | 34.15015 | 42.01652 |
Litoria sanguinolenta | Anura | LC | Arboreal | 26.793663 | 38.02550 | 34.07490 | 41.91926 |
Litoria sanguinolenta | Anura | LC | Arboreal | 28.896107 | 38.31420 | 34.41822 | 42.34188 |
Litoria scabra | Anura | LC | Stream-dwelling | 23.777654 | 37.21255 | 32.84754 | 41.18230 |
Litoria scabra | Anura | LC | Stream-dwelling | 22.879292 | 37.08884 | 32.71089 | 40.96915 |
Litoria scabra | Anura | LC | Stream-dwelling | 25.403142 | 37.43638 | 33.14446 | 41.60243 |
Litoria singadanae | Anura | LC | Arboreal | 25.605869 | 37.84493 | 33.99140 | 42.19429 |
Litoria singadanae | Anura | LC | Arboreal | 24.666225 | 37.71670 | 33.88009 | 42.06231 |
Litoria singadanae | Anura | LC | Arboreal | 26.887969 | 38.01990 | 34.11226 | 42.45030 |
Litoria spinifera | Anura | LC | Stream-dwelling | 25.635729 | 37.56288 | 33.56111 | 41.30049 |
Litoria spinifera | Anura | LC | Stream-dwelling | 24.759954 | 37.44094 | 33.45657 | 41.18374 |
Litoria spinifera | Anura | LC | Stream-dwelling | 27.136743 | 37.77187 | 33.74030 | 41.52179 |
Litoria staccato | Anura | LC | Ground-dwelling | 27.783079 | 38.40461 | 34.33535 | 42.06646 |
Litoria staccato | Anura | LC | Ground-dwelling | 27.002454 | 38.29834 | 34.22634 | 41.91494 |
Litoria staccato | Anura | LC | Ground-dwelling | 29.459716 | 38.63284 | 34.42884 | 42.26601 |
Litoria timida | Anura | LC | Arboreal | 27.607964 | 38.25431 | 34.54304 | 41.90728 |
Litoria timida | Anura | LC | Arboreal | 26.937509 | 38.16203 | 34.47464 | 41.80572 |
Litoria timida | Anura | LC | Arboreal | 29.202071 | 38.47373 | 34.68267 | 42.13130 |
Litoria umarensis | Anura | DD | Arboreal | 27.845401 | 38.11438 | 34.26971 | 42.15314 |
Litoria umarensis | Anura | DD | Arboreal | 27.169969 | 38.01956 | 34.19000 | 42.03498 |
Litoria umarensis | Anura | DD | Arboreal | 29.078135 | 38.28744 | 34.71006 | 42.65841 |
Litoria umbonata | Anura | DD | Arboreal | 25.572774 | 37.88215 | 34.09755 | 41.69444 |
Litoria umbonata | Anura | DD | Arboreal | 24.852902 | 37.78590 | 34.07816 | 41.62136 |
Litoria umbonata | Anura | DD | Arboreal | 27.035614 | 38.07774 | 34.27221 | 41.91606 |
Litoria vagabunda | Anura | DD | Arboreal | 27.136714 | 38.08821 | 34.37394 | 42.06948 |
Litoria vagabunda | Anura | DD | Arboreal | 26.717894 | 38.03018 | 34.17118 | 41.82638 |
Litoria vagabunda | Anura | DD | Arboreal | 28.108791 | 38.22287 | 34.34736 | 42.02740 |
Litoria verae | Anura | DD | Arboreal | 27.845401 | 38.23940 | 34.14057 | 41.69345 |
Litoria verae | Anura | DD | Arboreal | 27.169969 | 38.14564 | 34.15883 | 41.65514 |
Litoria verae | Anura | DD | Arboreal | 29.078135 | 38.41051 | 34.37771 | 42.05531 |
Litoria wapogaensis | Anura | DD | Stream-dwelling | 23.777654 | 37.18110 | 33.39310 | 41.15804 |
Litoria wapogaensis | Anura | DD | Stream-dwelling | 22.879292 | 37.05915 | 33.39397 | 41.08641 |
Litoria wapogaensis | Anura | DD | Stream-dwelling | 25.403142 | 37.40174 | 33.53798 | 41.33794 |
Litoria wisselensis | Anura | DD | Semi-aquatic | 25.590812 | 38.34202 | 34.81308 | 42.38390 |
Litoria wisselensis | Anura | DD | Semi-aquatic | 24.777979 | 38.23034 | 34.63216 | 42.13410 |
Litoria wisselensis | Anura | DD | Semi-aquatic | 27.055270 | 38.54323 | 35.08052 | 42.80733 |
Aplastodiscus albofrenatus | Anura | LC | Arboreal | 25.763710 | 38.70164 | 35.46555 | 41.83477 |
Aplastodiscus albofrenatus | Anura | LC | Arboreal | 24.738476 | 38.56756 | 35.44439 | 41.69268 |
Aplastodiscus albofrenatus | Anura | LC | Arboreal | 27.556081 | 38.93603 | 35.48946 | 41.98602 |
Aplastodiscus arildae | Anura | LC | Arboreal | 25.578171 | 38.52163 | 35.62058 | 41.32035 |
Aplastodiscus arildae | Anura | LC | Arboreal | 24.378783 | 38.36535 | 35.57111 | 41.25063 |
Aplastodiscus arildae | Anura | LC | Arboreal | 27.734221 | 38.80256 | 35.99097 | 41.83438 |
Aplastodiscus eugenioi | Anura | NT | Arboreal | 25.403136 | 38.67493 | 35.39537 | 41.67729 |
Aplastodiscus eugenioi | Anura | NT | Arboreal | 24.227190 | 38.51758 | 35.29496 | 41.55636 |
Aplastodiscus eugenioi | Anura | NT | Arboreal | 27.360502 | 38.93684 | 35.57132 | 42.03311 |
Aplastodiscus albosignatus | Anura | LC | Arboreal | 25.173935 | 39.05832 | 35.46721 | 42.71623 |
Aplastodiscus albosignatus | Anura | LC | Arboreal | 23.776046 | 38.87676 | 35.38710 | 42.57696 |
Aplastodiscus albosignatus | Anura | LC | Arboreal | 27.436008 | 39.35211 | 35.76468 | 43.12178 |
Aplastodiscus callipygius | Anura | LC | Arboreal | 25.473458 | 39.04203 | 35.29725 | 42.47903 |
Aplastodiscus callipygius | Anura | LC | Arboreal | 24.194941 | 38.87322 | 35.28509 | 42.37090 |
Aplastodiscus callipygius | Anura | LC | Arboreal | 27.720119 | 39.33867 | 35.51090 | 42.82013 |
Aplastodiscus cavicola | Anura | NT | Arboreal | 25.457410 | 39.06506 | 35.69624 | 42.62154 |
Aplastodiscus cavicola | Anura | NT | Arboreal | 24.490250 | 38.93959 | 35.60637 | 42.47110 |
Aplastodiscus cavicola | Anura | NT | Arboreal | 27.263337 | 39.29936 | 35.81529 | 42.77756 |
Aplastodiscus leucopygius | Anura | LC | Arboreal | 25.702635 | 39.04420 | 35.74385 | 42.97330 |
Aplastodiscus leucopygius | Anura | LC | Arboreal | 24.386884 | 38.87682 | 35.58567 | 42.76504 |
Aplastodiscus leucopygius | Anura | LC | Arboreal | 27.973238 | 39.33305 | 35.76376 | 43.12238 |
Aplastodiscus cochranae | Anura | LC | Arboreal | 24.385299 | 38.86923 | 35.30958 | 42.15455 |
Aplastodiscus cochranae | Anura | LC | Arboreal | 22.768352 | 38.65390 | 35.27770 | 42.09800 |
Aplastodiscus cochranae | Anura | LC | Arboreal | 26.844732 | 39.19674 | 35.77929 | 42.69847 |
Aplastodiscus perviridis | Anura | LC | Arboreal | 25.846373 | 39.05341 | 35.53267 | 42.84337 |
Aplastodiscus perviridis | Anura | LC | Arboreal | 24.458305 | 38.87439 | 35.21812 | 42.48413 |
Aplastodiscus perviridis | Anura | LC | Arboreal | 28.243524 | 39.36257 | 35.65620 | 43.06169 |
Aplastodiscus flumineus | Anura | DD | Arboreal | 26.332966 | 39.06284 | 35.30764 | 42.72535 |
Aplastodiscus flumineus | Anura | DD | Arboreal | 25.152380 | 38.91089 | 35.43645 | 42.81578 |
Aplastodiscus flumineus | Anura | DD | Arboreal | 28.199008 | 39.30301 | 35.79794 | 43.28034 |
Aplastodiscus ehrhardti | Anura | LC | Arboreal | 24.286047 | 38.85126 | 35.34511 | 42.33474 |
Aplastodiscus ehrhardti | Anura | LC | Arboreal | 22.619704 | 38.63312 | 35.15149 | 42.15184 |
Aplastodiscus ehrhardti | Anura | LC | Arboreal | 26.791598 | 39.17926 | 35.66876 | 42.77871 |
Aplastodiscus musicus | Anura | DD | Arboreal | 26.332966 | 39.06134 | 35.44385 | 42.34242 |
Aplastodiscus musicus | Anura | DD | Arboreal | 25.152380 | 38.90995 | 35.19773 | 42.06792 |
Aplastodiscus musicus | Anura | DD | Arboreal | 28.199008 | 39.30062 | 35.67054 | 42.60991 |
Bokermannohyla ahenea | Anura | DD | Arboreal | 26.367176 | 39.37535 | 35.62022 | 43.48738 |
Bokermannohyla ahenea | Anura | DD | Arboreal | 25.114381 | 39.21837 | 35.53574 | 43.27864 |
Bokermannohyla ahenea | Anura | DD | Arboreal | 28.661754 | 39.66287 | 35.88833 | 43.93015 |
Bokermannohyla alvarengai | Anura | LC | Stream-dwelling | 25.153496 | 38.80725 | 35.09923 | 43.14506 |
Bokermannohyla alvarengai | Anura | LC | Stream-dwelling | 23.897283 | 38.64286 | 34.68231 | 42.65313 |
Bokermannohyla alvarengai | Anura | LC | Stream-dwelling | 27.746348 | 39.14656 | 35.31046 | 43.41849 |
Bokermannohyla astartea | Anura | LC | Arboreal | 25.680928 | 39.25107 | 35.06631 | 43.08230 |
Bokermannohyla astartea | Anura | LC | Arboreal | 24.408234 | 39.08707 | 34.92475 | 42.88007 |
Bokermannohyla astartea | Anura | LC | Arboreal | 27.862758 | 39.53223 | 35.35456 | 43.35078 |
Bokermannohyla circumdata | Anura | LC | Arboreal | 25.444804 | 39.17340 | 34.86662 | 43.04903 |
Bokermannohyla circumdata | Anura | LC | Arboreal | 24.193739 | 39.01259 | 34.74452 | 42.87155 |
Bokermannohyla circumdata | Anura | LC | Arboreal | 27.800561 | 39.47621 | 35.35814 | 43.64016 |
Bokermannohyla hylax | Anura | LC | Stream-dwelling | 24.960018 | 38.68762 | 34.67072 | 42.89455 |
Bokermannohyla hylax | Anura | LC | Stream-dwelling | 23.377389 | 38.47979 | 34.70154 | 42.78892 |
Bokermannohyla hylax | Anura | LC | Stream-dwelling | 27.441473 | 39.01349 | 35.19986 | 43.59030 |
Bokermannohyla caramaschii | Anura | LC | Arboreal | 25.423201 | 39.33979 | 35.47618 | 43.03284 |
Bokermannohyla caramaschii | Anura | LC | Arboreal | 24.464023 | 39.21617 | 35.47038 | 42.98544 |
Bokermannohyla caramaschii | Anura | LC | Arboreal | 27.310470 | 39.58303 | 35.49210 | 43.23564 |
Bokermannohyla carvalhoi | Anura | LC | Stream-dwelling | 25.643016 | 38.93941 | 34.93218 | 42.70153 |
Bokermannohyla carvalhoi | Anura | LC | Stream-dwelling | 24.663294 | 38.81158 | 34.75810 | 42.49819 |
Bokermannohyla carvalhoi | Anura | LC | Stream-dwelling | 27.334947 | 39.16015 | 35.05683 | 42.96094 |
Bokermannohyla diamantina | Anura | LC | Stream-dwelling | 25.061238 | 38.76325 | 34.67806 | 42.64000 |
Bokermannohyla diamantina | Anura | LC | Stream-dwelling | 23.748489 | 38.59570 | 34.61010 | 42.51490 |
Bokermannohyla diamantina | Anura | LC | Stream-dwelling | 27.599603 | 39.08722 | 35.07428 | 43.08234 |
Bokermannohyla feioi | Anura | DD | Arboreal | 25.729467 | 39.37483 | 35.22605 | 43.31243 |
Bokermannohyla feioi | Anura | DD | Arboreal | 24.488809 | 39.21512 | 35.02508 | 43.02360 |
Bokermannohyla feioi | Anura | DD | Arboreal | 27.741619 | 39.63386 | 35.56535 | 43.78875 |
Bokermannohyla gouveai | Anura | DD | Arboreal | 26.367176 | 39.42990 | 35.38869 | 43.75351 |
Bokermannohyla gouveai | Anura | DD | Arboreal | 25.114381 | 39.26840 | 35.37269 | 43.64648 |
Bokermannohyla gouveai | Anura | DD | Arboreal | 28.661754 | 39.72568 | 35.79791 | 44.33155 |
Bokermannohyla ibitiguara | Anura | DD | Stream-dwelling | 25.516162 | 38.87431 | 34.73591 | 42.61138 |
Bokermannohyla ibitiguara | Anura | DD | Stream-dwelling | 24.345698 | 38.72462 | 34.61923 | 42.45922 |
Bokermannohyla ibitiguara | Anura | DD | Stream-dwelling | 27.818301 | 39.16874 | 34.89838 | 43.00565 |
Bokermannohyla ibitipoca | Anura | DD | Ground-dwelling | 25.729467 | 39.43393 | 35.82099 | 43.63673 |
Bokermannohyla ibitipoca | Anura | DD | Ground-dwelling | 24.488809 | 39.27464 | 35.83019 | 43.55668 |
Bokermannohyla ibitipoca | Anura | DD | Ground-dwelling | 27.741619 | 39.69227 | 35.83727 | 43.76169 |
Bokermannohyla itapoty | Anura | LC | Stream-dwelling | 24.722372 | 38.81329 | 35.06516 | 42.90034 |
Bokermannohyla itapoty | Anura | LC | Stream-dwelling | 23.532551 | 38.66091 | 35.03222 | 42.83625 |
Bokermannohyla itapoty | Anura | LC | Stream-dwelling | 27.169152 | 39.12665 | 35.19465 | 43.16729 |
Bokermannohyla izecksohni | Anura | CR | Stream-dwelling | 26.272616 | 38.97597 | 35.18744 | 42.98765 |
Bokermannohyla izecksohni | Anura | CR | Stream-dwelling | 25.009737 | 38.81252 | 35.22985 | 42.99510 |
Bokermannohyla izecksohni | Anura | CR | Stream-dwelling | 28.773414 | 39.29964 | 35.66999 | 43.66771 |
Bokermannohyla langei | Anura | DD | Stream-dwelling | 23.836674 | 38.65126 | 34.96668 | 42.77666 |
Bokermannohyla langei | Anura | DD | Stream-dwelling | 21.947547 | 38.40587 | 34.61562 | 42.31204 |
Bokermannohyla langei | Anura | DD | Stream-dwelling | 26.445416 | 38.99013 | 34.80448 | 42.75314 |
Bokermannohyla lucianae | Anura | DD | Arboreal | 25.361645 | 39.30237 | 35.62163 | 43.19219 |
Bokermannohyla lucianae | Anura | DD | Arboreal | 24.597670 | 39.20287 | 35.53949 | 43.08838 |
Bokermannohyla lucianae | Anura | DD | Arboreal | 26.767371 | 39.48545 | 35.77642 | 43.42515 |
Bokermannohyla luctuosa | Anura | LC | Stream-dwelling | 25.784677 | 38.92515 | 35.07469 | 42.76948 |
Bokermannohyla luctuosa | Anura | LC | Stream-dwelling | 24.390068 | 38.74600 | 34.95106 | 42.60738 |
Bokermannohyla luctuosa | Anura | LC | Stream-dwelling | 28.204652 | 39.23601 | 35.24129 | 42.84598 |
Bokermannohyla martinsi | Anura | LC | Stream-dwelling | 24.943914 | 38.84343 | 35.14889 | 42.99170 |
Bokermannohyla martinsi | Anura | LC | Stream-dwelling | 23.717986 | 38.68643 | 35.00266 | 42.87343 |
Bokermannohyla martinsi | Anura | LC | Stream-dwelling | 27.586350 | 39.18183 | 35.50645 | 43.46973 |
Bokermannohyla nanuzae | Anura | LC | Stream-dwelling | 24.826713 | 38.65781 | 34.84756 | 43.01124 |
Bokermannohyla nanuzae | Anura | LC | Stream-dwelling | 23.454470 | 38.48172 | 34.19755 | 42.29386 |
Bokermannohyla nanuzae | Anura | LC | Stream-dwelling | 27.381718 | 38.98567 | 35.02621 | 43.29653 |
Bokermannohyla oxente | Anura | LC | Stream-dwelling | 24.600450 | 38.74672 | 35.08128 | 42.87459 |
Bokermannohyla oxente | Anura | LC | Stream-dwelling | 23.434797 | 38.59716 | 34.96011 | 42.74385 |
Bokermannohyla oxente | Anura | LC | Stream-dwelling | 27.098415 | 39.06723 | 35.34653 | 43.18644 |
Bokermannohyla pseudopseudis | Anura | LC | Stream-dwelling | 26.826800 | 39.01119 | 34.68905 | 42.77100 |
Bokermannohyla pseudopseudis | Anura | LC | Stream-dwelling | 25.670195 | 38.86423 | 34.51595 | 42.56241 |
Bokermannohyla pseudopseudis | Anura | LC | Stream-dwelling | 28.949802 | 39.28094 | 35.31602 | 43.49048 |
Bokermannohyla ravida | Anura | CR | Stream-dwelling | 25.577625 | 38.81467 | 34.88721 | 42.63210 |
Bokermannohyla ravida | Anura | CR | Stream-dwelling | 24.411268 | 38.66702 | 34.72955 | 42.42651 |
Bokermannohyla ravida | Anura | CR | Stream-dwelling | 27.700990 | 39.08348 | 35.32062 | 43.09270 |
Bokermannohyla sagarana | Anura | NT | Stream-dwelling | 25.032695 | 38.68228 | 34.54463 | 42.49332 |
Bokermannohyla sagarana | Anura | NT | Stream-dwelling | 23.845628 | 38.52974 | 34.55945 | 42.46700 |
Bokermannohyla sagarana | Anura | NT | Stream-dwelling | 27.468231 | 38.99526 | 35.05260 | 43.17553 |
Bokermannohyla saxicola | Anura | LC | Stream-dwelling | 25.199175 | 38.82416 | 34.97513 | 42.81179 |
Bokermannohyla saxicola | Anura | LC | Stream-dwelling | 24.003904 | 38.66754 | 34.93724 | 42.73295 |
Bokermannohyla saxicola | Anura | LC | Stream-dwelling | 27.739380 | 39.15701 | 34.84640 | 42.76908 |
Bokermannohyla sazimai | Anura | DD | Stream-dwelling | 25.649306 | 38.88013 | 34.73712 | 43.03062 |
Bokermannohyla sazimai | Anura | DD | Stream-dwelling | 24.489485 | 38.73041 | 34.55509 | 42.84434 |
Bokermannohyla sazimai | Anura | DD | Stream-dwelling | 28.015513 | 39.18558 | 34.97215 | 43.40490 |
Bokermannohyla vulcaniae | Anura | VU | Stream-dwelling | 25.780397 | 38.90652 | 34.85430 | 43.02875 |
Bokermannohyla vulcaniae | Anura | VU | Stream-dwelling | 24.408242 | 38.73055 | 34.71055 | 42.82245 |
Bokermannohyla vulcaniae | Anura | VU | Stream-dwelling | 28.499830 | 39.25528 | 35.13585 | 43.50935 |
Hyloscirtus albopunctulatus | Anura | LC | Arboreal | 26.540933 | 38.55369 | 34.42486 | 42.27885 |
Hyloscirtus albopunctulatus | Anura | LC | Arboreal | 25.719502 | 38.44749 | 34.38353 | 42.27686 |
Hyloscirtus albopunctulatus | Anura | LC | Arboreal | 28.071082 | 38.75152 | 34.26164 | 42.30135 |
Hyloscirtus simmonsi | Anura | VU | Stream-dwelling | 24.339054 | 37.17622 | 34.14943 | 40.31884 |
Hyloscirtus simmonsi | Anura | VU | Stream-dwelling | 23.604569 | 37.08036 | 34.07529 | 40.20190 |
Hyloscirtus simmonsi | Anura | VU | Stream-dwelling | 25.715244 | 37.35584 | 34.19270 | 40.42447 |
Hyloscirtus armatus | Anura | NT | Stream-dwelling | 19.152462 | 37.17809 | 33.24099 | 41.49185 |
Hyloscirtus armatus | Anura | NT | Stream-dwelling | 18.108728 | 37.03988 | 33.09007 | 41.33204 |
Hyloscirtus armatus | Anura | NT | Stream-dwelling | 20.450076 | 37.34992 | 33.29579 | 41.57697 |
Hyloscirtus charazani | Anura | CR | Stream-dwelling | 16.937574 | 36.89759 | 33.25334 | 40.77391 |
Hyloscirtus charazani | Anura | CR | Stream-dwelling | 15.844970 | 36.75631 | 33.12864 | 40.66229 |
Hyloscirtus charazani | Anura | CR | Stream-dwelling | 18.635109 | 37.11710 | 33.34316 | 40.80996 |
Hyloscirtus bogotensis | Anura | NT | Stream-dwelling | 23.566380 | 37.79821 | 34.02813 | 42.02701 |
Hyloscirtus bogotensis | Anura | NT | Stream-dwelling | 22.796902 | 37.69729 | 33.71401 | 41.63910 |
Hyloscirtus bogotensis | Anura | NT | Stream-dwelling | 25.185642 | 38.01058 | 34.22402 | 42.34917 |
Hyloscirtus callipeza | Anura | VU | Stream-dwelling | 23.966024 | 37.95136 | 33.93615 | 41.73211 |
Hyloscirtus callipeza | Anura | VU | Stream-dwelling | 23.110664 | 37.83946 | 33.85622 | 41.66824 |
Hyloscirtus callipeza | Anura | VU | Stream-dwelling | 25.620181 | 38.16775 | 34.03369 | 41.79014 |
Hyloscirtus caucanus | Anura | EN | Stream-dwelling | 23.994788 | 37.89944 | 33.80368 | 41.81338 |
Hyloscirtus caucanus | Anura | EN | Stream-dwelling | 22.974522 | 37.76536 | 33.68013 | 41.67985 |
Hyloscirtus caucanus | Anura | EN | Stream-dwelling | 25.597923 | 38.11012 | 34.08615 | 42.05625 |
Hyloscirtus colymba | Anura | EN | Stream-dwelling | 27.158369 | 38.33517 | 34.62783 | 42.64502 |
Hyloscirtus colymba | Anura | EN | Stream-dwelling | 26.555580 | 38.25616 | 34.35206 | 42.32603 |
Hyloscirtus colymba | Anura | EN | Stream-dwelling | 28.385964 | 38.49609 | 34.75983 | 42.80562 |
Hyloscirtus pacha | Anura | EN | Stream-dwelling | 23.049225 | 37.70564 | 33.88762 | 41.91493 |
Hyloscirtus pacha | Anura | EN | Stream-dwelling | 21.493692 | 37.50231 | 33.61650 | 41.62048 |
Hyloscirtus pacha | Anura | EN | Stream-dwelling | 25.325715 | 38.00321 | 33.86537 | 41.95363 |
Hyloscirtus staufferorum | Anura | EN | Stream-dwelling | 23.762118 | 37.68595 | 34.06079 | 41.69922 |
Hyloscirtus staufferorum | Anura | EN | Stream-dwelling | 22.512604 | 37.52381 | 33.88415 | 41.50313 |
Hyloscirtus staufferorum | Anura | EN | Stream-dwelling | 25.638054 | 37.92938 | 34.11517 | 41.83135 |
Hyloscirtus psarolaimus | Anura | VU | Stream-dwelling | 21.643573 | 37.53901 | 33.65985 | 41.50117 |
Hyloscirtus psarolaimus | Anura | VU | Stream-dwelling | 19.874957 | 37.30359 | 33.27839 | 41.05841 |
Hyloscirtus psarolaimus | Anura | VU | Stream-dwelling | 23.939919 | 37.84467 | 33.94667 | 41.81364 |
Hyloscirtus ptychodactylus | Anura | EN | Stream-dwelling | 23.033729 | 37.71097 | 34.17692 | 41.69920 |
Hyloscirtus ptychodactylus | Anura | EN | Stream-dwelling | 21.190651 | 37.47043 | 33.69981 | 41.17712 |
Hyloscirtus ptychodactylus | Anura | EN | Stream-dwelling | 25.447074 | 38.02593 | 34.44738 | 41.98265 |
Hyloscirtus larinopygion | Anura | LC | Arboreal | 22.347642 | 38.02383 | 34.13410 | 41.76726 |
Hyloscirtus larinopygion | Anura | LC | Arboreal | 21.262332 | 37.88429 | 34.12671 | 41.73602 |
Hyloscirtus larinopygion | Anura | LC | Arboreal | 24.058248 | 38.24378 | 34.25804 | 42.01481 |
Hyloscirtus denticulentus | Anura | VU | Stream-dwelling | 22.690442 | 37.72939 | 33.81625 | 41.45988 |
Hyloscirtus denticulentus | Anura | VU | Stream-dwelling | 21.814015 | 37.61446 | 33.78547 | 41.37596 |
Hyloscirtus denticulentus | Anura | VU | Stream-dwelling | 24.424039 | 37.95672 | 34.05510 | 41.81414 |
Hyloscirtus jahni | Anura | VU | Stream-dwelling | 26.263875 | 38.19525 | 33.82193 | 42.08307 |
Hyloscirtus jahni | Anura | VU | Stream-dwelling | 25.397043 | 38.08005 | 33.74160 | 41.95235 |
Hyloscirtus jahni | Anura | VU | Stream-dwelling | 27.823709 | 38.40255 | 33.94124 | 42.31092 |
Hyloscirtus lascinius | Anura | LC | Arboreal | 25.530798 | 38.54835 | 34.62074 | 42.42824 |
Hyloscirtus lascinius | Anura | LC | Arboreal | 24.554387 | 38.42370 | 34.59250 | 42.32463 |
Hyloscirtus lascinius | Anura | LC | Arboreal | 27.216719 | 38.76357 | 34.90799 | 42.78400 |
Hyloscirtus palmeri | Anura | LC | Stream-dwelling | 25.070350 | 37.95929 | 33.85086 | 41.95489 |
Hyloscirtus palmeri | Anura | LC | Stream-dwelling | 24.253465 | 37.85437 | 33.71667 | 41.78508 |
Hyloscirtus palmeri | Anura | LC | Stream-dwelling | 26.531177 | 38.14691 | 33.81965 | 41.94970 |
Hyloscirtus lynchi | Anura | CR | Stream-dwelling | 21.907187 | 37.45390 | 33.59075 | 41.29630 |
Hyloscirtus lynchi | Anura | CR | Stream-dwelling | 20.925594 | 37.32674 | 33.54763 | 41.23131 |
Hyloscirtus lynchi | Anura | CR | Stream-dwelling | 23.573899 | 37.66983 | 33.98623 | 41.79855 |
Hyloscirtus pantostictus | Anura | CR | Stream-dwelling | 22.043563 | 37.61975 | 33.35098 | 40.95499 |
Hyloscirtus pantostictus | Anura | CR | Stream-dwelling | 20.823650 | 37.45830 | 33.32073 | 40.98058 |
Hyloscirtus pantostictus | Anura | CR | Stream-dwelling | 23.766620 | 37.84778 | 33.57537 | 41.23351 |
Hyloscirtus piceigularis | Anura | EN | Stream-dwelling | 24.590506 | 37.84425 | 34.28636 | 41.92890 |
Hyloscirtus piceigularis | Anura | EN | Stream-dwelling | 23.939511 | 37.75932 | 34.27585 | 41.87424 |
Hyloscirtus piceigularis | Anura | EN | Stream-dwelling | 25.994560 | 38.02741 | 34.20437 | 41.96318 |
Hyloscirtus platydactylus | Anura | VU | Stream-dwelling | 26.081594 | 38.10045 | 34.29461 | 42.23568 |
Hyloscirtus platydactylus | Anura | VU | Stream-dwelling | 25.212821 | 37.98718 | 34.19794 | 42.08726 |
Hyloscirtus platydactylus | Anura | VU | Stream-dwelling | 27.650603 | 38.30502 | 34.32586 | 42.25620 |
Hyloscirtus sarampiona | Anura | EN | Stream-dwelling | 22.833468 | 37.59730 | 33.55831 | 41.23885 |
Hyloscirtus sarampiona | Anura | EN | Stream-dwelling | 21.394430 | 37.40985 | 33.40779 | 41.08121 |
Hyloscirtus sarampiona | Anura | EN | Stream-dwelling | 24.669687 | 37.83649 | 33.86880 | 41.67217 |
Hyloscirtus tapichalaca | Anura | EN | Stream-dwelling | 23.756449 | 37.78486 | 33.59824 | 41.65986 |
Hyloscirtus tapichalaca | Anura | EN | Stream-dwelling | 23.027238 | 37.68894 | 33.88647 | 41.95248 |
Hyloscirtus tapichalaca | Anura | EN | Stream-dwelling | 25.254968 | 37.98198 | 33.80647 | 41.86770 |
Hyloscirtus torrenticola | Anura | VU | Stream-dwelling | 24.092767 | 37.95582 | 34.30868 | 41.81382 |
Hyloscirtus torrenticola | Anura | VU | Stream-dwelling | 23.030583 | 37.81564 | 34.16764 | 41.64920 |
Hyloscirtus torrenticola | Anura | VU | Stream-dwelling | 25.752264 | 38.17482 | 34.46527 | 42.05089 |
Myersiohyla inparquesi | Anura | NT | Arboreal | 25.661020 | 39.16612 | 35.59590 | 43.84327 |
Myersiohyla inparquesi | Anura | NT | Arboreal | 25.001401 | 39.08134 | 35.56392 | 43.84230 |
Myersiohyla inparquesi | Anura | NT | Arboreal | 27.238038 | 39.36882 | 35.56455 | 43.92466 |
Myersiohyla loveridgei | Anura | NT | Ground-dwelling | 25.661020 | 39.23283 | 35.22109 | 43.79291 |
Myersiohyla loveridgei | Anura | NT | Ground-dwelling | 25.001401 | 39.14779 | 35.15957 | 43.71758 |
Myersiohyla loveridgei | Anura | NT | Ground-dwelling | 27.238038 | 39.43613 | 35.15864 | 43.78224 |
Myersiohyla aromatica | Anura | VU | Arboreal | 25.661020 | 39.12910 | 34.59207 | 43.25966 |
Myersiohyla aromatica | Anura | VU | Arboreal | 25.001401 | 39.04498 | 34.52231 | 43.18247 |
Myersiohyla aromatica | Anura | VU | Arboreal | 27.238038 | 39.33020 | 34.83180 | 43.61665 |
Dendropsophus acreanus | Anura | LC | Arboreal | 27.154042 | 39.56380 | 35.60944 | 43.12050 |
Dendropsophus acreanus | Anura | LC | Arboreal | 26.392480 | 39.46913 | 35.61472 | 43.10233 |
Dendropsophus acreanus | Anura | LC | Arboreal | 28.767243 | 39.76432 | 36.28000 | 43.91405 |
Dendropsophus amicorum | Anura | CR | Arboreal | 26.357961 | 39.32360 | 35.70623 | 42.85711 |
Dendropsophus amicorum | Anura | CR | Arboreal | 25.399787 | 39.20566 | 35.47902 | 42.55427 |
Dendropsophus amicorum | Anura | CR | Arboreal | 27.780686 | 39.49872 | 35.72868 | 42.98787 |
Dendropsophus anataliasiasi | Anura | LC | Arboreal | 27.723005 | 39.55093 | 36.11624 | 43.15900 |
Dendropsophus anataliasiasi | Anura | LC | Arboreal | 26.774259 | 39.43343 | 36.05446 | 43.03076 |
Dendropsophus anataliasiasi | Anura | LC | Arboreal | 29.619825 | 39.78585 | 36.00782 | 43.21001 |
Dendropsophus aperomeus | Anura | LC | Arboreal | 21.934714 | 38.77063 | 35.00816 | 42.05297 |
Dendropsophus aperomeus | Anura | LC | Arboreal | 21.068152 | 38.66195 | 34.90209 | 41.92900 |
Dendropsophus aperomeus | Anura | LC | Arboreal | 23.643404 | 38.98493 | 35.22901 | 42.33884 |
Dendropsophus haraldschultzi | Anura | LC | Arboreal | 27.977919 | 39.53948 | 35.95546 | 43.19627 |
Dendropsophus haraldschultzi | Anura | LC | Arboreal | 27.206173 | 39.44334 | 35.87968 | 43.11512 |
Dendropsophus haraldschultzi | Anura | LC | Arboreal | 29.479270 | 39.72649 | 36.13403 | 43.44140 |
Dendropsophus araguaya | Anura | DD | Arboreal | 27.685153 | 39.57930 | 35.92891 | 43.16720 |
Dendropsophus araguaya | Anura | DD | Arboreal | 26.531936 | 39.43652 | 35.83154 | 42.96503 |
Dendropsophus araguaya | Anura | DD | Arboreal | 30.045751 | 39.87158 | 36.11359 | 43.50837 |
Dendropsophus battersbyi | Anura | DD | Arboreal | 25.952445 | 39.31934 | 35.81667 | 42.63610 |
Dendropsophus battersbyi | Anura | DD | Arboreal | 25.162227 | 39.22180 | 35.73106 | 42.50476 |
Dendropsophus battersbyi | Anura | DD | Arboreal | 27.063043 | 39.45641 | 35.97316 | 42.91729 |
Dendropsophus berthalutzae | Anura | LC | Arboreal | 25.452132 | 39.18983 | 35.70030 | 42.89207 |
Dendropsophus berthalutzae | Anura | LC | Arboreal | 24.249248 | 39.04266 | 35.70163 | 42.83372 |
Dendropsophus berthalutzae | Anura | LC | Arboreal | 27.473527 | 39.43713 | 35.81338 | 43.13561 |
Dendropsophus bipunctatus | Anura | LC | Arboreal | 25.342602 | 39.15228 | 35.82716 | 42.82415 |
Dendropsophus bipunctatus | Anura | LC | Arboreal | 24.476814 | 39.04570 | 35.74844 | 42.71575 |
Dendropsophus bipunctatus | Anura | LC | Arboreal | 26.857924 | 39.33882 | 35.99210 | 43.08988 |
Dendropsophus bogerti | Anura | LC | Arboreal | 24.478155 | 39.07124 | 35.29557 | 42.25989 |
Dendropsophus bogerti | Anura | LC | Arboreal | 23.562164 | 38.95839 | 35.18132 | 42.08438 |
Dendropsophus bogerti | Anura | LC | Arboreal | 25.961089 | 39.25393 | 35.45154 | 42.54403 |
Dendropsophus timbeba | Anura | LC | Arboreal | 27.863680 | 39.55632 | 36.13361 | 43.47816 |
Dendropsophus timbeba | Anura | LC | Arboreal | 27.029240 | 39.45400 | 36.06334 | 43.36957 |
Dendropsophus timbeba | Anura | LC | Arboreal | 29.437505 | 39.74929 | 36.41849 | 43.87855 |
Dendropsophus yaracuyanus | Anura | EN | Arboreal | 26.384918 | 39.34510 | 36.92292 | 42.43852 |
Dendropsophus yaracuyanus | Anura | EN | Arboreal | 25.623372 | 39.25247 | 36.81161 | 42.25894 |
Dendropsophus yaracuyanus | Anura | EN | Arboreal | 27.795946 | 39.51672 | 36.96815 | 42.54527 |
Dendropsophus cachimbo | Anura | DD | Arboreal | 27.370879 | 39.40662 | 35.82062 | 43.01210 |
Dendropsophus cachimbo | Anura | DD | Arboreal | 26.520654 | 39.30136 | 35.74631 | 42.90614 |
Dendropsophus cachimbo | Anura | DD | Arboreal | 28.989594 | 39.60701 | 35.86376 | 43.21383 |
Dendropsophus meridensis | Anura | EN | Arboreal | 26.081594 | 39.20299 | 36.35814 | 41.69288 |
Dendropsophus meridensis | Anura | EN | Arboreal | 25.212821 | 39.09543 | 36.27254 | 41.59619 |
Dendropsophus meridensis | Anura | EN | Arboreal | 27.650603 | 39.39723 | 36.45752 | 41.89100 |
Dendropsophus cerradensis | Anura | DD | Arboreal | 28.029809 | 39.54083 | 36.14973 | 43.13928 |
Dendropsophus cerradensis | Anura | DD | Arboreal | 26.982535 | 39.40949 | 36.02111 | 42.97624 |
Dendropsophus cerradensis | Anura | DD | Arboreal | 30.475230 | 39.84751 | 36.55585 | 43.81188 |
Dendropsophus columbianus | Anura | LC | Arboreal | 23.220839 | 38.85612 | 35.50263 | 42.41426 |
Dendropsophus columbianus | Anura | LC | Arboreal | 22.300895 | 38.74249 | 35.33650 | 42.21332 |
Dendropsophus columbianus | Anura | LC | Arboreal | 24.750633 | 39.04509 | 35.64634 | 42.54916 |
Dendropsophus gaucheri | Anura | LC | Arboreal | 27.054425 | 39.41166 | 36.06682 | 43.20638 |
Dendropsophus gaucheri | Anura | LC | Arboreal | 26.475473 | 39.33949 | 36.01952 | 43.14434 |
Dendropsophus gaucheri | Anura | LC | Arboreal | 28.401811 | 39.57964 | 36.16898 | 43.35768 |
Dendropsophus cruzi | Anura | LC | Arboreal | 27.168726 | 39.36161 | 35.82295 | 42.85610 |
Dendropsophus cruzi | Anura | LC | Arboreal | 26.046570 | 39.22371 | 35.72707 | 42.71506 |
Dendropsophus cruzi | Anura | LC | Arboreal | 29.236060 | 39.61564 | 35.97131 | 43.17070 |
Dendropsophus miyatai | Anura | LC | Arboreal | 27.910705 | 39.54589 | 36.03476 | 43.13631 |
Dendropsophus miyatai | Anura | LC | Arboreal | 27.162747 | 39.45316 | 36.00816 | 43.06809 |
Dendropsophus miyatai | Anura | LC | Arboreal | 29.450896 | 39.73684 | 36.16997 | 43.34490 |
Dendropsophus delarivai | Anura | LC | Arboreal | 21.227541 | 38.73708 | 35.00141 | 42.16227 |
Dendropsophus delarivai | Anura | LC | Arboreal | 20.462274 | 38.64165 | 35.32559 | 42.44670 |
Dendropsophus delarivai | Anura | LC | Arboreal | 22.433263 | 38.88744 | 35.13785 | 42.31813 |
Dendropsophus robertmertensi | Anura | LC | Arboreal | 26.882564 | 39.42869 | 36.04052 | 43.45983 |
Dendropsophus robertmertensi | Anura | LC | Arboreal | 26.036186 | 39.32152 | 35.93607 | 43.31186 |
Dendropsophus robertmertensi | Anura | LC | Arboreal | 28.822655 | 39.67434 | 35.89480 | 43.46953 |
Dendropsophus sartori | Anura | LC | Arboreal | 25.792224 | 39.30652 | 35.71308 | 42.75281 |
Dendropsophus sartori | Anura | LC | Arboreal | 24.800613 | 39.18236 | 35.64237 | 42.62384 |
Dendropsophus sartori | Anura | LC | Arboreal | 27.485681 | 39.51857 | 35.89038 | 43.05227 |
Dendropsophus dutrai | Anura | DD | Arboreal | 25.397284 | 39.19875 | 35.62924 | 42.75589 |
Dendropsophus dutrai | Anura | DD | Arboreal | 24.506245 | 39.08897 | 35.64860 | 42.73376 |
Dendropsophus dutrai | Anura | DD | Arboreal | 26.802681 | 39.37190 | 35.75618 | 42.96181 |
Dendropsophus elianeae | Anura | LC | Arboreal | 27.232573 | 39.41508 | 36.00743 | 43.32597 |
Dendropsophus elianeae | Anura | LC | Arboreal | 25.999477 | 39.26230 | 35.80983 | 43.04640 |
Dendropsophus elianeae | Anura | LC | Arboreal | 29.611402 | 39.70981 | 36.07714 | 43.59447 |
Dendropsophus garagoensis | Anura | LC | Arboreal | 21.285496 | 38.77298 | 35.30966 | 42.14799 |
Dendropsophus garagoensis | Anura | LC | Arboreal | 20.259522 | 38.64366 | 35.01404 | 41.82678 |
Dendropsophus garagoensis | Anura | LC | Arboreal | 23.361469 | 39.03465 | 35.53526 | 42.41439 |
Dendropsophus giesleri | Anura | LC | Arboreal | 25.684440 | 39.32745 | 35.62837 | 42.50553 |
Dendropsophus giesleri | Anura | LC | Arboreal | 24.747097 | 39.21017 | 35.59586 | 42.42353 |
Dendropsophus giesleri | Anura | LC | Arboreal | 27.373483 | 39.53879 | 35.92780 | 42.89363 |
Dendropsophus oliveirai | Anura | LC | Arboreal | 25.168047 | 39.21295 | 35.57663 | 42.68785 |
Dendropsophus oliveirai | Anura | LC | Arboreal | 24.140758 | 39.08343 | 35.66325 | 42.69908 |
Dendropsophus oliveirai | Anura | LC | Arboreal | 26.979276 | 39.44132 | 35.74114 | 42.97696 |
Dendropsophus gryllatus | Anura | EN | Arboreal | 26.262132 | 39.35196 | 36.12992 | 43.18993 |
Dendropsophus gryllatus | Anura | EN | Arboreal | 25.183072 | 39.21701 | 35.96966 | 42.94849 |
Dendropsophus gryllatus | Anura | EN | Arboreal | 28.032647 | 39.57338 | 36.20488 | 43.33632 |
Dendropsophus jimi | Anura | LC | Arboreal | 25.808922 | 39.24502 | 35.90548 | 42.93682 |
Dendropsophus jimi | Anura | LC | Arboreal | 24.486048 | 39.08430 | 35.56761 | 42.53415 |
Dendropsophus jimi | Anura | LC | Arboreal | 28.317648 | 39.54980 | 35.58456 | 42.87306 |
Dendropsophus joannae | Anura | DD | Arboreal | 25.908143 | 39.31947 | 35.90662 | 42.85861 |
Dendropsophus joannae | Anura | DD | Arboreal | 25.047183 | 39.21249 | 35.84042 | 42.75835 |
Dendropsophus joannae | Anura | DD | Arboreal | 27.323879 | 39.49540 | 36.13880 | 43.07899 |
Dendropsophus juliani | Anura | LC | Arboreal | 28.033117 | 39.24856 | 36.15891 | 42.50760 |
Dendropsophus juliani | Anura | LC | Arboreal | 27.193732 | 39.14130 | 36.03020 | 42.38842 |
Dendropsophus juliani | Anura | LC | Arboreal | 29.732139 | 39.46567 | 36.33379 | 42.78004 |
Dendropsophus minusculus | Anura | LC | Arboreal | 26.572470 | 38.98711 | 35.85040 | 42.20566 |
Dendropsophus minusculus | Anura | LC | Arboreal | 25.778111 | 38.88975 | 35.81129 | 42.10508 |
Dendropsophus minusculus | Anura | LC | Arboreal | 28.153644 | 39.18091 | 35.96823 | 42.46284 |
Dendropsophus rubicundulus | Anura | LC | Arboreal | 27.461768 | 39.10185 | 35.50785 | 41.85620 |
Dendropsophus rubicundulus | Anura | LC | Arboreal | 26.433145 | 38.97447 | 35.43078 | 41.72000 |
Dendropsophus rubicundulus | Anura | LC | Arboreal | 29.529286 | 39.35788 | 36.23487 | 42.74956 |
Dendropsophus tritaeniatus | Anura | LC | Arboreal | 27.202914 | 39.06649 | 35.91114 | 42.72983 |
Dendropsophus tritaeniatus | Anura | LC | Arboreal | 26.318438 | 38.95522 | 35.82967 | 42.54774 |
Dendropsophus tritaeniatus | Anura | LC | Arboreal | 29.127163 | 39.30858 | 36.01891 | 43.04875 |
Dendropsophus leali | Anura | LC | Arboreal | 27.381255 | 39.44121 | 35.91702 | 43.25796 |
Dendropsophus leali | Anura | LC | Arboreal | 26.626453 | 39.34764 | 35.88652 | 43.15325 |
Dendropsophus leali | Anura | LC | Arboreal | 28.936238 | 39.63397 | 35.88393 | 43.31877 |
Dendropsophus minimus | Anura | DD | Arboreal | 27.447446 | 39.54269 | 36.07051 | 43.40495 |
Dendropsophus minimus | Anura | DD | Arboreal | 26.781553 | 39.45883 | 36.00107 | 43.31299 |
Dendropsophus minimus | Anura | DD | Arboreal | 28.912180 | 39.72714 | 36.15742 | 43.56974 |
Dendropsophus meridianus | Anura | LC | Arboreal | 25.911811 | 40.02688 | 36.99036 | 42.95142 |
Dendropsophus meridianus | Anura | LC | Arboreal | 24.894809 | 39.90227 | 36.93821 | 42.78719 |
Dendropsophus meridianus | Anura | LC | Arboreal | 27.611345 | 40.23510 | 37.06379 | 43.14025 |
Dendropsophus limai | Anura | DD | Arboreal | 25.767088 | 39.25079 | 35.56505 | 42.61789 |
Dendropsophus limai | Anura | DD | Arboreal | 24.218770 | 39.06039 | 35.36563 | 42.37192 |
Dendropsophus limai | Anura | DD | Arboreal | 28.316567 | 39.56430 | 35.84664 | 43.09247 |
Dendropsophus luteoocellatus | Anura | LC | Arboreal | 26.480028 | 39.34718 | 35.71812 | 42.57328 |
Dendropsophus luteoocellatus | Anura | LC | Arboreal | 25.613636 | 39.23871 | 35.72109 | 42.55323 |
Dendropsophus luteoocellatus | Anura | LC | Arboreal | 28.025053 | 39.54061 | 35.81671 | 42.80305 |
Dendropsophus melanargyreus | Anura | LC | Arboreal | 27.716519 | 40.30085 | 36.66261 | 43.30258 |
Dendropsophus melanargyreus | Anura | LC | Arboreal | 26.904085 | 40.20106 | 36.54322 | 43.13337 |
Dendropsophus melanargyreus | Anura | LC | Arboreal | 29.493960 | 40.51917 | 36.84558 | 43.61925 |
Dendropsophus seniculus | Anura | LC | Arboreal | 25.511861 | 39.84440 | 36.36251 | 42.97343 |
Dendropsophus seniculus | Anura | LC | Arboreal | 24.427434 | 39.71119 | 36.29061 | 42.78996 |
Dendropsophus seniculus | Anura | LC | Arboreal | 27.495824 | 40.08811 | 36.56691 | 43.31299 |
Dendropsophus mathiassoni | Anura | LC | Arboreal | 25.622458 | 39.19075 | 35.69415 | 42.44108 |
Dendropsophus mathiassoni | Anura | LC | Arboreal | 24.900616 | 39.10286 | 35.62993 | 42.34274 |
Dendropsophus mathiassoni | Anura | LC | Arboreal | 27.185243 | 39.38104 | 35.85816 | 42.76656 |
Dendropsophus microcephalus | Anura | LC | Arboreal | 27.535000 | 39.49141 | 35.61948 | 43.25453 |
Dendropsophus microcephalus | Anura | LC | Arboreal | 26.789040 | 39.39728 | 35.52601 | 43.11523 |
Dendropsophus microcephalus | Anura | LC | Arboreal | 29.128728 | 39.69251 | 35.94614 | 43.71453 |
Dendropsophus phlebodes | Anura | LC | Arboreal | 26.712305 | 39.32648 | 35.94842 | 43.16238 |
Dendropsophus phlebodes | Anura | LC | Arboreal | 26.022590 | 39.24163 | 35.90392 | 43.05754 |
Dendropsophus phlebodes | Anura | LC | Arboreal | 28.066451 | 39.49307 | 36.08112 | 43.36820 |
Dendropsophus rhodopeplus | Anura | LC | Arboreal | 26.324317 | 39.30239 | 35.75710 | 42.98109 |
Dendropsophus rhodopeplus | Anura | LC | Arboreal | 25.564329 | 39.20567 | 35.73490 | 42.86221 |
Dendropsophus rhodopeplus | Anura | LC | Arboreal | 27.791294 | 39.48909 | 35.76572 | 43.11661 |
Dendropsophus microps | Anura | LC | Arboreal | 25.231670 | 39.21400 | 35.99770 | 43.27057 |
Dendropsophus microps | Anura | LC | Arboreal | 23.909437 | 39.05034 | 35.88604 | 43.03344 |
Dendropsophus microps | Anura | LC | Arboreal | 27.397552 | 39.48208 | 36.34519 | 43.80591 |
Dendropsophus nahdereri | Anura | LC | Arboreal | 24.384731 | 39.03936 | 35.33039 | 42.33648 |
Dendropsophus nahdereri | Anura | LC | Arboreal | 22.684062 | 38.83060 | 35.20938 | 42.18898 |
Dendropsophus nahdereri | Anura | LC | Arboreal | 26.960828 | 39.35557 | 35.43174 | 42.64854 |
Dendropsophus nanus | Anura | LC | Arboreal | 27.035192 | 39.46591 | 35.91252 | 43.17187 |
Dendropsophus nanus | Anura | LC | Arboreal | 25.994476 | 39.33520 | 35.82656 | 43.03561 |
Dendropsophus nanus | Anura | LC | Arboreal | 29.050383 | 39.71902 | 36.16365 | 43.48940 |
Dendropsophus walfordi | Anura | LC | Arboreal | 28.109779 | 39.61217 | 36.02991 | 43.29067 |
Dendropsophus walfordi | Anura | LC | Arboreal | 27.388452 | 39.52264 | 35.86721 | 43.08948 |
Dendropsophus walfordi | Anura | LC | Arboreal | 29.741464 | 39.81469 | 36.07893 | 43.41673 |
Dendropsophus riveroi | Anura | LC | Arboreal | 27.317702 | 39.50691 | 35.90889 | 42.88099 |
Dendropsophus riveroi | Anura | LC | Arboreal | 26.567956 | 39.41300 | 35.86376 | 42.84212 |
Dendropsophus riveroi | Anura | LC | Arboreal | 28.848536 | 39.69867 | 36.06695 | 43.05730 |
Dendropsophus reichlei | Anura | LC | Arboreal | 24.081432 | 39.15452 | 35.78137 | 42.92709 |
Dendropsophus reichlei | Anura | LC | Arboreal | 23.283750 | 39.05607 | 35.21490 | 42.35050 |
Dendropsophus reichlei | Anura | LC | Arboreal | 25.348184 | 39.31088 | 35.87833 | 43.04992 |
Dendropsophus padreluna | Anura | LC | Arboreal | 25.022654 | 39.24114 | 35.65909 | 42.75891 |
Dendropsophus padreluna | Anura | LC | Arboreal | 24.422681 | 39.16715 | 35.60795 | 42.66834 |
Dendropsophus padreluna | Anura | LC | Arboreal | 26.346708 | 39.40443 | 35.61454 | 42.79695 |
Dendropsophus pauiniensis | Anura | LC | Arboreal | 29.033331 | 39.61822 | 35.51518 | 42.86449 |
Dendropsophus pauiniensis | Anura | LC | Arboreal | 28.257878 | 39.52203 | 35.41272 | 42.70984 |
Dendropsophus pauiniensis | Anura | LC | Arboreal | 30.649345 | 39.81866 | 36.27730 | 43.75186 |
Dendropsophus praestans | Anura | LC | Arboreal | 23.388481 | 38.89708 | 35.36550 | 42.13288 |
Dendropsophus praestans | Anura | LC | Arboreal | 22.123542 | 38.74133 | 35.23982 | 41.93820 |
Dendropsophus praestans | Anura | LC | Arboreal | 25.086389 | 39.10613 | 35.47449 | 42.39419 |
Dendropsophus pseudomeridianus | Anura | LC | Arboreal | 26.025652 | 39.26894 | 35.48924 | 42.63289 |
Dendropsophus pseudomeridianus | Anura | LC | Arboreal | 24.949702 | 39.13575 | 35.46779 | 42.58296 |
Dendropsophus pseudomeridianus | Anura | LC | Arboreal | 27.873947 | 39.49775 | 35.74873 | 43.02244 |
Dendropsophus rhea | Anura | DD | Arboreal | 25.873309 | 39.29773 | 36.00889 | 43.20599 |
Dendropsophus rhea | Anura | DD | Arboreal | 24.572369 | 39.13965 | 35.85121 | 43.01133 |
Dendropsophus rhea | Anura | DD | Arboreal | 28.321186 | 39.59518 | 36.04270 | 43.26790 |
Dendropsophus rossalleni | Anura | LC | Arboreal | 27.285758 | 39.44423 | 35.72640 | 43.29686 |
Dendropsophus rossalleni | Anura | LC | Arboreal | 26.534979 | 39.34926 | 35.66132 | 43.21497 |
Dendropsophus rossalleni | Anura | LC | Arboreal | 28.789369 | 39.63442 | 35.93142 | 43.57822 |
Dendropsophus ruschii | Anura | DD | Stream-dwelling | 25.695258 | 38.79598 | 35.35875 | 42.37238 |
Dendropsophus ruschii | Anura | DD | Stream-dwelling | 24.893080 | 38.69557 | 35.23011 | 42.24949 |
Dendropsophus ruschii | Anura | DD | Stream-dwelling | 27.292128 | 38.99585 | 35.50196 | 42.56738 |
Dendropsophus soaresi | Anura | LC | Arboreal | 26.385084 | 39.25796 | 35.50504 | 42.70426 |
Dendropsophus soaresi | Anura | LC | Arboreal | 25.392915 | 39.13413 | 35.64220 | 42.77845 |
Dendropsophus soaresi | Anura | LC | Arboreal | 28.185779 | 39.48271 | 35.72090 | 42.95543 |
Dendropsophus stingi | Anura | LC | Arboreal | 22.392831 | 38.75296 | 35.39386 | 42.42067 |
Dendropsophus stingi | Anura | LC | Arboreal | 21.447444 | 38.63590 | 35.17323 | 42.19961 |
Dendropsophus stingi | Anura | LC | Arboreal | 24.281794 | 38.98686 | 35.53019 | 42.66860 |
Dendropsophus studerae | Anura | DD | Arboreal | 25.495986 | 39.26463 | 35.45896 | 42.64043 |
Dendropsophus studerae | Anura | DD | Arboreal | 24.515272 | 39.14194 | 35.25685 | 42.36046 |
Dendropsophus studerae | Anura | DD | Arboreal | 26.927491 | 39.44372 | 35.73546 | 42.98872 |
Dendropsophus subocularis | Anura | LC | Arboreal | 25.930119 | 39.28233 | 35.43516 | 42.76242 |
Dendropsophus subocularis | Anura | LC | Arboreal | 25.253064 | 39.19848 | 35.36838 | 42.64465 |
Dendropsophus subocularis | Anura | LC | Arboreal | 27.309492 | 39.45317 | 35.79533 | 43.14557 |
Dendropsophus tintinnabulum | Anura | DD | Arboreal | 28.425537 | 39.51916 | 35.99120 | 43.04842 |
Dendropsophus tintinnabulum | Anura | DD | Arboreal | 27.721254 | 39.43345 | 35.59718 | 42.63321 |
Dendropsophus tintinnabulum | Anura | DD | Arboreal | 29.961424 | 39.70607 | 35.92876 | 43.04467 |
Dendropsophus virolinensis | Anura | LC | Arboreal | 22.013728 | 38.78092 | 35.34232 | 42.28303 |
Dendropsophus virolinensis | Anura | LC | Arboreal | 21.137557 | 38.67287 | 35.20217 | 42.12006 |
Dendropsophus virolinensis | Anura | LC | Arboreal | 23.830870 | 39.00500 | 35.58320 | 42.59204 |
Dendropsophus werneri | Anura | LC | Arboreal | 25.122442 | 39.15658 | 35.73253 | 42.53342 |
Dendropsophus werneri | Anura | LC | Arboreal | 23.521172 | 38.95806 | 35.52267 | 42.29997 |
Dendropsophus werneri | Anura | LC | Arboreal | 27.682518 | 39.47398 | 36.05732 | 43.00988 |
Dendropsophus xapuriensis | Anura | LC | Arboreal | 27.863680 | 39.46477 | 36.09693 | 43.52974 |
Dendropsophus xapuriensis | Anura | LC | Arboreal | 27.029240 | 39.36105 | 35.95291 | 43.33432 |
Dendropsophus xapuriensis | Anura | LC | Arboreal | 29.437505 | 39.66040 | 36.29474 | 43.85281 |
Xenohyla eugenioi | Anura | DD | Arboreal | 24.991418 | 39.15375 | 35.30338 | 42.66994 |
Xenohyla eugenioi | Anura | DD | Arboreal | 24.018638 | 39.03456 | 35.20574 | 42.48252 |
Xenohyla eugenioi | Anura | DD | Arboreal | 27.090554 | 39.41096 | 35.47382 | 43.02109 |
Xenohyla truncata | Anura | NT | Arboreal | 25.570177 | 39.33114 | 35.36153 | 42.81372 |
Xenohyla truncata | Anura | NT | Arboreal | 24.648289 | 39.21658 | 35.44503 | 42.89760 |
Xenohyla truncata | Anura | NT | Arboreal | 27.102028 | 39.52149 | 35.65361 | 43.08536 |
Lysapsus caraya | Anura | LC | Aquatic | 27.868452 | 40.92606 | 37.52042 | 43.60388 |
Lysapsus caraya | Anura | LC | Aquatic | 26.972258 | 40.81578 | 37.50856 | 43.54752 |
Lysapsus caraya | Anura | LC | Aquatic | 29.725257 | 41.15455 | 37.69830 | 44.01194 |
Lysapsus laevis | Anura | LC | Aquatic | 25.633065 | 40.40420 | 37.30204 | 43.67644 |
Lysapsus laevis | Anura | LC | Aquatic | 24.932525 | 40.31486 | 37.26242 | 43.63634 |
Lysapsus laevis | Anura | LC | Aquatic | 27.051238 | 40.58506 | 37.37633 | 43.84157 |
Pseudis bolbodactyla | Anura | LC | Aquatic | 26.061632 | 40.63678 | 37.76433 | 43.79584 |
Pseudis bolbodactyla | Anura | LC | Aquatic | 24.882316 | 40.48989 | 37.71837 | 43.67797 |
Pseudis bolbodactyla | Anura | LC | Aquatic | 28.265053 | 40.91122 | 37.93293 | 44.14836 |
Pseudis fusca | Anura | LC | Aquatic | 25.314138 | 40.53000 | 37.37106 | 43.61549 |
Pseudis fusca | Anura | LC | Aquatic | 24.142994 | 40.38148 | 37.13201 | 43.29512 |
Pseudis fusca | Anura | LC | Aquatic | 27.807546 | 40.84621 | 37.82845 | 44.29167 |
Pseudis tocantins | Anura | LC | Aquatic | 27.590903 | 40.85035 | 37.76741 | 43.66405 |
Pseudis tocantins | Anura | LC | Aquatic | 26.553967 | 40.72057 | 37.62579 | 43.47843 |
Pseudis tocantins | Anura | LC | Aquatic | 29.606961 | 41.10269 | 37.96083 | 43.99778 |
Pseudis cardosoi | Anura | LC | Aquatic | 24.587941 | 39.59352 | 37.03246 | 42.27131 |
Pseudis cardosoi | Anura | LC | Aquatic | 22.712210 | 39.35654 | 36.95493 | 42.07496 |
Pseudis cardosoi | Anura | LC | Aquatic | 27.412149 | 39.95034 | 37.16890 | 42.67423 |
Scarthyla vigilans | Anura | LC | Ground-dwelling | 26.518318 | 38.97460 | 35.75598 | 42.43300 |
Scarthyla vigilans | Anura | LC | Ground-dwelling | 25.715461 | 38.87108 | 35.56027 | 42.15835 |
Scarthyla vigilans | Anura | LC | Ground-dwelling | 28.139783 | 39.18368 | 35.89416 | 42.72583 |
Scinax altae | Anura | LC | Arboreal | 27.323285 | 40.75562 | 37.28677 | 45.38047 |
Scinax altae | Anura | LC | Arboreal | 26.754798 | 40.68337 | 37.24231 | 45.31250 |
Scinax altae | Anura | LC | Arboreal | 28.402604 | 40.89279 | 36.76212 | 44.87344 |
Scinax auratus | Anura | LC | Arboreal | 25.270071 | 40.37070 | 36.90452 | 44.66510 |
Scinax auratus | Anura | LC | Arboreal | 24.304759 | 40.25095 | 36.98421 | 44.70200 |
Scinax auratus | Anura | LC | Arboreal | 26.880127 | 40.57043 | 37.03273 | 44.90733 |
Scinax baumgardneri | Anura | DD | Arboreal | 26.795820 | 40.62830 | 36.79209 | 44.50946 |
Scinax baumgardneri | Anura | DD | Arboreal | 26.143157 | 40.54655 | 36.63078 | 44.30421 |
Scinax baumgardneri | Anura | DD | Arboreal | 28.273473 | 40.81339 | 37.04991 | 44.85620 |
Scinax blairi | Anura | LC | Ground-dwelling | 26.196840 | 40.72922 | 37.04571 | 44.57824 |
Scinax blairi | Anura | LC | Ground-dwelling | 25.462653 | 40.63843 | 36.95021 | 44.46688 |
Scinax blairi | Anura | LC | Ground-dwelling | 27.807954 | 40.92846 | 37.09394 | 44.77999 |
Scinax boesemani | Anura | LC | Arboreal | 27.826474 | 40.84952 | 36.87612 | 45.04912 |
Scinax boesemani | Anura | LC | Arboreal | 27.110097 | 40.75855 | 36.86200 | 44.95919 |
Scinax boesemani | Anura | LC | Arboreal | 29.393432 | 41.04850 | 37.36488 | 45.65367 |
Scinax parkeri | Anura | LC | Ground-dwelling | 26.960894 | 40.88505 | 37.17083 | 45.01491 |
Scinax parkeri | Anura | LC | Ground-dwelling | 26.151978 | 40.78423 | 37.08057 | 44.90264 |
Scinax parkeri | Anura | LC | Ground-dwelling | 28.842948 | 41.11962 | 37.32007 | 45.26249 |
Scinax boulengeri | Anura | LC | Arboreal | 26.801025 | 40.71902 | 36.66195 | 44.37870 |
Scinax boulengeri | Anura | LC | Arboreal | 26.076798 | 40.62964 | 36.61420 | 44.28107 |
Scinax boulengeri | Anura | LC | Arboreal | 28.244242 | 40.89714 | 36.85899 | 44.65681 |
Scinax sugillatus | Anura | LC | Arboreal | 24.758841 | 40.46912 | 36.79194 | 44.32414 |
Scinax sugillatus | Anura | LC | Arboreal | 23.782144 | 40.34831 | 36.61779 | 44.07371 |
Scinax sugillatus | Anura | LC | Arboreal | 26.399504 | 40.67205 | 36.84843 | 44.51418 |
Scinax cabralensis | Anura | DD | Arboreal | 25.007399 | 40.34551 | 36.00776 | 43.88148 |
Scinax cabralensis | Anura | DD | Arboreal | 23.869536 | 40.20203 | 36.04322 | 43.83893 |
Scinax cabralensis | Anura | DD | Arboreal | 27.676029 | 40.68203 | 36.35297 | 44.39116 |
Scinax caldarum | Anura | LC | Arboreal | 25.529406 | 40.59153 | 36.30934 | 44.62912 |
Scinax caldarum | Anura | LC | Arboreal | 24.251037 | 40.43115 | 36.63399 | 44.93460 |
Scinax caldarum | Anura | LC | Arboreal | 28.016402 | 40.90356 | 36.55736 | 44.94431 |
Scinax crospedospilus | Anura | LC | Arboreal | 25.624535 | 40.50875 | 36.65174 | 44.68042 |
Scinax crospedospilus | Anura | LC | Arboreal | 24.437348 | 40.35974 | 36.39899 | 44.36978 |
Scinax crospedospilus | Anura | LC | Arboreal | 27.681921 | 40.76697 | 36.88372 | 45.00879 |
Scinax camposseabrai | Anura | DD | Arboreal | 24.877748 | 40.47113 | 36.07813 | 44.32691 |
Scinax camposseabrai | Anura | DD | Arboreal | 23.605446 | 40.30821 | 35.93076 | 44.13483 |
Scinax camposseabrai | Anura | DD | Arboreal | 27.467182 | 40.80270 | 36.94167 | 45.37805 |
Scinax cardosoi | Anura | LC | Arboreal | 25.689804 | 40.52931 | 36.86935 | 44.76685 |
Scinax cardosoi | Anura | LC | Arboreal | 24.655727 | 40.40042 | 36.61697 | 44.47295 |
Scinax cardosoi | Anura | LC | Arboreal | 27.533108 | 40.75908 | 36.71872 | 44.66310 |
Scinax castroviejoi | Anura | LC | Arboreal | 20.930088 | 39.19847 | 36.59196 | 41.75288 |
Scinax castroviejoi | Anura | LC | Arboreal | 19.881937 | 39.06564 | 36.58144 | 41.74213 |
Scinax castroviejoi | Anura | LC | Arboreal | 22.563740 | 39.40548 | 36.82824 | 41.97365 |
Scinax chiquitanus | Anura | LC | Arboreal | 25.395604 | 40.39305 | 36.89026 | 43.87140 |
Scinax chiquitanus | Anura | LC | Arboreal | 24.594089 | 40.29208 | 36.78515 | 43.74572 |
Scinax chiquitanus | Anura | LC | Arboreal | 26.988819 | 40.59376 | 37.01051 | 44.07146 |
Scinax funereus | Anura | LC | Arboreal | 26.199741 | 40.56370 | 37.07930 | 44.19498 |
Scinax funereus | Anura | LC | Arboreal | 25.420058 | 40.46512 | 37.06832 | 44.07947 |
Scinax funereus | Anura | LC | Arboreal | 27.688834 | 40.75196 | 37.05678 | 44.29895 |
Scinax oreites | Anura | LC | Arboreal | 21.510119 | 39.95136 | 36.25643 | 42.95469 |
Scinax oreites | Anura | LC | Arboreal | 20.661695 | 39.84468 | 36.34361 | 43.02629 |
Scinax oreites | Anura | LC | Arboreal | 23.195818 | 40.16331 | 36.45357 | 43.24339 |
Scinax constrictus | Anura | LC | Arboreal | 27.082874 | 40.81443 | 36.87797 | 44.64940 |
Scinax constrictus | Anura | LC | Arboreal | 25.837604 | 40.65657 | 36.63717 | 44.31117 |
Scinax constrictus | Anura | LC | Arboreal | 29.289322 | 41.09412 | 37.14961 | 45.03908 |
Scinax cretatus | Anura | LC | Arboreal | 25.421569 | 40.44513 | 35.98368 | 44.07601 |
Scinax cretatus | Anura | LC | Arboreal | 24.504322 | 40.32688 | 35.92830 | 43.99470 |
Scinax cretatus | Anura | LC | Arboreal | 26.865247 | 40.63126 | 36.09855 | 44.28962 |
Scinax cruentommus | Anura | LC | Arboreal | 27.497200 | 40.66293 | 36.58153 | 44.74100 |
Scinax cruentommus | Anura | LC | Arboreal | 26.784539 | 40.57375 | 36.46179 | 44.60022 |
Scinax cruentommus | Anura | LC | Arboreal | 29.004672 | 40.85157 | 36.61871 | 44.85688 |
Scinax staufferi | Anura | LC | Arboreal | 26.387624 | 40.67594 | 36.55304 | 44.55283 |
Scinax staufferi | Anura | LC | Arboreal | 25.514323 | 40.56576 | 36.37521 | 44.29823 |
Scinax staufferi | Anura | LC | Arboreal | 28.214604 | 40.90644 | 36.95186 | 45.02878 |
Scinax curicica | Anura | DD | Arboreal | 24.826713 | 40.39987 | 36.79323 | 44.34942 |
Scinax curicica | Anura | DD | Arboreal | 23.454470 | 40.22378 | 36.54485 | 44.07670 |
Scinax curicica | Anura | DD | Arboreal | 27.381718 | 40.72773 | 37.22412 | 44.83650 |
Scinax cuspidatus | Anura | LC | Arboreal | 25.363216 | 40.37262 | 36.70422 | 44.82541 |
Scinax cuspidatus | Anura | LC | Arboreal | 24.394855 | 40.25056 | 36.55334 | 44.63864 |
Scinax cuspidatus | Anura | LC | Arboreal | 27.143046 | 40.59695 | 36.82626 | 45.09826 |
Scinax danae | Anura | DD | Arboreal | 25.643111 | 40.51982 | 36.61872 | 44.27210 |
Scinax danae | Anura | DD | Arboreal | 24.863388 | 40.42130 | 36.48264 | 44.11289 |
Scinax danae | Anura | DD | Arboreal | 27.425356 | 40.74503 | 36.70433 | 44.47996 |
Scinax duartei | Anura | LC | Ground-dwelling | 25.517709 | 40.58180 | 36.70072 | 44.82139 |
Scinax duartei | Anura | LC | Ground-dwelling | 24.229967 | 40.42306 | 36.35597 | 44.38767 |
Scinax duartei | Anura | LC | Ground-dwelling | 27.798797 | 40.86298 | 36.33707 | 44.59116 |
Scinax similis | Anura | LC | Arboreal | 25.438664 | 40.52838 | 36.66929 | 44.55272 |
Scinax similis | Anura | LC | Arboreal | 24.407677 | 40.39696 | 36.21385 | 44.08120 |
Scinax similis | Anura | LC | Arboreal | 27.172887 | 40.74944 | 36.85049 | 44.82668 |
Scinax hayii | Anura | LC | Arboreal | 25.470204 | 40.57305 | 36.76339 | 44.68972 |
Scinax hayii | Anura | LC | Arboreal | 24.193442 | 40.41441 | 36.59906 | 44.51089 |
Scinax hayii | Anura | LC | Arboreal | 27.651217 | 40.84404 | 37.07180 | 45.07266 |
Scinax exiguus | Anura | LC | Arboreal | 25.846398 | 40.50697 | 36.12609 | 44.39069 |
Scinax exiguus | Anura | LC | Arboreal | 25.081505 | 40.41188 | 36.36976 | 44.61515 |
Scinax exiguus | Anura | LC | Arboreal | 27.582190 | 40.72276 | 36.17494 | 44.54253 |
Scinax karenanneae | Anura | LC | Arboreal | 27.957191 | 40.81179 | 36.57691 | 44.66579 |
Scinax karenanneae | Anura | LC | Arboreal | 27.238391 | 40.72042 | 36.74942 | 44.81889 |
Scinax karenanneae | Anura | LC | Arboreal | 29.465045 | 41.00345 | 36.84870 | 44.98341 |
Scinax lindsayi | Anura | LC | Arboreal | 28.482550 | 40.87933 | 36.74099 | 45.26958 |
Scinax lindsayi | Anura | LC | Arboreal | 27.781922 | 40.79058 | 36.72568 | 45.14229 |
Scinax lindsayi | Anura | LC | Arboreal | 30.005927 | 41.07232 | 36.39605 | 45.02703 |
Scinax fuscomarginatus | Anura | LC | Arboreal | 26.821498 | 40.68025 | 36.84528 | 44.61338 |
Scinax fuscomarginatus | Anura | LC | Arboreal | 25.754992 | 40.54690 | 36.77959 | 44.50672 |
Scinax fuscomarginatus | Anura | LC | Arboreal | 28.859240 | 40.93504 | 36.96715 | 44.85447 |
Scinax proboscideus | Anura | LC | Arboreal | 27.307538 | 40.24343 | 37.02473 | 43.42818 |
Scinax proboscideus | Anura | LC | Arboreal | 26.668950 | 40.16021 | 36.85065 | 43.21558 |
Scinax proboscideus | Anura | LC | Arboreal | 28.846241 | 40.44396 | 37.11722 | 43.59292 |
Scinax jolyi | Anura | DD | Arboreal | 26.884525 | 40.13004 | 36.99476 | 43.77200 |
Scinax jolyi | Anura | DD | Arboreal | 26.289988 | 40.05411 | 36.91190 | 43.63752 |
Scinax jolyi | Anura | DD | Arboreal | 28.091508 | 40.28420 | 37.02630 | 43.88433 |
Scinax rostratus | Anura | LC | Arboreal | 26.594698 | 40.23710 | 36.61130 | 43.71264 |
Scinax rostratus | Anura | LC | Arboreal | 25.826143 | 40.13659 | 36.55589 | 43.58580 |
Scinax rostratus | Anura | LC | Arboreal | 28.161673 | 40.44204 | 36.95423 | 44.15356 |
Scinax iquitorum | Anura | LC | Arboreal | 27.373447 | 40.64602 | 36.61979 | 44.52489 |
Scinax iquitorum | Anura | LC | Arboreal | 26.639792 | 40.55528 | 36.53104 | 44.36477 |
Scinax iquitorum | Anura | LC | Arboreal | 28.768199 | 40.81852 | 36.79456 | 44.81757 |
Scinax kennedyi | Anura | LC | Arboreal | 27.495267 | 40.76342 | 37.22278 | 44.94412 |
Scinax kennedyi | Anura | LC | Arboreal | 26.742151 | 40.66861 | 37.24858 | 44.97550 |
Scinax kennedyi | Anura | LC | Arboreal | 29.152088 | 40.97198 | 37.37694 | 45.15895 |
Scinax manriquei | Anura | NT | Arboreal | 25.125663 | 40.41170 | 36.50611 | 44.04000 |
Scinax manriquei | Anura | NT | Arboreal | 24.233429 | 40.29793 | 36.49894 | 43.95316 |
Scinax manriquei | Anura | NT | Arboreal | 26.711947 | 40.61396 | 36.89455 | 44.56872 |
Scinax maracaya | Anura | DD | Arboreal | 25.516162 | 40.50193 | 36.58222 | 44.42541 |
Scinax maracaya | Anura | DD | Arboreal | 24.345698 | 40.35304 | 36.53114 | 44.36229 |
Scinax maracaya | Anura | DD | Arboreal | 27.818301 | 40.79478 | 36.94810 | 44.87351 |
Scinax nebulosus | Anura | LC | Arboreal | 27.829638 | 41.23319 | 37.95333 | 45.24821 |
Scinax nebulosus | Anura | LC | Arboreal | 27.113453 | 41.14457 | 37.28758 | 44.60900 |
Scinax nebulosus | Anura | LC | Arboreal | 29.432738 | 41.43155 | 38.15770 | 45.47367 |
Scinax pedromedinae | Anura | LC | Arboreal | 23.705616 | 40.29428 | 36.43388 | 44.01710 |
Scinax pedromedinae | Anura | LC | Arboreal | 23.021845 | 40.20806 | 36.37688 | 43.96831 |
Scinax pedromedinae | Anura | LC | Arboreal | 24.884268 | 40.44290 | 36.60881 | 44.25442 |
Scinax perereca | Anura | LC | Arboreal | 25.331072 | 40.50998 | 36.41985 | 44.39239 |
Scinax perereca | Anura | LC | Arboreal | 23.687672 | 40.30347 | 36.22314 | 44.20684 |
Scinax perereca | Anura | LC | Arboreal | 27.872844 | 40.82937 | 36.78293 | 44.80578 |
Scinax tigrinus | Anura | LC | Semi-aquatic | 26.554508 | 41.07790 | 36.86883 | 44.78721 |
Scinax tigrinus | Anura | LC | Semi-aquatic | 25.292468 | 40.91513 | 36.65741 | 44.51628 |
Scinax tigrinus | Anura | LC | Semi-aquatic | 28.809494 | 41.36872 | 37.07925 | 45.19647 |
Scinax trilineatus | Anura | LC | Arboreal | 26.441258 | 40.62602 | 36.51525 | 44.92917 |
Scinax trilineatus | Anura | LC | Arboreal | 25.678442 | 40.52973 | 36.48645 | 44.83534 |
Scinax trilineatus | Anura | LC | Arboreal | 28.092106 | 40.83440 | 36.70430 | 45.18254 |
Scinax wandae | Anura | LC | Ground-dwelling | 26.669967 | 40.72892 | 36.28551 | 44.17843 |
Scinax wandae | Anura | LC | Ground-dwelling | 25.934831 | 40.63691 | 36.24663 | 44.09753 |
Scinax wandae | Anura | LC | Ground-dwelling | 28.270367 | 40.92922 | 36.48766 | 44.46651 |
Sphaenorhynchus bromelicola | Anura | DD | Arboreal | 24.496308 | 40.30066 | 37.17253 | 43.44984 |
Sphaenorhynchus bromelicola | Anura | DD | Arboreal | 23.287138 | 40.14780 | 37.03048 | 43.23601 |
Sphaenorhynchus bromelicola | Anura | DD | Arboreal | 27.094613 | 40.62915 | 37.31327 | 43.78669 |
Sphaenorhynchus caramaschii | Anura | LC | Semi-aquatic | 25.301274 | 40.68208 | 37.19113 | 44.26685 |
Sphaenorhynchus caramaschii | Anura | LC | Semi-aquatic | 23.646182 | 40.47505 | 36.81147 | 43.78881 |
Sphaenorhynchus caramaschii | Anura | LC | Semi-aquatic | 27.934375 | 41.01144 | 37.42636 | 44.67674 |
Sphaenorhynchus palustris | Anura | LC | Aquatic | 25.221832 | 40.53744 | 36.77645 | 44.11111 |
Sphaenorhynchus palustris | Anura | LC | Aquatic | 24.400483 | 40.43249 | 36.71030 | 43.98121 |
Sphaenorhynchus palustris | Anura | LC | Aquatic | 26.791552 | 40.73801 | 36.96631 | 44.36342 |
Sphaenorhynchus carneus | Anura | LC | Semi-aquatic | 27.409577 | 40.98307 | 36.94536 | 44.54691 |
Sphaenorhynchus carneus | Anura | LC | Semi-aquatic | 26.655061 | 40.88630 | 37.20343 | 44.79308 |
Sphaenorhynchus carneus | Anura | LC | Semi-aquatic | 28.908434 | 41.17530 | 37.23916 | 44.88174 |
Sphaenorhynchus dorisae | Anura | LC | Semi-aquatic | 27.572225 | 40.96760 | 37.52475 | 45.37279 |
Sphaenorhynchus dorisae | Anura | LC | Semi-aquatic | 26.823914 | 40.87159 | 37.40278 | 45.20775 |
Sphaenorhynchus dorisae | Anura | LC | Semi-aquatic | 29.071046 | 41.15991 | 37.16866 | 45.13541 |
Sphaenorhynchus planicola | Anura | LC | Aquatic | 25.448172 | 40.87798 | 37.66412 | 43.97778 |
Sphaenorhynchus planicola | Anura | LC | Aquatic | 24.603904 | 40.77153 | 37.58376 | 43.84696 |
Sphaenorhynchus planicola | Anura | LC | Aquatic | 26.934241 | 41.06535 | 37.92088 | 44.26887 |
Sphaenorhynchus mirim | Anura | DD | Arboreal | 25.378291 | 40.31111 | 36.85806 | 43.77068 |
Sphaenorhynchus mirim | Anura | DD | Arboreal | 24.482385 | 40.19980 | 36.85112 | 43.73517 |
Sphaenorhynchus mirim | Anura | DD | Arboreal | 27.216161 | 40.53947 | 37.08382 | 44.08577 |
Sphaenorhynchus surdus | Anura | LC | Arboreal | 24.680464 | 40.29497 | 36.77819 | 43.75491 |
Sphaenorhynchus surdus | Anura | LC | Arboreal | 22.925413 | 40.07315 | 36.41622 | 43.38426 |
Sphaenorhynchus surdus | Anura | LC | Arboreal | 27.323512 | 40.62902 | 37.12119 | 44.18401 |
Sphaenorhynchus orophilus | Anura | LC | Arboreal | 25.568402 | 40.41690 | 37.50341 | 43.54781 |
Sphaenorhynchus orophilus | Anura | LC | Arboreal | 24.372549 | 40.26794 | 37.34758 | 43.30129 |
Sphaenorhynchus orophilus | Anura | LC | Arboreal | 27.627681 | 40.67342 | 37.72243 | 43.94186 |
Nyctimantis rugiceps | Anura | LC | Arboreal | 25.624975 | 39.85137 | 36.38527 | 43.01775 |
Nyctimantis rugiceps | Anura | LC | Arboreal | 24.692524 | 39.73186 | 36.55109 | 43.20538 |
Nyctimantis rugiceps | Anura | LC | Arboreal | 27.224510 | 40.05638 | 36.49408 | 43.18588 |
Corythomantis greeningi | Anura | LC | Arboreal | 25.750493 | 40.06078 | 36.96957 | 43.73829 |
Corythomantis greeningi | Anura | LC | Arboreal | 24.671201 | 39.92053 | 36.80597 | 43.51340 |
Corythomantis greeningi | Anura | LC | Arboreal | 27.679830 | 40.31149 | 36.95816 | 43.84293 |
Trachycephalus coriaceus | Anura | LC | Arboreal | 27.503048 | 40.52078 | 37.56729 | 43.85502 |
Trachycephalus coriaceus | Anura | LC | Arboreal | 26.773675 | 40.42918 | 37.41164 | 43.63771 |
Trachycephalus coriaceus | Anura | LC | Arboreal | 29.029418 | 40.71248 | 37.66230 | 44.03223 |
Trachycephalus dibernardoi | Anura | LC | Arboreal | 25.381081 | 40.31439 | 37.12750 | 43.43305 |
Trachycephalus dibernardoi | Anura | LC | Arboreal | 23.624277 | 40.08866 | 37.15363 | 43.46072 |
Trachycephalus dibernardoi | Anura | LC | Arboreal | 27.892585 | 40.63708 | 37.42581 | 43.92427 |
Trachycephalus hadroceps | Anura | LC | Arboreal | 27.299663 | 40.46827 | 37.48768 | 43.71123 |
Trachycephalus hadroceps | Anura | LC | Arboreal | 26.662826 | 40.38766 | 37.27132 | 43.45050 |
Trachycephalus hadroceps | Anura | LC | Arboreal | 28.829520 | 40.66192 | 37.80794 | 44.11189 |
Trachycephalus resinifictrix | Anura | LC | Arboreal | 27.604838 | 40.50795 | 37.40197 | 43.70056 |
Trachycephalus resinifictrix | Anura | LC | Arboreal | 26.894585 | 40.41867 | 37.35411 | 43.61153 |
Trachycephalus resinifictrix | Anura | LC | Arboreal | 29.134294 | 40.70020 | 37.58484 | 43.90055 |
Trachycephalus imitatrix | Anura | LC | Arboreal | 25.405860 | 40.25355 | 37.65080 | 43.20517 |
Trachycephalus imitatrix | Anura | LC | Arboreal | 23.805423 | 40.04695 | 37.52410 | 43.00694 |
Trachycephalus imitatrix | Anura | LC | Arboreal | 27.954451 | 40.58254 | 37.97040 | 43.65875 |
Trachycephalus nigromaculatus | Anura | LC | Arboreal | 25.588259 | 40.28082 | 37.16733 | 43.44194 |
Trachycephalus nigromaculatus | Anura | LC | Arboreal | 24.421000 | 40.13328 | 37.18167 | 43.39342 |
Trachycephalus nigromaculatus | Anura | LC | Arboreal | 27.823106 | 40.56329 | 37.42419 | 43.80512 |
Trachycephalus lepidus | Anura | DD | Arboreal | 26.363769 | 40.42487 | 36.79069 | 43.49543 |
Trachycephalus lepidus | Anura | DD | Arboreal | 24.838825 | 40.23133 | 36.78391 | 43.34702 |
Trachycephalus lepidus | Anura | DD | Arboreal | 28.935260 | 40.75124 | 36.85369 | 43.78125 |
Trachycephalus jordani | Anura | LC | Arboreal | 24.599534 | 40.05919 | 36.67789 | 43.26739 |
Trachycephalus jordani | Anura | LC | Arboreal | 23.584041 | 39.93248 | 36.41770 | 42.93057 |
Trachycephalus jordani | Anura | LC | Arboreal | 26.381232 | 40.28151 | 36.93502 | 43.59181 |
Dryaderces pearsoni | Anura | LC | Arboreal | 24.223652 | 39.74616 | 36.51813 | 43.85495 |
Dryaderces pearsoni | Anura | LC | Arboreal | 23.443434 | 39.64826 | 36.25025 | 43.53524 |
Dryaderces pearsoni | Anura | LC | Arboreal | 25.599945 | 39.91885 | 36.39147 | 43.78943 |
Itapotihyla langsdorffii | Anura | LC | Arboreal | 25.497839 | 39.77981 | 36.02274 | 43.27773 |
Itapotihyla langsdorffii | Anura | LC | Arboreal | 24.283430 | 39.62480 | 36.24835 | 43.41183 |
Itapotihyla langsdorffii | Anura | LC | Arboreal | 27.612430 | 40.04973 | 36.26171 | 43.58209 |
Osteocephalus alboguttatus | Anura | LC | Arboreal | 24.485261 | 39.45344 | 36.46161 | 42.71984 |
Osteocephalus alboguttatus | Anura | LC | Arboreal | 23.595911 | 39.34068 | 36.34364 | 42.56480 |
Osteocephalus alboguttatus | Anura | LC | Arboreal | 26.051694 | 39.65204 | 36.68679 | 43.01371 |
Osteocephalus heyeri | Anura | LC | Arboreal | 29.084321 | 40.06166 | 36.80183 | 43.33775 |
Osteocephalus heyeri | Anura | LC | Arboreal | 28.315268 | 39.96292 | 36.73883 | 43.17050 |
Osteocephalus heyeri | Anura | LC | Arboreal | 30.600623 | 40.25635 | 36.85739 | 43.51700 |
Osteocephalus subtilis | Anura | LC | Ground-dwelling | 28.432892 | 40.10008 | 36.96281 | 43.48051 |
Osteocephalus subtilis | Anura | LC | Ground-dwelling | 27.679307 | 40.00291 | 37.07310 | 43.55037 |
Osteocephalus subtilis | Anura | LC | Ground-dwelling | 29.937294 | 40.29406 | 36.99748 | 43.70456 |
Osteocephalus verruciger | Anura | LC | Stream-dwelling | 24.678229 | 39.02056 | 35.85452 | 41.70792 |
Osteocephalus verruciger | Anura | LC | Stream-dwelling | 23.843224 | 38.91610 | 35.80301 | 41.61204 |
Osteocephalus verruciger | Anura | LC | Stream-dwelling | 26.209826 | 39.21215 | 35.95954 | 41.96552 |
Osteocephalus cabrerai | Anura | LC | Arboreal | 27.235977 | 39.77659 | 36.84527 | 42.64035 |
Osteocephalus cabrerai | Anura | LC | Arboreal | 26.552105 | 39.69074 | 36.78458 | 42.57581 |
Osteocephalus cabrerai | Anura | LC | Arboreal | 28.713240 | 39.96203 | 36.94835 | 42.88171 |
Osteocephalus castaneicola | Anura | LC | Arboreal | 22.226696 | 39.12456 | 36.24647 | 42.44659 |
Osteocephalus castaneicola | Anura | LC | Arboreal | 21.534763 | 39.03682 | 36.17683 | 42.31936 |
Osteocephalus castaneicola | Anura | LC | Arboreal | 23.324470 | 39.26376 | 36.06322 | 42.27991 |
Osteocephalus deridens | Anura | LC | Arboreal | 26.884342 | 39.72306 | 36.50103 | 43.01387 |
Osteocephalus deridens | Anura | LC | Arboreal | 26.086579 | 39.62061 | 36.09449 | 42.56174 |
Osteocephalus deridens | Anura | LC | Arboreal | 28.407911 | 39.91872 | 36.51397 | 43.13307 |
Osteocephalus fuscifacies | Anura | LC | Arboreal | 26.483739 | 39.64042 | 36.50179 | 42.85420 |
Osteocephalus fuscifacies | Anura | LC | Arboreal | 25.683319 | 39.53874 | 36.57283 | 42.85754 |
Osteocephalus fuscifacies | Anura | LC | Arboreal | 28.039659 | 39.83807 | 36.84558 | 43.32325 |
Osteocephalus leoniae | Anura | LC | Arboreal | 21.721081 | 39.06244 | 36.37453 | 42.05266 |
Osteocephalus leoniae | Anura | LC | Arboreal | 20.919871 | 38.96051 | 36.28026 | 41.91966 |
Osteocephalus leoniae | Anura | LC | Arboreal | 23.314160 | 39.26510 | 36.54298 | 42.28109 |
Osteocephalus planiceps | Anura | LC | Arboreal | 26.304971 | 39.68493 | 36.55141 | 42.76074 |
Osteocephalus planiceps | Anura | LC | Arboreal | 25.537632 | 39.58485 | 36.46218 | 42.65739 |
Osteocephalus planiceps | Anura | LC | Arboreal | 27.805994 | 39.88071 | 36.70274 | 43.00224 |
Osteocephalus leprieurii | Anura | LC | Arboreal | 27.587107 | 39.84274 | 36.56309 | 42.92892 |
Osteocephalus leprieurii | Anura | LC | Arboreal | 26.874646 | 39.75049 | 36.49090 | 42.80796 |
Osteocephalus leprieurii | Anura | LC | Arboreal | 29.126029 | 40.04199 | 36.68941 | 43.24538 |
Osteocephalus yasuni | Anura | LC | Arboreal | 28.070387 | 39.92559 | 37.09715 | 43.46289 |
Osteocephalus yasuni | Anura | LC | Arboreal | 27.287926 | 39.82516 | 36.99063 | 43.29392 |
Osteocephalus yasuni | Anura | LC | Arboreal | 29.608148 | 40.12295 | 37.29003 | 43.79864 |
Osteocephalus oophagus | Anura | LC | Arboreal | 27.946186 | 39.90502 | 36.75958 | 43.11416 |
Osteocephalus oophagus | Anura | LC | Arboreal | 27.297826 | 39.82286 | 36.64401 | 42.93030 |
Osteocephalus oophagus | Anura | LC | Arboreal | 29.469635 | 40.09807 | 36.80707 | 43.26132 |
Osteocephalus taurinus | Anura | LC | Arboreal | 27.498105 | 39.86157 | 36.83328 | 43.08435 |
Osteocephalus taurinus | Anura | LC | Arboreal | 26.776425 | 39.77066 | 36.77307 | 42.98248 |
Osteocephalus taurinus | Anura | LC | Arboreal | 29.046931 | 40.05667 | 37.01684 | 43.35164 |
Tepuihyla aecii | Anura | NT | Arboreal | 25.661020 | 39.67583 | 36.56197 | 43.38402 |
Tepuihyla aecii | Anura | NT | Arboreal | 25.001401 | 39.59174 | 36.48268 | 43.24582 |
Tepuihyla aecii | Anura | NT | Arboreal | 27.238038 | 39.87685 | 36.54626 | 43.46752 |
Tepuihyla edelcae | Anura | LC | Arboreal | 25.349143 | 39.55901 | 36.25762 | 43.10289 |
Tepuihyla edelcae | Anura | LC | Arboreal | 24.533076 | 39.45438 | 36.20071 | 43.00348 |
Tepuihyla edelcae | Anura | LC | Arboreal | 27.207084 | 39.79722 | 36.38509 | 43.42783 |
Tepuihyla rodriguezi | Anura | NT | Arboreal | 26.161996 | 39.66974 | 36.17494 | 43.32292 |
Tepuihyla rodriguezi | Anura | NT | Arboreal | 25.441096 | 39.57921 | 35.82958 | 42.94400 |
Tepuihyla rodriguezi | Anura | NT | Arboreal | 27.774258 | 39.87221 | 36.28515 | 43.54457 |
Tepuihyla exophthalma | Anura | LC | Arboreal | 26.053119 | 39.68143 | 36.46097 | 43.13564 |
Tepuihyla exophthalma | Anura | LC | Arboreal | 25.351363 | 39.59307 | 36.37252 | 43.04823 |
Tepuihyla exophthalma | Anura | LC | Arboreal | 27.681819 | 39.88651 | 36.58517 | 43.43913 |
Tepuihyla luteolabris | Anura | VU | Arboreal | 25.661020 | 39.65000 | 36.25609 | 43.01186 |
Tepuihyla luteolabris | Anura | VU | Arboreal | 25.001401 | 39.56561 | 36.18310 | 42.91721 |
Tepuihyla luteolabris | Anura | VU | Arboreal | 27.238038 | 39.85175 | 36.43719 | 43.28274 |
Osteopilus crucialis | Anura | VU | Arboreal | 27.442930 | 39.82495 | 36.35062 | 43.18374 |
Osteopilus crucialis | Anura | VU | Arboreal | 27.078442 | 39.77822 | 36.30479 | 43.12164 |
Osteopilus crucialis | Anura | VU | Arboreal | 28.015842 | 39.89840 | 36.41889 | 43.28133 |
Osteopilus marianae | Anura | EN | Arboreal | 27.386647 | 39.84623 | 36.45101 | 43.10615 |
Osteopilus marianae | Anura | EN | Arboreal | 27.038864 | 39.80188 | 36.43290 | 43.05215 |
Osteopilus marianae | Anura | EN | Arboreal | 27.934792 | 39.91613 | 36.67468 | 43.40332 |
Osteopilus wilderi | Anura | VU | Arboreal | 27.495925 | 39.82620 | 36.27319 | 42.80362 |
Osteopilus wilderi | Anura | VU | Arboreal | 27.126705 | 39.77877 | 36.32349 | 42.82758 |
Osteopilus wilderi | Anura | VU | Arboreal | 28.083133 | 39.90164 | 36.52525 | 43.09953 |
Osteopilus ocellatus | Anura | NT | Arboreal | 27.473430 | 39.83346 | 36.40605 | 43.34565 |
Osteopilus ocellatus | Anura | NT | Arboreal | 27.097639 | 39.78535 | 36.36005 | 43.28309 |
Osteopilus ocellatus | Anura | NT | Arboreal | 28.066481 | 39.90938 | 36.47489 | 43.44804 |
Osteopilus dominicensis | Anura | LC | Arboreal | 27.400690 | 39.88585 | 36.38354 | 43.25415 |
Osteopilus dominicensis | Anura | LC | Arboreal | 26.987801 | 39.83312 | 36.29293 | 43.14309 |
Osteopilus dominicensis | Anura | LC | Arboreal | 28.104848 | 39.97577 | 36.38109 | 43.36090 |
Osteopilus pulchrilineatus | Anura | VU | Arboreal | 27.241942 | 39.90443 | 36.56695 | 43.40723 |
Osteopilus pulchrilineatus | Anura | VU | Arboreal | 26.839520 | 39.85245 | 36.51786 | 43.33439 |
Osteopilus pulchrilineatus | Anura | VU | Arboreal | 27.927510 | 39.99300 | 36.63887 | 43.53132 |
Osteopilus vastus | Anura | VU | Stream-dwelling | 27.165433 | 39.43831 | 35.70478 | 42.48981 |
Osteopilus vastus | Anura | VU | Stream-dwelling | 26.760456 | 39.38534 | 35.71422 | 42.46964 |
Osteopilus vastus | Anura | VU | Stream-dwelling | 27.853525 | 39.52831 | 35.82595 | 42.66396 |
Phyllodytes acuminatus | Anura | LC | Arboreal | 25.293379 | 39.78265 | 36.31148 | 43.19068 |
Phyllodytes acuminatus | Anura | LC | Arboreal | 24.381642 | 39.66659 | 36.24111 | 43.10862 |
Phyllodytes acuminatus | Anura | LC | Arboreal | 26.772353 | 39.97093 | 36.49758 | 43.47598 |
Phyllodytes brevirostris | Anura | DD | Arboreal | 25.709735 | 39.84857 | 36.64858 | 43.78074 |
Phyllodytes brevirostris | Anura | DD | Arboreal | 24.760959 | 39.72832 | 36.58329 | 43.64532 |
Phyllodytes brevirostris | Anura | DD | Arboreal | 27.080743 | 40.02233 | 36.88331 | 44.10909 |
Phyllodytes edelmoi | Anura | DD | Arboreal | 25.590024 | 39.87524 | 36.24549 | 43.05889 |
Phyllodytes edelmoi | Anura | DD | Arboreal | 24.630498 | 39.75112 | 36.42162 | 43.17515 |
Phyllodytes edelmoi | Anura | DD | Arboreal | 26.888025 | 40.04314 | 36.45413 | 43.32725 |
Phyllodytes gyrinaethes | Anura | DD | Arboreal | 25.590024 | 39.88085 | 36.34859 | 43.16083 |
Phyllodytes gyrinaethes | Anura | DD | Arboreal | 24.630498 | 39.75964 | 36.66313 | 43.44496 |
Phyllodytes gyrinaethes | Anura | DD | Arboreal | 26.888025 | 40.04482 | 36.56795 | 43.40611 |
Phyllodytes kautskyi | Anura | LC | Arboreal | 25.306808 | 39.74392 | 36.39659 | 43.17244 |
Phyllodytes kautskyi | Anura | LC | Arboreal | 24.547895 | 39.64929 | 36.56941 | 43.30192 |
Phyllodytes kautskyi | Anura | LC | Arboreal | 26.750661 | 39.92395 | 36.62869 | 43.43474 |
Phyllodytes maculosus | Anura | DD | Arboreal | 25.273103 | 39.79800 | 36.47316 | 43.33064 |
Phyllodytes maculosus | Anura | DD | Arboreal | 24.383211 | 39.68441 | 36.43240 | 43.24313 |
Phyllodytes maculosus | Anura | DD | Arboreal | 27.063195 | 40.02649 | 36.73185 | 43.70788 |
Phyllodytes punctatus | Anura | DD | Arboreal | 25.477900 | 39.80118 | 36.49037 | 43.28738 |
Phyllodytes punctatus | Anura | DD | Arboreal | 24.720327 | 39.70571 | 36.52468 | 43.31085 |
Phyllodytes punctatus | Anura | DD | Arboreal | 26.444056 | 39.92294 | 36.63026 | 43.41891 |
Phyllodytes tuberculosus | Anura | DD | Arboreal | 24.496308 | 39.68490 | 36.36582 | 42.94670 |
Phyllodytes tuberculosus | Anura | DD | Arboreal | 23.287138 | 39.52871 | 36.54136 | 43.02997 |
Phyllodytes tuberculosus | Anura | DD | Arboreal | 27.094613 | 40.02053 | 36.69912 | 43.50536 |
Phyllodytes wuchereri | Anura | DD | Arboreal | 25.160197 | 39.77010 | 36.50299 | 43.17608 |
Phyllodytes wuchereri | Anura | DD | Arboreal | 24.364692 | 39.66934 | 36.50176 | 43.08925 |
Phyllodytes wuchereri | Anura | DD | Arboreal | 26.612721 | 39.95407 | 36.63474 | 43.33463 |
Phytotriades auratus | Anura | EN | Arboreal | 26.479711 | 39.87614 | 36.14846 | 43.71724 |
Phytotriades auratus | Anura | EN | Arboreal | 25.877888 | 39.79802 | 36.11482 | 43.67503 |
Phytotriades auratus | Anura | EN | Arboreal | 27.645281 | 40.02745 | 36.18802 | 43.84575 |
Pseudacris brachyphona | Anura | LC | Ground-dwelling | 24.735572 | 38.51586 | 35.74807 | 41.73694 |
Pseudacris brachyphona | Anura | LC | Ground-dwelling | 22.380515 | 38.21775 | 35.24542 | 41.08134 |
Pseudacris brachyphona | Anura | LC | Ground-dwelling | 28.256119 | 38.96151 | 35.88497 | 42.17122 |
Pseudacris brimleyi | Anura | LC | Ground-dwelling | 25.600959 | 38.58328 | 35.54876 | 41.15349 |
Pseudacris brimleyi | Anura | LC | Ground-dwelling | 21.612989 | 38.07971 | 35.06766 | 40.52951 |
Pseudacris brimleyi | Anura | LC | Ground-dwelling | 28.970545 | 39.00877 | 35.97359 | 41.78891 |
Pseudacris clarkii | Anura | LC | Ground-dwelling | 25.042552 | 38.57378 | 36.10387 | 41.00209 |
Pseudacris clarkii | Anura | LC | Ground-dwelling | 23.492369 | 38.37970 | 35.89200 | 40.65680 |
Pseudacris clarkii | Anura | LC | Ground-dwelling | 27.507216 | 38.88235 | 36.33770 | 41.43748 |
Pseudacris maculata | Anura | LC | Semi-aquatic | 18.768341 | 38.01912 | 35.73105 | 40.48318 |
Pseudacris maculata | Anura | LC | Semi-aquatic | 15.533456 | 37.61617 | 35.29817 | 40.05176 |
Pseudacris maculata | Anura | LC | Semi-aquatic | 23.266346 | 38.57941 | 36.05688 | 41.10112 |
Pseudacris kalmi | Anura | LC | Ground-dwelling | 24.270426 | 38.43093 | 35.70886 | 40.92948 |
Pseudacris kalmi | Anura | LC | Ground-dwelling | 18.365676 | 37.68760 | 35.26737 | 40.17786 |
Pseudacris kalmi | Anura | LC | Ground-dwelling | 27.499602 | 38.83744 | 36.02599 | 41.47003 |
Pseudacris nigrita | Anura | LC | Ground-dwelling | 26.835810 | 38.78385 | 36.24222 | 41.57060 |
Pseudacris nigrita | Anura | LC | Ground-dwelling | 24.289926 | 38.46551 | 35.98798 | 41.13102 |
Pseudacris nigrita | Anura | LC | Ground-dwelling | 29.546241 | 39.12276 | 36.38553 | 41.89744 |
Pseudacris fouquettei | Anura | LC | Ground-dwelling | 26.831948 | 38.82883 | 36.00937 | 41.55808 |
Pseudacris fouquettei | Anura | LC | Ground-dwelling | 25.210418 | 38.62331 | 35.82379 | 41.19660 |
Pseudacris fouquettei | Anura | LC | Ground-dwelling | 29.506902 | 39.16787 | 36.02845 | 41.78008 |
Pseudacris streckeri | Anura | LC | Ground-dwelling | 26.023546 | 38.70502 | 35.48710 | 41.89761 |
Pseudacris streckeri | Anura | LC | Ground-dwelling | 23.785909 | 38.41636 | 34.98908 | 41.28300 |
Pseudacris streckeri | Anura | LC | Ground-dwelling | 28.679987 | 39.04771 | 35.91405 | 42.34140 |
Pseudacris ornata | Anura | LC | Ground-dwelling | 27.236634 | 38.87147 | 35.74138 | 42.40480 |
Pseudacris ornata | Anura | LC | Ground-dwelling | 24.540611 | 38.52719 | 35.40931 | 41.95199 |
Pseudacris ornata | Anura | LC | Ground-dwelling | 29.755953 | 39.19317 | 35.90392 | 42.70297 |
Pseudacris ocularis | Anura | LC | Ground-dwelling | 26.651224 | 38.59399 | 35.32566 | 41.87481 |
Pseudacris ocularis | Anura | LC | Ground-dwelling | 24.010739 | 38.25691 | 34.93510 | 41.31856 |
Pseudacris ocularis | Anura | LC | Ground-dwelling | 29.373589 | 38.94152 | 35.44051 | 42.21912 |
Triprion petasatus | Anura | LC | Arboreal | 27.347131 | 39.83864 | 36.52385 | 43.62085 |
Triprion petasatus | Anura | LC | Arboreal | 26.638233 | 39.74693 | 36.50242 | 43.52159 |
Triprion petasatus | Anura | LC | Arboreal | 28.946786 | 40.04557 | 36.42311 | 43.61281 |
Smilisca cyanosticta | Anura | LC | Arboreal | 26.635780 | 39.90749 | 36.63827 | 42.56099 |
Smilisca cyanosticta | Anura | LC | Arboreal | 25.678964 | 39.78088 | 36.79886 | 42.62953 |
Smilisca cyanosticta | Anura | LC | Arboreal | 28.565972 | 40.16292 | 36.84887 | 42.94779 |
Smilisca puma | Anura | LC | Ground-dwelling | 25.772847 | 40.18738 | 37.25730 | 43.00613 |
Smilisca puma | Anura | LC | Ground-dwelling | 24.972166 | 40.07735 | 37.03772 | 42.73927 |
Smilisca puma | Anura | LC | Ground-dwelling | 27.331227 | 40.40151 | 37.30318 | 43.14035 |
Smilisca dentata | Anura | EN | Ground-dwelling | 23.254710 | 39.41166 | 36.34074 | 42.44031 |
Smilisca dentata | Anura | EN | Ground-dwelling | 22.005085 | 39.24436 | 36.33775 | 42.32583 |
Smilisca dentata | Anura | EN | Ground-dwelling | 25.619257 | 39.72823 | 36.56558 | 42.78519 |
Smilisca sila | Anura | LC | Arboreal | 26.560514 | 39.81326 | 36.74704 | 43.25794 |
Smilisca sila | Anura | LC | Arboreal | 25.889403 | 39.72383 | 36.67722 | 43.13541 |
Smilisca sila | Anura | LC | Arboreal | 27.982139 | 40.00270 | 36.81703 | 43.40833 |
Smilisca sordida | Anura | LC | Stream-dwelling | 26.320615 | 39.25920 | 35.97475 | 42.44229 |
Smilisca sordida | Anura | LC | Stream-dwelling | 25.577891 | 39.16006 | 35.86203 | 42.26965 |
Smilisca sordida | Anura | LC | Stream-dwelling | 27.806416 | 39.45754 | 35.89823 | 42.43940 |
Isthmohyla angustilineata | Anura | CR | Arboreal | 27.673451 | 40.01690 | 36.44738 | 43.86406 |
Isthmohyla angustilineata | Anura | CR | Arboreal | 27.016765 | 39.93101 | 36.39720 | 43.73986 |
Isthmohyla angustilineata | Anura | CR | Arboreal | 28.975240 | 40.18716 | 36.56920 | 44.13749 |
Isthmohyla debilis | Anura | CR | Arboreal | 27.166722 | 39.93494 | 36.48557 | 43.45175 |
Isthmohyla debilis | Anura | CR | Arboreal | 26.545537 | 39.85185 | 36.41767 | 43.32784 |
Isthmohyla debilis | Anura | CR | Arboreal | 28.366971 | 40.09550 | 36.57070 | 43.55571 |
Isthmohyla graceae | Anura | CR | Arboreal | 25.835235 | 39.91134 | 36.34868 | 43.45139 |
Isthmohyla graceae | Anura | CR | Arboreal | 25.157590 | 39.82096 | 36.27958 | 43.37590 |
Isthmohyla graceae | Anura | CR | Arboreal | 27.278156 | 40.10381 | 36.52086 | 43.75174 |
Isthmohyla infucata | Anura | EN | Arboreal | 27.753723 | 39.94996 | 36.55093 | 44.00488 |
Isthmohyla infucata | Anura | EN | Arboreal | 27.190251 | 39.87699 | 36.21717 | 43.61564 |
Isthmohyla infucata | Anura | EN | Arboreal | 28.885900 | 40.09659 | 36.40667 | 43.92824 |
Isthmohyla insolita | Anura | EN | Stream-dwelling | 26.157984 | 39.37499 | 35.82154 | 42.59521 |
Isthmohyla insolita | Anura | EN | Stream-dwelling | 25.537721 | 39.29346 | 35.72651 | 42.46113 |
Isthmohyla insolita | Anura | EN | Stream-dwelling | 27.383776 | 39.53611 | 35.98000 | 42.83181 |
Isthmohyla lancasteri | Anura | LC | Arboreal | 25.076587 | 39.73816 | 36.48686 | 43.13929 |
Isthmohyla lancasteri | Anura | LC | Arboreal | 24.327003 | 39.64086 | 36.48314 | 43.09540 |
Isthmohyla lancasteri | Anura | LC | Arboreal | 26.333094 | 39.90127 | 36.60972 | 43.38331 |
Isthmohyla picadoi | Anura | LC | Arboreal | 25.596213 | 39.79313 | 36.20082 | 43.14161 |
Isthmohyla picadoi | Anura | LC | Arboreal | 24.868393 | 39.69652 | 35.99791 | 42.95172 |
Isthmohyla picadoi | Anura | LC | Arboreal | 26.937359 | 39.97116 | 36.41810 | 43.40441 |
Isthmohyla pictipes | Anura | CR | Stream-dwelling | 25.548408 | 39.23861 | 35.92349 | 42.83773 |
Isthmohyla pictipes | Anura | CR | Stream-dwelling | 24.810554 | 39.13990 | 35.78884 | 42.65313 |
Isthmohyla pictipes | Anura | CR | Stream-dwelling | 26.869200 | 39.41531 | 36.09681 | 43.06547 |
Isthmohyla pseudopuma | Anura | LC | Arboreal | 25.530710 | 39.73425 | 36.34907 | 43.60513 |
Isthmohyla pseudopuma | Anura | LC | Arboreal | 24.759212 | 39.63500 | 36.23484 | 43.46324 |
Isthmohyla pseudopuma | Anura | LC | Arboreal | 26.950139 | 39.91686 | 36.34386 | 43.63547 |
Isthmohyla rivularis | Anura | EN | Stream-dwelling | 27.673451 | 39.59365 | 36.12766 | 43.24204 |
Isthmohyla rivularis | Anura | EN | Stream-dwelling | 27.016765 | 39.50738 | 36.05406 | 43.11392 |
Isthmohyla rivularis | Anura | EN | Stream-dwelling | 28.975240 | 39.76467 | 36.26661 | 43.49602 |
Isthmohyla tica | Anura | CR | Stream-dwelling | 27.673451 | 39.44738 | 36.00702 | 43.45231 |
Isthmohyla tica | Anura | CR | Stream-dwelling | 27.016765 | 39.36166 | 35.85869 | 43.26275 |
Isthmohyla tica | Anura | CR | Stream-dwelling | 28.975240 | 39.61732 | 36.13857 | 43.62857 |
Isthmohyla xanthosticta | Anura | DD | Arboreal | 27.435694 | 39.97670 | 36.42387 | 43.53990 |
Isthmohyla xanthosticta | Anura | DD | Arboreal | 26.744760 | 39.88766 | 36.32326 | 43.40345 |
Isthmohyla xanthosticta | Anura | DD | Arboreal | 29.013624 | 40.18007 | 36.58481 | 43.77911 |
Isthmohyla zeteki | Anura | VU | Arboreal | 25.548408 | 39.70481 | 36.16066 | 43.30333 |
Isthmohyla zeteki | Anura | VU | Arboreal | 24.810554 | 39.60820 | 36.12159 | 43.23603 |
Isthmohyla zeteki | Anura | VU | Arboreal | 26.869200 | 39.87774 | 36.32237 | 43.55211 |
Tlalocohyla godmani | Anura | VU | Stream-dwelling | 24.716524 | 39.33791 | 35.91675 | 42.88994 |
Tlalocohyla godmani | Anura | VU | Stream-dwelling | 23.740053 | 39.21052 | 35.74990 | 42.67290 |
Tlalocohyla godmani | Anura | VU | Stream-dwelling | 27.024465 | 39.63898 | 35.92373 | 43.02902 |
Tlalocohyla loquax | Anura | LC | Aquatic | 26.794176 | 40.42103 | 36.74830 | 43.87519 |
Tlalocohyla loquax | Anura | LC | Aquatic | 25.981168 | 40.31494 | 36.84993 | 43.92748 |
Tlalocohyla loquax | Anura | LC | Aquatic | 28.467889 | 40.63944 | 36.85693 | 44.10775 |
Tlalocohyla picta | Anura | LC | Arboreal | 26.252436 | 40.12830 | 36.59050 | 43.50694 |
Tlalocohyla picta | Anura | LC | Arboreal | 25.437962 | 40.02042 | 36.40775 | 43.28072 |
Tlalocohyla picta | Anura | LC | Arboreal | 27.971030 | 40.35593 | 36.46222 | 43.54689 |
Hyla annectans | Anura | LC | Arboreal | 23.637071 | 39.39360 | 36.10638 | 42.72288 |
Hyla annectans | Anura | LC | Arboreal | 22.332033 | 39.22290 | 35.92887 | 42.54322 |
Hyla annectans | Anura | LC | Arboreal | 25.730762 | 39.66746 | 36.35976 | 42.99031 |
Hyla tsinlingensis | Anura | LC | Arboreal | 23.124878 | 39.31032 | 35.65404 | 42.38776 |
Hyla tsinlingensis | Anura | LC | Arboreal | 20.453457 | 38.96018 | 35.37725 | 41.98107 |
Hyla tsinlingensis | Anura | LC | Arboreal | 26.324714 | 39.72971 | 36.03775 | 42.94093 |
Hyla chinensis | Anura | LC | Arboreal | 27.144602 | 40.05676 | 36.65781 | 43.81092 |
Hyla chinensis | Anura | LC | Arboreal | 25.329203 | 39.81419 | 36.12130 | 43.06783 |
Hyla chinensis | Anura | LC | Arboreal | 29.632296 | 40.38916 | 36.94713 | 44.16692 |
Hyla savignyi | Anura | LC | Arboreal | 21.859236 | 39.15326 | 35.51238 | 42.10720 |
Hyla savignyi | Anura | LC | Arboreal | 20.174568 | 38.93678 | 35.26444 | 41.82882 |
Hyla savignyi | Anura | LC | Arboreal | 24.392003 | 39.47873 | 35.68116 | 42.45447 |
Hyla hallowellii | Anura | LC | Arboreal | 27.367725 | 39.97339 | 36.69457 | 43.81840 |
Hyla hallowellii | Anura | LC | Arboreal | 26.559688 | 39.86658 | 36.43497 | 43.50879 |
Hyla hallowellii | Anura | LC | Arboreal | 28.353332 | 40.10368 | 36.80458 | 43.99697 |
Hyla intermedia | Anura | LC | Arboreal | 23.281004 | 39.43086 | 36.07871 | 42.86628 |
Hyla intermedia | Anura | LC | Arboreal | 20.778414 | 39.10021 | 35.83173 | 42.47488 |
Hyla intermedia | Anura | LC | Arboreal | 26.673232 | 39.87905 | 36.28634 | 43.27629 |
Hyla sanchiangensis | Anura | LC | Arboreal | 27.309582 | 39.91869 | 36.27525 | 43.39222 |
Hyla sanchiangensis | Anura | LC | Arboreal | 25.688473 | 39.70924 | 36.24458 | 43.23776 |
Hyla sanchiangensis | Anura | LC | Arboreal | 29.851650 | 40.24713 | 36.66472 | 43.87164 |
Hyla sarda | Anura | LC | Arboreal | 23.602973 | 39.48707 | 36.06406 | 42.97001 |
Hyla sarda | Anura | LC | Arboreal | 21.633515 | 39.22515 | 35.92188 | 42.73973 |
Hyla sarda | Anura | LC | Arboreal | 26.664836 | 39.89427 | 36.36924 | 43.55069 |
Hyla simplex | Anura | LC | Arboreal | 27.687638 | 39.91840 | 36.26419 | 43.36475 |
Hyla simplex | Anura | LC | Arboreal | 26.645646 | 39.78265 | 36.10250 | 43.21142 |
Hyla simplex | Anura | LC | Arboreal | 29.538496 | 40.15955 | 36.45763 | 43.59299 |
Hyla zhaopingensis | Anura | DD | Arboreal | 27.803837 | 40.00226 | 36.79123 | 43.83294 |
Hyla zhaopingensis | Anura | DD | Arboreal | 26.528569 | 39.83483 | 36.67720 | 43.57280 |
Hyla zhaopingensis | Anura | DD | Arboreal | 30.320630 | 40.33269 | 36.91463 | 44.16858 |
Charadrahyla altipotens | Anura | EN | Stream-dwelling | 26.540611 | 39.29791 | 35.31194 | 43.11152 |
Charadrahyla altipotens | Anura | EN | Stream-dwelling | 25.413707 | 39.15279 | 35.28407 | 43.01610 |
Charadrahyla altipotens | Anura | EN | Stream-dwelling | 28.296903 | 39.52408 | 35.46362 | 43.37425 |
Charadrahyla chaneque | Anura | VU | Stream-dwelling | 27.629499 | 39.49359 | 35.67273 | 43.64565 |
Charadrahyla chaneque | Anura | VU | Stream-dwelling | 26.672663 | 39.36879 | 35.16815 | 43.05846 |
Charadrahyla chaneque | Anura | VU | Stream-dwelling | 29.448578 | 39.73086 | 35.42999 | 43.47994 |
Charadrahyla nephila | Anura | EN | Stream-dwelling | 24.443279 | 39.06026 | 35.08314 | 42.69487 |
Charadrahyla nephila | Anura | EN | Stream-dwelling | 23.278941 | 38.90796 | 34.99626 | 42.50821 |
Charadrahyla nephila | Anura | EN | Stream-dwelling | 26.911302 | 39.38308 | 35.23342 | 42.91548 |
Charadrahyla taeniopus | Anura | VU | Stream-dwelling | 23.879216 | 38.89053 | 35.24888 | 42.52598 |
Charadrahyla taeniopus | Anura | VU | Stream-dwelling | 22.829884 | 38.75456 | 35.22169 | 42.45393 |
Charadrahyla taeniopus | Anura | VU | Stream-dwelling | 26.169380 | 39.18730 | 35.47004 | 42.80339 |
Charadrahyla trux | Anura | EN | Stream-dwelling | 24.643741 | 39.17321 | 35.58775 | 43.15450 |
Charadrahyla trux | Anura | EN | Stream-dwelling | 23.536379 | 39.03010 | 35.44495 | 42.95610 |
Charadrahyla trux | Anura | EN | Stream-dwelling | 26.514052 | 39.41492 | 35.72926 | 43.40824 |
Megastomatohyla mixe | Anura | CR | Stream-dwelling | 22.187059 | 38.68562 | 34.67674 | 42.34481 |
Megastomatohyla mixe | Anura | CR | Stream-dwelling | 20.787577 | 38.50349 | 34.49360 | 42.11215 |
Megastomatohyla mixe | Anura | CR | Stream-dwelling | 25.070986 | 39.06092 | 35.24941 | 42.93535 |
Megastomatohyla mixomaculata | Anura | EN | Stream-dwelling | 24.476973 | 38.92387 | 35.31721 | 42.92015 |
Megastomatohyla mixomaculata | Anura | EN | Stream-dwelling | 23.438962 | 38.79124 | 35.21925 | 42.75064 |
Megastomatohyla mixomaculata | Anura | EN | Stream-dwelling | 26.661051 | 39.20293 | 35.46457 | 43.20229 |
Megastomatohyla nubicola | Anura | CR | Stream-dwelling | 25.458091 | 39.10747 | 35.46275 | 43.05079 |
Megastomatohyla nubicola | Anura | CR | Stream-dwelling | 24.953062 | 39.04106 | 35.41909 | 42.98338 |
Megastomatohyla nubicola | Anura | CR | Stream-dwelling | 26.956993 | 39.30459 | 35.71584 | 43.37675 |
Megastomatohyla pellita | Anura | CR | Stream-dwelling | 26.748054 | 39.27743 | 35.59906 | 43.25404 |
Megastomatohyla pellita | Anura | CR | Stream-dwelling | 25.687348 | 39.13941 | 35.53455 | 43.16834 |
Megastomatohyla pellita | Anura | CR | Stream-dwelling | 28.307307 | 39.48031 | 35.77556 | 43.49192 |
Bromeliohyla bromeliacia | Anura | LC | Arboreal | 25.496314 | 39.57059 | 35.34598 | 43.34630 |
Bromeliohyla bromeliacia | Anura | LC | Arboreal | 24.515166 | 39.44315 | 35.48194 | 43.41505 |
Bromeliohyla bromeliacia | Anura | LC | Arboreal | 27.497307 | 39.83051 | 36.07643 | 44.14296 |
Bromeliohyla dendroscarta | Anura | EN | Arboreal | 24.443279 | 39.54430 | 35.94951 | 43.64754 |
Bromeliohyla dendroscarta | Anura | EN | Arboreal | 23.278941 | 39.39247 | 35.78683 | 43.40179 |
Bromeliohyla dendroscarta | Anura | EN | Arboreal | 26.911302 | 39.86613 | 36.35438 | 44.17711 |
Duellmanohyla chamulae | Anura | EN | Stream-dwelling | 27.578939 | 39.28308 | 35.40305 | 43.34864 |
Duellmanohyla chamulae | Anura | EN | Stream-dwelling | 26.636120 | 39.16150 | 35.30448 | 43.23122 |
Duellmanohyla chamulae | Anura | EN | Stream-dwelling | 29.355857 | 39.51222 | 35.45712 | 43.45849 |
Duellmanohyla ignicolor | Anura | NT | Stream-dwelling | 22.187059 | 38.62692 | 34.77121 | 42.36490 |
Duellmanohyla ignicolor | Anura | NT | Stream-dwelling | 20.787577 | 38.44478 | 34.60640 | 42.10991 |
Duellmanohyla ignicolor | Anura | NT | Stream-dwelling | 25.070986 | 39.00225 | 35.05851 | 42.90125 |
Duellmanohyla lythrodes | Anura | EN | Stream-dwelling | 22.415988 | 38.65389 | 34.72184 | 42.58582 |
Duellmanohyla lythrodes | Anura | EN | Stream-dwelling | 21.585361 | 38.54633 | 34.68420 | 42.48697 |
Duellmanohyla lythrodes | Anura | EN | Stream-dwelling | 23.641771 | 38.81262 | 34.39162 | 42.32220 |
Duellmanohyla rufioculis | Anura | LC | Stream-dwelling | 26.177716 | 39.19322 | 35.32304 | 43.29013 |
Duellmanohyla rufioculis | Anura | LC | Stream-dwelling | 25.480927 | 39.10226 | 35.29724 | 43.21075 |
Duellmanohyla rufioculis | Anura | LC | Stream-dwelling | 27.580806 | 39.37637 | 35.44613 | 43.49635 |
Duellmanohyla salvavida | Anura | EN | Stream-dwelling | 26.157984 | 39.23307 | 35.13756 | 43.40553 |
Duellmanohyla salvavida | Anura | EN | Stream-dwelling | 25.537721 | 39.15183 | 35.03805 | 43.27577 |
Duellmanohyla salvavida | Anura | EN | Stream-dwelling | 27.383776 | 39.39364 | 35.41723 | 43.74180 |
Duellmanohyla schmidtorum | Anura | NT | Arboreal | 26.933705 | 39.72411 | 35.88148 | 43.69065 |
Duellmanohyla schmidtorum | Anura | NT | Arboreal | 26.003249 | 39.60377 | 35.72128 | 43.53491 |
Duellmanohyla schmidtorum | Anura | NT | Arboreal | 28.861029 | 39.97339 | 36.08050 | 43.88609 |
Duellmanohyla soralia | Anura | EN | Stream-dwelling | 25.174190 | 39.06872 | 35.15814 | 42.61015 |
Duellmanohyla soralia | Anura | EN | Stream-dwelling | 24.673669 | 39.00255 | 35.09349 | 42.52521 |
Duellmanohyla soralia | Anura | EN | Stream-dwelling | 26.575538 | 39.25399 | 35.25612 | 42.79572 |
Duellmanohyla uranochroa | Anura | VU | Stream-dwelling | 25.548408 | 39.09525 | 35.70466 | 43.52432 |
Duellmanohyla uranochroa | Anura | VU | Stream-dwelling | 24.810554 | 38.99866 | 35.46659 | 43.26048 |
Duellmanohyla uranochroa | Anura | VU | Stream-dwelling | 26.869200 | 39.26814 | 35.78657 | 43.61514 |
Ptychohyla dendrophasma | Anura | CR | Stream-dwelling | 26.749010 | 39.23120 | 35.14236 | 42.96367 |
Ptychohyla dendrophasma | Anura | CR | Stream-dwelling | 25.647747 | 39.08747 | 35.41336 | 43.18154 |
Ptychohyla dendrophasma | Anura | CR | Stream-dwelling | 28.713870 | 39.48763 | 35.57186 | 43.47571 |
Ptychohyla euthysanota | Anura | LC | Stream-dwelling | 26.050814 | 39.17139 | 35.19444 | 42.92218 |
Ptychohyla euthysanota | Anura | LC | Stream-dwelling | 25.075721 | 39.04446 | 35.07918 | 42.77194 |
Ptychohyla euthysanota | Anura | LC | Stream-dwelling | 28.108432 | 39.43925 | 35.38075 | 43.24557 |
Ptychohyla hypomykter | Anura | VU | Arboreal | 25.825323 | 39.61711 | 35.77697 | 43.39574 |
Ptychohyla hypomykter | Anura | VU | Arboreal | 24.908732 | 39.49841 | 35.65772 | 43.25647 |
Ptychohyla hypomykter | Anura | VU | Arboreal | 27.667803 | 39.85570 | 35.96509 | 43.74743 |
Ptychohyla legleri | Anura | EN | Stream-dwelling | 24.812458 | 39.03796 | 35.22651 | 42.75770 |
Ptychohyla legleri | Anura | EN | Stream-dwelling | 24.080462 | 38.94334 | 35.15397 | 42.65877 |
Ptychohyla legleri | Anura | EN | Stream-dwelling | 26.063102 | 39.19961 | 35.32108 | 42.94434 |
Ptychohyla leonhardschultzei | Anura | LC | Stream-dwelling | 25.504390 | 39.04507 | 34.98237 | 43.10280 |
Ptychohyla leonhardschultzei | Anura | LC | Stream-dwelling | 24.397261 | 38.89976 | 34.76409 | 42.81760 |
Ptychohyla leonhardschultzei | Anura | LC | Stream-dwelling | 27.367351 | 39.28959 | 35.23976 | 43.39189 |
Ptychohyla zophodes | Anura | VU | Stream-dwelling | 25.149838 | 39.01403 | 35.43972 | 43.34379 |
Ptychohyla zophodes | Anura | VU | Stream-dwelling | 24.043183 | 38.87078 | 35.28349 | 43.09827 |
Ptychohyla zophodes | Anura | VU | Stream-dwelling | 27.432312 | 39.30947 | 35.72324 | 43.81433 |
Ptychohyla macrotympanum | Anura | VU | Stream-dwelling | 26.389820 | 39.19786 | 35.53654 | 43.17539 |
Ptychohyla macrotympanum | Anura | VU | Stream-dwelling | 25.317222 | 39.06015 | 35.47170 | 43.05215 |
Ptychohyla macrotympanum | Anura | VU | Stream-dwelling | 28.366978 | 39.45171 | 35.72837 | 43.48470 |
Ptychohyla salvadorensis | Anura | NT | Arboreal | 26.008626 | 39.51566 | 35.54664 | 43.28407 |
Ptychohyla salvadorensis | Anura | NT | Arboreal | 25.005581 | 39.38796 | 35.56835 | 43.22177 |
Ptychohyla salvadorensis | Anura | NT | Arboreal | 28.067313 | 39.77777 | 35.78930 | 43.62128 |
Ecnomiohyla fimbrimembra | Anura | VU | Arboreal | 27.636688 | 39.88884 | 36.00252 | 43.37881 |
Ecnomiohyla fimbrimembra | Anura | VU | Arboreal | 26.960683 | 39.80064 | 35.95990 | 43.27124 |
Ecnomiohyla fimbrimembra | Anura | VU | Arboreal | 29.020819 | 40.06941 | 36.09508 | 43.60795 |
Ecnomiohyla miliaria | Anura | LC | Arboreal | 26.143912 | 39.66166 | 35.92917 | 43.56172 |
Ecnomiohyla miliaria | Anura | LC | Arboreal | 25.387709 | 39.56315 | 36.14980 | 43.74611 |
Ecnomiohyla miliaria | Anura | LC | Arboreal | 27.567315 | 39.84709 | 36.12611 | 43.77736 |
Ecnomiohyla minera | Anura | VU | Arboreal | 25.096779 | 39.49238 | 35.58298 | 43.33664 |
Ecnomiohyla minera | Anura | VU | Arboreal | 24.020450 | 39.35181 | 35.50577 | 43.23501 |
Ecnomiohyla minera | Anura | VU | Arboreal | 27.293603 | 39.77930 | 35.82146 | 43.68297 |
Ecnomiohyla phantasmagoria | Anura | DD | Arboreal | 26.780535 | 39.60584 | 35.30161 | 43.25949 |
Ecnomiohyla phantasmagoria | Anura | DD | Arboreal | 26.004364 | 39.50472 | 35.31206 | 43.20197 |
Ecnomiohyla phantasmagoria | Anura | DD | Arboreal | 28.563188 | 39.83808 | 35.54117 | 43.56430 |
Ecnomiohyla salvaje | Anura | EN | Arboreal | 26.135487 | 39.56026 | 35.63897 | 43.23461 |
Ecnomiohyla salvaje | Anura | EN | Arboreal | 25.454076 | 39.47336 | 35.55740 | 43.11215 |
Ecnomiohyla salvaje | Anura | EN | Arboreal | 27.750357 | 39.76621 | 36.09967 | 43.69384 |
Ecnomiohyla thysanota | Anura | DD | Arboreal | 27.812573 | 39.81977 | 35.63336 | 43.40517 |
Ecnomiohyla thysanota | Anura | DD | Arboreal | 27.084203 | 39.72586 | 35.59170 | 43.30814 |
Ecnomiohyla thysanota | Anura | DD | Arboreal | 29.356453 | 40.01884 | 35.81330 | 43.68147 |
Ecnomiohyla valancifer | Anura | CR | Arboreal | 26.881155 | 39.73510 | 35.84972 | 43.71319 |
Ecnomiohyla valancifer | Anura | CR | Arboreal | 25.933953 | 39.61397 | 35.70655 | 43.48074 |
Ecnomiohyla valancifer | Anura | CR | Arboreal | 28.925281 | 39.99651 | 35.90704 | 43.94433 |
Exerodonta abdivita | Anura | NT | Arboreal | 24.589991 | 39.36010 | 35.49036 | 43.16909 |
Exerodonta abdivita | Anura | NT | Arboreal | 23.425321 | 39.20896 | 35.37413 | 42.98385 |
Exerodonta abdivita | Anura | NT | Arboreal | 27.093143 | 39.68493 | 35.91698 | 43.78447 |
Exerodonta perkinsi | Anura | EN | Stream-dwelling | 24.492303 | 38.87862 | 35.09531 | 43.38236 |
Exerodonta perkinsi | Anura | EN | Stream-dwelling | 23.296609 | 38.72376 | 34.98275 | 43.23014 |
Exerodonta perkinsi | Anura | EN | Stream-dwelling | 26.759446 | 39.17224 | 35.23645 | 43.60614 |
Exerodonta bivocata | Anura | EN | Stream-dwelling | 27.578939 | 39.38062 | 35.25595 | 43.57362 |
Exerodonta bivocata | Anura | EN | Stream-dwelling | 26.636120 | 39.25796 | 35.21170 | 43.45461 |
Exerodonta bivocata | Anura | EN | Stream-dwelling | 29.355857 | 39.61178 | 34.91691 | 43.36781 |
Exerodonta catracha | Anura | NT | Arboreal | 24.874925 | 39.45680 | 35.63254 | 43.40827 |
Exerodonta catracha | Anura | NT | Arboreal | 23.714409 | 39.30658 | 35.64630 | 43.35303 |
Exerodonta catracha | Anura | NT | Arboreal | 27.187387 | 39.75613 | 35.80067 | 43.67595 |
Exerodonta chimalapa | Anura | EN | Stream-dwelling | 27.384785 | 39.31692 | 35.49333 | 43.26785 |
Exerodonta chimalapa | Anura | EN | Stream-dwelling | 26.395290 | 39.19017 | 35.42016 | 43.18400 |
Exerodonta chimalapa | Anura | EN | Stream-dwelling | 29.371363 | 39.57138 | 35.79099 | 43.68600 |
Exerodonta smaragdina | Anura | LC | Arboreal | 24.636167 | 39.47920 | 35.70677 | 43.18645 |
Exerodonta smaragdina | Anura | LC | Arboreal | 23.506409 | 39.33222 | 35.54906 | 43.02002 |
Exerodonta smaragdina | Anura | LC | Arboreal | 26.570114 | 39.73080 | 35.88971 | 43.48629 |
Exerodonta xera | Anura | VU | Arboreal | 24.260106 | 39.40805 | 35.68823 | 43.45529 |
Exerodonta xera | Anura | VU | Arboreal | 23.071044 | 39.25226 | 35.17388 | 42.97353 |
Exerodonta xera | Anura | VU | Arboreal | 26.362962 | 39.68356 | 35.92555 | 43.75395 |
Exerodonta melanomma | Anura | VU | Arboreal | 26.192836 | 39.66507 | 36.04421 | 43.92654 |
Exerodonta melanomma | Anura | VU | Arboreal | 25.062977 | 39.51506 | 35.73704 | 43.50585 |
Exerodonta melanomma | Anura | VU | Arboreal | 28.025747 | 39.90842 | 36.14557 | 44.17049 |
Exerodonta sumichrasti | Anura | LC | Arboreal | 26.423995 | 39.68767 | 35.79391 | 43.73793 |
Exerodonta sumichrasti | Anura | LC | Arboreal | 25.409495 | 39.55586 | 35.32627 | 43.22020 |
Exerodonta sumichrasti | Anura | LC | Arboreal | 28.251982 | 39.92518 | 35.68996 | 43.74164 |
Plectrohyla acanthodes | Anura | EN | Stream-dwelling | 26.150379 | 39.07271 | 34.96809 | 42.65627 |
Plectrohyla acanthodes | Anura | EN | Stream-dwelling | 25.061825 | 38.93432 | 34.94784 | 42.56514 |
Plectrohyla acanthodes | Anura | EN | Stream-dwelling | 28.118004 | 39.32286 | 35.15929 | 42.92237 |
Plectrohyla avia | Anura | EN | Arboreal | 25.833150 | 39.60085 | 35.52551 | 43.73645 |
Plectrohyla avia | Anura | EN | Arboreal | 24.954271 | 39.48978 | 35.44844 | 43.61337 |
Plectrohyla avia | Anura | EN | Arboreal | 27.918184 | 39.86434 | 35.58353 | 43.88214 |
Plectrohyla chrysopleura | Anura | CR | Stream-dwelling | 26.003759 | 39.18973 | 34.57425 | 42.83867 |
Plectrohyla chrysopleura | Anura | CR | Stream-dwelling | 25.251289 | 39.09143 | 34.54137 | 42.80055 |
Plectrohyla chrysopleura | Anura | CR | Stream-dwelling | 27.401517 | 39.37231 | 34.76511 | 43.11117 |
Plectrohyla dasypus | Anura | CR | Arboreal | 25.174190 | 39.54713 | 35.67452 | 43.59558 |
Plectrohyla dasypus | Anura | CR | Arboreal | 24.673669 | 39.48280 | 35.44866 | 43.35916 |
Plectrohyla dasypus | Anura | CR | Arboreal | 26.575538 | 39.72724 | 35.92860 | 43.83308 |
Plectrohyla exquisita | Anura | CR | Arboreal | 25.174190 | 39.49347 | 35.92049 | 43.45297 |
Plectrohyla exquisita | Anura | CR | Arboreal | 24.673669 | 39.42838 | 35.70157 | 43.18529 |
Plectrohyla exquisita | Anura | CR | Arboreal | 26.575538 | 39.67570 | 35.93012 | 43.58358 |
Plectrohyla glandulosa | Anura | CR | Stream-dwelling | 22.235597 | 38.70568 | 35.20119 | 42.72096 |
Plectrohyla glandulosa | Anura | CR | Stream-dwelling | 20.945471 | 38.54155 | 35.06844 | 42.54049 |
Plectrohyla glandulosa | Anura | CR | Stream-dwelling | 24.805021 | 39.03257 | 35.25784 | 42.95383 |
Plectrohyla guatemalensis | Anura | NT | Stream-dwelling | 25.723092 | 39.13764 | 35.39014 | 43.10936 |
Plectrohyla guatemalensis | Anura | NT | Stream-dwelling | 24.818365 | 39.02161 | 35.31235 | 42.95563 |
Plectrohyla guatemalensis | Anura | NT | Stream-dwelling | 27.639855 | 39.38346 | 35.54475 | 43.43852 |
Plectrohyla hartwegi | Anura | EN | Stream-dwelling | 25.719539 | 39.01553 | 34.93115 | 42.93054 |
Plectrohyla hartwegi | Anura | EN | Stream-dwelling | 24.711484 | 38.88423 | 34.87936 | 42.79718 |
Plectrohyla hartwegi | Anura | EN | Stream-dwelling | 27.829048 | 39.29028 | 35.19240 | 43.28433 |
Plectrohyla ixil | Anura | VU | Stream-dwelling | 25.908896 | 39.10730 | 35.52770 | 43.29815 |
Plectrohyla ixil | Anura | VU | Stream-dwelling | 24.808487 | 38.96669 | 35.37072 | 43.11319 |
Plectrohyla ixil | Anura | VU | Stream-dwelling | 27.956208 | 39.36889 | 35.56246 | 43.45777 |
Plectrohyla lacertosa | Anura | EN | Stream-dwelling | 25.925600 | 39.10336 | 35.13008 | 43.32246 |
Plectrohyla lacertosa | Anura | EN | Stream-dwelling | 24.871607 | 38.96866 | 35.05646 | 43.21747 |
Plectrohyla lacertosa | Anura | EN | Stream-dwelling | 28.122208 | 39.38407 | 35.56353 | 43.95113 |
Plectrohyla matudai | Anura | LC | Ground-dwelling | 25.903408 | 39.77337 | 35.56730 | 43.53890 |
Plectrohyla matudai | Anura | LC | Ground-dwelling | 24.939083 | 39.64884 | 35.46106 | 43.42335 |
Plectrohyla matudai | Anura | LC | Ground-dwelling | 27.916979 | 40.03340 | 36.13770 | 44.18093 |
Plectrohyla pokomchi | Anura | EN | Stream-dwelling | 24.942963 | 39.06335 | 35.28329 | 42.91711 |
Plectrohyla pokomchi | Anura | EN | Stream-dwelling | 23.795138 | 38.91253 | 35.15755 | 42.78195 |
Plectrohyla pokomchi | Anura | EN | Stream-dwelling | 27.309028 | 39.37424 | 35.41536 | 43.14389 |
Plectrohyla psiloderma | Anura | EN | Stream-dwelling | 26.468834 | 39.24029 | 35.43685 | 43.46839 |
Plectrohyla psiloderma | Anura | EN | Stream-dwelling | 25.476230 | 39.11224 | 35.13738 | 43.11953 |
Plectrohyla psiloderma | Anura | EN | Stream-dwelling | 28.481769 | 39.49996 | 35.64762 | 43.84578 |
Plectrohyla quecchi | Anura | EN | Stream-dwelling | 25.712479 | 39.11011 | 35.46078 | 43.06826 |
Plectrohyla quecchi | Anura | EN | Stream-dwelling | 24.700136 | 38.97860 | 35.33669 | 42.85695 |
Plectrohyla quecchi | Anura | EN | Stream-dwelling | 27.813634 | 39.38308 | 35.68981 | 43.42048 |
Plectrohyla sagorum | Anura | VU | Stream-dwelling | 25.300085 | 39.10349 | 35.08821 | 42.86094 |
Plectrohyla sagorum | Anura | VU | Stream-dwelling | 24.312172 | 38.97792 | 34.99546 | 42.70249 |
Plectrohyla sagorum | Anura | VU | Stream-dwelling | 27.419860 | 39.37292 | 35.59274 | 43.45131 |
Plectrohyla tecunumani | Anura | CR | Stream-dwelling | 22.235597 | 38.67166 | 34.78463 | 42.41591 |
Plectrohyla tecunumani | Anura | CR | Stream-dwelling | 20.945471 | 38.50635 | 34.53955 | 42.08744 |
Plectrohyla tecunumani | Anura | CR | Stream-dwelling | 24.805021 | 39.00089 | 35.24208 | 42.95338 |
Plectrohyla teuchestes | Anura | CR | Stream-dwelling | 26.481996 | 39.22715 | 35.28191 | 43.18455 |
Plectrohyla teuchestes | Anura | CR | Stream-dwelling | 25.605134 | 39.11360 | 35.33364 | 43.16014 |
Plectrohyla teuchestes | Anura | CR | Stream-dwelling | 28.318240 | 39.46492 | 35.54447 | 43.45234 |
Macrogenioglottus alipioi | Anura | LC | Semi-aquatic | 25.431399 | 37.91164 | 34.93247 | 41.42940 |
Macrogenioglottus alipioi | Anura | LC | Semi-aquatic | 24.435579 | 37.77592 | 34.65745 | 41.10223 |
Macrogenioglottus alipioi | Anura | LC | Semi-aquatic | 27.180698 | 38.15005 | 34.81547 | 41.42310 |
Odontophrynus achalensis | Anura | VU | Semi-aquatic | 22.595443 | 36.62296 | 34.00607 | 39.03063 |
Odontophrynus achalensis | Anura | VU | Semi-aquatic | 20.641422 | 36.35538 | 33.96645 | 38.87736 |
Odontophrynus achalensis | Anura | VU | Semi-aquatic | 26.066129 | 37.09824 | 34.28964 | 39.59159 |
Odontophrynus cultripes | Anura | LC | Fossorial | 25.884733 | 38.51045 | 35.83509 | 41.65366 |
Odontophrynus cultripes | Anura | LC | Fossorial | 24.682676 | 38.34485 | 35.65867 | 41.42472 |
Odontophrynus cultripes | Anura | LC | Fossorial | 28.214034 | 38.83135 | 35.99252 | 41.98331 |
Odontophrynus cordobae | Anura | LC | Stream-dwelling | 23.623810 | 36.62209 | 33.64781 | 39.56629 |
Odontophrynus cordobae | Anura | LC | Stream-dwelling | 21.580867 | 36.33898 | 33.37979 | 39.15310 |
Odontophrynus cordobae | Anura | LC | Stream-dwelling | 27.145586 | 37.11015 | 33.98403 | 40.14156 |
Odontophrynus lavillai | Anura | LC | Fossorial | 24.753439 | 38.35727 | 35.24758 | 41.03120 |
Odontophrynus lavillai | Anura | LC | Fossorial | 23.324778 | 38.15932 | 35.24191 | 40.95870 |
Odontophrynus lavillai | Anura | LC | Fossorial | 27.204975 | 38.69694 | 35.46394 | 41.39651 |
Odontophrynus carvalhoi | Anura | LC | Ground-dwelling | 25.797977 | 37.70375 | 34.67868 | 40.99120 |
Odontophrynus carvalhoi | Anura | LC | Ground-dwelling | 24.741870 | 37.55589 | 34.07321 | 40.33138 |
Odontophrynus carvalhoi | Anura | LC | Ground-dwelling | 27.637547 | 37.96129 | 34.87193 | 41.33763 |
Proceratophrys appendiculata | Anura | LC | Ground-dwelling | 25.570890 | 38.14828 | 34.60022 | 41.86948 |
Proceratophrys appendiculata | Anura | LC | Ground-dwelling | 24.369687 | 37.98683 | 34.39749 | 41.63246 |
Proceratophrys appendiculata | Anura | LC | Ground-dwelling | 27.605375 | 38.42172 | 34.73634 | 42.14923 |
Proceratophrys melanopogon | Anura | LC | Ground-dwelling | 25.640222 | 38.20638 | 34.49397 | 41.65623 |
Proceratophrys melanopogon | Anura | LC | Ground-dwelling | 24.391799 | 38.03847 | 34.37995 | 41.48781 |
Proceratophrys melanopogon | Anura | LC | Ground-dwelling | 27.748476 | 38.48995 | 34.87642 | 42.14850 |
Proceratophrys phyllostomus | Anura | DD | Ground-dwelling | 25.556465 | 38.19409 | 34.63434 | 41.78671 |
Proceratophrys phyllostomus | Anura | DD | Ground-dwelling | 24.708649 | 38.07636 | 34.51943 | 41.64175 |
Proceratophrys phyllostomus | Anura | DD | Ground-dwelling | 27.149076 | 38.41524 | 34.63748 | 41.86467 |
Proceratophrys moehringi | Anura | DD | Stream-dwelling | 25.601492 | 37.59305 | 34.10681 | 41.27468 |
Proceratophrys moehringi | Anura | DD | Stream-dwelling | 24.813092 | 37.48525 | 34.04584 | 41.14978 |
Proceratophrys moehringi | Anura | DD | Stream-dwelling | 27.196193 | 37.81110 | 34.10076 | 41.39889 |
Proceratophrys boiei | Anura | LC | Ground-dwelling | 25.370437 | 38.18571 | 34.34559 | 41.50016 |
Proceratophrys boiei | Anura | LC | Ground-dwelling | 24.238531 | 38.03058 | 34.28400 | 41.36973 |
Proceratophrys boiei | Anura | LC | Ground-dwelling | 27.369346 | 38.45967 | 34.72550 | 41.96476 |
Proceratophrys laticeps | Anura | LC | Ground-dwelling | 25.254281 | 38.08893 | 34.03097 | 41.50871 |
Proceratophrys laticeps | Anura | LC | Ground-dwelling | 24.445702 | 37.98012 | 33.96533 | 41.42320 |
Proceratophrys laticeps | Anura | LC | Ground-dwelling | 26.755521 | 38.29096 | 34.21057 | 41.74124 |
Proceratophrys cururu | Anura | DD | Ground-dwelling | 24.239549 | 38.06010 | 34.86524 | 41.97906 |
Proceratophrys cururu | Anura | DD | Ground-dwelling | 22.780848 | 37.85961 | 34.54929 | 41.59108 |
Proceratophrys cururu | Anura | DD | Ground-dwelling | 26.761978 | 38.40680 | 35.11670 | 42.31007 |
Proceratophrys concavitympanum | Anura | DD | Stream-dwelling | 27.955903 | 37.88486 | 34.06000 | 41.57878 |
Proceratophrys concavitympanum | Anura | DD | Stream-dwelling | 27.137807 | 37.77358 | 33.86692 | 41.31414 |
Proceratophrys concavitympanum | Anura | DD | Stream-dwelling | 29.778513 | 38.13276 | 34.15588 | 41.85002 |
Proceratophrys moratoi | Anura | CR | Semi-aquatic | 26.272616 | 38.45409 | 35.00445 | 42.00897 |
Proceratophrys moratoi | Anura | CR | Semi-aquatic | 25.009737 | 38.28441 | 34.85523 | 41.87945 |
Proceratophrys moratoi | Anura | CR | Semi-aquatic | 28.773414 | 38.79010 | 35.22811 | 42.50687 |
Proceratophrys goyana | Anura | LC | Ground-dwelling | 26.616666 | 38.31132 | 34.84456 | 41.79181 |
Proceratophrys goyana | Anura | LC | Ground-dwelling | 25.373550 | 38.14170 | 34.70968 | 41.58501 |
Proceratophrys goyana | Anura | LC | Ground-dwelling | 28.796429 | 38.60876 | 35.07615 | 42.18362 |
Proceratophrys brauni | Anura | LC | Ground-dwelling | 24.597134 | 38.01265 | 34.56360 | 41.77568 |
Proceratophrys brauni | Anura | LC | Ground-dwelling | 22.759289 | 37.76856 | 34.28097 | 41.46335 |
Proceratophrys brauni | Anura | LC | Ground-dwelling | 27.369139 | 38.38082 | 34.91993 | 42.24676 |
Proceratophrys cristiceps | Anura | LC | Ground-dwelling | 25.624735 | 38.22355 | 35.21196 | 41.77670 |
Proceratophrys cristiceps | Anura | LC | Ground-dwelling | 24.599144 | 38.08728 | 34.95697 | 41.53596 |
Proceratophrys cristiceps | Anura | LC | Ground-dwelling | 27.277477 | 38.44316 | 35.38228 | 42.02507 |
Proceratophrys paviotii | Anura | DD | Stream-dwelling | 25.507727 | 37.71556 | 34.60919 | 40.95891 |
Proceratophrys paviotii | Anura | DD | Stream-dwelling | 24.733105 | 37.61202 | 34.50675 | 40.86751 |
Proceratophrys paviotii | Anura | DD | Stream-dwelling | 27.100258 | 37.92843 | 34.57796 | 41.16547 |
Proceratophrys subguttata | Anura | LC | Ground-dwelling | 24.321878 | 37.97352 | 34.55328 | 41.61274 |
Proceratophrys subguttata | Anura | LC | Ground-dwelling | 22.624344 | 37.74703 | 34.43337 | 41.37224 |
Proceratophrys subguttata | Anura | LC | Ground-dwelling | 26.857518 | 38.31183 | 35.00800 | 42.22515 |
Proceratophrys palustris | Anura | DD | Ground-dwelling | 25.942042 | 38.23224 | 34.67252 | 42.17134 |
Proceratophrys palustris | Anura | DD | Ground-dwelling | 24.610813 | 38.05036 | 34.45854 | 41.83515 |
Proceratophrys palustris | Anura | DD | Ground-dwelling | 28.503902 | 38.58227 | 34.75635 | 42.49414 |
Proceratophrys vielliardi | Anura | DD | Ground-dwelling | 26.110695 | 38.25492 | 34.68784 | 41.79230 |
Proceratophrys vielliardi | Anura | DD | Ground-dwelling | 24.912144 | 38.09410 | 34.54441 | 41.58767 |
Proceratophrys vielliardi | Anura | DD | Ground-dwelling | 28.317261 | 38.55099 | 35.04888 | 42.19938 |
Proceratophrys bigibbosa | Anura | NT | Ground-dwelling | 25.473780 | 38.16763 | 34.66870 | 41.84494 |
Proceratophrys bigibbosa | Anura | NT | Ground-dwelling | 23.667480 | 37.92241 | 34.44081 | 41.46762 |
Proceratophrys bigibbosa | Anura | NT | Ground-dwelling | 28.087860 | 38.52250 | 34.84414 | 42.13723 |
Proceratophrys avelinoi | Anura | LC | Semi-aquatic | 26.027404 | 38.43817 | 34.97964 | 42.05850 |
Proceratophrys avelinoi | Anura | LC | Semi-aquatic | 24.479761 | 38.22884 | 34.63911 | 41.61415 |
Proceratophrys avelinoi | Anura | LC | Semi-aquatic | 28.489336 | 38.77118 | 35.29710 | 42.47074 |
Adenomus kandianus | Anura | EN | Stream-dwelling | 27.311256 | 38.48379 | 35.06625 | 41.98446 |
Adenomus kandianus | Anura | EN | Stream-dwelling | 26.578946 | 38.38585 | 34.83568 | 41.66153 |
Adenomus kandianus | Anura | EN | Stream-dwelling | 29.131810 | 38.72727 | 35.21450 | 42.27970 |
Adenomus kelaartii | Anura | VU | Ground-dwelling | 27.537965 | 39.02099 | 35.49112 | 42.24568 |
Adenomus kelaartii | Anura | VU | Ground-dwelling | 26.783377 | 38.92291 | 35.43393 | 42.12296 |
Adenomus kelaartii | Anura | VU | Ground-dwelling | 29.426420 | 39.26644 | 35.80987 | 42.63013 |
Duttaphrynus atukoralei | Anura | LC | Ground-dwelling | 27.905526 | 39.15756 | 35.59963 | 42.36534 |
Duttaphrynus atukoralei | Anura | LC | Ground-dwelling | 27.123571 | 39.05488 | 35.51784 | 42.28835 |
Duttaphrynus atukoralei | Anura | LC | Ground-dwelling | 29.821058 | 39.40909 | 35.91400 | 42.82435 |
Duttaphrynus scaber | Anura | LC | Ground-dwelling | 27.326684 | 39.07244 | 35.86639 | 42.47023 |
Duttaphrynus scaber | Anura | LC | Ground-dwelling | 26.303513 | 38.93774 | 35.68322 | 42.20757 |
Duttaphrynus scaber | Anura | LC | Ground-dwelling | 29.575796 | 39.36854 | 36.19664 | 42.93445 |
Duttaphrynus beddomii | Anura | EN | Ground-dwelling | 27.160769 | 39.06542 | 35.70971 | 42.45316 |
Duttaphrynus beddomii | Anura | EN | Ground-dwelling | 26.441106 | 38.96980 | 35.61563 | 42.30521 |
Duttaphrynus beddomii | Anura | EN | Ground-dwelling | 28.707998 | 39.27099 | 35.78848 | 42.63872 |
Duttaphrynus brevirostris | Anura | DD | Ground-dwelling | 26.485775 | 38.90845 | 35.45658 | 42.01417 |
Duttaphrynus brevirostris | Anura | DD | Ground-dwelling | 25.652340 | 38.79830 | 35.48425 | 42.01949 |
Duttaphrynus brevirostris | Anura | DD | Ground-dwelling | 28.489556 | 39.17329 | 35.69099 | 42.28033 |
Duttaphrynus crocus | Anura | DD | Ground-dwelling | 27.836139 | 39.11914 | 36.01314 | 42.76328 |
Duttaphrynus crocus | Anura | DD | Ground-dwelling | 27.299652 | 39.04825 | 35.92596 | 42.67259 |
Duttaphrynus crocus | Anura | DD | Ground-dwelling | 29.045871 | 39.27901 | 36.18522 | 43.00615 |
Duttaphrynus dhufarensis | Anura | LC | Ground-dwelling | 26.174443 | 38.95522 | 35.92592 | 42.13605 |
Duttaphrynus dhufarensis | Anura | LC | Ground-dwelling | 25.210298 | 38.82869 | 35.84176 | 42.05468 |
Duttaphrynus dhufarensis | Anura | LC | Ground-dwelling | 27.803691 | 39.16903 | 36.08228 | 42.31736 |
Duttaphrynus himalayanus | Anura | LC | Ground-dwelling | 16.846374 | 37.68540 | 34.76889 | 41.08397 |
Duttaphrynus himalayanus | Anura | LC | Ground-dwelling | 14.865121 | 37.42734 | 34.60687 | 40.93083 |
Duttaphrynus himalayanus | Anura | LC | Ground-dwelling | 19.409653 | 38.01928 | 34.82537 | 41.11641 |
Duttaphrynus hololius | Anura | DD | Ground-dwelling | 27.111974 | 39.05075 | 35.82483 | 42.50443 |
Duttaphrynus hololius | Anura | DD | Ground-dwelling | 25.959742 | 38.89768 | 35.75548 | 42.34752 |
Duttaphrynus hololius | Anura | DD | Ground-dwelling | 29.381053 | 39.35219 | 36.12160 | 42.99143 |
Duttaphrynus kotagamai | Anura | EN | Stream-dwelling | 27.311256 | 38.47762 | 35.22369 | 42.13813 |
Duttaphrynus kotagamai | Anura | EN | Stream-dwelling | 26.578946 | 38.37989 | 35.12020 | 42.01227 |
Duttaphrynus kotagamai | Anura | EN | Stream-dwelling | 29.131810 | 38.72057 | 35.28672 | 42.31748 |
Duttaphrynus microtympanum | Anura | VU | Ground-dwelling | 27.358708 | 39.02136 | 35.83065 | 42.48235 |
Duttaphrynus microtympanum | Anura | VU | Ground-dwelling | 26.402781 | 38.89455 | 35.72200 | 42.34320 |
Duttaphrynus microtympanum | Anura | VU | Ground-dwelling | 29.307509 | 39.27987 | 36.01045 | 42.78400 |
Duttaphrynus noellerti | Anura | CR | Ground-dwelling | 27.311256 | 39.07869 | 35.92102 | 42.49665 |
Duttaphrynus noellerti | Anura | CR | Ground-dwelling | 26.578946 | 38.98053 | 35.78422 | 42.34959 |
Duttaphrynus noellerti | Anura | CR | Ground-dwelling | 29.131810 | 39.32274 | 36.26035 | 43.03297 |
Duttaphrynus olivaceus | Anura | LC | Ground-dwelling | 25.309856 | 38.82200 | 35.58642 | 42.07399 |
Duttaphrynus olivaceus | Anura | LC | Ground-dwelling | 23.812083 | 38.62405 | 35.55004 | 42.01621 |
Duttaphrynus olivaceus | Anura | LC | Ground-dwelling | 27.544408 | 39.11732 | 35.82542 | 42.35082 |
Duttaphrynus parietalis | Anura | NT | Ground-dwelling | 27.209847 | 38.96527 | 35.39213 | 42.16902 |
Duttaphrynus parietalis | Anura | NT | Ground-dwelling | 26.349017 | 38.85430 | 35.35134 | 42.05798 |
Duttaphrynus parietalis | Anura | NT | Ground-dwelling | 29.004641 | 39.19665 | 35.46954 | 42.29914 |
Duttaphrynus scorteccii | Anura | DD | Ground-dwelling | 24.727285 | 38.64165 | 35.50712 | 41.99290 |
Duttaphrynus scorteccii | Anura | DD | Ground-dwelling | 23.769170 | 38.51620 | 35.08093 | 41.52683 |
Duttaphrynus scorteccii | Anura | DD | Ground-dwelling | 26.383983 | 38.85856 | 35.64992 | 42.21963 |
Duttaphrynus silentvalleyensis | Anura | DD | Stream-dwelling | 26.793491 | 38.45609 | 35.02674 | 42.11953 |
Duttaphrynus silentvalleyensis | Anura | DD | Stream-dwelling | 25.581038 | 38.29369 | 34.93061 | 41.96969 |
Duttaphrynus silentvalleyensis | Anura | DD | Stream-dwelling | 29.313470 | 38.79362 | 34.96776 | 42.30800 |
Duttaphrynus stomaticus | Anura | LC | Ground-dwelling | 25.243454 | 38.82631 | 35.46919 | 41.89979 |
Duttaphrynus stomaticus | Anura | LC | Ground-dwelling | 23.925894 | 38.65303 | 35.28779 | 41.68930 |
Duttaphrynus stomaticus | Anura | LC | Ground-dwelling | 27.531109 | 39.12719 | 35.75945 | 42.29536 |
Duttaphrynus stuarti | Anura | DD | Ground-dwelling | 16.006937 | 37.56293 | 34.48669 | 40.64449 |
Duttaphrynus stuarti | Anura | DD | Ground-dwelling | 14.515037 | 37.36627 | 34.34030 | 40.51347 |
Duttaphrynus stuarti | Anura | DD | Ground-dwelling | 18.366591 | 37.87399 | 34.90010 | 40.98675 |
Duttaphrynus sumatranus | Anura | DD | Stream-dwelling | 28.762320 | 38.59199 | 35.26146 | 42.01040 |
Duttaphrynus sumatranus | Anura | DD | Stream-dwelling | 28.107465 | 38.50587 | 35.13691 | 41.87410 |
Duttaphrynus sumatranus | Anura | DD | Stream-dwelling | 29.991176 | 38.75360 | 35.46059 | 42.29644 |
Duttaphrynus valhallae | Anura | DD | Ground-dwelling | 27.453167 | 39.04654 | 35.78413 | 42.34047 |
Duttaphrynus valhallae | Anura | DD | Ground-dwelling | 27.049049 | 38.99394 | 35.78324 | 42.31594 |
Duttaphrynus valhallae | Anura | DD | Ground-dwelling | 28.657347 | 39.20328 | 35.95053 | 42.57887 |
Xanthophryne koynayensis | Anura | EN | Ground-dwelling | 26.636797 | 38.90046 | 35.91811 | 42.45121 |
Xanthophryne koynayensis | Anura | EN | Ground-dwelling | 25.741836 | 38.78446 | 35.80370 | 42.28349 |
Xanthophryne koynayensis | Anura | EN | Ground-dwelling | 28.748541 | 39.17418 | 35.94082 | 42.61364 |
Xanthophryne tigerina | Anura | CR | Ground-dwelling | 26.698922 | 38.98209 | 35.65559 | 42.29217 |
Xanthophryne tigerina | Anura | CR | Ground-dwelling | 25.807520 | 38.86444 | 35.54237 | 42.16154 |
Xanthophryne tigerina | Anura | CR | Ground-dwelling | 28.809379 | 39.26064 | 35.92365 | 42.74719 |
Pedostibes tuberculosus | Anura | EN | Stream-dwelling | 27.257720 | 38.48669 | 35.28258 | 42.29171 |
Pedostibes tuberculosus | Anura | EN | Stream-dwelling | 26.247648 | 38.35396 | 35.16804 | 42.15535 |
Pedostibes tuberculosus | Anura | EN | Stream-dwelling | 29.370686 | 38.76433 | 35.56440 | 42.69366 |
Churamiti maridadi | Anura | CR | Arboreal | 22.724429 | 38.39370 | 35.04526 | 41.83469 |
Churamiti maridadi | Anura | CR | Arboreal | 21.858574 | 38.27849 | 34.93743 | 41.72814 |
Churamiti maridadi | Anura | CR | Arboreal | 24.911424 | 38.68471 | 34.97677 | 41.90739 |
Nectophrynoides cryptus | Anura | EN | Ground-dwelling | 24.076140 | 38.73890 | 35.47249 | 42.27789 |
Nectophrynoides cryptus | Anura | EN | Ground-dwelling | 23.433959 | 38.65387 | 35.36900 | 42.18467 |
Nectophrynoides cryptus | Anura | EN | Ground-dwelling | 25.567374 | 38.93636 | 35.72997 | 42.55317 |
Nectophrynoides frontierei | Anura | DD | Ground-dwelling | 24.988717 | 38.78820 | 35.10621 | 41.96535 |
Nectophrynoides frontierei | Anura | DD | Ground-dwelling | 24.272514 | 38.69359 | 35.04932 | 41.86404 |
Nectophrynoides frontierei | Anura | DD | Ground-dwelling | 25.980715 | 38.91923 | 35.19408 | 42.10567 |
Nectophrynoides laevis | Anura | DD | Ground-dwelling | 24.195407 | 38.76471 | 35.58926 | 42.32028 |
Nectophrynoides laevis | Anura | DD | Ground-dwelling | 23.571279 | 38.68125 | 35.50563 | 42.21008 |
Nectophrynoides laevis | Anura | DD | Ground-dwelling | 25.699187 | 38.96580 | 35.54449 | 42.32197 |
Nectophrynoides laticeps | Anura | CR | Ground-dwelling | 22.724429 | 38.52751 | 35.18509 | 42.05629 |
Nectophrynoides laticeps | Anura | CR | Ground-dwelling | 21.858574 | 38.41020 | 35.12229 | 41.95159 |
Nectophrynoides laticeps | Anura | CR | Ground-dwelling | 24.911424 | 38.82380 | 35.48114 | 42.54931 |
Nectophrynoides minutus | Anura | EN | Ground-dwelling | 24.076140 | 38.71311 | 35.42753 | 42.28211 |
Nectophrynoides minutus | Anura | EN | Ground-dwelling | 23.433959 | 38.62887 | 35.37002 | 42.19377 |
Nectophrynoides minutus | Anura | EN | Ground-dwelling | 25.567374 | 38.90871 | 35.73711 | 42.59956 |
Nectophrynoides paulae | Anura | CR | Arboreal | 22.724429 | 38.35031 | 34.81293 | 41.69560 |
Nectophrynoides paulae | Anura | CR | Arboreal | 21.858574 | 38.23512 | 34.93253 | 41.74072 |
Nectophrynoides paulae | Anura | CR | Arboreal | 24.911424 | 38.64126 | 35.12177 | 42.13546 |
Nectophrynoides poyntoni | Anura | CR | Ground-dwelling | 21.407079 | 38.34373 | 35.25881 | 41.74033 |
Nectophrynoides poyntoni | Anura | CR | Ground-dwelling | 20.534143 | 38.22799 | 35.01902 | 41.50189 |
Nectophrynoides poyntoni | Anura | CR | Ground-dwelling | 23.114784 | 38.57015 | 35.30508 | 41.89816 |
Nectophrynoides pseudotornieri | Anura | CR | Ground-dwelling | 23.956874 | 38.67085 | 34.93698 | 41.82504 |
Nectophrynoides pseudotornieri | Anura | CR | Ground-dwelling | 23.296639 | 38.58421 | 34.87499 | 41.71553 |
Nectophrynoides pseudotornieri | Anura | CR | Ground-dwelling | 25.435562 | 38.86488 | 35.20454 | 42.15475 |
Nectophrynoides tornieri | Anura | LC | Ground-dwelling | 23.579017 | 38.60630 | 35.28236 | 42.15504 |
Nectophrynoides tornieri | Anura | LC | Ground-dwelling | 22.869950 | 38.51338 | 35.17149 | 42.00228 |
Nectophrynoides tornieri | Anura | LC | Ground-dwelling | 25.035159 | 38.79711 | 35.19324 | 42.08898 |
Nectophrynoides vestergaardi | Anura | EN | Ground-dwelling | 24.969464 | 38.82334 | 35.36744 | 42.04125 |
Nectophrynoides vestergaardi | Anura | EN | Ground-dwelling | 24.301742 | 38.73619 | 35.32968 | 41.95468 |
Nectophrynoides vestergaardi | Anura | EN | Ground-dwelling | 25.986178 | 38.95603 | 35.58205 | 42.31986 |
Nectophrynoides viviparus | Anura | LC | Ground-dwelling | 22.824760 | 38.49278 | 34.77043 | 41.60018 |
Nectophrynoides viviparus | Anura | LC | Ground-dwelling | 22.059754 | 38.39258 | 34.72855 | 41.51884 |
Nectophrynoides viviparus | Anura | LC | Ground-dwelling | 24.417852 | 38.70144 | 35.45979 | 42.35280 |
Nectophrynoides wendyae | Anura | CR | Ground-dwelling | 21.407079 | 38.32888 | 35.10469 | 41.64471 |
Nectophrynoides wendyae | Anura | CR | Ground-dwelling | 20.534143 | 38.21494 | 34.98590 | 41.48245 |
Nectophrynoides wendyae | Anura | CR | Ground-dwelling | 23.114784 | 38.55178 | 35.47013 | 42.05459 |
Schismaderma carens | Anura | LC | Ground-dwelling | 23.484047 | 38.54602 | 35.08119 | 41.84319 |
Schismaderma carens | Anura | LC | Ground-dwelling | 22.461967 | 38.41252 | 34.88650 | 41.59466 |
Schismaderma carens | Anura | LC | Ground-dwelling | 25.580482 | 38.81985 | 35.44451 | 42.37012 |
Bufotes balearicus | Anura | LC | Ground-dwelling | 22.704013 | 38.92938 | 36.02763 | 41.98910 |
Bufotes balearicus | Anura | LC | Ground-dwelling | 20.302823 | 38.61182 | 35.79832 | 41.73600 |
Bufotes balearicus | Anura | LC | Ground-dwelling | 26.115883 | 39.38061 | 36.30569 | 42.49101 |
Bufotes latastii | Anura | LC | Ground-dwelling | 11.686930 | 37.42133 | 34.58648 | 40.39728 |
Bufotes latastii | Anura | LC | Ground-dwelling | 8.922035 | 37.05294 | 34.21032 | 40.10614 |
Bufotes latastii | Anura | LC | Ground-dwelling | 15.050545 | 37.86948 | 35.09831 | 40.90402 |
Bufotes luristanicus | Anura | LC | Ground-dwelling | 23.571664 | 38.98486 | 35.80574 | 41.97681 |
Bufotes luristanicus | Anura | LC | Ground-dwelling | 21.950318 | 38.77102 | 35.99332 | 42.08979 |
Bufotes luristanicus | Anura | LC | Ground-dwelling | 26.007951 | 39.30619 | 36.18706 | 42.43892 |
Bufotes oblongus | Anura | LC | Ground-dwelling | 20.007132 | 38.50636 | 35.25895 | 41.26478 |
Bufotes oblongus | Anura | LC | Ground-dwelling | 18.726976 | 38.33837 | 35.41718 | 41.33711 |
Bufotes oblongus | Anura | LC | Ground-dwelling | 22.219849 | 38.79672 | 35.67078 | 41.74208 |
Bufotes pseudoraddei | Anura | LC | Ground-dwelling | 16.398198 | 38.02076 | 34.91242 | 40.83532 |
Bufotes pseudoraddei | Anura | LC | Ground-dwelling | 14.157880 | 37.72609 | 34.41193 | 40.44207 |
Bufotes pseudoraddei | Anura | LC | Ground-dwelling | 19.593271 | 38.44101 | 35.33947 | 41.32077 |
Bufotes surdus | Anura | LC | Ground-dwelling | 24.081525 | 38.98310 | 35.61669 | 41.94570 |
Bufotes surdus | Anura | LC | Ground-dwelling | 22.417750 | 38.76450 | 35.49481 | 41.77078 |
Bufotes surdus | Anura | LC | Ground-dwelling | 26.650077 | 39.32058 | 36.07148 | 42.58379 |
Bufotes turanensis | Anura | LC | Ground-dwelling | 20.488137 | 38.52633 | 35.38786 | 41.51169 |
Bufotes turanensis | Anura | LC | Ground-dwelling | 19.094219 | 38.34382 | 35.07515 | 41.17044 |
Bufotes turanensis | Anura | LC | Ground-dwelling | 22.661777 | 38.81094 | 35.50706 | 41.66645 |
Bufotes variabilis | Anura | DD | Ground-dwelling | 20.065655 | 38.55755 | 36.08552 | 41.51477 |
Bufotes variabilis | Anura | DD | Ground-dwelling | 17.716009 | 38.24496 | 35.82549 | 41.20133 |
Bufotes variabilis | Anura | DD | Ground-dwelling | 23.488288 | 39.01289 | 36.12601 | 41.78896 |
Bufotes zamdaensis | Anura | DD | Ground-dwelling | 10.733904 | 37.27654 | 34.12792 | 40.58524 |
Bufotes zamdaensis | Anura | DD | Ground-dwelling | 6.885555 | 36.76830 | 33.59320 | 40.08545 |
Bufotes zamdaensis | Anura | DD | Ground-dwelling | 12.867820 | 37.55836 | 34.74359 | 41.14072 |
Bufotes zugmayeri | Anura | LC | Ground-dwelling | 19.730635 | 38.43546 | 35.37943 | 41.78227 |
Bufotes zugmayeri | Anura | LC | Ground-dwelling | 17.928435 | 38.19807 | 35.10682 | 41.45615 |
Bufotes zugmayeri | Anura | LC | Ground-dwelling | 22.956501 | 38.86039 | 35.80510 | 42.28394 |
Ansonia albomaculata | Anura | LC | Ground-dwelling | 27.418306 | 38.99371 | 35.40384 | 42.23135 |
Ansonia albomaculata | Anura | LC | Ground-dwelling | 26.766164 | 38.90966 | 35.34912 | 42.17613 |
Ansonia albomaculata | Anura | LC | Ground-dwelling | 28.712143 | 39.16048 | 35.56319 | 42.43686 |
Ansonia torrentis | Anura | LC | Stream-dwelling | 27.002711 | 38.32357 | 35.13617 | 41.98750 |
Ansonia torrentis | Anura | LC | Stream-dwelling | 26.369992 | 38.24189 | 34.86963 | 41.69570 |
Ansonia torrentis | Anura | LC | Stream-dwelling | 28.309782 | 38.49231 | 35.13647 | 42.00775 |
Ansonia longidigita | Anura | LC | Ground-dwelling | 27.725703 | 39.04990 | 35.75822 | 42.71360 |
Ansonia longidigita | Anura | LC | Ground-dwelling | 27.092043 | 38.96716 | 35.69553 | 42.61153 |
Ansonia longidigita | Anura | LC | Ground-dwelling | 29.025838 | 39.21966 | 35.90789 | 43.00065 |
Ansonia endauensis | Anura | NT | Stream-dwelling | 28.514507 | 38.64305 | 34.98273 | 42.20630 |
Ansonia endauensis | Anura | NT | Stream-dwelling | 27.811479 | 38.54823 | 34.90818 | 42.10314 |
Ansonia endauensis | Anura | NT | Stream-dwelling | 29.886555 | 38.82810 | 34.95494 | 42.25899 |
Ansonia inthanon | Anura | LC | Stream-dwelling | 27.302950 | 38.42223 | 35.29042 | 41.80880 |
Ansonia inthanon | Anura | LC | Stream-dwelling | 26.394553 | 38.30022 | 35.21711 | 41.69835 |
Ansonia inthanon | Anura | LC | Stream-dwelling | 29.113469 | 38.66542 | 35.53557 | 42.17777 |
Ansonia kraensis | Anura | LC | Stream-dwelling | 28.042691 | 38.40151 | 34.86723 | 41.92816 |
Ansonia kraensis | Anura | LC | Stream-dwelling | 27.357106 | 38.31176 | 34.85626 | 41.85834 |
Ansonia kraensis | Anura | LC | Stream-dwelling | 29.822733 | 38.63454 | 35.03300 | 42.17935 |
Ansonia thinthinae | Anura | EN | Stream-dwelling | 27.493589 | 38.40668 | 34.72679 | 42.12609 |
Ansonia thinthinae | Anura | EN | Stream-dwelling | 26.574231 | 38.28333 | 35.00435 | 42.28491 |
Ansonia thinthinae | Anura | EN | Stream-dwelling | 29.198029 | 38.63535 | 34.89666 | 42.40629 |
Ansonia siamensis | Anura | EN | Stream-dwelling | 27.436291 | 38.33470 | 34.94632 | 41.85278 |
Ansonia siamensis | Anura | EN | Stream-dwelling | 26.821591 | 38.25487 | 34.87949 | 41.73468 |
Ansonia siamensis | Anura | EN | Stream-dwelling | 28.892412 | 38.52380 | 35.21967 | 42.17842 |
Ansonia fuliginea | Anura | LC | Ground-dwelling | 27.024307 | 38.96152 | 35.52374 | 42.56745 |
Ansonia fuliginea | Anura | LC | Ground-dwelling | 26.595031 | 38.90567 | 35.62244 | 42.65784 |
Ansonia fuliginea | Anura | LC | Ground-dwelling | 27.949343 | 39.08187 | 35.68783 | 42.82215 |
Ansonia mcgregori | Anura | LC | Stream-dwelling | 27.332163 | 38.47227 | 34.96692 | 42.09060 |
Ansonia mcgregori | Anura | LC | Stream-dwelling | 26.836342 | 38.40624 | 34.91340 | 42.01272 |
Ansonia mcgregori | Anura | LC | Stream-dwelling | 28.392437 | 38.61348 | 35.02638 | 42.20387 |
Ansonia muelleri | Anura | LC | Stream-dwelling | 27.498572 | 38.44220 | 34.94626 | 42.03118 |
Ansonia muelleri | Anura | LC | Stream-dwelling | 26.938824 | 38.36851 | 34.92405 | 41.94913 |
Ansonia muelleri | Anura | LC | Stream-dwelling | 28.644644 | 38.59307 | 35.15062 | 42.32560 |
Ansonia glandulosa | Anura | LC | Stream-dwelling | 28.454327 | 38.53334 | 35.08843 | 42.19580 |
Ansonia glandulosa | Anura | LC | Stream-dwelling | 27.830679 | 38.45187 | 35.02699 | 42.09358 |
Ansonia glandulosa | Anura | LC | Stream-dwelling | 29.604407 | 38.68357 | 35.42697 | 42.59285 |
Ansonia hanitschi | Anura | LC | Ground-dwelling | 27.414718 | 38.93503 | 35.14636 | 42.34401 |
Ansonia hanitschi | Anura | LC | Ground-dwelling | 26.798535 | 38.85542 | 35.06319 | 42.17992 |
Ansonia hanitschi | Anura | LC | Ground-dwelling | 28.664396 | 39.09647 | 35.26432 | 42.60591 |
Ansonia platysoma | Anura | LC | Stream-dwelling | 26.935514 | 38.28106 | 34.41161 | 41.81477 |
Ansonia platysoma | Anura | LC | Stream-dwelling | 26.316600 | 38.19883 | 34.42193 | 41.80365 |
Ansonia platysoma | Anura | LC | Stream-dwelling | 28.162487 | 38.44408 | 34.57157 | 42.06553 |
Ansonia minuta | Anura | LC | Stream-dwelling | 28.091134 | 38.48758 | 35.06065 | 42.00872 |
Ansonia minuta | Anura | LC | Stream-dwelling | 27.417910 | 38.39981 | 34.77687 | 41.70790 |
Ansonia minuta | Anura | LC | Stream-dwelling | 29.426900 | 38.66173 | 35.27480 | 42.31541 |
Ansonia spinulifer | Anura | LC | Ground-dwelling | 27.876153 | 38.97352 | 35.73726 | 42.59047 |
Ansonia spinulifer | Anura | LC | Ground-dwelling | 27.247089 | 38.88968 | 35.66498 | 42.48709 |
Ansonia spinulifer | Anura | LC | Ground-dwelling | 29.176900 | 39.14687 | 35.77527 | 42.74370 |
Ansonia jeetsukumarani | Anura | VU | Stream-dwelling | 27.462038 | 38.39465 | 35.06730 | 42.31012 |
Ansonia jeetsukumarani | Anura | VU | Stream-dwelling | 26.700857 | 38.29386 | 35.11138 | 42.31967 |
Ansonia jeetsukumarani | Anura | VU | Stream-dwelling | 28.886346 | 38.58325 | 35.10331 | 42.48120 |
Ansonia latidisca | Anura | EN | Arboreal | 27.811826 | 38.87064 | 35.32423 | 42.56151 |
Ansonia latidisca | Anura | EN | Arboreal | 27.298663 | 38.80338 | 35.29414 | 42.50349 |
Ansonia latidisca | Anura | EN | Arboreal | 28.868384 | 39.00913 | 35.42553 | 42.69655 |
Ansonia latiffi | Anura | NT | Stream-dwelling | 28.279112 | 38.51621 | 34.99535 | 42.15063 |
Ansonia latiffi | Anura | NT | Stream-dwelling | 27.612955 | 38.42961 | 34.94133 | 42.06984 |
Ansonia latiffi | Anura | NT | Stream-dwelling | 29.622301 | 38.69082 | 35.08385 | 42.34392 |
Ansonia latirostra | Anura | DD | Arboreal | 28.508630 | 39.07343 | 35.41317 | 42.42106 |
Ansonia latirostra | Anura | DD | Arboreal | 27.821987 | 38.98210 | 35.37254 | 42.30796 |
Ansonia latirostra | Anura | DD | Arboreal | 29.886072 | 39.25664 | 35.63273 | 42.75934 |
Ansonia tiomanica | Anura | LC | Stream-dwelling | 28.525468 | 38.49984 | 35.18667 | 42.12335 |
Ansonia tiomanica | Anura | LC | Stream-dwelling | 27.801205 | 38.40618 | 34.81218 | 41.73420 |
Ansonia tiomanica | Anura | LC | Stream-dwelling | 29.989784 | 38.68920 | 35.32479 | 42.28469 |
Ansonia malayana | Anura | LC | Stream-dwelling | 27.851774 | 38.57407 | 34.60355 | 41.91375 |
Ansonia malayana | Anura | LC | Stream-dwelling | 27.147180 | 38.48023 | 34.48780 | 41.76172 |
Ansonia malayana | Anura | LC | Stream-dwelling | 29.316337 | 38.76914 | 34.76296 | 42.18909 |
Pelophryne albotaeniata | Anura | VU | Arboreal | 27.636196 | 39.00134 | 35.52289 | 42.67394 |
Pelophryne albotaeniata | Anura | VU | Arboreal | 27.218140 | 38.94498 | 35.47249 | 42.57522 |
Pelophryne albotaeniata | Anura | VU | Arboreal | 28.579635 | 39.12853 | 35.66706 | 42.83266 |
Pelophryne api | Anura | LC | Ground-dwelling | 27.086462 | 38.99366 | 35.64028 | 42.45678 |
Pelophryne api | Anura | LC | Ground-dwelling | 26.556259 | 38.92441 | 35.55082 | 42.34869 |
Pelophryne api | Anura | LC | Ground-dwelling | 28.322808 | 39.15515 | 35.82285 | 42.70717 |
Pelophryne brevipes | Anura | LC | Arboreal | 27.567075 | 38.91104 | 35.57434 | 42.66712 |
Pelophryne brevipes | Anura | LC | Arboreal | 26.950022 | 38.82949 | 35.33608 | 42.38070 |
Pelophryne brevipes | Anura | LC | Arboreal | 28.795609 | 39.07340 | 35.71033 | 42.82623 |
Pelophryne guentheri | Anura | LC | Ground-dwelling | 27.337663 | 39.10338 | 35.56928 | 42.30922 |
Pelophryne guentheri | Anura | LC | Ground-dwelling | 26.703996 | 39.01995 | 35.60303 | 42.32401 |
Pelophryne guentheri | Anura | LC | Ground-dwelling | 28.532846 | 39.26075 | 35.88298 | 42.73775 |
Pelophryne lighti | Anura | LC | Arboreal | 27.369889 | 38.98173 | 35.51387 | 42.17803 |
Pelophryne lighti | Anura | LC | Arboreal | 26.909497 | 38.92106 | 35.48579 | 42.14586 |
Pelophryne lighti | Anura | LC | Arboreal | 28.330729 | 39.10834 | 35.68242 | 42.40119 |
Pelophryne linanitensis | Anura | CR | Ground-dwelling | 25.985565 | 38.92303 | 35.57467 | 42.14735 |
Pelophryne linanitensis | Anura | CR | Ground-dwelling | 25.023238 | 38.79634 | 35.54298 | 42.05593 |
Pelophryne linanitensis | Anura | CR | Ground-dwelling | 27.465236 | 39.11782 | 35.79220 | 42.49502 |
Pelophryne misera | Anura | LC | Ground-dwelling | 26.801121 | 38.96443 | 35.14779 | 42.27152 |
Pelophryne misera | Anura | LC | Ground-dwelling | 26.209815 | 38.88650 | 35.18149 | 42.23883 |
Pelophryne misera | Anura | LC | Ground-dwelling | 27.867897 | 39.10504 | 35.33389 | 42.57229 |
Pelophryne murudensis | Anura | CR | Ground-dwelling | 25.985565 | 38.96851 | 35.49004 | 42.50481 |
Pelophryne murudensis | Anura | CR | Ground-dwelling | 25.023238 | 38.83929 | 35.28209 | 42.19585 |
Pelophryne murudensis | Anura | CR | Ground-dwelling | 27.465236 | 39.16719 | 35.84376 | 42.97654 |
Pelophryne rhopophilia | Anura | VU | Ground-dwelling | 27.385057 | 39.07897 | 35.75937 | 42.31452 |
Pelophryne rhopophilia | Anura | VU | Ground-dwelling | 26.744047 | 38.99378 | 35.74185 | 42.27122 |
Pelophryne rhopophilia | Anura | VU | Ground-dwelling | 28.668715 | 39.24956 | 35.90899 | 42.57468 |
Pelophryne signata | Anura | LC | Ground-dwelling | 27.523100 | 39.03090 | 35.70966 | 42.61472 |
Pelophryne signata | Anura | LC | Ground-dwelling | 26.938135 | 38.95514 | 35.64147 | 42.52364 |
Pelophryne signata | Anura | LC | Ground-dwelling | 28.676945 | 39.18032 | 35.74381 | 42.76283 |
Ghatophryne ornata | Anura | EN | Stream-dwelling | 26.781316 | 38.30027 | 34.66875 | 41.59526 |
Ghatophryne ornata | Anura | EN | Stream-dwelling | 26.036271 | 38.20288 | 34.58739 | 41.48746 |
Ghatophryne ornata | Anura | EN | Stream-dwelling | 28.329553 | 38.50266 | 34.83783 | 41.87276 |
Ghatophryne rubigina | Anura | VU | Stream-dwelling | 27.548778 | 38.36310 | 34.76546 | 41.89669 |
Ghatophryne rubigina | Anura | VU | Stream-dwelling | 26.422586 | 38.21726 | 34.63282 | 41.68976 |
Ghatophryne rubigina | Anura | VU | Stream-dwelling | 29.780922 | 38.65216 | 34.94333 | 42.32511 |
Ingerophrynus biporcatus | Anura | LC | Ground-dwelling | 27.785064 | 39.13344 | 35.73805 | 42.74102 |
Ingerophrynus biporcatus | Anura | LC | Ground-dwelling | 27.190628 | 39.05427 | 35.68001 | 42.66558 |
Ingerophrynus biporcatus | Anura | LC | Ground-dwelling | 29.045335 | 39.30130 | 35.94237 | 43.06356 |
Ingerophrynus claviger | Anura | LC | Ground-dwelling | 27.318881 | 38.90418 | 35.62367 | 42.62892 |
Ingerophrynus claviger | Anura | LC | Ground-dwelling | 26.809860 | 38.83880 | 35.54085 | 42.51986 |
Ingerophrynus claviger | Anura | LC | Ground-dwelling | 28.268671 | 39.02616 | 35.76156 | 42.84080 |
Ingerophrynus divergens | Anura | LC | Ground-dwelling | 27.955190 | 39.08715 | 35.49504 | 42.69343 |
Ingerophrynus divergens | Anura | LC | Ground-dwelling | 27.327154 | 39.00442 | 35.39220 | 42.53783 |
Ingerophrynus divergens | Anura | LC | Ground-dwelling | 29.268710 | 39.26018 | 35.64727 | 42.95992 |
Ingerophrynus galeatus | Anura | LC | Ground-dwelling | 27.399347 | 39.05768 | 34.97220 | 42.46776 |
Ingerophrynus galeatus | Anura | LC | Ground-dwelling | 26.392352 | 38.92220 | 35.42551 | 42.86847 |
Ingerophrynus galeatus | Anura | LC | Ground-dwelling | 29.294549 | 39.31267 | 35.66647 | 43.28095 |
Ingerophrynus philippinicus | Anura | LC | Ground-dwelling | 27.754735 | 39.09059 | 35.66512 | 42.75722 |
Ingerophrynus philippinicus | Anura | LC | Ground-dwelling | 27.280231 | 39.02823 | 35.61095 | 42.68271 |
Ingerophrynus philippinicus | Anura | LC | Ground-dwelling | 28.758539 | 39.22252 | 35.74955 | 42.90725 |
Ingerophrynus gollum | Anura | EN | Stream-dwelling | 28.109933 | 38.48433 | 34.91699 | 42.29637 |
Ingerophrynus gollum | Anura | EN | Stream-dwelling | 27.442762 | 38.39541 | 34.79474 | 42.15381 |
Ingerophrynus gollum | Anura | EN | Stream-dwelling | 29.452359 | 38.66325 | 35.13144 | 42.59431 |
Ingerophrynus kumquat | Anura | EN | Ground-dwelling | 28.210706 | 39.10501 | 35.85547 | 42.99935 |
Ingerophrynus kumquat | Anura | EN | Ground-dwelling | 27.584449 | 39.02331 | 35.80485 | 42.86299 |
Ingerophrynus kumquat | Anura | EN | Ground-dwelling | 29.649269 | 39.29267 | 35.82888 | 43.09118 |
Ingerophrynus macrotis | Anura | LC | Ground-dwelling | 27.052312 | 39.00044 | 35.58939 | 42.46207 |
Ingerophrynus macrotis | Anura | LC | Ground-dwelling | 26.146455 | 38.88055 | 35.42977 | 42.22970 |
Ingerophrynus macrotis | Anura | LC | Ground-dwelling | 28.838698 | 39.23685 | 35.82248 | 42.84097 |
Ingerophrynus parvus | Anura | LC | Stream-dwelling | 28.322550 | 38.50843 | 34.30127 | 41.54620 |
Ingerophrynus parvus | Anura | LC | Stream-dwelling | 27.620510 | 38.41630 | 34.29468 | 41.49930 |
Ingerophrynus parvus | Anura | LC | Stream-dwelling | 29.801474 | 38.70250 | 34.46549 | 41.78834 |
Ingerophrynus quadriporcatus | Anura | LC | Ground-dwelling | 28.162664 | 39.08183 | 35.68615 | 42.73833 |
Ingerophrynus quadriporcatus | Anura | LC | Ground-dwelling | 27.553317 | 39.00293 | 35.58107 | 42.61310 |
Ingerophrynus quadriporcatus | Anura | LC | Ground-dwelling | 29.448586 | 39.24834 | 35.86148 | 42.92800 |
Ingerophrynus celebensis | Anura | LC | Ground-dwelling | 26.828017 | 38.92151 | 35.60969 | 42.47300 |
Ingerophrynus celebensis | Anura | LC | Ground-dwelling | 26.355440 | 38.85810 | 35.59934 | 42.47447 |
Ingerophrynus celebensis | Anura | LC | Ground-dwelling | 27.927707 | 39.06905 | 35.73364 | 42.60390 |
Bufo ailaoanus | Anura | EN | Ground-dwelling | 22.395776 | 38.09112 | 35.34661 | 41.25949 |
Bufo ailaoanus | Anura | EN | Ground-dwelling | 21.429350 | 37.96248 | 35.15611 | 41.01876 |
Bufo ailaoanus | Anura | EN | Ground-dwelling | 24.505404 | 38.37193 | 35.51597 | 41.50390 |
Bufo aspinius | Anura | EN | Ground-dwelling | 19.409389 | 37.56690 | 34.59868 | 40.55245 |
Bufo aspinius | Anura | EN | Ground-dwelling | 18.233419 | 37.41115 | 34.37175 | 40.30295 |
Bufo aspinius | Anura | EN | Ground-dwelling | 21.549212 | 37.85030 | 34.87176 | 40.91796 |
Bufo cryptotympanicus | Anura | LC | Ground-dwelling | 26.782508 | 38.64313 | 35.35221 | 41.65153 |
Bufo cryptotympanicus | Anura | LC | Ground-dwelling | 25.612648 | 38.48719 | 35.19223 | 41.44486 |
Bufo cryptotympanicus | Anura | LC | Ground-dwelling | 29.029103 | 38.94260 | 35.28452 | 41.78972 |
Bufo tuberculatus | Anura | NT | Ground-dwelling | 14.683533 | 37.10034 | 35.08541 | 39.42820 |
Bufo tuberculatus | Anura | NT | Ground-dwelling | 13.042082 | 36.88164 | 34.90529 | 39.24274 |
Bufo tuberculatus | Anura | NT | Ground-dwelling | 17.154584 | 37.42958 | 35.24904 | 39.58429 |
Bufo eichwaldi | Anura | VU | Ground-dwelling | 19.615826 | 37.69034 | 35.06667 | 40.96014 |
Bufo eichwaldi | Anura | VU | Ground-dwelling | 17.843222 | 37.45739 | 34.59825 | 40.41235 |
Bufo eichwaldi | Anura | VU | Ground-dwelling | 21.805016 | 37.97802 | 35.21289 | 41.11838 |
Bufo japonicus | Anura | LC | Ground-dwelling | 24.587237 | 38.30110 | 35.46620 | 41.44767 |
Bufo japonicus | Anura | LC | Ground-dwelling | 21.831463 | 37.93411 | 34.97534 | 40.87649 |
Bufo japonicus | Anura | LC | Ground-dwelling | 27.331172 | 38.66651 | 35.71216 | 41.81554 |
Bufo torrenticola | Anura | LC | Ground-dwelling | 24.914009 | 38.31112 | 35.53825 | 41.48029 |
Bufo torrenticola | Anura | LC | Ground-dwelling | 22.210472 | 37.95171 | 35.15091 | 40.92949 |
Bufo torrenticola | Anura | LC | Ground-dwelling | 27.642825 | 38.67390 | 35.70121 | 41.83778 |
Bufo pageoti | Anura | LC | Ground-dwelling | 23.716993 | 38.17925 | 35.15669 | 40.99612 |
Bufo pageoti | Anura | LC | Ground-dwelling | 22.621618 | 38.03311 | 35.05282 | 40.81259 |
Bufo pageoti | Anura | LC | Ground-dwelling | 25.692722 | 38.44284 | 35.27894 | 41.29212 |
Bufo stejnegeri | Anura | LC | Ground-dwelling | 22.263247 | 38.00233 | 34.83672 | 40.65035 |
Bufo stejnegeri | Anura | LC | Ground-dwelling | 17.891938 | 37.41900 | 34.28718 | 39.91617 |
Bufo stejnegeri | Anura | LC | Ground-dwelling | 25.612938 | 38.44933 | 35.30642 | 41.23007 |
Bufo verrucosissimus | Anura | NT | Ground-dwelling | 19.902773 | 37.68591 | 34.65946 | 40.38468 |
Bufo verrucosissimus | Anura | NT | Ground-dwelling | 17.302718 | 37.34796 | 34.48111 | 40.17009 |
Bufo verrucosissimus | Anura | NT | Ground-dwelling | 22.934507 | 38.07995 | 35.11665 | 40.97537 |
Strauchbufo raddei | Anura | LC | Ground-dwelling | 18.457993 | 37.74642 | 34.63826 | 41.39467 |
Strauchbufo raddei | Anura | LC | Ground-dwelling | 15.352836 | 37.34045 | 33.88518 | 40.66890 |
Strauchbufo raddei | Anura | LC | Ground-dwelling | 22.454686 | 38.26895 | 34.83477 | 41.66003 |
Didynamipus sjostedti | Anura | VU | Ground-dwelling | 26.914991 | 38.90798 | 35.51335 | 42.33115 |
Didynamipus sjostedti | Anura | VU | Ground-dwelling | 26.352934 | 38.83393 | 35.51707 | 42.29164 |
Didynamipus sjostedti | Anura | VU | Ground-dwelling | 28.180028 | 39.07464 | 35.68784 | 42.54072 |
Nimbaphrynoides occidentalis | Anura | CR | Ground-dwelling | 27.417573 | 38.94645 | 35.35905 | 42.51424 |
Nimbaphrynoides occidentalis | Anura | CR | Ground-dwelling | 26.699780 | 38.85188 | 35.47545 | 42.60532 |
Nimbaphrynoides occidentalis | Anura | CR | Ground-dwelling | 28.789297 | 39.12717 | 35.53946 | 42.75647 |
Nectophryne afra | Anura | LC | Ground-dwelling | 27.110622 | 38.86122 | 35.54626 | 42.29153 |
Nectophryne afra | Anura | LC | Ground-dwelling | 26.408558 | 38.76890 | 35.48728 | 42.15829 |
Nectophryne afra | Anura | LC | Ground-dwelling | 28.631399 | 39.06119 | 35.71627 | 42.60284 |
Nectophryne batesii | Anura | LC | Ground-dwelling | 27.082706 | 38.77409 | 35.41968 | 42.02434 |
Nectophryne batesii | Anura | LC | Ground-dwelling | 26.358747 | 38.67896 | 35.27541 | 41.87001 |
Nectophryne batesii | Anura | LC | Ground-dwelling | 28.641070 | 38.97885 | 35.57374 | 42.23623 |
Werneria bambutensis | Anura | CR | Stream-dwelling | 25.936864 | 38.18617 | 34.39566 | 41.64165 |
Werneria bambutensis | Anura | CR | Stream-dwelling | 25.218877 | 38.09231 | 34.50982 | 41.73864 |
Werneria bambutensis | Anura | CR | Stream-dwelling | 27.405161 | 38.37812 | 34.54967 | 41.81505 |
Werneria iboundji | Anura | CR | Stream-dwelling | 27.729088 | 38.38116 | 35.13822 | 42.11934 |
Werneria iboundji | Anura | CR | Stream-dwelling | 26.782051 | 38.25587 | 34.66071 | 41.55961 |
Werneria iboundji | Anura | CR | Stream-dwelling | 29.517435 | 38.61775 | 34.91318 | 42.01064 |
Werneria mertensiana | Anura | CR | Stream-dwelling | 26.586488 | 38.22429 | 34.90187 | 41.35423 |
Werneria mertensiana | Anura | CR | Stream-dwelling | 26.001122 | 38.14639 | 34.84580 | 41.26804 |
Werneria mertensiana | Anura | CR | Stream-dwelling | 27.970296 | 38.40844 | 35.00020 | 41.56609 |
Werneria tandyi | Anura | CR | Stream-dwelling | 26.871381 | 38.19742 | 34.82282 | 41.79363 |
Werneria tandyi | Anura | CR | Stream-dwelling | 26.335541 | 38.12812 | 34.80054 | 41.70993 |
Werneria tandyi | Anura | CR | Stream-dwelling | 28.169295 | 38.36527 | 35.00773 | 42.10631 |
Werneria preussi | Anura | EN | Stream-dwelling | 26.939038 | 38.34200 | 34.89716 | 42.43526 |
Werneria preussi | Anura | EN | Stream-dwelling | 26.407567 | 38.27148 | 34.78520 | 42.31005 |
Werneria preussi | Anura | EN | Stream-dwelling | 28.227584 | 38.51298 | 35.01945 | 42.62531 |
Werneria submontana | Anura | EN | Stream-dwelling | 26.871381 | 38.16505 | 34.60730 | 41.78985 |
Werneria submontana | Anura | EN | Stream-dwelling | 26.335541 | 38.09637 | 34.63078 | 41.73080 |
Werneria submontana | Anura | EN | Stream-dwelling | 28.169295 | 38.33141 | 34.42980 | 41.70878 |
Wolterstorffina chirioi | Anura | CR | Ground-dwelling | 25.529022 | 38.73284 | 35.35205 | 42.34434 |
Wolterstorffina chirioi | Anura | CR | Ground-dwelling | 24.726769 | 38.62669 | 35.25807 | 42.20422 |
Wolterstorffina chirioi | Anura | CR | Ground-dwelling | 27.197252 | 38.95357 | 35.42230 | 42.55476 |
Wolterstorffina mirei | Anura | EN | Ground-dwelling | 25.503435 | 38.70911 | 35.16160 | 42.05988 |
Wolterstorffina mirei | Anura | EN | Ground-dwelling | 24.696557 | 38.60277 | 35.13566 | 41.99895 |
Wolterstorffina mirei | Anura | EN | Ground-dwelling | 27.052238 | 38.91322 | 35.24167 | 42.23534 |
Wolterstorffina parvipalmata | Anura | CR | Stream-dwelling | 26.590947 | 38.14682 | 34.76535 | 41.59851 |
Wolterstorffina parvipalmata | Anura | CR | Stream-dwelling | 25.990155 | 38.06885 | 34.69799 | 41.51911 |
Wolterstorffina parvipalmata | Anura | CR | Stream-dwelling | 27.931386 | 38.32079 | 35.02828 | 41.98958 |
Leptophryne borbonica | Anura | LC | Ground-dwelling | 28.003333 | 38.99321 | 35.38925 | 42.11705 |
Leptophryne borbonica | Anura | LC | Ground-dwelling | 27.352050 | 38.90767 | 35.30077 | 41.97186 |
Leptophryne borbonica | Anura | LC | Ground-dwelling | 29.361238 | 39.17153 | 35.53951 | 42.32828 |
Leptophryne cruentata | Anura | CR | Stream-dwelling | 28.268583 | 38.40858 | 34.77078 | 41.78101 |
Leptophryne cruentata | Anura | CR | Stream-dwelling | 27.422313 | 38.29659 | 34.70828 | 41.68361 |
Leptophryne cruentata | Anura | CR | Stream-dwelling | 30.172717 | 38.66057 | 34.99740 | 42.12989 |
Pedostibes kempi | Anura | DD | Arboreal | 25.381128 | 38.57457 | 34.98897 | 41.74093 |
Pedostibes kempi | Anura | DD | Arboreal | 24.427616 | 38.44881 | 34.88092 | 41.58609 |
Pedostibes kempi | Anura | DD | Arboreal | 26.997123 | 38.78772 | 35.39478 | 42.23528 |
Altiphrynoides malcolmi | Anura | EN | Ground-dwelling | 19.551980 | 37.71234 | 33.78180 | 42.03098 |
Altiphrynoides malcolmi | Anura | EN | Ground-dwelling | 18.623349 | 37.58948 | 33.71380 | 41.89287 |
Altiphrynoides malcolmi | Anura | EN | Ground-dwelling | 20.878203 | 37.88781 | 33.67483 | 41.92139 |
Amazophrynella bokermanni | Anura | LC | Ground-dwelling | 27.730366 | 38.91634 | 34.92231 | 43.14131 |
Amazophrynella bokermanni | Anura | LC | Ground-dwelling | 27.089797 | 38.83206 | 35.13000 | 43.34418 |
Amazophrynella bokermanni | Anura | LC | Ground-dwelling | 29.328561 | 39.12663 | 35.21556 | 43.47454 |
Amazophrynella minuta | Anura | LC | Ground-dwelling | 27.352262 | 38.76968 | 35.25276 | 43.05485 |
Amazophrynella minuta | Anura | LC | Ground-dwelling | 26.630485 | 38.67332 | 35.09158 | 42.86209 |
Amazophrynella minuta | Anura | LC | Ground-dwelling | 28.887303 | 38.97464 | 35.36240 | 43.20807 |
Dendrophryniscus berthalutzae | Anura | LC | Ground-dwelling | 24.554178 | 38.44975 | 34.51141 | 42.60495 |
Dendrophryniscus berthalutzae | Anura | LC | Ground-dwelling | 22.850397 | 38.22806 | 34.31622 | 42.33922 |
Dendrophryniscus berthalutzae | Anura | LC | Ground-dwelling | 27.141045 | 38.78636 | 34.75871 | 42.90933 |
Dendrophryniscus krausae | Anura | DD | Ground-dwelling | 24.426399 | 38.47816 | 34.40467 | 42.46164 |
Dendrophryniscus krausae | Anura | DD | Ground-dwelling | 22.464546 | 38.22163 | 33.85797 | 41.79425 |
Dendrophryniscus krausae | Anura | DD | Ground-dwelling | 27.134302 | 38.83225 | 34.78822 | 42.96584 |
Dendrophryniscus leucomystax | Anura | LC | Ground-dwelling | 25.640890 | 38.56686 | 34.55958 | 42.83037 |
Dendrophryniscus leucomystax | Anura | LC | Ground-dwelling | 24.196548 | 38.37816 | 34.46123 | 42.65187 |
Dendrophryniscus leucomystax | Anura | LC | Ground-dwelling | 28.000857 | 38.87519 | 35.03012 | 43.25942 |
Dendrophryniscus brevipollicatus | Anura | LC | Ground-dwelling | 25.473399 | 38.60798 | 34.55906 | 42.89380 |
Dendrophryniscus brevipollicatus | Anura | LC | Ground-dwelling | 24.362228 | 38.46025 | 34.68421 | 42.98358 |
Dendrophryniscus brevipollicatus | Anura | LC | Ground-dwelling | 27.359660 | 38.85878 | 34.79278 | 43.19201 |
Dendrophryniscus carvalhoi | Anura | EN | Ground-dwelling | 25.507727 | 38.60140 | 34.66692 | 42.91618 |
Dendrophryniscus carvalhoi | Anura | EN | Ground-dwelling | 24.733105 | 38.50134 | 34.56817 | 42.78475 |
Dendrophryniscus carvalhoi | Anura | EN | Ground-dwelling | 27.100258 | 38.80711 | 34.90634 | 43.18640 |
Dendrophryniscus proboscideus | Anura | DD | Ground-dwelling | 25.273659 | 38.62149 | 34.60082 | 42.63165 |
Dendrophryniscus proboscideus | Anura | DD | Ground-dwelling | 24.417339 | 38.50899 | 34.47079 | 42.51537 |
Dendrophryniscus proboscideus | Anura | DD | Ground-dwelling | 27.049251 | 38.85477 | 34.82234 | 42.97298 |
Dendrophryniscus stawiarskyi | Anura | DD | Ground-dwelling | 24.851961 | 38.50960 | 34.73682 | 42.76689 |
Dendrophryniscus stawiarskyi | Anura | DD | Ground-dwelling | 23.130755 | 38.28083 | 34.38230 | 42.42662 |
Dendrophryniscus stawiarskyi | Anura | DD | Ground-dwelling | 27.596437 | 38.87438 | 34.93766 | 43.20302 |
Vandijkophrynus amatolicus | Anura | CR | Ground-dwelling | 20.359510 | 37.84154 | 34.14911 | 41.85229 |
Vandijkophrynus amatolicus | Anura | CR | Ground-dwelling | 18.811550 | 37.63581 | 33.73085 | 41.39675 |
Vandijkophrynus amatolicus | Anura | CR | Ground-dwelling | 22.663297 | 38.14773 | 34.27229 | 42.00519 |
Vandijkophrynus inyangae | Anura | VU | Ground-dwelling | 23.458157 | 38.27967 | 34.66341 | 42.56253 |
Vandijkophrynus inyangae | Anura | VU | Ground-dwelling | 22.128710 | 38.10398 | 34.45564 | 42.35530 |
Vandijkophrynus inyangae | Anura | VU | Ground-dwelling | 25.923501 | 38.60546 | 34.70300 | 42.73015 |
Vandijkophrynus angusticeps | Anura | LC | Ground-dwelling | 20.619652 | 37.97101 | 34.04325 | 41.96465 |
Vandijkophrynus angusticeps | Anura | LC | Ground-dwelling | 19.195990 | 37.78359 | 33.92904 | 41.80494 |
Vandijkophrynus angusticeps | Anura | LC | Ground-dwelling | 23.273232 | 38.32035 | 34.20671 | 42.22171 |
Vandijkophrynus gariepensis | Anura | LC | Ground-dwelling | 20.641087 | 37.93540 | 33.69917 | 41.52637 |
Vandijkophrynus gariepensis | Anura | LC | Ground-dwelling | 19.170112 | 37.73978 | 33.56536 | 41.35641 |
Vandijkophrynus gariepensis | Anura | LC | Ground-dwelling | 23.280547 | 38.28640 | 33.87560 | 41.89108 |
Vandijkophrynus robinsoni | Anura | LC | Ground-dwelling | 19.863346 | 37.82830 | 33.97794 | 42.30848 |
Vandijkophrynus robinsoni | Anura | LC | Ground-dwelling | 18.641401 | 37.66599 | 33.83266 | 42.17242 |
Vandijkophrynus robinsoni | Anura | LC | Ground-dwelling | 22.660848 | 38.19990 | 34.38324 | 42.69970 |
Anaxyrus hemiophrys | Anura | LC | Ground-dwelling | 18.452838 | 38.37359 | 36.41699 | 40.43538 |
Anaxyrus hemiophrys | Anura | LC | Ground-dwelling | 14.992718 | 37.93521 | 36.04201 | 39.92652 |
Anaxyrus hemiophrys | Anura | LC | Ground-dwelling | 23.226613 | 38.97842 | 36.90101 | 41.23506 |
Anaxyrus houstonensis | Anura | CR | Ground-dwelling | 26.847150 | 39.42299 | 37.03690 | 41.70282 |
Anaxyrus houstonensis | Anura | CR | Ground-dwelling | 25.700879 | 39.27966 | 36.96871 | 41.50759 |
Anaxyrus houstonensis | Anura | CR | Ground-dwelling | 29.219348 | 39.71961 | 37.27230 | 42.17292 |
Anaxyrus microscaphus | Anura | LC | Ground-dwelling | 20.201250 | 38.41153 | 35.93121 | 40.56093 |
Anaxyrus microscaphus | Anura | LC | Ground-dwelling | 18.077707 | 38.14961 | 35.73635 | 40.26698 |
Anaxyrus microscaphus | Anura | LC | Ground-dwelling | 23.433226 | 38.81015 | 36.17575 | 41.00816 |
Anaxyrus californicus | Anura | EN | Ground-dwelling | 21.079250 | 38.58420 | 36.03843 | 40.94409 |
Anaxyrus californicus | Anura | EN | Ground-dwelling | 19.542315 | 38.39416 | 35.82325 | 40.67692 |
Anaxyrus californicus | Anura | EN | Ground-dwelling | 23.599758 | 38.89586 | 36.45020 | 41.49882 |
Anaxyrus debilis | Anura | LC | Fossorial | 23.313032 | 40.23432 | 37.90163 | 42.87096 |
Anaxyrus debilis | Anura | LC | Fossorial | 21.734852 | 40.03843 | 37.51698 | 42.36153 |
Anaxyrus debilis | Anura | LC | Fossorial | 25.869823 | 40.55167 | 38.19877 | 43.31511 |
Anaxyrus kelloggi | Anura | LC | Ground-dwelling | 25.014850 | 39.09089 | 36.20520 | 41.86466 |
Anaxyrus kelloggi | Anura | LC | Ground-dwelling | 23.483398 | 38.89815 | 36.14213 | 41.70732 |
Anaxyrus kelloggi | Anura | LC | Ground-dwelling | 27.418042 | 39.39334 | 36.39104 | 42.18329 |
Anaxyrus mexicanus | Anura | LC | Ground-dwelling | 23.648498 | 38.93983 | 36.32242 | 41.88475 |
Anaxyrus mexicanus | Anura | LC | Ground-dwelling | 21.745288 | 38.70127 | 36.15200 | 41.55677 |
Anaxyrus mexicanus | Anura | LC | Ground-dwelling | 26.520420 | 39.29983 | 36.43440 | 42.15361 |
Anaxyrus quercicus | Anura | LC | Ground-dwelling | 26.912737 | 39.33596 | 36.30668 | 42.10533 |
Anaxyrus quercicus | Anura | LC | Ground-dwelling | 24.476380 | 39.03333 | 36.18648 | 41.87071 |
Anaxyrus quercicus | Anura | LC | Ground-dwelling | 29.656229 | 39.67674 | 36.66286 | 42.71291 |
Anaxyrus speciosus | Anura | LC | Fossorial | 24.159347 | 39.97414 | 37.29849 | 42.86546 |
Anaxyrus speciosus | Anura | LC | Fossorial | 22.767328 | 39.80021 | 37.06502 | 42.62763 |
Anaxyrus speciosus | Anura | LC | Fossorial | 26.490125 | 40.26538 | 37.47041 | 43.20018 |
Incilius occidentalis | Anura | LC | Ground-dwelling | 23.987227 | 39.56393 | 36.92611 | 42.46688 |
Incilius occidentalis | Anura | LC | Ground-dwelling | 22.837343 | 39.42028 | 36.67254 | 42.14270 |
Incilius occidentalis | Anura | LC | Ground-dwelling | 26.093001 | 39.82700 | 37.06706 | 42.70017 |
Incilius aucoinae | Anura | LC | Ground-dwelling | 25.362599 | 39.68392 | 36.57393 | 42.57831 |
Incilius aucoinae | Anura | LC | Ground-dwelling | 24.634074 | 39.59024 | 36.47233 | 42.44938 |
Incilius aucoinae | Anura | LC | Ground-dwelling | 26.672877 | 39.85239 | 36.57038 | 42.64482 |
Incilius melanochlorus | Anura | LC | Ground-dwelling | 26.242402 | 39.70621 | 36.69209 | 42.74267 |
Incilius melanochlorus | Anura | LC | Ground-dwelling | 25.504803 | 39.61318 | 36.70428 | 42.66990 |
Incilius melanochlorus | Anura | LC | Ground-dwelling | 27.712240 | 39.89159 | 36.87566 | 43.07139 |
Incilius campbelli | Anura | LC | Stream-dwelling | 26.128522 | 39.07660 | 35.80569 | 42.51357 |
Incilius campbelli | Anura | LC | Stream-dwelling | 25.265890 | 38.96877 | 35.66157 | 42.29239 |
Incilius campbelli | Anura | LC | Stream-dwelling | 27.952521 | 39.30462 | 35.81401 | 42.70163 |
Incilius leucomyos | Anura | NT | Ground-dwelling | 25.917576 | 39.70711 | 36.67132 | 42.71292 |
Incilius leucomyos | Anura | NT | Ground-dwelling | 25.079984 | 39.60206 | 36.58248 | 42.59992 |
Incilius leucomyos | Anura | NT | Ground-dwelling | 27.564304 | 39.91365 | 36.82193 | 42.95703 |
Incilius macrocristatus | Anura | NT | Ground-dwelling | 27.501277 | 39.90426 | 36.65623 | 43.02968 |
Incilius macrocristatus | Anura | NT | Ground-dwelling | 26.539788 | 39.78168 | 36.60481 | 42.94415 |
Incilius macrocristatus | Anura | NT | Ground-dwelling | 29.362059 | 40.14150 | 36.76062 | 43.26537 |
Incilius tutelarius | Anura | VU | Stream-dwelling | 26.063509 | 39.09796 | 35.90168 | 41.98152 |
Incilius tutelarius | Anura | VU | Stream-dwelling | 25.061473 | 38.97100 | 35.75383 | 41.85321 |
Incilius tutelarius | Anura | VU | Stream-dwelling | 28.180103 | 39.36612 | 36.17311 | 42.28457 |
Incilius cristatus | Anura | EN | Ground-dwelling | 24.221617 | 39.45190 | 36.39538 | 42.60375 |
Incilius cristatus | Anura | EN | Ground-dwelling | 23.185423 | 39.32198 | 36.23129 | 42.37527 |
Incilius cristatus | Anura | EN | Ground-dwelling | 26.534397 | 39.74189 | 36.66588 | 43.03827 |
Incilius perplexus | Anura | LC | Ground-dwelling | 25.009764 | 39.62457 | 36.84327 | 42.47946 |
Incilius perplexus | Anura | LC | Ground-dwelling | 24.026170 | 39.49854 | 36.78920 | 42.39535 |
Incilius perplexus | Anura | LC | Ground-dwelling | 26.752376 | 39.84786 | 36.98459 | 42.78073 |
Incilius cavifrons | Anura | EN | Stream-dwelling | 26.976054 | 39.16187 | 35.79718 | 42.22026 |
Incilius cavifrons | Anura | EN | Stream-dwelling | 25.987890 | 39.03590 | 35.67322 | 42.06246 |
Incilius cavifrons | Anura | EN | Stream-dwelling | 29.057037 | 39.42716 | 35.94612 | 42.53260 |
Incilius spiculatus | Anura | EN | Stream-dwelling | 22.187059 | 38.62483 | 35.00908 | 41.45447 |
Incilius spiculatus | Anura | EN | Stream-dwelling | 20.787577 | 38.44572 | 35.04859 | 41.40209 |
Incilius spiculatus | Anura | EN | Stream-dwelling | 25.070986 | 38.99391 | 36.00645 | 42.56682 |
Incilius chompipe | Anura | EN | Ground-dwelling | 24.025703 | 39.47657 | 36.42785 | 42.33935 |
Incilius chompipe | Anura | EN | Ground-dwelling | 23.191250 | 39.37171 | 36.39442 | 42.25578 |
Incilius chompipe | Anura | EN | Ground-dwelling | 25.507747 | 39.66281 | 36.80607 | 42.81391 |
Incilius coniferus | Anura | LC | Ground-dwelling | 26.088055 | 39.75456 | 36.58965 | 42.61302 |
Incilius coniferus | Anura | LC | Ground-dwelling | 25.347185 | 39.66131 | 36.51894 | 42.49475 |
Incilius coniferus | Anura | LC | Ground-dwelling | 27.514381 | 39.93409 | 36.89006 | 43.04032 |
Incilius coccifer | Anura | LC | Ground-dwelling | 26.494149 | 39.82588 | 36.47492 | 42.94743 |
Incilius coccifer | Anura | LC | Ground-dwelling | 25.668301 | 39.72142 | 36.27461 | 42.68268 |
Incilius coccifer | Anura | LC | Ground-dwelling | 28.258333 | 40.04903 | 36.71093 | 43.32933 |
Incilius cycladen | Anura | VU | Ground-dwelling | 25.060905 | 39.67208 | 36.86268 | 42.82881 |
Incilius cycladen | Anura | VU | Ground-dwelling | 23.994974 | 39.53559 | 36.51226 | 42.42382 |
Incilius cycladen | Anura | VU | Ground-dwelling | 26.928628 | 39.91123 | 37.11797 | 43.22062 |
Incilius signifer | Anura | LC | Ground-dwelling | 26.879933 | 39.85651 | 36.94967 | 43.11389 |
Incilius signifer | Anura | LC | Ground-dwelling | 26.296543 | 39.78347 | 36.88418 | 43.05995 |
Incilius signifer | Anura | LC | Ground-dwelling | 28.031257 | 40.00064 | 37.04085 | 43.28718 |
Incilius porteri | Anura | LC | Ground-dwelling | 25.744456 | 39.71193 | 36.68231 | 42.85453 |
Incilius porteri | Anura | LC | Ground-dwelling | 24.699963 | 39.57809 | 36.63827 | 42.78678 |
Incilius porteri | Anura | LC | Ground-dwelling | 27.875131 | 39.98495 | 36.90759 | 43.31851 |
Incilius ibarrai | Anura | LC | Ground-dwelling | 25.251816 | 39.65160 | 36.47829 | 42.33514 |
Incilius ibarrai | Anura | LC | Ground-dwelling | 24.210518 | 39.52038 | 36.43357 | 42.22998 |
Incilius ibarrai | Anura | LC | Ground-dwelling | 27.378039 | 39.91954 | 36.55402 | 42.55575 |
Incilius pisinnus | Anura | EN | Ground-dwelling | 24.273360 | 39.52035 | 36.57358 | 42.36498 |
Incilius pisinnus | Anura | EN | Ground-dwelling | 23.336191 | 39.40182 | 36.71733 | 42.45111 |
Incilius pisinnus | Anura | EN | Ground-dwelling | 25.826783 | 39.71681 | 36.85878 | 42.71174 |
Incilius epioticus | Anura | VU | Ground-dwelling | 24.247729 | 39.46614 | 36.41013 | 42.62333 |
Incilius epioticus | Anura | VU | Ground-dwelling | 23.486497 | 39.36925 | 36.31400 | 42.47839 |
Incilius epioticus | Anura | VU | Ground-dwelling | 25.406800 | 39.61367 | 36.54563 | 42.84599 |
Incilius gemmifer | Anura | EN | Ground-dwelling | 25.815355 | 39.63376 | 36.63152 | 42.57220 |
Incilius gemmifer | Anura | EN | Ground-dwelling | 24.824180 | 39.50735 | 36.46865 | 42.35782 |
Incilius gemmifer | Anura | EN | Ground-dwelling | 27.763579 | 39.88224 | 36.77464 | 42.81455 |
Incilius guanacaste | Anura | EN | Ground-dwelling | 26.434550 | 39.76841 | 36.69518 | 42.99328 |
Incilius guanacaste | Anura | EN | Ground-dwelling | 25.923240 | 39.70504 | 36.69249 | 42.95457 |
Incilius guanacaste | Anura | EN | Ground-dwelling | 27.889612 | 39.94875 | 36.87043 | 43.20675 |
Incilius holdridgei | Anura | CR | Ground-dwelling | 27.435694 | 39.85137 | 36.65976 | 43.02751 |
Incilius holdridgei | Anura | CR | Ground-dwelling | 26.744760 | 39.76512 | 36.56557 | 42.93967 |
Incilius holdridgei | Anura | CR | Ground-dwelling | 29.013624 | 40.04834 | 36.83050 | 43.24804 |
Incilius luetkenii | Anura | LC | Ground-dwelling | 26.554609 | 39.89682 | 37.25902 | 42.85941 |
Incilius luetkenii | Anura | LC | Ground-dwelling | 25.720962 | 39.79169 | 37.14468 | 42.65319 |
Incilius luetkenii | Anura | LC | Ground-dwelling | 28.432880 | 40.13367 | 37.35729 | 43.13514 |
Incilius nebulifer | Anura | LC | Ground-dwelling | 25.605637 | 39.63598 | 36.35473 | 42.55208 |
Incilius nebulifer | Anura | LC | Ground-dwelling | 24.450329 | 39.49341 | 36.29089 | 42.40983 |
Incilius nebulifer | Anura | LC | Ground-dwelling | 27.769772 | 39.90304 | 36.55257 | 42.89291 |
Incilius valliceps | Anura | LC | Ground-dwelling | 26.754601 | 39.80447 | 36.81559 | 42.82021 |
Incilius valliceps | Anura | LC | Ground-dwelling | 25.923092 | 39.69904 | 36.82321 | 42.73321 |
Incilius valliceps | Anura | LC | Ground-dwelling | 28.510144 | 40.02706 | 36.83917 | 42.98843 |
Incilius tacanensis | Anura | EN | Stream-dwelling | 25.222340 | 39.01670 | 36.05554 | 42.45602 |
Incilius tacanensis | Anura | EN | Stream-dwelling | 24.309797 | 38.90139 | 35.98203 | 42.36528 |
Incilius tacanensis | Anura | EN | Stream-dwelling | 27.326458 | 39.28258 | 36.20365 | 42.71187 |
Incilius bocourti | Anura | LC | Ground-dwelling | 25.379063 | 39.48882 | 36.26442 | 42.62926 |
Incilius bocourti | Anura | LC | Ground-dwelling | 24.367138 | 39.35989 | 36.30863 | 42.62106 |
Incilius bocourti | Anura | LC | Ground-dwelling | 27.419442 | 39.74879 | 36.53989 | 43.09426 |
Rhinella abei | Anura | LC | Ground-dwelling | 24.373733 | 39.78804 | 37.11826 | 42.14266 |
Rhinella abei | Anura | LC | Ground-dwelling | 22.634890 | 39.57067 | 37.32516 | 42.18382 |
Rhinella abei | Anura | LC | Ground-dwelling | 26.942582 | 40.10916 | 37.55187 | 42.80347 |
Rhinella pombali | Anura | LC | Ground-dwelling | 25.457101 | 39.93531 | 37.32631 | 42.46690 |
Rhinella pombali | Anura | LC | Ground-dwelling | 24.257156 | 39.78430 | 37.20652 | 42.24656 |
Rhinella pombali | Anura | LC | Ground-dwelling | 27.888390 | 40.24128 | 37.45312 | 42.75847 |
Rhinella achalensis | Anura | EN | Ground-dwelling | 22.398275 | 39.37341 | 35.69006 | 42.36340 |
Rhinella achalensis | Anura | EN | Ground-dwelling | 20.409249 | 39.12391 | 35.53670 | 42.09891 |
Rhinella achalensis | Anura | EN | Ground-dwelling | 25.864072 | 39.80816 | 36.10298 | 42.97966 |
Rhinella achavali | Anura | LC | Stream-dwelling | 24.159848 | 39.37637 | 37.05386 | 41.86415 |
Rhinella achavali | Anura | LC | Stream-dwelling | 22.297974 | 39.14224 | 36.92469 | 41.59740 |
Rhinella achavali | Anura | LC | Stream-dwelling | 27.251849 | 39.76520 | 37.46508 | 42.50436 |
Rhinella rubescens | Anura | LC | Stream-dwelling | 26.520357 | 39.67063 | 37.30861 | 42.38462 |
Rhinella rubescens | Anura | LC | Stream-dwelling | 25.414779 | 39.53012 | 37.19687 | 42.21572 |
Rhinella rubescens | Anura | LC | Stream-dwelling | 28.641762 | 39.94025 | 37.36579 | 42.54464 |
Rhinella acrolopha | Anura | EN | Ground-dwelling | 26.997239 | 40.03897 | 36.46394 | 43.37237 |
Rhinella acrolopha | Anura | EN | Ground-dwelling | 26.294779 | 39.94912 | 36.39386 | 43.27435 |
Rhinella acrolopha | Anura | EN | Ground-dwelling | 28.463507 | 40.22652 | 36.54818 | 43.56271 |
Rhinella acutirostris | Anura | LC | Ground-dwelling | 26.986549 | 39.93592 | 36.72240 | 43.26949 |
Rhinella acutirostris | Anura | LC | Ground-dwelling | 26.223594 | 39.84025 | 36.59639 | 43.07872 |
Rhinella acutirostris | Anura | LC | Ground-dwelling | 28.567511 | 40.13415 | 36.76121 | 43.44629 |
Rhinella alata | Anura | DD | Ground-dwelling | 26.736946 | 39.98231 | 36.68543 | 43.04650 |
Rhinella alata | Anura | DD | Ground-dwelling | 25.959981 | 39.88276 | 36.62530 | 42.90677 |
Rhinella alata | Anura | DD | Ground-dwelling | 28.199878 | 40.16977 | 37.26001 | 43.76059 |
Rhinella amabilis | Anura | CR | Semi-aquatic | 22.504554 | 39.53424 | 36.10218 | 42.74690 |
Rhinella amabilis | Anura | CR | Semi-aquatic | 21.223948 | 39.37708 | 36.06900 | 42.60026 |
Rhinella amabilis | Anura | CR | Semi-aquatic | 24.506837 | 39.77997 | 36.38132 | 43.03043 |
Rhinella amboroensis | Anura | DD | Stream-dwelling | 22.415740 | 38.74912 | 35.54181 | 41.97831 |
Rhinella amboroensis | Anura | DD | Stream-dwelling | 21.616824 | 38.64840 | 35.60346 | 42.04663 |
Rhinella amboroensis | Anura | DD | Stream-dwelling | 23.646629 | 38.90429 | 35.53870 | 42.00275 |
Rhinella veraguensis | Anura | LC | Arboreal | 19.828365 | 38.85123 | 35.70598 | 42.24012 |
Rhinella veraguensis | Anura | LC | Arboreal | 18.791244 | 38.72207 | 35.53282 | 41.99921 |
Rhinella veraguensis | Anura | LC | Arboreal | 21.170542 | 39.01838 | 35.77289 | 42.36010 |
Rhinella arborescandens | Anura | EN | Arboreal | 22.288978 | 39.23811 | 35.93749 | 42.28434 |
Rhinella arborescandens | Anura | EN | Arboreal | 21.418622 | 39.12909 | 35.81123 | 42.14834 |
Rhinella arborescandens | Anura | EN | Arboreal | 23.913806 | 39.44164 | 36.25932 | 42.60435 |
Rhinella arunco | Anura | NT | Ground-dwelling | 17.284226 | 38.73551 | 35.20305 | 41.52904 |
Rhinella arunco | Anura | NT | Ground-dwelling | 15.336621 | 38.49335 | 35.35913 | 41.63744 |
Rhinella arunco | Anura | NT | Ground-dwelling | 21.204778 | 39.22297 | 35.72010 | 42.11270 |
Rhinella atacamensis | Anura | VU | Semi-aquatic | 16.681890 | 38.86347 | 35.83040 | 41.96592 |
Rhinella atacamensis | Anura | VU | Semi-aquatic | 14.773121 | 38.62032 | 35.70610 | 41.81752 |
Rhinella atacamensis | Anura | VU | Semi-aquatic | 19.645032 | 39.24095 | 36.13709 | 42.37928 |
Rhinella bergi | Anura | LC | Ground-dwelling | 26.918918 | 39.98250 | 36.33011 | 43.05284 |
Rhinella bergi | Anura | LC | Ground-dwelling | 25.310883 | 39.78121 | 36.57603 | 43.19571 |
Rhinella bergi | Anura | LC | Ground-dwelling | 29.769001 | 40.33928 | 36.53957 | 43.42158 |
Rhinella castaneotica | Anura | LC | Ground-dwelling | 28.016999 | 40.07197 | 36.87834 | 43.53890 |
Rhinella castaneotica | Anura | LC | Ground-dwelling | 27.292009 | 39.97959 | 36.84130 | 43.44045 |
Rhinella castaneotica | Anura | LC | Ground-dwelling | 29.570361 | 40.26990 | 36.75968 | 43.52205 |
Rhinella cerradensis | Anura | DD | Ground-dwelling | 26.818249 | 40.36868 | 37.71408 | 43.14565 |
Rhinella cerradensis | Anura | DD | Ground-dwelling | 25.671643 | 40.21956 | 37.66456 | 42.98075 |
Rhinella cerradensis | Anura | DD | Ground-dwelling | 28.990244 | 40.65117 | 37.83820 | 43.45235 |
Rhinella jimi | Anura | LC | Ground-dwelling | 25.675823 | 40.20933 | 37.78923 | 42.95070 |
Rhinella jimi | Anura | LC | Ground-dwelling | 24.786098 | 40.09550 | 37.67587 | 42.85160 |
Rhinella jimi | Anura | LC | Ground-dwelling | 27.286336 | 40.41538 | 37.89951 | 43.25039 |
Rhinella chavin | Anura | EN | Arboreal | 19.316212 | 38.73080 | 35.53456 | 42.05142 |
Rhinella chavin | Anura | EN | Arboreal | 18.251736 | 38.59486 | 35.51471 | 42.02112 |
Rhinella chavin | Anura | EN | Arboreal | 21.470781 | 39.00597 | 35.84933 | 42.40857 |
Rhinella cristinae | Anura | EN | Ground-dwelling | 24.779899 | 39.66361 | 36.36167 | 42.85200 |
Rhinella cristinae | Anura | EN | Ground-dwelling | 23.907074 | 39.55537 | 36.24727 | 42.72344 |
Rhinella cristinae | Anura | EN | Ground-dwelling | 26.265578 | 39.84784 | 36.44534 | 42.99154 |
Rhinella dapsilis | Anura | LC | Ground-dwelling | 26.771160 | 39.89905 | 36.99012 | 43.54776 |
Rhinella dapsilis | Anura | LC | Ground-dwelling | 26.052148 | 39.80835 | 36.93868 | 43.37544 |
Rhinella dapsilis | Anura | LC | Ground-dwelling | 28.179073 | 40.07665 | 36.65164 | 43.37159 |
Rhinella martyi | Anura | LC | Ground-dwelling | 27.219237 | 39.92595 | 36.59334 | 43.29328 |
Rhinella martyi | Anura | LC | Ground-dwelling | 26.593578 | 39.84681 | 36.54162 | 43.18508 |
Rhinella martyi | Anura | LC | Ground-dwelling | 28.713338 | 40.11497 | 36.70090 | 43.48905 |
Rhinella lescurei | Anura | LC | Ground-dwelling | 27.398799 | 39.98602 | 36.30421 | 42.97384 |
Rhinella lescurei | Anura | LC | Ground-dwelling | 26.760844 | 39.90408 | 36.33033 | 42.92926 |
Rhinella lescurei | Anura | LC | Ground-dwelling | 29.054901 | 40.19872 | 36.49703 | 43.33144 |
Rhinella fernandezae | Anura | LC | Ground-dwelling | 24.664402 | 39.76435 | 36.67558 | 42.45989 |
Rhinella fernandezae | Anura | LC | Ground-dwelling | 22.868972 | 39.53553 | 36.49899 | 42.24120 |
Rhinella fernandezae | Anura | LC | Ground-dwelling | 27.761048 | 40.15899 | 37.00060 | 42.98137 |
Rhinella festae | Anura | LC | Ground-dwelling | 23.847590 | 39.56222 | 36.50926 | 42.71732 |
Rhinella festae | Anura | LC | Ground-dwelling | 22.673898 | 39.41388 | 36.43075 | 42.54869 |
Rhinella festae | Anura | LC | Ground-dwelling | 25.726598 | 39.79972 | 36.80578 | 43.17999 |
Rhinella fissipes | Anura | DD | Ground-dwelling | 20.371499 | 39.08923 | 36.16273 | 42.25411 |
Rhinella fissipes | Anura | DD | Ground-dwelling | 19.859569 | 39.02562 | 36.10343 | 42.17810 |
Rhinella fissipes | Anura | DD | Ground-dwelling | 21.554245 | 39.23620 | 36.24050 | 42.41218 |
Rhinella gallardoi | Anura | EN | Ground-dwelling | 22.860302 | 39.40486 | 36.28719 | 42.85690 |
Rhinella gallardoi | Anura | EN | Ground-dwelling | 21.222878 | 39.19932 | 36.17030 | 42.72670 |
Rhinella gallardoi | Anura | EN | Ground-dwelling | 25.222075 | 39.70132 | 36.68063 | 43.27865 |
Rhinella gnustae | Anura | DD | Stream-dwelling | 15.309324 | 37.82542 | 34.80860 | 41.14191 |
Rhinella gnustae | Anura | DD | Stream-dwelling | 13.823896 | 37.63890 | 34.71162 | 41.04708 |
Rhinella gnustae | Anura | DD | Stream-dwelling | 17.433722 | 38.09218 | 35.11212 | 41.46199 |
Rhinella henseli | Anura | LC | Ground-dwelling | 24.754242 | 39.62911 | 36.28350 | 42.97639 |
Rhinella henseli | Anura | LC | Ground-dwelling | 22.910064 | 39.40101 | 35.89039 | 42.47929 |
Rhinella henseli | Anura | LC | Ground-dwelling | 27.488369 | 39.96729 | 36.43120 | 43.28561 |
Rhinella inca | Anura | LC | Ground-dwelling | 18.924660 | 38.96715 | 35.78002 | 42.08678 |
Rhinella inca | Anura | LC | Ground-dwelling | 17.327923 | 38.76689 | 35.64991 | 41.87666 |
Rhinella inca | Anura | LC | Ground-dwelling | 20.235565 | 39.13157 | 35.86562 | 42.21966 |
Rhinella iserni | Anura | DD | Ground-dwelling | 22.045144 | 39.34848 | 36.48371 | 42.72502 |
Rhinella iserni | Anura | DD | Ground-dwelling | 21.430920 | 39.27143 | 36.43258 | 42.64640 |
Rhinella iserni | Anura | DD | Ground-dwelling | 23.044169 | 39.47380 | 36.63246 | 42.94857 |
Rhinella justinianoi | Anura | VU | Ground-dwelling | 20.851090 | 39.20235 | 36.21685 | 42.31831 |
Rhinella justinianoi | Anura | VU | Ground-dwelling | 19.991778 | 39.09553 | 36.04202 | 42.09204 |
Rhinella justinianoi | Anura | VU | Ground-dwelling | 22.138400 | 39.36236 | 36.38728 | 42.55727 |
Rhinella limensis | Anura | LC | Ground-dwelling | 20.432649 | 39.21003 | 36.02747 | 42.30207 |
Rhinella limensis | Anura | LC | Ground-dwelling | 19.468966 | 39.08791 | 35.98884 | 42.22631 |
Rhinella limensis | Anura | LC | Ground-dwelling | 22.257159 | 39.44122 | 36.25930 | 42.56964 |
Rhinella lindae | Anura | EN | Ground-dwelling | 26.219010 | 39.82074 | 37.12354 | 43.35949 |
Rhinella lindae | Anura | EN | Ground-dwelling | 25.544335 | 39.73557 | 37.06695 | 43.20481 |
Rhinella lindae | Anura | EN | Ground-dwelling | 27.553766 | 39.98924 | 37.07276 | 43.46859 |
Rhinella macrorhina | Anura | VU | Ground-dwelling | 22.376189 | 39.36581 | 35.94046 | 42.24011 |
Rhinella macrorhina | Anura | VU | Ground-dwelling | 21.363649 | 39.23971 | 35.85991 | 42.08024 |
Rhinella macrorhina | Anura | VU | Ground-dwelling | 24.075556 | 39.57745 | 36.03323 | 42.43711 |
Rhinella magnussoni | Anura | LC | Ground-dwelling | 27.479184 | 40.04337 | 36.98139 | 43.46683 |
Rhinella magnussoni | Anura | LC | Ground-dwelling | 26.818486 | 39.95928 | 36.85764 | 43.29170 |
Rhinella magnussoni | Anura | LC | Ground-dwelling | 29.058517 | 40.24437 | 37.18511 | 43.71593 |
Rhinella manu | Anura | LC | Arboreal | 17.447651 | 38.57606 | 35.19331 | 41.67207 |
Rhinella manu | Anura | LC | Arboreal | 15.911874 | 38.38570 | 35.03635 | 41.55111 |
Rhinella manu | Anura | LC | Arboreal | 18.738988 | 38.73611 | 35.32382 | 41.83422 |
Rhinella nesiotes | Anura | VU | Arboreal | 22.618688 | 39.23745 | 35.91711 | 42.54577 |
Rhinella nesiotes | Anura | VU | Arboreal | 21.958574 | 39.15495 | 35.82702 | 42.44858 |
Rhinella nesiotes | Anura | VU | Arboreal | 23.898670 | 39.39741 | 36.13347 | 42.80850 |
Rhinella multiverrucosa | Anura | DD | Ground-dwelling | 19.988662 | 39.15374 | 36.19224 | 42.29213 |
Rhinella multiverrucosa | Anura | DD | Ground-dwelling | 19.113652 | 39.04520 | 35.70547 | 41.85435 |
Rhinella multiverrucosa | Anura | DD | Ground-dwelling | 21.702088 | 39.36627 | 36.20443 | 42.34837 |
Rhinella nicefori | Anura | EN | Ground-dwelling | 23.852963 | 39.60051 | 35.97845 | 42.46406 |
Rhinella nicefori | Anura | EN | Ground-dwelling | 22.840176 | 39.47423 | 36.12132 | 42.45349 |
Rhinella nicefori | Anura | EN | Ground-dwelling | 25.399192 | 39.79331 | 36.04466 | 42.65224 |
Rhinella ocellata | Anura | LC | Ground-dwelling | 27.009451 | 40.01579 | 36.92557 | 43.43231 |
Rhinella ocellata | Anura | LC | Ground-dwelling | 25.941659 | 39.87803 | 36.43935 | 42.87348 |
Rhinella ocellata | Anura | LC | Ground-dwelling | 29.078226 | 40.28267 | 36.81611 | 43.36671 |
Rhinella poeppigii | Anura | LC | Stream-dwelling | 21.739407 | 38.70163 | 35.54117 | 41.80202 |
Rhinella poeppigii | Anura | LC | Stream-dwelling | 20.895931 | 38.59579 | 35.45438 | 41.71947 |
Rhinella poeppigii | Anura | LC | Stream-dwelling | 23.098493 | 38.87217 | 35.67715 | 41.96314 |
Rhinella proboscidea | Anura | LC | Ground-dwelling | 28.313141 | 40.14299 | 36.88587 | 43.63963 |
Rhinella proboscidea | Anura | LC | Ground-dwelling | 27.566929 | 40.04868 | 36.89550 | 43.58769 |
Rhinella proboscidea | Anura | LC | Ground-dwelling | 29.884467 | 40.34161 | 37.01315 | 43.86299 |
Rhinella pygmaea | Anura | LC | Fossorial | 25.579768 | 40.82994 | 37.52909 | 43.82439 |
Rhinella pygmaea | Anura | LC | Fossorial | 24.620118 | 40.70884 | 37.49572 | 43.71289 |
Rhinella pygmaea | Anura | LC | Fossorial | 27.183989 | 41.03237 | 37.59482 | 43.97126 |
Rhinella quechua | Anura | VU | Ground-dwelling | 19.541371 | 39.01947 | 35.74930 | 42.14626 |
Rhinella quechua | Anura | VU | Ground-dwelling | 18.637643 | 38.90718 | 35.62954 | 42.05630 |
Rhinella quechua | Anura | VU | Ground-dwelling | 20.933920 | 39.19250 | 35.79778 | 42.28757 |
Rhinella roqueana | Anura | LC | Ground-dwelling | 26.545471 | 39.94830 | 36.69128 | 43.11232 |
Rhinella roqueana | Anura | LC | Ground-dwelling | 25.728593 | 39.84521 | 36.64788 | 42.95492 |
Rhinella roqueana | Anura | LC | Ground-dwelling | 28.105935 | 40.14524 | 36.87876 | 43.47009 |
Rhinella rubropunctata | Anura | VU | Ground-dwelling | 16.184588 | 38.51445 | 35.45301 | 41.82167 |
Rhinella rubropunctata | Anura | VU | Ground-dwelling | 14.183536 | 38.26486 | 35.35151 | 41.72689 |
Rhinella rubropunctata | Anura | VU | Ground-dwelling | 20.279108 | 39.02516 | 35.80370 | 42.11890 |
Rhinella ruizi | Anura | VU | Ground-dwelling | 22.376189 | 39.40240 | 36.14846 | 42.54832 |
Rhinella ruizi | Anura | VU | Ground-dwelling | 21.363649 | 39.27315 | 35.72895 | 42.07461 |
Rhinella ruizi | Anura | VU | Ground-dwelling | 24.075556 | 39.61932 | 36.52339 | 42.97473 |
Rhinella rumbolli | Anura | NT | Ground-dwelling | 20.258844 | 39.05439 | 35.82723 | 41.98093 |
Rhinella rumbolli | Anura | NT | Ground-dwelling | 18.799881 | 38.87242 | 35.76855 | 41.85735 |
Rhinella rumbolli | Anura | NT | Ground-dwelling | 22.354595 | 39.31579 | 36.02375 | 42.31144 |
Rhinella scitula | Anura | DD | Stream-dwelling | 28.324691 | 39.55283 | 36.02460 | 42.64808 |
Rhinella scitula | Anura | DD | Stream-dwelling | 27.134453 | 39.40084 | 36.15265 | 42.68901 |
Rhinella scitula | Anura | DD | Stream-dwelling | 30.501091 | 39.83076 | 36.24953 | 42.99562 |
Rhinella sclerocephala | Anura | VU | Ground-dwelling | 26.644916 | 39.83624 | 36.34301 | 43.02816 |
Rhinella sclerocephala | Anura | VU | Ground-dwelling | 25.886984 | 39.74156 | 36.23735 | 42.86300 |
Rhinella sclerocephala | Anura | VU | Ground-dwelling | 28.062356 | 40.01329 | 36.86124 | 43.67040 |
Rhinella stanlaii | Anura | LC | Ground-dwelling | 19.981338 | 39.06516 | 36.05142 | 42.45162 |
Rhinella stanlaii | Anura | LC | Ground-dwelling | 19.135633 | 38.95872 | 35.91762 | 42.29152 |
Rhinella stanlaii | Anura | LC | Ground-dwelling | 21.290381 | 39.22991 | 36.06220 | 42.49617 |
Rhinella sternosignata | Anura | LC | Ground-dwelling | 25.448083 | 39.72861 | 36.55143 | 43.07136 |
Rhinella sternosignata | Anura | LC | Ground-dwelling | 24.619766 | 39.62470 | 36.52503 | 43.02222 |
Rhinella sternosignata | Anura | LC | Ground-dwelling | 26.949276 | 39.91693 | 36.69612 | 43.34066 |
Rhinella tacana | Anura | LC | Arboreal | 19.442031 | 38.84255 | 35.76609 | 42.18204 |
Rhinella tacana | Anura | LC | Arboreal | 18.292695 | 38.69759 | 35.63372 | 41.99991 |
Rhinella tacana | Anura | LC | Arboreal | 20.673729 | 38.99790 | 35.78340 | 42.23480 |
Rhinella tenrec | Anura | EN | Ground-dwelling | 26.219010 | 39.98949 | 36.96905 | 43.52450 |
Rhinella tenrec | Anura | EN | Ground-dwelling | 25.544335 | 39.90325 | 36.65909 | 43.17596 |
Rhinella tenrec | Anura | EN | Ground-dwelling | 27.553766 | 40.16010 | 37.09429 | 43.69269 |
Rhinella vellardi | Anura | EN | Ground-dwelling | 20.539738 | 39.20243 | 36.18037 | 42.33178 |
Rhinella vellardi | Anura | EN | Ground-dwelling | 19.667163 | 39.09203 | 36.11469 | 42.20118 |
Rhinella vellardi | Anura | EN | Ground-dwelling | 22.186833 | 39.41083 | 36.47879 | 42.73442 |
Rhinella veredas | Anura | LC | Ground-dwelling | 26.157976 | 39.84634 | 36.70040 | 43.50256 |
Rhinella veredas | Anura | LC | Ground-dwelling | 24.982371 | 39.69640 | 36.62886 | 43.39776 |
Rhinella veredas | Anura | LC | Ground-dwelling | 28.351713 | 40.12613 | 37.10410 | 44.06248 |
Rhinella yanachaga | Anura | EN | Arboreal | 21.012652 | 39.04456 | 35.67397 | 42.26196 |
Rhinella yanachaga | Anura | EN | Arboreal | 20.177954 | 38.93788 | 35.67286 | 42.20968 |
Rhinella yanachaga | Anura | EN | Arboreal | 22.689323 | 39.25885 | 35.87116 | 42.52634 |
Atelopus andinus | Anura | EN | Stream-dwelling | 24.240349 | 37.19898 | 33.33578 | 40.71229 |
Atelopus andinus | Anura | EN | Stream-dwelling | 23.599308 | 37.11610 | 33.46477 | 40.78769 |
Atelopus andinus | Anura | EN | Stream-dwelling | 25.599596 | 37.37471 | 33.48175 | 40.90588 |
Atelopus arsyecue | Anura | CR | Stream-dwelling | 25.195924 | 37.36262 | 33.74593 | 41.85851 |
Atelopus arsyecue | Anura | CR | Stream-dwelling | 24.229888 | 37.23518 | 33.31454 | 41.35971 |
Atelopus arsyecue | Anura | CR | Stream-dwelling | 27.326446 | 37.64368 | 33.78944 | 41.99175 |
Atelopus balios | Anura | CR | Stream-dwelling | 26.647145 | 37.62256 | 34.14580 | 41.57833 |
Atelopus balios | Anura | CR | Stream-dwelling | 25.667294 | 37.49351 | 34.03760 | 41.41080 |
Atelopus balios | Anura | CR | Stream-dwelling | 28.530719 | 37.87064 | 33.98406 | 41.55002 |
Atelopus bomolochos | Anura | CR | Stream-dwelling | 25.562622 | 37.40591 | 33.48402 | 41.36186 |
Atelopus bomolochos | Anura | CR | Stream-dwelling | 24.507041 | 37.26678 | 33.48436 | 41.28394 |
Atelopus bomolochos | Anura | CR | Stream-dwelling | 27.560739 | 37.66926 | 33.77186 | 41.73196 |
Atelopus carauta | Anura | DD | Stream-dwelling | 26.219010 | 37.50753 | 33.71014 | 41.09482 |
Atelopus carauta | Anura | DD | Stream-dwelling | 25.544335 | 37.41907 | 33.68928 | 41.09735 |
Atelopus carauta | Anura | DD | Stream-dwelling | 27.553766 | 37.68255 | 33.95457 | 41.33231 |
Atelopus carrikeri | Anura | EN | Stream-dwelling | 25.195924 | 37.37020 | 33.62857 | 41.20369 |
Atelopus carrikeri | Anura | EN | Stream-dwelling | 24.229888 | 37.24345 | 33.55829 | 41.04884 |
Atelopus carrikeri | Anura | EN | Stream-dwelling | 27.326446 | 37.64973 | 33.84018 | 41.58682 |
Atelopus certus | Anura | CR | Stream-dwelling | 26.761423 | 37.59290 | 33.89874 | 41.48009 |
Atelopus certus | Anura | CR | Stream-dwelling | 26.195234 | 37.51689 | 33.87161 | 41.34474 |
Atelopus certus | Anura | CR | Stream-dwelling | 27.980524 | 37.75657 | 33.88951 | 41.55150 |
Atelopus chirripoensis | Anura | DD | Ground-dwelling | 17.078254 | 36.88402 | 33.54274 | 40.90548 |
Atelopus chirripoensis | Anura | DD | Ground-dwelling | 15.980470 | 36.73776 | 33.37759 | 40.79074 |
Atelopus chirripoensis | Anura | DD | Ground-dwelling | 18.397641 | 37.05981 | 33.62719 | 41.01489 |
Atelopus chrysocorallus | Anura | CR | Stream-dwelling | 26.628438 | 37.51004 | 33.36594 | 41.29865 |
Atelopus chrysocorallus | Anura | CR | Stream-dwelling | 25.765485 | 37.39652 | 33.36100 | 41.20476 |
Atelopus chrysocorallus | Anura | CR | Stream-dwelling | 28.169923 | 37.71282 | 33.99126 | 42.01927 |
Atelopus coynei | Anura | CR | Stream-dwelling | 20.556552 | 36.77923 | 33.22359 | 40.34764 |
Atelopus coynei | Anura | CR | Stream-dwelling | 18.946918 | 36.56336 | 33.12846 | 40.20862 |
Atelopus coynei | Anura | CR | Stream-dwelling | 22.778661 | 37.07725 | 33.44496 | 40.67507 |
Atelopus cruciger | Anura | CR | Stream-dwelling | 26.826561 | 37.55421 | 33.71024 | 41.68424 |
Atelopus cruciger | Anura | CR | Stream-dwelling | 26.155457 | 37.46502 | 33.62354 | 41.57421 |
Atelopus cruciger | Anura | CR | Stream-dwelling | 28.382836 | 37.76103 | 33.93583 | 41.99855 |
Atelopus dimorphus | Anura | DD | Stream-dwelling | 23.440561 | 37.06265 | 33.16023 | 40.43559 |
Atelopus dimorphus | Anura | DD | Stream-dwelling | 22.815371 | 36.97939 | 33.09642 | 40.32840 |
Atelopus dimorphus | Anura | DD | Stream-dwelling | 24.661220 | 37.22521 | 33.27818 | 40.62454 |
Atelopus epikeisthos | Anura | EN | Stream-dwelling | 23.280537 | 37.09567 | 33.21189 | 40.88137 |
Atelopus epikeisthos | Anura | EN | Stream-dwelling | 22.528599 | 36.99577 | 33.11571 | 40.76712 |
Atelopus epikeisthos | Anura | EN | Stream-dwelling | 24.608732 | 37.27212 | 33.40628 | 41.09442 |
Atelopus exiguus | Anura | EN | Stream-dwelling | 23.949902 | 37.28282 | 33.59538 | 40.81090 |
Atelopus exiguus | Anura | EN | Stream-dwelling | 22.543976 | 37.09701 | 33.29525 | 40.50629 |
Atelopus exiguus | Anura | EN | Stream-dwelling | 26.144713 | 37.57289 | 33.79982 | 41.06538 |
Atelopus nanay | Anura | CR | Stream-dwelling | 26.647145 | 37.55792 | 33.58503 | 41.18577 |
Atelopus nanay | Anura | CR | Stream-dwelling | 25.667294 | 37.42854 | 33.44098 | 40.99507 |
Atelopus nanay | Anura | CR | Stream-dwelling | 28.530719 | 37.80663 | 33.72522 | 41.42196 |
Atelopus famelicus | Anura | CR | Stream-dwelling | 25.597617 | 37.38719 | 33.72737 | 41.13077 |
Atelopus famelicus | Anura | CR | Stream-dwelling | 24.953236 | 37.30194 | 33.60339 | 41.00124 |
Atelopus famelicus | Anura | CR | Stream-dwelling | 26.739957 | 37.53833 | 33.91646 | 41.34760 |
Atelopus flavescens | Anura | VU | Stream-dwelling | 26.960155 | 37.49029 | 33.35117 | 41.04427 |
Atelopus flavescens | Anura | VU | Stream-dwelling | 26.384148 | 37.41524 | 33.28023 | 40.94259 |
Atelopus flavescens | Anura | VU | Stream-dwelling | 28.038327 | 37.63075 | 33.57090 | 41.31643 |
Atelopus franciscus | Anura | LC | Stream-dwelling | 27.021779 | 37.49981 | 33.47498 | 41.33601 |
Atelopus franciscus | Anura | LC | Stream-dwelling | 26.432544 | 37.42210 | 33.43562 | 41.29428 |
Atelopus franciscus | Anura | LC | Stream-dwelling | 28.397710 | 37.68127 | 33.70163 | 41.61307 |
Atelopus galactogaster | Anura | DD | Stream-dwelling | 25.952777 | 37.42391 | 33.52117 | 41.53155 |
Atelopus galactogaster | Anura | DD | Stream-dwelling | 25.296430 | 37.33723 | 33.47668 | 41.47466 |
Atelopus galactogaster | Anura | DD | Stream-dwelling | 27.263195 | 37.59698 | 33.68638 | 41.78193 |
Atelopus glyphus | Anura | CR | Stream-dwelling | 26.997239 | 37.69948 | 33.95619 | 41.93345 |
Atelopus glyphus | Anura | CR | Stream-dwelling | 26.294779 | 37.60580 | 33.95545 | 41.88480 |
Atelopus glyphus | Anura | CR | Stream-dwelling | 28.463507 | 37.89503 | 34.08423 | 42.13939 |
Atelopus guitarraensis | Anura | DD | Stream-dwelling | 23.630387 | 37.17330 | 33.26752 | 40.85852 |
Atelopus guitarraensis | Anura | DD | Stream-dwelling | 22.829524 | 37.06780 | 33.26195 | 40.88628 |
Atelopus guitarraensis | Anura | DD | Stream-dwelling | 25.246144 | 37.38616 | 33.59146 | 41.27122 |
Atelopus podocarpus | Anura | CR | Stream-dwelling | 22.948003 | 37.07648 | 33.13240 | 40.97411 |
Atelopus podocarpus | Anura | CR | Stream-dwelling | 21.856167 | 36.93054 | 32.99641 | 40.86368 |
Atelopus podocarpus | Anura | CR | Stream-dwelling | 24.780959 | 37.32146 | 33.39448 | 41.36378 |
Atelopus ignescens | Anura | CR | Stream-dwelling | 21.548757 | 36.85406 | 33.28268 | 40.81045 |
Atelopus ignescens | Anura | CR | Stream-dwelling | 19.754427 | 36.61663 | 32.65754 | 40.16902 |
Atelopus ignescens | Anura | CR | Stream-dwelling | 23.905236 | 37.16587 | 33.65106 | 41.21872 |
Atelopus laetissimus | Anura | EN | Stream-dwelling | 26.777894 | 37.58011 | 33.50017 | 41.13517 |
Atelopus laetissimus | Anura | EN | Stream-dwelling | 25.908244 | 37.46426 | 33.42692 | 41.05047 |
Atelopus laetissimus | Anura | EN | Stream-dwelling | 28.696471 | 37.83570 | 33.74694 | 41.50649 |
Atelopus varius | Anura | CR | Stream-dwelling | 25.948131 | 37.46777 | 34.37813 | 40.73313 |
Atelopus varius | Anura | CR | Stream-dwelling | 25.253148 | 37.37583 | 34.22452 | 40.51448 |
Atelopus varius | Anura | CR | Stream-dwelling | 27.220614 | 37.63611 | 34.49833 | 40.90993 |
Atelopus longibrachius | Anura | EN | Stream-dwelling | 25.663078 | 37.38961 | 33.98882 | 41.72906 |
Atelopus longibrachius | Anura | EN | Stream-dwelling | 24.979688 | 37.29867 | 33.54736 | 41.24302 |
Atelopus longibrachius | Anura | EN | Stream-dwelling | 26.912421 | 37.55586 | 34.08571 | 41.94584 |
Atelopus longirostris | Anura | CR | Stream-dwelling | 20.556552 | 36.75226 | 33.03050 | 40.44428 |
Atelopus longirostris | Anura | CR | Stream-dwelling | 18.946918 | 36.54125 | 33.03816 | 40.43111 |
Atelopus longirostris | Anura | CR | Stream-dwelling | 22.778661 | 37.04355 | 33.31314 | 40.81094 |
Atelopus lozanoi | Anura | EN | Stream-dwelling | 22.392831 | 37.04240 | 33.15535 | 41.03603 |
Atelopus lozanoi | Anura | EN | Stream-dwelling | 21.447444 | 36.91671 | 33.19052 | 40.99636 |
Atelopus lozanoi | Anura | EN | Stream-dwelling | 24.281794 | 37.29355 | 33.38859 | 41.29714 |
Atelopus mandingues | Anura | DD | Stream-dwelling | 22.469781 | 37.01645 | 33.22383 | 40.68325 |
Atelopus mandingues | Anura | DD | Stream-dwelling | 21.526786 | 36.89148 | 33.20078 | 40.61240 |
Atelopus mandingues | Anura | DD | Stream-dwelling | 24.331870 | 37.26323 | 33.59469 | 41.09377 |
Atelopus mittermeieri | Anura | EN | Stream-dwelling | 22.013728 | 36.94176 | 32.76002 | 40.63052 |
Atelopus mittermeieri | Anura | EN | Stream-dwelling | 21.137557 | 36.82539 | 32.67142 | 40.48059 |
Atelopus mittermeieri | Anura | EN | Stream-dwelling | 23.830870 | 37.18310 | 33.14168 | 41.08967 |
Atelopus mucubajiensis | Anura | CR | Stream-dwelling | 26.717248 | 37.53518 | 32.92145 | 41.31212 |
Atelopus mucubajiensis | Anura | CR | Stream-dwelling | 25.882292 | 37.42575 | 32.88676 | 41.23275 |
Atelopus mucubajiensis | Anura | CR | Stream-dwelling | 28.269649 | 37.73864 | 33.58814 | 42.08131 |
Atelopus muisca | Anura | CR | Stream-dwelling | 22.469781 | 36.94781 | 33.20181 | 40.84585 |
Atelopus muisca | Anura | CR | Stream-dwelling | 21.526786 | 36.82179 | 33.10481 | 40.72708 |
Atelopus muisca | Anura | CR | Stream-dwelling | 24.331870 | 37.19665 | 33.37460 | 41.05695 |
Atelopus nahumae | Anura | EN | Stream-dwelling | 26.549236 | 37.49744 | 33.67653 | 41.40511 |
Atelopus nahumae | Anura | EN | Stream-dwelling | 25.669093 | 37.38354 | 33.46958 | 41.19092 |
Atelopus nahumae | Anura | EN | Stream-dwelling | 28.514169 | 37.75172 | 34.07295 | 41.90118 |
Atelopus nepiozomus | Anura | EN | Stream-dwelling | 22.776889 | 37.03478 | 33.22930 | 40.95410 |
Atelopus nepiozomus | Anura | EN | Stream-dwelling | 21.358820 | 36.84785 | 33.06293 | 40.71528 |
Atelopus nepiozomus | Anura | EN | Stream-dwelling | 24.916276 | 37.31679 | 33.38551 | 41.20899 |
Atelopus oxapampae | Anura | EN | Stream-dwelling | 21.012652 | 36.84788 | 33.50793 | 40.98616 |
Atelopus oxapampae | Anura | EN | Stream-dwelling | 20.177954 | 36.73840 | 33.42943 | 40.84836 |
Atelopus oxapampae | Anura | EN | Stream-dwelling | 22.689323 | 37.06779 | 33.55577 | 41.09791 |
Atelopus palmatus | Anura | CR | Stream-dwelling | 22.287150 | 36.92923 | 33.16456 | 40.64404 |
Atelopus palmatus | Anura | CR | Stream-dwelling | 20.278491 | 36.66348 | 32.54522 | 39.96179 |
Atelopus palmatus | Anura | CR | Stream-dwelling | 24.609385 | 37.23647 | 33.67091 | 41.19809 |
Atelopus pulcher | Anura | VU | Stream-dwelling | 23.232128 | 37.12446 | 33.60245 | 41.28662 |
Atelopus pulcher | Anura | VU | Stream-dwelling | 22.448501 | 37.02088 | 33.53284 | 41.23548 |
Atelopus pulcher | Anura | VU | Stream-dwelling | 24.760764 | 37.32650 | 33.88202 | 41.61007 |
Atelopus pyrodactylus | Anura | CR | Stream-dwelling | 22.538913 | 36.98057 | 33.45707 | 40.83225 |
Atelopus pyrodactylus | Anura | CR | Stream-dwelling | 21.736625 | 36.87520 | 33.34581 | 40.69859 |
Atelopus pyrodactylus | Anura | CR | Stream-dwelling | 23.802966 | 37.14659 | 33.60803 | 40.99447 |
Atelopus reticulatus | Anura | DD | Stream-dwelling | 23.440561 | 37.08279 | 33.20274 | 40.80938 |
Atelopus reticulatus | Anura | DD | Stream-dwelling | 22.815371 | 36.99884 | 33.41832 | 41.01144 |
Atelopus reticulatus | Anura | DD | Stream-dwelling | 24.661220 | 37.24670 | 32.97593 | 40.57056 |
Atelopus sanjosei | Anura | CR | Stream-dwelling | 25.694338 | 37.44540 | 33.62910 | 41.60672 |
Atelopus sanjosei | Anura | CR | Stream-dwelling | 24.958322 | 37.34778 | 33.38250 | 41.33664 |
Atelopus sanjosei | Anura | CR | Stream-dwelling | 27.032441 | 37.62289 | 33.64541 | 41.70102 |
Atelopus seminiferus | Anura | EN | Stream-dwelling | 22.873431 | 37.09532 | 33.65721 | 40.85548 |
Atelopus seminiferus | Anura | EN | Stream-dwelling | 22.053823 | 36.98581 | 33.28870 | 40.53062 |
Atelopus seminiferus | Anura | EN | Stream-dwelling | 24.459339 | 37.30720 | 33.91749 | 41.15328 |
Atelopus simulatus | Anura | CR | Ground-dwelling | 22.077646 | 37.50583 | 33.90987 | 41.10746 |
Atelopus simulatus | Anura | CR | Ground-dwelling | 20.881206 | 37.34787 | 33.66091 | 40.86763 |
Atelopus simulatus | Anura | CR | Ground-dwelling | 23.836516 | 37.73804 | 34.14667 | 41.43632 |
Atelopus siranus | Anura | DD | Stream-dwelling | 22.618688 | 36.92783 | 33.07254 | 40.48305 |
Atelopus siranus | Anura | DD | Stream-dwelling | 21.958574 | 36.84196 | 32.91331 | 40.34440 |
Atelopus siranus | Anura | DD | Stream-dwelling | 23.898670 | 37.09433 | 33.20604 | 40.63127 |
Atelopus spurrelli | Anura | NT | Stream-dwelling | 25.727072 | 37.37967 | 33.91783 | 41.41663 |
Atelopus spurrelli | Anura | NT | Stream-dwelling | 25.022669 | 37.28692 | 33.79870 | 41.25591 |
Atelopus spurrelli | Anura | NT | Stream-dwelling | 27.111319 | 37.56194 | 34.14662 | 41.73990 |
Atelopus tricolor | Anura | CR | Stream-dwelling | 21.173461 | 36.98039 | 33.19333 | 40.55389 |
Atelopus tricolor | Anura | CR | Stream-dwelling | 20.517245 | 36.89444 | 32.96617 | 40.35079 |
Atelopus tricolor | Anura | CR | Stream-dwelling | 22.412265 | 37.14264 | 33.33603 | 40.72234 |
Atelopus walkeri | Anura | DD | Stream-dwelling | 25.658511 | 37.42714 | 33.68411 | 41.40752 |
Atelopus walkeri | Anura | DD | Stream-dwelling | 24.705522 | 37.30363 | 33.61510 | 41.27258 |
Atelopus walkeri | Anura | DD | Stream-dwelling | 27.692744 | 37.69077 | 33.64734 | 41.51276 |
Bufoides meghalayanus | Anura | CR | Stream-dwelling | 22.878119 | 37.52126 | 33.59061 | 41.80569 |
Bufoides meghalayanus | Anura | CR | Stream-dwelling | 21.570552 | 37.35079 | 33.33861 | 41.60434 |
Bufoides meghalayanus | Anura | CR | Stream-dwelling | 25.033585 | 37.80227 | 33.92776 | 42.26567 |
Capensibufo rosei | Anura | CR | Ground-dwelling | 21.159405 | 38.11268 | 34.07101 | 41.97372 |
Capensibufo rosei | Anura | CR | Ground-dwelling | 19.851861 | 37.94272 | 34.00962 | 41.85777 |
Capensibufo rosei | Anura | CR | Ground-dwelling | 23.920330 | 38.47157 | 34.38010 | 42.53524 |
Capensibufo tradouwi | Anura | LC | Ground-dwelling | 20.479079 | 37.95876 | 33.97867 | 41.98205 |
Capensibufo tradouwi | Anura | LC | Ground-dwelling | 19.029523 | 37.76675 | 33.76660 | 41.76939 |
Capensibufo tradouwi | Anura | LC | Ground-dwelling | 23.198397 | 38.31897 | 34.34156 | 42.46800 |
Mertensophryne anotis | Anura | LC | Ground-dwelling | 26.203267 | 38.80867 | 34.58059 | 42.93174 |
Mertensophryne anotis | Anura | LC | Ground-dwelling | 25.385587 | 38.70239 | 34.50725 | 42.81651 |
Mertensophryne anotis | Anura | LC | Ground-dwelling | 27.964743 | 39.03764 | 34.80321 | 43.22963 |
Mertensophryne loveridgei | Anura | LC | Ground-dwelling | 25.430783 | 38.71341 | 34.51884 | 42.82326 |
Mertensophryne loveridgei | Anura | LC | Ground-dwelling | 24.693305 | 38.61672 | 34.34994 | 42.61358 |
Mertensophryne loveridgei | Anura | LC | Ground-dwelling | 27.210070 | 38.94668 | 34.66953 | 43.04511 |
Mertensophryne howelli | Anura | EN | Ground-dwelling | 25.924213 | 38.78971 | 34.71450 | 42.83441 |
Mertensophryne howelli | Anura | EN | Ground-dwelling | 25.272567 | 38.70420 | 34.64508 | 42.69204 |
Mertensophryne howelli | Anura | EN | Ground-dwelling | 27.348772 | 38.97664 | 34.86628 | 43.02625 |
Mertensophryne lindneri | Anura | LC | Ground-dwelling | 25.131080 | 38.64841 | 34.58000 | 42.82648 |
Mertensophryne lindneri | Anura | LC | Ground-dwelling | 24.275035 | 38.53690 | 34.53207 | 42.77144 |
Mertensophryne lindneri | Anura | LC | Ground-dwelling | 26.944658 | 38.88466 | 34.75341 | 43.08978 |
Mertensophryne lonnbergi | Anura | VU | Ground-dwelling | 21.344821 | 38.21931 | 34.07445 | 42.08767 |
Mertensophryne lonnbergi | Anura | VU | Ground-dwelling | 20.552650 | 38.11549 | 34.00406 | 41.99842 |
Mertensophryne lonnbergi | Anura | VU | Ground-dwelling | 23.055661 | 38.44352 | 34.53871 | 42.51760 |
Mertensophryne melanopleura | Anura | LC | Ground-dwelling | 24.021901 | 38.46617 | 34.48221 | 42.59121 |
Mertensophryne melanopleura | Anura | LC | Ground-dwelling | 23.149339 | 38.35320 | 34.38601 | 42.43100 |
Mertensophryne melanopleura | Anura | LC | Ground-dwelling | 26.153431 | 38.74214 | 34.78640 | 43.01029 |
Mertensophryne micranotis | Anura | LC | Ground-dwelling | 24.864519 | 38.66949 | 34.85355 | 43.17608 |
Mertensophryne micranotis | Anura | LC | Ground-dwelling | 24.168763 | 38.57775 | 34.69273 | 43.01706 |
Mertensophryne micranotis | Anura | LC | Ground-dwelling | 26.383578 | 38.86980 | 35.07488 | 43.44384 |
Mertensophryne mocquardi | Anura | DD | Ground-dwelling | 20.966321 | 38.11740 | 33.63232 | 41.93894 |
Mertensophryne mocquardi | Anura | DD | Ground-dwelling | 20.137854 | 38.00869 | 33.54393 | 41.83860 |
Mertensophryne mocquardi | Anura | DD | Ground-dwelling | 22.679478 | 38.34219 | 33.84979 | 42.24962 |
Mertensophryne nairobiensis | Anura | DD | Ground-dwelling | 21.279197 | 38.16302 | 33.55546 | 41.76181 |
Mertensophryne nairobiensis | Anura | DD | Ground-dwelling | 20.404394 | 38.04652 | 33.42667 | 41.62862 |
Mertensophryne nairobiensis | Anura | DD | Ground-dwelling | 23.119976 | 38.40817 | 33.75813 | 42.01838 |
Mertensophryne nyikae | Anura | NT | Ground-dwelling | 22.048889 | 38.24932 | 34.50328 | 42.43822 |
Mertensophryne nyikae | Anura | NT | Ground-dwelling | 21.126642 | 38.12676 | 34.38446 | 42.31019 |
Mertensophryne nyikae | Anura | NT | Ground-dwelling | 23.361655 | 38.42378 | 34.52529 | 42.54797 |
Mertensophryne schmidti | Anura | DD | Ground-dwelling | 25.404116 | 38.67717 | 34.89901 | 42.86817 |
Mertensophryne schmidti | Anura | DD | Ground-dwelling | 24.627851 | 38.57531 | 34.51947 | 42.47268 |
Mertensophryne schmidti | Anura | DD | Ground-dwelling | 27.368716 | 38.93497 | 35.18853 | 43.28547 |
Mertensophryne taitana | Anura | LC | Ground-dwelling | 23.044414 | 38.41453 | 34.63059 | 42.80516 |
Mertensophryne taitana | Anura | LC | Ground-dwelling | 22.186096 | 38.30051 | 34.55883 | 42.65912 |
Mertensophryne taitana | Anura | LC | Ground-dwelling | 24.933746 | 38.66551 | 34.04341 | 42.29534 |
Mertensophryne usambarae | Anura | CR | Ground-dwelling | 24.950210 | 38.68389 | 34.37475 | 42.63721 |
Mertensophryne usambarae | Anura | CR | Ground-dwelling | 24.330970 | 38.60174 | 34.29732 | 42.55179 |
Mertensophryne usambarae | Anura | CR | Ground-dwelling | 25.991640 | 38.82205 | 34.46668 | 42.78085 |
Mertensophryne uzunguensis | Anura | VU | Ground-dwelling | 21.910635 | 38.21723 | 34.46319 | 42.43393 |
Mertensophryne uzunguensis | Anura | VU | Ground-dwelling | 21.071793 | 38.10772 | 34.26987 | 42.20160 |
Mertensophryne uzunguensis | Anura | VU | Ground-dwelling | 23.415802 | 38.41372 | 34.49792 | 42.59164 |
Poyntonophrynus beiranus | Anura | LC | Ground-dwelling | 25.181103 | 38.63465 | 34.76584 | 42.97200 |
Poyntonophrynus beiranus | Anura | LC | Ground-dwelling | 24.171073 | 38.50278 | 34.60652 | 42.87675 |
Poyntonophrynus beiranus | Anura | LC | Ground-dwelling | 27.218350 | 38.90064 | 34.93854 | 43.16204 |
Poyntonophrynus damaranus | Anura | DD | Fossorial | 22.866077 | 39.31591 | 35.13300 | 43.20460 |
Poyntonophrynus damaranus | Anura | DD | Fossorial | 20.980579 | 39.06637 | 34.89844 | 42.92767 |
Poyntonophrynus damaranus | Anura | DD | Fossorial | 25.450160 | 39.65791 | 35.39321 | 43.60236 |
Poyntonophrynus dombensis | Anura | LC | Ground-dwelling | 23.207727 | 38.31839 | 34.14113 | 42.11012 |
Poyntonophrynus dombensis | Anura | LC | Ground-dwelling | 21.431949 | 38.08478 | 33.72094 | 41.68522 |
Poyntonophrynus dombensis | Anura | LC | Ground-dwelling | 25.742574 | 38.65185 | 34.68039 | 42.74041 |
Poyntonophrynus fenoulheti | Anura | LC | Ground-dwelling | 23.724595 | 38.52317 | 34.23846 | 42.45092 |
Poyntonophrynus fenoulheti | Anura | LC | Ground-dwelling | 22.509580 | 38.36341 | 34.19153 | 42.36353 |
Poyntonophrynus fenoulheti | Anura | LC | Ground-dwelling | 26.020701 | 38.82507 | 34.52314 | 42.84876 |
Poyntonophrynus grandisonae | Anura | DD | Arboreal | 24.242539 | 38.25301 | 34.12141 | 42.48252 |
Poyntonophrynus grandisonae | Anura | DD | Arboreal | 22.247010 | 37.99555 | 33.77573 | 42.10583 |
Poyntonophrynus grandisonae | Anura | DD | Arboreal | 27.063148 | 38.61693 | 34.33234 | 42.76702 |
Poyntonophrynus hoeschi | Anura | LC | Ground-dwelling | 21.808960 | 38.17733 | 34.38338 | 42.74312 |
Poyntonophrynus hoeschi | Anura | LC | Ground-dwelling | 19.997942 | 37.94149 | 34.09959 | 42.43306 |
Poyntonophrynus hoeschi | Anura | LC | Ground-dwelling | 24.506835 | 38.52865 | 34.43575 | 42.93288 |
Poyntonophrynus kavangensis | Anura | LC | Ground-dwelling | 23.860200 | 38.44684 | 33.98591 | 42.46323 |
Poyntonophrynus kavangensis | Anura | LC | Ground-dwelling | 22.640955 | 38.28619 | 33.84350 | 42.26377 |
Poyntonophrynus kavangensis | Anura | LC | Ground-dwelling | 26.170389 | 38.75122 | 34.49157 | 43.03953 |
Poyntonophrynus lughensis | Anura | LC | Ground-dwelling | 24.264083 | 38.52584 | 34.60763 | 43.13501 |
Poyntonophrynus lughensis | Anura | LC | Ground-dwelling | 23.484815 | 38.42403 | 34.47437 | 42.97317 |
Poyntonophrynus lughensis | Anura | LC | Ground-dwelling | 25.739384 | 38.71859 | 34.91432 | 43.44949 |
Poyntonophrynus parkeri | Anura | LC | Ground-dwelling | 21.921054 | 38.13860 | 34.39898 | 42.45987 |
Poyntonophrynus parkeri | Anura | LC | Ground-dwelling | 20.988335 | 38.01722 | 34.26190 | 42.30605 |
Poyntonophrynus parkeri | Anura | LC | Ground-dwelling | 23.992775 | 38.40821 | 34.86565 | 42.88659 |
Poyntonophrynus vertebralis | Anura | LC | Ground-dwelling | 20.623100 | 38.02136 | 33.99101 | 42.48872 |
Poyntonophrynus vertebralis | Anura | LC | Ground-dwelling | 19.102266 | 37.82371 | 33.92187 | 42.37211 |
Poyntonophrynus vertebralis | Anura | LC | Ground-dwelling | 23.319994 | 38.37185 | 33.80341 | 42.42066 |
Laurentophryne parkeri | Anura | DD | Ground-dwelling | 24.143899 | 38.43395 | 34.42054 | 42.42685 |
Laurentophryne parkeri | Anura | DD | Ground-dwelling | 23.402584 | 38.33934 | 34.23448 | 42.20878 |
Laurentophryne parkeri | Anura | DD | Ground-dwelling | 26.105081 | 38.68425 | 34.55610 | 42.65188 |
Metaphryniscus sosai | Anura | NT | Ground-dwelling | 25.661020 | 38.61156 | 34.85218 | 43.12351 |
Metaphryniscus sosai | Anura | NT | Ground-dwelling | 25.001401 | 38.52384 | 34.74903 | 42.98827 |
Metaphryniscus sosai | Anura | NT | Ground-dwelling | 27.238038 | 38.82127 | 34.26861 | 42.62870 |
Nannophryne apolobambica | Anura | CR | Ground-dwelling | 16.014487 | 37.34343 | 33.56737 | 41.56463 |
Nannophryne apolobambica | Anura | CR | Ground-dwelling | 15.217165 | 37.23772 | 33.56403 | 41.53704 |
Nannophryne apolobambica | Anura | CR | Ground-dwelling | 17.722618 | 37.56989 | 33.87420 | 41.88902 |
Nannophryne corynetes | Anura | EN | Ground-dwelling | 18.677429 | 37.70937 | 33.85138 | 41.70183 |
Nannophryne corynetes | Anura | EN | Ground-dwelling | 16.787942 | 37.46728 | 33.58744 | 41.48772 |
Nannophryne corynetes | Anura | EN | Ground-dwelling | 20.115611 | 37.89364 | 33.99710 | 41.76031 |
Nannophryne variegata | Anura | LC | Ground-dwelling | 10.857750 | 36.67935 | 32.24118 | 40.64011 |
Nannophryne variegata | Anura | LC | Ground-dwelling | 9.107686 | 36.44684 | 32.00846 | 40.45137 |
Nannophryne variegata | Anura | LC | Ground-dwelling | 14.778782 | 37.20029 | 33.05752 | 41.38707 |
Oreophrynella cryptica | Anura | NT | Ground-dwelling | 25.824577 | 38.68163 | 34.65916 | 43.55629 |
Oreophrynella cryptica | Anura | NT | Ground-dwelling | 25.051367 | 38.58193 | 34.66960 | 43.54210 |
Oreophrynella cryptica | Anura | NT | Ground-dwelling | 27.554962 | 38.90475 | 34.63634 | 43.64933 |
Oreophrynella dendronastes | Anura | DD | Arboreal | 26.634291 | 38.67705 | 34.59643 | 43.32701 |
Oreophrynella dendronastes | Anura | DD | Arboreal | 25.965013 | 38.58843 | 34.48987 | 43.21117 |
Oreophrynella dendronastes | Anura | DD | Arboreal | 28.137979 | 38.87617 | 34.83584 | 43.67347 |
Oreophrynella huberi | Anura | VU | Ground-dwelling | 26.013438 | 38.69396 | 34.40406 | 42.82431 |
Oreophrynella huberi | Anura | VU | Ground-dwelling | 25.225357 | 38.59148 | 34.37662 | 42.76953 |
Oreophrynella huberi | Anura | VU | Ground-dwelling | 27.691946 | 38.91222 | 34.78155 | 43.28636 |
Oreophrynella macconnelli | Anura | VU | Arboreal | 26.634291 | 38.62677 | 34.48543 | 43.10891 |
Oreophrynella macconnelli | Anura | VU | Arboreal | 25.965013 | 38.54007 | 34.13772 | 42.71546 |
Oreophrynella macconnelli | Anura | VU | Arboreal | 28.137979 | 38.82158 | 34.27878 | 43.02683 |
Oreophrynella nigra | Anura | VU | Ground-dwelling | 26.386750 | 38.76974 | 34.85094 | 43.37397 |
Oreophrynella nigra | Anura | VU | Ground-dwelling | 25.707210 | 38.68073 | 34.34543 | 42.82964 |
Oreophrynella nigra | Anura | VU | Ground-dwelling | 27.920527 | 38.97064 | 35.13999 | 43.64776 |
Oreophrynella quelchii | Anura | VU | Ground-dwelling | 26.386750 | 38.78424 | 34.56460 | 43.04755 |
Oreophrynella quelchii | Anura | VU | Ground-dwelling | 25.707210 | 38.69525 | 34.60258 | 43.05296 |
Oreophrynella quelchii | Anura | VU | Ground-dwelling | 27.920527 | 38.98509 | 34.67211 | 43.25790 |
Oreophrynella vasquezi | Anura | VU | Ground-dwelling | 25.638762 | 38.70834 | 34.42629 | 42.90462 |
Oreophrynella vasquezi | Anura | VU | Ground-dwelling | 24.915637 | 38.61399 | 34.33608 | 42.80436 |
Oreophrynella vasquezi | Anura | VU | Ground-dwelling | 27.345013 | 38.93096 | 34.46155 | 43.01361 |
Oreophrynella weiassipuensis | Anura | DD | Arboreal | 26.386750 | 38.52540 | 34.25043 | 42.59334 |
Oreophrynella weiassipuensis | Anura | DD | Arboreal | 25.707210 | 38.43741 | 34.11582 | 42.46483 |
Oreophrynella weiassipuensis | Anura | DD | Arboreal | 27.920527 | 38.72401 | 34.43499 | 42.80406 |
Osornophryne bufoniformis | Anura | NT | Ground-dwelling | 22.477925 | 38.12954 | 34.12142 | 42.30385 |
Osornophryne bufoniformis | Anura | NT | Ground-dwelling | 21.108842 | 37.95024 | 34.00869 | 42.14642 |
Osornophryne bufoniformis | Anura | NT | Ground-dwelling | 24.400338 | 38.38130 | 34.36053 | 42.63333 |
Osornophryne antisana | Anura | EN | Ground-dwelling | 21.879493 | 38.02503 | 33.90053 | 41.81284 |
Osornophryne antisana | Anura | EN | Ground-dwelling | 20.023597 | 37.78526 | 33.57747 | 41.50935 |
Osornophryne antisana | Anura | EN | Ground-dwelling | 24.280761 | 38.33526 | 34.18526 | 42.11604 |
Osornophryne percrassa | Anura | VU | Ground-dwelling | 22.409385 | 38.14893 | 33.90729 | 42.26327 |
Osornophryne percrassa | Anura | VU | Ground-dwelling | 21.593296 | 38.04146 | 33.77672 | 42.16893 |
Osornophryne percrassa | Anura | VU | Ground-dwelling | 23.972185 | 38.35474 | 34.10503 | 42.49365 |
Osornophryne puruanta | Anura | EN | Ground-dwelling | 22.043563 | 38.06454 | 34.09794 | 42.08780 |
Osornophryne puruanta | Anura | EN | Ground-dwelling | 20.823650 | 37.90297 | 33.89522 | 41.87317 |
Osornophryne puruanta | Anura | EN | Ground-dwelling | 23.766620 | 38.29274 | 34.22398 | 42.29480 |
Osornophryne cofanorum | Anura | LC | Arboreal | 22.043563 | 37.93738 | 33.73005 | 42.24738 |
Osornophryne cofanorum | Anura | LC | Arboreal | 20.823650 | 37.77668 | 33.58246 | 42.10028 |
Osornophryne cofanorum | Anura | LC | Arboreal | 23.766620 | 38.16435 | 33.76727 | 42.25707 |
Osornophryne guacamayo | Anura | VU | Ground-dwelling | 21.798297 | 38.05422 | 34.25901 | 42.16184 |
Osornophryne guacamayo | Anura | VU | Ground-dwelling | 20.205317 | 37.84834 | 33.96233 | 41.89451 |
Osornophryne guacamayo | Anura | VU | Ground-dwelling | 23.999839 | 38.33875 | 34.55695 | 42.53085 |
Osornophryne sumacoensis | Anura | VU | Ground-dwelling | 23.546002 | 38.35505 | 34.66131 | 42.58561 |
Osornophryne sumacoensis | Anura | VU | Ground-dwelling | 22.594071 | 38.22961 | 34.57005 | 42.43557 |
Osornophryne sumacoensis | Anura | VU | Ground-dwelling | 25.371396 | 38.59560 | 34.69565 | 42.66662 |
Osornophryne talipes | Anura | VU | Ground-dwelling | 22.798829 | 38.22693 | 33.86432 | 42.20462 |
Osornophryne talipes | Anura | VU | Ground-dwelling | 21.593918 | 38.06719 | 33.83191 | 42.13030 |
Osornophryne talipes | Anura | VU | Ground-dwelling | 24.513894 | 38.45429 | 34.25797 | 42.60087 |
Parapelophryne scalpta | Anura | VU | Ground-dwelling | 27.973108 | 39.12046 | 34.60266 | 43.35821 |
Parapelophryne scalpta | Anura | VU | Ground-dwelling | 27.367922 | 39.03908 | 34.57217 | 43.31464 |
Parapelophryne scalpta | Anura | VU | Ground-dwelling | 29.095461 | 39.27137 | 34.70983 | 43.54241 |
Peltophryne cataulaciceps | Anura | EN | Ground-dwelling | 27.342065 | 38.82950 | 34.48369 | 43.17013 |
Peltophryne cataulaciceps | Anura | EN | Ground-dwelling | 26.811429 | 38.75991 | 34.39526 | 43.08964 |
Peltophryne cataulaciceps | Anura | EN | Ground-dwelling | 28.180390 | 38.93943 | 34.59653 | 43.29209 |
Peltophryne longinasus | Anura | EN | Ground-dwelling | 27.472316 | 38.87717 | 34.94701 | 43.65756 |
Peltophryne longinasus | Anura | EN | Ground-dwelling | 26.963148 | 38.81040 | 34.88577 | 43.58300 |
Peltophryne longinasus | Anura | EN | Ground-dwelling | 28.313005 | 38.98742 | 35.01163 | 43.78067 |
Peltophryne gundlachi | Anura | VU | Ground-dwelling | 27.349678 | 38.74456 | 34.57894 | 42.97297 |
Peltophryne gundlachi | Anura | VU | Ground-dwelling | 26.856617 | 38.68012 | 34.52723 | 42.87752 |
Peltophryne gundlachi | Anura | VU | Ground-dwelling | 28.204192 | 38.85624 | 34.07472 | 42.49389 |
Peltophryne empusa | Anura | VU | Ground-dwelling | 27.419001 | 38.85450 | 35.15853 | 43.75779 |
Peltophryne empusa | Anura | VU | Ground-dwelling | 26.920430 | 38.78850 | 35.06508 | 43.65301 |
Peltophryne empusa | Anura | VU | Ground-dwelling | 28.264531 | 38.96644 | 34.73598 | 43.37364 |
Peltophryne florentinoi | Anura | CR | Ground-dwelling | 27.339951 | 38.81580 | 34.71995 | 43.07390 |
Peltophryne florentinoi | Anura | CR | Ground-dwelling | 26.841556 | 38.75078 | 34.64812 | 42.97427 |
Peltophryne florentinoi | Anura | CR | Ground-dwelling | 28.247420 | 38.93420 | 34.60303 | 43.00073 |
Peltophryne peltocephala | Anura | LC | Ground-dwelling | 27.451072 | 38.77991 | 34.51893 | 42.85427 |
Peltophryne peltocephala | Anura | LC | Ground-dwelling | 26.988578 | 38.71891 | 34.46162 | 42.76426 |
Peltophryne peltocephala | Anura | LC | Ground-dwelling | 28.261854 | 38.88684 | 34.61940 | 43.00884 |
Peltophryne fustiger | Anura | LC | Ground-dwelling | 27.328567 | 38.80075 | 34.79811 | 42.84236 |
Peltophryne fustiger | Anura | LC | Ground-dwelling | 26.784691 | 38.72908 | 34.73928 | 42.74969 |
Peltophryne fustiger | Anura | LC | Ground-dwelling | 28.239238 | 38.92077 | 34.88547 | 42.99133 |
Peltophryne taladai | Anura | VU | Ground-dwelling | 27.526040 | 38.82670 | 34.41995 | 42.76640 |
Peltophryne taladai | Anura | VU | Ground-dwelling | 27.061764 | 38.76606 | 34.38433 | 42.73933 |
Peltophryne taladai | Anura | VU | Ground-dwelling | 28.312350 | 38.92940 | 34.48026 | 42.80249 |
Peltophryne guentheri | Anura | LC | Ground-dwelling | 27.379774 | 38.77632 | 34.46853 | 42.97729 |
Peltophryne guentheri | Anura | LC | Ground-dwelling | 26.957644 | 38.72080 | 34.43543 | 42.92663 |
Peltophryne guentheri | Anura | LC | Ground-dwelling | 28.111792 | 38.87259 | 34.52595 | 43.08206 |
Peltophryne lemur | Anura | EN | Ground-dwelling | 27.004618 | 38.82474 | 34.33289 | 42.60214 |
Peltophryne lemur | Anura | EN | Ground-dwelling | 26.528828 | 38.76174 | 34.27613 | 42.50094 |
Peltophryne lemur | Anura | EN | Ground-dwelling | 27.685432 | 38.91490 | 34.46548 | 42.78535 |
Pseudobufo subasper | Anura | LC | Aquatic | 28.708095 | 38.99219 | 34.78689 | 43.46428 |
Pseudobufo subasper | Anura | LC | Aquatic | 28.034572 | 38.90458 | 34.95065 | 43.56281 |
Pseudobufo subasper | Anura | LC | Aquatic | 30.116301 | 39.17538 | 34.91975 | 43.62273 |
Rhaebo blombergi | Anura | NT | Ground-dwelling | 24.994174 | 38.38047 | 34.49939 | 42.44792 |
Rhaebo blombergi | Anura | NT | Ground-dwelling | 24.205040 | 38.27450 | 34.42686 | 42.34874 |
Rhaebo blombergi | Anura | NT | Ground-dwelling | 26.438534 | 38.57445 | 34.78603 | 42.73245 |
Rhaebo caeruleostictus | Anura | EN | Ground-dwelling | 23.758887 | 38.22747 | 34.28842 | 42.25160 |
Rhaebo caeruleostictus | Anura | EN | Ground-dwelling | 22.324464 | 38.03757 | 34.04001 | 41.93042 |
Rhaebo caeruleostictus | Anura | EN | Ground-dwelling | 25.862675 | 38.50598 | 34.58851 | 42.62532 |
Rhaebo glaberrimus | Anura | LC | Stream-dwelling | 25.116536 | 37.82037 | 33.66337 | 41.74773 |
Rhaebo glaberrimus | Anura | LC | Stream-dwelling | 24.390026 | 37.72516 | 33.46149 | 41.51044 |
Rhaebo glaberrimus | Anura | LC | Stream-dwelling | 26.503189 | 38.00209 | 33.79145 | 41.93748 |
Rhaebo guttatus | Anura | LC | Ground-dwelling | 27.457083 | 38.67279 | 34.61641 | 42.50508 |
Rhaebo guttatus | Anura | LC | Ground-dwelling | 26.701987 | 38.57315 | 34.53804 | 42.37519 |
Rhaebo guttatus | Anura | LC | Ground-dwelling | 29.062147 | 38.88459 | 34.84624 | 42.81124 |
Rhaebo hypomelas | Anura | LC | Ground-dwelling | 24.763365 | 38.35966 | 34.44980 | 42.28362 |
Rhaebo hypomelas | Anura | LC | Ground-dwelling | 23.971174 | 38.25719 | 34.37219 | 42.20838 |
Rhaebo hypomelas | Anura | LC | Ground-dwelling | 26.142791 | 38.53808 | 34.50350 | 42.41574 |
Rhaebo lynchi | Anura | DD | Ground-dwelling | 26.219010 | 38.52874 | 34.33630 | 42.29904 |
Rhaebo lynchi | Anura | DD | Ground-dwelling | 25.544335 | 38.44174 | 34.22811 | 42.17844 |
Rhaebo lynchi | Anura | DD | Ground-dwelling | 27.553766 | 38.70085 | 34.56695 | 42.62257 |
Rhaebo nasicus | Anura | LC | Stream-dwelling | 26.282545 | 37.96298 | 34.02916 | 41.85040 |
Rhaebo nasicus | Anura | LC | Stream-dwelling | 25.574936 | 37.87085 | 33.83484 | 41.62686 |
Rhaebo nasicus | Anura | LC | Stream-dwelling | 27.841494 | 38.16595 | 34.17596 | 42.06698 |
Truebella skoptes | Anura | DD | Arboreal | 16.870590 | 37.39331 | 33.44715 | 41.42367 |
Truebella skoptes | Anura | DD | Arboreal | 16.060145 | 37.28890 | 33.51421 | 41.49052 |
Truebella skoptes | Anura | DD | Arboreal | 18.188627 | 37.56312 | 33.56077 | 41.58838 |
Truebella tothastes | Anura | EN | Ground-dwelling | 17.246028 | 37.54141 | 33.42340 | 41.40448 |
Truebella tothastes | Anura | EN | Ground-dwelling | 15.244695 | 37.28106 | 33.26436 | 41.17610 |
Truebella tothastes | Anura | EN | Ground-dwelling | 18.862491 | 37.75169 | 33.44322 | 41.49295 |
Frostius erythrophthalmus | Anura | DD | Ground-dwelling | 24.625151 | 38.48174 | 34.36483 | 42.61011 |
Frostius erythrophthalmus | Anura | DD | Ground-dwelling | 23.579173 | 38.34403 | 34.21190 | 42.45509 |
Frostius erythrophthalmus | Anura | DD | Ground-dwelling | 26.746440 | 38.76102 | 34.67500 | 42.97263 |
Frostius pernambucensis | Anura | LC | Ground-dwelling | 25.359778 | 38.66705 | 34.08124 | 42.49829 |
Frostius pernambucensis | Anura | LC | Ground-dwelling | 24.455316 | 38.54829 | 33.85970 | 42.20694 |
Frostius pernambucensis | Anura | LC | Ground-dwelling | 26.769909 | 38.85221 | 34.86087 | 43.30525 |
Melanophryniscus admirabilis | Anura | CR | Stream-dwelling | 25.161922 | 37.76097 | 33.52663 | 41.75191 |
Melanophryniscus admirabilis | Anura | CR | Stream-dwelling | 23.375510 | 37.52768 | 33.52079 | 41.69720 |
Melanophryniscus admirabilis | Anura | CR | Stream-dwelling | 27.596386 | 38.07890 | 34.19490 | 42.48874 |
Melanophryniscus alipioi | Anura | DD | Ground-dwelling | 23.836674 | 38.14059 | 34.10522 | 41.90769 |
Melanophryniscus alipioi | Anura | DD | Ground-dwelling | 21.947547 | 37.88878 | 33.94493 | 41.67335 |
Melanophryniscus alipioi | Anura | DD | Ground-dwelling | 26.445416 | 38.48832 | 34.25411 | 42.14219 |
Melanophryniscus atroluteus | Anura | LC | Ground-dwelling | 24.524564 | 38.26362 | 34.47186 | 42.32503 |
Melanophryniscus atroluteus | Anura | LC | Ground-dwelling | 22.689610 | 38.02431 | 34.33405 | 42.17141 |
Melanophryniscus atroluteus | Anura | LC | Ground-dwelling | 27.607311 | 38.66566 | 34.72769 | 42.68275 |
Melanophryniscus cambaraensis | Anura | DD | Stream-dwelling | 24.426399 | 37.76112 | 33.62255 | 41.51137 |
Melanophryniscus cambaraensis | Anura | DD | Stream-dwelling | 22.464546 | 37.50273 | 33.52975 | 41.30368 |
Melanophryniscus cambaraensis | Anura | DD | Stream-dwelling | 27.134302 | 38.11776 | 34.17187 | 42.20578 |
Melanophryniscus cupreuscapularis | Anura | NT | Ground-dwelling | 26.975310 | 38.61314 | 34.39002 | 42.42071 |
Melanophryniscus cupreuscapularis | Anura | NT | Ground-dwelling | 25.294098 | 38.38788 | 34.17720 | 42.13746 |
Melanophryniscus cupreuscapularis | Anura | NT | Ground-dwelling | 29.456413 | 38.94558 | 34.73656 | 42.93156 |
Melanophryniscus dorsalis | Anura | VU | Ground-dwelling | 24.072478 | 38.33972 | 34.15230 | 42.26564 |
Melanophryniscus dorsalis | Anura | VU | Ground-dwelling | 22.357521 | 38.10861 | 34.05226 | 42.06789 |
Melanophryniscus dorsalis | Anura | VU | Ground-dwelling | 26.575175 | 38.67699 | 34.40675 | 42.65519 |
Melanophryniscus fulvoguttatus | Anura | LC | Ground-dwelling | 27.641975 | 38.66088 | 34.50391 | 43.13397 |
Melanophryniscus fulvoguttatus | Anura | LC | Ground-dwelling | 26.242134 | 38.47390 | 34.33319 | 42.91014 |
Melanophryniscus fulvoguttatus | Anura | LC | Ground-dwelling | 30.169295 | 38.99844 | 34.82991 | 43.62988 |
Melanophryniscus klappenbachi | Anura | LC | Ground-dwelling | 27.397163 | 38.64414 | 34.33673 | 42.58322 |
Melanophryniscus klappenbachi | Anura | LC | Ground-dwelling | 25.881645 | 38.44451 | 34.26887 | 42.46929 |
Melanophryniscus klappenbachi | Anura | LC | Ground-dwelling | 30.064492 | 38.99551 | 34.62053 | 43.07367 |
Melanophryniscus stelzneri | Anura | LC | Ground-dwelling | 21.266429 | 37.84866 | 34.13970 | 42.04356 |
Melanophryniscus stelzneri | Anura | LC | Ground-dwelling | 19.418980 | 37.60681 | 33.94523 | 41.81156 |
Melanophryniscus stelzneri | Anura | LC | Ground-dwelling | 24.429108 | 38.26269 | 34.43272 | 42.54264 |
Melanophryniscus langonei | Anura | CR | Stream-dwelling | 24.376416 | 37.54701 | 33.08471 | 41.37421 |
Melanophryniscus langonei | Anura | CR | Stream-dwelling | 22.454900 | 37.29225 | 32.94648 | 41.11076 |
Melanophryniscus langonei | Anura | CR | Stream-dwelling | 27.839004 | 38.00608 | 33.44400 | 41.92862 |
Melanophryniscus macrogranulosus | Anura | VU | Ground-dwelling | 24.608530 | 38.20986 | 34.13458 | 41.89873 |
Melanophryniscus macrogranulosus | Anura | VU | Ground-dwelling | 22.661462 | 37.94966 | 33.92470 | 41.64528 |
Melanophryniscus macrogranulosus | Anura | VU | Ground-dwelling | 27.384873 | 38.58087 | 34.32916 | 42.23238 |
Melanophryniscus montevidensis | Anura | VU | Ground-dwelling | 21.911915 | 37.86973 | 33.56777 | 41.79041 |
Melanophryniscus montevidensis | Anura | VU | Ground-dwelling | 20.254952 | 37.64878 | 33.31251 | 41.50213 |
Melanophryniscus montevidensis | Anura | VU | Ground-dwelling | 24.469373 | 38.21077 | 33.91282 | 42.12053 |
Melanophryniscus moreirae | Anura | NT | Ground-dwelling | 26.367176 | 38.50254 | 34.75267 | 42.80932 |
Melanophryniscus moreirae | Anura | NT | Ground-dwelling | 25.114381 | 38.33751 | 34.46326 | 42.45876 |
Melanophryniscus moreirae | Anura | NT | Ground-dwelling | 28.661754 | 38.80479 | 34.90128 | 43.11236 |
Melanophryniscus orejasmirandai | Anura | VU | Ground-dwelling | 21.605243 | 37.98541 | 34.09207 | 42.10424 |
Melanophryniscus orejasmirandai | Anura | VU | Ground-dwelling | 19.960698 | 37.76419 | 33.92451 | 41.85494 |
Melanophryniscus orejasmirandai | Anura | VU | Ground-dwelling | 24.021879 | 38.31048 | 34.49765 | 42.62600 |
Melanophryniscus pachyrhynus | Anura | DD | Ground-dwelling | 23.818283 | 38.23917 | 34.38447 | 42.14174 |
Melanophryniscus pachyrhynus | Anura | DD | Ground-dwelling | 21.870936 | 37.97973 | 34.05178 | 41.88764 |
Melanophryniscus pachyrhynus | Anura | DD | Ground-dwelling | 26.817409 | 38.63872 | 34.61017 | 42.50146 |
Melanophryniscus peritus | Anura | CR | Ground-dwelling | 26.025124 | 38.47307 | 34.46099 | 42.43498 |
Melanophryniscus peritus | Anura | CR | Ground-dwelling | 24.731811 | 38.30298 | 34.41222 | 42.33711 |
Melanophryniscus peritus | Anura | CR | Ground-dwelling | 28.479398 | 38.79583 | 34.66934 | 42.77401 |
Melanophryniscus sanmartini | Anura | NT | Ground-dwelling | 22.690220 | 38.06819 | 34.24270 | 42.69877 |
Melanophryniscus sanmartini | Anura | NT | Ground-dwelling | 20.937435 | 37.83299 | 33.78548 | 42.20263 |
Melanophryniscus sanmartini | Anura | NT | Ground-dwelling | 25.682122 | 38.46964 | 34.26102 | 42.88521 |
Melanophryniscus simplex | Anura | DD | Ground-dwelling | 24.622594 | 38.37298 | 33.87274 | 42.02199 |
Melanophryniscus simplex | Anura | DD | Ground-dwelling | 22.967796 | 38.15157 | 33.83180 | 41.88594 |
Melanophryniscus simplex | Anura | DD | Ground-dwelling | 27.106172 | 38.70528 | 34.07957 | 42.24136 |
Melanophryniscus spectabilis | Anura | DD | Ground-dwelling | 25.030061 | 38.35169 | 34.52513 | 42.63882 |
Melanophryniscus spectabilis | Anura | DD | Ground-dwelling | 23.208995 | 38.11384 | 33.95686 | 41.90232 |
Melanophryniscus spectabilis | Anura | DD | Ground-dwelling | 27.534925 | 38.67886 | 34.54847 | 42.76562 |
Melanophryniscus tumifrons | Anura | LC | Ground-dwelling | 24.668042 | 38.39121 | 34.25004 | 42.43669 |
Melanophryniscus tumifrons | Anura | LC | Ground-dwelling | 22.846535 | 38.14786 | 34.18146 | 42.28134 |
Melanophryniscus tumifrons | Anura | LC | Ground-dwelling | 27.422265 | 38.75916 | 34.54868 | 42.84893 |
Edalorhina nasuta | Anura | DD | Ground-dwelling | 21.012652 | 39.08113 | 35.37283 | 42.15586 |
Edalorhina nasuta | Anura | DD | Ground-dwelling | 20.177954 | 38.96960 | 35.35364 | 42.08606 |
Edalorhina nasuta | Anura | DD | Ground-dwelling | 22.689323 | 39.30516 | 35.54556 | 42.41413 |
Engystomops montubio | Anura | LC | Ground-dwelling | 24.548200 | 39.99637 | 37.20654 | 43.18261 |
Engystomops montubio | Anura | LC | Ground-dwelling | 23.589728 | 39.86997 | 37.11331 | 43.05486 |
Engystomops montubio | Anura | LC | Ground-dwelling | 26.277446 | 40.22440 | 37.21253 | 43.40838 |
Engystomops pustulatus | Anura | LC | Ground-dwelling | 24.708663 | 39.76873 | 36.54329 | 42.94884 |
Engystomops pustulatus | Anura | LC | Ground-dwelling | 23.711489 | 39.63796 | 36.58441 | 42.94299 |
Engystomops pustulatus | Anura | LC | Ground-dwelling | 26.509715 | 40.00492 | 36.71629 | 43.22805 |
Physalaemus caete | Anura | DD | Ground-dwelling | 25.573034 | 40.05231 | 37.01912 | 42.72039 |
Physalaemus caete | Anura | DD | Ground-dwelling | 24.683095 | 39.93250 | 36.92683 | 42.52708 |
Physalaemus caete | Anura | DD | Ground-dwelling | 26.789673 | 40.21609 | 37.18968 | 43.04928 |
Physalaemus aguirrei | Anura | LC | Ground-dwelling | 25.347903 | 39.78995 | 35.93693 | 43.31638 |
Physalaemus aguirrei | Anura | LC | Ground-dwelling | 24.555678 | 39.68484 | 35.84713 | 43.17944 |
Physalaemus aguirrei | Anura | LC | Ground-dwelling | 26.879017 | 39.99310 | 36.03207 | 43.45101 |
Physalaemus irroratus | Anura | DD | Ground-dwelling | 25.318445 | 39.71872 | 36.01828 | 43.19487 |
Physalaemus irroratus | Anura | DD | Ground-dwelling | 24.474568 | 39.60986 | 35.93778 | 43.08521 |
Physalaemus irroratus | Anura | DD | Ground-dwelling | 27.186891 | 39.95974 | 36.20264 | 43.48057 |
Physalaemus maculiventris | Anura | LC | Semi-aquatic | 25.447334 | 40.01305 | 36.52307 | 43.94714 |
Physalaemus maculiventris | Anura | LC | Semi-aquatic | 24.097712 | 39.83481 | 36.31845 | 43.71400 |
Physalaemus maculiventris | Anura | LC | Semi-aquatic | 27.707872 | 40.31159 | 36.69696 | 44.33930 |
Physalaemus moreirae | Anura | DD | Ground-dwelling | 25.767088 | 39.77481 | 36.18142 | 43.77952 |
Physalaemus moreirae | Anura | DD | Ground-dwelling | 24.218770 | 39.57248 | 36.00513 | 43.47644 |
Physalaemus moreirae | Anura | DD | Ground-dwelling | 28.316567 | 40.10797 | 36.53664 | 44.37486 |
Physalaemus albifrons | Anura | LC | Semi-aquatic | 25.688588 | 39.89564 | 37.06648 | 42.86951 |
Physalaemus albifrons | Anura | LC | Semi-aquatic | 24.676645 | 39.75962 | 36.87602 | 42.58430 |
Physalaemus albifrons | Anura | LC | Semi-aquatic | 27.464433 | 40.13435 | 36.99666 | 42.91752 |
Physalaemus centralis | Anura | LC | Ground-dwelling | 27.118340 | 39.36646 | 36.36388 | 42.21582 |
Physalaemus centralis | Anura | LC | Ground-dwelling | 26.015547 | 39.21791 | 36.18842 | 42.00131 |
Physalaemus centralis | Anura | LC | Ground-dwelling | 29.342062 | 39.66602 | 36.73447 | 42.75952 |
Physalaemus ephippifer | Anura | LC | Ground-dwelling | 27.665929 | 39.23497 | 36.11043 | 42.30167 |
Physalaemus ephippifer | Anura | LC | Ground-dwelling | 27.000143 | 39.14541 | 36.05084 | 42.18700 |
Physalaemus ephippifer | Anura | LC | Ground-dwelling | 29.183120 | 39.43907 | 36.23437 | 42.55704 |
Physalaemus erythros | Anura | DD | Ground-dwelling | 25.413877 | 39.19044 | 36.36692 | 42.18259 |
Physalaemus erythros | Anura | DD | Ground-dwelling | 24.128092 | 39.01648 | 36.12352 | 41.90979 |
Physalaemus erythros | Anura | DD | Ground-dwelling | 28.001458 | 39.54052 | 36.76521 | 42.77328 |
Physalaemus maximus | Anura | DD | Ground-dwelling | 25.173616 | 39.12034 | 35.99283 | 42.20695 |
Physalaemus maximus | Anura | DD | Ground-dwelling | 23.824675 | 38.94292 | 35.80397 | 41.91005 |
Physalaemus maximus | Anura | DD | Ground-dwelling | 27.850939 | 39.47248 | 36.27050 | 42.66748 |
Physalaemus angrensis | Anura | DD | Ground-dwelling | 26.367176 | 39.85932 | 36.35604 | 43.82815 |
Physalaemus angrensis | Anura | DD | Ground-dwelling | 25.114381 | 39.69240 | 36.17443 | 43.59663 |
Physalaemus angrensis | Anura | DD | Ground-dwelling | 28.661754 | 40.16504 | 36.36014 | 43.81925 |
Physalaemus rupestris | Anura | DD | Ground-dwelling | 25.729467 | 39.74377 | 36.05727 | 43.47314 |
Physalaemus rupestris | Anura | DD | Ground-dwelling | 24.488809 | 39.58109 | 36.34853 | 43.67264 |
Physalaemus rupestris | Anura | DD | Ground-dwelling | 27.741619 | 40.00763 | 36.23388 | 43.75923 |
Physalaemus atlanticus | Anura | VU | Ground-dwelling | 24.611884 | 40.45065 | 37.50055 | 43.85953 |
Physalaemus atlanticus | Anura | VU | Ground-dwelling | 23.481290 | 40.30316 | 37.41619 | 43.66172 |
Physalaemus atlanticus | Anura | VU | Ground-dwelling | 26.483027 | 40.69476 | 37.21330 | 43.73906 |
Physalaemus santafecinus | Anura | LC | Semi-aquatic | 26.197578 | 40.79615 | 37.36602 | 43.80096 |
Physalaemus santafecinus | Anura | LC | Semi-aquatic | 24.417318 | 40.56253 | 37.42819 | 43.77898 |
Physalaemus santafecinus | Anura | LC | Semi-aquatic | 29.181480 | 41.18773 | 37.69158 | 44.27517 |
Physalaemus spiniger | Anura | LC | Ground-dwelling | 25.419615 | 40.39689 | 37.01209 | 43.85590 |
Physalaemus spiniger | Anura | LC | Ground-dwelling | 23.884363 | 40.19909 | 36.87625 | 43.60548 |
Physalaemus spiniger | Anura | LC | Ground-dwelling | 27.874749 | 40.71321 | 37.38985 | 44.39504 |
Physalaemus barrioi | Anura | DD | Ground-dwelling | 26.367176 | 39.48898 | 36.07928 | 42.26701 |
Physalaemus barrioi | Anura | DD | Ground-dwelling | 25.114381 | 39.32345 | 36.06159 | 42.18082 |
Physalaemus barrioi | Anura | DD | Ground-dwelling | 28.661754 | 39.79217 | 36.62662 | 43.00446 |
Physalaemus biligonigerus | Anura | LC | Ground-dwelling | 25.536829 | 39.39662 | 36.23183 | 42.80814 |
Physalaemus biligonigerus | Anura | LC | Ground-dwelling | 23.961950 | 39.18669 | 36.12693 | 42.60710 |
Physalaemus biligonigerus | Anura | LC | Ground-dwelling | 28.329558 | 39.76890 | 36.59577 | 43.37345 |
Physalaemus jordanensis | Anura | DD | Ground-dwelling | 25.494788 | 39.52938 | 36.74974 | 42.31476 |
Physalaemus jordanensis | Anura | DD | Ground-dwelling | 24.170422 | 39.35554 | 36.60736 | 42.09157 |
Physalaemus jordanensis | Anura | DD | Ground-dwelling | 27.878316 | 39.84223 | 36.95696 | 42.68672 |
Physalaemus bokermanni | Anura | DD | Ground-dwelling | 25.405019 | 39.88462 | 36.85744 | 43.17111 |
Physalaemus bokermanni | Anura | DD | Ground-dwelling | 23.841325 | 39.67745 | 36.61961 | 42.83167 |
Physalaemus bokermanni | Anura | DD | Ground-dwelling | 27.977586 | 40.22546 | 37.47054 | 44.00663 |
Physalaemus cuqui | Anura | LC | Semi-aquatic | 23.566375 | 39.96886 | 37.03304 | 42.96840 |
Physalaemus cuqui | Anura | LC | Semi-aquatic | 22.042177 | 39.76960 | 37.03589 | 42.92848 |
Physalaemus cuqui | Anura | LC | Semi-aquatic | 25.882039 | 40.27158 | 37.28676 | 43.29322 |
Physalaemus kroyeri | Anura | LC | Ground-dwelling | 25.116057 | 39.85603 | 36.92717 | 43.16804 |
Physalaemus kroyeri | Anura | LC | Ground-dwelling | 24.046624 | 39.71651 | 36.88704 | 43.04522 |
Physalaemus kroyeri | Anura | LC | Ground-dwelling | 27.096290 | 40.11438 | 37.12810 | 43.48344 |
Physalaemus fernandezae | Anura | LC | Ground-dwelling | 21.347061 | 38.50435 | 35.18917 | 41.60942 |
Physalaemus fernandezae | Anura | LC | Ground-dwelling | 19.539597 | 38.26157 | 34.99603 | 41.43131 |
Physalaemus fernandezae | Anura | LC | Ground-dwelling | 24.328282 | 38.90479 | 35.37288 | 41.89811 |
Physalaemus deimaticus | Anura | DD | Ground-dwelling | 24.239549 | 39.58526 | 36.05843 | 43.34975 |
Physalaemus deimaticus | Anura | DD | Ground-dwelling | 22.780848 | 39.39189 | 35.90134 | 43.14193 |
Physalaemus deimaticus | Anura | DD | Ground-dwelling | 26.761978 | 39.91964 | 36.40626 | 43.77373 |
Physalaemus insperatus | Anura | DD | Ground-dwelling | 24.139907 | 39.56887 | 35.73957 | 43.36704 |
Physalaemus insperatus | Anura | DD | Ground-dwelling | 22.399972 | 39.34117 | 35.60757 | 43.19431 |
Physalaemus insperatus | Anura | DD | Ground-dwelling | 26.818981 | 39.91948 | 36.12052 | 43.75014 |
Physalaemus evangelistai | Anura | DD | Ground-dwelling | 24.826713 | 39.62629 | 36.05076 | 43.73957 |
Physalaemus evangelistai | Anura | DD | Ground-dwelling | 23.454470 | 39.44439 | 35.84268 | 43.51732 |
Physalaemus evangelistai | Anura | DD | Ground-dwelling | 27.381718 | 39.96496 | 36.29478 | 44.16535 |
Physalaemus nanus | Anura | LC | Ground-dwelling | 24.433707 | 39.56505 | 35.88511 | 43.26843 |
Physalaemus nanus | Anura | LC | Ground-dwelling | 22.696087 | 39.33571 | 35.74532 | 43.03793 |
Physalaemus nanus | Anura | LC | Ground-dwelling | 27.026981 | 39.90732 | 36.25018 | 43.72464 |
Physalaemus fischeri | Anura | LC | Ground-dwelling | 26.496327 | 39.81263 | 36.19761 | 43.88160 |
Physalaemus fischeri | Anura | LC | Ground-dwelling | 25.642603 | 39.70001 | 36.14045 | 43.75738 |
Physalaemus fischeri | Anura | LC | Ground-dwelling | 28.151526 | 40.03098 | 36.35467 | 44.06438 |
Physalaemus olfersii | Anura | LC | Ground-dwelling | 25.340978 | 39.66199 | 35.69566 | 43.22666 |
Physalaemus olfersii | Anura | LC | Ground-dwelling | 24.031589 | 39.49043 | 35.56998 | 43.06600 |
Physalaemus olfersii | Anura | LC | Ground-dwelling | 27.558587 | 39.95256 | 35.95991 | 43.60421 |
Physalaemus lisei | Anura | LC | Ground-dwelling | 24.289874 | 39.52329 | 35.88537 | 42.94745 |
Physalaemus lisei | Anura | LC | Ground-dwelling | 22.492919 | 39.28479 | 35.68702 | 42.70019 |
Physalaemus lisei | Anura | LC | Ground-dwelling | 27.032103 | 39.88726 | 36.16639 | 43.32238 |
Physalaemus marmoratus | Anura | LC | Semi-aquatic | 26.612461 | 41.18121 | 37.78308 | 44.59943 |
Physalaemus marmoratus | Anura | LC | Semi-aquatic | 25.468178 | 41.03037 | 37.53592 | 44.31551 |
Physalaemus marmoratus | Anura | LC | Semi-aquatic | 28.857230 | 41.47712 | 37.73435 | 44.72448 |
Physalaemus obtectus | Anura | DD | Ground-dwelling | 25.439976 | 39.71956 | 36.17445 | 43.33973 |
Physalaemus obtectus | Anura | DD | Ground-dwelling | 24.371888 | 39.57992 | 36.02429 | 43.16176 |
Physalaemus obtectus | Anura | DD | Ground-dwelling | 27.592530 | 40.00098 | 36.28673 | 43.59998 |
Physalaemus soaresi | Anura | EN | Ground-dwelling | 26.021599 | 39.79564 | 35.99424 | 43.40109 |
Physalaemus soaresi | Anura | EN | Ground-dwelling | 24.831798 | 39.63950 | 35.86122 | 43.19535 |
Physalaemus soaresi | Anura | EN | Ground-dwelling | 27.814199 | 40.03089 | 36.36110 | 43.86535 |
Pleurodema borellii | Anura | LC | Ground-dwelling | 20.279145 | 39.84197 | 36.90049 | 43.19920 |
Pleurodema borellii | Anura | LC | Ground-dwelling | 18.563068 | 39.61807 | 36.72340 | 42.94429 |
Pleurodema borellii | Anura | LC | Ground-dwelling | 23.570305 | 40.27137 | 36.96536 | 43.33371 |
Pleurodema cinereum | Anura | LC | Ground-dwelling | 16.522737 | 39.36866 | 36.21707 | 42.41941 |
Pleurodema cinereum | Anura | LC | Ground-dwelling | 15.247655 | 39.20039 | 36.09118 | 42.30865 |
Pleurodema cinereum | Anura | LC | Ground-dwelling | 18.831059 | 39.67327 | 36.41590 | 42.59176 |
Pleurodema fuscomaculatum | Anura | DD | Ground-dwelling | 28.055012 | 40.82912 | 37.18344 | 44.10533 |
Pleurodema fuscomaculatum | Anura | DD | Ground-dwelling | 27.161795 | 40.71095 | 37.32755 | 44.22621 |
Pleurodema fuscomaculatum | Anura | DD | Ground-dwelling | 29.930085 | 41.07719 | 37.30575 | 44.33353 |
Pleurodema bibroni | Anura | NT | Ground-dwelling | 24.091148 | 39.08195 | 36.04125 | 41.68885 |
Pleurodema bibroni | Anura | NT | Ground-dwelling | 22.267969 | 38.83482 | 35.84672 | 41.37029 |
Pleurodema bibroni | Anura | NT | Ground-dwelling | 27.110885 | 39.49127 | 36.36078 | 42.15804 |
Pleurodema kriegi | Anura | NT | Ground-dwelling | 22.767744 | 38.87985 | 36.07738 | 41.86014 |
Pleurodema kriegi | Anura | NT | Ground-dwelling | 20.660679 | 38.59692 | 35.72092 | 41.36596 |
Pleurodema kriegi | Anura | NT | Ground-dwelling | 26.547062 | 39.38732 | 36.45051 | 42.48903 |
Pleurodema guayapae | Anura | LC | Ground-dwelling | 23.274886 | 39.78009 | 36.79571 | 42.40357 |
Pleurodema guayapae | Anura | LC | Ground-dwelling | 21.433220 | 39.54036 | 36.75710 | 42.18917 |
Pleurodema guayapae | Anura | LC | Ground-dwelling | 26.396576 | 40.18643 | 37.22456 | 43.06512 |
Pseudopaludicola mystacalis | Anura | LC | Semi-aquatic | 26.343088 | 39.94350 | 35.86987 | 44.31304 |
Pseudopaludicola mystacalis | Anura | LC | Semi-aquatic | 25.057833 | 39.77456 | 35.57205 | 43.98916 |
Pseudopaludicola mystacalis | Anura | LC | Semi-aquatic | 28.688588 | 40.25178 | 36.06270 | 44.61732 |
Pseudopaludicola boliviana | Anura | LC | Ground-dwelling | 27.471463 | 40.06113 | 36.30227 | 43.76713 |
Pseudopaludicola boliviana | Anura | LC | Ground-dwelling | 26.606348 | 39.94980 | 36.28587 | 43.67489 |
Pseudopaludicola boliviana | Anura | LC | Ground-dwelling | 29.295213 | 40.29584 | 36.43450 | 43.97230 |
Pseudopaludicola pusilla | Anura | LC | Ground-dwelling | 26.358857 | 39.99363 | 36.32340 | 44.22589 |
Pseudopaludicola pusilla | Anura | LC | Ground-dwelling | 25.528835 | 39.88510 | 36.11678 | 44.01377 |
Pseudopaludicola pusilla | Anura | LC | Ground-dwelling | 28.005748 | 40.20897 | 35.71282 | 43.74832 |
Pseudopaludicola saltica | Anura | LC | Ground-dwelling | 26.514153 | 40.07759 | 36.20718 | 44.06774 |
Pseudopaludicola saltica | Anura | LC | Ground-dwelling | 25.308992 | 39.91951 | 36.39391 | 44.18877 |
Pseudopaludicola saltica | Anura | LC | Ground-dwelling | 28.826744 | 40.38095 | 36.89234 | 44.90680 |
Pseudopaludicola canga | Anura | DD | Ground-dwelling | 27.812266 | 40.07950 | 35.93791 | 43.95080 |
Pseudopaludicola canga | Anura | DD | Ground-dwelling | 27.054275 | 39.98072 | 35.84422 | 43.81983 |
Pseudopaludicola canga | Anura | DD | Ground-dwelling | 29.368989 | 40.28236 | 36.06534 | 44.21850 |
Pseudopaludicola mineira | Anura | DD | Ground-dwelling | 24.239549 | 39.59644 | 35.94058 | 43.56732 |
Pseudopaludicola mineira | Anura | DD | Ground-dwelling | 22.780848 | 39.41040 | 35.72256 | 43.33465 |
Pseudopaludicola mineira | Anura | DD | Ground-dwelling | 26.761978 | 39.91815 | 35.65172 | 43.33953 |
Pseudopaludicola llanera | Anura | LC | Ground-dwelling | 26.602201 | 39.88934 | 35.93874 | 44.07161 |
Pseudopaludicola llanera | Anura | LC | Ground-dwelling | 25.736558 | 39.78022 | 35.53040 | 43.64197 |
Pseudopaludicola llanera | Anura | LC | Ground-dwelling | 28.294131 | 40.10263 | 35.96266 | 44.18328 |
Pseudopaludicola ternetzi | Anura | LC | Ground-dwelling | 26.261083 | 40.14106 | 36.57026 | 43.47394 |
Pseudopaludicola ternetzi | Anura | LC | Ground-dwelling | 25.066050 | 39.98671 | 36.22743 | 43.06582 |
Pseudopaludicola ternetzi | Anura | LC | Ground-dwelling | 28.504573 | 40.43081 | 36.94021 | 43.92551 |
Crossodactylodes bokermanni | Anura | NT | Arboreal | 25.586483 | 39.26399 | 35.17932 | 43.29848 |
Crossodactylodes bokermanni | Anura | NT | Arboreal | 24.778278 | 39.15888 | 35.12339 | 43.18292 |
Crossodactylodes bokermanni | Anura | NT | Arboreal | 27.180488 | 39.47131 | 35.40867 | 43.61959 |
Crossodactylodes izecksohni | Anura | NT | Ground-dwelling | 25.507727 | 39.36534 | 35.13034 | 43.36211 |
Crossodactylodes izecksohni | Anura | NT | Ground-dwelling | 24.733105 | 39.26377 | 35.06349 | 43.26256 |
Crossodactylodes izecksohni | Anura | NT | Ground-dwelling | 27.100258 | 39.57415 | 35.25011 | 43.56677 |
Crossodactylodes pintoi | Anura | DD | Ground-dwelling | 26.644333 | 39.54658 | 35.25170 | 43.43737 |
Crossodactylodes pintoi | Anura | DD | Ground-dwelling | 25.472962 | 39.39169 | 35.09026 | 43.22317 |
Crossodactylodes pintoi | Anura | DD | Ground-dwelling | 28.583817 | 39.80303 | 35.71753 | 43.92256 |
Paratelmatobius mantiqueira | Anura | DD | Ground-dwelling | 25.819660 | 39.39039 | 35.75327 | 43.92231 |
Paratelmatobius mantiqueira | Anura | DD | Ground-dwelling | 24.519545 | 39.21846 | 35.09383 | 43.20376 |
Paratelmatobius mantiqueira | Anura | DD | Ground-dwelling | 28.235919 | 39.70993 | 35.79914 | 44.07409 |
Paratelmatobius cardosoi | Anura | DD | Ground-dwelling | 24.843556 | 39.22207 | 35.44728 | 43.32017 |
Paratelmatobius cardosoi | Anura | DD | Ground-dwelling | 23.494971 | 39.04727 | 35.23071 | 43.13099 |
Paratelmatobius cardosoi | Anura | DD | Ground-dwelling | 27.086180 | 39.51276 | 35.66975 | 43.65745 |
Paratelmatobius gaigeae | Anura | DD | Ground-dwelling | 26.367176 | 39.47753 | 35.05092 | 43.06932 |
Paratelmatobius gaigeae | Anura | DD | Ground-dwelling | 25.114381 | 39.31379 | 35.01834 | 43.01065 |
Paratelmatobius gaigeae | Anura | DD | Ground-dwelling | 28.661754 | 39.77743 | 35.40018 | 43.58379 |
Paratelmatobius poecilogaster | Anura | DD | Ground-dwelling | 24.843556 | 39.32543 | 35.12691 | 43.31799 |
Paratelmatobius poecilogaster | Anura | DD | Ground-dwelling | 23.494971 | 39.14565 | 35.02612 | 43.14809 |
Paratelmatobius poecilogaster | Anura | DD | Ground-dwelling | 27.086180 | 39.62439 | 35.47830 | 43.82218 |
Paratelmatobius lutzii | Anura | DD | Ground-dwelling | 26.367176 | 39.46070 | 35.36410 | 43.49579 |
Paratelmatobius lutzii | Anura | DD | Ground-dwelling | 25.114381 | 39.30010 | 35.05403 | 43.15043 |
Paratelmatobius lutzii | Anura | DD | Ground-dwelling | 28.661754 | 39.75486 | 35.65255 | 43.89719 |
Scythrophrys sawayae | Anura | LC | Ground-dwelling | 24.315448 | 39.25663 | 35.30073 | 43.72145 |
Scythrophrys sawayae | Anura | LC | Ground-dwelling | 22.567229 | 39.02469 | 35.05590 | 43.43659 |
Scythrophrys sawayae | Anura | LC | Ground-dwelling | 26.899526 | 39.59945 | 35.56145 | 44.17875 |
Rupirana cardosoi | Anura | NT | Stream-dwelling | 24.728820 | 38.73514 | 34.95564 | 42.99939 |
Rupirana cardosoi | Anura | NT | Stream-dwelling | 23.588041 | 38.58488 | 34.76274 | 42.76878 |
Rupirana cardosoi | Anura | NT | Stream-dwelling | 27.189613 | 39.05927 | 35.27736 | 43.52453 |
Adenomera ajurauna | Anura | DD | Ground-dwelling | 25.405019 | 38.27084 | 35.30921 | 41.77466 |
Adenomera ajurauna | Anura | DD | Ground-dwelling | 23.841325 | 38.06094 | 34.75517 | 41.15448 |
Adenomera ajurauna | Anura | DD | Ground-dwelling | 27.977586 | 38.61616 | 35.45458 | 42.09783 |
Adenomera araucaria | Anura | LC | Ground-dwelling | 24.552864 | 38.52844 | 34.82165 | 42.34143 |
Adenomera araucaria | Anura | LC | Ground-dwelling | 22.689759 | 38.28681 | 34.49021 | 41.96832 |
Adenomera araucaria | Anura | LC | Ground-dwelling | 27.254547 | 38.87881 | 34.80374 | 42.50512 |
Adenomera thomei | Anura | LC | Ground-dwelling | 25.330132 | 38.70301 | 35.19043 | 42.39004 |
Adenomera thomei | Anura | LC | Ground-dwelling | 24.585320 | 38.60387 | 35.11374 | 42.27611 |
Adenomera thomei | Anura | LC | Ground-dwelling | 26.796379 | 38.89819 | 35.38312 | 42.69172 |
Adenomera nana | Anura | LC | Ground-dwelling | 24.510537 | 38.70423 | 35.27457 | 42.60378 |
Adenomera nana | Anura | LC | Ground-dwelling | 22.813381 | 38.47948 | 35.02607 | 42.26327 |
Adenomera nana | Anura | LC | Ground-dwelling | 27.092544 | 39.04615 | 35.42483 | 42.89004 |
Adenomera bokermanni | Anura | LC | Ground-dwelling | 25.414600 | 38.74286 | 34.95805 | 42.37566 |
Adenomera bokermanni | Anura | LC | Ground-dwelling | 24.028089 | 38.55971 | 34.77234 | 42.18734 |
Adenomera bokermanni | Anura | LC | Ground-dwelling | 27.805441 | 39.05869 | 35.13227 | 42.61669 |
Adenomera coca | Anura | LC | Ground-dwelling | 14.331934 | 37.24729 | 33.54540 | 40.75003 |
Adenomera coca | Anura | LC | Ground-dwelling | 13.213313 | 37.10053 | 33.59872 | 40.72872 |
Adenomera coca | Anura | LC | Ground-dwelling | 16.050315 | 37.47274 | 34.10734 | 41.28848 |
Adenomera diptyx | Anura | LC | Ground-dwelling | 26.981328 | 38.98195 | 34.75991 | 42.44049 |
Adenomera diptyx | Anura | LC | Ground-dwelling | 25.732651 | 38.81670 | 34.66456 | 42.30702 |
Adenomera diptyx | Anura | LC | Ground-dwelling | 29.387016 | 39.30033 | 35.23251 | 42.92013 |
Adenomera hylaedactyla | Anura | LC | Ground-dwelling | 27.166479 | 38.97445 | 34.87707 | 42.75133 |
Adenomera hylaedactyla | Anura | LC | Ground-dwelling | 26.346369 | 38.86635 | 34.71639 | 42.58972 |
Adenomera hylaedactyla | Anura | LC | Ground-dwelling | 28.835891 | 39.19450 | 34.85112 | 42.79738 |
Adenomera martinezi | Anura | NT | Ground-dwelling | 27.532009 | 38.99568 | 35.11432 | 42.66271 |
Adenomera martinezi | Anura | NT | Ground-dwelling | 26.682734 | 38.88328 | 34.97443 | 42.48782 |
Adenomera martinezi | Anura | NT | Ground-dwelling | 29.192145 | 39.21538 | 35.33230 | 43.04098 |
Adenomera marmorata | Anura | LC | Ground-dwelling | 25.564663 | 38.77339 | 34.98499 | 42.49458 |
Adenomera marmorata | Anura | LC | Ground-dwelling | 24.202971 | 38.59599 | 34.95521 | 42.36344 |
Adenomera marmorata | Anura | LC | Ground-dwelling | 27.926676 | 39.08110 | 35.34647 | 43.01896 |
Adenomera heyeri | Anura | LC | Ground-dwelling | 27.281904 | 39.12580 | 35.52777 | 42.75437 |
Adenomera heyeri | Anura | LC | Ground-dwelling | 26.669524 | 39.04498 | 35.45429 | 42.63393 |
Adenomera heyeri | Anura | LC | Ground-dwelling | 28.764068 | 39.32141 | 35.85216 | 43.24908 |
Adenomera lutzi | Anura | EN | Ground-dwelling | 26.634291 | 38.95474 | 35.25566 | 42.85292 |
Adenomera lutzi | Anura | EN | Ground-dwelling | 25.965013 | 38.86521 | 35.10800 | 42.65831 |
Adenomera lutzi | Anura | EN | Ground-dwelling | 28.137979 | 39.15589 | 35.02109 | 42.74988 |
Hydrolaetare caparu | Anura | DD | Fossorial | 28.128787 | 41.16287 | 37.23614 | 45.04769 |
Hydrolaetare caparu | Anura | DD | Fossorial | 27.330846 | 41.05815 | 36.93341 | 44.68544 |
Hydrolaetare caparu | Anura | DD | Fossorial | 30.372757 | 41.45737 | 37.04285 | 44.99710 |
Hydrolaetare schmidti | Anura | LC | Ground-dwelling | 28.148108 | 40.12297 | 36.52528 | 44.01028 |
Hydrolaetare schmidti | Anura | LC | Ground-dwelling | 27.430187 | 40.02837 | 36.48482 | 43.93290 |
Hydrolaetare schmidti | Anura | LC | Ground-dwelling | 29.732715 | 40.33177 | 36.78502 | 44.37926 |
Hydrolaetare dantasi | Anura | LC | Ground-dwelling | 27.863680 | 40.05538 | 36.39269 | 44.10365 |
Hydrolaetare dantasi | Anura | LC | Ground-dwelling | 27.029240 | 39.94682 | 36.36856 | 44.06203 |
Hydrolaetare dantasi | Anura | LC | Ground-dwelling | 29.437505 | 40.26014 | 36.46205 | 44.23958 |
Leptodactylus poecilochilus | Anura | LC | Ground-dwelling | 26.680225 | 38.94890 | 35.91414 | 42.28610 |
Leptodactylus poecilochilus | Anura | LC | Ground-dwelling | 25.911002 | 38.84798 | 35.85640 | 42.18661 |
Leptodactylus poecilochilus | Anura | LC | Ground-dwelling | 28.200520 | 39.14835 | 36.03517 | 42.48274 |
Leptodactylus chaquensis | Anura | LC | Semi-aquatic | 26.099597 | 39.88633 | 36.30199 | 43.19009 |
Leptodactylus chaquensis | Anura | LC | Semi-aquatic | 24.762092 | 39.71076 | 35.87429 | 42.73736 |
Leptodactylus chaquensis | Anura | LC | Semi-aquatic | 28.538527 | 40.20647 | 36.58948 | 43.50387 |
Leptodactylus fragilis | Anura | LC | Ground-dwelling | 26.337448 | 41.49871 | 38.54345 | 44.49312 |
Leptodactylus fragilis | Anura | LC | Ground-dwelling | 25.513078 | 41.39306 | 38.41227 | 44.33841 |
Leptodactylus fragilis | Anura | LC | Ground-dwelling | 28.002482 | 41.71210 | 38.80080 | 44.86722 |
Leptodactylus longirostris | Anura | LC | Ground-dwelling | 26.905383 | 41.36753 | 38.37617 | 44.73128 |
Leptodactylus longirostris | Anura | LC | Ground-dwelling | 26.218668 | 41.27816 | 38.04147 | 44.34925 |
Leptodactylus longirostris | Anura | LC | Ground-dwelling | 28.426577 | 41.56550 | 38.31247 | 44.75333 |
Leptodactylus caatingae | Anura | LC | Ground-dwelling | 25.579659 | 39.82765 | 36.31369 | 43.18618 |
Leptodactylus caatingae | Anura | LC | Ground-dwelling | 24.429335 | 39.67905 | 36.04005 | 42.90311 |
Leptodactylus caatingae | Anura | LC | Ground-dwelling | 27.526307 | 40.07912 | 36.51738 | 43.46021 |
Leptodactylus camaquara | Anura | DD | Fossorial | 24.849922 | 40.78918 | 36.99005 | 44.44123 |
Leptodactylus camaquara | Anura | DD | Fossorial | 23.635965 | 40.62921 | 36.93617 | 44.35663 |
Leptodactylus camaquara | Anura | DD | Fossorial | 27.503328 | 41.13882 | 37.39297 | 44.92308 |
Leptodactylus colombiensis | Anura | LC | Ground-dwelling | 24.593519 | 39.76085 | 36.43560 | 43.37850 |
Leptodactylus colombiensis | Anura | LC | Ground-dwelling | 23.794090 | 39.65566 | 36.35459 | 43.24381 |
Leptodactylus colombiensis | Anura | LC | Ground-dwelling | 26.125091 | 39.96239 | 36.52194 | 43.57436 |
Leptodactylus cunicularius | Anura | LC | Ground-dwelling | 25.514052 | 39.96718 | 36.54734 | 43.22389 |
Leptodactylus cunicularius | Anura | LC | Ground-dwelling | 24.230008 | 39.79618 | 36.34093 | 42.98220 |
Leptodactylus cunicularius | Anura | LC | Ground-dwelling | 28.013511 | 40.30003 | 36.68094 | 43.58506 |
Leptodactylus cupreus | Anura | DD | Fossorial | 25.413877 | 40.76607 | 37.23625 | 44.46723 |
Leptodactylus cupreus | Anura | DD | Fossorial | 24.128092 | 40.59980 | 37.11836 | 44.32230 |
Leptodactylus cupreus | Anura | DD | Fossorial | 28.001458 | 41.10069 | 37.60371 | 44.93723 |
Leptodactylus notoaktites | Anura | LC | Ground-dwelling | 25.414465 | 39.11722 | 35.97724 | 42.09793 |
Leptodactylus notoaktites | Anura | LC | Ground-dwelling | 23.902272 | 38.91371 | 35.87955 | 41.83820 |
Leptodactylus notoaktites | Anura | LC | Ground-dwelling | 27.936579 | 39.45664 | 36.15989 | 42.40836 |
Leptodactylus mystaceus | Anura | LC | Ground-dwelling | 27.391638 | 39.29969 | 36.00026 | 42.67218 |
Leptodactylus mystaceus | Anura | LC | Ground-dwelling | 26.616978 | 39.19673 | 35.97476 | 42.59835 |
Leptodactylus mystaceus | Anura | LC | Ground-dwelling | 29.020081 | 39.51614 | 36.18850 | 42.98473 |
Leptodactylus spixi | Anura | LC | Ground-dwelling | 25.342827 | 39.12294 | 35.92981 | 42.43385 |
Leptodactylus spixi | Anura | LC | Ground-dwelling | 24.320717 | 38.98791 | 35.76560 | 42.25591 |
Leptodactylus spixi | Anura | LC | Ground-dwelling | 27.193636 | 39.36745 | 36.18598 | 42.74065 |
Leptodactylus elenae | Anura | LC | Ground-dwelling | 26.996791 | 39.45799 | 36.02564 | 42.50875 |
Leptodactylus elenae | Anura | LC | Ground-dwelling | 25.819465 | 39.30448 | 35.84055 | 42.27604 |
Leptodactylus elenae | Anura | LC | Ground-dwelling | 29.226977 | 39.74878 | 35.93925 | 42.61451 |
Leptodactylus diedrus | Anura | LC | Ground-dwelling | 28.493201 | 40.55720 | 37.10819 | 43.71610 |
Leptodactylus diedrus | Anura | LC | Ground-dwelling | 27.756839 | 40.46164 | 37.03336 | 43.59538 |
Leptodactylus diedrus | Anura | LC | Ground-dwelling | 30.017070 | 40.75496 | 37.25744 | 44.00455 |
Leptodactylus discodactylus | Anura | LC | Ground-dwelling | 27.327946 | 40.61364 | 37.05427 | 43.55517 |
Leptodactylus discodactylus | Anura | LC | Ground-dwelling | 26.565881 | 40.51452 | 37.04046 | 43.51211 |
Leptodactylus discodactylus | Anura | LC | Ground-dwelling | 28.857816 | 40.81262 | 37.26038 | 43.89308 |
Leptodactylus griseigularis | Anura | LC | Ground-dwelling | 19.576581 | 39.60583 | 36.89307 | 42.75779 |
Leptodactylus griseigularis | Anura | LC | Ground-dwelling | 18.462239 | 39.46258 | 36.71560 | 42.53802 |
Leptodactylus griseigularis | Anura | LC | Ground-dwelling | 21.003182 | 39.78922 | 37.18506 | 43.12217 |
Leptodactylus validus | Anura | LC | Ground-dwelling | 26.827292 | 40.11106 | 36.99688 | 43.22580 |
Leptodactylus validus | Anura | LC | Ground-dwelling | 26.345518 | 40.04823 | 36.90342 | 43.08870 |
Leptodactylus validus | Anura | LC | Ground-dwelling | 27.606556 | 40.21270 | 37.00881 | 43.30013 |
Leptodactylus fallax | Anura | CR | Ground-dwelling | 27.025101 | 39.99146 | 36.48116 | 43.71467 |
Leptodactylus fallax | Anura | CR | Ground-dwelling | 26.486366 | 39.92269 | 36.45100 | 43.64505 |
Leptodactylus fallax | Anura | CR | Ground-dwelling | 27.925091 | 40.10635 | 36.49445 | 43.81231 |
Leptodactylus labyrinthicus | Anura | LC | Semi-aquatic | 27.120105 | 40.20609 | 36.49155 | 44.00693 |
Leptodactylus labyrinthicus | Anura | LC | Semi-aquatic | 25.993410 | 40.06062 | 36.53962 | 44.01733 |
Leptodactylus labyrinthicus | Anura | LC | Semi-aquatic | 29.319756 | 40.49008 | 36.79779 | 44.40236 |
Leptodactylus myersi | Anura | LC | Ground-dwelling | 27.159601 | 40.06319 | 36.37615 | 43.89722 |
Leptodactylus myersi | Anura | LC | Ground-dwelling | 26.552420 | 39.98463 | 36.30049 | 43.75934 |
Leptodactylus myersi | Anura | LC | Ground-dwelling | 28.634805 | 40.25406 | 36.50694 | 44.11172 |
Leptodactylus knudseni | Anura | LC | Ground-dwelling | 27.329725 | 40.01589 | 36.06123 | 43.41616 |
Leptodactylus knudseni | Anura | LC | Ground-dwelling | 26.610715 | 39.92217 | 35.94771 | 43.26007 |
Leptodactylus knudseni | Anura | LC | Ground-dwelling | 28.873842 | 40.21717 | 36.18355 | 43.70815 |
Leptodactylus pentadactylus | Anura | LC | Ground-dwelling | 27.378011 | 40.00958 | 36.53100 | 43.68773 |
Leptodactylus pentadactylus | Anura | LC | Ground-dwelling | 26.639960 | 39.91567 | 36.53958 | 43.62395 |
Leptodactylus pentadactylus | Anura | LC | Ground-dwelling | 28.932426 | 40.20735 | 36.68890 | 44.00359 |
Leptodactylus flavopictus | Anura | LC | Ground-dwelling | 25.384871 | 39.90266 | 36.59109 | 43.59434 |
Leptodactylus flavopictus | Anura | LC | Ground-dwelling | 24.034128 | 39.72454 | 36.20774 | 43.16141 |
Leptodactylus flavopictus | Anura | LC | Ground-dwelling | 27.579660 | 40.19208 | 36.76703 | 43.88555 |
Leptodactylus furnarius | Anura | LC | Ground-dwelling | 26.269845 | 39.50252 | 36.44029 | 42.73493 |
Leptodactylus furnarius | Anura | LC | Ground-dwelling | 25.009416 | 39.33520 | 36.34216 | 42.55401 |
Leptodactylus furnarius | Anura | LC | Ground-dwelling | 28.626676 | 39.81539 | 36.63876 | 43.05266 |
Leptodactylus plaumanni | Anura | LC | Ground-dwelling | 25.418702 | 40.30155 | 36.82875 | 43.30910 |
Leptodactylus plaumanni | Anura | LC | Ground-dwelling | 23.675826 | 40.07574 | 36.70086 | 43.13214 |
Leptodactylus plaumanni | Anura | LC | Ground-dwelling | 28.025479 | 40.63930 | 36.93560 | 43.63129 |
Leptodactylus stenodema | Anura | LC | Ground-dwelling | 27.717652 | 40.25346 | 36.55471 | 43.90344 |
Leptodactylus stenodema | Anura | LC | Ground-dwelling | 27.003041 | 40.15895 | 36.49106 | 43.83150 |
Leptodactylus stenodema | Anura | LC | Ground-dwelling | 29.264530 | 40.45805 | 36.60957 | 44.05916 |
Leptodactylus hylodes | Anura | DD | Ground-dwelling | 25.075066 | 39.80194 | 36.12025 | 43.44931 |
Leptodactylus hylodes | Anura | DD | Ground-dwelling | 24.235158 | 39.69231 | 36.01739 | 43.31139 |
Leptodactylus hylodes | Anura | DD | Ground-dwelling | 26.511323 | 39.98942 | 36.34725 | 43.72328 |
Leptodactylus jolyi | Anura | LC | Ground-dwelling | 26.020097 | 40.34888 | 37.47779 | 43.00542 |
Leptodactylus jolyi | Anura | LC | Ground-dwelling | 24.849086 | 40.19619 | 37.54017 | 42.97287 |
Leptodactylus jolyi | Anura | LC | Ground-dwelling | 28.330340 | 40.65012 | 37.90097 | 43.62339 |
Leptodactylus magistris | Anura | CR | Stream-dwelling | 26.357961 | 39.19576 | 36.02024 | 42.37806 |
Leptodactylus magistris | Anura | CR | Stream-dwelling | 25.399787 | 39.06964 | 35.89811 | 42.15942 |
Leptodactylus magistris | Anura | CR | Stream-dwelling | 27.780686 | 39.38303 | 36.15820 | 42.61049 |
Leptodactylus laticeps | Anura | NT | Ground-dwelling | 26.307345 | 39.94290 | 36.45345 | 43.59468 |
Leptodactylus laticeps | Anura | NT | Ground-dwelling | 24.751080 | 39.74053 | 36.38970 | 43.44731 |
Leptodactylus laticeps | Anura | NT | Ground-dwelling | 28.957216 | 40.28747 | 36.78045 | 44.15095 |
Leptodactylus lauramiriamae | Anura | DD | Ground-dwelling | 27.763750 | 40.15974 | 36.21020 | 43.61274 |
Leptodactylus lauramiriamae | Anura | DD | Ground-dwelling | 26.957891 | 40.05389 | 36.26634 | 43.62247 |
Leptodactylus lauramiriamae | Anura | DD | Ground-dwelling | 29.588991 | 40.39947 | 36.31174 | 43.85399 |
Leptodactylus nesiotus | Anura | LC | Ground-dwelling | 26.924526 | 39.71163 | 36.72723 | 42.89638 |
Leptodactylus nesiotus | Anura | LC | Ground-dwelling | 26.317318 | 39.63132 | 36.62209 | 42.72486 |
Leptodactylus nesiotus | Anura | LC | Ground-dwelling | 28.184637 | 39.87829 | 36.97174 | 43.20878 |
Leptodactylus marambaiae | Anura | LC | Ground-dwelling | 25.340600 | 39.93536 | 36.74500 | 43.51127 |
Leptodactylus marambaiae | Anura | LC | Ground-dwelling | 24.319075 | 39.80080 | 36.60990 | 43.34084 |
Leptodactylus marambaiae | Anura | LC | Ground-dwelling | 26.756310 | 40.12185 | 36.88519 | 43.67174 |
Leptodactylus natalensis | Anura | LC | Ground-dwelling | 25.809704 | 39.89753 | 36.13550 | 43.06475 |
Leptodactylus natalensis | Anura | LC | Ground-dwelling | 24.927821 | 39.78360 | 36.29390 | 43.19612 |
Leptodactylus natalensis | Anura | LC | Ground-dwelling | 27.301589 | 40.09027 | 36.39535 | 43.36273 |
Leptodactylus paraensis | Anura | LC | Ground-dwelling | 27.767747 | 40.11429 | 36.42593 | 43.50816 |
Leptodactylus paraensis | Anura | LC | Ground-dwelling | 27.064964 | 40.02458 | 36.35330 | 43.40034 |
Leptodactylus paraensis | Anura | LC | Ground-dwelling | 29.346831 | 40.31586 | 36.57654 | 43.78812 |
Leptodactylus rhodonotus | Anura | LC | Ground-dwelling | 23.333376 | 39.58001 | 36.15319 | 43.33169 |
Leptodactylus rhodonotus | Anura | LC | Ground-dwelling | 22.589292 | 39.48376 | 36.06139 | 43.23407 |
Leptodactylus rhodonotus | Anura | LC | Ground-dwelling | 24.597438 | 39.74352 | 36.24025 | 43.46074 |
Leptodactylus peritoaktites | Anura | EN | Ground-dwelling | 25.461567 | 39.93485 | 36.26311 | 43.52897 |
Leptodactylus peritoaktites | Anura | EN | Ground-dwelling | 24.521753 | 39.81191 | 36.26779 | 43.49377 |
Leptodactylus peritoaktites | Anura | EN | Ground-dwelling | 27.195947 | 40.16171 | 36.51341 | 43.94717 |
Leptodactylus pustulatus | Anura | LC | Ground-dwelling | 27.665615 | 40.16772 | 36.66554 | 43.74704 |
Leptodactylus pustulatus | Anura | LC | Ground-dwelling | 26.787351 | 40.05283 | 36.53998 | 43.60425 |
Leptodactylus pustulatus | Anura | LC | Ground-dwelling | 29.448419 | 40.40095 | 36.92041 | 44.07927 |
Leptodactylus rhodomerus | Anura | LC | Ground-dwelling | 24.945437 | 39.84504 | 35.97912 | 43.03823 |
Leptodactylus rhodomerus | Anura | LC | Ground-dwelling | 24.157754 | 39.74022 | 36.07833 | 43.09791 |
Leptodactylus rhodomerus | Anura | LC | Ground-dwelling | 26.383049 | 40.03634 | 36.15270 | 43.26802 |
Leptodactylus riveroi | Anura | LC | Ground-dwelling | 28.114959 | 40.40774 | 36.59376 | 44.20166 |
Leptodactylus riveroi | Anura | LC | Ground-dwelling | 27.412721 | 40.31419 | 36.79315 | 44.36354 |
Leptodactylus riveroi | Anura | LC | Ground-dwelling | 29.645107 | 40.61159 | 36.77756 | 44.46580 |
Leptodactylus silvanimbus | Anura | CR | Ground-dwelling | 26.468834 | 39.99534 | 36.27793 | 43.10516 |
Leptodactylus silvanimbus | Anura | CR | Ground-dwelling | 25.476230 | 39.86557 | 36.18740 | 42.97918 |
Leptodactylus silvanimbus | Anura | CR | Ground-dwelling | 28.481769 | 40.25850 | 36.52256 | 43.49871 |
Leptodactylus rugosus | Anura | LC | Ground-dwelling | 26.163880 | 39.91910 | 36.69901 | 43.78369 |
Leptodactylus rugosus | Anura | LC | Ground-dwelling | 25.412506 | 39.81996 | 36.24077 | 43.31032 |
Leptodactylus rugosus | Anura | LC | Ground-dwelling | 27.739709 | 40.12702 | 36.86340 | 44.02750 |
Leptodactylus sabanensis | Anura | LC | Ground-dwelling | 25.846398 | 39.91437 | 36.51271 | 43.38101 |
Leptodactylus sabanensis | Anura | LC | Ground-dwelling | 25.081505 | 39.81432 | 36.36669 | 43.22797 |
Leptodactylus sabanensis | Anura | LC | Ground-dwelling | 27.582190 | 40.14140 | 36.68973 | 43.61529 |
Leptodactylus savagei | Anura | LC | Ground-dwelling | 26.773944 | 40.09012 | 36.34452 | 43.46873 |
Leptodactylus savagei | Anura | LC | Ground-dwelling | 26.064076 | 39.99595 | 36.25004 | 43.38077 |
Leptodactylus savagei | Anura | LC | Ground-dwelling | 28.215785 | 40.28138 | 36.43959 | 43.64443 |
Leptodactylus sertanejo | Anura | LC | Ground-dwelling | 26.405234 | 39.92304 | 36.29947 | 43.45528 |
Leptodactylus sertanejo | Anura | LC | Ground-dwelling | 25.218258 | 39.76774 | 36.21635 | 43.33736 |
Leptodactylus sertanejo | Anura | LC | Ground-dwelling | 28.660825 | 40.21814 | 36.38292 | 43.69517 |
Leptodactylus tapiti | Anura | DD | Ground-dwelling | 26.340198 | 40.00032 | 36.02580 | 43.37804 |
Leptodactylus tapiti | Anura | DD | Ground-dwelling | 25.101302 | 39.83914 | 36.03649 | 43.35424 |
Leptodactylus tapiti | Anura | DD | Ground-dwelling | 28.488172 | 40.27977 | 36.44731 | 44.01534 |
Leptodactylus turimiquensis | Anura | NT | Ground-dwelling | 26.576005 | 40.11523 | 36.89376 | 43.79947 |
Leptodactylus turimiquensis | Anura | NT | Ground-dwelling | 25.857205 | 40.01902 | 36.84374 | 43.68956 |
Leptodactylus turimiquensis | Anura | NT | Ground-dwelling | 28.008431 | 40.30696 | 36.96468 | 44.01008 |
Leptodactylus vastus | Anura | LC | Ground-dwelling | 26.647385 | 40.03797 | 36.71404 | 43.74725 |
Leptodactylus vastus | Anura | LC | Ground-dwelling | 25.810397 | 39.92891 | 36.62677 | 43.59501 |
Leptodactylus vastus | Anura | LC | Ground-dwelling | 28.137903 | 40.23219 | 36.62383 | 43.74564 |
Leptodactylus viridis | Anura | DD | Ground-dwelling | 25.228317 | 39.91110 | 36.40443 | 43.43035 |
Leptodactylus viridis | Anura | DD | Ground-dwelling | 24.474889 | 39.81198 | 36.33844 | 43.30724 |
Leptodactylus viridis | Anura | DD | Ground-dwelling | 26.747475 | 40.11096 | 36.63413 | 43.78561 |
Leptodactylus syphax | Anura | LC | Ground-dwelling | 26.667612 | 39.79369 | 36.26281 | 43.68804 |
Leptodactylus syphax | Anura | LC | Ground-dwelling | 25.575964 | 39.65150 | 36.16065 | 43.54347 |
Leptodactylus syphax | Anura | LC | Ground-dwelling | 28.751025 | 40.06507 | 36.53880 | 44.04345 |
Celsiella revocata | Anura | VU | Stream-dwelling | 26.754122 | 37.12378 | 33.08561 | 40.81955 |
Celsiella revocata | Anura | VU | Stream-dwelling | 25.918210 | 37.01351 | 33.01854 | 40.74349 |
Celsiella revocata | Anura | VU | Stream-dwelling | 28.300054 | 37.32772 | 33.31686 | 41.09752 |
Celsiella vozmedianoi | Anura | EN | Stream-dwelling | 26.880586 | 37.18144 | 33.51529 | 40.96864 |
Celsiella vozmedianoi | Anura | EN | Stream-dwelling | 26.247396 | 37.09654 | 33.44345 | 40.87570 |
Celsiella vozmedianoi | Anura | EN | Stream-dwelling | 28.358386 | 37.37959 | 33.52444 | 41.11947 |
Hyalinobatrachium aureoguttatum | Anura | LC | Stream-dwelling | 25.264575 | 37.07563 | 33.55987 | 41.29514 |
Hyalinobatrachium aureoguttatum | Anura | LC | Stream-dwelling | 24.496812 | 36.97471 | 33.48683 | 41.19858 |
Hyalinobatrachium aureoguttatum | Anura | LC | Stream-dwelling | 26.694167 | 37.26355 | 33.70403 | 41.50454 |
Hyalinobatrachium valerioi | Anura | LC | Stream-dwelling | 24.921736 | 36.98559 | 33.36889 | 40.75475 |
Hyalinobatrachium valerioi | Anura | LC | Stream-dwelling | 24.055164 | 36.87151 | 33.22579 | 40.62942 |
Hyalinobatrachium valerioi | Anura | LC | Stream-dwelling | 26.437298 | 37.18510 | 33.59716 | 40.97793 |
Hyalinobatrachium talamancae | Anura | LC | Stream-dwelling | 22.320708 | 36.69804 | 32.70843 | 39.93801 |
Hyalinobatrachium talamancae | Anura | LC | Stream-dwelling | 21.414495 | 36.57914 | 32.61418 | 39.87757 |
Hyalinobatrachium talamancae | Anura | LC | Stream-dwelling | 23.754809 | 36.88620 | 32.92204 | 40.18560 |
Hyalinobatrachium chirripoi | Anura | LC | Stream-dwelling | 25.509494 | 37.05491 | 33.56110 | 41.43973 |
Hyalinobatrachium chirripoi | Anura | LC | Stream-dwelling | 24.775934 | 36.95968 | 33.39868 | 41.21481 |
Hyalinobatrachium chirripoi | Anura | LC | Stream-dwelling | 26.908133 | 37.23649 | 33.07346 | 40.97709 |
Hyalinobatrachium colymbiphyllum | Anura | LC | Stream-dwelling | 25.808728 | 37.17042 | 33.35041 | 41.35884 |
Hyalinobatrachium colymbiphyllum | Anura | LC | Stream-dwelling | 25.103027 | 37.07469 | 33.30633 | 41.26852 |
Hyalinobatrachium colymbiphyllum | Anura | LC | Stream-dwelling | 27.173804 | 37.35561 | 33.59580 | 41.73994 |
Hyalinobatrachium pellucidum | Anura | NT | Stream-dwelling | 22.678013 | 36.72045 | 32.99150 | 40.82423 |
Hyalinobatrachium pellucidum | Anura | NT | Stream-dwelling | 21.622548 | 36.58073 | 32.95063 | 40.77273 |
Hyalinobatrachium pellucidum | Anura | NT | Stream-dwelling | 24.418380 | 36.95083 | 33.16307 | 41.04091 |
Hyalinobatrachium cappellei | Anura | LC | Stream-dwelling | 27.603738 | 37.38046 | 33.30206 | 41.14589 |
Hyalinobatrachium cappellei | Anura | LC | Stream-dwelling | 26.910942 | 37.28819 | 33.25227 | 41.03435 |
Hyalinobatrachium cappellei | Anura | LC | Stream-dwelling | 29.172923 | 37.58944 | 33.41485 | 41.34439 |
Hyalinobatrachium taylori | Anura | LC | Stream-dwelling | 26.747424 | 37.23319 | 33.20494 | 41.10124 |
Hyalinobatrachium taylori | Anura | LC | Stream-dwelling | 26.067726 | 37.14380 | 33.16986 | 40.96040 |
Hyalinobatrachium taylori | Anura | LC | Stream-dwelling | 28.283875 | 37.43526 | 33.24241 | 41.24802 |
Hyalinobatrachium iaspidiense | Anura | LC | Stream-dwelling | 27.765677 | 37.43841 | 33.87295 | 41.41503 |
Hyalinobatrachium iaspidiense | Anura | LC | Stream-dwelling | 27.047649 | 37.34500 | 33.83185 | 41.33233 |
Hyalinobatrachium iaspidiense | Anura | LC | Stream-dwelling | 29.308510 | 37.63911 | 34.06959 | 41.71089 |
Hyalinobatrachium fleischmanni | Anura | LC | Stream-dwelling | 26.107156 | 37.16337 | 33.42900 | 41.14536 |
Hyalinobatrachium fleischmanni | Anura | LC | Stream-dwelling | 25.248882 | 37.04881 | 33.30592 | 40.99859 |
Hyalinobatrachium fleischmanni | Anura | LC | Stream-dwelling | 27.824243 | 37.39256 | 33.22674 | 41.13651 |
Hyalinobatrachium tatayoi | Anura | LC | Stream-dwelling | 25.779576 | 37.10544 | 33.06368 | 40.76426 |
Hyalinobatrachium tatayoi | Anura | LC | Stream-dwelling | 25.030458 | 37.00701 | 33.01417 | 40.70438 |
Hyalinobatrachium tatayoi | Anura | LC | Stream-dwelling | 27.223107 | 37.29513 | 33.20968 | 41.00632 |
Hyalinobatrachium duranti | Anura | EN | Stream-dwelling | 26.081594 | 37.17400 | 33.57061 | 41.05545 |
Hyalinobatrachium duranti | Anura | EN | Stream-dwelling | 25.212821 | 37.05998 | 33.37739 | 40.86889 |
Hyalinobatrachium duranti | Anura | EN | Stream-dwelling | 27.650603 | 37.37992 | 33.62027 | 41.24209 |
Hyalinobatrachium ibama | Anura | LC | Stream-dwelling | 23.658001 | 36.83110 | 33.05641 | 40.75790 |
Hyalinobatrachium ibama | Anura | LC | Stream-dwelling | 22.806281 | 36.71993 | 32.91200 | 40.62756 |
Hyalinobatrachium ibama | Anura | LC | Stream-dwelling | 25.343156 | 37.05106 | 32.93900 | 40.74889 |
Hyalinobatrachium pallidum | Anura | NT | Stream-dwelling | 26.647918 | 37.20204 | 33.36007 | 41.12364 |
Hyalinobatrachium pallidum | Anura | NT | Stream-dwelling | 25.771494 | 37.08690 | 33.33625 | 41.01690 |
Hyalinobatrachium pallidum | Anura | NT | Stream-dwelling | 28.371607 | 37.42850 | 33.67161 | 41.58326 |
Hyalinobatrachium fragile | Anura | NT | Stream-dwelling | 26.769939 | 37.27784 | 33.61039 | 41.20214 |
Hyalinobatrachium fragile | Anura | NT | Stream-dwelling | 25.959786 | 37.17036 | 33.48536 | 41.08919 |
Hyalinobatrachium fragile | Anura | NT | Stream-dwelling | 28.357253 | 37.48841 | 33.82156 | 41.47674 |
Hyalinobatrachium orientale | Anura | VU | Stream-dwelling | 26.726920 | 37.21916 | 32.95295 | 41.06574 |
Hyalinobatrachium orientale | Anura | VU | Stream-dwelling | 26.132472 | 37.13997 | 32.91559 | 40.98329 |
Hyalinobatrachium orientale | Anura | VU | Stream-dwelling | 27.942615 | 37.38109 | 33.39791 | 41.53820 |
Hyalinobatrachium esmeralda | Anura | EN | Stream-dwelling | 22.392831 | 36.67752 | 32.75751 | 40.47347 |
Hyalinobatrachium esmeralda | Anura | EN | Stream-dwelling | 21.447444 | 36.55182 | 32.60136 | 40.28612 |
Hyalinobatrachium esmeralda | Anura | EN | Stream-dwelling | 24.281794 | 36.92869 | 33.05984 | 40.87857 |
Hyalinobatrachium guairarepanense | Anura | EN | Stream-dwelling | 26.436249 | 37.19036 | 33.11413 | 40.83207 |
Hyalinobatrachium guairarepanense | Anura | EN | Stream-dwelling | 25.696256 | 37.09444 | 33.08646 | 40.72516 |
Hyalinobatrachium guairarepanense | Anura | EN | Stream-dwelling | 27.808205 | 37.36819 | 33.34245 | 41.13741 |
Hyalinobatrachium vireovittatum | Anura | LC | Stream-dwelling | 25.980752 | 37.14904 | 33.59798 | 41.12012 |
Hyalinobatrachium vireovittatum | Anura | LC | Stream-dwelling | 25.337423 | 37.06309 | 33.49802 | 40.99658 |
Hyalinobatrachium vireovittatum | Anura | LC | Stream-dwelling | 27.253220 | 37.31904 | 33.78167 | 41.42685 |
Centrolene acanthidiocephalum | Anura | DD | Stream-dwelling | 24.390020 | 36.70851 | 33.09290 | 40.40812 |
Centrolene acanthidiocephalum | Anura | DD | Stream-dwelling | 23.746759 | 36.62553 | 33.00930 | 40.32070 |
Centrolene acanthidiocephalum | Anura | DD | Stream-dwelling | 25.828703 | 36.89409 | 33.21358 | 40.62425 |
Centrolene antioquiense | Anura | NT | Stream-dwelling | 23.499493 | 36.56174 | 33.05998 | 40.02339 |
Centrolene antioquiense | Anura | NT | Stream-dwelling | 22.573781 | 36.44206 | 32.88150 | 39.83036 |
Centrolene antioquiense | Anura | NT | Stream-dwelling | 25.034323 | 36.76018 | 33.27818 | 40.34343 |
Centrolene azulae | Anura | DD | Stream-dwelling | 23.440561 | 36.60756 | 32.77534 | 40.13843 |
Centrolene azulae | Anura | DD | Stream-dwelling | 22.815371 | 36.52418 | 32.74277 | 40.06412 |
Centrolene azulae | Anura | DD | Stream-dwelling | 24.661220 | 36.77037 | 33.13562 | 40.47834 |
Centrolene ballux | Anura | EN | Stream-dwelling | 20.180939 | 36.11834 | 32.46191 | 39.63629 |
Centrolene ballux | Anura | EN | Stream-dwelling | 18.072574 | 35.84615 | 32.57847 | 39.71591 |
Centrolene ballux | Anura | EN | Stream-dwelling | 22.820081 | 36.45906 | 32.76484 | 40.00810 |
Centrolene buckleyi | Anura | CR | Arboreal | 21.581875 | 36.84563 | 33.27289 | 40.48714 |
Centrolene buckleyi | Anura | CR | Arboreal | 19.877003 | 36.62452 | 33.03262 | 40.18063 |
Centrolene buckleyi | Anura | CR | Arboreal | 23.857711 | 37.14080 | 33.62713 | 40.93240 |
Centrolene condor | Anura | EN | Stream-dwelling | 24.698762 | 36.78233 | 33.58508 | 40.63217 |
Centrolene condor | Anura | EN | Stream-dwelling | 23.813822 | 36.66594 | 33.24911 | 40.31629 |
Centrolene condor | Anura | EN | Stream-dwelling | 26.444972 | 37.01199 | 33.75688 | 40.87471 |
Centrolene heloderma | Anura | VU | Stream-dwelling | 22.853294 | 36.53841 | 32.86609 | 39.86636 |
Centrolene heloderma | Anura | VU | Stream-dwelling | 21.600959 | 36.37562 | 32.69262 | 39.66431 |
Centrolene heloderma | Anura | VU | Stream-dwelling | 24.661456 | 36.77344 | 33.02013 | 40.09076 |
Centrolene hybrida | Anura | LC | Stream-dwelling | 23.795869 | 36.68759 | 32.87449 | 40.39556 |
Centrolene hybrida | Anura | LC | Stream-dwelling | 22.987032 | 36.57974 | 32.83503 | 40.35388 |
Centrolene hybrida | Anura | LC | Stream-dwelling | 25.433078 | 36.90589 | 33.05354 | 40.69192 |
Centrolene lemniscatum | Anura | DD | Stream-dwelling | 20.305860 | 36.19928 | 32.81614 | 39.78146 |
Centrolene lemniscatum | Anura | DD | Stream-dwelling | 19.198666 | 36.05403 | 32.59533 | 39.53968 |
Centrolene lemniscatum | Anura | DD | Stream-dwelling | 22.523955 | 36.49026 | 33.21160 | 40.25217 |
Centrolene lynchi | Anura | EN | Stream-dwelling | 19.805326 | 36.19791 | 32.68901 | 39.79128 |
Centrolene lynchi | Anura | EN | Stream-dwelling | 17.198230 | 35.85027 | 32.23328 | 39.29443 |
Centrolene lynchi | Anura | EN | Stream-dwelling | 22.861501 | 36.60543 | 32.89771 | 40.10784 |
Centrolene medemi | Anura | EN | Stream-dwelling | 24.333127 | 36.82187 | 33.24515 | 40.82990 |
Centrolene medemi | Anura | EN | Stream-dwelling | 23.577956 | 36.72101 | 33.20424 | 40.75243 |
Centrolene medemi | Anura | EN | Stream-dwelling | 25.809976 | 37.01912 | 33.45641 | 41.06206 |
Centrolene muelleri | Anura | DD | Stream-dwelling | 21.422387 | 36.40870 | 32.94870 | 40.06916 |
Centrolene muelleri | Anura | DD | Stream-dwelling | 20.467645 | 36.28025 | 32.82789 | 39.91664 |
Centrolene muelleri | Anura | DD | Stream-dwelling | 23.163460 | 36.64295 | 33.06964 | 40.29136 |
Centrolene paezorum | Anura | DD | Arboreal | 22.833468 | 37.01718 | 33.60527 | 40.79218 |
Centrolene paezorum | Anura | DD | Arboreal | 21.394430 | 36.82995 | 33.47406 | 40.63878 |
Centrolene paezorum | Anura | DD | Arboreal | 24.669687 | 37.25608 | 33.71943 | 41.00206 |
Centrolene petrophilum | Anura | EN | Stream-dwelling | 22.354356 | 36.36614 | 32.54609 | 39.72212 |
Centrolene petrophilum | Anura | EN | Stream-dwelling | 21.407774 | 36.24052 | 32.43887 | 39.50809 |
Centrolene petrophilum | Anura | EN | Stream-dwelling | 24.256757 | 36.61860 | 32.72495 | 39.97154 |
Centrolene quindianum | Anura | VU | Stream-dwelling | 21.760455 | 36.33457 | 32.54699 | 39.78425 |
Centrolene quindianum | Anura | VU | Stream-dwelling | 20.629565 | 36.18510 | 32.36606 | 39.55416 |
Centrolene quindianum | Anura | VU | Stream-dwelling | 23.539392 | 36.56969 | 32.71945 | 40.05813 |
Centrolene robledoi | Anura | LC | Stream-dwelling | 23.513577 | 36.63626 | 33.23283 | 40.36148 |
Centrolene robledoi | Anura | LC | Stream-dwelling | 22.620531 | 36.51724 | 33.12167 | 40.23036 |
Centrolene robledoi | Anura | LC | Stream-dwelling | 25.062023 | 36.84263 | 33.32046 | 40.49473 |
Centrolene sanchezi | Anura | EN | Stream-dwelling | 24.131088 | 36.71112 | 32.71957 | 40.15848 |
Centrolene sanchezi | Anura | EN | Stream-dwelling | 23.069526 | 36.57056 | 32.65664 | 40.02124 |
Centrolene sanchezi | Anura | EN | Stream-dwelling | 25.733614 | 36.92331 | 33.35435 | 40.82643 |
Centrolene savagei | Anura | LC | Stream-dwelling | 23.420053 | 36.67724 | 33.06942 | 40.36214 |
Centrolene savagei | Anura | LC | Stream-dwelling | 22.590097 | 36.56645 | 32.82622 | 40.10669 |
Centrolene savagei | Anura | LC | Stream-dwelling | 24.943630 | 36.88063 | 33.18743 | 40.50223 |
Centrolene solitaria | Anura | EN | Stream-dwelling | 24.779899 | 36.84657 | 33.07028 | 40.04212 |
Centrolene solitaria | Anura | EN | Stream-dwelling | 23.907074 | 36.73000 | 32.97291 | 39.90646 |
Centrolene solitaria | Anura | EN | Stream-dwelling | 26.265578 | 37.04499 | 33.20688 | 40.20738 |
Centrolene venezuelense | Anura | LC | Arboreal | 25.914060 | 37.39477 | 33.76405 | 41.10542 |
Centrolene venezuelense | Anura | LC | Arboreal | 25.017113 | 37.27789 | 33.36908 | 40.68575 |
Centrolene venezuelense | Anura | LC | Arboreal | 27.611024 | 37.61590 | 33.75848 | 41.13948 |
Cochranella duidaeana | Anura | VU | Arboreal | 25.661020 | 37.34153 | 34.06816 | 41.30172 |
Cochranella duidaeana | Anura | VU | Arboreal | 25.001401 | 37.25453 | 34.02145 | 41.21772 |
Cochranella duidaeana | Anura | VU | Arboreal | 27.238038 | 37.54954 | 34.18395 | 41.40944 |
Cochranella euhystrix | Anura | CR | Stream-dwelling | 24.352695 | 36.73739 | 33.03326 | 40.54996 |
Cochranella euhystrix | Anura | CR | Stream-dwelling | 23.754925 | 36.65696 | 32.84499 | 40.34445 |
Cochranella euhystrix | Anura | CR | Stream-dwelling | 25.398234 | 36.87809 | 33.12751 | 40.70395 |
Cochranella euknemos | Anura | LC | Stream-dwelling | 26.952201 | 37.08364 | 33.08654 | 40.38677 |
Cochranella euknemos | Anura | LC | Stream-dwelling | 26.301013 | 36.99553 | 32.94178 | 40.22213 |
Cochranella euknemos | Anura | LC | Stream-dwelling | 28.267367 | 37.26158 | 33.35754 | 40.73426 |
Cochranella geijskesi | Anura | LC | Stream-dwelling | 27.500006 | 37.14040 | 33.18910 | 40.69786 |
Cochranella geijskesi | Anura | LC | Stream-dwelling | 26.772190 | 37.04488 | 33.24397 | 40.72928 |
Cochranella geijskesi | Anura | LC | Stream-dwelling | 29.321560 | 37.37944 | 33.51567 | 41.12976 |
Cochranella granulosa | Anura | LC | Stream-dwelling | 26.621754 | 37.07245 | 32.89918 | 40.41120 |
Cochranella granulosa | Anura | LC | Stream-dwelling | 25.938697 | 36.98133 | 32.95894 | 40.41436 |
Cochranella granulosa | Anura | LC | Stream-dwelling | 28.013098 | 37.25804 | 33.50656 | 41.15113 |
Cochranella litoralis | Anura | VU | Arboreal | 24.020878 | 37.18359 | 33.15333 | 40.52844 |
Cochranella litoralis | Anura | VU | Arboreal | 23.085034 | 37.05902 | 33.51926 | 40.85394 |
Cochranella litoralis | Anura | VU | Arboreal | 25.607719 | 37.39481 | 33.96233 | 41.45564 |
Cochranella mache | Anura | NT | Stream-dwelling | 24.822887 | 36.87273 | 33.44219 | 40.72805 |
Cochranella mache | Anura | NT | Stream-dwelling | 24.014786 | 36.76423 | 33.30608 | 40.56152 |
Cochranella mache | Anura | NT | Stream-dwelling | 26.283031 | 37.06876 | 33.70725 | 41.12517 |
Cochranella nola | Anura | LC | Stream-dwelling | 20.416553 | 36.23640 | 32.97701 | 39.94224 |
Cochranella nola | Anura | LC | Stream-dwelling | 19.350653 | 36.09726 | 32.97953 | 39.93099 |
Cochranella nola | Anura | LC | Stream-dwelling | 21.655891 | 36.39817 | 33.09535 | 40.09171 |
Cochranella phryxa | Anura | DD | Arboreal | 21.173461 | 36.77931 | 33.21790 | 40.40794 |
Cochranella phryxa | Anura | DD | Arboreal | 20.517245 | 36.69293 | 33.09811 | 40.27118 |
Cochranella phryxa | Anura | DD | Arboreal | 22.412265 | 36.94236 | 33.34903 | 40.60245 |
Cochranella ramirezi | Anura | NT | Stream-dwelling | 26.619965 | 36.94987 | 33.36218 | 40.53173 |
Cochranella ramirezi | Anura | NT | Stream-dwelling | 25.944346 | 36.86331 | 33.26387 | 40.41455 |
Cochranella ramirezi | Anura | NT | Stream-dwelling | 27.998673 | 37.12652 | 33.37505 | 40.58958 |
Cochranella resplendens | Anura | LC | Arboreal | 24.332635 | 37.20432 | 33.54566 | 41.06417 |
Cochranella resplendens | Anura | LC | Arboreal | 23.455063 | 37.08909 | 33.44738 | 40.97060 |
Cochranella resplendens | Anura | LC | Arboreal | 25.923395 | 37.41320 | 33.77234 | 41.30933 |
Cochranella riveroi | Anura | VU | Arboreal | 26.913050 | 37.49920 | 33.95837 | 41.34316 |
Cochranella riveroi | Anura | VU | Arboreal | 26.225726 | 37.40893 | 33.64123 | 41.01208 |
Cochranella riveroi | Anura | VU | Arboreal | 28.306766 | 37.68224 | 34.03256 | 41.49836 |
Cochranella xanthocheridia | Anura | VU | Stream-dwelling | 26.059772 | 36.91950 | 33.44741 | 40.70483 |
Cochranella xanthocheridia | Anura | VU | Stream-dwelling | 25.330763 | 36.82439 | 33.35973 | 40.55524 |
Cochranella xanthocheridia | Anura | VU | Stream-dwelling | 27.539355 | 37.11253 | 33.41376 | 40.73940 |
Espadarana andina | Anura | LC | Stream-dwelling | 24.917962 | 36.27166 | 33.30671 | 39.32452 |
Espadarana andina | Anura | LC | Stream-dwelling | 24.094180 | 36.16150 | 33.16253 | 39.15361 |
Espadarana andina | Anura | LC | Stream-dwelling | 26.576027 | 36.49338 | 33.50736 | 39.62998 |
Nymphargus anomalus | Anura | EN | Stream-dwelling | 22.772920 | 36.54050 | 33.23372 | 40.00407 |
Nymphargus anomalus | Anura | EN | Stream-dwelling | 21.184011 | 36.33376 | 33.21246 | 39.87218 |
Nymphargus anomalus | Anura | EN | Stream-dwelling | 24.943916 | 36.82297 | 33.17983 | 39.98644 |
Nymphargus armatus | Anura | CR | Stream-dwelling | 24.017258 | 36.71439 | 32.22253 | 40.05689 |
Nymphargus armatus | Anura | CR | Stream-dwelling | 23.300537 | 36.62041 | 32.53720 | 40.31543 |
Nymphargus armatus | Anura | CR | Stream-dwelling | 25.278806 | 36.87980 | 33.07247 | 40.94152 |
Nymphargus bejaranoi | Anura | EN | Arboreal | 18.373837 | 36.39613 | 32.82799 | 39.90962 |
Nymphargus bejaranoi | Anura | EN | Arboreal | 17.415068 | 36.27128 | 32.72548 | 39.75335 |
Nymphargus bejaranoi | Anura | EN | Arboreal | 19.848472 | 36.58817 | 32.89563 | 40.01544 |
Nymphargus buenaventura | Anura | EN | Stream-dwelling | 23.949902 | 36.67471 | 33.04698 | 40.13085 |
Nymphargus buenaventura | Anura | EN | Stream-dwelling | 22.543976 | 36.49326 | 32.78446 | 39.91177 |
Nymphargus buenaventura | Anura | EN | Stream-dwelling | 26.144713 | 36.95798 | 33.32402 | 40.45898 |
Nymphargus cariticommatus | Anura | EN | Stream-dwelling | 23.601658 | 36.66639 | 33.43655 | 40.55695 |
Nymphargus cariticommatus | Anura | EN | Stream-dwelling | 22.518885 | 36.52397 | 33.22306 | 40.36039 |
Nymphargus cariticommatus | Anura | EN | Stream-dwelling | 25.475904 | 36.91293 | 33.71270 | 40.88748 |
Nymphargus chami | Anura | NT | Arboreal | 26.059772 | 37.51957 | 33.77086 | 41.09159 |
Nymphargus chami | Anura | NT | Arboreal | 25.330763 | 37.42538 | 33.61165 | 40.90923 |
Nymphargus chami | Anura | NT | Arboreal | 27.539355 | 37.71072 | 33.95688 | 41.27337 |
Nymphargus chancas | Anura | EN | Stream-dwelling | 24.155691 | 36.77012 | 33.00563 | 40.03662 |
Nymphargus chancas | Anura | EN | Stream-dwelling | 23.551146 | 36.69186 | 32.93365 | 39.95698 |
Nymphargus chancas | Anura | EN | Stream-dwelling | 25.436941 | 36.93598 | 33.30508 | 40.40837 |
Nymphargus cochranae | Anura | LC | Stream-dwelling | 22.826475 | 36.55699 | 33.04983 | 40.34897 |
Nymphargus cochranae | Anura | LC | Stream-dwelling | 21.394099 | 36.37141 | 32.89115 | 40.16888 |
Nymphargus cochranae | Anura | LC | Stream-dwelling | 24.878471 | 36.82285 | 33.38191 | 40.78975 |
Nymphargus cristinae | Anura | EN | Arboreal | 26.219010 | 37.43294 | 33.39252 | 40.88050 |
Nymphargus cristinae | Anura | EN | Arboreal | 25.544335 | 37.34555 | 33.33154 | 40.77188 |
Nymphargus cristinae | Anura | EN | Arboreal | 27.553766 | 37.60584 | 33.62954 | 41.19824 |
Nymphargus garciae | Anura | VU | Arboreal | 23.273735 | 37.03091 | 33.06533 | 40.47403 |
Nymphargus garciae | Anura | VU | Arboreal | 22.308120 | 36.90506 | 33.03732 | 40.36013 |
Nymphargus garciae | Anura | VU | Arboreal | 24.862181 | 37.23794 | 33.16731 | 40.69460 |
Nymphargus grandisonae | Anura | LC | Arboreal | 23.720289 | 37.21499 | 33.57989 | 40.68444 |
Nymphargus grandisonae | Anura | LC | Arboreal | 22.685618 | 37.07882 | 33.52471 | 40.66927 |
Nymphargus grandisonae | Anura | LC | Arboreal | 25.352863 | 37.42986 | 33.75543 | 41.00597 |
Nymphargus griffithsi | Anura | LC | Arboreal | 23.743922 | 37.20123 | 33.33682 | 40.52795 |
Nymphargus griffithsi | Anura | LC | Arboreal | 22.716623 | 37.06384 | 33.30824 | 40.40636 |
Nymphargus griffithsi | Anura | LC | Arboreal | 25.377269 | 37.41969 | 33.75742 | 41.00659 |
Nymphargus ignotus | Anura | LC | Arboreal | 25.195669 | 37.31981 | 34.17487 | 41.21252 |
Nymphargus ignotus | Anura | LC | Arboreal | 24.480405 | 37.22634 | 34.07865 | 41.11015 |
Nymphargus ignotus | Anura | LC | Arboreal | 26.527539 | 37.49385 | 34.24934 | 41.33509 |
Nymphargus laurae | Anura | EN | Arboreal | 23.546002 | 37.15915 | 32.99614 | 40.49084 |
Nymphargus laurae | Anura | EN | Arboreal | 22.594071 | 37.03467 | 32.91403 | 40.39397 |
Nymphargus laurae | Anura | EN | Arboreal | 25.371396 | 37.39783 | 33.11553 | 40.69681 |
Nymphargus luminosus | Anura | EN | Arboreal | 26.219010 | 37.48007 | 34.11508 | 41.32423 |
Nymphargus luminosus | Anura | EN | Arboreal | 25.544335 | 37.39156 | 34.02163 | 41.19385 |
Nymphargus luminosus | Anura | EN | Arboreal | 27.553766 | 37.65518 | 34.19629 | 41.51934 |
Nymphargus luteopunctatus | Anura | EN | Arboreal | 24.215542 | 37.21426 | 33.64933 | 40.83287 |
Nymphargus luteopunctatus | Anura | EN | Arboreal | 23.173833 | 37.07860 | 33.50577 | 40.66428 |
Nymphargus luteopunctatus | Anura | EN | Arboreal | 25.704822 | 37.40822 | 33.80224 | 41.06862 |
Nymphargus mariae | Anura | LC | Arboreal | 23.573881 | 37.08787 | 33.27442 | 40.56013 |
Nymphargus mariae | Anura | LC | Arboreal | 22.508707 | 36.94996 | 33.18464 | 40.40746 |
Nymphargus mariae | Anura | LC | Arboreal | 25.252170 | 37.30516 | 33.49564 | 40.87653 |
Nymphargus mixomaculatus | Anura | CR | Stream-dwelling | 15.191863 | 35.59975 | 32.33678 | 39.30460 |
Nymphargus mixomaculatus | Anura | CR | Stream-dwelling | 13.688102 | 35.40482 | 31.79868 | 38.84464 |
Nymphargus mixomaculatus | Anura | CR | Stream-dwelling | 18.280341 | 36.00011 | 32.54875 | 39.41260 |
Nymphargus nephelophila | Anura | DD | Stream-dwelling | 25.616302 | 36.99688 | 33.05412 | 40.45427 |
Nymphargus nephelophila | Anura | DD | Stream-dwelling | 24.961494 | 36.90944 | 32.96609 | 40.35282 |
Nymphargus nephelophila | Anura | DD | Stream-dwelling | 27.028064 | 37.18539 | 33.52807 | 40.99080 |
Nymphargus ocellatus | Anura | DD | Arboreal | 21.012652 | 36.77162 | 33.26308 | 40.56113 |
Nymphargus ocellatus | Anura | DD | Arboreal | 20.177954 | 36.66199 | 33.09073 | 40.36820 |
Nymphargus ocellatus | Anura | DD | Arboreal | 22.689323 | 36.99185 | 33.13856 | 40.48468 |
Nymphargus oreonympha | Anura | LC | Arboreal | 25.616302 | 37.35225 | 33.55530 | 41.02388 |
Nymphargus oreonympha | Anura | LC | Arboreal | 24.961494 | 37.26517 | 33.46053 | 40.90244 |
Nymphargus oreonympha | Anura | LC | Arboreal | 27.028064 | 37.54001 | 33.52839 | 41.02822 |
Nymphargus phenax | Anura | EN | Arboreal | 15.448306 | 36.06451 | 32.29385 | 39.51796 |
Nymphargus phenax | Anura | EN | Arboreal | 14.520308 | 35.93942 | 32.13261 | 39.33217 |
Nymphargus phenax | Anura | EN | Arboreal | 16.818757 | 36.24925 | 32.51301 | 39.70550 |
Nymphargus pluvialis | Anura | EN | Stream-dwelling | 18.213965 | 35.96509 | 32.26456 | 39.69908 |
Nymphargus pluvialis | Anura | EN | Stream-dwelling | 16.103271 | 35.68972 | 31.91523 | 39.32210 |
Nymphargus pluvialis | Anura | EN | Stream-dwelling | 19.629302 | 36.14974 | 32.52849 | 39.94068 |
Nymphargus posadae | Anura | LC | Arboreal | 23.216621 | 37.01280 | 33.61436 | 41.00355 |
Nymphargus posadae | Anura | LC | Arboreal | 22.050632 | 36.85978 | 33.46751 | 40.80247 |
Nymphargus posadae | Anura | LC | Arboreal | 25.038896 | 37.25194 | 33.80544 | 41.25057 |
Nymphargus prasinus | Anura | VU | Arboreal | 24.715045 | 37.35799 | 33.33892 | 40.62297 |
Nymphargus prasinus | Anura | VU | Arboreal | 23.992522 | 37.26300 | 33.27555 | 40.57429 |
Nymphargus prasinus | Anura | VU | Arboreal | 26.082948 | 37.53783 | 33.57506 | 40.90196 |
Nymphargus rosada | Anura | VU | Arboreal | 23.041754 | 37.10086 | 33.51192 | 40.55783 |
Nymphargus rosada | Anura | VU | Arboreal | 22.166195 | 36.98507 | 33.34923 | 40.37475 |
Nymphargus rosada | Anura | VU | Arboreal | 24.594547 | 37.30621 | 33.69908 | 40.81304 |
Nymphargus ruizi | Anura | VU | Arboreal | 24.349283 | 37.21030 | 33.61470 | 40.91787 |
Nymphargus ruizi | Anura | VU | Arboreal | 23.442929 | 37.09308 | 33.60508 | 40.85814 |
Nymphargus ruizi | Anura | VU | Arboreal | 25.806519 | 37.39877 | 33.81238 | 41.20683 |
Nymphargus siren | Anura | EN | Arboreal | 23.177687 | 37.15476 | 33.28112 | 40.91484 |
Nymphargus siren | Anura | EN | Arboreal | 22.090125 | 37.01012 | 33.11676 | 40.79612 |
Nymphargus siren | Anura | EN | Arboreal | 24.880369 | 37.38121 | 33.56948 | 41.26477 |
Nymphargus spilotus | Anura | NT | Arboreal | 22.792552 | 37.02984 | 33.58854 | 40.92370 |
Nymphargus spilotus | Anura | NT | Arboreal | 22.040989 | 36.93145 | 33.50804 | 40.76523 |
Nymphargus spilotus | Anura | NT | Arboreal | 24.304586 | 37.22780 | 33.45793 | 40.86499 |
Nymphargus vicenteruedai | Anura | DD | Stream-dwelling | 22.245615 | 36.51900 | 33.05539 | 40.24403 |
Nymphargus vicenteruedai | Anura | DD | Stream-dwelling | 21.369508 | 36.40533 | 32.97997 | 40.14413 |
Nymphargus vicenteruedai | Anura | DD | Stream-dwelling | 24.109886 | 36.76088 | 33.13135 | 40.46362 |
Nymphargus wileyi | Anura | CR | Stream-dwelling | 23.546002 | 36.69778 | 33.04414 | 40.39225 |
Nymphargus wileyi | Anura | CR | Stream-dwelling | 22.594071 | 36.57331 | 32.92436 | 40.20681 |
Nymphargus wileyi | Anura | CR | Stream-dwelling | 25.371396 | 36.93647 | 32.90065 | 40.28089 |
Rulyrana adiazeta | Anura | VU | Stream-dwelling | 24.169136 | 36.74580 | 33.33011 | 40.88092 |
Rulyrana adiazeta | Anura | VU | Stream-dwelling | 23.423816 | 36.64718 | 32.54303 | 40.08938 |
Rulyrana adiazeta | Anura | VU | Stream-dwelling | 25.730577 | 36.95240 | 33.00928 | 40.67923 |
Rulyrana flavopunctata | Anura | LC | Stream-dwelling | 24.288524 | 36.80292 | 33.36682 | 40.61045 |
Rulyrana flavopunctata | Anura | LC | Stream-dwelling | 23.355952 | 36.67911 | 33.22822 | 40.43286 |
Rulyrana flavopunctata | Anura | LC | Stream-dwelling | 25.937328 | 37.02183 | 33.25814 | 40.53878 |
Rulyrana mcdiarmidi | Anura | NT | Stream-dwelling | 23.448417 | 36.69004 | 33.15129 | 40.36413 |
Rulyrana mcdiarmidi | Anura | NT | Stream-dwelling | 22.540238 | 36.56968 | 33.00468 | 40.19855 |
Rulyrana mcdiarmidi | Anura | NT | Stream-dwelling | 25.090264 | 36.90763 | 33.26402 | 40.56165 |
Rulyrana saxiscandens | Anura | EN | Stream-dwelling | 24.021783 | 36.72017 | 33.40476 | 40.78195 |
Rulyrana saxiscandens | Anura | EN | Stream-dwelling | 23.410536 | 36.63969 | 33.31880 | 40.65172 |
Rulyrana saxiscandens | Anura | EN | Stream-dwelling | 25.363768 | 36.89685 | 33.31929 | 40.78688 |
Rulyrana spiculata | Anura | NT | Stream-dwelling | 19.071909 | 36.06351 | 32.82932 | 39.80441 |
Rulyrana spiculata | Anura | NT | Stream-dwelling | 17.961681 | 35.91737 | 32.59407 | 39.57758 |
Rulyrana spiculata | Anura | NT | Stream-dwelling | 20.469963 | 36.24754 | 33.02793 | 39.96029 |
Rulyrana susatamai | Anura | NT | Stream-dwelling | 23.785363 | 36.66063 | 32.88388 | 39.94229 |
Rulyrana susatamai | Anura | NT | Stream-dwelling | 22.958292 | 36.55158 | 32.77774 | 39.80068 |
Rulyrana susatamai | Anura | NT | Stream-dwelling | 25.283948 | 36.85824 | 33.05099 | 40.11109 |
Sachatamia albomaculata | Anura | LC | Stream-dwelling | 26.248368 | 37.04447 | 33.16165 | 40.72935 |
Sachatamia albomaculata | Anura | LC | Stream-dwelling | 25.520070 | 36.94878 | 33.23671 | 40.75428 |
Sachatamia albomaculata | Anura | LC | Stream-dwelling | 27.653948 | 37.22914 | 33.27437 | 40.91337 |
Sachatamia punctulata | Anura | VU | Stream-dwelling | 23.993935 | 36.65083 | 33.03967 | 40.34880 |
Sachatamia punctulata | Anura | VU | Stream-dwelling | 23.177567 | 36.54482 | 32.89927 | 40.13305 |
Sachatamia punctulata | Anura | VU | Stream-dwelling | 25.498235 | 36.84619 | 32.99010 | 40.31337 |
Sachatamia ilex | Anura | LC | Stream-dwelling | 26.138545 | 37.04129 | 33.31040 | 40.90609 |
Sachatamia ilex | Anura | LC | Stream-dwelling | 25.422141 | 36.94547 | 33.21478 | 40.75707 |
Sachatamia ilex | Anura | LC | Stream-dwelling | 27.509604 | 37.22468 | 33.41772 | 40.99712 |
Sachatamia orejuela | Anura | LC | Stream-dwelling | 23.998408 | 36.67930 | 32.92946 | 40.24104 |
Sachatamia orejuela | Anura | LC | Stream-dwelling | 22.863834 | 36.52996 | 32.83525 | 40.04983 |
Sachatamia orejuela | Anura | LC | Stream-dwelling | 25.694855 | 36.90261 | 33.55297 | 40.96085 |
Teratohyla adenocheira | Anura | LC | Stream-dwelling | 28.135369 | 37.23974 | 33.83613 | 41.25484 |
Teratohyla adenocheira | Anura | LC | Stream-dwelling | 27.354455 | 37.13674 | 33.65754 | 41.01951 |
Teratohyla adenocheira | Anura | LC | Stream-dwelling | 29.900587 | 37.47255 | 33.80207 | 41.31177 |
Teratohyla midas | Anura | LC | Arboreal | 27.629739 | 37.64186 | 34.18161 | 41.46608 |
Teratohyla midas | Anura | LC | Arboreal | 26.904977 | 37.54732 | 34.09887 | 41.31414 |
Teratohyla midas | Anura | LC | Arboreal | 29.167572 | 37.84244 | 34.33228 | 41.73399 |
Teratohyla spinosa | Anura | LC | Stream-dwelling | 25.843011 | 36.89192 | 32.90357 | 40.28279 |
Teratohyla spinosa | Anura | LC | Stream-dwelling | 25.059903 | 36.78880 | 32.81404 | 40.14501 |
Teratohyla spinosa | Anura | LC | Stream-dwelling | 27.301731 | 37.08400 | 33.28850 | 40.71849 |
Teratohyla amelie | Anura | LC | Arboreal | 22.463913 | 36.96776 | 33.76540 | 40.69259 |
Teratohyla amelie | Anura | LC | Arboreal | 21.560522 | 36.84829 | 33.54524 | 40.46119 |
Teratohyla amelie | Anura | LC | Arboreal | 23.842362 | 37.15006 | 33.88274 | 40.86748 |
Teratohyla pulverata | Anura | LC | Arboreal | 26.243454 | 37.49702 | 33.93833 | 41.29533 |
Teratohyla pulverata | Anura | LC | Arboreal | 25.520140 | 37.40203 | 33.86604 | 41.15932 |
Teratohyla pulverata | Anura | LC | Arboreal | 27.624234 | 37.67834 | 33.93994 | 41.40118 |
Vitreorana antisthenesi | Anura | VU | Arboreal | 26.946554 | 37.53198 | 33.85646 | 41.33688 |
Vitreorana antisthenesi | Anura | VU | Arboreal | 26.121161 | 37.42288 | 33.78641 | 41.21827 |
Vitreorana antisthenesi | Anura | VU | Arboreal | 28.605285 | 37.75123 | 33.99723 | 41.60880 |
Vitreorana castroviejoi | Anura | EN | Arboreal | 26.479711 | 37.50546 | 34.11646 | 41.25863 |
Vitreorana castroviejoi | Anura | EN | Arboreal | 25.877888 | 37.42589 | 34.01508 | 41.13648 |
Vitreorana castroviejoi | Anura | EN | Arboreal | 27.645281 | 37.65955 | 34.24895 | 41.47448 |
Vitreorana eurygnatha | Anura | LC | Arboreal | 25.378317 | 37.39037 | 33.69717 | 40.90159 |
Vitreorana eurygnatha | Anura | LC | Arboreal | 24.156648 | 37.22988 | 33.49901 | 40.71605 |
Vitreorana eurygnatha | Anura | LC | Arboreal | 27.594753 | 37.68153 | 33.86121 | 41.18784 |
Vitreorana gorzulae | Anura | LC | Arboreal | 25.972272 | 37.34385 | 33.58475 | 40.78485 |
Vitreorana gorzulae | Anura | LC | Arboreal | 25.232928 | 37.24730 | 33.48779 | 40.65033 |
Vitreorana gorzulae | Anura | LC | Arboreal | 27.661667 | 37.56446 | 33.98440 | 41.32560 |
Vitreorana helenae | Anura | VU | Arboreal | 25.749492 | 37.34476 | 33.55839 | 41.03449 |
Vitreorana helenae | Anura | VU | Arboreal | 24.986070 | 37.24427 | 33.43336 | 40.88944 |
Vitreorana helenae | Anura | VU | Arboreal | 27.485853 | 37.57333 | 33.84256 | 41.35696 |
Vitreorana parvula | Anura | VU | Stream-dwelling | 24.424983 | 36.77583 | 33.06113 | 40.41090 |
Vitreorana parvula | Anura | VU | Stream-dwelling | 22.657193 | 36.54628 | 32.87722 | 40.13402 |
Vitreorana parvula | Anura | VU | Stream-dwelling | 27.074565 | 37.11989 | 33.17332 | 40.71175 |
Vitreorana uranoscopa | Anura | LC | Arboreal | 25.466365 | 37.32814 | 33.63819 | 40.87226 |
Vitreorana uranoscopa | Anura | LC | Arboreal | 24.088028 | 37.14647 | 33.53997 | 40.64535 |
Vitreorana uranoscopa | Anura | LC | Arboreal | 27.735210 | 37.62719 | 33.77660 | 41.20184 |
Ikakogi tayrona | Anura | VU | Stream-dwelling | 26.777894 | 37.21541 | 33.21888 | 40.89090 |
Ikakogi tayrona | Anura | VU | Stream-dwelling | 25.908244 | 37.10063 | 33.29170 | 40.94560 |
Ikakogi tayrona | Anura | VU | Stream-dwelling | 28.696471 | 37.46863 | 33.29769 | 41.02707 |
Allophryne ruthveni | Anura | LC | Arboreal | 27.614657 | 38.49169 | 34.08931 | 42.94843 |
Allophryne ruthveni | Anura | LC | Arboreal | 26.925965 | 38.40124 | 34.00438 | 42.81695 |
Allophryne ruthveni | Anura | LC | Arboreal | 29.161403 | 38.69486 | 34.25649 | 43.20285 |
Nasikabatrachus sahyadrensis | Anura | NT | Fossorial | 27.532572 | 38.61914 | 31.08356 | 44.28148 |
Nasikabatrachus sahyadrensis | Anura | NT | Fossorial | 26.652368 | 38.49778 | 32.34934 | 45.56523 |
Nasikabatrachus sahyadrensis | Anura | NT | Fossorial | 29.249326 | 38.85584 | 33.09623 | 46.27571 |
Sooglossus thomasseti | Anura | CR | Stream-dwelling | 26.783332 | 36.89714 | 31.14475 | 43.31120 |
Sooglossus thomasseti | Anura | CR | Stream-dwelling | 26.200616 | 36.81322 | 31.07950 | 43.26417 |
Sooglossus thomasseti | Anura | CR | Stream-dwelling | 27.685753 | 37.02708 | 31.27642 | 43.48160 |
Sooglossus sechellensis | Anura | EN | Ground-dwelling | 26.783332 | 37.42028 | 31.14432 | 42.65259 |
Sooglossus sechellensis | Anura | EN | Ground-dwelling | 26.200616 | 37.33871 | 31.11498 | 42.57532 |
Sooglossus sechellensis | Anura | EN | Ground-dwelling | 27.685753 | 37.54659 | 31.26121 | 42.80701 |
Sechellophryne pipilodryas | Anura | CR | Ground-dwelling | 26.783332 | 37.38263 | 31.67366 | 43.71810 |
Sechellophryne pipilodryas | Anura | CR | Ground-dwelling | 26.200616 | 37.30289 | 31.59982 | 43.61783 |
Sechellophryne pipilodryas | Anura | CR | Ground-dwelling | 27.685753 | 37.50612 | 31.78801 | 43.87556 |
Sechellophryne gardineri | Anura | EN | Ground-dwelling | 26.783332 | 37.45925 | 31.75705 | 43.64863 |
Sechellophryne gardineri | Anura | EN | Ground-dwelling | 26.200616 | 37.37792 | 31.66509 | 43.54434 |
Sechellophryne gardineri | Anura | EN | Ground-dwelling | 27.685753 | 37.58519 | 32.04204 | 43.97293 |
Hemisus barotseensis | Anura | DD | Fossorial | 24.548723 | 39.13097 | 33.43598 | 44.55596 |
Hemisus barotseensis | Anura | DD | Fossorial | 23.557461 | 38.99620 | 33.25157 | 44.33314 |
Hemisus barotseensis | Anura | DD | Fossorial | 26.838861 | 39.44231 | 33.44786 | 44.59798 |
Hemisus microscaphus | Anura | LC | Fossorial | 21.469888 | 38.69731 | 33.55928 | 44.98779 |
Hemisus microscaphus | Anura | LC | Fossorial | 20.622706 | 38.58038 | 33.41185 | 44.84895 |
Hemisus microscaphus | Anura | LC | Fossorial | 23.170868 | 38.93208 | 33.77136 | 45.26655 |
Hemisus marmoratus | Anura | LC | Fossorial | 25.391544 | 39.19209 | 33.39197 | 44.72287 |
Hemisus marmoratus | Anura | LC | Fossorial | 24.462391 | 39.06469 | 33.21817 | 44.67048 |
Hemisus marmoratus | Anura | LC | Fossorial | 27.359410 | 39.46192 | 33.61696 | 45.03187 |
Hemisus perreti | Anura | LC | Fossorial | 27.840166 | 39.51658 | 33.80514 | 44.88818 |
Hemisus perreti | Anura | LC | Fossorial | 26.953565 | 39.39592 | 33.70574 | 44.79750 |
Hemisus perreti | Anura | LC | Fossorial | 29.717312 | 39.77207 | 34.20440 | 45.32071 |
Hemisus guineensis | Anura | LC | Fossorial | 25.273719 | 39.22641 | 33.81087 | 44.88223 |
Hemisus guineensis | Anura | LC | Fossorial | 24.379651 | 39.10492 | 33.75019 | 44.74234 |
Hemisus guineensis | Anura | LC | Fossorial | 27.230347 | 39.49229 | 33.74070 | 44.88999 |
Hemisus guttatus | Anura | NT | Fossorial | 22.652319 | 38.74177 | 33.27205 | 44.03584 |
Hemisus guttatus | Anura | NT | Fossorial | 21.436520 | 38.57713 | 33.20243 | 43.92475 |
Hemisus guttatus | Anura | NT | Fossorial | 24.642175 | 39.01123 | 33.45714 | 44.32483 |
Hemisus olivaceus | Anura | LC | Fossorial | 26.232700 | 39.32114 | 33.33566 | 44.79842 |
Hemisus olivaceus | Anura | LC | Fossorial | 25.510335 | 39.22020 | 33.28884 | 44.66551 |
Hemisus olivaceus | Anura | LC | Fossorial | 27.812561 | 39.54189 | 33.18458 | 44.73275 |
Hemisus wittei | Anura | DD | Fossorial | 23.907516 | 38.98134 | 33.64815 | 44.68732 |
Hemisus wittei | Anura | DD | Fossorial | 23.019740 | 38.86163 | 33.43853 | 44.48614 |
Hemisus wittei | Anura | DD | Fossorial | 25.866143 | 39.24547 | 33.77428 | 44.90308 |
Hemisus brachydactylus | Anura | DD | Fossorial | 22.402422 | 38.80275 | 33.55428 | 44.93319 |
Hemisus brachydactylus | Anura | DD | Fossorial | 21.596021 | 38.69220 | 33.42746 | 44.82805 |
Hemisus brachydactylus | Anura | DD | Fossorial | 24.505875 | 39.09113 | 33.81119 | 45.22640 |
Balebreviceps hillmani | Anura | CR | Ground-dwelling | 20.132346 | 37.48308 | 31.92930 | 42.72789 |
Balebreviceps hillmani | Anura | CR | Ground-dwelling | 19.211996 | 37.35599 | 31.68141 | 42.45677 |
Balebreviceps hillmani | Anura | CR | Ground-dwelling | 21.359748 | 37.65257 | 32.04409 | 42.86459 |
Callulina dawida | Anura | CR | Ground-dwelling | 24.359369 | 38.11367 | 32.25474 | 43.41667 |
Callulina dawida | Anura | CR | Ground-dwelling | 23.668023 | 38.01821 | 32.16508 | 43.31728 |
Callulina dawida | Anura | CR | Ground-dwelling | 25.512240 | 38.27286 | 32.40426 | 43.61145 |
Callulina kanga | Anura | CR | Arboreal | 22.932171 | 37.80938 | 32.11727 | 42.82942 |
Callulina kanga | Anura | CR | Arboreal | 22.237243 | 37.71404 | 32.01970 | 42.79038 |
Callulina kanga | Anura | CR | Arboreal | 24.553563 | 38.03181 | 32.24131 | 43.05294 |
Callulina laphami | Anura | CR | Ground-dwelling | 22.722915 | 37.76531 | 32.06713 | 42.89141 |
Callulina laphami | Anura | CR | Ground-dwelling | 21.996958 | 37.66555 | 32.41800 | 43.26224 |
Callulina laphami | Anura | CR | Ground-dwelling | 24.206308 | 37.96917 | 32.41677 | 43.16935 |
Callulina shengena | Anura | CR | Arboreal | 23.282669 | 37.78601 | 32.18080 | 43.33163 |
Callulina shengena | Anura | CR | Arboreal | 22.540368 | 37.68349 | 32.11441 | 43.25545 |
Callulina shengena | Anura | CR | Arboreal | 24.824741 | 37.99899 | 32.05878 | 43.24298 |
Callulina hanseni | Anura | CR | Arboreal | 23.956874 | 37.90680 | 32.33818 | 43.44477 |
Callulina hanseni | Anura | CR | Arboreal | 23.296639 | 37.81568 | 32.21824 | 43.33142 |
Callulina hanseni | Anura | CR | Arboreal | 25.435562 | 38.11086 | 32.56166 | 43.63779 |
Callulina meteora | Anura | CR | Ground-dwelling | 23.956874 | 37.97142 | 32.64181 | 43.69228 |
Callulina meteora | Anura | CR | Ground-dwelling | 23.296639 | 37.88148 | 32.53517 | 43.56346 |
Callulina meteora | Anura | CR | Ground-dwelling | 25.435562 | 38.17286 | 32.75400 | 43.85149 |
Callulina kisiwamsitu | Anura | EN | Arboreal | 24.969464 | 38.09638 | 32.52084 | 43.94521 |
Callulina kisiwamsitu | Anura | EN | Arboreal | 24.301742 | 38.00490 | 32.44489 | 43.77330 |
Callulina kisiwamsitu | Anura | EN | Arboreal | 25.986178 | 38.23568 | 32.63648 | 44.14353 |
Callulina kreffti | Anura | LC | Ground-dwelling | 23.860988 | 38.05936 | 32.34342 | 43.53849 |
Callulina kreffti | Anura | LC | Ground-dwelling | 23.173785 | 37.96688 | 32.27441 | 43.41321 |
Callulina kreffti | Anura | LC | Ground-dwelling | 25.328131 | 38.25682 | 32.07795 | 43.33998 |
Callulina stanleyi | Anura | CR | Arboreal | 23.282669 | 37.88307 | 31.88738 | 43.02365 |
Callulina stanleyi | Anura | CR | Arboreal | 22.540368 | 37.78195 | 31.73587 | 42.85863 |
Callulina stanleyi | Anura | CR | Arboreal | 24.824741 | 38.09314 | 32.18685 | 43.34616 |
Spelaeophryne methneri | Anura | LC | Fossorial | 23.909980 | 39.00315 | 33.20249 | 44.77991 |
Spelaeophryne methneri | Anura | LC | Fossorial | 23.101740 | 38.89264 | 33.11908 | 44.66356 |
Spelaeophryne methneri | Anura | LC | Fossorial | 25.645941 | 39.24051 | 33.60553 | 45.19361 |
Probreviceps durirostris | Anura | EN | Ground-dwelling | 23.204491 | 37.98964 | 32.05493 | 43.04997 |
Probreviceps durirostris | Anura | EN | Ground-dwelling | 22.464152 | 37.88890 | 31.89602 | 42.90506 |
Probreviceps durirostris | Anura | EN | Ground-dwelling | 24.966850 | 38.22946 | 32.31459 | 43.38657 |
Probreviceps rungwensis | Anura | EN | Ground-dwelling | 22.541731 | 37.82823 | 32.26453 | 43.12143 |
Probreviceps rungwensis | Anura | EN | Ground-dwelling | 21.750533 | 37.71976 | 32.17935 | 42.95928 |
Probreviceps rungwensis | Anura | EN | Ground-dwelling | 24.163424 | 38.05057 | 32.75312 | 43.62873 |
Probreviceps loveridgei | Anura | EN | Ground-dwelling | 23.183642 | 37.92571 | 32.40212 | 43.54884 |
Probreviceps loveridgei | Anura | EN | Ground-dwelling | 22.446462 | 37.82593 | 31.76605 | 42.92775 |
Probreviceps loveridgei | Anura | EN | Ground-dwelling | 24.888468 | 38.15646 | 32.17950 | 43.24273 |
Probreviceps macrodactylus | Anura | EN | Ground-dwelling | 24.206993 | 38.11469 | 31.92236 | 43.19690 |
Probreviceps macrodactylus | Anura | EN | Ground-dwelling | 23.534341 | 38.02171 | 31.96775 | 43.26825 |
Probreviceps macrodactylus | Anura | EN | Ground-dwelling | 25.490370 | 38.29210 | 32.17090 | 43.39301 |
Probreviceps uluguruensis | Anura | EN | Ground-dwelling | 24.076140 | 38.10082 | 32.87293 | 44.14539 |
Probreviceps uluguruensis | Anura | EN | Ground-dwelling | 23.433959 | 38.01301 | 32.69123 | 43.98153 |
Probreviceps uluguruensis | Anura | EN | Ground-dwelling | 25.567374 | 38.30473 | 33.10942 | 44.38399 |
Probreviceps rhodesianus | Anura | EN | Ground-dwelling | 23.996436 | 38.01289 | 32.69721 | 44.04617 |
Probreviceps rhodesianus | Anura | EN | Ground-dwelling | 22.773987 | 37.84844 | 32.55243 | 43.85042 |
Probreviceps rhodesianus | Anura | EN | Ground-dwelling | 26.339431 | 38.32808 | 32.86135 | 44.18247 |
Breviceps acutirostris | Anura | LC | Fossorial | 20.398534 | 38.43964 | 32.93690 | 43.92204 |
Breviceps acutirostris | Anura | LC | Fossorial | 19.038648 | 38.25525 | 32.76538 | 43.77829 |
Breviceps acutirostris | Anura | LC | Fossorial | 22.843827 | 38.77119 | 33.47264 | 44.51102 |
Breviceps adspersus | Anura | LC | Fossorial | 23.235416 | 38.98512 | 33.07311 | 44.44343 |
Breviceps adspersus | Anura | LC | Fossorial | 21.859388 | 38.79150 | 32.90116 | 44.18094 |
Breviceps adspersus | Anura | LC | Fossorial | 25.618039 | 39.32037 | 33.40050 | 44.86145 |
Breviceps gibbosus | Anura | NT | Fossorial | 20.495403 | 38.62373 | 32.51666 | 43.84669 |
Breviceps gibbosus | Anura | NT | Fossorial | 19.136806 | 38.44069 | 32.14426 | 43.43833 |
Breviceps gibbosus | Anura | NT | Fossorial | 23.371439 | 39.01122 | 33.03835 | 44.30330 |
Breviceps fichus | Anura | LC | Fossorial | 22.428292 | 38.92993 | 33.54074 | 44.59525 |
Breviceps fichus | Anura | LC | Fossorial | 21.620325 | 38.81931 | 33.47173 | 44.52844 |
Breviceps fichus | Anura | LC | Fossorial | 24.106198 | 39.15965 | 33.72407 | 44.81757 |
Breviceps mossambicus | Anura | LC | Fossorial | 24.337377 | 39.13387 | 33.76495 | 45.06756 |
Breviceps mossambicus | Anura | LC | Fossorial | 23.316554 | 38.99485 | 33.70768 | 44.92768 |
Breviceps mossambicus | Anura | LC | Fossorial | 26.324499 | 39.40449 | 34.01916 | 45.38619 |
Breviceps rosei | Anura | LC | Fossorial | 20.322527 | 38.61383 | 32.78776 | 44.21811 |
Breviceps rosei | Anura | LC | Fossorial | 19.044861 | 38.43579 | 32.60048 | 44.00582 |
Breviceps rosei | Anura | LC | Fossorial | 22.878734 | 38.97001 | 33.16245 | 44.67957 |
Breviceps bagginsi | Anura | NT | Fossorial | 22.432296 | 38.86431 | 32.99018 | 44.14899 |
Breviceps bagginsi | Anura | NT | Fossorial | 21.227912 | 38.70076 | 32.84489 | 44.02034 |
Breviceps bagginsi | Anura | NT | Fossorial | 24.309545 | 39.11924 | 33.23279 | 44.48385 |
Breviceps sopranus | Anura | LC | Fossorial | 23.698684 | 39.04406 | 32.86736 | 44.23207 |
Breviceps sopranus | Anura | LC | Fossorial | 22.591766 | 38.89269 | 32.78427 | 44.11183 |
Breviceps sopranus | Anura | LC | Fossorial | 25.694204 | 39.31692 | 33.03892 | 44.51631 |
Breviceps macrops | Anura | NT | Fossorial | 19.431808 | 38.49998 | 33.00156 | 44.47209 |
Breviceps macrops | Anura | NT | Fossorial | 18.527495 | 38.37709 | 32.81860 | 44.35521 |
Breviceps macrops | Anura | NT | Fossorial | 21.495659 | 38.78044 | 33.31061 | 44.79741 |
Breviceps namaquensis | Anura | LC | Fossorial | 20.033551 | 38.53729 | 32.91181 | 44.52109 |
Breviceps namaquensis | Anura | LC | Fossorial | 18.926217 | 38.38839 | 32.78682 | 44.34642 |
Breviceps namaquensis | Anura | LC | Fossorial | 22.553382 | 38.87610 | 33.22884 | 44.91855 |
Breviceps fuscus | Anura | LC | Fossorial | 20.903760 | 38.70859 | 32.90094 | 44.18741 |
Breviceps fuscus | Anura | LC | Fossorial | 19.375030 | 38.49860 | 32.69690 | 43.91982 |
Breviceps fuscus | Anura | LC | Fossorial | 23.452771 | 39.05872 | 32.85366 | 44.16873 |
Breviceps montanus | Anura | LC | Fossorial | 20.530325 | 38.62793 | 32.80838 | 44.44289 |
Breviceps montanus | Anura | LC | Fossorial | 19.118463 | 38.43727 | 32.61670 | 44.28758 |
Breviceps montanus | Anura | LC | Fossorial | 23.183947 | 38.98627 | 33.29579 | 44.81908 |
Breviceps verrucosus | Anura | LC | Fossorial | 21.820150 | 38.80658 | 32.48293 | 44.26163 |
Breviceps verrucosus | Anura | LC | Fossorial | 20.492598 | 38.62406 | 32.34685 | 44.05467 |
Breviceps verrucosus | Anura | LC | Fossorial | 23.933620 | 39.09716 | 32.66250 | 44.46507 |
Breviceps poweri | Anura | LC | Fossorial | 24.302454 | 39.09029 | 34.16549 | 45.23457 |
Breviceps poweri | Anura | LC | Fossorial | 23.341469 | 38.95875 | 33.88255 | 45.01612 |
Breviceps poweri | Anura | LC | Fossorial | 26.461874 | 39.38587 | 34.39488 | 45.49727 |
Breviceps sylvestris | Anura | NT | Fossorial | 23.170293 | 38.91117 | 33.14142 | 44.47697 |
Breviceps sylvestris | Anura | NT | Fossorial | 21.994117 | 38.75143 | 33.12483 | 44.45146 |
Breviceps sylvestris | Anura | NT | Fossorial | 25.548593 | 39.23416 | 33.28528 | 44.77047 |
Acanthixalus sonjae | Anura | VU | Arboreal | 27.507602 | 40.25607 | 35.54799 | 45.03871 |
Acanthixalus sonjae | Anura | VU | Arboreal | 26.944636 | 40.18108 | 35.46185 | 44.94577 |
Acanthixalus sonjae | Anura | VU | Arboreal | 28.762691 | 40.42327 | 35.74004 | 45.24591 |
Acanthixalus spinosus | Anura | LC | Arboreal | 27.312911 | 40.26116 | 36.03006 | 45.62234 |
Acanthixalus spinosus | Anura | LC | Arboreal | 26.567673 | 40.16232 | 35.78926 | 45.37466 |
Acanthixalus spinosus | Anura | LC | Arboreal | 28.944718 | 40.47758 | 36.10697 | 45.70559 |
Kassina arboricola | Anura | VU | Semi-aquatic | 27.494190 | 40.58076 | 36.02365 | 45.30697 |
Kassina arboricola | Anura | VU | Semi-aquatic | 26.920661 | 40.50446 | 35.96091 | 45.24130 |
Kassina arboricola | Anura | VU | Semi-aquatic | 28.740056 | 40.74649 | 36.15099 | 45.53748 |
Kassina cassinoides | Anura | LC | Semi-aquatic | 27.378388 | 40.59624 | 35.72507 | 45.34537 |
Kassina cassinoides | Anura | LC | Semi-aquatic | 26.536565 | 40.48376 | 35.53636 | 45.13930 |
Kassina cassinoides | Anura | LC | Semi-aquatic | 29.372994 | 40.86273 | 36.18786 | 45.93115 |
Kassina cochranae | Anura | LC | Arboreal | 27.405888 | 40.23638 | 35.57774 | 44.78876 |
Kassina cochranae | Anura | LC | Arboreal | 26.703853 | 40.14211 | 35.61886 | 44.83231 |
Kassina cochranae | Anura | LC | Arboreal | 28.929047 | 40.44092 | 35.71035 | 44.98607 |
Kassina decorata | Anura | VU | Semi-aquatic | 26.324881 | 40.52032 | 35.50554 | 45.33793 |
Kassina decorata | Anura | VU | Semi-aquatic | 25.657596 | 40.43142 | 35.08003 | 44.84792 |
Kassina decorata | Anura | VU | Semi-aquatic | 27.833333 | 40.72129 | 35.60887 | 45.39032 |
Kassina fusca | Anura | LC | Ground-dwelling | 27.588580 | 40.31908 | 35.82285 | 45.00875 |
Kassina fusca | Anura | LC | Ground-dwelling | 26.751515 | 40.20832 | 35.70466 | 44.86963 |
Kassina fusca | Anura | LC | Ground-dwelling | 29.473264 | 40.56845 | 36.05698 | 45.29429 |
Kassina jozani | Anura | EN | Ground-dwelling | 25.722910 | 40.04205 | 35.77831 | 45.14309 |
Kassina jozani | Anura | EN | Ground-dwelling | 25.130638 | 39.96280 | 35.70003 | 45.02362 |
Kassina jozani | Anura | EN | Ground-dwelling | 26.733407 | 40.17726 | 35.68151 | 45.08816 |
Kassina kuvangensis | Anura | LC | Semi-aquatic | 23.722489 | 40.07665 | 35.25805 | 44.49692 |
Kassina kuvangensis | Anura | LC | Semi-aquatic | 22.795379 | 39.95060 | 35.14382 | 44.38032 |
Kassina kuvangensis | Anura | LC | Semi-aquatic | 25.913209 | 40.37450 | 35.58147 | 44.84542 |
Kassina lamottei | Anura | LC | Ground-dwelling | 27.485368 | 40.28366 | 35.42911 | 44.61472 |
Kassina lamottei | Anura | LC | Ground-dwelling | 26.850050 | 40.19934 | 35.37902 | 44.53504 |
Kassina lamottei | Anura | LC | Ground-dwelling | 28.847616 | 40.46446 | 35.76140 | 44.99954 |
Kassina maculata | Anura | LC | Ground-dwelling | 25.318444 | 40.03498 | 35.37027 | 44.89067 |
Kassina maculata | Anura | LC | Ground-dwelling | 24.361110 | 39.90746 | 35.27393 | 44.78868 |
Kassina maculata | Anura | LC | Ground-dwelling | 27.209229 | 40.28685 | 35.55277 | 45.17514 |
Kassina maculifer | Anura | LC | Ground-dwelling | 24.321629 | 39.97579 | 35.31653 | 44.69490 |
Kassina maculifer | Anura | LC | Ground-dwelling | 23.537691 | 39.87274 | 35.14765 | 44.52612 |
Kassina maculifer | Anura | LC | Ground-dwelling | 25.811537 | 40.17162 | 35.57227 | 45.01569 |
Kassina maculosa | Anura | LC | Ground-dwelling | 26.761119 | 40.28652 | 35.74533 | 44.69527 |
Kassina maculosa | Anura | LC | Ground-dwelling | 26.005787 | 40.18698 | 35.64631 | 44.59745 |
Kassina maculosa | Anura | LC | Ground-dwelling | 28.382604 | 40.50019 | 36.26571 | 45.25918 |
Kassina senegalensis | Anura | LC | Ground-dwelling | 25.105426 | 40.02600 | 35.93589 | 44.90641 |
Kassina senegalensis | Anura | LC | Ground-dwelling | 24.138885 | 39.89602 | 35.83873 | 44.83056 |
Kassina senegalensis | Anura | LC | Ground-dwelling | 27.106254 | 40.29507 | 35.70137 | 44.78007 |
Kassina mertensi | Anura | LC | Ground-dwelling | 26.304072 | 40.29188 | 35.29053 | 44.49597 |
Kassina mertensi | Anura | LC | Ground-dwelling | 25.650014 | 40.20305 | 35.25669 | 44.42669 |
Kassina mertensi | Anura | LC | Ground-dwelling | 27.885818 | 40.50671 | 35.58525 | 44.87059 |
Kassina schioetzi | Anura | LC | Ground-dwelling | 27.634408 | 40.31957 | 35.22059 | 44.85465 |
Kassina schioetzi | Anura | LC | Ground-dwelling | 26.933669 | 40.22681 | 35.22329 | 44.81670 |
Kassina schioetzi | Anura | LC | Ground-dwelling | 29.077077 | 40.51056 | 35.46235 | 45.23841 |
Kassina somalica | Anura | LC | Ground-dwelling | 24.059714 | 39.92138 | 35.54715 | 44.94297 |
Kassina somalica | Anura | LC | Ground-dwelling | 23.302803 | 39.81872 | 35.48342 | 44.79603 |
Kassina somalica | Anura | LC | Ground-dwelling | 25.535567 | 40.12156 | 35.55642 | 44.99820 |
Kassina wazae | Anura | DD | Semi-aquatic | 27.350742 | 40.54820 | 35.61432 | 45.39302 |
Kassina wazae | Anura | DD | Semi-aquatic | 26.457641 | 40.42868 | 35.83385 | 45.56517 |
Kassina wazae | Anura | DD | Semi-aquatic | 29.705655 | 40.86333 | 36.08879 | 45.97129 |
Phlyctimantis boulengeri | Anura | LC | Arboreal | 27.247730 | 40.14168 | 35.52880 | 45.12513 |
Phlyctimantis boulengeri | Anura | LC | Arboreal | 26.656960 | 40.06441 | 35.51394 | 45.05997 |
Phlyctimantis boulengeri | Anura | LC | Arboreal | 28.517440 | 40.30775 | 35.65238 | 45.31668 |
Phlyctimantis keithae | Anura | EN | Arboreal | 21.407079 | 39.36734 | 34.74970 | 44.33770 |
Phlyctimantis keithae | Anura | EN | Arboreal | 20.534143 | 39.25132 | 34.79948 | 44.39347 |
Phlyctimantis keithae | Anura | EN | Arboreal | 23.114784 | 39.59430 | 35.01352 | 44.54670 |
Phlyctimantis leonardi | Anura | LC | Arboreal | 27.686478 | 40.13172 | 36.07863 | 45.44784 |
Phlyctimantis leonardi | Anura | LC | Arboreal | 26.874847 | 40.02432 | 35.97955 | 45.33380 |
Phlyctimantis leonardi | Anura | LC | Arboreal | 29.423445 | 40.36157 | 35.96699 | 45.46534 |
Phlyctimantis verrucosus | Anura | LC | Arboreal | 25.832861 | 39.88616 | 35.37204 | 45.15476 |
Phlyctimantis verrucosus | Anura | LC | Arboreal | 25.150010 | 39.79471 | 35.30755 | 45.03475 |
Phlyctimantis verrucosus | Anura | LC | Arboreal | 27.442836 | 40.10176 | 35.49196 | 45.40034 |
Semnodactylus wealii | Anura | LC | Ground-dwelling | 21.394761 | 39.54681 | 34.79477 | 44.47059 |
Semnodactylus wealii | Anura | LC | Ground-dwelling | 20.013311 | 39.36137 | 34.55469 | 44.19232 |
Semnodactylus wealii | Anura | LC | Ground-dwelling | 23.697789 | 39.85595 | 34.92007 | 44.73351 |
Afrixalus aureus | Anura | LC | Arboreal | 24.324323 | 40.13185 | 35.33163 | 44.82090 |
Afrixalus aureus | Anura | LC | Arboreal | 23.210643 | 39.98295 | 35.38660 | 44.76306 |
Afrixalus aureus | Anura | LC | Arboreal | 26.352864 | 40.40307 | 35.54606 | 44.96530 |
Afrixalus clarkei | Anura | EN | Arboreal | 22.651964 | 39.95486 | 34.85146 | 44.30890 |
Afrixalus clarkei | Anura | EN | Arboreal | 21.745245 | 39.83552 | 34.76769 | 44.19696 |
Afrixalus clarkei | Anura | EN | Arboreal | 24.388079 | 40.18337 | 34.96640 | 44.41420 |
Afrixalus delicatus | Anura | LC | Arboreal | 24.953801 | 40.23933 | 35.55508 | 44.71981 |
Afrixalus delicatus | Anura | LC | Arboreal | 24.091863 | 40.12491 | 35.43110 | 44.60973 |
Afrixalus delicatus | Anura | LC | Arboreal | 26.689541 | 40.46974 | 35.80476 | 44.95281 |
Afrixalus stuhlmanni | Anura | LC | Arboreal | 24.756386 | 40.28507 | 34.91120 | 44.55947 |
Afrixalus stuhlmanni | Anura | LC | Arboreal | 24.056514 | 40.18895 | 34.82674 | 44.46685 |
Afrixalus stuhlmanni | Anura | LC | Arboreal | 26.310122 | 40.49846 | 35.17752 | 44.88858 |
Afrixalus dorsalis | Anura | LC | Arboreal | 27.415883 | 40.59518 | 35.92933 | 45.60833 |
Afrixalus dorsalis | Anura | LC | Arboreal | 26.732879 | 40.50441 | 35.82053 | 45.49217 |
Afrixalus dorsalis | Anura | LC | Arboreal | 28.859663 | 40.78706 | 36.20654 | 45.88383 |
Afrixalus paradorsalis | Anura | LC | Arboreal | 26.935515 | 40.48007 | 35.90382 | 45.47968 |
Afrixalus paradorsalis | Anura | LC | Arboreal | 26.245436 | 40.38783 | 35.80753 | 45.34281 |
Afrixalus paradorsalis | Anura | LC | Arboreal | 28.439988 | 40.68118 | 36.03955 | 45.65705 |
Afrixalus dorsimaculatus | Anura | EN | Arboreal | 24.969464 | 40.14633 | 35.45532 | 44.66090 |
Afrixalus dorsimaculatus | Anura | EN | Arboreal | 24.301742 | 40.05716 | 35.41615 | 44.59038 |
Afrixalus dorsimaculatus | Anura | EN | Arboreal | 25.986178 | 40.28211 | 35.86564 | 45.10497 |
Afrixalus enseticola | Anura | VU | Arboreal | 20.520457 | 39.63599 | 35.43128 | 44.46133 |
Afrixalus enseticola | Anura | VU | Arboreal | 19.636801 | 39.51721 | 35.09865 | 44.12484 |
Afrixalus enseticola | Anura | VU | Arboreal | 22.054137 | 39.84213 | 35.60120 | 44.63010 |
Afrixalus equatorialis | Anura | LC | Arboreal | 27.895451 | 40.64373 | 36.17665 | 45.32180 |
Afrixalus equatorialis | Anura | LC | Arboreal | 27.134742 | 40.54147 | 36.10423 | 45.24082 |
Afrixalus equatorialis | Anura | LC | Arboreal | 29.549605 | 40.86611 | 36.21960 | 45.45431 |
Afrixalus fornasini | Anura | LC | Arboreal | 25.012184 | 40.17946 | 35.61096 | 45.05270 |
Afrixalus fornasini | Anura | LC | Arboreal | 24.078857 | 40.05486 | 35.52617 | 44.91625 |
Afrixalus fornasini | Anura | LC | Arboreal | 26.851918 | 40.42507 | 35.77336 | 45.26256 |
Afrixalus fulvovittatus | Anura | LC | Arboreal | 27.410726 | 40.61368 | 36.40987 | 45.42173 |
Afrixalus fulvovittatus | Anura | LC | Arboreal | 26.675116 | 40.51342 | 36.28419 | 45.26608 |
Afrixalus fulvovittatus | Anura | LC | Arboreal | 28.992060 | 40.82921 | 36.70783 | 45.74745 |
Afrixalus knysnae | Anura | EN | Arboreal | 20.985171 | 39.69486 | 35.33119 | 44.59187 |
Afrixalus knysnae | Anura | EN | Arboreal | 19.358019 | 39.47589 | 35.23359 | 44.45591 |
Afrixalus knysnae | Anura | EN | Arboreal | 23.607267 | 40.04772 | 35.24800 | 44.46017 |
Afrixalus lacteus | Anura | EN | Arboreal | 26.406869 | 40.30427 | 35.74219 | 45.00292 |
Afrixalus lacteus | Anura | EN | Arboreal | 25.779143 | 40.21988 | 35.33857 | 44.59910 |
Afrixalus lacteus | Anura | EN | Arboreal | 27.748605 | 40.48466 | 35.67132 | 44.93110 |
Afrixalus laevis | Anura | LC | Arboreal | 26.924450 | 40.49379 | 35.89425 | 45.39960 |
Afrixalus laevis | Anura | LC | Arboreal | 26.219093 | 40.39893 | 35.82220 | 45.30928 |
Afrixalus laevis | Anura | LC | Arboreal | 28.512948 | 40.70740 | 35.73964 | 45.33982 |
Afrixalus leucostictus | Anura | LC | Arboreal | 26.356490 | 40.46860 | 35.43362 | 44.71686 |
Afrixalus leucostictus | Anura | LC | Arboreal | 25.696518 | 40.38127 | 35.45647 | 44.69070 |
Afrixalus leucostictus | Anura | LC | Arboreal | 27.981715 | 40.68365 | 35.86726 | 45.19040 |
Afrixalus lindholmi | Anura | DD | Arboreal | 27.472036 | 40.42895 | 35.55499 | 44.97436 |
Afrixalus lindholmi | Anura | DD | Arboreal | 26.789465 | 40.33808 | 35.68745 | 45.03757 |
Afrixalus lindholmi | Anura | DD | Arboreal | 28.902188 | 40.61934 | 35.85455 | 45.34581 |
Afrixalus morerei | Anura | VU | Arboreal | 22.756109 | 39.83213 | 35.30543 | 44.70019 |
Afrixalus morerei | Anura | VU | Arboreal | 21.965932 | 39.72988 | 35.20060 | 44.62930 |
Afrixalus morerei | Anura | VU | Arboreal | 24.573055 | 40.06725 | 35.48453 | 44.93623 |
Afrixalus nigeriensis | Anura | LC | Arboreal | 27.590114 | 40.58992 | 36.08714 | 45.20441 |
Afrixalus nigeriensis | Anura | LC | Arboreal | 26.974905 | 40.50837 | 35.94030 | 45.09648 |
Afrixalus nigeriensis | Anura | LC | Arboreal | 28.925279 | 40.76690 | 36.30719 | 45.46935 |
Afrixalus orophilus | Anura | LC | Arboreal | 22.870229 | 39.97369 | 35.00508 | 44.55363 |
Afrixalus orophilus | Anura | LC | Arboreal | 22.216784 | 39.88805 | 34.93734 | 44.43591 |
Afrixalus orophilus | Anura | LC | Arboreal | 24.281501 | 40.15865 | 34.95291 | 44.56971 |
Afrixalus osorioi | Anura | LC | Arboreal | 26.890802 | 40.54356 | 35.63593 | 45.12664 |
Afrixalus osorioi | Anura | LC | Arboreal | 26.086159 | 40.43661 | 35.46317 | 44.95518 |
Afrixalus osorioi | Anura | LC | Arboreal | 28.658126 | 40.77847 | 35.72939 | 45.29675 |
Afrixalus quadrivittatus | Anura | LC | Arboreal | 26.207737 | 40.41672 | 35.48554 | 45.06559 |
Afrixalus quadrivittatus | Anura | LC | Arboreal | 25.409794 | 40.31190 | 35.47661 | 45.01258 |
Afrixalus quadrivittatus | Anura | LC | Arboreal | 27.968308 | 40.64800 | 36.21681 | 45.93698 |
Afrixalus schneideri | Anura | DD | Arboreal | 26.939038 | 40.56349 | 36.14843 | 45.78307 |
Afrixalus schneideri | Anura | DD | Arboreal | 26.407567 | 40.49326 | 36.11323 | 45.75075 |
Afrixalus schneideri | Anura | DD | Arboreal | 28.227584 | 40.73377 | 36.34469 | 45.93066 |
Afrixalus septentrionalis | Anura | LC | Arboreal | 23.376981 | 40.12614 | 35.86302 | 44.74848 |
Afrixalus septentrionalis | Anura | LC | Arboreal | 22.638950 | 40.02711 | 35.74764 | 44.64759 |
Afrixalus septentrionalis | Anura | LC | Arboreal | 24.889815 | 40.32914 | 36.11915 | 45.00097 |
Afrixalus spinifrons | Anura | LC | Arboreal | 22.002189 | 39.78229 | 35.19302 | 44.80464 |
Afrixalus spinifrons | Anura | LC | Arboreal | 20.730213 | 39.61373 | 35.06070 | 44.56871 |
Afrixalus spinifrons | Anura | LC | Arboreal | 23.934886 | 40.03840 | 35.32605 | 44.98102 |
Afrixalus sylvaticus | Anura | VU | Arboreal | 25.292334 | 40.26932 | 35.07783 | 44.59315 |
Afrixalus sylvaticus | Anura | VU | Arboreal | 24.684023 | 40.18855 | 34.92936 | 44.42670 |
Afrixalus sylvaticus | Anura | VU | Arboreal | 26.300898 | 40.40324 | 35.20643 | 44.72384 |
Afrixalus uluguruensis | Anura | VU | Arboreal | 22.365889 | 39.86024 | 35.08077 | 43.96672 |
Afrixalus uluguruensis | Anura | VU | Arboreal | 21.575638 | 39.75563 | 34.97795 | 43.82232 |
Afrixalus uluguruensis | Anura | VU | Arboreal | 24.072422 | 40.08615 | 35.22811 | 44.28735 |
Afrixalus upembae | Anura | DD | Arboreal | 24.710512 | 40.09838 | 35.46779 | 45.04465 |
Afrixalus upembae | Anura | DD | Arboreal | 23.861793 | 39.98562 | 35.35582 | 44.89782 |
Afrixalus upembae | Anura | DD | Arboreal | 26.765922 | 40.37146 | 35.71011 | 45.41461 |
Afrixalus vibekensis | Anura | LC | Arboreal | 27.478518 | 40.59069 | 35.50155 | 45.32016 |
Afrixalus vibekensis | Anura | LC | Arboreal | 26.905442 | 40.51532 | 35.85366 | 45.62580 |
Afrixalus vibekensis | Anura | LC | Arboreal | 28.702806 | 40.75170 | 35.35070 | 45.21248 |
Afrixalus vittiger | Anura | LC | Arboreal | 27.579058 | 40.60644 | 36.14172 | 45.63447 |
Afrixalus vittiger | Anura | LC | Arboreal | 26.815992 | 40.50467 | 35.85695 | 45.36351 |
Afrixalus vittiger | Anura | LC | Arboreal | 29.271754 | 40.83219 | 36.28347 | 45.88248 |
Afrixalus weidholzi | Anura | LC | Arboreal | 27.293536 | 40.44615 | 35.64133 | 45.02106 |
Afrixalus weidholzi | Anura | LC | Arboreal | 26.490661 | 40.34098 | 35.49406 | 44.90292 |
Afrixalus weidholzi | Anura | LC | Arboreal | 29.098135 | 40.68255 | 35.73066 | 45.14358 |
Afrixalus wittei | Anura | LC | Arboreal | 24.088004 | 40.14410 | 35.24558 | 44.68080 |
Afrixalus wittei | Anura | LC | Arboreal | 23.175567 | 40.02406 | 35.35417 | 44.82690 |
Afrixalus wittei | Anura | LC | Arboreal | 26.144421 | 40.41466 | 35.56281 | 44.97779 |
Heterixalus alboguttatus | Anura | LC | Arboreal | 25.314844 | 40.21263 | 35.29657 | 44.82320 |
Heterixalus alboguttatus | Anura | LC | Arboreal | 24.458250 | 40.10054 | 35.41532 | 44.93822 |
Heterixalus alboguttatus | Anura | LC | Arboreal | 26.797722 | 40.40668 | 35.48098 | 44.99457 |
Heterixalus boettgeri | Anura | LC | Arboreal | 25.436102 | 40.24988 | 35.18291 | 44.54198 |
Heterixalus boettgeri | Anura | LC | Arboreal | 24.609226 | 40.14151 | 35.08770 | 44.44389 |
Heterixalus boettgeri | Anura | LC | Arboreal | 26.830675 | 40.43265 | 35.46643 | 44.80022 |
Heterixalus madagascariensis | Anura | LC | Arboreal | 25.807052 | 40.27060 | 35.23079 | 44.54949 |
Heterixalus madagascariensis | Anura | LC | Arboreal | 24.852044 | 40.14370 | 35.10422 | 44.43365 |
Heterixalus madagascariensis | Anura | LC | Arboreal | 27.292203 | 40.46794 | 35.46998 | 44.88555 |
Heterixalus punctatus | Anura | LC | Arboreal | 25.807052 | 40.28235 | 35.14501 | 44.64561 |
Heterixalus punctatus | Anura | LC | Arboreal | 24.852044 | 40.15450 | 34.85583 | 44.38378 |
Heterixalus punctatus | Anura | LC | Arboreal | 27.292203 | 40.48117 | 35.37008 | 44.90397 |
Heterixalus andrakata | Anura | LC | Arboreal | 26.039008 | 40.31067 | 35.40136 | 44.93015 |
Heterixalus andrakata | Anura | LC | Arboreal | 25.102259 | 40.18569 | 35.19382 | 44.60721 |
Heterixalus andrakata | Anura | LC | Arboreal | 27.586486 | 40.51713 | 35.13242 | 44.72722 |
Heterixalus tricolor | Anura | LC | Arboreal | 27.320578 | 40.41153 | 35.36632 | 44.61639 |
Heterixalus tricolor | Anura | LC | Arboreal | 26.205818 | 40.26519 | 35.12455 | 44.46161 |
Heterixalus tricolor | Anura | LC | Arboreal | 29.049002 | 40.63844 | 35.66362 | 44.99463 |
Heterixalus variabilis | Anura | LC | Arboreal | 26.916750 | 40.39418 | 35.49379 | 45.28712 |
Heterixalus variabilis | Anura | LC | Arboreal | 26.047153 | 40.27903 | 34.91168 | 44.68872 |
Heterixalus variabilis | Anura | LC | Arboreal | 28.377450 | 40.58760 | 35.70496 | 45.49427 |
Heterixalus betsileo | Anura | LC | Arboreal | 25.498544 | 40.14896 | 35.47702 | 45.16268 |
Heterixalus betsileo | Anura | LC | Arboreal | 24.618312 | 40.03290 | 35.35940 | 45.03644 |
Heterixalus betsileo | Anura | LC | Arboreal | 26.996274 | 40.34643 | 35.67716 | 45.37351 |
Heterixalus carbonei | Anura | LC | Arboreal | 26.840697 | 40.45017 | 36.16318 | 45.62674 |
Heterixalus carbonei | Anura | LC | Arboreal | 26.115189 | 40.35138 | 36.21485 | 45.67906 |
Heterixalus carbonei | Anura | LC | Arboreal | 28.279821 | 40.64613 | 36.41879 | 45.91846 |
Heterixalus luteostriatus | Anura | LC | Arboreal | 26.541627 | 40.40518 | 35.68998 | 44.97563 |
Heterixalus luteostriatus | Anura | LC | Arboreal | 25.720972 | 40.29321 | 35.60615 | 44.90823 |
Heterixalus luteostriatus | Anura | LC | Arboreal | 28.077293 | 40.61472 | 35.88625 | 45.25468 |
Heterixalus rutenbergi | Anura | LC | Arboreal | 25.519471 | 40.28345 | 35.64867 | 45.22877 |
Heterixalus rutenbergi | Anura | LC | Arboreal | 24.633226 | 40.16438 | 35.44312 | 44.97132 |
Heterixalus rutenbergi | Anura | LC | Arboreal | 27.049034 | 40.48896 | 35.76458 | 45.34883 |
Tachycnemis seychellensis | Anura | LC | Arboreal | 26.783332 | 40.42096 | 35.57342 | 45.61441 |
Tachycnemis seychellensis | Anura | LC | Arboreal | 26.200616 | 40.34282 | 35.62622 | 45.64899 |
Tachycnemis seychellensis | Anura | LC | Arboreal | 27.685753 | 40.54198 | 35.84888 | 45.96667 |
Alexteroon hypsiphonus | Anura | LC | Stream-dwelling | 27.224069 | 40.25375 | 35.92077 | 44.67713 |
Alexteroon hypsiphonus | Anura | LC | Stream-dwelling | 26.507033 | 40.15531 | 35.88397 | 44.60371 |
Alexteroon hypsiphonus | Anura | LC | Stream-dwelling | 28.798542 | 40.46991 | 35.93225 | 44.71240 |
Alexteroon jynx | Anura | CR | Stream-dwelling | 26.939038 | 40.15616 | 35.81592 | 44.84744 |
Alexteroon jynx | Anura | CR | Stream-dwelling | 26.407567 | 40.08382 | 35.59457 | 44.62072 |
Alexteroon jynx | Anura | CR | Stream-dwelling | 28.227584 | 40.33155 | 35.88138 | 44.98083 |
Alexteroon obstetricans | Anura | LC | Stream-dwelling | 27.016445 | 40.28852 | 35.69135 | 44.58869 |
Alexteroon obstetricans | Anura | LC | Stream-dwelling | 26.316797 | 40.19476 | 35.59368 | 44.52585 |
Alexteroon obstetricans | Anura | LC | Stream-dwelling | 28.549007 | 40.49390 | 35.72012 | 44.72633 |
Hyperolius acuticeps | Anura | LC | Arboreal | 23.235110 | 40.23562 | 35.92788 | 45.01366 |
Hyperolius acuticeps | Anura | LC | Arboreal | 22.297600 | 40.11348 | 35.79767 | 44.90640 |
Hyperolius acuticeps | Anura | LC | Arboreal | 25.197739 | 40.49133 | 35.90338 | 45.02627 |
Hyperolius howelli | Anura | LC | Arboreal | 21.280168 | 39.99775 | 35.75407 | 44.40328 |
Hyperolius howelli | Anura | LC | Arboreal | 20.375695 | 39.87776 | 36.15048 | 44.84489 |
Hyperolius howelli | Anura | LC | Arboreal | 23.103493 | 40.23964 | 35.83252 | 44.37023 |
Hyperolius friedemanni | Anura | DD | Arboreal | 22.853796 | 40.14610 | 35.65677 | 44.48087 |
Hyperolius friedemanni | Anura | DD | Arboreal | 21.901946 | 40.01890 | 35.54153 | 44.36764 |
Hyperolius friedemanni | Anura | DD | Arboreal | 24.663396 | 40.38790 | 35.78874 | 44.63509 |
Hyperolius adspersus | Anura | LC | Arboreal | 27.370081 | 40.76568 | 36.14871 | 45.44056 |
Hyperolius adspersus | Anura | LC | Arboreal | 26.594549 | 40.66212 | 36.01850 | 45.25821 |
Hyperolius adspersus | Anura | LC | Arboreal | 29.052849 | 40.99037 | 36.17377 | 45.52371 |
Hyperolius dartevellei | Anura | LC | Arboreal | 26.592862 | 40.68392 | 35.91884 | 45.00030 |
Hyperolius dartevellei | Anura | LC | Arboreal | 25.762928 | 40.57391 | 36.44290 | 45.52516 |
Hyperolius dartevellei | Anura | LC | Arboreal | 28.520378 | 40.93943 | 36.58673 | 45.80626 |
Hyperolius acutirostris | Anura | LC | Arboreal | 26.579066 | 40.60037 | 36.08966 | 44.99611 |
Hyperolius acutirostris | Anura | LC | Arboreal | 25.963018 | 40.51804 | 36.02127 | 44.90989 |
Hyperolius acutirostris | Anura | LC | Arboreal | 27.974417 | 40.78685 | 36.23094 | 45.21439 |
Hyperolius ademetzi | Anura | EN | Arboreal | 26.406869 | 40.66789 | 36.42457 | 44.86252 |
Hyperolius ademetzi | Anura | EN | Arboreal | 25.779143 | 40.58277 | 36.35958 | 44.78649 |
Hyperolius ademetzi | Anura | EN | Arboreal | 27.748605 | 40.84984 | 36.48264 | 45.01599 |
Hyperolius discodactylus | Anura | LC | Arboreal | 23.073654 | 40.12559 | 35.48046 | 43.98438 |
Hyperolius discodactylus | Anura | LC | Arboreal | 22.409303 | 40.03754 | 35.99356 | 44.44524 |
Hyperolius discodactylus | Anura | LC | Arboreal | 24.578369 | 40.32503 | 35.60617 | 44.13781 |
Hyperolius lateralis | Anura | LC | Arboreal | 23.330458 | 40.17645 | 35.65098 | 44.52591 |
Hyperolius lateralis | Anura | LC | Arboreal | 22.657968 | 40.08751 | 35.59822 | 44.44647 |
Hyperolius lateralis | Anura | LC | Arboreal | 24.895508 | 40.38344 | 36.04732 | 44.87830 |
Hyperolius nitidulus | Anura | LC | Arboreal | 27.303716 | 40.80119 | 35.81256 | 44.75432 |
Hyperolius nitidulus | Anura | LC | Arboreal | 26.486684 | 40.69106 | 35.72905 | 44.68475 |
Hyperolius nitidulus | Anura | LC | Arboreal | 29.177424 | 41.05376 | 36.68849 | 45.68670 |
Hyperolius tuberculatus | Anura | LC | Arboreal | 27.156022 | 40.74972 | 36.65528 | 45.50707 |
Hyperolius tuberculatus | Anura | LC | Arboreal | 26.417441 | 40.65187 | 36.62659 | 45.43619 |
Hyperolius tuberculatus | Anura | LC | Arboreal | 28.795839 | 40.96697 | 36.74739 | 45.69421 |
Hyperolius argus | Anura | LC | Arboreal | 25.393277 | 40.44354 | 35.78004 | 44.54368 |
Hyperolius argus | Anura | LC | Arboreal | 24.474530 | 40.32249 | 35.89469 | 44.59347 |
Hyperolius argus | Anura | LC | Arboreal | 27.183807 | 40.67945 | 36.08945 | 44.91648 |
Hyperolius atrigularis | Anura | DD | Arboreal | 23.112720 | 40.19972 | 35.92612 | 44.36108 |
Hyperolius atrigularis | Anura | DD | Arboreal | 22.355155 | 40.09970 | 35.84220 | 44.26272 |
Hyperolius atrigularis | Anura | DD | Arboreal | 24.623852 | 40.39923 | 36.06531 | 44.46647 |
Hyperolius balfouri | Anura | LC | Arboreal | 25.960324 | 40.53908 | 36.11633 | 44.78724 |
Hyperolius balfouri | Anura | LC | Arboreal | 25.148667 | 40.43227 | 36.04330 | 44.68754 |
Hyperolius balfouri | Anura | LC | Arboreal | 27.671878 | 40.76430 | 36.14804 | 44.94124 |
Hyperolius baumanni | Anura | LC | Arboreal | 28.323208 | 41.01445 | 37.09568 | 46.13486 |
Hyperolius baumanni | Anura | LC | Arboreal | 27.637246 | 40.92116 | 36.98099 | 45.97583 |
Hyperolius baumanni | Anura | LC | Arboreal | 29.712530 | 41.20338 | 37.28732 | 46.47137 |
Hyperolius sylvaticus | Anura | LC | Arboreal | 27.596293 | 40.93259 | 36.70357 | 45.36026 |
Hyperolius sylvaticus | Anura | LC | Arboreal | 27.009244 | 40.85425 | 36.64122 | 45.26361 |
Hyperolius sylvaticus | Anura | LC | Arboreal | 28.888822 | 41.10507 | 36.84086 | 45.57306 |
Hyperolius bobirensis | Anura | VU | Arboreal | 27.513427 | 40.88172 | 36.34231 | 45.15674 |
Hyperolius bobirensis | Anura | VU | Arboreal | 26.982304 | 40.81128 | 36.28603 | 45.04163 |
Hyperolius bobirensis | Anura | VU | Arboreal | 28.691591 | 41.03798 | 36.72953 | 45.55444 |
Hyperolius picturatus | Anura | LC | Arboreal | 27.442426 | 40.79348 | 36.60515 | 45.40611 |
Hyperolius picturatus | Anura | LC | Arboreal | 26.824772 | 40.71135 | 36.56755 | 45.32755 |
Hyperolius picturatus | Anura | LC | Arboreal | 28.765873 | 40.96946 | 36.45711 | 45.31037 |
Hyperolius benguellensis | Anura | LC | Arboreal | 24.173211 | 40.34373 | 36.10180 | 44.46865 |
Hyperolius benguellensis | Anura | LC | Arboreal | 23.102850 | 40.20147 | 36.05277 | 44.40117 |
Hyperolius benguellensis | Anura | LC | Arboreal | 26.393841 | 40.63888 | 36.18426 | 44.66375 |
Hyperolius nasutus | Anura | LC | Arboreal | 24.259589 | 40.39138 | 35.77616 | 44.07712 |
Hyperolius nasutus | Anura | LC | Arboreal | 23.070188 | 40.23305 | 35.74842 | 44.09199 |
Hyperolius nasutus | Anura | LC | Arboreal | 26.551382 | 40.69644 | 36.04947 | 44.43894 |
Hyperolius inyangae | Anura | VU | Arboreal | 23.500975 | 40.29599 | 35.74302 | 44.59227 |
Hyperolius inyangae | Anura | VU | Arboreal | 22.417011 | 40.15095 | 35.70431 | 44.52956 |
Hyperolius inyangae | Anura | VU | Arboreal | 25.821020 | 40.60641 | 36.11753 | 45.01718 |
Hyperolius bicolor | Anura | DD | Arboreal | 26.575552 | 40.57693 | 36.38034 | 45.00935 |
Hyperolius bicolor | Anura | DD | Arboreal | 25.491610 | 40.43276 | 36.33754 | 44.92009 |
Hyperolius bicolor | Anura | DD | Arboreal | 29.001640 | 40.89962 | 36.58930 | 45.42072 |
Hyperolius bolifambae | Anura | LC | Arboreal | 26.619858 | 40.70732 | 36.47623 | 45.22382 |
Hyperolius bolifambae | Anura | LC | Arboreal | 26.001845 | 40.62460 | 36.41262 | 45.18110 |
Hyperolius bolifambae | Anura | LC | Arboreal | 28.046435 | 40.89828 | 36.52658 | 45.32245 |
Hyperolius bopeleti | Anura | VU | Arboreal | 26.693191 | 40.76254 | 36.44183 | 45.20077 |
Hyperolius bopeleti | Anura | VU | Arboreal | 26.112566 | 40.68588 | 36.38097 | 45.10295 |
Hyperolius bopeleti | Anura | VU | Arboreal | 28.043157 | 40.94078 | 36.40408 | 45.22415 |
Hyperolius brachiofasciatus | Anura | DD | Arboreal | 26.886888 | 40.71650 | 36.74679 | 45.35786 |
Hyperolius brachiofasciatus | Anura | DD | Arboreal | 26.069609 | 40.60718 | 36.51756 | 45.09323 |
Hyperolius brachiofasciatus | Anura | DD | Arboreal | 28.456836 | 40.92651 | 36.67618 | 45.38561 |
Hyperolius camerunensis | Anura | LC | Arboreal | 26.265358 | 40.64272 | 36.43299 | 45.17271 |
Hyperolius camerunensis | Anura | LC | Arboreal | 25.590641 | 40.55176 | 36.29415 | 45.02021 |
Hyperolius camerunensis | Anura | LC | Arboreal | 27.673775 | 40.83261 | 36.59335 | 45.41017 |
Hyperolius castaneus | Anura | LC | Arboreal | 23.133186 | 40.29380 | 35.98810 | 44.66519 |
Hyperolius castaneus | Anura | LC | Arboreal | 22.491192 | 40.20829 | 35.88971 | 44.56803 |
Hyperolius castaneus | Anura | LC | Arboreal | 24.545490 | 40.48192 | 36.20761 | 44.98124 |
Hyperolius frontalis | Anura | LC | Arboreal | 23.484241 | 40.27948 | 36.08022 | 44.38266 |
Hyperolius frontalis | Anura | LC | Arboreal | 22.797965 | 40.18976 | 36.01095 | 44.30387 |
Hyperolius frontalis | Anura | LC | Arboreal | 25.119486 | 40.49325 | 36.28038 | 44.64290 |
Hyperolius cystocandicans | Anura | EN | Arboreal | 21.132444 | 39.92974 | 35.27292 | 44.09428 |
Hyperolius cystocandicans | Anura | EN | Arboreal | 20.271533 | 39.81500 | 35.59425 | 44.43520 |
Hyperolius cystocandicans | Anura | EN | Arboreal | 22.863109 | 40.16040 | 35.58362 | 44.43422 |
Hyperolius cinereus | Anura | LC | Arboreal | 23.623667 | 40.22319 | 36.10557 | 44.95638 |
Hyperolius cinereus | Anura | LC | Arboreal | 22.179172 | 40.03043 | 35.90673 | 44.73784 |
Hyperolius cinereus | Anura | LC | Arboreal | 25.989532 | 40.53890 | 36.30549 | 45.28089 |
Hyperolius chlorosteus | Anura | LC | Arboreal | 27.438537 | 40.73019 | 36.03897 | 45.34770 |
Hyperolius chlorosteus | Anura | LC | Arboreal | 26.788201 | 40.64506 | 35.92875 | 45.18121 |
Hyperolius chlorosteus | Anura | LC | Arboreal | 28.801411 | 40.90859 | 36.25912 | 45.61888 |
Hyperolius laurenti | Anura | NT | Arboreal | 27.731561 | 40.74219 | 35.62625 | 45.00559 |
Hyperolius laurenti | Anura | NT | Arboreal | 27.203725 | 40.67365 | 35.54673 | 44.92170 |
Hyperolius laurenti | Anura | NT | Arboreal | 28.925910 | 40.89728 | 35.80618 | 45.26044 |
Hyperolius torrentis | Anura | VU | Arboreal | 28.120253 | 40.77653 | 36.29885 | 44.84604 |
Hyperolius torrentis | Anura | VU | Arboreal | 27.396271 | 40.68077 | 36.23563 | 44.77874 |
Hyperolius torrentis | Anura | VU | Arboreal | 29.629225 | 40.97613 | 36.79541 | 45.44593 |
Hyperolius chrysogaster | Anura | NT | Arboreal | 23.519285 | 40.14791 | 35.83168 | 44.84325 |
Hyperolius chrysogaster | Anura | NT | Arboreal | 22.854186 | 40.05862 | 35.77279 | 44.74260 |
Hyperolius chrysogaster | Anura | NT | Arboreal | 25.112810 | 40.36184 | 36.08602 | 45.16197 |
Hyperolius cinnamomeoventris | Anura | LC | Arboreal | 26.238740 | 40.58472 | 36.89224 | 45.67685 |
Hyperolius cinnamomeoventris | Anura | LC | Arboreal | 25.412535 | 40.47220 | 36.89398 | 45.61271 |
Hyperolius cinnamomeoventris | Anura | LC | Arboreal | 28.082721 | 40.83587 | 37.02247 | 45.92405 |
Hyperolius veithi | Anura | LC | Arboreal | 28.076027 | 40.78744 | 36.35777 | 45.23798 |
Hyperolius veithi | Anura | LC | Arboreal | 27.394920 | 40.69620 | 36.26738 | 45.10175 |
Hyperolius veithi | Anura | LC | Arboreal | 29.718242 | 41.00744 | 36.60037 | 45.52159 |
Hyperolius molleri | Anura | LC | Arboreal | 27.058557 | 40.69353 | 36.07373 | 44.89058 |
Hyperolius molleri | Anura | LC | Arboreal | 26.510448 | 40.61966 | 36.01301 | 44.83564 |
Hyperolius molleri | Anura | LC | Arboreal | 27.987002 | 40.81867 | 36.12411 | 44.99860 |
Hyperolius thomensis | Anura | EN | Arboreal | 26.962622 | 40.65709 | 35.94354 | 45.11983 |
Hyperolius thomensis | Anura | EN | Arboreal | 26.447166 | 40.58803 | 35.98237 | 45.15849 |
Hyperolius thomensis | Anura | EN | Arboreal | 27.902257 | 40.78297 | 36.06977 | 45.23941 |
Hyperolius concolor | Anura | LC | Arboreal | 27.520611 | 40.73074 | 36.42945 | 44.88390 |
Hyperolius concolor | Anura | LC | Arboreal | 26.860852 | 40.64260 | 36.35117 | 44.78565 |
Hyperolius concolor | Anura | LC | Arboreal | 28.974535 | 40.92500 | 36.51332 | 45.03404 |
Hyperolius zonatus | Anura | LC | Semi-aquatic | 27.493724 | 41.10252 | 36.43827 | 45.76753 |
Hyperolius zonatus | Anura | LC | Semi-aquatic | 26.885429 | 41.02123 | 36.38979 | 45.69962 |
Hyperolius zonatus | Anura | LC | Semi-aquatic | 28.742693 | 41.26943 | 36.53782 | 45.90697 |
Hyperolius constellatus | Anura | VU | Arboreal | 23.526802 | 40.24743 | 35.90141 | 44.52317 |
Hyperolius constellatus | Anura | VU | Arboreal | 22.874684 | 40.16269 | 35.81424 | 44.39495 |
Hyperolius constellatus | Anura | VU | Arboreal | 25.094796 | 40.45119 | 36.11099 | 44.75495 |
Hyperolius diaphanus | Anura | DD | Arboreal | 24.594368 | 40.47828 | 35.75508 | 44.62779 |
Hyperolius diaphanus | Anura | DD | Arboreal | 23.900597 | 40.38473 | 35.76029 | 44.60608 |
Hyperolius diaphanus | Anura | DD | Arboreal | 26.464241 | 40.73041 | 35.92495 | 44.79543 |
Hyperolius dintelmanni | Anura | EN | Arboreal | 26.939038 | 40.77484 | 36.28782 | 45.21627 |
Hyperolius dintelmanni | Anura | EN | Arboreal | 26.407567 | 40.70475 | 36.43789 | 45.32434 |
Hyperolius dintelmanni | Anura | EN | Arboreal | 28.227584 | 40.94478 | 36.48145 | 45.46783 |
Hyperolius endjami | Anura | LC | Arboreal | 26.358872 | 40.56555 | 36.45355 | 44.78893 |
Hyperolius endjami | Anura | LC | Arboreal | 25.757240 | 40.48605 | 36.42813 | 44.67717 |
Hyperolius endjami | Anura | LC | Arboreal | 27.809207 | 40.75717 | 36.65326 | 45.06822 |
Hyperolius fasciatus | Anura | DD | Arboreal | 26.312193 | 40.64652 | 36.67864 | 45.12316 |
Hyperolius fasciatus | Anura | DD | Arboreal | 25.168396 | 40.49244 | 36.41722 | 44.81428 |
Hyperolius fasciatus | Anura | DD | Arboreal | 28.810506 | 40.98308 | 36.86440 | 45.46245 |
Hyperolius ferreirai | Anura | DD | Arboreal | 26.312193 | 40.68352 | 36.34916 | 44.95141 |
Hyperolius ferreirai | Anura | DD | Arboreal | 25.168396 | 40.53333 | 36.24034 | 44.79123 |
Hyperolius ferreirai | Anura | DD | Arboreal | 28.810506 | 41.01156 | 36.86555 | 45.49349 |
Hyperolius ferrugineus | Anura | DD | Arboreal | 24.936081 | 40.43506 | 36.43106 | 45.31076 |
Hyperolius ferrugineus | Anura | DD | Arboreal | 24.142280 | 40.32966 | 36.04127 | 44.90347 |
Hyperolius ferrugineus | Anura | DD | Arboreal | 26.756497 | 40.67677 | 36.62977 | 45.53971 |
Hyperolius fuscigula | Anura | DD | Arboreal | 25.858927 | 40.59318 | 36.85837 | 45.36184 |
Hyperolius fuscigula | Anura | DD | Arboreal | 24.717795 | 40.44051 | 36.47938 | 44.93637 |
Hyperolius fuscigula | Anura | DD | Arboreal | 28.328987 | 40.92364 | 37.00549 | 45.67828 |
Hyperolius fusciventris | Anura | LC | Arboreal | 27.477042 | 40.75331 | 36.12592 | 45.13074 |
Hyperolius fusciventris | Anura | LC | Arboreal | 26.840777 | 40.66753 | 36.05099 | 45.03187 |
Hyperolius fusciventris | Anura | LC | Arboreal | 28.865762 | 40.94054 | 36.23432 | 45.33601 |
Hyperolius guttulatus | Anura | LC | Arboreal | 27.487790 | 40.70556 | 36.37045 | 45.60014 |
Hyperolius guttulatus | Anura | LC | Arboreal | 26.844795 | 40.61986 | 36.04655 | 45.23293 |
Hyperolius guttulatus | Anura | LC | Arboreal | 28.879429 | 40.89102 | 36.47939 | 45.71804 |
Hyperolius ghesquieri | Anura | DD | Arboreal | 28.083849 | 40.80296 | 36.03018 | 45.06530 |
Hyperolius ghesquieri | Anura | DD | Arboreal | 27.281501 | 40.69647 | 35.96959 | 44.92846 |
Hyperolius ghesquieri | Anura | DD | Arboreal | 29.655091 | 41.01150 | 36.13082 | 45.24704 |
Hyperolius glandicolor | Anura | LC | Arboreal | 23.189440 | 40.15209 | 35.84229 | 44.43234 |
Hyperolius glandicolor | Anura | LC | Arboreal | 22.406469 | 40.04895 | 35.76550 | 44.36129 |
Hyperolius glandicolor | Anura | LC | Arboreal | 24.856414 | 40.37169 | 35.96051 | 44.54508 |
Hyperolius phantasticus | Anura | LC | Arboreal | 27.675117 | 40.76935 | 36.55653 | 45.51974 |
Hyperolius phantasticus | Anura | LC | Arboreal | 26.914250 | 40.66718 | 36.44529 | 45.41833 |
Hyperolius phantasticus | Anura | LC | Arboreal | 29.337238 | 40.99255 | 36.91866 | 46.04945 |
Hyperolius gularis | Anura | DD | Arboreal | 26.873119 | 40.69054 | 36.48706 | 45.30964 |
Hyperolius gularis | Anura | DD | Arboreal | 25.742142 | 40.53974 | 36.26437 | 45.10211 |
Hyperolius gularis | Anura | DD | Arboreal | 29.286375 | 41.01231 | 36.78883 | 45.62357 |
Hyperolius horstockii | Anura | LC | Arboreal | 20.653426 | 39.72137 | 35.86561 | 44.76471 |
Hyperolius horstockii | Anura | LC | Arboreal | 19.213302 | 39.52868 | 35.60072 | 44.49930 |
Hyperolius horstockii | Anura | LC | Arboreal | 23.156558 | 40.05630 | 35.71635 | 44.75078 |
Hyperolius hutsebauti | Anura | LC | Arboreal | 26.078060 | 40.67723 | 36.43296 | 45.02044 |
Hyperolius hutsebauti | Anura | LC | Arboreal | 25.399436 | 40.58660 | 36.35061 | 44.93432 |
Hyperolius hutsebauti | Anura | LC | Arboreal | 27.651365 | 40.88736 | 36.64678 | 45.29793 |
Hyperolius igbettensis | Anura | LC | Arboreal | 27.355103 | 40.64069 | 36.27628 | 45.21941 |
Hyperolius igbettensis | Anura | LC | Arboreal | 26.644597 | 40.54690 | 36.17153 | 45.10794 |
Hyperolius igbettensis | Anura | LC | Arboreal | 28.982974 | 40.85560 | 36.45123 | 45.38006 |
Hyperolius jacobseni | Anura | DD | Arboreal | 27.361917 | 40.65345 | 36.14993 | 45.42526 |
Hyperolius jacobseni | Anura | DD | Arboreal | 26.510324 | 40.54000 | 36.14898 | 45.35941 |
Hyperolius jacobseni | Anura | DD | Arboreal | 29.066751 | 40.88057 | 36.33978 | 45.60566 |
Hyperolius poweri | Anura | LC | Arboreal | 22.904700 | 40.06297 | 35.82782 | 44.57256 |
Hyperolius poweri | Anura | LC | Arboreal | 21.758907 | 39.90921 | 35.73045 | 44.43234 |
Hyperolius poweri | Anura | LC | Arboreal | 24.722131 | 40.30686 | 36.28205 | 45.06349 |
Hyperolius inornatus | Anura | DD | Arboreal | 27.976925 | 40.85934 | 36.31064 | 45.12588 |
Hyperolius inornatus | Anura | DD | Arboreal | 26.996749 | 40.72774 | 36.14674 | 44.93393 |
Hyperolius inornatus | Anura | DD | Arboreal | 30.102839 | 41.14474 | 36.54507 | 45.43053 |
Hyperolius jackie | Anura | DD | Arboreal | 21.747229 | 40.02946 | 35.98475 | 44.37398 |
Hyperolius jackie | Anura | DD | Arboreal | 21.135373 | 39.94942 | 35.91521 | 44.25507 |
Hyperolius jackie | Anura | DD | Arboreal | 22.883913 | 40.17815 | 36.13432 | 44.58092 |
Hyperolius kachalolae | Anura | LC | Arboreal | 23.908592 | 40.24265 | 35.85859 | 44.30596 |
Hyperolius kachalolae | Anura | LC | Arboreal | 22.960010 | 40.11857 | 35.76050 | 44.18484 |
Hyperolius kachalolae | Anura | LC | Arboreal | 26.056325 | 40.52359 | 36.07043 | 44.70634 |
Hyperolius kibarae | Anura | DD | Arboreal | 24.674386 | 40.50614 | 35.95083 | 45.03890 |
Hyperolius kibarae | Anura | DD | Arboreal | 23.823188 | 40.39264 | 35.81729 | 44.88281 |
Hyperolius kibarae | Anura | DD | Arboreal | 26.719807 | 40.77887 | 35.86644 | 45.21320 |
Hyperolius kihangensis | Anura | EN | Arboreal | 21.407079 | 39.95632 | 35.43812 | 44.27081 |
Hyperolius kihangensis | Anura | EN | Arboreal | 20.534143 | 39.83974 | 35.30777 | 44.18541 |
Hyperolius kihangensis | Anura | EN | Arboreal | 23.114784 | 40.18439 | 35.67678 | 44.48527 |
Hyperolius kivuensis | Anura | LC | Arboreal | 23.839394 | 40.27188 | 36.49991 | 44.83670 |
Hyperolius kivuensis | Anura | LC | Arboreal | 22.958956 | 40.15541 | 36.36188 | 44.69105 |
Hyperolius kivuensis | Anura | LC | Arboreal | 25.801814 | 40.53148 | 36.59735 | 44.90512 |
Hyperolius quinquevittatus | Anura | LC | Arboreal | 24.149719 | 40.37181 | 36.00081 | 44.76480 |
Hyperolius quinquevittatus | Anura | LC | Arboreal | 23.219015 | 40.24732 | 35.78819 | 44.54623 |
Hyperolius quinquevittatus | Anura | LC | Arboreal | 26.277833 | 40.65645 | 36.19311 | 45.06687 |
Hyperolius kuligae | Anura | LC | Arboreal | 26.145058 | 40.59106 | 35.85924 | 44.65013 |
Hyperolius kuligae | Anura | LC | Arboreal | 25.449228 | 40.49660 | 35.78094 | 44.53924 |
Hyperolius kuligae | Anura | LC | Arboreal | 27.681912 | 40.79968 | 36.03218 | 44.89506 |
Hyperolius lamottei | Anura | LC | Arboreal | 27.249632 | 40.69643 | 36.27537 | 45.35091 |
Hyperolius lamottei | Anura | LC | Arboreal | 26.450517 | 40.59007 | 36.19366 | 45.21173 |
Hyperolius lamottei | Anura | LC | Arboreal | 28.997233 | 40.92904 | 36.45257 | 45.60200 |
Hyperolius langi | Anura | LC | Arboreal | 25.072367 | 40.39556 | 35.25176 | 44.46180 |
Hyperolius langi | Anura | LC | Arboreal | 24.364753 | 40.30238 | 35.15010 | 44.38116 |
Hyperolius langi | Anura | LC | Arboreal | 26.589204 | 40.59529 | 35.46021 | 44.73789 |
Hyperolius leleupi | Anura | EN | Arboreal | 23.604962 | 40.27186 | 36.09002 | 44.59015 |
Hyperolius leleupi | Anura | EN | Arboreal | 22.907547 | 40.17941 | 36.08954 | 44.52517 |
Hyperolius leleupi | Anura | EN | Arboreal | 25.322709 | 40.49956 | 36.35959 | 44.95012 |
Hyperolius leucotaenius | Anura | EN | Arboreal | 24.124201 | 40.36670 | 35.66742 | 44.64569 |
Hyperolius leucotaenius | Anura | EN | Arboreal | 23.451480 | 40.27591 | 35.59089 | 44.50452 |
Hyperolius leucotaenius | Anura | EN | Arboreal | 25.814791 | 40.59486 | 36.03432 | 45.02328 |
Hyperolius lupiroensis | Anura | DD | Arboreal | 23.483256 | 40.17410 | 35.52525 | 44.34891 |
Hyperolius lupiroensis | Anura | DD | Arboreal | 22.779398 | 40.08232 | 35.44138 | 44.26021 |
Hyperolius lupiroensis | Anura | DD | Arboreal | 24.996018 | 40.37134 | 35.70105 | 44.45683 |
Hyperolius major | Anura | LC | Arboreal | 24.333573 | 40.42833 | 36.09572 | 44.46835 |
Hyperolius major | Anura | LC | Arboreal | 23.487005 | 40.31623 | 35.85251 | 44.21004 |
Hyperolius major | Anura | LC | Arboreal | 26.450609 | 40.70867 | 36.34151 | 44.70648 |
Hyperolius marginatus | Anura | LC | Arboreal | 24.330379 | 40.28857 | 35.92882 | 44.30647 |
Hyperolius marginatus | Anura | LC | Arboreal | 23.399575 | 40.16542 | 35.84498 | 44.20899 |
Hyperolius marginatus | Anura | LC | Arboreal | 26.358460 | 40.55688 | 36.09743 | 44.60341 |
Hyperolius mariae | Anura | LC | Arboreal | 24.748637 | 40.33311 | 35.71936 | 44.68463 |
Hyperolius mariae | Anura | LC | Arboreal | 24.058582 | 40.24152 | 35.67270 | 44.64837 |
Hyperolius mariae | Anura | LC | Arboreal | 26.103598 | 40.51294 | 35.93340 | 44.95960 |
Hyperolius minutissimus | Anura | VU | Arboreal | 22.366666 | 40.10351 | 35.62632 | 44.12128 |
Hyperolius minutissimus | Anura | VU | Arboreal | 21.563064 | 39.99666 | 35.47949 | 43.95125 |
Hyperolius minutissimus | Anura | VU | Arboreal | 24.127799 | 40.33767 | 35.96154 | 44.52351 |
Hyperolius spinigularis | Anura | VU | Arboreal | 25.580488 | 40.52728 | 36.19015 | 44.79427 |
Hyperolius spinigularis | Anura | VU | Arboreal | 24.461692 | 40.37631 | 36.05722 | 44.59729 |
Hyperolius spinigularis | Anura | VU | Arboreal | 27.657782 | 40.80760 | 36.74508 | 45.41950 |
Hyperolius tanneri | Anura | CR | Arboreal | 24.950210 | 40.53737 | 36.58049 | 45.29536 |
Hyperolius tanneri | Anura | CR | Arboreal | 24.330970 | 40.45494 | 36.52614 | 45.23684 |
Hyperolius tanneri | Anura | CR | Arboreal | 25.991640 | 40.67602 | 36.61281 | 45.37969 |
Hyperolius mitchelli | Anura | LC | Arboreal | 25.014349 | 40.63160 | 35.89471 | 44.81540 |
Hyperolius mitchelli | Anura | LC | Arboreal | 24.137059 | 40.51124 | 35.85647 | 44.77627 |
Hyperolius mitchelli | Anura | LC | Arboreal | 26.861956 | 40.88508 | 36.40557 | 45.28146 |
Hyperolius puncticulatus | Anura | EN | Arboreal | 25.471053 | 40.58610 | 36.14237 | 44.85257 |
Hyperolius puncticulatus | Anura | EN | Arboreal | 24.878106 | 40.50607 | 36.00574 | 44.70243 |
Hyperolius puncticulatus | Anura | EN | Arboreal | 26.478129 | 40.72204 | 36.26706 | 45.00307 |
Hyperolius substriatus | Anura | LC | Arboreal | 24.514467 | 40.46646 | 36.19571 | 44.71978 |
Hyperolius substriatus | Anura | LC | Arboreal | 23.660410 | 40.35209 | 36.12486 | 44.59705 |
Hyperolius substriatus | Anura | LC | Arboreal | 26.318080 | 40.70799 | 36.45362 | 45.03849 |
Hyperolius montanus | Anura | LC | Arboreal | 20.892307 | 39.89793 | 35.67257 | 44.14692 |
Hyperolius montanus | Anura | LC | Arboreal | 20.016665 | 39.78012 | 35.57834 | 44.09927 |
Hyperolius montanus | Anura | LC | Arboreal | 22.625380 | 40.13109 | 35.91067 | 44.39720 |
Hyperolius mosaicus | Anura | LC | Arboreal | 26.754771 | 40.72302 | 36.16143 | 45.08219 |
Hyperolius mosaicus | Anura | LC | Arboreal | 26.094654 | 40.63479 | 36.13110 | 45.03457 |
Hyperolius mosaicus | Anura | LC | Arboreal | 28.254214 | 40.92341 | 36.21650 | 45.18238 |
Hyperolius ocellatus | Anura | LC | Arboreal | 27.141267 | 40.85628 | 36.66695 | 45.09428 |
Hyperolius ocellatus | Anura | LC | Arboreal | 26.395825 | 40.75648 | 36.55672 | 45.00065 |
Hyperolius ocellatus | Anura | LC | Arboreal | 28.790080 | 41.07704 | 36.88453 | 45.42707 |
Hyperolius nasicus | Anura | LC | Arboreal | 23.794759 | 40.24690 | 35.75634 | 44.68236 |
Hyperolius nasicus | Anura | LC | Arboreal | 22.826155 | 40.11795 | 35.60852 | 44.52339 |
Hyperolius nasicus | Anura | LC | Arboreal | 25.911978 | 40.52877 | 35.77418 | 44.79728 |
Hyperolius nienokouensis | Anura | EN | Arboreal | 27.473684 | 40.79374 | 36.81197 | 45.48448 |
Hyperolius nienokouensis | Anura | EN | Arboreal | 26.952467 | 40.72377 | 36.74997 | 45.40687 |
Hyperolius nienokouensis | Anura | EN | Arboreal | 28.551760 | 40.93848 | 36.94019 | 45.65523 |
Hyperolius nimbae | Anura | EN | Arboreal | 27.417573 | 40.75727 | 36.57231 | 45.29289 |
Hyperolius nimbae | Anura | EN | Arboreal | 26.699780 | 40.66102 | 36.40048 | 45.05092 |
Hyperolius nimbae | Anura | EN | Arboreal | 28.789297 | 40.94119 | 36.69597 | 45.46408 |
Hyperolius obscurus | Anura | DD | Arboreal | 25.258929 | 40.58746 | 36.08904 | 44.96606 |
Hyperolius obscurus | Anura | DD | Arboreal | 24.386335 | 40.46933 | 36.15392 | 45.00696 |
Hyperolius obscurus | Anura | DD | Arboreal | 27.452886 | 40.88447 | 36.70567 | 45.71279 |
Hyperolius occidentalis | Anura | LC | Arboreal | 27.133686 | 40.71626 | 36.27671 | 44.78089 |
Hyperolius occidentalis | Anura | LC | Arboreal | 26.358942 | 40.61340 | 36.31801 | 44.83989 |
Hyperolius occidentalis | Anura | LC | Arboreal | 28.758312 | 40.93195 | 36.60649 | 45.13123 |
Hyperolius parallelus | Anura | LC | Arboreal | 25.250967 | 40.42722 | 36.35538 | 45.16993 |
Hyperolius parallelus | Anura | LC | Arboreal | 24.192116 | 40.28761 | 36.26238 | 45.02320 |
Hyperolius parallelus | Anura | LC | Arboreal | 27.438888 | 40.71569 | 36.52959 | 45.41241 |
Hyperolius pardalis | Anura | LC | Arboreal | 27.048199 | 40.62472 | 36.19218 | 45.04119 |
Hyperolius pardalis | Anura | LC | Arboreal | 26.347821 | 40.53304 | 36.05582 | 44.84802 |
Hyperolius pardalis | Anura | LC | Arboreal | 28.580140 | 40.82526 | 36.22384 | 45.10338 |
Hyperolius parkeri | Anura | LC | Arboreal | 25.716492 | 40.48261 | 36.74223 | 45.13899 |
Hyperolius parkeri | Anura | LC | Arboreal | 24.949872 | 40.37866 | 36.69618 | 45.04358 |
Hyperolius parkeri | Anura | LC | Arboreal | 27.326049 | 40.70087 | 36.59252 | 45.05359 |
Hyperolius pickersgilli | Anura | EN | Arboreal | 22.733181 | 40.06677 | 35.84560 | 44.55913 |
Hyperolius pickersgilli | Anura | EN | Arboreal | 21.564977 | 39.91128 | 35.66373 | 44.41147 |
Hyperolius pickersgilli | Anura | EN | Arboreal | 24.526486 | 40.30546 | 36.12188 | 44.78819 |
Hyperolius pictus | Anura | LC | Arboreal | 22.228748 | 40.12985 | 35.90221 | 44.56832 |
Hyperolius pictus | Anura | LC | Arboreal | 21.390572 | 40.01776 | 35.85067 | 44.49158 |
Hyperolius pictus | Anura | LC | Arboreal | 23.804185 | 40.34053 | 36.13667 | 44.88272 |
Hyperolius platyceps | Anura | LC | Arboreal | 27.368916 | 40.77353 | 36.14101 | 45.77775 |
Hyperolius platyceps | Anura | LC | Arboreal | 26.548648 | 40.66266 | 36.02857 | 45.64784 |
Hyperolius platyceps | Anura | LC | Arboreal | 29.178262 | 41.01807 | 36.40838 | 46.13689 |
Hyperolius polli | Anura | DD | Arboreal | 27.663703 | 40.84993 | 36.28714 | 45.07879 |
Hyperolius polli | Anura | DD | Arboreal | 26.879375 | 40.74429 | 36.17613 | 44.92091 |
Hyperolius polli | Anura | DD | Arboreal | 29.314225 | 41.07222 | 36.59050 | 45.41449 |
Hyperolius polystictus | Anura | VU | Arboreal | 23.997463 | 40.36047 | 35.88894 | 44.77371 |
Hyperolius polystictus | Anura | VU | Arboreal | 23.106229 | 40.24063 | 35.70956 | 44.58336 |
Hyperolius polystictus | Anura | VU | Arboreal | 26.210753 | 40.65808 | 36.12543 | 45.05717 |
Hyperolius pseudargus | Anura | LC | Arboreal | 22.428292 | 40.00146 | 35.38732 | 44.18708 |
Hyperolius pseudargus | Anura | LC | Arboreal | 21.620325 | 39.89480 | 35.36879 | 44.17212 |
Hyperolius pseudargus | Anura | LC | Arboreal | 24.106198 | 40.22296 | 35.76611 | 44.59300 |
Hyperolius pusillus | Anura | LC | Arboreal | 24.885057 | 40.32592 | 35.91100 | 45.05524 |
Hyperolius pusillus | Anura | LC | Arboreal | 23.904941 | 40.19498 | 35.75622 | 44.86945 |
Hyperolius pusillus | Anura | LC | Arboreal | 26.707592 | 40.56941 | 36.03086 | 45.23661 |
Hyperolius pustulifer | Anura | DD | Arboreal | 21.747229 | 40.00513 | 35.55554 | 44.29176 |
Hyperolius pustulifer | Anura | DD | Arboreal | 21.135373 | 39.92329 | 35.51677 | 44.18814 |
Hyperolius pustulifer | Anura | DD | Arboreal | 22.883913 | 40.15716 | 35.70987 | 44.50561 |
Hyperolius pyrrhodictyon | Anura | LC | Arboreal | 24.130655 | 40.25689 | 35.82877 | 44.34159 |
Hyperolius pyrrhodictyon | Anura | LC | Arboreal | 22.970147 | 40.10401 | 35.92878 | 44.38070 |
Hyperolius pyrrhodictyon | Anura | LC | Arboreal | 26.216976 | 40.53175 | 36.00855 | 44.63303 |
Hyperolius quadratomaculatus | Anura | DD | Arboreal | 26.050056 | 40.60263 | 36.65197 | 45.03155 |
Hyperolius quadratomaculatus | Anura | DD | Arboreal | 25.337464 | 40.50754 | 36.54749 | 44.92075 |
Hyperolius quadratomaculatus | Anura | DD | Arboreal | 27.838797 | 40.84134 | 36.53568 | 45.04435 |
Hyperolius rhizophilus | Anura | DD | Arboreal | 28.540974 | 40.90019 | 36.30644 | 45.25730 |
Hyperolius rhizophilus | Anura | DD | Arboreal | 27.543779 | 40.76888 | 36.19501 | 45.09209 |
Hyperolius rhizophilus | Anura | DD | Arboreal | 30.702213 | 41.18478 | 36.53239 | 45.56704 |
Hyperolius rhodesianus | Anura | LC | Arboreal | 24.071884 | 40.22645 | 35.85298 | 44.64838 |
Hyperolius rhodesianus | Anura | LC | Arboreal | 22.771063 | 40.05309 | 35.84336 | 44.64135 |
Hyperolius rhodesianus | Anura | LC | Arboreal | 26.140437 | 40.50212 | 36.30638 | 45.18309 |
Hyperolius riggenbachi | Anura | LC | Arboreal | 26.104227 | 40.54059 | 36.32499 | 45.06603 |
Hyperolius riggenbachi | Anura | LC | Arboreal | 25.359743 | 40.44190 | 36.26364 | 44.97919 |
Hyperolius riggenbachi | Anura | LC | Arboreal | 27.643991 | 40.74470 | 35.92223 | 44.74366 |
Hyperolius robustus | Anura | DD | Arboreal | 27.996953 | 40.92399 | 36.39463 | 45.37313 |
Hyperolius robustus | Anura | DD | Arboreal | 27.254434 | 40.82523 | 36.32822 | 45.25750 |
Hyperolius robustus | Anura | DD | Arboreal | 29.778122 | 41.16089 | 36.55047 | 45.60182 |
Hyperolius rubrovermiculatus | Anura | EN | Arboreal | 25.321092 | 40.39520 | 35.93843 | 44.42474 |
Hyperolius rubrovermiculatus | Anura | EN | Arboreal | 24.755532 | 40.32048 | 35.89136 | 44.36170 |
Hyperolius rubrovermiculatus | Anura | EN | Arboreal | 26.333056 | 40.52891 | 36.06400 | 44.56561 |
Hyperolius rwandae | Anura | LC | Arboreal | 22.081561 | 40.09148 | 35.73666 | 44.28852 |
Hyperolius rwandae | Anura | LC | Arboreal | 21.443820 | 40.00650 | 35.65036 | 44.15852 |
Hyperolius rwandae | Anura | LC | Arboreal | 23.477003 | 40.27743 | 35.79192 | 44.44412 |
Hyperolius sankuruensis | Anura | DD | Arboreal | 27.695253 | 40.86728 | 36.44952 | 45.38845 |
Hyperolius sankuruensis | Anura | DD | Arboreal | 26.880058 | 40.75896 | 36.30943 | 45.21528 |
Hyperolius sankuruensis | Anura | DD | Arboreal | 29.738443 | 41.13879 | 36.52102 | 45.57875 |
Hyperolius schoutedeni | Anura | LC | Arboreal | 27.306234 | 40.82609 | 36.74363 | 45.62415 |
Hyperolius schoutedeni | Anura | LC | Arboreal | 26.550510 | 40.72479 | 36.63707 | 45.47914 |
Hyperolius schoutedeni | Anura | LC | Arboreal | 28.932660 | 41.04409 | 36.97295 | 45.93338 |
Hyperolius semidiscus | Anura | LC | Arboreal | 22.172167 | 40.09613 | 35.37649 | 44.10458 |
Hyperolius semidiscus | Anura | LC | Arboreal | 20.881804 | 39.92262 | 35.22963 | 43.93897 |
Hyperolius semidiscus | Anura | LC | Arboreal | 24.279850 | 40.37954 | 35.66114 | 44.45826 |
Hyperolius sheldricki | Anura | DD | Arboreal | 24.694735 | 40.39933 | 35.69907 | 44.69629 |
Hyperolius sheldricki | Anura | DD | Arboreal | 24.081602 | 40.31780 | 35.60054 | 44.60476 |
Hyperolius sheldricki | Anura | DD | Arboreal | 25.763962 | 40.54150 | 36.16649 | 45.13920 |
Hyperolius soror | Anura | LC | Arboreal | 27.444949 | 40.70770 | 35.79609 | 44.72577 |
Hyperolius soror | Anura | LC | Arboreal | 26.776927 | 40.62028 | 35.69094 | 44.56226 |
Hyperolius soror | Anura | LC | Arboreal | 28.875840 | 40.89494 | 35.89908 | 44.86933 |
Hyperolius steindachneri | Anura | LC | Arboreal | 24.796433 | 40.41398 | 36.27281 | 44.65874 |
Hyperolius steindachneri | Anura | LC | Arboreal | 23.908881 | 40.29500 | 36.16193 | 44.50749 |
Hyperolius steindachneri | Anura | LC | Arboreal | 26.919026 | 40.69851 | 36.48468 | 44.95181 |
Hyperolius stenodactylus | Anura | DD | Arboreal | 26.635901 | 40.69245 | 36.49231 | 45.24118 |
Hyperolius stenodactylus | Anura | DD | Arboreal | 26.092921 | 40.62046 | 35.98564 | 44.68474 |
Hyperolius stenodactylus | Anura | DD | Arboreal | 28.090018 | 40.88524 | 36.66090 | 45.48591 |
Hyperolius swynnertoni | Anura | LC | Arboreal | 24.933537 | 40.55708 | 36.36222 | 44.99983 |
Hyperolius swynnertoni | Anura | LC | Arboreal | 23.869338 | 40.41432 | 36.10499 | 44.81456 |
Hyperolius swynnertoni | Anura | LC | Arboreal | 27.121340 | 40.85056 | 36.65543 | 45.27503 |
Hyperolius vilhenai | Anura | DD | Arboreal | 25.406932 | 40.66313 | 36.28580 | 45.02471 |
Hyperolius vilhenai | Anura | DD | Arboreal | 24.563333 | 40.54812 | 36.22488 | 44.96082 |
Hyperolius vilhenai | Anura | DD | Arboreal | 27.505971 | 40.94929 | 36.77123 | 45.61185 |
Hyperolius viridigulosus | Anura | NT | Arboreal | 27.372762 | 40.76683 | 36.75646 | 45.46778 |
Hyperolius viridigulosus | Anura | NT | Arboreal | 26.864035 | 40.69962 | 36.72172 | 45.37782 |
Hyperolius viridigulosus | Anura | NT | Arboreal | 28.435902 | 40.90729 | 36.80453 | 45.57987 |
Hyperolius viridis | Anura | LC | Arboreal | 22.366758 | 40.14366 | 35.72935 | 44.42667 |
Hyperolius viridis | Anura | LC | Arboreal | 21.457840 | 40.02264 | 35.21209 | 43.90549 |
Hyperolius viridis | Anura | LC | Arboreal | 24.096419 | 40.37396 | 36.05602 | 44.81077 |
Hyperolius watsonae | Anura | CR | Arboreal | 25.321092 | 40.56211 | 36.23804 | 45.45414 |
Hyperolius watsonae | Anura | CR | Arboreal | 24.755532 | 40.48550 | 36.19794 | 45.41074 |
Hyperolius watsonae | Anura | CR | Arboreal | 26.333056 | 40.69918 | 36.45754 | 45.71365 |
Hyperolius xenorhinus | Anura | DD | Arboreal | 24.942060 | 40.48169 | 36.36717 | 44.96883 |
Hyperolius xenorhinus | Anura | DD | Arboreal | 24.161731 | 40.37796 | 36.17457 | 44.71158 |
Hyperolius xenorhinus | Anura | DD | Arboreal | 26.688954 | 40.71388 | 36.65536 | 45.22706 |
Kassinula wittei | Anura | LC | Arboreal | 23.809444 | 40.21767 | 36.04985 | 44.55769 |
Kassinula wittei | Anura | LC | Arboreal | 22.910718 | 40.09767 | 35.97606 | 44.49107 |
Kassinula wittei | Anura | LC | Arboreal | 25.915219 | 40.49882 | 36.06940 | 44.66827 |
Morerella cyanophthalma | Anura | VU | Stream-dwelling | 27.193219 | 40.17923 | 35.93925 | 45.06595 |
Morerella cyanophthalma | Anura | VU | Stream-dwelling | 26.723565 | 40.11627 | 35.89894 | 44.98258 |
Morerella cyanophthalma | Anura | VU | Stream-dwelling | 28.101430 | 40.30099 | 35.99050 | 45.13564 |
Arlequinus krebsi | Anura | EN | Arboreal | 26.208443 | 40.40088 | 35.86622 | 45.23735 |
Arlequinus krebsi | Anura | EN | Arboreal | 25.536956 | 40.31035 | 35.70161 | 45.05079 |
Arlequinus krebsi | Anura | EN | Arboreal | 27.567404 | 40.58410 | 36.04374 | 45.46975 |
Callixalus pictus | Anura | VU | Arboreal | 23.889645 | 40.06392 | 35.86929 | 44.63159 |
Callixalus pictus | Anura | VU | Arboreal | 23.226776 | 39.97603 | 35.77476 | 44.57005 |
Callixalus pictus | Anura | VU | Arboreal | 25.505338 | 40.27816 | 36.06771 | 44.87414 |
Chrysobatrachus cupreonitens | Anura | EN | Ground-dwelling | 24.320764 | 40.26362 | 35.46874 | 44.96331 |
Chrysobatrachus cupreonitens | Anura | EN | Ground-dwelling | 23.579763 | 40.16515 | 35.38491 | 44.82789 |
Chrysobatrachus cupreonitens | Anura | EN | Ground-dwelling | 26.380765 | 40.53739 | 35.99706 | 45.65413 |
Opisthothylax immaculatus | Anura | LC | Arboreal | 27.342157 | 40.53699 | 35.63952 | 44.88009 |
Opisthothylax immaculatus | Anura | LC | Arboreal | 26.595807 | 40.43634 | 35.63040 | 44.78665 |
Opisthothylax immaculatus | Anura | LC | Arboreal | 28.955665 | 40.75458 | 35.89443 | 45.29492 |
Paracassina kounhiensis | Anura | VU | Arboreal | 20.156993 | 39.49836 | 35.09679 | 44.11579 |
Paracassina kounhiensis | Anura | VU | Arboreal | 19.347405 | 39.39253 | 34.90337 | 43.94459 |
Paracassina kounhiensis | Anura | VU | Arboreal | 21.587441 | 39.68533 | 35.10061 | 44.09160 |
Paracassina obscura | Anura | LC | Arboreal | 21.559205 | 39.75708 | 35.05283 | 44.05595 |
Paracassina obscura | Anura | LC | Arboreal | 20.716299 | 39.64313 | 35.12272 | 44.10916 |
Paracassina obscura | Anura | LC | Arboreal | 23.287211 | 39.99069 | 35.24350 | 44.24372 |
Cryptothylax greshoffii | Anura | LC | Arboreal | 27.689937 | 39.74982 | 34.73189 | 45.07568 |
Cryptothylax greshoffii | Anura | LC | Arboreal | 26.897361 | 39.64187 | 34.74583 | 45.07062 |
Cryptothylax greshoffii | Anura | LC | Arboreal | 29.425200 | 39.98616 | 34.93444 | 45.36898 |
Cryptothylax minutus | Anura | DD | Arboreal | 28.077285 | 39.83314 | 34.64996 | 45.35227 |
Cryptothylax minutus | Anura | DD | Arboreal | 27.322300 | 39.73158 | 34.56148 | 45.23192 |
Cryptothylax minutus | Anura | DD | Arboreal | 29.696265 | 40.05093 | 35.00943 | 45.75644 |
Arthroleptis adelphus | Anura | LC | Ground-dwelling | 27.024086 | 39.10245 | 33.26474 | 44.15936 |
Arthroleptis adelphus | Anura | LC | Ground-dwelling | 26.327656 | 39.00820 | 33.15480 | 44.03420 |
Arthroleptis adelphus | Anura | LC | Ground-dwelling | 28.541919 | 39.30787 | 33.39055 | 44.31786 |
Arthroleptis bioko | Anura | EN | Ground-dwelling | 26.217367 | 38.98265 | 33.47824 | 44.28401 |
Arthroleptis bioko | Anura | EN | Ground-dwelling | 25.707002 | 38.91488 | 33.81267 | 44.56227 |
Arthroleptis bioko | Anura | EN | Ground-dwelling | 27.240774 | 39.11854 | 33.64672 | 44.50407 |
Arthroleptis brevipes | Anura | DD | Ground-dwelling | 28.309546 | 39.24305 | 34.44063 | 45.04398 |
Arthroleptis brevipes | Anura | DD | Ground-dwelling | 27.666869 | 39.15636 | 34.08288 | 44.69700 |
Arthroleptis brevipes | Anura | DD | Ground-dwelling | 29.617524 | 39.41948 | 34.58150 | 45.16613 |
Arthroleptis poecilonotus | Anura | LC | Ground-dwelling | 27.224396 | 39.10881 | 33.76202 | 45.51462 |
Arthroleptis poecilonotus | Anura | LC | Ground-dwelling | 26.474221 | 39.00780 | 33.67011 | 45.35484 |
Arthroleptis poecilonotus | Anura | LC | Ground-dwelling | 28.855439 | 39.32843 | 33.79538 | 45.59734 |
Arthroleptis crusculum | Anura | NT | Ground-dwelling | 27.345886 | 39.03322 | 33.57455 | 44.38733 |
Arthroleptis crusculum | Anura | NT | Ground-dwelling | 26.526667 | 38.92299 | 33.50698 | 44.27479 |
Arthroleptis crusculum | Anura | NT | Ground-dwelling | 29.206861 | 39.28363 | 33.68011 | 44.57618 |
Arthroleptis nimbaensis | Anura | DD | Ground-dwelling | 27.417573 | 39.07270 | 33.19499 | 44.21565 |
Arthroleptis nimbaensis | Anura | DD | Ground-dwelling | 26.699780 | 38.97590 | 33.14791 | 44.18053 |
Arthroleptis nimbaensis | Anura | DD | Ground-dwelling | 28.789297 | 39.25769 | 33.52840 | 44.57260 |
Arthroleptis langeri | Anura | EN | Ground-dwelling | 27.346209 | 39.06651 | 33.56235 | 44.27418 |
Arthroleptis langeri | Anura | EN | Ground-dwelling | 26.738029 | 38.98427 | 33.50386 | 44.26323 |
Arthroleptis langeri | Anura | EN | Ground-dwelling | 28.528471 | 39.22639 | 33.79667 | 44.51534 |
Arthroleptis adolfifriederici | Anura | LC | Ground-dwelling | 22.261274 | 38.41521 | 33.02638 | 44.01471 |
Arthroleptis adolfifriederici | Anura | LC | Ground-dwelling | 21.582470 | 38.32506 | 33.06538 | 44.12451 |
Arthroleptis adolfifriederici | Anura | LC | Ground-dwelling | 23.819761 | 38.62218 | 33.22498 | 44.10039 |
Arthroleptis krokosua | Anura | CR | Ground-dwelling | 27.569557 | 39.12686 | 33.56345 | 44.67331 |
Arthroleptis krokosua | Anura | CR | Ground-dwelling | 26.904379 | 39.03720 | 33.52954 | 44.56472 |
Arthroleptis krokosua | Anura | CR | Ground-dwelling | 29.008240 | 39.32078 | 33.95614 | 45.15948 |
Arthroleptis palava | Anura | LC | Ground-dwelling | 26.251583 | 38.98862 | 33.66698 | 44.33546 |
Arthroleptis palava | Anura | LC | Ground-dwelling | 25.530438 | 38.89216 | 33.74437 | 44.40487 |
Arthroleptis palava | Anura | LC | Ground-dwelling | 27.776078 | 39.19255 | 33.79636 | 44.51363 |
Arthroleptis variabilis | Anura | LC | Ground-dwelling | 27.224462 | 39.07053 | 33.72169 | 44.55565 |
Arthroleptis variabilis | Anura | LC | Ground-dwelling | 26.489320 | 38.97178 | 33.54785 | 44.38959 |
Arthroleptis variabilis | Anura | LC | Ground-dwelling | 28.804222 | 39.28273 | 34.10154 | 45.03224 |
Arthroleptis perreti | Anura | EN | Ground-dwelling | 26.871381 | 39.07085 | 34.01212 | 45.05435 |
Arthroleptis perreti | Anura | EN | Ground-dwelling | 26.335541 | 38.99803 | 33.97607 | 44.97979 |
Arthroleptis perreti | Anura | EN | Ground-dwelling | 28.169295 | 39.24724 | 34.21952 | 45.34701 |
Arthroleptis affinis | Anura | LC | Ground-dwelling | 23.286124 | 38.66315 | 33.47070 | 44.56943 |
Arthroleptis affinis | Anura | LC | Ground-dwelling | 22.539856 | 38.56439 | 33.46160 | 44.52917 |
Arthroleptis affinis | Anura | LC | Ground-dwelling | 24.866494 | 38.87231 | 33.61712 | 44.64961 |
Arthroleptis nikeae | Anura | CR | Ground-dwelling | 22.724429 | 38.52365 | 33.11129 | 44.16753 |
Arthroleptis nikeae | Anura | CR | Ground-dwelling | 21.858574 | 38.40656 | 32.98938 | 44.00184 |
Arthroleptis nikeae | Anura | CR | Ground-dwelling | 24.911424 | 38.81940 | 33.40620 | 44.48179 |
Arthroleptis reichei | Anura | LC | Ground-dwelling | 22.597699 | 38.43791 | 32.77363 | 43.30154 |
Arthroleptis reichei | Anura | LC | Ground-dwelling | 21.811456 | 38.33432 | 32.69859 | 43.15534 |
Arthroleptis reichei | Anura | LC | Ground-dwelling | 24.217568 | 38.65134 | 33.12236 | 43.72174 |
Arthroleptis anotis | Anura | DD | Ground-dwelling | 23.282669 | 38.59818 | 33.71337 | 44.29865 |
Arthroleptis anotis | Anura | DD | Ground-dwelling | 22.540368 | 38.49682 | 33.60581 | 44.19804 |
Arthroleptis anotis | Anura | DD | Ground-dwelling | 24.824741 | 38.80874 | 34.01242 | 44.61622 |
Arthroleptis aureoli | Anura | NT | Stream-dwelling | 27.218440 | 38.34338 | 32.79733 | 44.06495 |
Arthroleptis aureoli | Anura | NT | Stream-dwelling | 26.351647 | 38.22475 | 32.68944 | 43.92163 |
Arthroleptis aureoli | Anura | NT | Stream-dwelling | 29.232567 | 38.61901 | 33.00571 | 44.35235 |
Arthroleptis formosus | Anura | DD | Ground-dwelling | 27.528684 | 38.92186 | 33.63512 | 44.34874 |
Arthroleptis formosus | Anura | DD | Ground-dwelling | 26.539829 | 38.78868 | 33.61632 | 44.32879 |
Arthroleptis formosus | Anura | DD | Ground-dwelling | 29.995306 | 39.25408 | 34.21750 | 44.97290 |
Arthroleptis sylvaticus | Anura | LC | Ground-dwelling | 27.267277 | 39.16353 | 33.68156 | 44.89341 |
Arthroleptis sylvaticus | Anura | LC | Ground-dwelling | 26.526794 | 39.06165 | 33.42420 | 44.63180 |
Arthroleptis sylvaticus | Anura | LC | Ground-dwelling | 28.878855 | 39.38525 | 33.80459 | 45.02860 |
Arthroleptis taeniatus | Anura | LC | Ground-dwelling | 27.210066 | 38.98151 | 33.79042 | 44.70040 |
Arthroleptis taeniatus | Anura | LC | Ground-dwelling | 26.467416 | 38.88338 | 33.70189 | 44.56957 |
Arthroleptis taeniatus | Anura | LC | Ground-dwelling | 28.822651 | 39.19458 | 33.95166 | 44.93613 |
Arthroleptis bivittatus | Anura | DD | Ground-dwelling | 27.317798 | 39.14414 | 33.40265 | 44.71325 |
Arthroleptis bivittatus | Anura | DD | Ground-dwelling | 26.590804 | 39.04660 | 33.28744 | 44.61230 |
Arthroleptis bivittatus | Anura | DD | Ground-dwelling | 28.805033 | 39.34369 | 33.58075 | 44.94686 |
Arthroleptis carquejai | Anura | DD | Ground-dwelling | 24.983440 | 38.74476 | 33.39522 | 44.35557 |
Arthroleptis carquejai | Anura | DD | Ground-dwelling | 24.064064 | 38.61861 | 33.24874 | 44.24126 |
Arthroleptis carquejai | Anura | DD | Ground-dwelling | 27.148369 | 39.04180 | 33.64442 | 44.59341 |
Arthroleptis stenodactylus | Anura | LC | Ground-dwelling | 24.362313 | 38.71096 | 33.19403 | 44.49310 |
Arthroleptis stenodactylus | Anura | LC | Ground-dwelling | 23.396384 | 38.58138 | 32.84541 | 44.11212 |
Arthroleptis stenodactylus | Anura | LC | Ground-dwelling | 26.379790 | 38.98161 | 33.44995 | 44.82141 |
Arthroleptis fichika | Anura | EN | Ground-dwelling | 24.950210 | 38.78860 | 33.00906 | 43.84557 |
Arthroleptis fichika | Anura | EN | Ground-dwelling | 24.330970 | 38.70534 | 32.92245 | 43.76427 |
Arthroleptis fichika | Anura | EN | Ground-dwelling | 25.991640 | 38.92863 | 33.07600 | 43.94533 |
Arthroleptis kidogo | Anura | CR | Ground-dwelling | 23.956874 | 38.73263 | 33.04229 | 44.46901 |
Arthroleptis kidogo | Anura | CR | Ground-dwelling | 23.296639 | 38.64228 | 32.94102 | 44.36760 |
Arthroleptis kidogo | Anura | CR | Ground-dwelling | 25.435562 | 38.93497 | 33.21463 | 44.69611 |
Arthroleptis xenochirus | Anura | LC | Ground-dwelling | 24.007309 | 38.77299 | 33.56260 | 43.93370 |
Arthroleptis xenochirus | Anura | LC | Ground-dwelling | 23.119712 | 38.65598 | 33.43978 | 43.82810 |
Arthroleptis xenochirus | Anura | LC | Ground-dwelling | 26.112963 | 39.05056 | 33.79664 | 44.23928 |
Arthroleptis francei | Anura | VU | Ground-dwelling | 25.770673 | 38.91891 | 33.56217 | 44.55753 |
Arthroleptis francei | Anura | VU | Ground-dwelling | 24.680085 | 38.77229 | 33.48674 | 44.44441 |
Arthroleptis francei | Anura | VU | Ground-dwelling | 27.836127 | 39.19661 | 33.98669 | 45.02931 |
Arthroleptis wahlbergii | Anura | LC | Ground-dwelling | 22.582754 | 38.41521 | 33.30940 | 44.46563 |
Arthroleptis wahlbergii | Anura | LC | Ground-dwelling | 21.368879 | 38.24872 | 33.13134 | 44.28064 |
Arthroleptis wahlbergii | Anura | LC | Ground-dwelling | 24.480279 | 38.67547 | 33.16385 | 44.31417 |
Arthroleptis hematogaster | Anura | DD | Ground-dwelling | 23.889645 | 38.57626 | 33.24882 | 44.31629 |
Arthroleptis hematogaster | Anura | DD | Ground-dwelling | 23.226776 | 38.48650 | 33.19967 | 44.24597 |
Arthroleptis hematogaster | Anura | DD | Ground-dwelling | 25.505338 | 38.79503 | 33.20188 | 44.29920 |
Arthroleptis kutogundua | Anura | CR | Ground-dwelling | 21.451903 | 38.34395 | 32.25834 | 43.68751 |
Arthroleptis kutogundua | Anura | CR | Ground-dwelling | 20.570019 | 38.22281 | 32.33744 | 43.68360 |
Arthroleptis kutogundua | Anura | CR | Ground-dwelling | 22.815304 | 38.53123 | 32.38847 | 43.82307 |
Arthroleptis lameerei | Anura | LC | Ground-dwelling | 24.912047 | 38.81509 | 32.99009 | 43.85287 |
Arthroleptis lameerei | Anura | LC | Ground-dwelling | 24.031868 | 38.69713 | 32.87893 | 43.71163 |
Arthroleptis lameerei | Anura | LC | Ground-dwelling | 27.023895 | 39.09811 | 33.37733 | 44.29773 |
Arthroleptis lonnbergi | Anura | DD | Ground-dwelling | 24.631934 | 38.74420 | 33.54080 | 44.40319 |
Arthroleptis lonnbergi | Anura | DD | Ground-dwelling | 23.966708 | 38.65529 | 33.26545 | 44.08278 |
Arthroleptis lonnbergi | Anura | DD | Ground-dwelling | 25.802639 | 38.90067 | 33.51630 | 44.39469 |
Arthroleptis tanneri | Anura | EN | Ground-dwelling | 24.950210 | 38.77113 | 33.61177 | 44.30796 |
Arthroleptis tanneri | Anura | EN | Ground-dwelling | 24.330970 | 38.68851 | 33.49031 | 44.16521 |
Arthroleptis tanneri | Anura | EN | Ground-dwelling | 25.991640 | 38.91007 | 33.79937 | 44.56889 |
Arthroleptis loveridgei | Anura | DD | Ground-dwelling | 25.902852 | 38.92714 | 33.81210 | 44.63997 |
Arthroleptis loveridgei | Anura | DD | Ground-dwelling | 25.146397 | 38.82220 | 34.08878 | 44.88876 |
Arthroleptis loveridgei | Anura | DD | Ground-dwelling | 27.436374 | 39.13987 | 33.91689 | 44.79157 |
Arthroleptis mossoensis | Anura | DD | Ground-dwelling | 23.146860 | 38.55332 | 32.65201 | 43.62341 |
Arthroleptis mossoensis | Anura | DD | Ground-dwelling | 22.643982 | 38.48545 | 32.88945 | 43.87642 |
Arthroleptis mossoensis | Anura | DD | Ground-dwelling | 24.322970 | 38.71203 | 32.79527 | 43.75915 |
Arthroleptis nguruensis | Anura | VU | Ground-dwelling | 23.956874 | 38.78507 | 32.96070 | 44.17266 |
Arthroleptis nguruensis | Anura | VU | Ground-dwelling | 23.296639 | 38.69587 | 32.86198 | 44.10395 |
Arthroleptis nguruensis | Anura | VU | Ground-dwelling | 25.435562 | 38.98482 | 33.22226 | 44.40875 |
Arthroleptis nlonakoensis | Anura | EN | Ground-dwelling | 26.219322 | 38.91484 | 33.39270 | 44.45570 |
Arthroleptis nlonakoensis | Anura | EN | Ground-dwelling | 25.532485 | 38.82137 | 32.96912 | 44.00746 |
Arthroleptis nlonakoensis | Anura | EN | Ground-dwelling | 27.588661 | 39.10118 | 33.64295 | 44.74299 |
Arthroleptis phrynoides | Anura | DD | Ground-dwelling | 27.556439 | 39.07864 | 33.35020 | 44.43328 |
Arthroleptis phrynoides | Anura | DD | Ground-dwelling | 26.889095 | 38.98933 | 33.07429 | 44.15378 |
Arthroleptis phrynoides | Anura | DD | Ground-dwelling | 29.396437 | 39.32487 | 33.63857 | 44.69492 |
Arthroleptis pyrrhoscelis | Anura | LC | Ground-dwelling | 23.621843 | 38.58468 | 33.08313 | 43.86739 |
Arthroleptis pyrrhoscelis | Anura | LC | Ground-dwelling | 22.965351 | 38.49659 | 32.83889 | 43.62140 |
Arthroleptis pyrrhoscelis | Anura | LC | Ground-dwelling | 25.177660 | 38.79343 | 33.36549 | 44.11218 |
Arthroleptis schubotzi | Anura | LC | Ground-dwelling | 22.867225 | 38.51817 | 33.87941 | 44.49397 |
Arthroleptis schubotzi | Anura | LC | Ground-dwelling | 22.154882 | 38.42262 | 33.71874 | 44.35323 |
Arthroleptis schubotzi | Anura | LC | Ground-dwelling | 24.347980 | 38.71679 | 33.93004 | 44.54186 |
Arthroleptis xenodactyloides | Anura | LC | Ground-dwelling | 24.493518 | 38.82343 | 33.37060 | 44.19255 |
Arthroleptis xenodactyloides | Anura | LC | Ground-dwelling | 23.567173 | 38.69739 | 33.20883 | 44.04741 |
Arthroleptis xenodactyloides | Anura | LC | Ground-dwelling | 26.438208 | 39.08803 | 33.59316 | 44.40694 |
Arthroleptis xenodactylus | Anura | EN | Ground-dwelling | 24.969464 | 38.81491 | 33.64418 | 44.47006 |
Arthroleptis xenodactylus | Anura | EN | Ground-dwelling | 24.301742 | 38.72433 | 33.36582 | 44.15077 |
Arthroleptis xenodactylus | Anura | EN | Ground-dwelling | 25.986178 | 38.95282 | 33.61070 | 44.43609 |
Arthroleptis spinalis | Anura | DD | Ground-dwelling | 23.272773 | 38.63954 | 33.48651 | 44.00664 |
Arthroleptis spinalis | Anura | DD | Ground-dwelling | 22.753880 | 38.56906 | 33.40884 | 43.94631 |
Arthroleptis spinalis | Anura | DD | Ground-dwelling | 24.365281 | 38.78795 | 33.76728 | 44.27753 |
Arthroleptis stridens | Anura | DD | Ground-dwelling | 24.969464 | 38.74397 | 33.80337 | 44.71721 |
Arthroleptis stridens | Anura | DD | Ground-dwelling | 24.301742 | 38.65391 | 33.42796 | 44.35149 |
Arthroleptis stridens | Anura | DD | Ground-dwelling | 25.986178 | 38.88109 | 33.96135 | 44.93052 |
Arthroleptis troglodytes | Anura | CR | Ground-dwelling | 25.290536 | 38.78046 | 32.79145 | 43.68009 |
Arthroleptis troglodytes | Anura | CR | Ground-dwelling | 24.324423 | 38.65108 | 32.50929 | 43.31247 |
Arthroleptis troglodytes | Anura | CR | Ground-dwelling | 27.284860 | 39.04753 | 32.99648 | 43.99202 |
Arthroleptis tuberosus | Anura | DD | Ground-dwelling | 27.147065 | 39.01176 | 33.36489 | 44.99722 |
Arthroleptis tuberosus | Anura | DD | Ground-dwelling | 26.411997 | 38.91059 | 33.33455 | 44.88437 |
Arthroleptis tuberosus | Anura | DD | Ground-dwelling | 28.738069 | 39.23072 | 33.55656 | 45.27849 |
Arthroleptis vercammeni | Anura | DD | Ground-dwelling | 24.143899 | 38.61427 | 33.51664 | 44.53184 |
Arthroleptis vercammeni | Anura | DD | Ground-dwelling | 23.402584 | 38.51413 | 33.11339 | 44.10499 |
Arthroleptis vercammeni | Anura | DD | Ground-dwelling | 26.105081 | 38.87920 | 33.50378 | 44.58115 |
Arthroleptis zimmeri | Anura | DD | Ground-dwelling | 27.099706 | 39.02445 | 32.98472 | 44.00754 |
Arthroleptis zimmeri | Anura | DD | Ground-dwelling | 26.646207 | 38.96295 | 32.93590 | 43.94002 |
Arthroleptis zimmeri | Anura | DD | Ground-dwelling | 27.938027 | 39.13813 | 33.07498 | 44.13235 |
Cardioglossa alsco | Anura | EN | Stream-dwelling | 26.038381 | 38.34595 | 32.13953 | 43.15363 |
Cardioglossa alsco | Anura | EN | Stream-dwelling | 25.289497 | 38.24497 | 32.01838 | 43.03755 |
Cardioglossa alsco | Anura | EN | Stream-dwelling | 27.743644 | 38.57589 | 33.49254 | 44.56498 |
Cardioglossa nigromaculata | Anura | LC | Ground-dwelling | 26.708645 | 39.08821 | 33.41878 | 44.73289 |
Cardioglossa nigromaculata | Anura | LC | Ground-dwelling | 26.095839 | 39.00533 | 33.33372 | 44.62305 |
Cardioglossa nigromaculata | Anura | LC | Ground-dwelling | 28.063954 | 39.27151 | 33.51805 | 44.76004 |
Cardioglossa cyaneospila | Anura | NT | Stream-dwelling | 22.368897 | 37.85286 | 31.86161 | 42.98636 |
Cardioglossa cyaneospila | Anura | NT | Stream-dwelling | 21.713388 | 37.76266 | 31.71524 | 42.86431 |
Cardioglossa cyaneospila | Anura | NT | Stream-dwelling | 23.849486 | 38.05662 | 32.12582 | 43.26202 |
Cardioglossa gratiosa | Anura | LC | Stream-dwelling | 27.310402 | 38.50197 | 33.32301 | 44.05751 |
Cardioglossa gratiosa | Anura | LC | Stream-dwelling | 26.567850 | 38.40172 | 33.28551 | 43.98966 |
Cardioglossa gratiosa | Anura | LC | Stream-dwelling | 28.917348 | 38.71893 | 33.21316 | 43.99029 |
Cardioglossa elegans | Anura | LC | Stream-dwelling | 26.988511 | 38.48609 | 33.29844 | 44.13121 |
Cardioglossa elegans | Anura | LC | Stream-dwelling | 26.301857 | 38.39313 | 33.26633 | 44.10975 |
Cardioglossa elegans | Anura | LC | Stream-dwelling | 28.494971 | 38.69003 | 33.49132 | 44.37888 |
Cardioglossa leucomystax | Anura | LC | Stream-dwelling | 27.251798 | 38.54575 | 33.48965 | 44.09037 |
Cardioglossa leucomystax | Anura | LC | Stream-dwelling | 26.503638 | 38.44501 | 32.95841 | 43.49707 |
Cardioglossa leucomystax | Anura | LC | Stream-dwelling | 28.861404 | 38.76249 | 33.29281 | 43.91916 |
Cardioglossa trifasciata | Anura | CR | Stream-dwelling | 26.871381 | 38.46997 | 32.84367 | 43.72028 |
Cardioglossa trifasciata | Anura | CR | Stream-dwelling | 26.335541 | 38.39705 | 32.75731 | 43.61731 |
Cardioglossa trifasciata | Anura | CR | Stream-dwelling | 28.169295 | 38.64661 | 33.16523 | 44.14863 |
Cardioglossa escalerae | Anura | LC | Ground-dwelling | 26.775264 | 39.06095 | 33.61688 | 44.73585 |
Cardioglossa escalerae | Anura | LC | Ground-dwelling | 26.069596 | 38.96422 | 33.55937 | 44.62684 |
Cardioglossa escalerae | Anura | LC | Ground-dwelling | 28.352516 | 39.27714 | 33.87717 | 45.08914 |
Cardioglossa manengouba | Anura | CR | Stream-dwelling | 26.871381 | 38.40984 | 33.04348 | 43.97296 |
Cardioglossa manengouba | Anura | CR | Stream-dwelling | 26.335541 | 38.33912 | 32.96542 | 43.87790 |
Cardioglossa manengouba | Anura | CR | Stream-dwelling | 28.169295 | 38.58113 | 33.26812 | 44.20324 |
Cardioglossa oreas | Anura | EN | Stream-dwelling | 25.936864 | 38.24243 | 32.79396 | 43.88221 |
Cardioglossa oreas | Anura | EN | Stream-dwelling | 25.218877 | 38.14550 | 32.84436 | 43.95767 |
Cardioglossa oreas | Anura | EN | Stream-dwelling | 27.405161 | 38.44065 | 33.01063 | 44.16890 |
Cardioglossa pulchra | Anura | EN | Stream-dwelling | 26.603590 | 38.36758 | 32.53503 | 43.48449 |
Cardioglossa pulchra | Anura | EN | Stream-dwelling | 25.954276 | 38.28082 | 32.54927 | 43.47100 |
Cardioglossa pulchra | Anura | EN | Stream-dwelling | 27.987230 | 38.55246 | 32.80353 | 43.84594 |
Cardioglossa venusta | Anura | EN | Stream-dwelling | 26.406869 | 38.47813 | 33.29828 | 44.21398 |
Cardioglossa venusta | Anura | EN | Stream-dwelling | 25.779143 | 38.39138 | 33.23739 | 44.12707 |
Cardioglossa venusta | Anura | EN | Stream-dwelling | 27.748605 | 38.66355 | 33.34197 | 44.36947 |
Cardioglossa gracilis | Anura | LC | Stream-dwelling | 27.146335 | 38.40287 | 33.16013 | 43.92079 |
Cardioglossa gracilis | Anura | LC | Stream-dwelling | 26.425542 | 38.30619 | 33.08924 | 43.81654 |
Cardioglossa gracilis | Anura | LC | Stream-dwelling | 28.704256 | 38.61183 | 33.00692 | 43.74695 |
Cardioglossa melanogaster | Anura | VU | Stream-dwelling | 26.603590 | 38.23567 | 32.60330 | 43.30081 |
Cardioglossa melanogaster | Anura | VU | Stream-dwelling | 25.954276 | 38.15018 | 32.57935 | 43.21622 |
Cardioglossa melanogaster | Anura | VU | Stream-dwelling | 27.987230 | 38.41785 | 32.93555 | 43.62891 |
Cardioglossa schioetzi | Anura | VU | Ground-dwelling | 26.687790 | 38.90467 | 33.64837 | 44.50902 |
Cardioglossa schioetzi | Anura | VU | Ground-dwelling | 25.965816 | 38.80773 | 33.47830 | 44.36592 |
Cardioglossa schioetzi | Anura | VU | Ground-dwelling | 28.260926 | 39.11588 | 33.93949 | 44.78099 |
Astylosternus batesi | Anura | LC | Ground-dwelling | 27.299517 | 39.08896 | 34.11526 | 44.55295 |
Astylosternus batesi | Anura | LC | Ground-dwelling | 26.548833 | 38.98799 | 34.02934 | 44.42160 |
Astylosternus batesi | Anura | LC | Ground-dwelling | 28.937685 | 39.30931 | 33.84333 | 44.39518 |
Astylosternus schioetzi | Anura | EN | Stream-dwelling | 26.611241 | 38.38327 | 33.22461 | 43.91543 |
Astylosternus schioetzi | Anura | EN | Stream-dwelling | 26.014233 | 38.30462 | 32.84140 | 43.54114 |
Astylosternus schioetzi | Anura | EN | Stream-dwelling | 27.981681 | 38.56381 | 32.99711 | 43.77856 |
Astylosternus diadematus | Anura | LC | Stream-dwelling | 26.531088 | 38.35391 | 32.39909 | 43.51316 |
Astylosternus diadematus | Anura | LC | Stream-dwelling | 25.868129 | 38.26441 | 32.71003 | 43.78294 |
Astylosternus diadematus | Anura | LC | Stream-dwelling | 27.916019 | 38.54087 | 33.04250 | 44.20512 |
Astylosternus perreti | Anura | EN | Stream-dwelling | 26.406869 | 38.38187 | 33.36453 | 44.18570 |
Astylosternus perreti | Anura | EN | Stream-dwelling | 25.779143 | 38.29745 | 33.32695 | 44.06188 |
Astylosternus perreti | Anura | EN | Stream-dwelling | 27.748605 | 38.56231 | 32.70955 | 43.61154 |
Astylosternus rheophilus | Anura | NT | Stream-dwelling | 26.306386 | 38.32485 | 32.58201 | 43.42255 |
Astylosternus rheophilus | Anura | NT | Stream-dwelling | 25.611818 | 38.23137 | 32.58897 | 43.39618 |
Astylosternus rheophilus | Anura | NT | Stream-dwelling | 27.802452 | 38.52622 | 32.79934 | 43.66340 |
Astylosternus nganhanus | Anura | CR | Ground-dwelling | 26.139581 | 38.93109 | 33.79374 | 44.84485 |
Astylosternus nganhanus | Anura | CR | Ground-dwelling | 25.348329 | 38.82275 | 33.33265 | 44.33224 |
Astylosternus nganhanus | Anura | CR | Ground-dwelling | 27.951284 | 39.17916 | 34.43750 | 45.44630 |
Trichobatrachus robustus | Anura | LC | Stream-dwelling | 27.141912 | 38.41923 | 32.71179 | 43.62147 |
Trichobatrachus robustus | Anura | LC | Stream-dwelling | 26.387550 | 38.31753 | 32.53689 | 43.45675 |
Trichobatrachus robustus | Anura | LC | Stream-dwelling | 28.783784 | 38.64057 | 32.86190 | 43.83190 |
Astylosternus fallax | Anura | VU | Stream-dwelling | 26.781658 | 38.45835 | 32.58109 | 43.93333 |
Astylosternus fallax | Anura | VU | Stream-dwelling | 26.197936 | 38.38078 | 32.50856 | 43.83133 |
Astylosternus fallax | Anura | VU | Stream-dwelling | 28.097089 | 38.63315 | 32.62609 | 44.06041 |
Astylosternus laurenti | Anura | EN | Stream-dwelling | 26.661280 | 38.46714 | 33.03008 | 44.61097 |
Astylosternus laurenti | Anura | EN | Stream-dwelling | 26.064875 | 38.38762 | 32.96883 | 44.50495 |
Astylosternus laurenti | Anura | EN | Stream-dwelling | 27.989922 | 38.64430 | 33.18110 | 44.85053 |
Astylosternus montanus | Anura | LC | Stream-dwelling | 26.199680 | 38.30514 | 32.53224 | 43.60034 |
Astylosternus montanus | Anura | LC | Stream-dwelling | 25.492788 | 38.21058 | 32.42067 | 43.50512 |
Astylosternus montanus | Anura | LC | Stream-dwelling | 27.710964 | 38.50732 | 33.23796 | 44.38339 |
Astylosternus ranoides | Anura | EN | Ground-dwelling | 25.936864 | 38.87840 | 32.80011 | 43.89974 |
Astylosternus ranoides | Anura | EN | Ground-dwelling | 25.218877 | 38.78087 | 32.58916 | 43.64961 |
Astylosternus ranoides | Anura | EN | Ground-dwelling | 27.405161 | 39.07784 | 32.93858 | 44.10273 |
Astylosternus laticephalus | Anura | NT | Ground-dwelling | 27.367501 | 39.05851 | 33.63312 | 44.44454 |
Astylosternus laticephalus | Anura | NT | Ground-dwelling | 26.841866 | 38.98851 | 33.56413 | 44.37524 |
Astylosternus laticephalus | Anura | NT | Ground-dwelling | 28.489341 | 39.20791 | 33.72306 | 44.52702 |
Astylosternus occidentalis | Anura | LC | Ground-dwelling | 27.406181 | 39.07724 | 33.96207 | 45.00753 |
Astylosternus occidentalis | Anura | LC | Ground-dwelling | 26.743719 | 38.98793 | 33.86733 | 44.95102 |
Astylosternus occidentalis | Anura | LC | Ground-dwelling | 28.802950 | 39.26554 | 34.16183 | 45.29571 |
Nyctibates corrugatus | Anura | LC | Ground-dwelling | 26.652185 | 38.91883 | 33.67419 | 44.75917 |
Nyctibates corrugatus | Anura | LC | Ground-dwelling | 26.037980 | 38.83655 | 33.52896 | 44.56589 |
Nyctibates corrugatus | Anura | LC | Ground-dwelling | 28.045634 | 39.10552 | 33.96745 | 45.06755 |
Scotobleps gabonicus | Anura | LC | Stream-dwelling | 27.363159 | 38.30315 | 32.78312 | 43.69939 |
Scotobleps gabonicus | Anura | LC | Stream-dwelling | 26.612014 | 38.20258 | 32.66842 | 43.56534 |
Scotobleps gabonicus | Anura | LC | Stream-dwelling | 28.998966 | 38.52218 | 33.08870 | 44.05342 |
Leptodactylodon albiventris | Anura | EN | Stream-dwelling | 26.504264 | 38.33786 | 32.73450 | 44.02678 |
Leptodactylodon albiventris | Anura | EN | Stream-dwelling | 25.952113 | 38.26277 | 32.39634 | 43.66349 |
Leptodactylodon albiventris | Anura | EN | Stream-dwelling | 28.009269 | 38.54255 | 32.94855 | 44.31104 |
Leptodactylodon boulengeri | Anura | NT | Stream-dwelling | 26.354599 | 38.27766 | 33.14327 | 44.31724 |
Leptodactylodon boulengeri | Anura | NT | Stream-dwelling | 25.668964 | 38.18563 | 33.13839 | 44.30383 |
Leptodactylodon boulengeri | Anura | NT | Stream-dwelling | 27.780256 | 38.46902 | 33.31166 | 44.48479 |
Leptodactylodon erythrogaster | Anura | CR | Stream-dwelling | 26.871381 | 38.33058 | 32.94603 | 44.19836 |
Leptodactylodon erythrogaster | Anura | CR | Stream-dwelling | 26.335541 | 38.25861 | 32.87881 | 44.13408 |
Leptodactylodon erythrogaster | Anura | CR | Stream-dwelling | 28.169295 | 38.50491 | 33.10510 | 44.38797 |
Leptodactylodon stevarti | Anura | EN | Stream-dwelling | 26.910204 | 38.31681 | 33.06113 | 44.00201 |
Leptodactylodon stevarti | Anura | EN | Stream-dwelling | 26.145273 | 38.21380 | 33.15017 | 44.05978 |
Leptodactylodon stevarti | Anura | EN | Stream-dwelling | 28.612489 | 38.54604 | 33.38311 | 44.40628 |
Leptodactylodon axillaris | Anura | CR | Ground-dwelling | 25.477847 | 38.78985 | 33.52242 | 44.56160 |
Leptodactylodon axillaris | Anura | CR | Ground-dwelling | 24.666345 | 38.68019 | 33.43169 | 44.52146 |
Leptodactylodon axillaris | Anura | CR | Ground-dwelling | 26.907224 | 38.98300 | 33.79451 | 44.83769 |
Leptodactylodon perreti | Anura | EN | Stream-dwelling | 25.926381 | 38.19200 | 32.47363 | 43.47550 |
Leptodactylodon perreti | Anura | EN | Stream-dwelling | 25.195917 | 38.09560 | 32.37349 | 43.42999 |
Leptodactylodon perreti | Anura | EN | Stream-dwelling | 27.471006 | 38.39584 | 32.58445 | 43.66581 |
Leptodactylodon bueanus | Anura | EN | Stream-dwelling | 26.947891 | 38.41191 | 32.12690 | 43.02018 |
Leptodactylodon bueanus | Anura | EN | Stream-dwelling | 26.416901 | 38.34020 | 32.34527 | 43.22384 |
Leptodactylodon bueanus | Anura | EN | Stream-dwelling | 28.225716 | 38.58450 | 32.43169 | 43.34602 |
Leptodactylodon bicolor | Anura | NT | Stream-dwelling | 26.388676 | 38.32953 | 32.76040 | 43.43109 |
Leptodactylodon bicolor | Anura | NT | Stream-dwelling | 25.708774 | 38.23625 | 32.63964 | 43.27376 |
Leptodactylodon bicolor | Anura | NT | Stream-dwelling | 27.829234 | 38.52717 | 32.88887 | 43.59864 |
Leptodactylodon ornatus | Anura | EN | Stream-dwelling | 26.365422 | 38.30181 | 32.81985 | 43.53006 |
Leptodactylodon ornatus | Anura | EN | Stream-dwelling | 25.715242 | 38.21426 | 32.73860 | 43.44138 |
Leptodactylodon ornatus | Anura | EN | Stream-dwelling | 27.719248 | 38.48412 | 32.98903 | 43.70208 |
Leptodactylodon mertensi | Anura | EN | Stream-dwelling | 26.406869 | 38.34341 | 32.88135 | 43.57778 |
Leptodactylodon mertensi | Anura | EN | Stream-dwelling | 25.779143 | 38.25911 | 32.81847 | 43.46711 |
Leptodactylodon mertensi | Anura | EN | Stream-dwelling | 27.748605 | 38.52362 | 33.25908 | 44.02453 |
Leptodactylodon polyacanthus | Anura | VU | Stream-dwelling | 26.251086 | 38.29881 | 32.42254 | 43.48178 |
Leptodactylodon polyacanthus | Anura | VU | Stream-dwelling | 25.534076 | 38.20152 | 32.35451 | 43.36701 |
Leptodactylodon polyacanthus | Anura | VU | Stream-dwelling | 27.729647 | 38.49943 | 32.75072 | 43.88831 |
Leptodactylodon ovatus | Anura | LC | Stream-dwelling | 26.599589 | 38.38407 | 32.74833 | 43.65937 |
Leptodactylodon ovatus | Anura | LC | Stream-dwelling | 25.996749 | 38.30234 | 32.69354 | 43.54748 |
Leptodactylodon ovatus | Anura | LC | Stream-dwelling | 27.944207 | 38.56635 | 33.16932 | 44.16997 |
Leptodactylodon wildi | Anura | CR | Stream-dwelling | 26.939038 | 38.47323 | 32.45634 | 43.78576 |
Leptodactylodon wildi | Anura | CR | Stream-dwelling | 26.407567 | 38.40112 | 32.40908 | 43.69992 |
Leptodactylodon wildi | Anura | CR | Stream-dwelling | 28.227584 | 38.64806 | 33.01049 | 44.39887 |
Leptodactylodon blanci | Anura | EN | Stream-dwelling | 28.150596 | 38.59549 | 33.21310 | 44.40868 |
Leptodactylodon blanci | Anura | EN | Stream-dwelling | 27.295856 | 38.48046 | 33.08108 | 44.26222 |
Leptodactylodon blanci | Anura | EN | Stream-dwelling | 29.795923 | 38.81691 | 33.66013 | 44.90614 |
Leptodactylodon ventrimarmoratus | Anura | VU | Ground-dwelling | 26.532115 | 39.00149 | 33.82434 | 44.79105 |
Leptodactylodon ventrimarmoratus | Anura | VU | Ground-dwelling | 25.949555 | 38.92226 | 33.85042 | 44.76618 |
Leptodactylodon ventrimarmoratus | Anura | VU | Ground-dwelling | 27.936638 | 39.19251 | 33.23865 | 44.20411 |
Leptopelis anchietae | Anura | LC | Ground-dwelling | 24.393966 | 38.60373 | 33.30932 | 43.96969 |
Leptopelis anchietae | Anura | LC | Ground-dwelling | 23.138727 | 38.43563 | 33.12056 | 43.73181 |
Leptopelis anchietae | Anura | LC | Ground-dwelling | 26.691007 | 38.91135 | 33.39843 | 44.13106 |
Leptopelis lebeaui | Anura | DD | Arboreal | 25.404116 | 38.60437 | 33.51963 | 44.33627 |
Leptopelis lebeaui | Anura | DD | Arboreal | 24.627851 | 38.50056 | 33.51667 | 44.37170 |
Leptopelis lebeaui | Anura | DD | Arboreal | 27.368716 | 38.86707 | 33.51006 | 44.40692 |
Leptopelis argenteus | Anura | LC | Ground-dwelling | 25.122155 | 38.75692 | 33.27429 | 44.31138 |
Leptopelis argenteus | Anura | LC | Ground-dwelling | 24.402240 | 38.65980 | 33.15391 | 44.23105 |
Leptopelis argenteus | Anura | LC | Ground-dwelling | 26.797111 | 38.98287 | 33.31411 | 44.43229 |
Leptopelis cynnamomeus | Anura | LC | Arboreal | 24.190636 | 38.46333 | 33.00503 | 43.89202 |
Leptopelis cynnamomeus | Anura | LC | Arboreal | 23.277586 | 38.33979 | 32.87909 | 43.78251 |
Leptopelis cynnamomeus | Anura | LC | Arboreal | 26.330736 | 38.75289 | 33.34353 | 44.29951 |
Leptopelis ocellatus | Anura | LC | Arboreal | 27.578733 | 39.07632 | 34.00764 | 44.57565 |
Leptopelis ocellatus | Anura | LC | Arboreal | 26.796519 | 38.97040 | 34.03463 | 44.60372 |
Leptopelis ocellatus | Anura | LC | Arboreal | 29.285018 | 39.30736 | 34.39372 | 44.98569 |
Leptopelis spiritusnoctis | Anura | LC | Arboreal | 27.518245 | 38.95188 | 33.78351 | 44.78119 |
Leptopelis spiritusnoctis | Anura | LC | Arboreal | 26.872881 | 38.86521 | 33.67106 | 44.59972 |
Leptopelis spiritusnoctis | Anura | LC | Arboreal | 28.914084 | 39.13934 | 33.76423 | 44.81864 |
Leptopelis aubryi | Anura | LC | Arboreal | 27.431326 | 38.93538 | 33.05276 | 44.08732 |
Leptopelis aubryi | Anura | LC | Arboreal | 26.651943 | 38.83028 | 33.04747 | 44.04933 |
Leptopelis aubryi | Anura | LC | Arboreal | 29.107174 | 39.16136 | 33.30506 | 44.40784 |
Leptopelis marginatus | Anura | DD | Arboreal | 23.852061 | 38.36538 | 33.08606 | 43.62657 |
Leptopelis marginatus | Anura | DD | Arboreal | 22.629716 | 38.19953 | 32.97801 | 43.60199 |
Leptopelis marginatus | Anura | DD | Arboreal | 25.862777 | 38.63819 | 33.25206 | 43.86265 |
Leptopelis aubryioides | Anura | LC | Arboreal | 27.145790 | 38.91264 | 33.50615 | 44.67411 |
Leptopelis aubryioides | Anura | LC | Arboreal | 26.429087 | 38.81431 | 33.49872 | 44.63045 |
Leptopelis aubryioides | Anura | LC | Arboreal | 28.719753 | 39.12857 | 33.74453 | 45.01221 |
Leptopelis susanae | Anura | EN | Stream-dwelling | 21.108538 | 37.59444 | 32.81527 | 43.30606 |
Leptopelis susanae | Anura | EN | Stream-dwelling | 20.215463 | 37.47407 | 32.69421 | 43.21356 |
Leptopelis susanae | Anura | EN | Stream-dwelling | 22.834404 | 37.82705 | 33.03470 | 43.51701 |
Leptopelis bequaerti | Anura | DD | Arboreal | 27.359116 | 38.93991 | 33.09218 | 43.86830 |
Leptopelis bequaerti | Anura | DD | Arboreal | 26.707474 | 38.85332 | 33.07166 | 43.84777 |
Leptopelis bequaerti | Anura | DD | Arboreal | 28.652445 | 39.11177 | 33.24902 | 43.99433 |
Leptopelis uluguruensis | Anura | NT | Arboreal | 23.656065 | 38.47874 | 33.75076 | 44.25949 |
Leptopelis uluguruensis | Anura | NT | Arboreal | 22.957616 | 38.38463 | 32.96277 | 43.44846 |
Leptopelis uluguruensis | Anura | NT | Arboreal | 25.118163 | 38.67575 | 33.20118 | 43.72376 |
Leptopelis bocagii | Anura | LC | Fossorial | 23.674840 | 39.55462 | 34.21583 | 44.73016 |
Leptopelis bocagii | Anura | LC | Fossorial | 22.701115 | 39.42067 | 34.08541 | 44.57366 |
Leptopelis bocagii | Anura | LC | Fossorial | 25.752116 | 39.84036 | 34.47556 | 45.06401 |
Leptopelis concolor | Anura | LC | Arboreal | 24.896767 | 38.59861 | 33.19178 | 44.18126 |
Leptopelis concolor | Anura | LC | Arboreal | 24.243803 | 38.50908 | 33.45084 | 44.41015 |
Leptopelis concolor | Anura | LC | Arboreal | 26.069293 | 38.75937 | 33.36597 | 44.36406 |
Leptopelis vermiculatus | Anura | EN | Arboreal | 23.348394 | 38.36224 | 33.45389 | 44.35948 |
Leptopelis vermiculatus | Anura | EN | Arboreal | 22.595104 | 38.26071 | 33.31171 | 44.19807 |
Leptopelis vermiculatus | Anura | EN | Arboreal | 24.871630 | 38.56755 | 33.68781 | 44.59360 |
Leptopelis boulengeri | Anura | LC | Arboreal | 27.380505 | 38.92053 | 33.59365 | 44.22767 |
Leptopelis boulengeri | Anura | LC | Arboreal | 26.643134 | 38.82078 | 33.72590 | 44.32553 |
Leptopelis boulengeri | Anura | LC | Arboreal | 28.978612 | 39.13673 | 33.77011 | 44.49884 |
Leptopelis brevipes | Anura | DD | Arboreal | 26.217367 | 38.76377 | 33.58728 | 43.81270 |
Leptopelis brevipes | Anura | DD | Arboreal | 25.707002 | 38.69379 | 33.51622 | 43.76911 |
Leptopelis brevipes | Anura | DD | Arboreal | 27.240774 | 38.90411 | 33.69199 | 43.99095 |
Leptopelis notatus | Anura | LC | Arboreal | 27.231291 | 38.81060 | 32.91824 | 43.70855 |
Leptopelis notatus | Anura | LC | Arboreal | 26.437866 | 38.70420 | 32.89036 | 43.60323 |
Leptopelis notatus | Anura | LC | Arboreal | 29.005134 | 39.04847 | 33.13723 | 44.04444 |
Leptopelis brevirostris | Anura | LC | Arboreal | 27.061706 | 38.82159 | 33.00018 | 43.84924 |
Leptopelis brevirostris | Anura | LC | Arboreal | 26.365222 | 38.72734 | 33.20457 | 44.02029 |
Leptopelis brevirostris | Anura | LC | Arboreal | 28.574725 | 39.02633 | 33.35584 | 44.17984 |
Leptopelis palmatus | Anura | EN | Stream-dwelling | 27.154492 | 38.33157 | 33.06830 | 44.22190 |
Leptopelis palmatus | Anura | EN | Stream-dwelling | 26.573730 | 38.25282 | 33.06373 | 44.20319 |
Leptopelis palmatus | Anura | EN | Stream-dwelling | 28.071748 | 38.45595 | 33.33006 | 44.50182 |
Leptopelis mossambicus | Anura | LC | Arboreal | 24.814600 | 38.51329 | 33.19653 | 44.12886 |
Leptopelis mossambicus | Anura | LC | Arboreal | 23.731766 | 38.36757 | 33.05244 | 43.94337 |
Leptopelis mossambicus | Anura | LC | Arboreal | 26.863564 | 38.78901 | 33.36352 | 44.32169 |
Leptopelis parvus | Anura | DD | Arboreal | 24.674386 | 38.56472 | 33.30935 | 44.10785 |
Leptopelis parvus | Anura | DD | Arboreal | 23.823188 | 38.45064 | 33.03690 | 43.82730 |
Leptopelis parvus | Anura | DD | Arboreal | 26.719807 | 38.83887 | 33.36080 | 44.19753 |
Leptopelis rufus | Anura | LC | Arboreal | 27.245377 | 38.88667 | 33.21420 | 44.37551 |
Leptopelis rufus | Anura | LC | Arboreal | 26.512504 | 38.78836 | 33.60622 | 44.74660 |
Leptopelis rufus | Anura | LC | Arboreal | 28.836298 | 39.10008 | 33.48425 | 44.61229 |
Leptopelis bufonides | Anura | LC | Fossorial | 27.385740 | 40.04949 | 34.03196 | 45.18775 |
Leptopelis bufonides | Anura | LC | Fossorial | 26.549382 | 39.94012 | 33.88450 | 45.04227 |
Leptopelis bufonides | Anura | LC | Fossorial | 29.447297 | 40.31908 | 34.30646 | 45.56804 |
Leptopelis nordequatorialis | Anura | LC | Arboreal | 25.966567 | 38.71123 | 32.85830 | 43.87160 |
Leptopelis nordequatorialis | Anura | LC | Arboreal | 25.219641 | 38.61124 | 32.81015 | 43.80638 |
Leptopelis nordequatorialis | Anura | LC | Arboreal | 27.624703 | 38.93321 | 33.02056 | 44.15317 |
Leptopelis christyi | Anura | LC | Arboreal | 24.301034 | 38.45440 | 33.13645 | 44.10983 |
Leptopelis christyi | Anura | LC | Arboreal | 23.621067 | 38.36300 | 32.86895 | 43.79829 |
Leptopelis christyi | Anura | LC | Arboreal | 25.852228 | 38.66290 | 33.36884 | 44.34989 |
Leptopelis flavomaculatus | Anura | LC | Arboreal | 24.868849 | 38.65200 | 33.48321 | 44.27220 |
Leptopelis flavomaculatus | Anura | LC | Arboreal | 23.989980 | 38.53259 | 33.28765 | 44.04153 |
Leptopelis flavomaculatus | Anura | LC | Arboreal | 26.717258 | 38.90313 | 33.75507 | 44.61354 |
Leptopelis calcaratus | Anura | LC | Arboreal | 27.153833 | 38.94909 | 33.54889 | 44.35286 |
Leptopelis calcaratus | Anura | LC | Arboreal | 26.425959 | 38.84978 | 33.38354 | 44.13501 |
Leptopelis calcaratus | Anura | LC | Arboreal | 28.766474 | 39.16914 | 33.51626 | 44.34130 |
Leptopelis yaldeni | Anura | VU | Arboreal | 22.701908 | 38.32151 | 32.59209 | 43.44347 |
Leptopelis yaldeni | Anura | VU | Arboreal | 21.833298 | 38.20421 | 32.52457 | 43.35634 |
Leptopelis yaldeni | Anura | VU | Arboreal | 24.734265 | 38.59596 | 32.72319 | 43.52322 |
Leptopelis crystallinoron | Anura | DD | Arboreal | 26.910204 | 38.77745 | 33.13121 | 44.21345 |
Leptopelis crystallinoron | Anura | DD | Arboreal | 26.145273 | 38.67416 | 33.03729 | 44.15893 |
Leptopelis crystallinoron | Anura | DD | Arboreal | 28.612489 | 39.00732 | 33.38794 | 44.51512 |
Leptopelis parkeri | Anura | EN | Arboreal | 23.752030 | 38.42310 | 32.52212 | 43.77839 |
Leptopelis parkeri | Anura | EN | Arboreal | 23.046473 | 38.32659 | 32.41144 | 43.65842 |
Leptopelis parkeri | Anura | EN | Arboreal | 25.148950 | 38.61416 | 32.69840 | 43.94821 |
Leptopelis fiziensis | Anura | DD | Arboreal | 24.114352 | 38.34056 | 32.80718 | 43.63964 |
Leptopelis fiziensis | Anura | DD | Arboreal | 23.475927 | 38.25437 | 32.68488 | 43.54604 |
Leptopelis fiziensis | Anura | DD | Arboreal | 25.669647 | 38.55052 | 33.04954 | 43.92836 |
Leptopelis karissimbensis | Anura | VU | Arboreal | 22.283253 | 38.14161 | 33.04132 | 43.83216 |
Leptopelis karissimbensis | Anura | VU | Arboreal | 21.587309 | 38.04675 | 32.91745 | 43.72897 |
Leptopelis karissimbensis | Anura | VU | Arboreal | 23.973052 | 38.37195 | 33.32479 | 44.17591 |
Leptopelis kivuensis | Anura | LC | Arboreal | 22.902296 | 38.18976 | 32.98821 | 44.33768 |
Leptopelis kivuensis | Anura | LC | Arboreal | 22.244473 | 38.10021 | 32.88409 | 44.26198 |
Leptopelis kivuensis | Anura | LC | Arboreal | 24.404973 | 38.39431 | 32.69023 | 44.03399 |
Leptopelis millsoni | Anura | LC | Arboreal | 27.261777 | 38.78437 | 33.80438 | 44.89660 |
Leptopelis millsoni | Anura | LC | Arboreal | 26.538378 | 38.68840 | 33.70388 | 44.78378 |
Leptopelis millsoni | Anura | LC | Arboreal | 28.861853 | 38.99667 | 33.52693 | 44.62821 |
Leptopelis fenestratus | Anura | DD | Arboreal | 24.942060 | 38.58675 | 32.96785 | 43.54229 |
Leptopelis fenestratus | Anura | DD | Arboreal | 24.161731 | 38.48125 | 32.85315 | 43.42328 |
Leptopelis fenestratus | Anura | DD | Arboreal | 26.688954 | 38.82292 | 33.40466 | 44.01834 |
Leptopelis mackayi | Anura | VU | Arboreal | 24.410289 | 38.55245 | 33.13544 | 44.11543 |
Leptopelis mackayi | Anura | VU | Arboreal | 23.583942 | 38.43948 | 32.99304 | 43.96196 |
Leptopelis mackayi | Anura | VU | Arboreal | 26.173823 | 38.79355 | 33.56926 | 44.60634 |
Leptopelis gramineus | Anura | LC | Fossorial | 20.324242 | 39.13806 | 33.24824 | 44.10416 |
Leptopelis gramineus | Anura | LC | Fossorial | 19.454499 | 39.02010 | 33.35639 | 44.10415 |
Leptopelis gramineus | Anura | LC | Fossorial | 21.865214 | 39.34706 | 33.92076 | 44.74555 |
Leptopelis natalensis | Anura | LC | Arboreal | 22.281442 | 38.23403 | 32.92843 | 43.63194 |
Leptopelis natalensis | Anura | LC | Arboreal | 21.047359 | 38.06990 | 32.83919 | 43.50126 |
Leptopelis natalensis | Anura | LC | Arboreal | 24.190531 | 38.48793 | 32.95167 | 43.59915 |
Leptopelis jordani | Anura | DD | Arboreal | 25.397022 | 38.56891 | 32.98260 | 44.23628 |
Leptopelis jordani | Anura | DD | Arboreal | 24.293143 | 38.42072 | 32.80377 | 44.04263 |
Leptopelis jordani | Anura | DD | Arboreal | 27.327403 | 38.82804 | 33.39203 | 44.68093 |
Leptopelis occidentalis | Anura | NT | Arboreal | 27.510048 | 38.79683 | 32.95534 | 44.05794 |
Leptopelis occidentalis | Anura | NT | Arboreal | 26.950857 | 38.72247 | 32.90880 | 43.97505 |
Leptopelis occidentalis | Anura | NT | Arboreal | 28.704978 | 38.95573 | 33.16063 | 44.34744 |
Leptopelis macrotis | Anura | NT | Stream-dwelling | 27.442054 | 38.47925 | 32.63222 | 43.73641 |
Leptopelis macrotis | Anura | NT | Stream-dwelling | 26.844583 | 38.39767 | 33.03880 | 44.22228 |
Leptopelis macrotis | Anura | NT | Stream-dwelling | 28.702945 | 38.65142 | 32.93992 | 44.03008 |
Leptopelis ragazzii | Anura | VU | Stream-dwelling | 20.148228 | 37.54928 | 31.72686 | 42.95115 |
Leptopelis ragazzii | Anura | VU | Stream-dwelling | 19.306753 | 37.43398 | 31.62492 | 42.85807 |
Leptopelis ragazzii | Anura | VU | Stream-dwelling | 21.633919 | 37.75285 | 31.90686 | 43.20918 |
Leptopelis modestus | Anura | LC | Stream-dwelling | 26.257750 | 38.35717 | 32.94157 | 43.61492 |
Leptopelis modestus | Anura | LC | Stream-dwelling | 25.638215 | 38.27247 | 32.82528 | 43.50397 |
Leptopelis modestus | Anura | LC | Stream-dwelling | 27.652042 | 38.54779 | 32.84327 | 43.53323 |
Leptopelis xenodactylus | Anura | EN | Arboreal | 21.728331 | 38.15396 | 32.52600 | 43.32781 |
Leptopelis xenodactylus | Anura | EN | Arboreal | 20.372004 | 37.96827 | 32.25518 | 42.94637 |
Leptopelis xenodactylus | Anura | EN | Arboreal | 23.719717 | 38.42661 | 32.60557 | 43.49040 |
Leptopelis parbocagii | Anura | LC | Fossorial | 24.088564 | 39.51561 | 34.23937 | 45.16601 |
Leptopelis parbocagii | Anura | LC | Fossorial | 23.145720 | 39.38663 | 34.15666 | 45.13084 |
Leptopelis parbocagii | Anura | LC | Fossorial | 26.163826 | 39.79952 | 34.46655 | 45.48236 |
Leptopelis viridis | Anura | LC | Arboreal | 27.279072 | 38.82038 | 33.68188 | 44.38363 |
Leptopelis viridis | Anura | LC | Arboreal | 26.460712 | 38.70874 | 33.57858 | 44.20595 |
Leptopelis viridis | Anura | LC | Arboreal | 29.145000 | 39.07493 | 34.09665 | 44.86518 |
Leptopelis vannutellii | Anura | LC | Arboreal | 21.863209 | 38.07263 | 32.82841 | 43.57597 |
Leptopelis vannutellii | Anura | LC | Arboreal | 21.023039 | 37.95966 | 32.70414 | 43.47005 |
Leptopelis vannutellii | Anura | LC | Arboreal | 23.515220 | 38.29477 | 33.05478 | 43.82937 |
Leptopelis zebra | Anura | LC | Arboreal | 26.520945 | 38.77057 | 32.86026 | 44.26261 |
Leptopelis zebra | Anura | LC | Arboreal | 25.882742 | 38.68377 | 32.79072 | 44.15416 |
Leptopelis zebra | Anura | LC | Arboreal | 28.039264 | 38.97708 | 33.09578 | 44.58311 |
Leptopelis oryi | Anura | LC | Arboreal | 25.769297 | 38.61338 | 33.04444 | 43.66925 |
Leptopelis oryi | Anura | LC | Arboreal | 24.978614 | 38.50755 | 32.92118 | 43.57372 |
Leptopelis oryi | Anura | LC | Arboreal | 27.401027 | 38.83178 | 33.27654 | 43.93991 |
Phrynomantis affinis | Anura | LC | Ground-dwelling | 23.868686 | 37.46318 | 32.23082 | 42.57364 |
Phrynomantis affinis | Anura | LC | Ground-dwelling | 22.798995 | 37.31396 | 32.11194 | 42.41171 |
Phrynomantis affinis | Anura | LC | Ground-dwelling | 26.116951 | 37.77681 | 32.46079 | 42.95212 |
Phrynomantis annectens | Anura | LC | Ground-dwelling | 22.026281 | 37.15352 | 31.67261 | 42.21614 |
Phrynomantis annectens | Anura | LC | Ground-dwelling | 20.457391 | 36.93631 | 31.75497 | 42.25546 |
Phrynomantis annectens | Anura | LC | Ground-dwelling | 24.661077 | 37.51831 | 32.33440 | 42.94865 |
Phrynomantis bifasciatus | Anura | LC | Ground-dwelling | 23.837722 | 37.47494 | 32.52485 | 42.87316 |
Phrynomantis bifasciatus | Anura | LC | Ground-dwelling | 22.768711 | 37.32321 | 32.38699 | 42.68654 |
Phrynomantis bifasciatus | Anura | LC | Ground-dwelling | 25.942348 | 37.77365 | 32.69897 | 43.07741 |
Phrynomantis microps | Anura | LC | Ground-dwelling | 27.295052 | 37.99454 | 32.42890 | 42.95104 |
Phrynomantis microps | Anura | LC | Ground-dwelling | 26.463500 | 37.87751 | 32.32804 | 42.83023 |
Phrynomantis microps | Anura | LC | Ground-dwelling | 29.186307 | 38.26072 | 32.56763 | 43.16831 |
Phrynomantis somalicus | Anura | LC | Ground-dwelling | 25.563207 | 37.74262 | 32.56993 | 42.74761 |
Phrynomantis somalicus | Anura | LC | Ground-dwelling | 24.858967 | 37.64322 | 32.14604 | 42.34817 |
Phrynomantis somalicus | Anura | LC | Ground-dwelling | 26.845458 | 37.92358 | 32.63504 | 42.87190 |
Hoplophryne rogersi | Anura | EN | Arboreal | 24.290366 | 37.95639 | 33.68729 | 43.02219 |
Hoplophryne rogersi | Anura | EN | Arboreal | 23.613576 | 37.86326 | 33.58200 | 42.86963 |
Hoplophryne rogersi | Anura | EN | Arboreal | 25.508639 | 38.12404 | 33.79667 | 43.17303 |
Hoplophryne uluguruensis | Anura | EN | Arboreal | 23.742587 | 37.95233 | 33.23394 | 42.88879 |
Hoplophryne uluguruensis | Anura | EN | Arboreal | 23.071514 | 37.85906 | 33.19910 | 42.83251 |
Hoplophryne uluguruensis | Anura | EN | Arboreal | 25.326150 | 38.17244 | 33.41778 | 43.10416 |
Parhoplophryne usambarica | Anura | CR | Ground-dwelling | 24.988717 | 38.30911 | 33.61221 | 42.89498 |
Parhoplophryne usambarica | Anura | CR | Ground-dwelling | 24.272514 | 38.21095 | 33.50808 | 42.76781 |
Parhoplophryne usambarica | Anura | CR | Ground-dwelling | 25.980715 | 38.44506 | 33.86414 | 43.27249 |
Adelastes hylonomos | Anura | DD | Ground-dwelling | 27.593172 | 39.90510 | 35.92961 | 44.30516 |
Adelastes hylonomos | Anura | DD | Ground-dwelling | 26.923381 | 39.81281 | 35.81069 | 44.17400 |
Adelastes hylonomos | Anura | DD | Ground-dwelling | 29.101493 | 40.11294 | 36.08567 | 44.46285 |
Arcovomer passarellii | Anura | LC | Ground-dwelling | 25.474285 | 39.65658 | 36.18095 | 43.91075 |
Arcovomer passarellii | Anura | LC | Ground-dwelling | 24.516564 | 39.52759 | 36.08125 | 43.75596 |
Arcovomer passarellii | Anura | LC | Ground-dwelling | 27.163774 | 39.88413 | 36.17511 | 43.96473 |
Elachistocleis ovalis | Anura | LC | Ground-dwelling | 27.036804 | 40.24198 | 37.24553 | 43.29084 |
Elachistocleis ovalis | Anura | LC | Ground-dwelling | 26.166438 | 40.12599 | 37.14351 | 43.10826 |
Elachistocleis ovalis | Anura | LC | Ground-dwelling | 28.785355 | 40.47499 | 37.28340 | 43.50949 |
Elachistocleis surinamensis | Anura | LC | Ground-dwelling | 26.647062 | 40.22566 | 36.90173 | 43.31954 |
Elachistocleis surinamensis | Anura | LC | Ground-dwelling | 25.904183 | 40.12605 | 36.86171 | 43.18416 |
Elachistocleis surinamensis | Anura | LC | Ground-dwelling | 28.045070 | 40.41313 | 36.95856 | 43.49602 |
Elachistocleis bumbameuboi | Anura | DD | Ground-dwelling | 27.872069 | 40.18064 | 36.38324 | 43.82679 |
Elachistocleis bumbameuboi | Anura | DD | Ground-dwelling | 27.165577 | 40.08453 | 36.63923 | 44.03039 |
Elachistocleis bumbameuboi | Anura | DD | Ground-dwelling | 29.316476 | 40.37712 | 36.58980 | 44.10269 |
Elachistocleis erythrogaster | Anura | NT | Fossorial | 24.552864 | 40.65552 | 37.22944 | 44.51897 |
Elachistocleis erythrogaster | Anura | NT | Fossorial | 22.689759 | 40.40232 | 36.81878 | 44.05745 |
Elachistocleis erythrogaster | Anura | NT | Fossorial | 27.254547 | 41.02270 | 37.22104 | 44.74273 |
Elachistocleis carvalhoi | Anura | LC | Ground-dwelling | 27.861527 | 40.08578 | 36.58118 | 43.84995 |
Elachistocleis carvalhoi | Anura | LC | Ground-dwelling | 27.108365 | 39.98555 | 36.46406 | 43.68062 |
Elachistocleis carvalhoi | Anura | LC | Ground-dwelling | 29.376474 | 40.28737 | 36.77398 | 44.09326 |
Elachistocleis piauiensis | Anura | LC | Fossorial | 26.764324 | 40.98612 | 37.37453 | 44.58783 |
Elachistocleis piauiensis | Anura | LC | Fossorial | 25.840292 | 40.86062 | 37.27840 | 44.44664 |
Elachistocleis piauiensis | Anura | LC | Fossorial | 28.373097 | 41.20461 | 37.62960 | 44.92836 |
Elachistocleis helianneae | Anura | LC | Ground-dwelling | 28.199796 | 40.12774 | 36.80058 | 43.60916 |
Elachistocleis helianneae | Anura | LC | Ground-dwelling | 27.475866 | 40.03123 | 36.71869 | 43.50304 |
Elachistocleis helianneae | Anura | LC | Ground-dwelling | 29.843425 | 40.34687 | 36.98253 | 43.88167 |
Elachistocleis pearsei | Anura | LC | Ground-dwelling | 26.314168 | 39.91486 | 36.56848 | 43.95978 |
Elachistocleis pearsei | Anura | LC | Ground-dwelling | 25.584929 | 39.81766 | 36.51349 | 43.84723 |
Elachistocleis pearsei | Anura | LC | Ground-dwelling | 27.837965 | 40.11796 | 36.84605 | 44.33487 |
Elachistocleis matogrosso | Anura | LC | Ground-dwelling | 28.005538 | 40.15552 | 36.49317 | 43.63587 |
Elachistocleis matogrosso | Anura | LC | Ground-dwelling | 26.968289 | 40.01505 | 36.46441 | 43.58750 |
Elachistocleis matogrosso | Anura | LC | Ground-dwelling | 30.066391 | 40.43462 | 36.91824 | 44.16696 |
Elachistocleis skotogaster | Anura | LC | Ground-dwelling | 20.986425 | 39.23224 | 35.95827 | 43.00217 |
Elachistocleis skotogaster | Anura | LC | Ground-dwelling | 19.451389 | 39.02570 | 35.44229 | 42.47811 |
Elachistocleis skotogaster | Anura | LC | Ground-dwelling | 23.184627 | 39.52801 | 36.17547 | 43.17245 |
Elachistocleis panamensis | Anura | LC | Ground-dwelling | 26.588801 | 39.91524 | 36.45744 | 43.72472 |
Elachistocleis panamensis | Anura | LC | Ground-dwelling | 25.861614 | 39.81830 | 36.39767 | 43.64106 |
Elachistocleis panamensis | Anura | LC | Ground-dwelling | 28.183716 | 40.12783 | 36.68141 | 44.04915 |
Elachistocleis surumu | Anura | DD | Ground-dwelling | 26.692696 | 39.96647 | 36.10626 | 43.23681 |
Elachistocleis surumu | Anura | DD | Ground-dwelling | 25.970277 | 39.86926 | 36.02598 | 43.12243 |
Elachistocleis surumu | Anura | DD | Ground-dwelling | 28.278396 | 40.17982 | 36.13783 | 43.40320 |
Gastrophryne olivacea | Anura | LC | Ground-dwelling | 24.383518 | 39.57063 | 36.90376 | 42.63900 |
Gastrophryne olivacea | Anura | LC | Ground-dwelling | 22.705492 | 39.34169 | 36.46838 | 42.14310 |
Gastrophryne olivacea | Anura | LC | Ground-dwelling | 27.106910 | 39.94219 | 37.08313 | 43.02837 |
Gastrophryne elegans | Anura | LC | Ground-dwelling | 26.142297 | 39.80213 | 36.16245 | 42.96842 |
Gastrophryne elegans | Anura | LC | Ground-dwelling | 25.254937 | 39.68206 | 36.20966 | 42.97654 |
Gastrophryne elegans | Anura | LC | Ground-dwelling | 28.015873 | 40.05565 | 36.31903 | 43.17034 |
Hypopachus barberi | Anura | NT | Ground-dwelling | 25.795938 | 39.69125 | 35.75601 | 43.31297 |
Hypopachus barberi | Anura | NT | Ground-dwelling | 24.800905 | 39.55683 | 35.68691 | 43.15780 |
Hypopachus barberi | Anura | NT | Ground-dwelling | 27.824822 | 39.96531 | 36.20769 | 43.86640 |
Hypopachus variolosus | Anura | LC | Ground-dwelling | 25.999588 | 39.84858 | 36.10318 | 43.29752 |
Hypopachus variolosus | Anura | LC | Ground-dwelling | 25.085939 | 39.72304 | 35.93622 | 43.07784 |
Hypopachus variolosus | Anura | LC | Ground-dwelling | 27.798365 | 40.09574 | 36.26099 | 43.51084 |
Hypopachus pictiventris | Anura | LC | Ground-dwelling | 26.180623 | 39.84252 | 35.96805 | 43.46635 |
Hypopachus pictiventris | Anura | LC | Ground-dwelling | 25.377782 | 39.73332 | 35.84176 | 43.30336 |
Hypopachus pictiventris | Anura | LC | Ground-dwelling | 27.683524 | 40.04695 | 36.08930 | 43.65673 |
Hamptophryne alios | Anura | DD | Ground-dwelling | 24.683804 | 39.61915 | 36.41087 | 42.97756 |
Hamptophryne alios | Anura | DD | Ground-dwelling | 23.932034 | 39.51730 | 36.32261 | 42.83667 |
Hamptophryne alios | Anura | DD | Ground-dwelling | 25.966569 | 39.79294 | 36.44414 | 43.04588 |
Stereocyclops histrio | Anura | DD | Ground-dwelling | 25.192998 | 39.64942 | 36.02681 | 43.38386 |
Stereocyclops histrio | Anura | DD | Ground-dwelling | 24.420885 | 39.54413 | 35.94651 | 43.25255 |
Stereocyclops histrio | Anura | DD | Ground-dwelling | 26.685840 | 39.85302 | 36.14748 | 43.65065 |
Stereocyclops parkeri | Anura | LC | Ground-dwelling | 25.788988 | 39.89010 | 36.34401 | 42.81627 |
Stereocyclops parkeri | Anura | LC | Ground-dwelling | 24.795952 | 39.75674 | 36.26300 | 42.67571 |
Stereocyclops parkeri | Anura | LC | Ground-dwelling | 27.532147 | 40.12418 | 36.51285 | 43.16769 |
Dasypops schirchi | Anura | VU | Ground-dwelling | 25.230689 | 39.20298 | 34.61398 | 43.11994 |
Dasypops schirchi | Anura | VU | Ground-dwelling | 24.471858 | 39.10021 | 35.08802 | 43.56134 |
Dasypops schirchi | Anura | VU | Ground-dwelling | 26.618351 | 39.39093 | 35.50258 | 44.00408 |
Myersiella microps | Anura | LC | Ground-dwelling | 25.506256 | 39.26750 | 35.10173 | 43.71033 |
Myersiella microps | Anura | LC | Ground-dwelling | 24.410891 | 39.11931 | 35.11547 | 43.70629 |
Myersiella microps | Anura | LC | Ground-dwelling | 27.413052 | 39.52548 | 35.32658 | 44.02825 |
Chiasmocleis cordeiroi | Anura | DD | Ground-dwelling | 25.024351 | 38.84112 | 35.17462 | 42.45343 |
Chiasmocleis cordeiroi | Anura | DD | Ground-dwelling | 24.244099 | 38.73538 | 35.10444 | 42.36027 |
Chiasmocleis cordeiroi | Anura | DD | Ground-dwelling | 26.604310 | 39.05524 | 35.33453 | 42.71885 |
Chiasmocleis crucis | Anura | DD | Ground-dwelling | 25.024351 | 38.84017 | 34.98646 | 42.84935 |
Chiasmocleis crucis | Anura | DD | Ground-dwelling | 24.244099 | 38.73355 | 34.87012 | 42.68760 |
Chiasmocleis crucis | Anura | DD | Ground-dwelling | 26.604310 | 39.05606 | 34.87576 | 42.81782 |
Chiasmocleis schubarti | Anura | LC | Ground-dwelling | 25.349638 | 38.88020 | 35.04732 | 42.71022 |
Chiasmocleis schubarti | Anura | LC | Ground-dwelling | 24.491918 | 38.76288 | 34.92332 | 42.57827 |
Chiasmocleis schubarti | Anura | LC | Ground-dwelling | 27.016355 | 39.10819 | 35.15921 | 42.88822 |
Chiasmocleis capixaba | Anura | LC | Ground-dwelling | 25.255289 | 38.82049 | 35.04360 | 42.46685 |
Chiasmocleis capixaba | Anura | LC | Ground-dwelling | 24.473612 | 38.71471 | 34.94907 | 42.34243 |
Chiasmocleis capixaba | Anura | LC | Ground-dwelling | 26.717986 | 39.01843 | 35.18032 | 42.70835 |
Chiasmocleis carvalhoi | Anura | LC | Ground-dwelling | 28.586957 | 39.25808 | 35.56672 | 43.32194 |
Chiasmocleis carvalhoi | Anura | LC | Ground-dwelling | 27.818666 | 39.15248 | 35.46408 | 43.19894 |
Chiasmocleis carvalhoi | Anura | LC | Ground-dwelling | 30.071424 | 39.46212 | 35.71769 | 43.48704 |
Chiasmocleis mehelyi | Anura | DD | Ground-dwelling | 28.055119 | 39.20608 | 35.51466 | 43.13593 |
Chiasmocleis mehelyi | Anura | DD | Ground-dwelling | 26.984489 | 39.05778 | 35.33134 | 42.97504 |
Chiasmocleis mehelyi | Anura | DD | Ground-dwelling | 30.233673 | 39.50784 | 35.81999 | 43.52739 |
Chiasmocleis albopunctata | Anura | LC | Ground-dwelling | 27.279077 | 39.10928 | 35.71797 | 42.89797 |
Chiasmocleis albopunctata | Anura | LC | Ground-dwelling | 26.215381 | 38.96412 | 35.63627 | 42.78201 |
Chiasmocleis albopunctata | Anura | LC | Ground-dwelling | 29.413566 | 39.40056 | 35.97513 | 43.28677 |
Chiasmocleis leucosticta | Anura | LC | Ground-dwelling | 25.283639 | 38.76799 | 35.14178 | 42.68291 |
Chiasmocleis leucosticta | Anura | LC | Ground-dwelling | 23.750788 | 38.55814 | 35.08738 | 42.56646 |
Chiasmocleis leucosticta | Anura | LC | Ground-dwelling | 27.806123 | 39.11332 | 35.23988 | 42.85311 |
Chiasmocleis mantiqueira | Anura | DD | Ground-dwelling | 24.933356 | 38.77644 | 35.37755 | 43.00769 |
Chiasmocleis mantiqueira | Anura | DD | Ground-dwelling | 23.521258 | 38.58321 | 35.10419 | 42.66535 |
Chiasmocleis mantiqueira | Anura | DD | Ground-dwelling | 27.700419 | 39.15509 | 35.67741 | 43.42835 |
Chiasmocleis centralis | Anura | DD | Fossorial | 27.352354 | 40.18136 | 36.61442 | 44.56265 |
Chiasmocleis centralis | Anura | DD | Fossorial | 26.180835 | 40.01933 | 35.99271 | 43.82093 |
Chiasmocleis centralis | Anura | DD | Fossorial | 29.510605 | 40.47986 | 36.93821 | 45.01773 |
Chiasmocleis gnoma | Anura | DD | Ground-dwelling | 25.361645 | 38.95307 | 34.95169 | 42.44970 |
Chiasmocleis gnoma | Anura | DD | Ground-dwelling | 24.597670 | 38.84614 | 34.87697 | 42.32429 |
Chiasmocleis gnoma | Anura | DD | Ground-dwelling | 26.767371 | 39.14984 | 35.44104 | 43.02497 |
Chiasmocleis anatipes | Anura | LC | Ground-dwelling | 25.477238 | 38.89840 | 35.56625 | 42.99624 |
Chiasmocleis anatipes | Anura | LC | Ground-dwelling | 24.685530 | 38.78927 | 35.41042 | 42.85582 |
Chiasmocleis anatipes | Anura | LC | Ground-dwelling | 26.997356 | 39.10794 | 35.66645 | 43.17828 |
Chiasmocleis devriesi | Anura | LC | Ground-dwelling | 29.053741 | 39.38594 | 35.93331 | 42.98472 |
Chiasmocleis devriesi | Anura | LC | Ground-dwelling | 28.213297 | 39.27071 | 35.80139 | 42.82280 |
Chiasmocleis devriesi | Anura | LC | Ground-dwelling | 30.510378 | 39.58566 | 36.06235 | 43.20223 |
Chiasmocleis sapiranga | Anura | DD | Ground-dwelling | 25.167955 | 38.81215 | 34.61535 | 42.18361 |
Chiasmocleis sapiranga | Anura | DD | Ground-dwelling | 24.335483 | 38.69808 | 34.57885 | 42.03599 |
Chiasmocleis sapiranga | Anura | DD | Ground-dwelling | 26.538348 | 38.99991 | 34.94160 | 42.59651 |
Chiasmocleis atlantica | Anura | LC | Ground-dwelling | 25.679423 | 38.85370 | 34.81779 | 42.28625 |
Chiasmocleis atlantica | Anura | LC | Ground-dwelling | 24.483544 | 38.68724 | 34.61803 | 42.01064 |
Chiasmocleis atlantica | Anura | LC | Ground-dwelling | 27.710290 | 39.13637 | 35.40394 | 43.01875 |
Chiasmocleis avilapiresae | Anura | LC | Ground-dwelling | 28.305475 | 39.25156 | 35.22321 | 43.30297 |
Chiasmocleis avilapiresae | Anura | LC | Ground-dwelling | 27.581550 | 39.15322 | 35.14519 | 43.17236 |
Chiasmocleis avilapiresae | Anura | LC | Ground-dwelling | 29.907291 | 39.46915 | 35.35537 | 43.54864 |
Chiasmocleis shudikarensis | Anura | LC | Ground-dwelling | 28.024634 | 39.12990 | 35.33051 | 43.21147 |
Chiasmocleis shudikarensis | Anura | LC | Ground-dwelling | 27.320343 | 39.03380 | 35.28018 | 43.13473 |
Chiasmocleis shudikarensis | Anura | LC | Ground-dwelling | 29.584005 | 39.34265 | 35.58682 | 43.48079 |
Ctenophryne aequatorialis | Anura | EN | Ground-dwelling | 22.811877 | 38.42605 | 34.66867 | 42.34927 |
Ctenophryne aequatorialis | Anura | EN | Ground-dwelling | 21.189432 | 38.20084 | 34.35268 | 41.96343 |
Ctenophryne aequatorialis | Anura | EN | Ground-dwelling | 25.126705 | 38.74736 | 34.78359 | 42.66530 |
Ctenophryne carpish | Anura | EN | Ground-dwelling | 22.538913 | 38.40066 | 34.05264 | 42.24252 |
Ctenophryne carpish | Anura | EN | Ground-dwelling | 21.736625 | 38.29259 | 33.91587 | 42.09064 |
Ctenophryne carpish | Anura | EN | Ground-dwelling | 23.802966 | 38.57094 | 34.26960 | 42.41926 |
Ctenophryne aterrima | Anura | LC | Ground-dwelling | 25.293489 | 38.71564 | 34.22679 | 42.72386 |
Ctenophryne aterrima | Anura | LC | Ground-dwelling | 24.535608 | 38.61021 | 34.28970 | 42.73054 |
Ctenophryne aterrima | Anura | LC | Ground-dwelling | 26.673421 | 38.90761 | 34.36510 | 42.85299 |
Ctenophryne minor | Anura | DD | Ground-dwelling | 25.597617 | 38.76419 | 35.04864 | 42.84349 |
Ctenophryne minor | Anura | DD | Ground-dwelling | 24.953236 | 38.67439 | 35.00982 | 42.81647 |
Ctenophryne minor | Anura | DD | Ground-dwelling | 26.739957 | 38.92338 | 35.25517 | 43.10693 |
Ctenophryne barbatula | Anura | EN | Ground-dwelling | 21.012652 | 38.23720 | 34.76127 | 41.69011 |
Ctenophryne barbatula | Anura | EN | Ground-dwelling | 20.177954 | 38.12148 | 34.46562 | 41.36730 |
Ctenophryne barbatula | Anura | EN | Ground-dwelling | 22.689323 | 38.46967 | 35.01485 | 41.94590 |
Paradoxophyla palmata | Anura | LC | Fossorial | 25.578599 | 38.87571 | 34.19654 | 44.10721 |
Paradoxophyla palmata | Anura | LC | Fossorial | 24.652025 | 38.74606 | 34.08285 | 43.99450 |
Paradoxophyla palmata | Anura | LC | Fossorial | 27.078761 | 39.08562 | 34.67072 | 44.61680 |
Paradoxophyla tiarano | Anura | DD | Ground-dwelling | 26.568402 | 38.04504 | 33.08556 | 43.22978 |
Paradoxophyla tiarano | Anura | DD | Ground-dwelling | 25.568278 | 37.90557 | 33.14754 | 43.22891 |
Paradoxophyla tiarano | Anura | DD | Ground-dwelling | 28.182329 | 38.27012 | 32.74187 | 42.98499 |
Scaphiophryne boribory | Anura | VU | Ground-dwelling | 25.699645 | 37.93991 | 32.76978 | 42.13661 |
Scaphiophryne boribory | Anura | VU | Ground-dwelling | 24.597743 | 37.78491 | 32.70459 | 41.96646 |
Scaphiophryne boribory | Anura | VU | Ground-dwelling | 27.375863 | 38.17568 | 33.05190 | 42.55805 |
Scaphiophryne madagascariensis | Anura | NT | Fossorial | 25.607336 | 38.88879 | 34.27866 | 43.85204 |
Scaphiophryne madagascariensis | Anura | NT | Fossorial | 24.646038 | 38.75239 | 34.15105 | 43.71632 |
Scaphiophryne madagascariensis | Anura | NT | Fossorial | 27.296487 | 39.12846 | 34.50290 | 44.15863 |
Scaphiophryne menabensis | Anura | LC | Semi-aquatic | 26.592710 | 38.32396 | 33.10231 | 43.11858 |
Scaphiophryne menabensis | Anura | LC | Semi-aquatic | 25.768998 | 38.20667 | 33.55669 | 43.46790 |
Scaphiophryne menabensis | Anura | LC | Semi-aquatic | 28.162113 | 38.54743 | 33.68933 | 43.76046 |
Scaphiophryne marmorata | Anura | VU | Ground-dwelling | 25.028017 | 37.81178 | 33.18575 | 42.59576 |
Scaphiophryne marmorata | Anura | VU | Ground-dwelling | 24.122637 | 37.68470 | 33.03467 | 42.38292 |
Scaphiophryne marmorata | Anura | VU | Ground-dwelling | 26.483014 | 38.01599 | 33.20681 | 42.72623 |
Scaphiophryne gottlebei | Anura | EN | Fossorial | 25.961269 | 38.93133 | 33.96243 | 43.57662 |
Scaphiophryne gottlebei | Anura | EN | Fossorial | 24.978178 | 38.79379 | 33.90156 | 43.48533 |
Scaphiophryne gottlebei | Anura | EN | Fossorial | 27.647933 | 39.16729 | 34.31646 | 43.98988 |
Scaphiophryne spinosa | Anura | LC | Ground-dwelling | 25.557185 | 37.88746 | 32.69314 | 42.76077 |
Scaphiophryne spinosa | Anura | LC | Ground-dwelling | 24.656080 | 37.76084 | 32.80083 | 42.83935 |
Scaphiophryne spinosa | Anura | LC | Ground-dwelling | 27.032402 | 38.09475 | 32.93042 | 42.98093 |
Scaphiophryne calcarata | Anura | LC | Ground-dwelling | 26.328345 | 38.06251 | 33.39324 | 42.87398 |
Scaphiophryne calcarata | Anura | LC | Ground-dwelling | 25.482823 | 37.94525 | 33.40006 | 42.89549 |
Scaphiophryne calcarata | Anura | LC | Ground-dwelling | 27.854613 | 38.27418 | 33.65568 | 43.21892 |
Scaphiophryne brevis | Anura | LC | Ground-dwelling | 26.051362 | 37.99858 | 32.63091 | 42.68111 |
Scaphiophryne brevis | Anura | LC | Ground-dwelling | 25.162217 | 37.87417 | 32.50328 | 42.55579 |
Scaphiophryne brevis | Anura | LC | Ground-dwelling | 27.587748 | 38.21354 | 32.83679 | 42.89767 |
Anodonthyla boulengerii | Anura | NT | Arboreal | 25.658466 | 37.89918 | 32.77790 | 42.61978 |
Anodonthyla boulengerii | Anura | NT | Arboreal | 24.718607 | 37.76673 | 32.63618 | 42.47905 |
Anodonthyla boulengerii | Anura | NT | Arboreal | 27.190594 | 38.11509 | 32.70027 | 42.62247 |
Anodonthyla vallani | Anura | CR | Arboreal | 25.675466 | 37.81568 | 32.77717 | 42.09718 |
Anodonthyla vallani | Anura | CR | Arboreal | 24.907261 | 37.70882 | 32.73495 | 42.02546 |
Anodonthyla vallani | Anura | CR | Arboreal | 27.038275 | 38.00524 | 32.99450 | 42.36069 |
Anodonthyla hutchisoni | Anura | EN | Arboreal | 26.568402 | 37.94210 | 32.90727 | 43.06955 |
Anodonthyla hutchisoni | Anura | EN | Arboreal | 25.568278 | 37.80310 | 32.73922 | 42.91901 |
Anodonthyla hutchisoni | Anura | EN | Arboreal | 28.182329 | 38.16641 | 32.80832 | 42.97858 |
Anodonthyla moramora | Anura | EN | Arboreal | 25.602585 | 37.84769 | 32.53594 | 42.08481 |
Anodonthyla moramora | Anura | EN | Arboreal | 24.578700 | 37.70521 | 32.56417 | 42.13477 |
Anodonthyla moramora | Anura | EN | Arboreal | 27.455263 | 38.10549 | 32.78103 | 42.43716 |
Anodonthyla nigrigularis | Anura | EN | Arboreal | 25.470711 | 37.82805 | 33.04902 | 42.37221 |
Anodonthyla nigrigularis | Anura | EN | Arboreal | 24.638202 | 37.71267 | 32.95533 | 42.25133 |
Anodonthyla nigrigularis | Anura | EN | Arboreal | 26.815810 | 38.01446 | 33.20040 | 42.60344 |
Anodonthyla pollicaris | Anura | DD | Arboreal | 24.739076 | 37.72273 | 32.81324 | 42.41601 |
Anodonthyla pollicaris | Anura | DD | Arboreal | 23.834706 | 37.60006 | 32.79886 | 42.37653 |
Anodonthyla pollicaris | Anura | DD | Arboreal | 26.202108 | 37.92117 | 32.97410 | 42.58390 |
Anodonthyla theoi | Anura | CR | Arboreal | 26.349269 | 37.92988 | 32.71932 | 42.67179 |
Anodonthyla theoi | Anura | CR | Arboreal | 25.509637 | 37.81390 | 32.66975 | 42.51584 |
Anodonthyla theoi | Anura | CR | Arboreal | 27.846172 | 38.13665 | 32.76955 | 42.83566 |
Anodonthyla jeanbai | Anura | EN | Arboreal | 25.690591 | 37.81842 | 32.82898 | 42.81671 |
Anodonthyla jeanbai | Anura | EN | Arboreal | 24.820352 | 37.69815 | 32.68688 | 42.64550 |
Anodonthyla jeanbai | Anura | EN | Arboreal | 27.041343 | 38.00510 | 32.91038 | 42.99489 |
Anodonthyla emilei | Anura | EN | Arboreal | 25.602585 | 37.91350 | 33.09968 | 43.01049 |
Anodonthyla emilei | Anura | EN | Arboreal | 24.578700 | 37.77286 | 32.92948 | 42.77968 |
Anodonthyla emilei | Anura | EN | Arboreal | 27.455263 | 38.16800 | 33.40765 | 43.37592 |
Anodonthyla montana | Anura | VU | Arboreal | 26.085788 | 37.97572 | 32.82287 | 42.90701 |
Anodonthyla montana | Anura | VU | Arboreal | 25.201041 | 37.85161 | 32.67925 | 42.67701 |
Anodonthyla montana | Anura | VU | Arboreal | 27.693333 | 38.20123 | 32.79394 | 43.00172 |
Anodonthyla rouxae | Anura | EN | Arboreal | 25.810460 | 37.94735 | 33.10127 | 42.69858 |
Anodonthyla rouxae | Anura | EN | Arboreal | 24.974355 | 37.83122 | 33.00500 | 42.59565 |
Anodonthyla rouxae | Anura | EN | Arboreal | 27.228074 | 38.14427 | 33.34626 | 42.95864 |
Cophyla berara | Anura | EN | Arboreal | 26.714144 | 37.92307 | 32.93067 | 42.84417 |
Cophyla berara | Anura | EN | Arboreal | 26.022414 | 37.82709 | 32.88217 | 42.75099 |
Cophyla berara | Anura | EN | Arboreal | 27.874484 | 38.08406 | 32.64093 | 42.60894 |
Cophyla occultans | Anura | VU | Arboreal | 26.541039 | 37.87967 | 32.98022 | 42.72393 |
Cophyla occultans | Anura | VU | Arboreal | 25.503906 | 37.73423 | 32.78038 | 42.51697 |
Cophyla occultans | Anura | VU | Arboreal | 28.114216 | 38.10027 | 33.19433 | 43.02548 |
Cophyla phyllodactyla | Anura | LC | Arboreal | 26.619382 | 37.94876 | 33.59380 | 42.98117 |
Cophyla phyllodactyla | Anura | LC | Arboreal | 25.683947 | 37.81774 | 33.54482 | 42.84617 |
Cophyla phyllodactyla | Anura | LC | Arboreal | 28.188923 | 38.16859 | 33.81763 | 43.29101 |
Rhombophryne minuta | Anura | EN | Fossorial | 26.301993 | 39.00879 | 33.72340 | 43.80003 |
Rhombophryne minuta | Anura | EN | Fossorial | 25.109214 | 38.84324 | 33.62586 | 43.59515 |
Rhombophryne minuta | Anura | EN | Fossorial | 28.019582 | 39.24719 | 34.13325 | 44.40503 |
Plethodontohyla fonetana | Anura | EN | Ground-dwelling | 27.071073 | 38.09211 | 32.77314 | 42.94394 |
Plethodontohyla fonetana | Anura | EN | Ground-dwelling | 26.258359 | 37.97841 | 32.69367 | 42.88663 |
Plethodontohyla fonetana | Anura | EN | Ground-dwelling | 28.680915 | 38.31734 | 32.99667 | 43.26029 |
Plethodontohyla guentheri | Anura | EN | Ground-dwelling | 26.301993 | 38.11563 | 32.60152 | 43.01784 |
Plethodontohyla guentheri | Anura | EN | Ground-dwelling | 25.109214 | 37.94628 | 33.04851 | 43.51968 |
Plethodontohyla guentheri | Anura | EN | Ground-dwelling | 28.019582 | 38.35951 | 33.26382 | 43.65290 |
Plethodontohyla notosticta | Anura | LC | Arboreal | 25.871874 | 37.85620 | 33.30749 | 43.09327 |
Plethodontohyla notosticta | Anura | LC | Arboreal | 24.946376 | 37.72470 | 33.19524 | 42.98029 |
Plethodontohyla notosticta | Anura | LC | Arboreal | 27.406744 | 38.07428 | 33.49342 | 43.30605 |
Plethodontohyla bipunctata | Anura | LC | Fossorial | 25.509301 | 38.90900 | 33.74845 | 43.95007 |
Plethodontohyla bipunctata | Anura | LC | Fossorial | 24.606459 | 38.78573 | 33.63967 | 43.75129 |
Plethodontohyla bipunctata | Anura | LC | Fossorial | 26.986404 | 39.11068 | 34.87760 | 45.18836 |
Plethodontohyla tuberata | Anura | NT | Ground-dwelling | 25.356789 | 37.95016 | 32.82889 | 42.42762 |
Plethodontohyla tuberata | Anura | NT | Ground-dwelling | 24.450485 | 37.82301 | 32.75862 | 42.36655 |
Plethodontohyla tuberata | Anura | NT | Ground-dwelling | 26.927001 | 38.17044 | 33.09729 | 42.73612 |
Plethodontohyla brevipes | Anura | VU | Ground-dwelling | 25.798160 | 37.97226 | 33.24776 | 43.09428 |
Plethodontohyla brevipes | Anura | VU | Ground-dwelling | 24.840228 | 37.83756 | 33.07843 | 42.90996 |
Plethodontohyla brevipes | Anura | VU | Ground-dwelling | 27.496485 | 38.21107 | 33.42036 | 43.28474 |
Plethodontohyla ocellata | Anura | LC | Ground-dwelling | 25.651662 | 37.96308 | 33.23150 | 42.99673 |
Plethodontohyla ocellata | Anura | LC | Ground-dwelling | 24.703940 | 37.83056 | 33.16674 | 42.85048 |
Plethodontohyla ocellata | Anura | LC | Ground-dwelling | 27.173530 | 38.17590 | 33.26861 | 43.17346 |
Plethodontohyla inguinalis | Anura | LC | Arboreal | 25.765672 | 37.80314 | 33.28913 | 42.55068 |
Plethodontohyla inguinalis | Anura | LC | Arboreal | 24.803148 | 37.66645 | 33.11299 | 42.33478 |
Plethodontohyla inguinalis | Anura | LC | Arboreal | 27.304505 | 38.02168 | 33.50274 | 42.82252 |
Plethodontohyla mihanika | Anura | LC | Arboreal | 25.342373 | 37.82477 | 32.89586 | 42.77197 |
Plethodontohyla mihanika | Anura | LC | Arboreal | 24.428303 | 37.69904 | 33.07980 | 42.89296 |
Plethodontohyla mihanika | Anura | LC | Arboreal | 26.837615 | 38.03044 | 33.06336 | 42.87671 |
Rhombophryne laevipes | Anura | LC | Fossorial | 26.169486 | 39.08624 | 33.82003 | 43.76685 |
Rhombophryne laevipes | Anura | LC | Fossorial | 25.165856 | 38.94621 | 33.74914 | 43.68462 |
Rhombophryne laevipes | Anura | LC | Fossorial | 27.773655 | 39.31006 | 34.11874 | 44.08062 |
Rhombophryne coudreaui | Anura | NT | Fossorial | 26.332444 | 39.10100 | 34.15518 | 44.34158 |
Rhombophryne coudreaui | Anura | NT | Fossorial | 25.298873 | 38.95764 | 33.62736 | 43.79203 |
Rhombophryne coudreaui | Anura | NT | Fossorial | 27.920851 | 39.32132 | 33.72574 | 43.91976 |
Rhombophryne testudo | Anura | EN | Ground-dwelling | 27.320578 | 38.31411 | 33.05232 | 43.22577 |
Rhombophryne testudo | Anura | EN | Ground-dwelling | 26.205818 | 38.15854 | 32.92323 | 43.11102 |
Rhombophryne testudo | Anura | EN | Ground-dwelling | 29.049002 | 38.55531 | 33.37366 | 43.61949 |
Rhombophryne coronata | Anura | LC | Fossorial | 25.370303 | 38.88658 | 34.29151 | 44.01511 |
Rhombophryne coronata | Anura | LC | Fossorial | 24.441566 | 38.75893 | 34.20927 | 43.89531 |
Rhombophryne coronata | Anura | LC | Fossorial | 26.933446 | 39.10143 | 34.54425 | 44.31866 |
Rhombophryne serratopalpebrosa | Anura | EN | Ground-dwelling | 26.301993 | 38.09380 | 33.68599 | 43.68739 |
Rhombophryne serratopalpebrosa | Anura | EN | Ground-dwelling | 25.109214 | 37.92778 | 33.66663 | 43.63523 |
Rhombophryne serratopalpebrosa | Anura | EN | Ground-dwelling | 28.019582 | 38.33286 | 33.80809 | 43.85199 |
Rhombophryne guentherpetersi | Anura | EN | Ground-dwelling | 26.546214 | 38.13592 | 33.53367 | 43.17937 |
Rhombophryne guentherpetersi | Anura | EN | Ground-dwelling | 25.367540 | 37.96995 | 33.36945 | 43.01378 |
Rhombophryne guentherpetersi | Anura | EN | Ground-dwelling | 28.327551 | 38.38676 | 33.69182 | 43.47258 |
Rhombophryne mangabensis | Anura | VU | Fossorial | 26.937894 | 39.13615 | 33.99805 | 43.60427 |
Rhombophryne mangabensis | Anura | VU | Fossorial | 25.795704 | 38.97503 | 34.05030 | 43.57117 |
Rhombophryne mangabensis | Anura | VU | Fossorial | 28.688809 | 39.38313 | 34.14902 | 43.77950 |
Rhombophryne matavy | Anura | CR | Ground-dwelling | 26.423580 | 38.02638 | 32.91728 | 42.44943 |
Rhombophryne matavy | Anura | CR | Ground-dwelling | 25.872015 | 37.95035 | 32.84704 | 42.38667 |
Rhombophryne matavy | Anura | CR | Ground-dwelling | 27.617485 | 38.19096 | 33.41758 | 43.03316 |
Stumpffia analamaina | Anura | CR | Ground-dwelling | 27.023169 | 38.13434 | 31.95556 | 42.83250 |
Stumpffia analamaina | Anura | CR | Ground-dwelling | 25.803661 | 37.96364 | 31.83916 | 42.71027 |
Stumpffia analamaina | Anura | CR | Ground-dwelling | 28.941364 | 38.40284 | 32.47605 | 43.36528 |
Stumpffia be | Anura | EN | Ground-dwelling | 26.777976 | 38.08684 | 33.74425 | 43.31182 |
Stumpffia be | Anura | EN | Ground-dwelling | 25.898010 | 37.96334 | 33.43739 | 42.99011 |
Stumpffia be | Anura | EN | Ground-dwelling | 28.212146 | 38.28812 | 33.54853 | 43.17151 |
Stumpffia hara | Anura | CR | Ground-dwelling | 26.423580 | 38.09708 | 33.41001 | 42.90143 |
Stumpffia hara | Anura | CR | Ground-dwelling | 25.872015 | 38.02059 | 33.37742 | 42.85482 |
Stumpffia hara | Anura | CR | Ground-dwelling | 27.617485 | 38.26265 | 33.62409 | 43.13955 |
Stumpffia megsoni | Anura | DD | Ground-dwelling | 26.423580 | 38.04445 | 33.50908 | 43.50470 |
Stumpffia megsoni | Anura | DD | Ground-dwelling | 25.872015 | 37.96692 | 33.45021 | 43.40061 |
Stumpffia megsoni | Anura | DD | Ground-dwelling | 27.617485 | 38.21229 | 33.67976 | 43.65355 |
Stumpffia staffordi | Anura | VU | Ground-dwelling | 26.423580 | 38.02851 | 32.94688 | 42.45210 |
Stumpffia staffordi | Anura | VU | Ground-dwelling | 25.872015 | 37.95188 | 32.97888 | 42.47164 |
Stumpffia staffordi | Anura | VU | Ground-dwelling | 27.617485 | 38.19439 | 33.06983 | 42.58446 |
Stumpffia gimmeli | Anura | LC | Ground-dwelling | 26.652358 | 38.02288 | 33.06999 | 42.60712 |
Stumpffia gimmeli | Anura | LC | Ground-dwelling | 25.731684 | 37.89398 | 32.63144 | 42.11879 |
Stumpffia gimmeli | Anura | LC | Ground-dwelling | 28.229467 | 38.24369 | 33.48732 | 43.09473 |
Stumpffia psologlossa | Anura | EN | Ground-dwelling | 26.375246 | 37.92530 | 32.89268 | 42.51019 |
Stumpffia psologlossa | Anura | EN | Ground-dwelling | 25.218471 | 37.76332 | 32.75541 | 42.32751 |
Stumpffia psologlossa | Anura | EN | Ground-dwelling | 28.241907 | 38.18669 | 33.36849 | 43.12272 |
Stumpffia madagascariensis | Anura | EN | Ground-dwelling | 26.423580 | 38.03340 | 33.67745 | 43.30013 |
Stumpffia madagascariensis | Anura | EN | Ground-dwelling | 25.872015 | 37.95793 | 33.52365 | 43.10395 |
Stumpffia madagascariensis | Anura | EN | Ground-dwelling | 27.617485 | 38.19677 | 33.80957 | 43.47606 |
Stumpffia pygmaea | Anura | EN | Ground-dwelling | 27.320578 | 38.17818 | 33.48276 | 43.22540 |
Stumpffia pygmaea | Anura | EN | Ground-dwelling | 26.205818 | 38.02069 | 33.42265 | 43.17865 |
Stumpffia pygmaea | Anura | EN | Ground-dwelling | 29.049002 | 38.42238 | 33.73415 | 43.49668 |
Stumpffia grandis | Anura | LC | Ground-dwelling | 25.855883 | 37.98291 | 33.24968 | 43.18672 |
Stumpffia grandis | Anura | LC | Ground-dwelling | 24.880186 | 37.84764 | 33.15356 | 43.04499 |
Stumpffia grandis | Anura | LC | Ground-dwelling | 27.382080 | 38.19450 | 33.37232 | 43.36157 |
Stumpffia roseifemoralis | Anura | EN | Ground-dwelling | 26.301993 | 38.11824 | 33.44400 | 42.95782 |
Stumpffia roseifemoralis | Anura | EN | Ground-dwelling | 25.109214 | 37.95048 | 33.22347 | 42.81704 |
Stumpffia roseifemoralis | Anura | EN | Ground-dwelling | 28.019582 | 38.35980 | 33.71562 | 43.17552 |
Stumpffia tetradactyla | Anura | DD | Ground-dwelling | 26.081972 | 38.02829 | 33.08504 | 42.78639 |
Stumpffia tetradactyla | Anura | DD | Ground-dwelling | 25.057045 | 37.88273 | 32.44171 | 42.13632 |
Stumpffia tetradactyla | Anura | DD | Ground-dwelling | 27.636050 | 38.24900 | 33.38750 | 43.05121 |
Stumpffia miery | Anura | EN | Ground-dwelling | 25.602585 | 38.00264 | 33.24199 | 42.82898 |
Stumpffia miery | Anura | EN | Ground-dwelling | 24.578700 | 37.85757 | 33.26060 | 42.81189 |
Stumpffia miery | Anura | EN | Ground-dwelling | 27.455263 | 38.26513 | 33.55470 | 43.17714 |
Stumpffia tridactyla | Anura | DD | Ground-dwelling | 25.367684 | 37.91901 | 33.31217 | 43.34679 |
Stumpffia tridactyla | Anura | DD | Ground-dwelling | 24.399745 | 37.78271 | 33.17897 | 43.18138 |
Stumpffia tridactyla | Anura | DD | Ground-dwelling | 26.866285 | 38.13004 | 33.47261 | 43.52846 |
Madecassophryne truebae | Anura | EN | Ground-dwelling | 25.584456 | 37.96271 | 33.28637 | 42.57772 |
Madecassophryne truebae | Anura | EN | Ground-dwelling | 24.742056 | 37.84269 | 33.20344 | 42.48226 |
Madecassophryne truebae | Anura | EN | Ground-dwelling | 26.930508 | 38.15450 | 33.46783 | 42.78703 |
Melanobatrachus indicus | Anura | VU | Ground-dwelling | 27.680389 | 37.74442 | 32.84692 | 42.88794 |
Melanobatrachus indicus | Anura | VU | Ground-dwelling | 26.866634 | 37.63211 | 32.82322 | 42.78037 |
Melanobatrachus indicus | Anura | VU | Ground-dwelling | 29.236498 | 37.95919 | 33.01270 | 43.25385 |
Otophryne pyburni | Anura | LC | Ground-dwelling | 27.295143 | 37.57070 | 32.28850 | 42.05144 |
Otophryne pyburni | Anura | LC | Ground-dwelling | 26.643349 | 37.47923 | 32.01533 | 41.79841 |
Otophryne pyburni | Anura | LC | Ground-dwelling | 28.837654 | 37.78718 | 32.67691 | 42.48348 |
Otophryne robusta | Anura | LC | Ground-dwelling | 25.947155 | 37.43908 | 32.49014 | 42.24133 |
Otophryne robusta | Anura | LC | Ground-dwelling | 25.201586 | 37.33440 | 32.39358 | 42.09565 |
Otophryne robusta | Anura | LC | Ground-dwelling | 27.617498 | 37.67361 | 32.87203 | 42.64424 |
Otophryne steyermarki | Anura | LC | Ground-dwelling | 25.791139 | 37.41685 | 32.10937 | 42.12408 |
Otophryne steyermarki | Anura | LC | Ground-dwelling | 25.015182 | 37.30960 | 31.98250 | 41.89829 |
Otophryne steyermarki | Anura | LC | Ground-dwelling | 27.476298 | 37.64976 | 32.29489 | 42.34607 |
Synapturanus mirandaribeiroi | Anura | LC | Ground-dwelling | 27.657286 | 37.60582 | 32.76011 | 42.76695 |
Synapturanus mirandaribeiroi | Anura | LC | Ground-dwelling | 27.003674 | 37.51732 | 32.68357 | 42.66440 |
Synapturanus mirandaribeiroi | Anura | LC | Ground-dwelling | 29.177555 | 37.81167 | 33.00735 | 43.07004 |
Synapturanus salseri | Anura | LC | Ground-dwelling | 28.248516 | 37.74508 | 32.93779 | 43.02203 |
Synapturanus salseri | Anura | LC | Ground-dwelling | 27.559392 | 37.64890 | 32.91357 | 42.98053 |
Synapturanus salseri | Anura | LC | Ground-dwelling | 29.794448 | 37.96085 | 33.12033 | 43.22086 |
Synapturanus rabus | Anura | LC | Fossorial | 27.474790 | 38.60902 | 33.79165 | 43.41901 |
Synapturanus rabus | Anura | LC | Fossorial | 26.722904 | 38.50452 | 33.58291 | 43.28177 |
Synapturanus rabus | Anura | LC | Fossorial | 28.956333 | 38.81493 | 34.00745 | 43.68944 |
Kalophrynus baluensis | Anura | LC | Ground-dwelling | 26.801121 | 36.88092 | 33.24667 | 41.07096 |
Kalophrynus baluensis | Anura | LC | Ground-dwelling | 26.209815 | 36.79860 | 33.19304 | 40.99019 |
Kalophrynus baluensis | Anura | LC | Ground-dwelling | 27.867897 | 37.02942 | 33.41736 | 41.27381 |
Kalophrynus intermedius | Anura | LC | Ground-dwelling | 28.200580 | 37.12748 | 32.98459 | 41.10313 |
Kalophrynus intermedius | Anura | LC | Ground-dwelling | 27.565113 | 37.03664 | 32.92247 | 40.99797 |
Kalophrynus intermedius | Anura | LC | Ground-dwelling | 29.566394 | 37.32272 | 32.94083 | 41.19044 |
Kalophrynus subterrestris | Anura | LC | Ground-dwelling | 27.861912 | 37.03537 | 32.94196 | 40.99816 |
Kalophrynus subterrestris | Anura | LC | Ground-dwelling | 27.273012 | 36.95280 | 32.93276 | 40.94138 |
Kalophrynus subterrestris | Anura | LC | Ground-dwelling | 29.157170 | 37.21697 | 32.91718 | 41.03774 |
Kalophrynus heterochirus | Anura | LC | Ground-dwelling | 27.784330 | 37.07006 | 33.00657 | 40.87034 |
Kalophrynus heterochirus | Anura | LC | Ground-dwelling | 27.169758 | 36.98228 | 32.98129 | 40.76561 |
Kalophrynus heterochirus | Anura | LC | Ground-dwelling | 29.078023 | 37.25484 | 33.45863 | 41.40480 |
Kalophrynus palmatissimus | Anura | EN | Ground-dwelling | 27.998586 | 37.01703 | 33.55146 | 40.54355 |
Kalophrynus palmatissimus | Anura | EN | Ground-dwelling | 27.358417 | 36.92576 | 33.42114 | 40.37710 |
Kalophrynus palmatissimus | Anura | EN | Ground-dwelling | 29.303096 | 37.20303 | 33.65088 | 40.79691 |
Kalophrynus bunguranus | Anura | DD | Ground-dwelling | 27.443786 | 37.13251 | 32.81515 | 41.42630 |
Kalophrynus bunguranus | Anura | DD | Ground-dwelling | 26.999324 | 37.06910 | 32.73533 | 41.32150 |
Kalophrynus bunguranus | Anura | DD | Ground-dwelling | 28.214218 | 37.24242 | 32.96208 | 41.60796 |
Kalophrynus orangensis | Anura | LC | Ground-dwelling | 27.022195 | 37.04630 | 32.91794 | 41.23501 |
Kalophrynus orangensis | Anura | LC | Ground-dwelling | 26.326408 | 36.94829 | 32.81461 | 41.06029 |
Kalophrynus orangensis | Anura | LC | Ground-dwelling | 28.536450 | 37.25960 | 32.93966 | 41.39491 |
Kalophrynus nubicola | Anura | LC | Ground-dwelling | 27.002711 | 36.98726 | 32.78010 | 40.92170 |
Kalophrynus nubicola | Anura | LC | Ground-dwelling | 26.369992 | 36.89843 | 32.69659 | 40.80240 |
Kalophrynus nubicola | Anura | LC | Ground-dwelling | 28.309782 | 37.17077 | 32.97169 | 41.13615 |
Kalophrynus eok | Anura | DD | Ground-dwelling | 25.985565 | 36.88393 | 32.39029 | 40.89636 |
Kalophrynus eok | Anura | DD | Ground-dwelling | 25.023238 | 36.74643 | 32.31347 | 40.76518 |
Kalophrynus eok | Anura | DD | Ground-dwelling | 27.465236 | 37.09534 | 32.62661 | 41.23121 |
Kalophrynus interlineatus | Anura | LC | Ground-dwelling | 27.249138 | 37.01718 | 32.89312 | 41.17046 |
Kalophrynus interlineatus | Anura | LC | Ground-dwelling | 26.326594 | 36.88631 | 32.80048 | 41.02973 |
Kalophrynus interlineatus | Anura | LC | Ground-dwelling | 29.046410 | 37.27213 | 33.04449 | 41.38126 |
Kalophrynus punctatus | Anura | LC | Ground-dwelling | 27.584128 | 37.06061 | 33.10403 | 41.17073 |
Kalophrynus punctatus | Anura | LC | Ground-dwelling | 27.097125 | 36.99256 | 33.07265 | 41.09652 |
Kalophrynus punctatus | Anura | LC | Ground-dwelling | 28.604418 | 37.20317 | 33.17724 | 41.28479 |
Kalophrynus minusculus | Anura | LC | Ground-dwelling | 28.022415 | 37.24921 | 33.01643 | 41.68166 |
Kalophrynus minusculus | Anura | LC | Ground-dwelling | 27.409670 | 37.16167 | 32.91890 | 41.56979 |
Kalophrynus minusculus | Anura | LC | Ground-dwelling | 29.353663 | 37.43939 | 33.13597 | 41.83561 |
Kalophrynus robinsoni | Anura | DD | Ground-dwelling | 28.376697 | 37.28568 | 33.26255 | 41.79977 |
Kalophrynus robinsoni | Anura | DD | Ground-dwelling | 27.761115 | 37.19776 | 33.22634 | 41.70243 |
Kalophrynus robinsoni | Anura | DD | Ground-dwelling | 29.657551 | 37.46863 | 33.39343 | 42.04561 |
Kalophrynus pleurostigma | Anura | LC | Ground-dwelling | 28.189902 | 37.35208 | 32.74556 | 41.91955 |
Kalophrynus pleurostigma | Anura | LC | Ground-dwelling | 27.574238 | 37.26579 | 32.69030 | 41.84115 |
Kalophrynus pleurostigma | Anura | LC | Ground-dwelling | 29.546347 | 37.54220 | 32.92554 | 42.14208 |
Choerophryne allisoni | Anura | DD | Ground-dwelling | 27.414332 | 35.39147 | 30.91641 | 39.49095 |
Choerophryne allisoni | Anura | DD | Ground-dwelling | 26.588272 | 35.27206 | 30.81976 | 39.38064 |
Choerophryne allisoni | Anura | DD | Ground-dwelling | 29.236805 | 35.65492 | 31.03590 | 39.60555 |
Choerophryne burtoni | Anura | LC | Ground-dwelling | 26.422582 | 35.30416 | 31.06344 | 39.28283 |
Choerophryne burtoni | Anura | LC | Ground-dwelling | 25.544047 | 35.17891 | 31.00302 | 39.20410 |
Choerophryne burtoni | Anura | LC | Ground-dwelling | 27.978208 | 35.52593 | 31.28611 | 39.60314 |
Choerophryne longirostris | Anura | NT | Ground-dwelling | 26.509275 | 35.40794 | 31.24956 | 39.82543 |
Choerophryne longirostris | Anura | NT | Ground-dwelling | 25.870527 | 35.31358 | 31.15987 | 39.75686 |
Choerophryne longirostris | Anura | NT | Ground-dwelling | 27.662209 | 35.57825 | 31.30751 | 39.95959 |
Choerophryne proboscidea | Anura | LC | Ground-dwelling | 26.706228 | 35.29617 | 30.92440 | 39.23835 |
Choerophryne proboscidea | Anura | LC | Ground-dwelling | 25.836666 | 35.17088 | 30.90784 | 39.08257 |
Choerophryne proboscidea | Anura | LC | Ground-dwelling | 27.871244 | 35.46401 | 30.99197 | 39.39840 |
Choerophryne rostellifer | Anura | LC | Ground-dwelling | 26.992490 | 35.49726 | 30.93861 | 39.84308 |
Choerophryne rostellifer | Anura | LC | Ground-dwelling | 26.152653 | 35.37474 | 30.87373 | 39.67838 |
Choerophryne rostellifer | Anura | LC | Ground-dwelling | 28.185266 | 35.67127 | 31.34940 | 40.31164 |
Aphantophryne minuta | Anura | LC | Ground-dwelling | 26.640378 | 35.31386 | 31.16880 | 39.56615 |
Aphantophryne minuta | Anura | LC | Ground-dwelling | 25.627491 | 35.16690 | 31.00603 | 39.41040 |
Aphantophryne minuta | Anura | LC | Ground-dwelling | 28.501219 | 35.58386 | 31.43189 | 39.92890 |
Aphantophryne sabini | Anura | LC | Ground-dwelling | 27.777034 | 35.47461 | 30.93056 | 39.40712 |
Aphantophryne sabini | Anura | LC | Ground-dwelling | 26.851879 | 35.34132 | 30.78810 | 39.26317 |
Aphantophryne sabini | Anura | LC | Ground-dwelling | 29.482554 | 35.72034 | 31.14828 | 39.68713 |
Aphantophryne pansa | Anura | LC | Ground-dwelling | 26.164562 | 35.25851 | 30.97480 | 40.00483 |
Aphantophryne pansa | Anura | LC | Ground-dwelling | 25.259796 | 35.12542 | 30.92217 | 39.89933 |
Aphantophryne pansa | Anura | LC | Ground-dwelling | 27.542938 | 35.46126 | 30.96186 | 40.07534 |
Asterophrys leucopus | Anura | LC | Ground-dwelling | 27.111446 | 35.43247 | 31.27755 | 39.37906 |
Asterophrys leucopus | Anura | LC | Ground-dwelling | 26.333032 | 35.32060 | 31.25521 | 39.38131 |
Asterophrys leucopus | Anura | LC | Ground-dwelling | 28.586995 | 35.64453 | 31.52105 | 39.68270 |
Asterophrys turpicola | Anura | LC | Ground-dwelling | 27.073855 | 35.47329 | 31.10115 | 39.32374 |
Asterophrys turpicola | Anura | LC | Ground-dwelling | 26.407478 | 35.37599 | 31.08396 | 39.27089 |
Asterophrys turpicola | Anura | LC | Ground-dwelling | 28.398325 | 35.66668 | 31.33527 | 39.57407 |
Xenorhina adisca | Anura | DD | Ground-dwelling | 27.040369 | 35.37559 | 31.27467 | 39.49464 |
Xenorhina adisca | Anura | DD | Ground-dwelling | 26.325143 | 35.27384 | 30.93365 | 39.09479 |
Xenorhina adisca | Anura | DD | Ground-dwelling | 28.318539 | 35.55744 | 31.36735 | 39.69824 |
Xenorhina anorbis | Anura | DD | Ground-dwelling | 26.052448 | 35.22036 | 31.12004 | 39.13133 |
Xenorhina anorbis | Anura | DD | Ground-dwelling | 25.360335 | 35.12262 | 31.14390 | 39.16344 |
Xenorhina anorbis | Anura | DD | Ground-dwelling | 27.583350 | 35.43655 | 31.28639 | 39.40277 |
Xenorhina arboricola | Anura | LC | Arboreal | 26.848660 | 35.20262 | 30.92484 | 39.14653 |
Xenorhina arboricola | Anura | LC | Arboreal | 26.128618 | 35.09858 | 30.98980 | 39.17443 |
Xenorhina arboricola | Anura | LC | Arboreal | 28.024168 | 35.37247 | 31.05724 | 39.36310 |
Xenorhina arfakiana | Anura | LC | Ground-dwelling | 27.603582 | 35.62528 | 31.93349 | 40.57968 |
Xenorhina arfakiana | Anura | LC | Ground-dwelling | 26.950469 | 35.52927 | 31.88407 | 40.51197 |
Xenorhina arfakiana | Anura | LC | Ground-dwelling | 28.802742 | 35.80155 | 32.05196 | 40.78766 |
Xenorhina bidens | Anura | LC | Ground-dwelling | 27.544936 | 35.51492 | 31.14995 | 39.52561 |
Xenorhina bidens | Anura | LC | Ground-dwelling | 26.786438 | 35.40545 | 31.05940 | 39.39187 |
Xenorhina bidens | Anura | LC | Ground-dwelling | 29.159443 | 35.74793 | 31.35918 | 39.82390 |
Xenorhina bouwensi | Anura | LC | Ground-dwelling | 26.913759 | 35.35768 | 31.24395 | 39.38487 |
Xenorhina bouwensi | Anura | LC | Ground-dwelling | 26.220961 | 35.25711 | 31.14745 | 39.23438 |
Xenorhina bouwensi | Anura | LC | Ground-dwelling | 28.199347 | 35.54430 | 31.31454 | 39.56807 |
Xenorhina eiponis | Anura | DD | Ground-dwelling | 25.363952 | 35.10678 | 31.10105 | 39.32685 |
Xenorhina eiponis | Anura | DD | Ground-dwelling | 24.632364 | 34.99903 | 31.02970 | 39.21887 |
Xenorhina eiponis | Anura | DD | Ground-dwelling | 26.831311 | 35.32290 | 31.04830 | 39.31097 |
Xenorhina fuscigula | Anura | LC | Fossorial | 26.040089 | 36.21213 | 31.86168 | 40.46438 |
Xenorhina fuscigula | Anura | LC | Fossorial | 25.096472 | 36.07666 | 31.78288 | 40.35155 |
Xenorhina fuscigula | Anura | LC | Fossorial | 27.361400 | 36.40183 | 31.98890 | 40.65094 |
Xenorhina gigantea | Anura | DD | Ground-dwelling | 25.980655 | 35.19470 | 31.02120 | 39.29616 |
Xenorhina gigantea | Anura | DD | Ground-dwelling | 25.299772 | 35.09762 | 30.97076 | 39.16258 |
Xenorhina gigantea | Anura | DD | Ground-dwelling | 27.417968 | 35.39962 | 31.10942 | 39.47318 |
Xenorhina huon | Anura | DD | Ground-dwelling | 26.147605 | 35.17696 | 30.87354 | 38.81310 |
Xenorhina huon | Anura | DD | Ground-dwelling | 25.217439 | 35.04245 | 30.83187 | 38.74929 |
Xenorhina huon | Anura | DD | Ground-dwelling | 27.388036 | 35.35634 | 31.05505 | 39.07097 |
Xenorhina lanthanites | Anura | DD | Ground-dwelling | 26.229018 | 35.16530 | 30.95887 | 39.21073 |
Xenorhina lanthanites | Anura | DD | Ground-dwelling | 25.905818 | 35.11886 | 30.90448 | 39.18623 |
Xenorhina lanthanites | Anura | DD | Ground-dwelling | 26.983440 | 35.27368 | 31.10975 | 39.37173 |
Xenorhina macrodisca | Anura | DD | Ground-dwelling | 23.777654 | 34.96089 | 30.87586 | 39.20242 |
Xenorhina macrodisca | Anura | DD | Ground-dwelling | 22.879292 | 34.83039 | 30.58226 | 38.83017 |
Xenorhina macrodisca | Anura | DD | Ground-dwelling | 25.403142 | 35.19701 | 31.20321 | 39.57048 |
Xenorhina macrops | Anura | LC | Ground-dwelling | 26.330316 | 35.27651 | 31.13758 | 39.35437 |
Xenorhina macrops | Anura | LC | Ground-dwelling | 25.659065 | 35.18157 | 31.11219 | 39.27030 |
Xenorhina macrops | Anura | LC | Ground-dwelling | 27.635672 | 35.46115 | 31.18793 | 39.45710 |
Xenorhina mehelyi | Anura | LC | Ground-dwelling | 26.547565 | 35.36692 | 31.40154 | 39.25232 |
Xenorhina mehelyi | Anura | LC | Ground-dwelling | 25.677572 | 35.24114 | 31.30322 | 39.14297 |
Xenorhina mehelyi | Anura | LC | Ground-dwelling | 28.044019 | 35.58328 | 31.69173 | 39.66486 |
Xenorhina minima | Anura | LC | Ground-dwelling | 26.245583 | 35.23630 | 31.06720 | 39.41161 |
Xenorhina minima | Anura | LC | Ground-dwelling | 25.556114 | 35.13792 | 31.02501 | 39.33159 |
Xenorhina minima | Anura | LC | Ground-dwelling | 27.643111 | 35.43572 | 31.44444 | 39.87428 |
Xenorhina multisica | Anura | LC | Ground-dwelling | 24.602473 | 34.98516 | 31.11722 | 39.00949 |
Xenorhina multisica | Anura | LC | Ground-dwelling | 23.812938 | 34.87258 | 30.87762 | 38.73066 |
Xenorhina multisica | Anura | LC | Ground-dwelling | 26.113770 | 35.20065 | 31.24522 | 39.15060 |
Xenorhina obesa | Anura | LC | Ground-dwelling | 26.763112 | 35.36589 | 30.94373 | 39.33429 |
Xenorhina obesa | Anura | LC | Ground-dwelling | 25.938253 | 35.24628 | 30.87103 | 39.20875 |
Xenorhina obesa | Anura | LC | Ground-dwelling | 27.980928 | 35.54247 | 31.10543 | 39.58726 |
Xenorhina ocellata | Anura | LC | Ground-dwelling | 26.214531 | 35.33682 | 31.34770 | 39.43482 |
Xenorhina ocellata | Anura | LC | Ground-dwelling | 25.537436 | 35.23641 | 31.23491 | 39.30595 |
Xenorhina ocellata | Anura | LC | Ground-dwelling | 27.543608 | 35.53391 | 31.53521 | 39.70130 |
Xenorhina ophiodon | Anura | DD | Ground-dwelling | 27.691081 | 35.46180 | 31.21952 | 39.83329 |
Xenorhina ophiodon | Anura | DD | Ground-dwelling | 27.058861 | 35.37061 | 31.30478 | 39.90818 |
Xenorhina ophiodon | Anura | DD | Ground-dwelling | 28.831284 | 35.62626 | 31.49641 | 40.10045 |
Xenorhina oxycephala | Anura | LC | Ground-dwelling | 26.935683 | 35.41356 | 31.02638 | 39.27457 |
Xenorhina oxycephala | Anura | LC | Ground-dwelling | 26.251103 | 35.31282 | 30.95261 | 39.16790 |
Xenorhina oxycephala | Anura | LC | Ground-dwelling | 28.110720 | 35.58648 | 31.45529 | 39.78167 |
Xenorhina parkerorum | Anura | LC | Ground-dwelling | 26.357511 | 35.26958 | 31.45033 | 39.57419 |
Xenorhina parkerorum | Anura | LC | Ground-dwelling | 25.593818 | 35.16090 | 31.13520 | 39.25143 |
Xenorhina parkerorum | Anura | LC | Ground-dwelling | 27.964069 | 35.49820 | 31.52182 | 39.69636 |
Xenorhina rostrata | Anura | LC | Ground-dwelling | 26.676998 | 35.31675 | 31.38074 | 39.28002 |
Xenorhina rostrata | Anura | LC | Ground-dwelling | 25.846611 | 35.19743 | 31.27312 | 39.08594 |
Xenorhina rostrata | Anura | LC | Ground-dwelling | 27.912483 | 35.49428 | 31.47671 | 39.47191 |
Xenorhina scheepstrai | Anura | DD | Ground-dwelling | 26.125432 | 35.26118 | 30.81471 | 39.45573 |
Xenorhina scheepstrai | Anura | DD | Ground-dwelling | 25.451791 | 35.16373 | 30.54904 | 39.13712 |
Xenorhina scheepstrai | Anura | DD | Ground-dwelling | 27.548851 | 35.46710 | 31.02463 | 39.72997 |
Xenorhina schiefenhoeveli | Anura | LC | Ground-dwelling | 25.363952 | 35.23230 | 31.16134 | 39.56556 |
Xenorhina schiefenhoeveli | Anura | LC | Ground-dwelling | 24.632364 | 35.12615 | 31.04351 | 39.45683 |
Xenorhina schiefenhoeveli | Anura | LC | Ground-dwelling | 26.831311 | 35.44521 | 31.44166 | 39.85140 |
Xenorhina similis | Anura | LC | Ground-dwelling | 26.914237 | 35.40689 | 31.23329 | 39.47565 |
Xenorhina similis | Anura | LC | Ground-dwelling | 26.262769 | 35.31062 | 31.37610 | 39.61715 |
Xenorhina similis | Anura | LC | Ground-dwelling | 28.453821 | 35.63438 | 31.42124 | 39.68399 |
Xenorhina subcrocea | Anura | DD | Ground-dwelling | 26.741891 | 35.20342 | 31.03163 | 39.17336 |
Xenorhina subcrocea | Anura | DD | Ground-dwelling | 25.723890 | 35.05817 | 30.92428 | 38.98804 |
Xenorhina subcrocea | Anura | DD | Ground-dwelling | 28.017132 | 35.38537 | 31.28669 | 39.44844 |
Xenorhina tumulus | Anura | LC | Fossorial | 26.625927 | 36.35169 | 31.92761 | 40.56755 |
Xenorhina tumulus | Anura | LC | Fossorial | 25.766730 | 36.22735 | 31.85607 | 40.49928 |
Xenorhina tumulus | Anura | LC | Fossorial | 27.893214 | 36.53507 | 32.12396 | 40.77527 |
Xenorhina varia | Anura | DD | Ground-dwelling | 26.229018 | 35.33573 | 31.58473 | 40.26578 |
Xenorhina varia | Anura | DD | Ground-dwelling | 25.905818 | 35.28915 | 31.53052 | 40.18607 |
Xenorhina varia | Anura | DD | Ground-dwelling | 26.983440 | 35.44446 | 31.47206 | 40.24360 |
Xenorhina zweifeli | Anura | LC | Ground-dwelling | 27.394496 | 35.42436 | 31.45920 | 39.84483 |
Xenorhina zweifeli | Anura | LC | Ground-dwelling | 26.605255 | 35.31104 | 31.26485 | 39.56206 |
Xenorhina zweifeli | Anura | LC | Ground-dwelling | 28.613086 | 35.59933 | 31.49974 | 39.93683 |
Austrochaperina adamantina | Anura | NT | Ground-dwelling | 26.509275 | 35.33494 | 31.13516 | 39.33185 |
Austrochaperina adamantina | Anura | NT | Ground-dwelling | 25.870527 | 35.24306 | 31.04401 | 39.22700 |
Austrochaperina adamantina | Anura | NT | Ground-dwelling | 27.662209 | 35.50078 | 31.31517 | 39.55648 |
Austrochaperina adelphe | Anura | LC | Ground-dwelling | 28.261634 | 35.54253 | 31.29877 | 39.55192 |
Austrochaperina adelphe | Anura | LC | Ground-dwelling | 27.377443 | 35.41480 | 31.17405 | 39.41766 |
Austrochaperina adelphe | Anura | LC | Ground-dwelling | 29.977912 | 35.79045 | 31.53278 | 39.85922 |
Austrochaperina aquilonia | Anura | NT | Ground-dwelling | 26.509275 | 35.39452 | 30.85249 | 39.47671 |
Austrochaperina aquilonia | Anura | NT | Ground-dwelling | 25.870527 | 35.30129 | 30.84025 | 39.39857 |
Austrochaperina aquilonia | Anura | NT | Ground-dwelling | 27.662209 | 35.56281 | 31.03326 | 39.75343 |
Austrochaperina archboldi | Anura | DD | Ground-dwelling | 27.336178 | 35.46603 | 31.10156 | 39.23456 |
Austrochaperina archboldi | Anura | DD | Ground-dwelling | 26.230340 | 35.30724 | 30.92591 | 39.04904 |
Austrochaperina archboldi | Anura | DD | Ground-dwelling | 28.646228 | 35.65415 | 31.43753 | 39.67765 |
Austrochaperina basipalmata | Anura | LC | Stream-dwelling | 26.576100 | 34.77408 | 30.87809 | 39.26869 |
Austrochaperina basipalmata | Anura | LC | Stream-dwelling | 25.927430 | 34.67951 | 30.76108 | 39.10808 |
Austrochaperina basipalmata | Anura | LC | Stream-dwelling | 27.696746 | 34.93747 | 30.82068 | 39.25796 |
Austrochaperina blumi | Anura | LC | Ground-dwelling | 25.363952 | 35.20925 | 31.01600 | 39.34489 |
Austrochaperina blumi | Anura | LC | Ground-dwelling | 24.632364 | 35.10487 | 30.89609 | 39.19720 |
Austrochaperina blumi | Anura | LC | Ground-dwelling | 26.831311 | 35.41861 | 31.10448 | 39.58616 |
Austrochaperina brevipes | Anura | DD | Ground-dwelling | 26.640378 | 35.41711 | 31.25887 | 39.99892 |
Austrochaperina brevipes | Anura | DD | Ground-dwelling | 25.627491 | 35.27101 | 31.15547 | 39.87565 |
Austrochaperina brevipes | Anura | DD | Ground-dwelling | 28.501219 | 35.68551 | 31.24423 | 40.13115 |
Austrochaperina derongo | Anura | LC | Ground-dwelling | 26.344015 | 35.13474 | 30.42879 | 39.23654 |
Austrochaperina derongo | Anura | LC | Ground-dwelling | 25.603859 | 35.02923 | 30.37265 | 39.18536 |
Austrochaperina derongo | Anura | LC | Ground-dwelling | 27.803029 | 35.34274 | 30.52868 | 39.42636 |
Austrochaperina fryi | Anura | LC | Ground-dwelling | 26.307461 | 35.30429 | 31.25587 | 39.50948 |
Austrochaperina fryi | Anura | LC | Ground-dwelling | 25.172109 | 35.14023 | 31.04199 | 39.26241 |
Austrochaperina fryi | Anura | LC | Ground-dwelling | 28.384483 | 35.60442 | 31.48415 | 39.86209 |
Austrochaperina gracilipes | Anura | LC | Ground-dwelling | 27.577874 | 35.44446 | 30.83183 | 39.52000 |
Austrochaperina gracilipes | Anura | LC | Ground-dwelling | 26.767598 | 35.32791 | 30.70984 | 39.37384 |
Austrochaperina gracilipes | Anura | LC | Ground-dwelling | 29.331306 | 35.69666 | 31.09581 | 39.85065 |
Austrochaperina hooglandi | Anura | LC | Ground-dwelling | 27.012638 | 35.43066 | 31.12308 | 39.67717 |
Austrochaperina hooglandi | Anura | LC | Ground-dwelling | 25.952951 | 35.27830 | 31.12418 | 39.61386 |
Austrochaperina hooglandi | Anura | LC | Ground-dwelling | 28.236402 | 35.60660 | 31.39915 | 39.95537 |
Austrochaperina kosarek | Anura | DD | Ground-dwelling | 26.125432 | 35.28360 | 31.55196 | 39.78717 |
Austrochaperina kosarek | Anura | DD | Ground-dwelling | 25.451791 | 35.18706 | 31.32715 | 39.52964 |
Austrochaperina kosarek | Anura | DD | Ground-dwelling | 27.548851 | 35.48759 | 31.86523 | 40.11251 |
Austrochaperina macrorhyncha | Anura | LC | Stream-dwelling | 26.661617 | 34.67749 | 29.89944 | 38.36979 |
Austrochaperina macrorhyncha | Anura | LC | Stream-dwelling | 26.026861 | 34.58622 | 29.85050 | 38.30962 |
Austrochaperina macrorhyncha | Anura | LC | Stream-dwelling | 27.922017 | 34.85874 | 30.25828 | 38.67847 |
Austrochaperina mehelyi | Anura | LC | Ground-dwelling | 26.444758 | 35.26000 | 31.23660 | 39.33108 |
Austrochaperina mehelyi | Anura | LC | Ground-dwelling | 25.440192 | 35.11574 | 31.33817 | 39.33993 |
Austrochaperina mehelyi | Anura | LC | Ground-dwelling | 27.672605 | 35.43631 | 31.46249 | 39.57017 |
Austrochaperina minutissima | Anura | DD | Ground-dwelling | 27.845401 | 35.59803 | 31.56635 | 39.83317 |
Austrochaperina minutissima | Anura | DD | Ground-dwelling | 27.169969 | 35.49905 | 31.36621 | 39.59801 |
Austrochaperina minutissima | Anura | DD | Ground-dwelling | 29.078135 | 35.77867 | 31.80544 | 40.13900 |
Austrochaperina novaebritanniae | Anura | VU | Ground-dwelling | 27.986561 | 35.50757 | 31.29525 | 39.66931 |
Austrochaperina novaebritanniae | Anura | VU | Ground-dwelling | 27.327108 | 35.41214 | 31.20455 | 39.56505 |
Austrochaperina novaebritanniae | Anura | VU | Ground-dwelling | 29.079477 | 35.66573 | 31.36616 | 39.76395 |
Austrochaperina palmipes | Anura | LC | Stream-dwelling | 26.973782 | 34.71546 | 30.63232 | 39.55467 |
Austrochaperina palmipes | Anura | LC | Stream-dwelling | 26.198077 | 34.60394 | 30.52087 | 39.44602 |
Austrochaperina palmipes | Anura | LC | Stream-dwelling | 28.335850 | 34.91128 | 30.81159 | 39.81488 |
Austrochaperina parkeri | Anura | DD | Ground-dwelling | 26.912160 | 35.40185 | 31.44289 | 39.99249 |
Austrochaperina parkeri | Anura | DD | Ground-dwelling | 25.976728 | 35.26523 | 31.18893 | 39.63536 |
Austrochaperina parkeri | Anura | DD | Ground-dwelling | 28.347255 | 35.61144 | 31.61308 | 40.23287 |
Austrochaperina pluvialis | Anura | LC | Ground-dwelling | 25.879276 | 35.22084 | 31.02653 | 39.41488 |
Austrochaperina pluvialis | Anura | LC | Ground-dwelling | 24.864983 | 35.07365 | 30.98588 | 39.32423 |
Austrochaperina pluvialis | Anura | LC | Ground-dwelling | 27.725747 | 35.48878 | 31.20352 | 39.67639 |
Austrochaperina polysticta | Anura | DD | Ground-dwelling | 26.147605 | 35.19059 | 31.13167 | 39.39117 |
Austrochaperina polysticta | Anura | DD | Ground-dwelling | 25.217439 | 35.05592 | 31.06021 | 39.26919 |
Austrochaperina polysticta | Anura | DD | Ground-dwelling | 27.388036 | 35.37017 | 31.25008 | 39.64146 |
Austrochaperina rivularis | Anura | LC | Semi-aquatic | 27.202656 | 35.68143 | 31.20413 | 39.77703 |
Austrochaperina rivularis | Anura | LC | Semi-aquatic | 26.450502 | 35.57079 | 31.12023 | 39.64509 |
Austrochaperina rivularis | Anura | LC | Semi-aquatic | 28.716475 | 35.90412 | 31.46248 | 40.09160 |
Austrochaperina robusta | Anura | LC | Ground-dwelling | 25.185191 | 35.04913 | 31.06418 | 38.85697 |
Austrochaperina robusta | Anura | LC | Ground-dwelling | 24.174823 | 34.90705 | 30.86089 | 38.61031 |
Austrochaperina robusta | Anura | LC | Ground-dwelling | 26.996457 | 35.30384 | 31.23078 | 39.17031 |
Austrochaperina septentrionalis | Anura | LC | Ground-dwelling | 26.334787 | 35.33444 | 30.81801 | 39.13233 |
Austrochaperina septentrionalis | Anura | LC | Ground-dwelling | 25.727820 | 35.24786 | 30.76790 | 39.06981 |
Austrochaperina septentrionalis | Anura | LC | Ground-dwelling | 27.356221 | 35.48014 | 30.90529 | 39.25883 |
Austrochaperina yelaensis | Anura | LC | Ground-dwelling | 27.383830 | 35.55542 | 31.27475 | 39.65883 |
Austrochaperina yelaensis | Anura | LC | Ground-dwelling | 26.980179 | 35.49680 | 31.24288 | 39.59725 |
Austrochaperina yelaensis | Anura | LC | Ground-dwelling | 28.297311 | 35.68808 | 31.41397 | 39.80452 |
Barygenys atra | Anura | LC | Ground-dwelling | 26.939898 | 35.37923 | 31.79251 | 40.04253 |
Barygenys atra | Anura | LC | Ground-dwelling | 26.089113 | 35.25806 | 31.59933 | 39.83494 |
Barygenys atra | Anura | LC | Ground-dwelling | 28.481419 | 35.59878 | 31.80517 | 40.13895 |
Barygenys cheesmanae | Anura | DD | Ground-dwelling | 25.503722 | 35.18301 | 30.92674 | 39.17910 |
Barygenys cheesmanae | Anura | DD | Ground-dwelling | 24.403102 | 35.02203 | 30.62242 | 38.91282 |
Barygenys cheesmanae | Anura | DD | Ground-dwelling | 27.519884 | 35.47792 | 31.22762 | 39.52866 |
Barygenys exsul | Anura | LC | Ground-dwelling | 27.383830 | 35.44940 | 31.33301 | 39.33889 |
Barygenys exsul | Anura | LC | Ground-dwelling | 26.980179 | 35.38965 | 31.29142 | 39.26324 |
Barygenys exsul | Anura | LC | Ground-dwelling | 28.297311 | 35.58461 | 31.42489 | 39.53317 |
Barygenys flavigularis | Anura | DD | Ground-dwelling | 27.114008 | 35.44612 | 31.16385 | 40.07458 |
Barygenys flavigularis | Anura | DD | Ground-dwelling | 25.920481 | 35.27408 | 30.93592 | 39.81702 |
Barygenys flavigularis | Anura | DD | Ground-dwelling | 28.336682 | 35.62236 | 31.45419 | 40.32560 |
Barygenys maculata | Anura | LC | Ground-dwelling | 27.346472 | 35.53757 | 31.07421 | 39.43577 |
Barygenys maculata | Anura | LC | Ground-dwelling | 26.794731 | 35.45632 | 31.02859 | 39.32517 |
Barygenys maculata | Anura | LC | Ground-dwelling | 28.681968 | 35.73426 | 31.34989 | 39.79180 |
Barygenys nana | Anura | LC | Ground-dwelling | 25.996649 | 35.25902 | 31.44829 | 39.74428 |
Barygenys nana | Anura | LC | Ground-dwelling | 25.021959 | 35.11704 | 31.34656 | 39.64216 |
Barygenys nana | Anura | LC | Ground-dwelling | 27.259877 | 35.44304 | 31.48398 | 39.93390 |
Barygenys parvula | Anura | NT | Ground-dwelling | 26.877863 | 35.38216 | 31.21135 | 39.77702 |
Barygenys parvula | Anura | NT | Ground-dwelling | 25.717515 | 35.21446 | 30.84414 | 39.36360 |
Barygenys parvula | Anura | NT | Ground-dwelling | 28.114896 | 35.56093 | 31.16082 | 39.83688 |
Callulops boettgeri | Anura | DD | Ground-dwelling | 27.574569 | 35.41594 | 30.75335 | 39.45495 |
Callulops boettgeri | Anura | DD | Ground-dwelling | 27.092805 | 35.34641 | 30.70383 | 39.38314 |
Callulops boettgeri | Anura | DD | Ground-dwelling | 28.751121 | 35.58574 | 30.58279 | 39.40658 |
Callulops comptus | Anura | LC | Ground-dwelling | 25.416480 | 35.16655 | 31.11346 | 39.32331 |
Callulops comptus | Anura | LC | Ground-dwelling | 24.481569 | 35.03065 | 30.99120 | 39.25482 |
Callulops comptus | Anura | LC | Ground-dwelling | 26.902441 | 35.38255 | 31.29458 | 39.54960 |
Callulops doriae | Anura | LC | Fossorial | 27.100759 | 36.29805 | 32.08051 | 41.09314 |
Callulops doriae | Anura | LC | Fossorial | 26.332622 | 36.18875 | 32.05899 | 41.05657 |
Callulops doriae | Anura | LC | Fossorial | 28.509417 | 36.49850 | 32.11997 | 41.16584 |
Callulops dubius | Anura | DD | Ground-dwelling | 27.453651 | 35.49552 | 31.11809 | 39.39259 |
Callulops dubius | Anura | DD | Ground-dwelling | 26.981340 | 35.42788 | 31.11838 | 39.39462 |
Callulops dubius | Anura | DD | Ground-dwelling | 28.629463 | 35.66388 | 31.21455 | 39.57503 |
Callulops fuscus | Anura | DD | Ground-dwelling | 27.303782 | 35.34130 | 31.25957 | 39.16697 |
Callulops fuscus | Anura | DD | Ground-dwelling | 26.893669 | 35.28256 | 31.20008 | 39.09608 |
Callulops fuscus | Anura | DD | Ground-dwelling | 28.312933 | 35.48585 | 31.36723 | 39.34190 |
Callulops glandulosus | Anura | DD | Ground-dwelling | 24.975843 | 35.04162 | 30.86060 | 39.45740 |
Callulops glandulosus | Anura | DD | Ground-dwelling | 24.070584 | 34.91207 | 30.82256 | 39.41566 |
Callulops glandulosus | Anura | DD | Ground-dwelling | 26.621819 | 35.27718 | 31.26999 | 39.84771 |
Callulops humicola | Anura | LC | Ground-dwelling | 26.040089 | 35.17274 | 30.77396 | 39.10449 |
Callulops humicola | Anura | LC | Ground-dwelling | 25.096472 | 35.03324 | 30.35772 | 38.65482 |
Callulops humicola | Anura | LC | Ground-dwelling | 27.361400 | 35.36807 | 31.02686 | 39.35504 |
Callulops kopsteini | Anura | DD | Ground-dwelling | 27.233429 | 35.45552 | 31.03963 | 39.66608 |
Callulops kopsteini | Anura | DD | Ground-dwelling | 26.820458 | 35.39507 | 30.99959 | 39.59687 |
Callulops kopsteini | Anura | DD | Ground-dwelling | 28.129383 | 35.58666 | 31.10251 | 39.73926 |
Callulops marmoratus | Anura | DD | Ground-dwelling | 25.635729 | 35.08149 | 30.87690 | 39.18156 |
Callulops marmoratus | Anura | DD | Ground-dwelling | 24.759954 | 34.95353 | 30.73764 | 39.09390 |
Callulops marmoratus | Anura | DD | Ground-dwelling | 27.136743 | 35.30081 | 31.08808 | 39.50987 |
Callulops personatus | Anura | LC | Ground-dwelling | 26.457449 | 35.20607 | 31.24561 | 39.49095 |
Callulops personatus | Anura | LC | Ground-dwelling | 25.726752 | 35.10151 | 31.14314 | 39.36309 |
Callulops personatus | Anura | LC | Ground-dwelling | 27.595071 | 35.36885 | 31.29732 | 39.60112 |
Callulops robustus | Anura | LC | Ground-dwelling | 27.862835 | 35.49592 | 31.08532 | 39.61872 |
Callulops robustus | Anura | LC | Ground-dwelling | 27.297700 | 35.41387 | 31.03960 | 39.49175 |
Callulops robustus | Anura | LC | Ground-dwelling | 29.000054 | 35.66103 | 31.31206 | 39.95255 |
Callulops sagittatus | Anura | DD | Ground-dwelling | 27.502423 | 35.38360 | 30.97779 | 39.48854 |
Callulops sagittatus | Anura | DD | Ground-dwelling | 26.907733 | 35.29801 | 30.90574 | 39.42940 |
Callulops sagittatus | Anura | DD | Ground-dwelling | 29.052931 | 35.60676 | 31.18217 | 39.79092 |
Callulops stictogaster | Anura | LC | Ground-dwelling | 26.008136 | 35.22222 | 31.37250 | 39.72790 |
Callulops stictogaster | Anura | LC | Ground-dwelling | 25.023553 | 35.08006 | 31.39870 | 39.74115 |
Callulops stictogaster | Anura | LC | Ground-dwelling | 27.374806 | 35.41954 | 31.64499 | 40.03404 |
Callulops wilhelmanus | Anura | LC | Ground-dwelling | 25.685340 | 35.08007 | 30.81943 | 39.35822 |
Callulops wilhelmanus | Anura | LC | Ground-dwelling | 24.754509 | 34.94533 | 30.66042 | 39.21422 |
Callulops wilhelmanus | Anura | LC | Ground-dwelling | 27.114873 | 35.28698 | 30.93394 | 39.56348 |
Cophixalus ateles | Anura | LC | Ground-dwelling | 27.989421 | 35.51508 | 31.48424 | 40.18712 |
Cophixalus ateles | Anura | LC | Ground-dwelling | 27.053955 | 35.37935 | 31.42007 | 40.08331 |
Cophixalus ateles | Anura | LC | Ground-dwelling | 29.717549 | 35.76580 | 31.58425 | 40.32799 |
Cophixalus balbus | Anura | LC | Ground-dwelling | 26.637695 | 35.45263 | 31.30147 | 39.54390 |
Cophixalus balbus | Anura | LC | Ground-dwelling | 25.991369 | 35.35951 | 31.22436 | 39.45442 |
Cophixalus balbus | Anura | LC | Ground-dwelling | 27.817338 | 35.62257 | 31.44283 | 39.73596 |
Cophixalus bewaniensis | Anura | DD | Ground-dwelling | 27.261563 | 35.42907 | 31.24246 | 39.90883 |
Cophixalus bewaniensis | Anura | DD | Ground-dwelling | 26.565708 | 35.32951 | 31.11726 | 39.70091 |
Cophixalus bewaniensis | Anura | DD | Ground-dwelling | 28.478084 | 35.60312 | 31.07782 | 39.87402 |
Cophixalus biroi | Anura | LC | Arboreal | 26.759981 | 35.16032 | 30.95829 | 39.53720 |
Cophixalus biroi | Anura | LC | Arboreal | 25.889589 | 35.03485 | 31.04713 | 39.54895 |
Cophixalus biroi | Anura | LC | Arboreal | 27.923612 | 35.32806 | 30.98370 | 39.58470 |
Cophixalus cheesmanae | Anura | LC | Arboreal | 26.808469 | 35.24882 | 30.65873 | 39.26665 |
Cophixalus cheesmanae | Anura | LC | Arboreal | 25.879384 | 35.11329 | 30.53543 | 39.08760 |
Cophixalus cheesmanae | Anura | LC | Arboreal | 28.172906 | 35.44785 | 30.88466 | 39.63076 |
Cophixalus crepitans | Anura | LC | Ground-dwelling | 27.348775 | 35.43946 | 30.59047 | 39.43446 |
Cophixalus crepitans | Anura | LC | Ground-dwelling | 26.621133 | 35.33305 | 30.76339 | 39.56144 |
Cophixalus crepitans | Anura | LC | Ground-dwelling | 29.170020 | 35.70581 | 30.71408 | 39.65511 |
Cophixalus cryptotympanum | Anura | LC | Arboreal | 27.445192 | 35.28789 | 30.90538 | 39.36538 |
Cophixalus cryptotympanum | Anura | LC | Arboreal | 26.825280 | 35.19786 | 31.05438 | 39.52668 |
Cophixalus cryptotympanum | Anura | LC | Arboreal | 28.763956 | 35.47941 | 31.00617 | 39.50788 |
Cophixalus daymani | Anura | DD | Ground-dwelling | 27.445192 | 35.51287 | 31.53073 | 39.70734 |
Cophixalus daymani | Anura | DD | Ground-dwelling | 26.825280 | 35.42427 | 31.43277 | 39.57284 |
Cophixalus daymani | Anura | DD | Ground-dwelling | 28.763956 | 35.70137 | 31.49217 | 39.76453 |
Cophixalus humicola | Anura | LC | Ground-dwelling | 27.203477 | 35.45116 | 31.42692 | 39.90975 |
Cophixalus humicola | Anura | LC | Ground-dwelling | 26.661107 | 35.37290 | 31.38776 | 39.84353 |
Cophixalus humicola | Anura | LC | Ground-dwelling | 28.395787 | 35.62321 | 31.51301 | 40.05534 |
Cophixalus kaindiensis | Anura | NT | Ground-dwelling | 27.114008 | 35.41739 | 31.11277 | 39.88581 |
Cophixalus kaindiensis | Anura | NT | Ground-dwelling | 25.920481 | 35.24845 | 30.92792 | 39.70718 |
Cophixalus kaindiensis | Anura | NT | Ground-dwelling | 28.336682 | 35.59045 | 31.33465 | 40.18695 |
Cophixalus misimae | Anura | CR | Ground-dwelling | 27.862835 | 35.55417 | 31.30138 | 39.91755 |
Cophixalus misimae | Anura | CR | Ground-dwelling | 27.297700 | 35.47174 | 30.92014 | 39.52539 |
Cophixalus misimae | Anura | CR | Ground-dwelling | 29.000054 | 35.72004 | 31.42263 | 40.06752 |
Cophixalus montanus | Anura | DD | Ground-dwelling | 27.574569 | 35.45182 | 30.98771 | 39.03611 |
Cophixalus montanus | Anura | DD | Ground-dwelling | 27.092805 | 35.38215 | 31.07176 | 39.04901 |
Cophixalus montanus | Anura | DD | Ground-dwelling | 28.751121 | 35.62198 | 31.04250 | 39.15570 |
Cophixalus nubicola | Anura | VU | Ground-dwelling | 25.101049 | 35.25234 | 31.32086 | 39.70617 |
Cophixalus nubicola | Anura | VU | Ground-dwelling | 24.199899 | 35.12256 | 31.36323 | 39.70735 |
Cophixalus nubicola | Anura | VU | Ground-dwelling | 26.607518 | 35.46929 | 31.67259 | 40.10873 |
Cophixalus parkeri | Anura | LC | Arboreal | 26.435090 | 35.25988 | 30.97310 | 39.33403 |
Cophixalus parkeri | Anura | LC | Arboreal | 25.422784 | 35.11315 | 30.88450 | 39.26522 |
Cophixalus parkeri | Anura | LC | Arboreal | 27.738085 | 35.44874 | 31.10468 | 39.51911 |
Cophixalus peninsularis | Anura | DD | Arboreal | 27.348775 | 35.34301 | 31.31059 | 39.58609 |
Cophixalus peninsularis | Anura | DD | Arboreal | 26.621133 | 35.23979 | 31.17108 | 39.38698 |
Cophixalus peninsularis | Anura | DD | Arboreal | 29.170020 | 35.60139 | 31.34578 | 39.72405 |
Cophixalus pipilans | Anura | LC | Ground-dwelling | 26.392705 | 35.28031 | 31.15077 | 39.66218 |
Cophixalus pipilans | Anura | LC | Ground-dwelling | 25.555766 | 35.16351 | 30.73740 | 39.23114 |
Cophixalus pipilans | Anura | LC | Ground-dwelling | 27.464108 | 35.42982 | 31.27161 | 39.83231 |
Cophixalus pulchellus | Anura | DD | Arboreal | 27.527429 | 35.46494 | 30.92831 | 39.50931 |
Cophixalus pulchellus | Anura | DD | Arboreal | 26.644801 | 35.33554 | 30.82423 | 39.35973 |
Cophixalus pulchellus | Anura | DD | Arboreal | 28.748087 | 35.64390 | 31.07976 | 39.73167 |
Cophixalus riparius | Anura | LC | Ground-dwelling | 26.488026 | 35.25588 | 31.09722 | 39.17828 |
Cophixalus riparius | Anura | LC | Ground-dwelling | 25.443340 | 35.10662 | 30.91700 | 38.97838 |
Cophixalus riparius | Anura | LC | Ground-dwelling | 27.752509 | 35.43655 | 31.17547 | 39.32133 |
Cophixalus shellyi | Anura | LC | Arboreal | 26.489586 | 35.16735 | 30.81685 | 39.34011 |
Cophixalus shellyi | Anura | LC | Arboreal | 25.472779 | 35.02070 | 30.67665 | 39.17371 |
Cophixalus shellyi | Anura | LC | Arboreal | 27.775780 | 35.35286 | 30.98015 | 39.58793 |
Cophixalus sphagnicola | Anura | EN | Ground-dwelling | 27.114008 | 35.34053 | 31.15049 | 39.29300 |
Cophixalus sphagnicola | Anura | EN | Ground-dwelling | 25.920481 | 35.16690 | 30.84096 | 38.92585 |
Cophixalus sphagnicola | Anura | EN | Ground-dwelling | 28.336682 | 35.51840 | 31.29103 | 39.49869 |
Cophixalus tagulensis | Anura | DD | Stream-dwelling | 27.211163 | 34.76731 | 30.09899 | 38.78608 |
Cophixalus tagulensis | Anura | DD | Stream-dwelling | 26.781256 | 34.70580 | 30.59961 | 39.25116 |
Cophixalus tagulensis | Anura | DD | Stream-dwelling | 28.187362 | 34.90697 | 30.51142 | 39.21191 |
Cophixalus tetzlaffi | Anura | DD | Arboreal | 26.915565 | 35.17497 | 31.30382 | 39.50430 |
Cophixalus tetzlaffi | Anura | DD | Arboreal | 26.462172 | 35.10987 | 31.27161 | 39.43095 |
Cophixalus tetzlaffi | Anura | DD | Arboreal | 27.731312 | 35.29210 | 31.31999 | 39.58397 |
Cophixalus timidus | Anura | CR | Arboreal | 27.247752 | 35.27167 | 30.99751 | 39.49222 |
Cophixalus timidus | Anura | CR | Arboreal | 26.764181 | 35.20163 | 30.92654 | 39.43278 |
Cophixalus timidus | Anura | CR | Arboreal | 28.599980 | 35.46752 | 31.12127 | 39.66279 |
Cophixalus tridactylus | Anura | DD | Ground-dwelling | 27.845401 | 35.45781 | 31.68519 | 39.92799 |
Cophixalus tridactylus | Anura | DD | Ground-dwelling | 27.169969 | 35.36131 | 31.64170 | 39.85707 |
Cophixalus tridactylus | Anura | DD | Ground-dwelling | 29.078135 | 35.63395 | 31.76457 | 40.01986 |
Cophixalus variabilis | Anura | LC | Ground-dwelling | 27.518252 | 35.39350 | 31.27197 | 40.11560 |
Cophixalus variabilis | Anura | LC | Ground-dwelling | 26.946462 | 35.31175 | 31.25984 | 39.99340 |
Cophixalus variabilis | Anura | LC | Ground-dwelling | 28.834286 | 35.58164 | 31.41438 | 40.30980 |
Cophixalus verecundus | Anura | LC | Ground-dwelling | 27.777034 | 35.40470 | 31.08826 | 39.30523 |
Cophixalus verecundus | Anura | LC | Ground-dwelling | 26.851879 | 35.27147 | 30.95973 | 39.14866 |
Cophixalus verecundus | Anura | LC | Ground-dwelling | 29.482554 | 35.65032 | 31.24230 | 39.58037 |
Cophixalus verrucosus | Anura | LC | Arboreal | 27.190697 | 35.38227 | 31.30964 | 39.66244 |
Cophixalus verrucosus | Anura | LC | Arboreal | 26.515616 | 35.28420 | 31.20354 | 39.53661 |
Cophixalus verrucosus | Anura | LC | Arboreal | 28.517214 | 35.57498 | 31.41504 | 39.83253 |
Cophixalus zweifeli | Anura | LC | Ground-dwelling | 27.394686 | 35.43602 | 31.53585 | 39.99414 |
Cophixalus zweifeli | Anura | LC | Ground-dwelling | 26.655439 | 35.32875 | 31.49595 | 39.90461 |
Cophixalus zweifeli | Anura | LC | Ground-dwelling | 29.322171 | 35.71570 | 31.69418 | 40.16759 |
Copiula exspectata | Anura | DD | Ground-dwelling | 26.229018 | 35.27869 | 31.06430 | 39.31138 |
Copiula exspectata | Anura | DD | Ground-dwelling | 25.905818 | 35.23216 | 31.03675 | 39.26883 |
Copiula exspectata | Anura | DD | Ground-dwelling | 26.983440 | 35.38732 | 31.16990 | 39.46224 |
Copiula fistulans | Anura | LC | Ground-dwelling | 26.865273 | 35.44531 | 31.29952 | 39.72268 |
Copiula fistulans | Anura | LC | Ground-dwelling | 25.906809 | 35.30642 | 31.32394 | 39.70955 |
Copiula fistulans | Anura | LC | Ground-dwelling | 28.228001 | 35.64278 | 31.58479 | 40.09379 |
Copiula major | Anura | DD | Ground-dwelling | 27.845401 | 35.47553 | 31.22883 | 39.58998 |
Copiula major | Anura | DD | Ground-dwelling | 27.169969 | 35.37765 | 31.07682 | 39.41815 |
Copiula major | Anura | DD | Ground-dwelling | 29.078135 | 35.65417 | 31.34350 | 39.75085 |
Copiula minor | Anura | LC | Ground-dwelling | 27.178121 | 35.46194 | 31.49273 | 39.81855 |
Copiula minor | Anura | LC | Ground-dwelling | 26.725102 | 35.39813 | 31.41009 | 39.75545 |
Copiula minor | Anura | LC | Ground-dwelling | 28.236662 | 35.61105 | 31.57886 | 40.00056 |
Copiula obsti | Anura | DD | Ground-dwelling | 27.845401 | 35.47676 | 30.84114 | 39.39026 |
Copiula obsti | Anura | DD | Ground-dwelling | 27.169969 | 35.38026 | 30.91866 | 39.41769 |
Copiula obsti | Anura | DD | Ground-dwelling | 29.078135 | 35.65288 | 31.05019 | 39.65831 |
Copiula oxyrhina | Anura | LC | Ground-dwelling | 27.862835 | 35.60198 | 31.90283 | 40.24455 |
Copiula oxyrhina | Anura | LC | Ground-dwelling | 27.297700 | 35.52056 | 31.85922 | 40.14970 |
Copiula oxyrhina | Anura | LC | Ground-dwelling | 29.000054 | 35.76583 | 31.25805 | 39.68961 |
Copiula pipiens | Anura | LC | Ground-dwelling | 26.921851 | 35.42051 | 31.05859 | 39.57275 |
Copiula pipiens | Anura | LC | Ground-dwelling | 26.169587 | 35.31129 | 30.94250 | 39.46647 |
Copiula pipiens | Anura | LC | Ground-dwelling | 28.064298 | 35.58639 | 31.34274 | 39.98059 |
Copiula tyleri | Anura | LC | Ground-dwelling | 26.770277 | 35.50028 | 31.33911 | 39.62436 |
Copiula tyleri | Anura | LC | Ground-dwelling | 25.940420 | 35.38097 | 31.30151 | 39.53081 |
Copiula tyleri | Anura | LC | Ground-dwelling | 27.966992 | 35.67234 | 31.78977 | 40.08348 |
Hylophorbus picoides | Anura | LC | Ground-dwelling | 27.380483 | 35.53893 | 31.64215 | 40.30248 |
Hylophorbus picoides | Anura | LC | Ground-dwelling | 26.816070 | 35.45569 | 31.01186 | 39.65658 |
Hylophorbus picoides | Anura | LC | Ground-dwelling | 28.404724 | 35.68999 | 31.75426 | 40.48899 |
Hylophorbus tetraphonus | Anura | LC | Ground-dwelling | 27.495006 | 35.52741 | 31.54404 | 40.30223 |
Hylophorbus tetraphonus | Anura | LC | Ground-dwelling | 26.931191 | 35.44547 | 31.54492 | 40.26975 |
Hylophorbus tetraphonus | Anura | LC | Ground-dwelling | 28.587127 | 35.68612 | 31.42237 | 40.23477 |
Hylophorbus sextus | Anura | LC | Ground-dwelling | 27.593026 | 35.53872 | 31.32636 | 40.29900 |
Hylophorbus sextus | Anura | LC | Ground-dwelling | 27.026354 | 35.45556 | 30.84635 | 39.76736 |
Hylophorbus sextus | Anura | LC | Ground-dwelling | 28.743322 | 35.70753 | 31.50066 | 40.53968 |
Hylophorbus rainerguentheri | Anura | LC | Ground-dwelling | 26.471024 | 35.38051 | 31.34154 | 39.46272 |
Hylophorbus rainerguentheri | Anura | LC | Ground-dwelling | 25.448283 | 35.23339 | 31.21706 | 39.26599 |
Hylophorbus rainerguentheri | Anura | LC | Ground-dwelling | 27.767099 | 35.56696 | 31.31468 | 39.50874 |
Hylophorbus richardsi | Anura | LC | Ground-dwelling | 26.381235 | 35.36740 | 31.36379 | 39.68352 |
Hylophorbus richardsi | Anura | LC | Ground-dwelling | 25.559568 | 35.24962 | 31.10189 | 39.43742 |
Hylophorbus richardsi | Anura | LC | Ground-dwelling | 27.943061 | 35.59129 | 31.50100 | 39.90879 |
Hylophorbus wondiwoi | Anura | LC | Ground-dwelling | 27.845401 | 35.64505 | 31.34522 | 39.64356 |
Hylophorbus wondiwoi | Anura | LC | Ground-dwelling | 27.169969 | 35.54693 | 31.25396 | 39.52359 |
Hylophorbus wondiwoi | Anura | LC | Ground-dwelling | 29.078135 | 35.82412 | 31.42526 | 39.87038 |
Hylophorbus rufescens | Anura | DD | Ground-dwelling | 27.496269 | 35.59589 | 31.29116 | 39.78239 |
Hylophorbus rufescens | Anura | DD | Ground-dwelling | 26.574102 | 35.46308 | 31.21355 | 39.62909 |
Hylophorbus rufescens | Anura | DD | Ground-dwelling | 29.191411 | 35.84002 | 31.42458 | 40.02045 |
Hylophorbus nigrinus | Anura | LC | Ground-dwelling | 24.803924 | 35.11569 | 30.62572 | 39.11587 |
Hylophorbus nigrinus | Anura | LC | Ground-dwelling | 24.189073 | 35.02797 | 30.39435 | 38.87528 |
Hylophorbus nigrinus | Anura | LC | Ground-dwelling | 25.975074 | 35.28276 | 31.40134 | 39.91351 |
Mantophryne louisiadensis | Anura | LC | Ground-dwelling | 27.383830 | 35.38952 | 31.23568 | 39.60694 |
Mantophryne louisiadensis | Anura | LC | Ground-dwelling | 26.980179 | 35.33160 | 31.17820 | 39.53870 |
Mantophryne louisiadensis | Anura | LC | Ground-dwelling | 28.297311 | 35.52059 | 31.34395 | 39.76137 |
Mantophryne lateralis | Anura | LC | Ground-dwelling | 26.981808 | 35.37161 | 31.35887 | 39.54118 |
Mantophryne lateralis | Anura | LC | Ground-dwelling | 26.204559 | 35.25879 | 31.29779 | 39.45955 |
Mantophryne lateralis | Anura | LC | Ground-dwelling | 28.350264 | 35.57023 | 31.46642 | 39.68657 |
Oreophryne albopunctata | Anura | LC | Arboreal | 27.219466 | 35.28695 | 30.95054 | 39.33816 |
Oreophryne albopunctata | Anura | LC | Arboreal | 26.545465 | 35.18918 | 31.04425 | 39.34699 |
Oreophryne albopunctata | Anura | LC | Arboreal | 28.539073 | 35.47838 | 31.55333 | 39.98968 |
Oreophryne alticola | Anura | DD | Ground-dwelling | 25.363952 | 35.20780 | 30.80097 | 39.19696 |
Oreophryne alticola | Anura | DD | Ground-dwelling | 24.632364 | 35.10276 | 30.70998 | 39.11864 |
Oreophryne alticola | Anura | DD | Ground-dwelling | 26.831311 | 35.41848 | 31.03480 | 39.49509 |
Oreophryne anthonyi | Anura | LC | Arboreal | 27.231939 | 35.29307 | 31.08136 | 39.75148 |
Oreophryne anthonyi | Anura | LC | Arboreal | 26.334073 | 35.16434 | 30.99005 | 39.64081 |
Oreophryne anthonyi | Anura | LC | Arboreal | 28.929734 | 35.53648 | 31.33469 | 40.05077 |
Oreophryne anulata | Anura | LC | Arboreal | 27.507106 | 35.38761 | 31.59061 | 39.53007 |
Oreophryne anulata | Anura | LC | Arboreal | 26.968265 | 35.31053 | 31.48678 | 39.43812 |
Oreophryne anulata | Anura | LC | Arboreal | 28.626665 | 35.54776 | 31.75769 | 39.74492 |
Oreophryne asplenicola | Anura | DD | Arboreal | 26.229018 | 35.09340 | 30.72617 | 38.94682 |
Oreophryne asplenicola | Anura | DD | Arboreal | 25.905818 | 35.04669 | 30.67598 | 38.90203 |
Oreophryne asplenicola | Anura | DD | Arboreal | 26.983440 | 35.20241 | 30.83259 | 39.07385 |
Oreophryne pseudasplenicola | Anura | DD | Arboreal | 26.229018 | 35.10290 | 31.36560 | 39.58353 |
Oreophryne pseudasplenicola | Anura | DD | Arboreal | 25.905818 | 35.05583 | 31.23083 | 39.42602 |
Oreophryne pseudasplenicola | Anura | DD | Arboreal | 26.983440 | 35.21276 | 31.47833 | 39.71108 |
Oreophryne atrigularis | Anura | DD | Arboreal | 26.822005 | 35.35760 | 31.23242 | 39.45130 |
Oreophryne atrigularis | Anura | DD | Arboreal | 26.281715 | 35.27987 | 30.69871 | 38.90435 |
Oreophryne atrigularis | Anura | DD | Arboreal | 27.992418 | 35.52601 | 31.37516 | 39.63831 |
Oreophryne biroi | Anura | LC | Arboreal | 26.668075 | 35.15591 | 30.97642 | 38.80681 |
Oreophryne biroi | Anura | LC | Arboreal | 25.809498 | 35.03212 | 30.93361 | 38.67156 |
Oreophryne biroi | Anura | LC | Arboreal | 27.827739 | 35.32311 | 31.29867 | 39.14413 |
Oreophryne brachypus | Anura | LC | Arboreal | 27.432098 | 35.21479 | 30.39848 | 39.05243 |
Oreophryne brachypus | Anura | LC | Arboreal | 26.804252 | 35.12432 | 30.29669 | 38.90901 |
Oreophryne brachypus | Anura | LC | Arboreal | 28.499417 | 35.36857 | 30.54248 | 39.26914 |
Oreophryne brevicrus | Anura | DD | Arboreal | 25.980655 | 35.13069 | 30.94256 | 39.37167 |
Oreophryne brevicrus | Anura | DD | Arboreal | 25.299772 | 35.03130 | 30.86198 | 39.23926 |
Oreophryne brevicrus | Anura | DD | Arboreal | 27.417968 | 35.34049 | 31.06456 | 39.60769 |
Oreophryne brevirostris | Anura | VU | Ground-dwelling | 25.363952 | 35.29817 | 31.11337 | 39.43125 |
Oreophryne brevirostris | Anura | VU | Ground-dwelling | 24.632364 | 35.19223 | 31.03985 | 39.34108 |
Oreophryne brevirostris | Anura | VU | Ground-dwelling | 26.831311 | 35.51064 | 31.27291 | 39.67245 |
Oreophryne celebensis | Anura | VU | Arboreal | 27.268793 | 35.23642 | 31.34384 | 39.72485 |
Oreophryne celebensis | Anura | VU | Arboreal | 26.829377 | 35.17247 | 30.95043 | 39.30580 |
Oreophryne celebensis | Anura | VU | Arboreal | 28.234574 | 35.37697 | 31.16338 | 39.59882 |
Oreophryne clamata | Anura | DD | Arboreal | 27.845401 | 35.45514 | 31.62218 | 39.73221 |
Oreophryne clamata | Anura | DD | Arboreal | 27.169969 | 35.35589 | 31.48184 | 39.58289 |
Oreophryne clamata | Anura | DD | Arboreal | 29.078135 | 35.63629 | 31.72786 | 39.90766 |
Oreophryne crucifer | Anura | LC | Arboreal | 26.793287 | 35.27665 | 31.26738 | 39.54846 |
Oreophryne crucifer | Anura | LC | Arboreal | 26.137173 | 35.18136 | 31.48976 | 39.74337 |
Oreophryne crucifer | Anura | LC | Arboreal | 28.152891 | 35.47412 | 31.35333 | 39.68308 |
Oreophryne flava | Anura | DD | Arboreal | 25.766822 | 35.01906 | 30.79618 | 38.88361 |
Oreophryne flava | Anura | DD | Arboreal | 25.032848 | 34.91458 | 30.69059 | 38.76334 |
Oreophryne flava | Anura | DD | Arboreal | 27.118529 | 35.21148 | 30.92757 | 39.04815 |
Oreophryne frontifasciata | Anura | DD | Arboreal | 26.973444 | 35.25402 | 31.23075 | 39.60173 |
Oreophryne frontifasciata | Anura | DD | Arboreal | 26.572501 | 35.19646 | 31.24721 | 39.62932 |
Oreophryne frontifasciata | Anura | DD | Arboreal | 27.925720 | 35.39072 | 31.29577 | 39.73419 |
Oreophryne geislerorum | Anura | LC | Arboreal | 27.008257 | 35.22783 | 30.62353 | 39.15588 |
Oreophryne geislerorum | Anura | LC | Arboreal | 26.073967 | 35.09432 | 30.54569 | 39.00291 |
Oreophryne geislerorum | Anura | LC | Arboreal | 28.473400 | 35.43719 | 31.14267 | 39.73476 |
Oreophryne geminus | Anura | DD | Arboreal | 27.502423 | 35.44148 | 30.42745 | 39.16654 |
Oreophryne geminus | Anura | DD | Arboreal | 26.907733 | 35.35531 | 30.34246 | 39.07786 |
Oreophryne geminus | Anura | DD | Arboreal | 29.052931 | 35.66617 | 30.63088 | 39.43733 |
Oreophryne habbemensis | Anura | DD | Arboreal | 27.214059 | 35.27739 | 31.09166 | 39.82328 |
Oreophryne habbemensis | Anura | DD | Arboreal | 26.634587 | 35.19421 | 30.92849 | 39.58574 |
Oreophryne habbemensis | Anura | DD | Arboreal | 28.591282 | 35.47509 | 31.26157 | 40.09087 |
Oreophryne hypsiops | Anura | LC | Arboreal | 26.888262 | 35.30030 | 31.04134 | 39.39005 |
Oreophryne hypsiops | Anura | LC | Arboreal | 25.989501 | 35.17006 | 30.94933 | 39.30850 |
Oreophryne hypsiops | Anura | LC | Arboreal | 28.089676 | 35.47440 | 31.07309 | 39.39292 |
Oreophryne idenburgensis | Anura | LC | Arboreal | 28.154814 | 35.37970 | 30.86815 | 39.55308 |
Oreophryne idenburgensis | Anura | LC | Arboreal | 27.593367 | 35.29816 | 31.08451 | 39.70961 |
Oreophryne idenburgensis | Anura | LC | Arboreal | 29.270349 | 35.54171 | 30.87727 | 39.60834 |
Oreophryne inornata | Anura | LC | Arboreal | 27.178121 | 35.22089 | 31.39478 | 39.79201 |
Oreophryne inornata | Anura | LC | Arboreal | 26.725102 | 35.15483 | 31.30231 | 39.66904 |
Oreophryne inornata | Anura | LC | Arboreal | 28.236662 | 35.37527 | 31.49277 | 39.99633 |
Oreophryne insulana | Anura | VU | Arboreal | 27.178121 | 35.29790 | 31.11702 | 39.57054 |
Oreophryne insulana | Anura | VU | Arboreal | 26.725102 | 35.23222 | 31.06187 | 39.48744 |
Oreophryne insulana | Anura | VU | Arboreal | 28.236662 | 35.45135 | 30.94499 | 39.45252 |
Oreophryne jeffersoniana | Anura | LC | Arboreal | 27.287651 | 35.23073 | 30.88762 | 39.36824 |
Oreophryne jeffersoniana | Anura | LC | Arboreal | 26.701152 | 35.14598 | 30.77118 | 39.25988 |
Oreophryne jeffersoniana | Anura | LC | Arboreal | 28.412526 | 35.39329 | 30.91206 | 39.43638 |
Oreophryne kampeni | Anura | DD | Arboreal | 27.777034 | 35.31716 | 31.18694 | 39.64512 |
Oreophryne kampeni | Anura | DD | Arboreal | 26.851879 | 35.18382 | 31.05902 | 39.47834 |
Oreophryne kampeni | Anura | DD | Arboreal | 29.482554 | 35.56297 | 31.42276 | 39.96436 |
Oreophryne kapisa | Anura | LC | Arboreal | 26.694751 | 35.16423 | 31.08695 | 39.51276 |
Oreophryne kapisa | Anura | LC | Arboreal | 26.281601 | 35.10362 | 31.01997 | 39.43868 |
Oreophryne kapisa | Anura | LC | Arboreal | 27.702190 | 35.31201 | 31.15480 | 39.52895 |
Oreophryne loriae | Anura | DD | Arboreal | 27.777034 | 35.39140 | 31.20779 | 39.68644 |
Oreophryne loriae | Anura | DD | Arboreal | 26.851879 | 35.25719 | 31.07626 | 39.45113 |
Oreophryne loriae | Anura | DD | Arboreal | 29.482554 | 35.63883 | 31.31669 | 39.99365 |
Oreophryne minuta | Anura | LC | Arboreal | 23.777654 | 34.69610 | 30.40764 | 38.84036 |
Oreophryne minuta | Anura | LC | Arboreal | 22.879292 | 34.56701 | 30.37463 | 38.68690 |
Oreophryne minuta | Anura | LC | Arboreal | 25.403142 | 34.92966 | 30.82484 | 39.42986 |
Oreophryne moluccensis | Anura | LC | Arboreal | 27.398548 | 35.40461 | 31.21147 | 39.71812 |
Oreophryne moluccensis | Anura | LC | Arboreal | 26.932215 | 35.33747 | 31.19842 | 39.67823 |
Oreophryne moluccensis | Anura | LC | Arboreal | 28.405925 | 35.54965 | 31.40797 | 39.95335 |
Oreophryne monticola | Anura | EN | Arboreal | 27.448992 | 35.37365 | 31.35108 | 40.10274 |
Oreophryne monticola | Anura | EN | Arboreal | 26.901087 | 35.29376 | 31.46676 | 40.18433 |
Oreophryne monticola | Anura | EN | Arboreal | 28.757779 | 35.56449 | 31.56063 | 40.40936 |
Oreophryne notata | Anura | LC | Arboreal | 26.043316 | 35.18221 | 30.88358 | 39.45641 |
Oreophryne notata | Anura | LC | Arboreal | 25.233607 | 35.06426 | 30.53254 | 39.05801 |
Oreophryne notata | Anura | LC | Arboreal | 27.636538 | 35.41429 | 31.08448 | 39.75607 |
Oreophryne rookmaakeri | Anura | EN | Arboreal | 26.786266 | 35.24730 | 31.17988 | 39.41088 |
Oreophryne rookmaakeri | Anura | EN | Arboreal | 26.285892 | 35.17656 | 31.12785 | 39.30791 |
Oreophryne rookmaakeri | Anura | EN | Arboreal | 27.729346 | 35.38063 | 31.23162 | 39.55089 |
Oreophryne sibilans | Anura | DD | Arboreal | 27.845401 | 35.37566 | 30.61970 | 39.72501 |
Oreophryne sibilans | Anura | DD | Arboreal | 27.169969 | 35.27674 | 30.66971 | 39.74918 |
Oreophryne sibilans | Anura | DD | Arboreal | 29.078135 | 35.55620 | 31.32061 | 40.55113 |
Oreophryne terrestris | Anura | DD | Arboreal | 27.502423 | 35.36720 | 31.33317 | 39.80918 |
Oreophryne terrestris | Anura | DD | Arboreal | 26.907733 | 35.28185 | 31.20939 | 39.65952 |
Oreophryne terrestris | Anura | DD | Arboreal | 29.052931 | 35.58974 | 31.63811 | 40.24446 |
Oreophryne unicolor | Anura | DD | Arboreal | 27.302994 | 35.23724 | 31.17620 | 39.78941 |
Oreophryne unicolor | Anura | DD | Arboreal | 26.755648 | 35.15789 | 31.09895 | 39.69814 |
Oreophryne unicolor | Anura | DD | Arboreal | 28.357958 | 35.39016 | 31.34719 | 39.98436 |
Oreophryne variabilis | Anura | VU | Arboreal | 27.055844 | 35.34320 | 30.52324 | 39.20959 |
Oreophryne variabilis | Anura | VU | Arboreal | 26.608549 | 35.27818 | 30.47021 | 39.11413 |
Oreophryne variabilis | Anura | VU | Arboreal | 28.148244 | 35.50200 | 31.50883 | 40.25319 |
Oreophryne waira | Anura | DD | Arboreal | 26.229018 | 35.20217 | 30.77880 | 39.21380 |
Oreophryne waira | Anura | DD | Arboreal | 25.905818 | 35.15460 | 30.74288 | 39.18280 |
Oreophryne waira | Anura | DD | Arboreal | 26.983440 | 35.31322 | 30.86265 | 39.34178 |
Oreophryne wapoga | Anura | DD | Arboreal | 25.574513 | 35.01714 | 30.87344 | 39.19997 |
Oreophryne wapoga | Anura | DD | Arboreal | 25.037509 | 34.93949 | 30.92663 | 39.17426 |
Oreophryne wapoga | Anura | DD | Arboreal | 26.655764 | 35.17349 | 31.02164 | 39.44716 |
Sphenophryne cornuta | Anura | LC | Ground-dwelling | 26.977163 | 35.38578 | 31.54357 | 39.72785 |
Sphenophryne cornuta | Anura | LC | Ground-dwelling | 26.237909 | 35.27878 | 31.35505 | 39.55888 |
Sphenophryne cornuta | Anura | LC | Ground-dwelling | 28.314545 | 35.57935 | 31.70769 | 39.96028 |
Gastrophrynoides borneensis | Anura | LC | Fossorial | 27.817745 | 37.49115 | 32.77561 | 41.56591 |
Gastrophrynoides borneensis | Anura | LC | Fossorial | 27.227945 | 37.40759 | 32.91595 | 41.67690 |
Gastrophrynoides borneensis | Anura | LC | Fossorial | 29.064576 | 37.66780 | 32.91295 | 41.73222 |
Glyphoglossus molossus | Anura | NT | Fossorial | 28.177162 | 39.33792 | 34.69206 | 43.56015 |
Glyphoglossus molossus | Anura | NT | Fossorial | 27.291267 | 39.21444 | 34.58557 | 43.42870 |
Glyphoglossus molossus | Anura | NT | Fossorial | 29.911327 | 39.57964 | 34.90170 | 43.87767 |
Microhyla achatina | Anura | LC | Ground-dwelling | 27.378116 | 38.00496 | 34.41175 | 41.79685 |
Microhyla achatina | Anura | LC | Ground-dwelling | 26.753950 | 37.91637 | 34.34629 | 41.69707 |
Microhyla achatina | Anura | LC | Ground-dwelling | 28.613796 | 38.18036 | 34.57992 | 42.05124 |
Microhyla borneensis | Anura | LC | Ground-dwelling | 28.415681 | 38.13511 | 34.41880 | 41.80731 |
Microhyla borneensis | Anura | LC | Ground-dwelling | 27.803645 | 38.05013 | 34.26993 | 41.60896 |
Microhyla borneensis | Anura | LC | Ground-dwelling | 29.770827 | 38.32326 | 34.59594 | 42.05787 |
Microhyla berdmorei | Anura | LC | Ground-dwelling | 27.176788 | 38.53025 | 34.60353 | 42.26440 |
Microhyla berdmorei | Anura | LC | Ground-dwelling | 26.310018 | 38.40923 | 34.58859 | 42.19495 |
Microhyla berdmorei | Anura | LC | Ground-dwelling | 28.907954 | 38.77198 | 34.79463 | 42.58573 |
Microhyla pulchra | Anura | LC | Ground-dwelling | 27.192679 | 38.50410 | 34.61520 | 42.87619 |
Microhyla pulchra | Anura | LC | Ground-dwelling | 26.045162 | 38.34379 | 34.46867 | 42.59448 |
Microhyla pulchra | Anura | LC | Ground-dwelling | 29.222134 | 38.78761 | 34.78740 | 43.30764 |
Microhyla rubra | Anura | LC | Ground-dwelling | 26.948454 | 38.42714 | 34.77001 | 42.39655 |
Microhyla rubra | Anura | LC | Ground-dwelling | 25.970531 | 38.28968 | 34.53892 | 42.11616 |
Microhyla rubra | Anura | LC | Ground-dwelling | 29.224183 | 38.74702 | 35.13571 | 42.83983 |
Microhyla maculifera | Anura | DD | Ground-dwelling | 28.020276 | 38.63493 | 35.18926 | 41.74179 |
Microhyla maculifera | Anura | DD | Ground-dwelling | 27.481036 | 38.55957 | 35.07853 | 41.60940 |
Microhyla maculifera | Anura | DD | Ground-dwelling | 29.285741 | 38.81177 | 35.21894 | 41.88690 |
Microhyla chakrapanii | Anura | DD | Ground-dwelling | 28.433477 | 38.62004 | 34.45523 | 42.31523 |
Microhyla chakrapanii | Anura | DD | Ground-dwelling | 27.775285 | 38.52876 | 34.41911 | 42.22230 |
Microhyla chakrapanii | Anura | DD | Ground-dwelling | 29.813372 | 38.81141 | 34.56933 | 42.54808 |
Microhyla karunaratnei | Anura | EN | Ground-dwelling | 27.155513 | 38.56514 | 34.77295 | 42.58063 |
Microhyla karunaratnei | Anura | EN | Ground-dwelling | 26.400558 | 38.45918 | 34.76558 | 42.54107 |
Microhyla karunaratnei | Anura | EN | Ground-dwelling | 29.086524 | 38.83618 | 35.12455 | 43.08737 |
Microhyla palmipes | Anura | LC | Ground-dwelling | 27.929706 | 38.64255 | 34.66325 | 42.56120 |
Microhyla palmipes | Anura | LC | Ground-dwelling | 27.317477 | 38.55788 | 34.60844 | 42.48310 |
Microhyla palmipes | Anura | LC | Ground-dwelling | 29.211018 | 38.81976 | 34.68558 | 42.71032 |
Microhyla mixtura | Anura | LC | Ground-dwelling | 24.493283 | 38.05618 | 34.18621 | 42.11156 |
Microhyla mixtura | Anura | LC | Ground-dwelling | 21.819669 | 37.68362 | 33.83463 | 41.68246 |
Microhyla mixtura | Anura | LC | Ground-dwelling | 27.662491 | 38.49781 | 34.80886 | 42.98184 |
Microhyla okinavensis | Anura | LC | Ground-dwelling | 27.398651 | 38.53504 | 34.91508 | 42.80930 |
Microhyla okinavensis | Anura | LC | Ground-dwelling | 26.569599 | 38.41813 | 34.82537 | 42.65694 |
Microhyla okinavensis | Anura | LC | Ground-dwelling | 28.425063 | 38.67979 | 35.07403 | 43.06066 |
Microhyla superciliaris | Anura | LC | Ground-dwelling | 28.172595 | 38.69323 | 34.66084 | 42.75585 |
Microhyla superciliaris | Anura | LC | Ground-dwelling | 27.509213 | 38.59846 | 34.59673 | 42.63725 |
Microhyla superciliaris | Anura | LC | Ground-dwelling | 29.519663 | 38.88567 | 34.81353 | 43.06541 |
Microhyla picta | Anura | DD | Ground-dwelling | 27.738562 | 38.67377 | 34.17243 | 42.40916 |
Microhyla picta | Anura | DD | Ground-dwelling | 26.846457 | 38.54936 | 34.09644 | 42.22368 |
Microhyla picta | Anura | DD | Ground-dwelling | 29.381932 | 38.90295 | 34.57681 | 43.03455 |
Microhyla pulverata | Anura | DD | Ground-dwelling | 27.001410 | 38.48410 | 34.90961 | 42.71595 |
Microhyla pulverata | Anura | DD | Ground-dwelling | 26.005306 | 38.34338 | 34.80238 | 42.54223 |
Microhyla pulverata | Anura | DD | Ground-dwelling | 28.753804 | 38.73165 | 35.02603 | 43.05605 |
Microhyla sholigari | Anura | EN | Ground-dwelling | 27.093701 | 38.41652 | 34.74674 | 42.20810 |
Microhyla sholigari | Anura | EN | Ground-dwelling | 25.947438 | 38.25457 | 34.60841 | 42.05568 |
Microhyla sholigari | Anura | EN | Ground-dwelling | 29.609423 | 38.77197 | 34.99717 | 42.62384 |
Microhyla zeylanica | Anura | EN | Semi-aquatic | 27.155513 | 38.64749 | 35.05081 | 42.77102 |
Microhyla zeylanica | Anura | EN | Semi-aquatic | 26.400558 | 38.54224 | 34.89834 | 42.63456 |
Microhyla zeylanica | Anura | EN | Semi-aquatic | 29.086524 | 38.91669 | 35.21419 | 43.08664 |
Micryletta inornata | Anura | LC | Ground-dwelling | 28.222927 | 38.03330 | 33.74980 | 42.89732 |
Micryletta inornata | Anura | LC | Ground-dwelling | 27.585494 | 37.94312 | 33.66773 | 42.78046 |
Micryletta inornata | Anura | LC | Ground-dwelling | 29.525959 | 38.21766 | 33.90631 | 43.12814 |
Micryletta steinegeri | Anura | VU | Ground-dwelling | 27.830572 | 38.01503 | 33.53135 | 42.63411 |
Micryletta steinegeri | Anura | VU | Ground-dwelling | 27.162324 | 37.92093 | 33.54646 | 42.57066 |
Micryletta steinegeri | Anura | VU | Ground-dwelling | 29.012632 | 38.18148 | 33.48110 | 42.65096 |
Chaperina fusca | Anura | LC | Ground-dwelling | 27.862947 | 37.93733 | 33.05785 | 42.05755 |
Chaperina fusca | Anura | LC | Ground-dwelling | 27.240890 | 37.84669 | 33.61578 | 42.56003 |
Chaperina fusca | Anura | LC | Ground-dwelling | 29.157758 | 38.12598 | 33.24487 | 42.27645 |
Kaloula assamensis | Anura | LC | Arboreal | 25.985769 | 38.17660 | 34.42711 | 41.62329 |
Kaloula assamensis | Anura | LC | Arboreal | 25.295046 | 38.08017 | 34.38234 | 41.54908 |
Kaloula assamensis | Anura | LC | Arboreal | 27.427739 | 38.37790 | 34.55812 | 41.77188 |
Kaloula aureata | Anura | DD | Arboreal | 28.241012 | 38.35462 | 34.92979 | 42.24196 |
Kaloula aureata | Anura | DD | Arboreal | 27.534343 | 38.25447 | 34.92070 | 42.17251 |
Kaloula aureata | Anura | DD | Arboreal | 30.018221 | 38.60647 | 35.06610 | 42.52114 |
Kaloula baleata | Anura | LC | Arboreal | 27.275423 | 38.26931 | 34.89361 | 41.72308 |
Kaloula baleata | Anura | LC | Arboreal | 26.657741 | 38.17936 | 34.54159 | 41.34377 |
Kaloula baleata | Anura | LC | Arboreal | 28.512588 | 38.44948 | 34.90498 | 41.80089 |
Kaloula mediolineata | Anura | NT | Ground-dwelling | 28.454066 | 38.51579 | 35.08249 | 41.85505 |
Kaloula mediolineata | Anura | NT | Ground-dwelling | 27.525827 | 38.38238 | 34.93742 | 41.71907 |
Kaloula mediolineata | Anura | NT | Ground-dwelling | 30.207615 | 38.76781 | 35.29454 | 42.14530 |
Kaloula conjuncta | Anura | LC | Ground-dwelling | 27.466524 | 38.24857 | 35.21688 | 41.52537 |
Kaloula conjuncta | Anura | LC | Ground-dwelling | 26.955859 | 38.17579 | 35.16109 | 41.43154 |
Kaloula conjuncta | Anura | LC | Ground-dwelling | 28.503860 | 38.39641 | 35.32551 | 41.73032 |
Kaloula rigida | Anura | LC | Ground-dwelling | 27.851477 | 38.15801 | 35.11558 | 41.30261 |
Kaloula rigida | Anura | LC | Ground-dwelling | 27.340335 | 38.08607 | 34.92970 | 41.08361 |
Kaloula rigida | Anura | LC | Ground-dwelling | 28.781554 | 38.28892 | 35.15886 | 41.42465 |
Kaloula kokacii | Anura | LC | Arboreal | 27.719892 | 37.80090 | 34.66198 | 40.83465 |
Kaloula kokacii | Anura | LC | Arboreal | 27.254276 | 37.73509 | 34.63858 | 40.78272 |
Kaloula kokacii | Anura | LC | Arboreal | 28.665494 | 37.93457 | 34.67330 | 40.93713 |
Kaloula picta | Anura | LC | Ground-dwelling | 27.562607 | 38.23111 | 34.77901 | 41.59050 |
Kaloula picta | Anura | LC | Ground-dwelling | 27.065278 | 38.16078 | 34.71737 | 41.48914 |
Kaloula picta | Anura | LC | Ground-dwelling | 28.585089 | 38.37570 | 34.84215 | 41.71374 |
Kaloula borealis | Anura | LC | Ground-dwelling | 23.109940 | 37.91727 | 34.26145 | 41.72380 |
Kaloula borealis | Anura | LC | Ground-dwelling | 19.999996 | 37.48274 | 33.68317 | 40.96621 |
Kaloula borealis | Anura | LC | Ground-dwelling | 26.678721 | 38.41592 | 34.67833 | 42.24585 |
Kaloula rugifera | Anura | LC | Ground-dwelling | 21.335897 | 37.68231 | 34.00238 | 41.24535 |
Kaloula rugifera | Anura | LC | Ground-dwelling | 19.042130 | 37.35112 | 33.70428 | 40.88754 |
Kaloula rugifera | Anura | LC | Ground-dwelling | 23.900153 | 38.05255 | 34.31632 | 41.62434 |
Kaloula verrucosa | Anura | LC | Ground-dwelling | 21.361032 | 37.72431 | 34.31366 | 41.47022 |
Kaloula verrucosa | Anura | LC | Ground-dwelling | 20.158832 | 37.55466 | 34.15418 | 41.32322 |
Kaloula verrucosa | Anura | LC | Ground-dwelling | 23.479573 | 38.02327 | 34.62391 | 41.81360 |
Uperodon globulosus | Anura | LC | Fossorial | 26.992147 | 39.22193 | 35.46079 | 43.44009 |
Uperodon globulosus | Anura | LC | Fossorial | 25.985155 | 39.07808 | 35.37821 | 43.30658 |
Uperodon globulosus | Anura | LC | Fossorial | 29.122401 | 39.52624 | 35.77862 | 43.87981 |
Uperodon systoma | Anura | LC | Fossorial | 26.572107 | 39.07833 | 35.41977 | 43.41077 |
Uperodon systoma | Anura | LC | Fossorial | 25.360500 | 38.90966 | 35.28459 | 43.22476 |
Uperodon systoma | Anura | LC | Fossorial | 28.689765 | 39.37313 | 35.78110 | 43.80425 |
Metaphrynella pollicaris | Anura | LC | Arboreal | 28.129488 | 38.04880 | 33.71231 | 42.57326 |
Metaphrynella pollicaris | Anura | LC | Arboreal | 27.450139 | 37.95285 | 33.61544 | 42.41062 |
Metaphrynella pollicaris | Anura | LC | Arboreal | 29.507214 | 38.24336 | 33.72788 | 42.64551 |
Metaphrynella sundana | Anura | LC | Arboreal | 27.828043 | 37.99540 | 33.77750 | 42.63173 |
Metaphrynella sundana | Anura | LC | Arboreal | 27.215376 | 37.90737 | 33.20340 | 42.02279 |
Metaphrynella sundana | Anura | LC | Arboreal | 29.093282 | 38.17720 | 33.45135 | 42.41359 |
Phrynella pulchra | Anura | LC | Arboreal | 28.226119 | 38.19189 | 33.74954 | 42.52288 |
Phrynella pulchra | Anura | LC | Arboreal | 27.598927 | 38.10263 | 33.73080 | 42.47876 |
Phrynella pulchra | Anura | LC | Arboreal | 29.548987 | 38.38016 | 33.95687 | 42.88845 |
Dyscophus insularis | Anura | LC | Ground-dwelling | 26.542159 | 37.64449 | 33.37549 | 42.28295 |
Dyscophus insularis | Anura | LC | Ground-dwelling | 25.674898 | 37.52218 | 32.98010 | 41.90656 |
Dyscophus insularis | Anura | LC | Ground-dwelling | 28.125559 | 37.86779 | 33.73016 | 42.66090 |
Dyscophus antongilii | Anura | LC | Ground-dwelling | 25.730559 | 37.42830 | 33.08435 | 42.66046 |
Dyscophus antongilii | Anura | LC | Ground-dwelling | 24.785176 | 37.29291 | 32.99723 | 42.40651 |
Dyscophus antongilii | Anura | LC | Ground-dwelling | 27.213399 | 37.64067 | 32.65863 | 42.36640 |
Dyscophus guineti | Anura | LC | Ground-dwelling | 25.737089 | 37.39470 | 32.54984 | 42.25828 |
Dyscophus guineti | Anura | LC | Ground-dwelling | 24.842030 | 37.26760 | 32.37121 | 42.08939 |
Dyscophus guineti | Anura | LC | Ground-dwelling | 27.131667 | 37.59273 | 32.72100 | 42.50048 |
Hildebrandtia macrotympanum | Anura | LC | Fossorial | 24.975628 | 38.51023 | 33.01964 | 44.07341 |
Hildebrandtia macrotympanum | Anura | LC | Fossorial | 24.233630 | 38.40961 | 33.00986 | 44.05585 |
Hildebrandtia macrotympanum | Anura | LC | Fossorial | 26.367303 | 38.69896 | 32.97546 | 44.01746 |
Hildebrandtia ornatissima | Anura | DD | Fossorial | 24.225516 | 38.44086 | 32.61565 | 44.39309 |
Hildebrandtia ornatissima | Anura | DD | Fossorial | 22.922554 | 38.26432 | 32.35464 | 44.16273 |
Hildebrandtia ornatissima | Anura | DD | Fossorial | 26.459734 | 38.74357 | 32.83922 | 44.72192 |
Hildebrandtia ornata | Anura | LC | Fossorial | 25.119061 | 38.68559 | 32.21644 | 43.64886 |
Hildebrandtia ornata | Anura | LC | Fossorial | 24.116271 | 38.54844 | 32.10123 | 43.53976 |
Hildebrandtia ornata | Anura | LC | Fossorial | 27.190689 | 38.96891 | 32.39346 | 43.95295 |
Lanzarana largeni | Anura | LC | Ground-dwelling | 25.507663 | 37.73965 | 32.09700 | 43.02122 |
Lanzarana largeni | Anura | LC | Ground-dwelling | 24.732881 | 37.63598 | 31.80783 | 42.69768 |
Lanzarana largeni | Anura | LC | Ground-dwelling | 27.014343 | 37.94125 | 32.20720 | 43.15580 |
Ptychadena aequiplicata | Anura | LC | Semi-aquatic | 27.272190 | 38.21484 | 32.79286 | 44.16789 |
Ptychadena aequiplicata | Anura | LC | Semi-aquatic | 26.541724 | 38.11561 | 32.72035 | 44.03416 |
Ptychadena aequiplicata | Anura | LC | Semi-aquatic | 28.857842 | 38.43024 | 33.01594 | 44.46097 |
Ptychadena obscura | Anura | LC | Ground-dwelling | 23.649534 | 37.43049 | 32.18666 | 43.23779 |
Ptychadena obscura | Anura | LC | Ground-dwelling | 22.735129 | 37.30736 | 32.06498 | 43.10663 |
Ptychadena obscura | Anura | LC | Ground-dwelling | 25.723779 | 37.70982 | 32.50865 | 43.64897 |
Ptychadena mahnerti | Anura | LC | Semi-aquatic | 21.148543 | 37.44013 | 31.57068 | 42.54966 |
Ptychadena mahnerti | Anura | LC | Semi-aquatic | 20.268628 | 37.31966 | 31.40388 | 42.37006 |
Ptychadena mahnerti | Anura | LC | Semi-aquatic | 22.951524 | 37.68698 | 31.88275 | 42.88846 |
Ptychadena uzungwensis | Anura | LC | Semi-aquatic | 24.063804 | 37.82424 | 32.52625 | 43.54093 |
Ptychadena uzungwensis | Anura | LC | Semi-aquatic | 23.118099 | 37.69618 | 32.59164 | 43.63325 |
Ptychadena uzungwensis | Anura | LC | Semi-aquatic | 26.156065 | 38.10756 | 32.72170 | 43.81683 |
Ptychadena porosissima | Anura | LC | Ground-dwelling | 23.504276 | 37.50554 | 32.12002 | 43.04989 |
Ptychadena porosissima | Anura | LC | Ground-dwelling | 22.526147 | 37.37425 | 31.96095 | 42.87896 |
Ptychadena porosissima | Anura | LC | Ground-dwelling | 25.588543 | 37.78531 | 32.38766 | 43.40185 |
Ptychadena perreti | Anura | LC | Ground-dwelling | 27.302217 | 37.90141 | 32.52439 | 43.87882 |
Ptychadena perreti | Anura | LC | Ground-dwelling | 26.533698 | 37.79744 | 32.44093 | 43.75017 |
Ptychadena perreti | Anura | LC | Ground-dwelling | 28.946558 | 38.12386 | 32.61288 | 43.98630 |
Ptychadena anchietae | Anura | LC | Semi-aquatic | 23.988810 | 37.70707 | 32.09532 | 42.87163 |
Ptychadena anchietae | Anura | LC | Semi-aquatic | 23.041766 | 37.57714 | 31.93096 | 42.67483 |
Ptychadena anchietae | Anura | LC | Semi-aquatic | 25.941464 | 37.97496 | 32.44577 | 43.19556 |
Ptychadena oxyrhynchus | Anura | LC | Ground-dwelling | 25.256933 | 37.68902 | 31.85769 | 43.24557 |
Ptychadena oxyrhynchus | Anura | LC | Ground-dwelling | 24.349637 | 37.56744 | 32.09675 | 43.41339 |
Ptychadena oxyrhynchus | Anura | LC | Ground-dwelling | 27.175888 | 37.94616 | 31.96733 | 43.40471 |
Ptychadena tellinii | Anura | LC | Ground-dwelling | 26.925017 | 37.94675 | 32.39270 | 43.20352 |
Ptychadena tellinii | Anura | LC | Ground-dwelling | 26.066808 | 37.83022 | 32.28465 | 43.01190 |
Ptychadena tellinii | Anura | LC | Ground-dwelling | 28.839099 | 38.20666 | 32.24024 | 43.15572 |
Ptychadena longirostris | Anura | LC | Ground-dwelling | 27.549540 | 37.94516 | 32.68009 | 43.41177 |
Ptychadena longirostris | Anura | LC | Ground-dwelling | 26.927995 | 37.85895 | 32.28784 | 42.98864 |
Ptychadena longirostris | Anura | LC | Ground-dwelling | 28.885605 | 38.13047 | 32.84907 | 43.62178 |
Ptychadena bunoderma | Anura | LC | Ground-dwelling | 24.665865 | 37.62773 | 32.67238 | 43.21795 |
Ptychadena bunoderma | Anura | LC | Ground-dwelling | 23.730351 | 37.50009 | 32.36853 | 42.87753 |
Ptychadena bunoderma | Anura | LC | Ground-dwelling | 26.829208 | 37.92289 | 32.76629 | 43.38240 |
Ptychadena upembae | Anura | LC | Semi-aquatic | 24.024196 | 37.82853 | 32.69150 | 43.68427 |
Ptychadena upembae | Anura | LC | Semi-aquatic | 23.088830 | 37.70238 | 32.39168 | 43.41764 |
Ptychadena upembae | Anura | LC | Semi-aquatic | 26.157763 | 38.11629 | 33.06803 | 44.04472 |
Ptychadena ansorgii | Anura | LC | Semi-aquatic | 24.135549 | 37.86620 | 32.08070 | 43.80489 |
Ptychadena ansorgii | Anura | LC | Semi-aquatic | 23.162948 | 37.73566 | 31.97129 | 43.69506 |
Ptychadena ansorgii | Anura | LC | Semi-aquatic | 26.305206 | 38.15740 | 32.32476 | 44.18091 |
Ptychadena arnei | Anura | DD | Ground-dwelling | 27.327738 | 37.96941 | 32.18022 | 43.59053 |
Ptychadena arnei | Anura | DD | Ground-dwelling | 26.649769 | 37.87919 | 32.10875 | 43.51883 |
Ptychadena arnei | Anura | DD | Ground-dwelling | 28.758064 | 38.15976 | 32.28542 | 43.70647 |
Ptychadena pumilio | Anura | LC | Semi-aquatic | 27.052530 | 38.12940 | 32.44026 | 43.67844 |
Ptychadena pumilio | Anura | LC | Semi-aquatic | 26.221871 | 38.01665 | 32.54747 | 43.71228 |
Ptychadena pumilio | Anura | LC | Semi-aquatic | 28.841595 | 38.37224 | 32.63817 | 43.94340 |
Ptychadena retropunctata | Anura | LC | Semi-aquatic | 27.329956 | 38.19226 | 31.95983 | 43.36650 |
Ptychadena retropunctata | Anura | LC | Semi-aquatic | 26.495621 | 38.07807 | 31.97197 | 43.30167 |
Ptychadena retropunctata | Anura | LC | Semi-aquatic | 29.258116 | 38.45615 | 32.45069 | 43.90075 |
Ptychadena bibroni | Anura | LC | Ground-dwelling | 27.245140 | 37.88253 | 32.28186 | 43.59809 |
Ptychadena bibroni | Anura | LC | Ground-dwelling | 26.458026 | 37.77572 | 32.17398 | 43.45333 |
Ptychadena bibroni | Anura | LC | Ground-dwelling | 29.004106 | 38.12122 | 32.44000 | 43.89893 |
Ptychadena christyi | Anura | LC | Ground-dwelling | 24.409417 | 37.45427 | 32.36257 | 43.53427 |
Ptychadena christyi | Anura | LC | Ground-dwelling | 23.708436 | 37.36032 | 32.29371 | 43.42049 |
Ptychadena christyi | Anura | LC | Ground-dwelling | 25.971336 | 37.66360 | 32.48878 | 43.67128 |
Ptychadena stenocephala | Anura | LC | Ground-dwelling | 25.738501 | 37.61168 | 32.15733 | 43.17800 |
Ptychadena stenocephala | Anura | LC | Ground-dwelling | 25.010310 | 37.51329 | 32.19705 | 43.24507 |
Ptychadena stenocephala | Anura | LC | Ground-dwelling | 27.383050 | 37.83388 | 32.48930 | 43.58652 |
Ptychadena broadleyi | Anura | NT | Ground-dwelling | 25.582109 | 37.61431 | 32.10548 | 43.15007 |
Ptychadena broadleyi | Anura | NT | Ground-dwelling | 24.484506 | 37.46686 | 32.05243 | 43.12742 |
Ptychadena broadleyi | Anura | NT | Ground-dwelling | 27.641894 | 37.89101 | 32.42528 | 43.44478 |
Ptychadena keilingi | Anura | LC | Ground-dwelling | 24.485195 | 37.43458 | 31.90411 | 43.01204 |
Ptychadena keilingi | Anura | LC | Ground-dwelling | 23.664369 | 37.32373 | 31.75524 | 42.90695 |
Ptychadena keilingi | Anura | LC | Ground-dwelling | 26.636057 | 37.72505 | 32.15178 | 43.34498 |
Ptychadena chrysogaster | Anura | LC | Ground-dwelling | 21.961072 | 37.08841 | 31.33584 | 42.49502 |
Ptychadena chrysogaster | Anura | LC | Ground-dwelling | 21.297542 | 36.99747 | 31.23179 | 42.39084 |
Ptychadena chrysogaster | Anura | LC | Ground-dwelling | 23.310389 | 37.27332 | 31.68562 | 42.91173 |
Ptychadena harenna | Anura | DD | Ground-dwelling | 20.132346 | 36.87476 | 31.27961 | 42.50237 |
Ptychadena harenna | Anura | DD | Ground-dwelling | 19.211996 | 36.74987 | 30.82072 | 42.03780 |
Ptychadena harenna | Anura | DD | Ground-dwelling | 21.359748 | 37.04130 | 31.64937 | 42.82983 |
Ptychadena cooperi | Anura | LC | Semi-aquatic | 19.750731 | 37.22298 | 31.51527 | 42.99914 |
Ptychadena cooperi | Anura | LC | Semi-aquatic | 18.856488 | 37.10077 | 31.09215 | 42.59234 |
Ptychadena cooperi | Anura | LC | Semi-aquatic | 21.240207 | 37.42652 | 31.44961 | 42.93237 |
Ptychadena erlangeri | Anura | NT | Ground-dwelling | 21.164735 | 37.16759 | 31.64921 | 43.13498 |
Ptychadena erlangeri | Anura | NT | Ground-dwelling | 20.300004 | 37.05075 | 31.22804 | 42.69929 |
Ptychadena erlangeri | Anura | NT | Ground-dwelling | 22.844425 | 37.39455 | 31.62121 | 43.06862 |
Ptychadena nana | Anura | EN | Ground-dwelling | 18.971614 | 36.87051 | 30.88798 | 42.33348 |
Ptychadena nana | Anura | EN | Ground-dwelling | 18.034702 | 36.74290 | 30.74703 | 42.24671 |
Ptychadena nana | Anura | EN | Ground-dwelling | 20.396658 | 37.06461 | 31.00722 | 42.45686 |
Ptychadena wadei | Anura | DD | Ground-dwelling | 23.030078 | 37.44152 | 31.91100 | 43.29313 |
Ptychadena wadei | Anura | DD | Ground-dwelling | 22.020236 | 37.30777 | 31.79831 | 43.19511 |
Ptychadena wadei | Anura | DD | Ground-dwelling | 25.466633 | 37.76423 | 32.45994 | 43.96558 |
Ptychadena filwoha | Anura | DD | Semi-aquatic | 19.886092 | 37.10386 | 31.63599 | 43.20537 |
Ptychadena filwoha | Anura | DD | Semi-aquatic | 19.110801 | 36.99815 | 31.55215 | 43.09473 |
Ptychadena filwoha | Anura | DD | Semi-aquatic | 21.649636 | 37.34432 | 31.52997 | 43.16704 |
Ptychadena subpunctata | Anura | LC | Aquatic | 24.226415 | 37.62204 | 32.06785 | 43.75811 |
Ptychadena subpunctata | Anura | LC | Aquatic | 23.186029 | 37.47992 | 31.81011 | 43.45999 |
Ptychadena subpunctata | Anura | LC | Aquatic | 26.431595 | 37.92327 | 32.69468 | 44.38116 |
Ptychadena gansi | Anura | LC | Ground-dwelling | 26.165743 | 37.75488 | 32.08882 | 43.44043 |
Ptychadena gansi | Anura | LC | Ground-dwelling | 25.487552 | 37.66327 | 32.16070 | 43.45148 |
Ptychadena gansi | Anura | LC | Ground-dwelling | 27.381596 | 37.91911 | 32.31796 | 43.70294 |
Ptychadena grandisonae | Anura | LC | Ground-dwelling | 24.030374 | 37.45675 | 32.06042 | 43.15966 |
Ptychadena grandisonae | Anura | LC | Ground-dwelling | 23.086623 | 37.32865 | 31.99274 | 43.08411 |
Ptychadena grandisonae | Anura | LC | Ground-dwelling | 26.110102 | 37.73903 | 32.41184 | 43.70968 |
Ptychadena guibei | Anura | LC | Ground-dwelling | 24.615759 | 37.57045 | 31.82362 | 42.75231 |
Ptychadena guibei | Anura | LC | Ground-dwelling | 23.644338 | 37.43664 | 31.94516 | 42.92292 |
Ptychadena guibei | Anura | LC | Ground-dwelling | 26.729773 | 37.86165 | 32.19365 | 43.16894 |
Ptychadena neumanni | Anura | LC | Semi-aquatic | 21.331237 | 37.39762 | 32.34029 | 43.15723 |
Ptychadena neumanni | Anura | LC | Semi-aquatic | 20.472127 | 37.27995 | 32.28683 | 43.14695 |
Ptychadena neumanni | Anura | LC | Semi-aquatic | 23.017854 | 37.62863 | 32.38986 | 43.24500 |
Ptychadena ingeri | Anura | DD | Semi-aquatic | 26.370345 | 37.98861 | 32.67760 | 43.68508 |
Ptychadena ingeri | Anura | DD | Semi-aquatic | 25.546184 | 37.87772 | 32.57590 | 43.56223 |
Ptychadena ingeri | Anura | DD | Semi-aquatic | 27.990002 | 38.20655 | 32.30657 | 43.44380 |
Ptychadena submascareniensis | Anura | DD | Ground-dwelling | 27.321113 | 37.90227 | 32.80726 | 43.41656 |
Ptychadena submascareniensis | Anura | DD | Ground-dwelling | 26.551229 | 37.79781 | 32.69754 | 43.30519 |
Ptychadena submascareniensis | Anura | DD | Ground-dwelling | 28.999608 | 38.13001 | 33.11503 | 43.75781 |
Ptychadena mapacha | Anura | DD | Ground-dwelling | 24.523745 | 37.52569 | 32.20364 | 43.29594 |
Ptychadena mapacha | Anura | DD | Ground-dwelling | 23.385089 | 37.37079 | 32.01135 | 43.07697 |
Ptychadena mapacha | Anura | DD | Ground-dwelling | 26.760769 | 37.83000 | 32.06329 | 43.22486 |
Ptychadena straeleni | Anura | LC | Ground-dwelling | 26.807505 | 37.84629 | 32.36997 | 43.09176 |
Ptychadena straeleni | Anura | LC | Ground-dwelling | 25.940036 | 37.72613 | 32.33856 | 43.02470 |
Ptychadena straeleni | Anura | LC | Ground-dwelling | 28.620859 | 38.09749 | 32.68686 | 43.35720 |
Ptychadena mascareniensis | Anura | LC | Semi-aquatic | 25.593142 | 37.92922 | 31.64697 | 43.33363 |
Ptychadena mascareniensis | Anura | LC | Semi-aquatic | 24.676346 | 37.80436 | 31.53781 | 43.24857 |
Ptychadena mascareniensis | Anura | LC | Semi-aquatic | 27.454304 | 38.18271 | 31.86858 | 43.59648 |
Ptychadena newtoni | Anura | EN | Semi-aquatic | 26.962622 | 38.16965 | 32.56076 | 43.31892 |
Ptychadena newtoni | Anura | EN | Semi-aquatic | 26.447166 | 38.09798 | 32.50891 | 43.24925 |
Ptychadena newtoni | Anura | EN | Semi-aquatic | 27.902257 | 38.30030 | 32.72770 | 43.49653 |
Ptychadena nilotica | Anura | LC | Semi-aquatic | 23.898387 | 37.68269 | 32.30177 | 43.52692 |
Ptychadena nilotica | Anura | LC | Semi-aquatic | 22.989256 | 37.55898 | 32.13049 | 43.40841 |
Ptychadena nilotica | Anura | LC | Semi-aquatic | 25.744587 | 37.93391 | 32.38093 | 43.72768 |
Ptychadena taenioscelis | Anura | LC | Ground-dwelling | 24.467514 | 37.43242 | 31.87300 | 43.11504 |
Ptychadena taenioscelis | Anura | LC | Ground-dwelling | 23.532159 | 37.30521 | 31.69421 | 42.97614 |
Ptychadena taenioscelis | Anura | LC | Ground-dwelling | 26.515354 | 37.71094 | 31.92877 | 43.24746 |
Ptychadena trinodis | Anura | LC | Ground-dwelling | 27.239698 | 37.84528 | 32.34728 | 43.42987 |
Ptychadena trinodis | Anura | LC | Ground-dwelling | 26.366108 | 37.72711 | 32.28986 | 43.36213 |
Ptychadena trinodis | Anura | LC | Ground-dwelling | 29.199946 | 38.11044 | 32.52110 | 43.70946 |
Ptychadena mossambica | Anura | LC | Ground-dwelling | 23.973279 | 37.38731 | 31.78704 | 43.15386 |
Ptychadena mossambica | Anura | LC | Ground-dwelling | 22.947109 | 37.24724 | 31.71201 | 43.02219 |
Ptychadena mossambica | Anura | LC | Ground-dwelling | 26.020380 | 37.66673 | 32.00417 | 43.56132 |
Ptychadena tournieri | Anura | LC | Semi-aquatic | 27.495397 | 38.11833 | 32.01642 | 43.47529 |
Ptychadena tournieri | Anura | LC | Semi-aquatic | 26.716207 | 38.01228 | 31.93042 | 43.37036 |
Ptychadena tournieri | Anura | LC | Semi-aquatic | 29.197567 | 38.34999 | 32.26584 | 43.99656 |
Ptychadena perplicata | Anura | LC | Ground-dwelling | 24.365031 | 37.52894 | 31.89620 | 42.87186 |
Ptychadena perplicata | Anura | LC | Ground-dwelling | 23.457735 | 37.40284 | 31.77966 | 42.73829 |
Ptychadena perplicata | Anura | LC | Ground-dwelling | 26.516490 | 37.82797 | 32.20416 | 43.24722 |
Ptychadena schillukorum | Anura | LC | Ground-dwelling | 25.476659 | 37.65477 | 32.19797 | 43.16891 |
Ptychadena schillukorum | Anura | LC | Ground-dwelling | 24.596875 | 37.53303 | 32.06852 | 42.99451 |
Ptychadena schillukorum | Anura | LC | Ground-dwelling | 27.386727 | 37.91908 | 32.26720 | 43.37250 |
Ptychadena pujoli | Anura | DD | Ground-dwelling | 27.410974 | 37.89083 | 32.31433 | 43.49434 |
Ptychadena pujoli | Anura | DD | Ground-dwelling | 26.604538 | 37.78041 | 32.23589 | 43.36632 |
Ptychadena pujoli | Anura | DD | Ground-dwelling | 29.266951 | 38.14496 | 32.22906 | 43.51435 |
Ptychadena superciliaris | Anura | LC | Ground-dwelling | 27.417447 | 37.94039 | 32.88324 | 43.85987 |
Ptychadena superciliaris | Anura | LC | Ground-dwelling | 26.769532 | 37.85221 | 32.79250 | 43.77327 |
Ptychadena superciliaris | Anura | LC | Ground-dwelling | 28.785386 | 38.12659 | 32.79262 | 43.85253 |
Odontobatrachus natator | Anura | LC | Stream-dwelling | 27.379190 | 37.14671 | 31.20361 | 42.43587 |
Odontobatrachus natator | Anura | LC | Stream-dwelling | 26.658713 | 37.04693 | 30.86516 | 42.11571 |
Odontobatrachus natator | Anura | LC | Stream-dwelling | 28.967572 | 37.36669 | 31.31829 | 42.57921 |
Phrynobatrachus latifrons | Anura | LC | Ground-dwelling | 27.467079 | 37.82826 | 32.31607 | 43.22600 |
Phrynobatrachus latifrons | Anura | LC | Ground-dwelling | 26.704510 | 37.72549 | 32.30693 | 43.17562 |
Phrynobatrachus latifrons | Anura | LC | Ground-dwelling | 29.249954 | 38.06854 | 32.35460 | 43.30034 |
Phrynobatrachus asper | Anura | VU | Semi-aquatic | 23.942704 | 37.69558 | 31.84577 | 42.41645 |
Phrynobatrachus asper | Anura | VU | Semi-aquatic | 23.230154 | 37.59761 | 31.79246 | 42.30076 |
Phrynobatrachus asper | Anura | VU | Semi-aquatic | 25.735535 | 37.94208 | 32.55860 | 43.17266 |
Phrynobatrachus acridoides | Anura | LC | Semi-aquatic | 24.194696 | 37.64388 | 32.48259 | 43.04775 |
Phrynobatrachus acridoides | Anura | LC | Semi-aquatic | 23.299486 | 37.52396 | 32.37740 | 42.93199 |
Phrynobatrachus acridoides | Anura | LC | Semi-aquatic | 26.030331 | 37.88978 | 32.80549 | 43.37093 |
Phrynobatrachus pakenhami | Anura | EN | Semi-aquatic | 25.270144 | 37.85164 | 32.28040 | 42.84930 |
Phrynobatrachus pakenhami | Anura | EN | Semi-aquatic | 24.690553 | 37.77354 | 32.22628 | 42.77110 |
Phrynobatrachus pakenhami | Anura | EN | Semi-aquatic | 26.277953 | 37.98743 | 32.36592 | 42.96750 |
Phrynobatrachus bullans | Anura | LC | Semi-aquatic | 21.706633 | 37.31702 | 32.44244 | 42.88954 |
Phrynobatrachus bullans | Anura | LC | Semi-aquatic | 20.814877 | 37.19472 | 32.32289 | 42.77905 |
Phrynobatrachus bullans | Anura | LC | Semi-aquatic | 23.717262 | 37.59276 | 32.80547 | 43.21912 |
Phrynobatrachus francisci | Anura | LC | Ground-dwelling | 27.429725 | 37.72343 | 32.74331 | 43.30013 |
Phrynobatrachus francisci | Anura | LC | Ground-dwelling | 26.587795 | 37.60977 | 32.59171 | 43.14960 |
Phrynobatrachus francisci | Anura | LC | Ground-dwelling | 29.280664 | 37.97329 | 33.13969 | 43.77209 |
Phrynobatrachus natalensis | Anura | LC | Ground-dwelling | 24.852439 | 37.53217 | 32.30797 | 42.61058 |
Phrynobatrachus natalensis | Anura | LC | Ground-dwelling | 23.882636 | 37.39955 | 32.29250 | 42.50354 |
Phrynobatrachus natalensis | Anura | LC | Ground-dwelling | 26.807929 | 37.79958 | 32.73845 | 43.08278 |
Phrynobatrachus bequaerti | Anura | LC | Semi-aquatic | 22.841422 | 37.40341 | 31.85241 | 42.29083 |
Phrynobatrachus bequaerti | Anura | LC | Semi-aquatic | 22.192000 | 37.31475 | 31.71213 | 42.18895 |
Phrynobatrachus bequaerti | Anura | LC | Semi-aquatic | 24.292990 | 37.60159 | 32.11633 | 42.55889 |
Phrynobatrachus africanus | Anura | LC | Semi-aquatic | 27.135654 | 38.10534 | 32.94379 | 43.87595 |
Phrynobatrachus africanus | Anura | LC | Semi-aquatic | 26.406612 | 38.00473 | 32.83338 | 43.75270 |
Phrynobatrachus africanus | Anura | LC | Semi-aquatic | 28.732569 | 38.32572 | 33.08605 | 43.98304 |
Phrynobatrachus elberti | Anura | DD | Ground-dwelling | 26.929643 | 37.81477 | 32.07270 | 42.71229 |
Phrynobatrachus elberti | Anura | DD | Ground-dwelling | 26.075198 | 37.70005 | 31.91370 | 42.54158 |
Phrynobatrachus elberti | Anura | DD | Ground-dwelling | 28.505136 | 38.02629 | 32.06084 | 42.73075 |
Phrynobatrachus brevipalmatus | Anura | DD | Ground-dwelling | 26.300291 | 37.69868 | 32.29339 | 42.43311 |
Phrynobatrachus brevipalmatus | Anura | DD | Ground-dwelling | 25.435372 | 37.58225 | 32.14478 | 42.29400 |
Phrynobatrachus brevipalmatus | Anura | DD | Ground-dwelling | 28.045141 | 37.93357 | 32.68030 | 42.84062 |
Phrynobatrachus albomarginatus | Anura | DD | Ground-dwelling | 26.584696 | 37.75112 | 33.02463 | 43.61690 |
Phrynobatrachus albomarginatus | Anura | DD | Ground-dwelling | 25.706014 | 37.63062 | 32.96856 | 43.56499 |
Phrynobatrachus albomarginatus | Anura | DD | Ground-dwelling | 28.283994 | 37.98417 | 33.25629 | 43.80333 |
Phrynobatrachus mababiensis | Anura | LC | Semi-aquatic | 23.854869 | 37.57229 | 31.26215 | 42.71948 |
Phrynobatrachus mababiensis | Anura | LC | Semi-aquatic | 22.745396 | 37.41937 | 31.40859 | 42.83070 |
Phrynobatrachus mababiensis | Anura | LC | Semi-aquatic | 26.004033 | 37.86852 | 32.41027 | 43.89704 |
Phrynobatrachus alleni | Anura | LC | Semi-aquatic | 27.456303 | 38.02215 | 32.93293 | 44.44733 |
Phrynobatrachus alleni | Anura | LC | Semi-aquatic | 26.815376 | 37.93285 | 32.28302 | 43.78305 |
Phrynobatrachus alleni | Anura | LC | Semi-aquatic | 28.851389 | 38.21654 | 33.15144 | 44.66456 |
Phrynobatrachus phyllophilus | Anura | LC | Ground-dwelling | 27.423763 | 37.77517 | 32.51462 | 43.27624 |
Phrynobatrachus phyllophilus | Anura | LC | Ground-dwelling | 26.810424 | 37.69226 | 32.30548 | 43.06300 |
Phrynobatrachus phyllophilus | Anura | LC | Ground-dwelling | 28.708333 | 37.94882 | 32.59451 | 43.37323 |
Phrynobatrachus ghanensis | Anura | NT | Ground-dwelling | 27.377000 | 37.70690 | 32.40376 | 43.10337 |
Phrynobatrachus ghanensis | Anura | NT | Ground-dwelling | 26.849559 | 37.63678 | 32.41293 | 43.03272 |
Phrynobatrachus ghanensis | Anura | NT | Ground-dwelling | 28.507691 | 37.85721 | 32.52452 | 43.29107 |
Phrynobatrachus guineensis | Anura | LC | Arboreal | 27.385856 | 37.62481 | 32.41749 | 42.96939 |
Phrynobatrachus guineensis | Anura | LC | Arboreal | 26.725991 | 37.53454 | 32.38383 | 42.92881 |
Phrynobatrachus guineensis | Anura | LC | Arboreal | 28.792322 | 37.81724 | 32.59243 | 43.20500 |
Phrynobatrachus annulatus | Anura | LC | Semi-aquatic | 27.432500 | 38.08671 | 32.41574 | 43.22194 |
Phrynobatrachus annulatus | Anura | LC | Semi-aquatic | 26.830920 | 38.00536 | 32.33859 | 43.11746 |
Phrynobatrachus annulatus | Anura | LC | Semi-aquatic | 28.669592 | 38.25399 | 32.57439 | 43.45155 |
Phrynobatrachus calcaratus | Anura | LC | Semi-aquatic | 27.248224 | 38.02303 | 32.83165 | 43.54781 |
Phrynobatrachus calcaratus | Anura | LC | Semi-aquatic | 26.537214 | 37.92549 | 32.63236 | 43.37187 |
Phrynobatrachus calcaratus | Anura | LC | Semi-aquatic | 28.797552 | 38.23557 | 32.96964 | 43.68954 |
Phrynobatrachus villiersi | Anura | LC | Ground-dwelling | 27.420563 | 37.87765 | 32.44626 | 43.51702 |
Phrynobatrachus villiersi | Anura | LC | Ground-dwelling | 26.840079 | 37.79824 | 32.31240 | 43.39123 |
Phrynobatrachus villiersi | Anura | LC | Ground-dwelling | 28.636487 | 38.04400 | 32.56864 | 43.66314 |
Phrynobatrachus cornutus | Anura | LC | Ground-dwelling | 27.232853 | 37.80902 | 32.28683 | 42.93954 |
Phrynobatrachus cornutus | Anura | LC | Ground-dwelling | 26.486967 | 37.70855 | 32.22853 | 42.85192 |
Phrynobatrachus cornutus | Anura | LC | Ground-dwelling | 28.841268 | 38.02568 | 32.47762 | 43.22600 |
Phrynobatrachus anotis | Anura | DD | Ground-dwelling | 24.875041 | 37.35713 | 31.90964 | 43.00850 |
Phrynobatrachus anotis | Anura | DD | Ground-dwelling | 23.987706 | 37.23713 | 31.82542 | 42.91289 |
Phrynobatrachus anotis | Anura | DD | Ground-dwelling | 26.945121 | 37.63708 | 32.39769 | 43.74462 |
Phrynobatrachus nanus | Anura | DD | Ground-dwelling | 26.929643 | 37.62562 | 32.21176 | 43.38540 |
Phrynobatrachus nanus | Anura | DD | Ground-dwelling | 26.075198 | 37.51002 | 32.27400 | 43.44094 |
Phrynobatrachus nanus | Anura | DD | Ground-dwelling | 28.505136 | 37.83878 | 32.44924 | 43.62001 |
Phrynobatrachus auritus | Anura | LC | Ground-dwelling | 27.136103 | 37.69685 | 31.60081 | 42.57345 |
Phrynobatrachus auritus | Anura | LC | Ground-dwelling | 26.390169 | 37.59600 | 31.56453 | 42.53229 |
Phrynobatrachus auritus | Anura | LC | Ground-dwelling | 28.758974 | 37.91626 | 31.84081 | 42.85221 |
Phrynobatrachus plicatus | Anura | LC | Semi-aquatic | 27.597663 | 38.07268 | 32.44072 | 43.68297 |
Phrynobatrachus plicatus | Anura | LC | Semi-aquatic | 26.997449 | 37.99118 | 32.39372 | 43.57100 |
Phrynobatrachus plicatus | Anura | LC | Semi-aquatic | 28.880316 | 38.24683 | 32.64113 | 43.92226 |
Phrynobatrachus gastoni | Anura | DD | Ground-dwelling | 27.525575 | 37.82432 | 32.38801 | 43.51718 |
Phrynobatrachus gastoni | Anura | DD | Ground-dwelling | 26.819979 | 37.72877 | 32.18956 | 43.28254 |
Phrynobatrachus gastoni | Anura | DD | Ground-dwelling | 29.021698 | 38.02691 | 32.49805 | 43.73691 |
Phrynobatrachus batesii | Anura | LC | Ground-dwelling | 26.908678 | 37.68642 | 32.29713 | 42.65481 |
Phrynobatrachus batesii | Anura | LC | Ground-dwelling | 26.260927 | 37.59920 | 32.23518 | 42.55130 |
Phrynobatrachus batesii | Anura | LC | Ground-dwelling | 28.358980 | 37.88168 | 32.48509 | 42.88657 |
Phrynobatrachus werneri | Anura | LC | Stream-dwelling | 26.364077 | 36.99593 | 31.80209 | 42.79422 |
Phrynobatrachus werneri | Anura | LC | Stream-dwelling | 25.677902 | 36.90450 | 31.73560 | 42.69778 |
Phrynobatrachus werneri | Anura | LC | Stream-dwelling | 27.796225 | 37.18676 | 31.51888 | 42.56630 |
Phrynobatrachus cricogaster | Anura | NT | Semi-aquatic | 26.711430 | 37.91632 | 32.89185 | 43.77831 |
Phrynobatrachus cricogaster | Anura | NT | Semi-aquatic | 26.082844 | 37.83122 | 32.93473 | 43.81617 |
Phrynobatrachus cricogaster | Anura | NT | Semi-aquatic | 28.073502 | 38.10071 | 32.93269 | 43.85123 |
Phrynobatrachus steindachneri | Anura | CR | Semi-aquatic | 25.797540 | 37.82141 | 32.42790 | 43.09683 |
Phrynobatrachus steindachneri | Anura | CR | Semi-aquatic | 25.033748 | 37.71848 | 32.38151 | 43.00938 |
Phrynobatrachus steindachneri | Anura | CR | Semi-aquatic | 27.461922 | 38.04572 | 32.57635 | 43.24982 |
Phrynobatrachus chukuchuku | Anura | CR | Semi-aquatic | 25.529022 | 37.74764 | 32.07026 | 43.00856 |
Phrynobatrachus chukuchuku | Anura | CR | Semi-aquatic | 24.726769 | 37.63654 | 31.71871 | 42.64878 |
Phrynobatrachus chukuchuku | Anura | CR | Semi-aquatic | 27.197252 | 37.97866 | 32.46798 | 43.37619 |
Phrynobatrachus breviceps | Anura | DD | Ground-dwelling | 21.407079 | 36.89892 | 31.75267 | 42.30228 |
Phrynobatrachus breviceps | Anura | DD | Ground-dwelling | 20.534143 | 36.78183 | 31.65631 | 42.16482 |
Phrynobatrachus breviceps | Anura | DD | Ground-dwelling | 23.114784 | 37.12796 | 31.71193 | 42.31903 |
Phrynobatrachus hylaios | Anura | LC | Semi-aquatic | 27.032015 | 37.96095 | 32.94655 | 43.54448 |
Phrynobatrachus hylaios | Anura | LC | Semi-aquatic | 26.291097 | 37.86023 | 32.89051 | 43.49502 |
Phrynobatrachus hylaios | Anura | LC | Semi-aquatic | 28.657137 | 38.18186 | 33.09435 | 43.72760 |
Phrynobatrachus graueri | Anura | LC | Semi-aquatic | 22.529553 | 37.56614 | 32.61528 | 43.25314 |
Phrynobatrachus graueri | Anura | LC | Semi-aquatic | 21.796567 | 37.46635 | 32.51044 | 43.16612 |
Phrynobatrachus graueri | Anura | LC | Semi-aquatic | 24.109980 | 37.78131 | 32.82793 | 43.45689 |
Phrynobatrachus kinangopensis | Anura | VU | Semi-aquatic | 21.132444 | 37.30797 | 32.27498 | 43.08785 |
Phrynobatrachus kinangopensis | Anura | VU | Semi-aquatic | 20.271533 | 37.19176 | 31.56990 | 42.36326 |
Phrynobatrachus kinangopensis | Anura | VU | Semi-aquatic | 22.863109 | 37.54160 | 32.64972 | 43.42333 |
Phrynobatrachus cryptotis | Anura | DD | Ground-dwelling | 24.875041 | 37.49700 | 32.66052 | 43.29358 |
Phrynobatrachus cryptotis | Anura | DD | Ground-dwelling | 23.987706 | 37.37879 | 32.51422 | 43.17738 |
Phrynobatrachus cryptotis | Anura | DD | Ground-dwelling | 26.945121 | 37.77277 | 32.64292 | 43.38275 |
Phrynobatrachus irangi | Anura | CR | Ground-dwelling | 21.604114 | 37.03773 | 30.89100 | 41.62937 |
Phrynobatrachus irangi | Anura | CR | Ground-dwelling | 20.748344 | 36.92133 | 30.74314 | 41.48827 |
Phrynobatrachus irangi | Anura | CR | Ground-dwelling | 23.379651 | 37.27922 | 31.26778 | 41.99284 |
Phrynobatrachus dalcqi | Anura | DD | Ground-dwelling | 24.955931 | 37.44187 | 32.27647 | 42.74851 |
Phrynobatrachus dalcqi | Anura | DD | Ground-dwelling | 24.197975 | 37.33771 | 32.21870 | 42.67630 |
Phrynobatrachus dalcqi | Anura | DD | Ground-dwelling | 26.974012 | 37.71919 | 32.55547 | 43.13112 |
Phrynobatrachus intermedius | Anura | CR | Semi-aquatic | 27.430034 | 38.09139 | 32.96793 | 43.80807 |
Phrynobatrachus intermedius | Anura | CR | Semi-aquatic | 26.951094 | 38.02657 | 32.89947 | 43.72938 |
Phrynobatrachus intermedius | Anura | CR | Semi-aquatic | 28.364550 | 38.21788 | 33.09932 | 43.94391 |
Phrynobatrachus liberiensis | Anura | LC | Semi-aquatic | 27.423763 | 38.02691 | 31.99699 | 43.00165 |
Phrynobatrachus liberiensis | Anura | LC | Semi-aquatic | 26.810424 | 37.94314 | 31.89780 | 42.90026 |
Phrynobatrachus liberiensis | Anura | LC | Semi-aquatic | 28.708333 | 38.20237 | 33.08940 | 44.18756 |
Phrynobatrachus tokba | Anura | LC | Ground-dwelling | 27.377488 | 37.81862 | 32.71401 | 43.31502 |
Phrynobatrachus tokba | Anura | LC | Ground-dwelling | 26.697159 | 37.72530 | 32.71285 | 43.24001 |
Phrynobatrachus tokba | Anura | LC | Ground-dwelling | 28.822872 | 38.01689 | 32.71648 | 43.33023 |
Phrynobatrachus dispar | Anura | LC | Semi-aquatic | 27.154492 | 37.96166 | 32.78581 | 43.70681 |
Phrynobatrachus dispar | Anura | LC | Semi-aquatic | 26.573730 | 37.88385 | 32.70778 | 43.64591 |
Phrynobatrachus dispar | Anura | LC | Semi-aquatic | 28.071748 | 38.08455 | 32.90904 | 43.80298 |
Phrynobatrachus leveleve | Anura | LC | Semi-aquatic | 26.962622 | 37.93910 | 32.64009 | 43.25971 |
Phrynobatrachus leveleve | Anura | LC | Semi-aquatic | 26.447166 | 37.86977 | 32.65079 | 43.25086 |
Phrynobatrachus leveleve | Anura | LC | Semi-aquatic | 27.902257 | 38.06549 | 32.73657 | 43.45850 |
Phrynobatrachus inexpectatus | Anura | DD | Ground-dwelling | 19.601740 | 36.72768 | 31.21283 | 41.91114 |
Phrynobatrachus inexpectatus | Anura | DD | Ground-dwelling | 18.728317 | 36.60729 | 31.38468 | 42.07249 |
Phrynobatrachus inexpectatus | Anura | DD | Ground-dwelling | 21.017766 | 36.92286 | 31.51699 | 42.25587 |
Phrynobatrachus minutus | Anura | LC | Semi-aquatic | 20.966474 | 37.20567 | 32.05143 | 42.55694 |
Phrynobatrachus minutus | Anura | LC | Semi-aquatic | 20.113596 | 37.08708 | 31.98309 | 42.45491 |
Phrynobatrachus minutus | Anura | LC | Semi-aquatic | 22.625456 | 37.43633 | 32.34814 | 42.97705 |
Phrynobatrachus scheffleri | Anura | LC | Semi-aquatic | 22.818299 | 37.45257 | 31.72822 | 42.60571 |
Phrynobatrachus scheffleri | Anura | LC | Semi-aquatic | 22.024321 | 37.34219 | 31.73789 | 42.60608 |
Phrynobatrachus scheffleri | Anura | LC | Semi-aquatic | 24.502986 | 37.68676 | 31.85308 | 42.74352 |
Phrynobatrachus rungwensis | Anura | LC | Semi-aquatic | 23.231342 | 37.43185 | 32.25288 | 42.63037 |
Phrynobatrachus rungwensis | Anura | LC | Semi-aquatic | 22.326536 | 37.30820 | 32.15916 | 42.54397 |
Phrynobatrachus rungwensis | Anura | LC | Semi-aquatic | 25.200687 | 37.70098 | 32.45687 | 42.86502 |
Phrynobatrachus uzungwensis | Anura | NT | Stream-dwelling | 22.907733 | 36.55430 | 31.08880 | 41.51639 |
Phrynobatrachus uzungwensis | Anura | NT | Stream-dwelling | 22.176691 | 36.45455 | 31.01525 | 41.40737 |
Phrynobatrachus uzungwensis | Anura | NT | Stream-dwelling | 24.569435 | 36.78103 | 31.95870 | 42.36545 |
Phrynobatrachus parvulus | Anura | LC | Ground-dwelling | 23.882439 | 37.32580 | 32.57429 | 43.04357 |
Phrynobatrachus parvulus | Anura | LC | Ground-dwelling | 22.881479 | 37.18855 | 32.45284 | 42.92430 |
Phrynobatrachus parvulus | Anura | LC | Ground-dwelling | 26.005776 | 37.61696 | 32.73849 | 43.25988 |
Phrynobatrachus keniensis | Anura | LC | Semi-aquatic | 21.024880 | 37.21257 | 31.74477 | 42.31311 |
Phrynobatrachus keniensis | Anura | LC | Semi-aquatic | 20.146531 | 37.09158 | 31.63525 | 42.15139 |
Phrynobatrachus keniensis | Anura | LC | Semi-aquatic | 22.791154 | 37.45587 | 31.88079 | 42.48529 |
Phrynobatrachus fraterculus | Anura | LC | Semi-aquatic | 27.402735 | 37.96232 | 32.59842 | 43.23395 |
Phrynobatrachus fraterculus | Anura | LC | Semi-aquatic | 26.727854 | 37.87111 | 32.50116 | 43.09653 |
Phrynobatrachus fraterculus | Anura | LC | Semi-aquatic | 28.840554 | 38.15663 | 32.79275 | 43.40712 |
Phrynobatrachus gutturosus | Anura | LC | Semi-aquatic | 27.601280 | 38.04115 | 32.21033 | 43.67589 |
Phrynobatrachus gutturosus | Anura | LC | Semi-aquatic | 26.924136 | 37.94908 | 31.99922 | 43.41692 |
Phrynobatrachus gutturosus | Anura | LC | Semi-aquatic | 29.111145 | 38.24644 | 32.33142 | 43.86778 |
Phrynobatrachus pintoi | Anura | EN | Ground-dwelling | 27.528684 | 37.73896 | 32.93455 | 43.70441 |
Phrynobatrachus pintoi | Anura | EN | Ground-dwelling | 26.539829 | 37.60300 | 32.70320 | 43.40245 |
Phrynobatrachus pintoi | Anura | EN | Ground-dwelling | 29.995306 | 38.07812 | 33.12768 | 44.05205 |
Phrynobatrachus kakamikro | Anura | DD | Ground-dwelling | 22.399394 | 37.04644 | 31.85406 | 42.16638 |
Phrynobatrachus kakamikro | Anura | DD | Ground-dwelling | 21.547124 | 36.92946 | 31.83899 | 42.13334 |
Phrynobatrachus kakamikro | Anura | DD | Ground-dwelling | 24.407608 | 37.32210 | 32.01549 | 42.38388 |
Phrynobatrachus taiensis | Anura | DD | Ground-dwelling | 27.383034 | 37.86017 | 32.66915 | 43.40434 |
Phrynobatrachus taiensis | Anura | DD | Ground-dwelling | 26.826832 | 37.78412 | 32.63385 | 43.29555 |
Phrynobatrachus taiensis | Anura | DD | Ground-dwelling | 28.509345 | 38.01416 | 32.72899 | 43.49185 |
Phrynobatrachus giorgii | Anura | DD | Ground-dwelling | 27.975086 | 37.87561 | 32.39965 | 43.06873 |
Phrynobatrachus giorgii | Anura | DD | Ground-dwelling | 27.181114 | 37.76663 | 32.83374 | 43.47385 |
Phrynobatrachus giorgii | Anura | DD | Ground-dwelling | 29.796180 | 38.12558 | 32.74953 | 43.45259 |
Phrynobatrachus scapularis | Anura | LC | Semi-aquatic | 26.731862 | 37.87646 | 32.57926 | 43.18852 |
Phrynobatrachus scapularis | Anura | LC | Semi-aquatic | 25.998834 | 37.77698 | 32.46187 | 43.07832 |
Phrynobatrachus scapularis | Anura | LC | Semi-aquatic | 28.248023 | 38.08222 | 32.79672 | 43.45876 |
Phrynobatrachus ogoensis | Anura | DD | Ground-dwelling | 28.500678 | 38.03091 | 32.61370 | 43.01644 |
Phrynobatrachus ogoensis | Anura | DD | Ground-dwelling | 27.707785 | 37.92275 | 32.52575 | 42.89614 |
Phrynobatrachus ogoensis | Anura | DD | Ground-dwelling | 30.192685 | 38.26172 | 32.80014 | 43.43366 |
Phrynobatrachus perpalmatus | Anura | LC | Semi-aquatic | 25.360747 | 37.72113 | 32.37649 | 42.95339 |
Phrynobatrachus perpalmatus | Anura | LC | Semi-aquatic | 24.496307 | 37.60432 | 32.06938 | 42.62540 |
Phrynobatrachus perpalmatus | Anura | LC | Semi-aquatic | 27.255450 | 37.97716 | 32.49975 | 43.10188 |
Phrynobatrachus pallidus | Anura | LC | Semi-aquatic | 25.385792 | 37.84588 | 32.45185 | 43.23881 |
Phrynobatrachus pallidus | Anura | LC | Semi-aquatic | 24.752530 | 37.75942 | 32.35766 | 43.14504 |
Phrynobatrachus pallidus | Anura | LC | Semi-aquatic | 26.400448 | 37.98442 | 32.60278 | 43.43394 |
Phrynobatrachus rouxi | Anura | DD | Ground-dwelling | 20.753210 | 36.95941 | 31.64889 | 42.59111 |
Phrynobatrachus rouxi | Anura | DD | Ground-dwelling | 20.197015 | 36.88491 | 31.59614 | 42.56805 |
Phrynobatrachus rouxi | Anura | DD | Ground-dwelling | 22.102730 | 37.14016 | 31.77687 | 42.64705 |
Phrynobatrachus parkeri | Anura | LC | Ground-dwelling | 27.488918 | 37.78418 | 32.15892 | 43.11306 |
Phrynobatrachus parkeri | Anura | LC | Ground-dwelling | 26.722970 | 37.68171 | 32.10954 | 43.02890 |
Phrynobatrachus parkeri | Anura | LC | Ground-dwelling | 29.108736 | 38.00089 | 32.34186 | 43.34854 |
Phrynobatrachus sternfeldi | Anura | DD | Ground-dwelling | 27.261500 | 37.70057 | 32.14310 | 42.93968 |
Phrynobatrachus sternfeldi | Anura | DD | Ground-dwelling | 26.381103 | 37.58173 | 32.03452 | 42.77288 |
Phrynobatrachus sternfeldi | Anura | DD | Ground-dwelling | 29.092843 | 37.94779 | 32.74979 | 43.62812 |
Phrynobatrachus pygmaeus | Anura | DD | Ground-dwelling | 26.929643 | 37.62657 | 31.57899 | 42.57440 |
Phrynobatrachus pygmaeus | Anura | DD | Ground-dwelling | 26.075198 | 37.51137 | 31.42878 | 42.45071 |
Phrynobatrachus pygmaeus | Anura | DD | Ground-dwelling | 28.505136 | 37.83899 | 31.78159 | 42.84349 |
Phrynobatrachus sulfureogularis | Anura | VU | Ground-dwelling | 22.868668 | 37.12126 | 31.77944 | 42.23173 |
Phrynobatrachus sulfureogularis | Anura | VU | Ground-dwelling | 22.244298 | 37.03795 | 31.60499 | 42.04028 |
Phrynobatrachus sulfureogularis | Anura | VU | Ground-dwelling | 24.006892 | 37.27313 | 31.70087 | 42.15988 |
Phrynobatrachus stewartae | Anura | LC | Semi-aquatic | 22.730026 | 37.28484 | 32.19214 | 42.81446 |
Phrynobatrachus stewartae | Anura | LC | Semi-aquatic | 21.864481 | 37.16807 | 32.10929 | 42.70407 |
Phrynobatrachus stewartae | Anura | LC | Semi-aquatic | 24.775766 | 37.56083 | 32.44338 | 43.16276 |
Phrynobatrachus ukingensis | Anura | LC | Semi-aquatic | 22.822168 | 37.36035 | 31.88082 | 42.57992 |
Phrynobatrachus ukingensis | Anura | LC | Semi-aquatic | 21.986275 | 37.24744 | 31.77524 | 42.41503 |
Phrynobatrachus ukingensis | Anura | LC | Semi-aquatic | 24.305862 | 37.56076 | 32.31407 | 43.12226 |
Phrynobatrachus ungujae | Anura | EN | Ground-dwelling | 25.208823 | 37.45651 | 31.90265 | 42.56586 |
Phrynobatrachus ungujae | Anura | EN | Ground-dwelling | 24.606120 | 37.37480 | 31.88458 | 42.51704 |
Phrynobatrachus ungujae | Anura | EN | Ground-dwelling | 26.248684 | 37.59749 | 32.05485 | 42.74695 |
Phrynobatrachus acutirostris | Anura | NT | Stream-dwelling | 22.763005 | 36.60941 | 31.66522 | 42.31079 |
Phrynobatrachus acutirostris | Anura | NT | Stream-dwelling | 22.081281 | 36.51660 | 31.50102 | 42.10580 |
Phrynobatrachus acutirostris | Anura | NT | Stream-dwelling | 24.429182 | 36.83622 | 31.72676 | 42.46569 |
Phrynobatrachus dendrobates | Anura | LC | Ground-dwelling | 24.678445 | 37.40076 | 31.92202 | 42.82849 |
Phrynobatrachus dendrobates | Anura | LC | Ground-dwelling | 23.991734 | 37.30843 | 31.82903 | 42.75091 |
Phrynobatrachus dendrobates | Anura | LC | Ground-dwelling | 26.255270 | 37.61276 | 32.13553 | 43.11557 |
Phrynobatrachus petropedetoides | Anura | DD | Ground-dwelling | 24.320764 | 37.38661 | 32.38993 | 43.44910 |
Phrynobatrachus petropedetoides | Anura | DD | Ground-dwelling | 23.579763 | 37.28666 | 32.23552 | 43.31925 |
Phrynobatrachus petropedetoides | Anura | DD | Ground-dwelling | 26.380765 | 37.66447 | 32.65634 | 43.72312 |
Phrynobatrachus versicolor | Anura | LC | Ground-dwelling | 22.022972 | 37.14241 | 31.98215 | 42.45373 |
Phrynobatrachus versicolor | Anura | LC | Ground-dwelling | 21.379117 | 37.05518 | 31.99071 | 42.46351 |
Phrynobatrachus versicolor | Anura | LC | Ground-dwelling | 23.360656 | 37.32365 | 32.16796 | 42.65558 |
Phrynobatrachus krefftii | Anura | EN | Ground-dwelling | 24.969464 | 37.52031 | 32.53527 | 43.22583 |
Phrynobatrachus krefftii | Anura | EN | Ground-dwelling | 24.301742 | 37.42847 | 32.26723 | 42.91478 |
Phrynobatrachus krefftii | Anura | EN | Ground-dwelling | 25.986178 | 37.66014 | 32.72380 | 43.40594 |
Phrynobatrachus sandersoni | Anura | LC | Ground-dwelling | 26.614433 | 37.92648 | 32.96414 | 43.90737 |
Phrynobatrachus sandersoni | Anura | LC | Ground-dwelling | 26.007117 | 37.84294 | 32.90139 | 43.81584 |
Phrynobatrachus sandersoni | Anura | LC | Ground-dwelling | 28.001310 | 38.11723 | 33.22854 | 44.21346 |
Conraua alleni | Anura | LC | Stream-dwelling | 27.394504 | 37.11735 | 32.14655 | 42.64266 |
Conraua alleni | Anura | LC | Stream-dwelling | 26.731473 | 37.02722 | 32.07978 | 42.52630 |
Conraua alleni | Anura | LC | Stream-dwelling | 28.809585 | 37.30971 | 31.89897 | 42.44972 |
Conraua robusta | Anura | VU | Stream-dwelling | 26.520896 | 37.10445 | 32.33223 | 43.11026 |
Conraua robusta | Anura | VU | Stream-dwelling | 25.891618 | 37.01834 | 32.27356 | 43.03265 |
Conraua robusta | Anura | VU | Stream-dwelling | 27.859116 | 37.28756 | 32.45400 | 43.27530 |
Conraua derooi | Anura | CR | Stream-dwelling | 28.318602 | 37.33602 | 32.26816 | 42.77282 |
Conraua derooi | Anura | CR | Stream-dwelling | 27.675794 | 37.24826 | 32.14892 | 42.61791 |
Conraua derooi | Anura | CR | Stream-dwelling | 29.593907 | 37.51015 | 32.53653 | 43.09016 |
Conraua beccarii | Anura | LC | Aquatic | 22.384594 | 37.23640 | 31.84453 | 42.14091 |
Conraua beccarii | Anura | LC | Aquatic | 21.423158 | 37.10584 | 31.65533 | 42.02247 |
Conraua beccarii | Anura | LC | Aquatic | 24.269606 | 37.49237 | 32.01726 | 42.39855 |
Conraua crassipes | Anura | LC | Stream-dwelling | 27.175509 | 37.12805 | 32.00820 | 42.69794 |
Conraua crassipes | Anura | LC | Stream-dwelling | 26.456741 | 37.03011 | 31.97979 | 42.61834 |
Conraua crassipes | Anura | LC | Stream-dwelling | 28.742822 | 37.34161 | 32.16479 | 42.86324 |
Conraua goliath | Anura | EN | Stream-dwelling | 26.640493 | 37.00577 | 32.11089 | 42.83312 |
Conraua goliath | Anura | EN | Stream-dwelling | 26.024001 | 36.92244 | 32.01877 | 42.72096 |
Conraua goliath | Anura | EN | Stream-dwelling | 28.072728 | 37.19937 | 31.94373 | 42.78057 |
Micrixalus elegans | Anura | DD | Stream-dwelling | 26.485775 | 37.06484 | 31.45059 | 41.99136 |
Micrixalus elegans | Anura | DD | Stream-dwelling | 25.652340 | 36.95227 | 31.35554 | 41.85263 |
Micrixalus elegans | Anura | DD | Stream-dwelling | 28.489556 | 37.33549 | 31.60467 | 42.28577 |
Micrixalus nudis | Anura | VU | Semi-aquatic | 27.498273 | 38.01528 | 32.25409 | 42.85999 |
Micrixalus nudis | Anura | VU | Semi-aquatic | 26.640644 | 37.89985 | 32.14180 | 42.71501 |
Micrixalus nudis | Anura | VU | Semi-aquatic | 29.201790 | 38.24455 | 32.42943 | 43.11673 |
Micrixalus fuscus | Anura | NT | Stream-dwelling | 27.241991 | 37.11190 | 31.55877 | 42.16587 |
Micrixalus fuscus | Anura | NT | Stream-dwelling | 26.359461 | 36.99094 | 31.45475 | 42.03932 |
Micrixalus fuscus | Anura | NT | Stream-dwelling | 29.088427 | 37.36496 | 31.64097 | 42.37295 |
Micrixalus kottigeharensis | Anura | CR | Semi-aquatic | 26.485775 | 37.91147 | 32.56510 | 43.10211 |
Micrixalus kottigeharensis | Anura | CR | Semi-aquatic | 25.652340 | 37.79787 | 32.40304 | 42.94056 |
Micrixalus kottigeharensis | Anura | CR | Semi-aquatic | 28.489556 | 38.18460 | 32.95474 | 43.63452 |
Micrixalus saxicola | Anura | VU | Stream-dwelling | 26.599433 | 37.11954 | 31.05834 | 41.99294 |
Micrixalus saxicola | Anura | VU | Stream-dwelling | 25.687741 | 36.99291 | 30.93207 | 41.90948 |
Micrixalus saxicola | Anura | VU | Stream-dwelling | 28.870211 | 37.43494 | 31.86953 | 42.83112 |
Micrixalus phyllophilus | Anura | VU | Stream-dwelling | 27.337254 | 37.09193 | 31.90170 | 42.31954 |
Micrixalus phyllophilus | Anura | VU | Stream-dwelling | 26.356023 | 36.95961 | 31.66224 | 42.05884 |
Micrixalus phyllophilus | Anura | VU | Stream-dwelling | 29.334946 | 37.36132 | 32.15308 | 42.71839 |
Micrixalus swamianus | Anura | DD | Ground-dwelling | 26.485775 | 37.62610 | 31.65765 | 42.34620 |
Micrixalus swamianus | Anura | DD | Ground-dwelling | 25.652340 | 37.51348 | 31.44753 | 42.07933 |
Micrixalus swamianus | Anura | DD | Ground-dwelling | 28.489556 | 37.89686 | 31.75339 | 42.54739 |
Micrixalus silvaticus | Anura | DD | Stream-dwelling | 27.331012 | 37.18505 | 31.81915 | 42.53133 |
Micrixalus silvaticus | Anura | DD | Stream-dwelling | 26.468056 | 37.06737 | 31.73271 | 42.38779 |
Micrixalus silvaticus | Anura | DD | Stream-dwelling | 29.095879 | 37.42572 | 31.70215 | 42.52538 |
Micrixalus thampii | Anura | DD | Stream-dwelling | 26.793491 | 37.08653 | 32.00699 | 42.63759 |
Micrixalus thampii | Anura | DD | Stream-dwelling | 25.581038 | 36.92092 | 31.88542 | 42.47660 |
Micrixalus thampii | Anura | DD | Stream-dwelling | 29.313470 | 37.43074 | 31.92243 | 42.65325 |
Micrixalus gadgili | Anura | EN | Stream-dwelling | 27.239182 | 37.16129 | 32.68437 | 43.12411 |
Micrixalus gadgili | Anura | EN | Stream-dwelling | 26.398986 | 37.04664 | 32.57785 | 42.97493 |
Micrixalus gadgili | Anura | EN | Stream-dwelling | 28.937049 | 37.39297 | 32.76422 | 43.26380 |
Micrixalus narainensis | Anura | DD | Stream-dwelling | 26.485775 | 37.06539 | 31.67466 | 42.10753 |
Micrixalus narainensis | Anura | DD | Stream-dwelling | 25.652340 | 36.95304 | 31.59677 | 42.05932 |
Micrixalus narainensis | Anura | DD | Stream-dwelling | 28.489556 | 37.33550 | 31.84002 | 42.38070 |
Arthroleptides martiensseni | Anura | EN | Stream-dwelling | 24.969464 | 36.74406 | 31.06147 | 41.69134 |
Arthroleptides martiensseni | Anura | EN | Stream-dwelling | 24.301742 | 36.65409 | 31.08561 | 41.70583 |
Arthroleptides martiensseni | Anura | EN | Stream-dwelling | 25.986178 | 36.88106 | 31.14436 | 41.78677 |
Arthroleptides yakusini | Anura | EN | Stream-dwelling | 23.310953 | 36.56872 | 31.23202 | 41.61172 |
Arthroleptides yakusini | Anura | EN | Stream-dwelling | 22.579449 | 36.47051 | 31.10025 | 41.44523 |
Arthroleptides yakusini | Anura | EN | Stream-dwelling | 24.941410 | 36.78761 | 31.38055 | 41.80304 |
Petropedetes cameronensis | Anura | LC | Stream-dwelling | 26.772448 | 36.93622 | 31.83313 | 42.33928 |
Petropedetes cameronensis | Anura | LC | Stream-dwelling | 26.152415 | 36.85195 | 31.73136 | 42.22598 |
Petropedetes cameronensis | Anura | LC | Stream-dwelling | 28.132315 | 37.12105 | 32.05634 | 42.59648 |
Petropedetes parkeri | Anura | DD | Semi-aquatic | 26.667321 | 37.80933 | 32.30155 | 43.08291 |
Petropedetes parkeri | Anura | DD | Semi-aquatic | 26.016769 | 37.72032 | 32.18394 | 42.92921 |
Petropedetes parkeri | Anura | DD | Semi-aquatic | 28.107488 | 38.00637 | 32.47413 | 43.32620 |
Petropedetes perreti | Anura | CR | Stream-dwelling | 26.406869 | 36.94888 | 31.27875 | 41.77363 |
Petropedetes perreti | Anura | CR | Stream-dwelling | 25.779143 | 36.86145 | 31.18314 | 41.69843 |
Petropedetes perreti | Anura | CR | Stream-dwelling | 27.748605 | 37.13574 | 31.56942 | 42.08498 |
Petropedetes johnstoni | Anura | LC | Ground-dwelling | 26.778665 | 37.61027 | 32.52837 | 43.03896 |
Petropedetes johnstoni | Anura | LC | Ground-dwelling | 26.192335 | 37.53041 | 32.48038 | 42.93308 |
Petropedetes johnstoni | Anura | LC | Ground-dwelling | 28.144218 | 37.79625 | 32.94993 | 43.50918 |
Petropedetes palmipes | Anura | VU | Semi-aquatic | 26.781259 | 37.91688 | 32.88305 | 43.41057 |
Petropedetes palmipes | Anura | VU | Semi-aquatic | 26.131297 | 37.82628 | 32.82487 | 43.37615 |
Petropedetes palmipes | Anura | VU | Semi-aquatic | 28.287769 | 38.12688 | 33.08067 | 43.64984 |
Ericabatrachus baleensis | Anura | CR | Stream-dwelling | 20.132346 | 36.07489 | 30.92841 | 41.25330 |
Ericabatrachus baleensis | Anura | CR | Stream-dwelling | 19.211996 | 35.94827 | 30.72936 | 41.07870 |
Ericabatrachus baleensis | Anura | CR | Stream-dwelling | 21.359748 | 36.24376 | 31.06359 | 41.45077 |
Aubria masako | Anura | LC | Semi-aquatic | 27.591129 | 38.05814 | 32.61238 | 43.22774 |
Aubria masako | Anura | LC | Semi-aquatic | 26.841929 | 37.95766 | 32.55685 | 43.10403 |
Aubria masako | Anura | LC | Semi-aquatic | 29.244577 | 38.27990 | 33.04782 | 43.75115 |
Aubria occidentalis | Anura | LC | Semi-aquatic | 27.453630 | 38.07648 | 32.88652 | 43.21237 |
Aubria occidentalis | Anura | LC | Semi-aquatic | 26.856356 | 37.99630 | 33.12066 | 43.37081 |
Aubria occidentalis | Anura | LC | Semi-aquatic | 28.769657 | 38.25313 | 33.18203 | 43.48937 |
Aubria subsigillata | Anura | LC | Semi-aquatic | 27.354408 | 38.12684 | 32.71314 | 43.14693 |
Aubria subsigillata | Anura | LC | Semi-aquatic | 26.611841 | 38.02510 | 32.63751 | 43.06405 |
Aubria subsigillata | Anura | LC | Semi-aquatic | 28.926118 | 38.34220 | 32.85113 | 43.34229 |
Pyxicephalus adspersus | Anura | LC | Fossorial | 22.772357 | 38.17630 | 32.74638 | 43.57299 |
Pyxicephalus adspersus | Anura | LC | Fossorial | 21.495836 | 38.00475 | 32.52181 | 43.38219 |
Pyxicephalus adspersus | Anura | LC | Fossorial | 25.128484 | 38.49293 | 32.75928 | 43.64929 |
Pyxicephalus edulis | Anura | LC | Fossorial | 24.925612 | 38.39569 | 33.29635 | 44.07338 |
Pyxicephalus edulis | Anura | LC | Fossorial | 23.912165 | 38.25594 | 32.73116 | 43.44065 |
Pyxicephalus edulis | Anura | LC | Fossorial | 26.971641 | 38.67783 | 33.30262 | 44.12093 |
Pyxicephalus angusticeps | Anura | LC | Semi-aquatic | 25.603350 | 37.83397 | 31.73499 | 42.53224 |
Pyxicephalus angusticeps | Anura | LC | Semi-aquatic | 24.789606 | 37.72313 | 31.99735 | 42.71669 |
Pyxicephalus angusticeps | Anura | LC | Semi-aquatic | 27.301439 | 38.06525 | 31.96160 | 42.85340 |
Pyxicephalus obbianus | Anura | LC | Fossorial | 25.250983 | 38.51576 | 32.92068 | 43.63987 |
Pyxicephalus obbianus | Anura | LC | Fossorial | 24.409653 | 38.39987 | 32.78451 | 43.47012 |
Pyxicephalus obbianus | Anura | LC | Fossorial | 26.826811 | 38.73282 | 33.14032 | 43.88496 |
Amietia tenuoplicata | Anura | LC | Stream-dwelling | 23.319541 | 36.62273 | 31.33493 | 41.66104 |
Amietia tenuoplicata | Anura | LC | Stream-dwelling | 22.555550 | 36.51883 | 31.28910 | 41.57536 |
Amietia tenuoplicata | Anura | LC | Stream-dwelling | 24.784693 | 36.82199 | 31.51950 | 41.89048 |
Amietia angolensis | Anura | LC | Semi-aquatic | 24.422997 | 37.59465 | 31.81728 | 42.41984 |
Amietia angolensis | Anura | LC | Semi-aquatic | 23.237900 | 37.43441 | 31.69042 | 42.23936 |
Amietia angolensis | Anura | LC | Semi-aquatic | 26.689464 | 37.90111 | 32.43841 | 43.16670 |
Amietia desaegeri | Anura | LC | Semi-aquatic | 23.774461 | 37.55519 | 32.07687 | 42.42828 |
Amietia desaegeri | Anura | LC | Semi-aquatic | 23.083747 | 37.46019 | 31.98947 | 42.35436 |
Amietia desaegeri | Anura | LC | Semi-aquatic | 25.442304 | 37.78461 | 32.28791 | 42.63602 |
Amietia inyangae | Anura | EN | Stream-dwelling | 23.996436 | 36.71557 | 31.78069 | 42.20219 |
Amietia inyangae | Anura | EN | Stream-dwelling | 22.773987 | 36.54727 | 31.49814 | 41.85639 |
Amietia inyangae | Anura | EN | Stream-dwelling | 26.339431 | 37.03814 | 31.78805 | 42.23195 |
Amietia johnstoni | Anura | EN | Stream-dwelling | 25.582109 | 36.87995 | 31.14497 | 41.61276 |
Amietia johnstoni | Anura | EN | Stream-dwelling | 24.484506 | 36.73237 | 31.15984 | 41.53209 |
Amietia johnstoni | Anura | EN | Stream-dwelling | 27.641894 | 37.15690 | 31.70395 | 42.20155 |
Amietia vertebralis | Anura | LC | Aquatic | 20.767960 | 37.02555 | 31.72230 | 42.59469 |
Amietia vertebralis | Anura | LC | Aquatic | 19.290785 | 36.82199 | 31.45456 | 42.28700 |
Amietia vertebralis | Anura | LC | Aquatic | 23.050584 | 37.34009 | 32.00903 | 43.00063 |
Amietia ruwenzorica | Anura | LC | Stream-dwelling | 23.894401 | 36.61145 | 31.59689 | 42.23863 |
Amietia ruwenzorica | Anura | LC | Stream-dwelling | 23.242897 | 36.52308 | 31.53316 | 42.12466 |
Amietia ruwenzorica | Anura | LC | Stream-dwelling | 25.460038 | 36.82381 | 31.69769 | 42.44739 |
Amietia wittei | Anura | LC | Stream-dwelling | 21.460774 | 36.30338 | 30.72869 | 41.55182 |
Amietia wittei | Anura | LC | Stream-dwelling | 20.593377 | 36.18426 | 30.50704 | 41.23425 |
Amietia wittei | Anura | LC | Stream-dwelling | 23.229140 | 36.54622 | 30.92442 | 41.84506 |
Amietia fuscigula | Anura | LC | Semi-aquatic | 20.587071 | 37.18600 | 32.31602 | 42.78427 |
Amietia fuscigula | Anura | LC | Semi-aquatic | 19.120139 | 36.98973 | 32.19635 | 42.67061 |
Amietia fuscigula | Anura | LC | Semi-aquatic | 23.139670 | 37.52751 | 32.48364 | 42.92628 |
Amietia vandijki | Anura | LC | Stream-dwelling | 21.133131 | 36.39310 | 30.84709 | 41.28778 |
Amietia vandijki | Anura | LC | Stream-dwelling | 19.514219 | 36.17797 | 30.58667 | 41.04340 |
Amietia vandijki | Anura | LC | Stream-dwelling | 23.753483 | 36.74131 | 31.13860 | 41.70433 |
Strongylopus bonaespei | Anura | LC | Semi-aquatic | 20.382974 | 37.13419 | 31.96406 | 42.65162 |
Strongylopus bonaespei | Anura | LC | Semi-aquatic | 18.968416 | 36.94464 | 31.80650 | 42.45582 |
Strongylopus bonaespei | Anura | LC | Semi-aquatic | 22.940996 | 37.47695 | 32.24481 | 42.83409 |
Strongylopus fuelleborni | Anura | LC | Semi-aquatic | 22.863353 | 37.54241 | 31.92751 | 42.54540 |
Strongylopus fuelleborni | Anura | LC | Semi-aquatic | 22.028036 | 37.42764 | 31.82180 | 42.41392 |
Strongylopus fuelleborni | Anura | LC | Semi-aquatic | 24.533832 | 37.77192 | 32.10908 | 42.79804 |
Strongylopus kilimanjaro | Anura | DD | Stream-dwelling | 22.426127 | 36.43854 | 31.27120 | 41.81055 |
Strongylopus kilimanjaro | Anura | DD | Stream-dwelling | 21.661742 | 36.33655 | 31.32789 | 41.85412 |
Strongylopus kilimanjaro | Anura | DD | Stream-dwelling | 23.922486 | 36.63819 | 31.69152 | 42.22430 |
Strongylopus fasciatus | Anura | LC | Semi-aquatic | 22.548774 | 37.39595 | 32.15151 | 43.25850 |
Strongylopus fasciatus | Anura | LC | Semi-aquatic | 21.241383 | 37.21853 | 32.30353 | 43.35653 |
Strongylopus fasciatus | Anura | LC | Semi-aquatic | 24.854723 | 37.70889 | 31.78820 | 42.88574 |
Strongylopus springbokensis | Anura | LC | Semi-aquatic | 19.973318 | 37.03785 | 31.67333 | 42.31550 |
Strongylopus springbokensis | Anura | LC | Semi-aquatic | 18.846253 | 36.88552 | 31.61437 | 42.30219 |
Strongylopus springbokensis | Anura | LC | Semi-aquatic | 22.580622 | 37.39024 | 32.15537 | 42.77866 |
Strongylopus rhodesianus | Anura | VU | Stream-dwelling | 24.451116 | 36.78894 | 31.62789 | 42.35901 |
Strongylopus rhodesianus | Anura | VU | Stream-dwelling | 23.328692 | 36.63860 | 31.46335 | 42.20299 |
Strongylopus rhodesianus | Anura | VU | Stream-dwelling | 26.759293 | 37.09810 | 31.91649 | 42.74730 |
Strongylopus kitumbeine | Anura | VU | Semi-aquatic | 20.767650 | 37.17227 | 31.90934 | 42.32785 |
Strongylopus kitumbeine | Anura | VU | Semi-aquatic | 19.741422 | 37.03438 | 31.64607 | 42.06628 |
Strongylopus kitumbeine | Anura | VU | Semi-aquatic | 22.947186 | 37.46514 | 32.31664 | 42.70715 |
Strongylopus wageri | Anura | LC | Semi-aquatic | 21.997267 | 37.37757 | 32.09652 | 42.68180 |
Strongylopus wageri | Anura | LC | Semi-aquatic | 20.687492 | 37.20120 | 31.71720 | 42.26073 |
Strongylopus wageri | Anura | LC | Semi-aquatic | 24.068998 | 37.65655 | 32.31705 | 42.95932 |
Strongylopus merumontanus | Anura | LC | Stream-dwelling | 21.490461 | 36.41235 | 30.97049 | 41.87555 |
Strongylopus merumontanus | Anura | LC | Stream-dwelling | 20.567203 | 36.28718 | 30.80214 | 41.72930 |
Strongylopus merumontanus | Anura | LC | Stream-dwelling | 23.752746 | 36.71907 | 31.24676 | 42.13517 |
Strongylopus grayii | Anura | LC | Semi-aquatic | 21.330740 | 37.23604 | 32.10289 | 42.32503 |
Strongylopus grayii | Anura | LC | Semi-aquatic | 19.951899 | 37.05112 | 31.86133 | 42.14568 |
Strongylopus grayii | Anura | LC | Semi-aquatic | 23.753895 | 37.56102 | 32.45743 | 42.71812 |
Arthroleptella bicolor | Anura | LC | Ground-dwelling | 19.964134 | 36.88293 | 31.17327 | 41.62958 |
Arthroleptella bicolor | Anura | LC | Ground-dwelling | 18.636018 | 36.70783 | 31.09501 | 41.48602 |
Arthroleptella bicolor | Anura | LC | Ground-dwelling | 22.404846 | 37.20471 | 31.38532 | 41.89341 |
Arthroleptella subvoce | Anura | CR | Ground-dwelling | 20.274302 | 36.89584 | 31.69297 | 42.43598 |
Arthroleptella subvoce | Anura | CR | Ground-dwelling | 18.848606 | 36.70063 | 31.39755 | 42.20155 |
Arthroleptella subvoce | Anura | CR | Ground-dwelling | 23.128252 | 37.28662 | 32.02672 | 42.80946 |
Arthroleptella drewesii | Anura | NT | Stream-dwelling | 19.822954 | 36.32928 | 30.86635 | 41.14918 |
Arthroleptella drewesii | Anura | NT | Stream-dwelling | 18.587732 | 36.16101 | 30.76842 | 40.99353 |
Arthroleptella drewesii | Anura | NT | Stream-dwelling | 21.833034 | 36.60309 | 31.12667 | 41.43890 |
Arthroleptella landdrosia | Anura | NT | Ground-dwelling | 20.324283 | 36.96819 | 31.48364 | 42.02499 |
Arthroleptella landdrosia | Anura | NT | Ground-dwelling | 19.000076 | 36.78693 | 31.16783 | 41.78995 |
Arthroleptella landdrosia | Anura | NT | Ground-dwelling | 22.957017 | 37.32856 | 32.09613 | 42.61591 |
Arthroleptella lightfooti | Anura | NT | Ground-dwelling | 20.684432 | 37.04936 | 31.81381 | 42.43166 |
Arthroleptella lightfooti | Anura | NT | Ground-dwelling | 19.364134 | 36.86908 | 31.64686 | 42.22773 |
Arthroleptella lightfooti | Anura | NT | Ground-dwelling | 23.509188 | 37.43505 | 32.03803 | 42.75231 |
Arthroleptella villiersi | Anura | LC | Ground-dwelling | 20.324283 | 36.94349 | 31.64898 | 42.47444 |
Arthroleptella villiersi | Anura | LC | Ground-dwelling | 19.000076 | 36.76956 | 31.44911 | 42.31205 |
Arthroleptella villiersi | Anura | LC | Ground-dwelling | 22.957017 | 37.28930 | 31.81004 | 42.64663 |
Arthroleptella rugosa | Anura | CR | Ground-dwelling | 19.822954 | 36.90879 | 31.87091 | 42.39791 |
Arthroleptella rugosa | Anura | CR | Ground-dwelling | 18.587732 | 36.74231 | 31.67635 | 42.22627 |
Arthroleptella rugosa | Anura | CR | Ground-dwelling | 21.833034 | 37.17972 | 32.11741 | 42.66088 |
Natalobatrachus bonebergi | Anura | EN | Stream-dwelling | 22.171241 | 36.53978 | 31.09606 | 41.63615 |
Natalobatrachus bonebergi | Anura | EN | Stream-dwelling | 20.957672 | 36.37505 | 31.00286 | 41.42021 |
Natalobatrachus bonebergi | Anura | EN | Stream-dwelling | 24.026486 | 36.79161 | 31.52405 | 42.13608 |
Nothophryne broadleyi | Anura | EN | Stream-dwelling | 25.582109 | 37.12349 | 32.19993 | 42.31100 |
Nothophryne broadleyi | Anura | EN | Stream-dwelling | 24.484506 | 36.97295 | 32.04728 | 42.17259 |
Nothophryne broadleyi | Anura | EN | Stream-dwelling | 27.641894 | 37.40598 | 32.43521 | 42.60934 |
Cacosternum leleupi | Anura | DD | Ground-dwelling | 24.213327 | 37.39434 | 32.00187 | 42.76519 |
Cacosternum leleupi | Anura | DD | Ground-dwelling | 23.320403 | 37.27339 | 31.83358 | 42.64195 |
Cacosternum leleupi | Anura | DD | Ground-dwelling | 26.329439 | 37.68097 | 32.33511 | 43.18026 |
Cacosternum boettgeri | Anura | LC | Ground-dwelling | 22.185000 | 37.18296 | 31.56668 | 42.53195 |
Cacosternum boettgeri | Anura | LC | Ground-dwelling | 20.784231 | 36.99264 | 31.42689 | 42.43043 |
Cacosternum boettgeri | Anura | LC | Ground-dwelling | 24.639873 | 37.51651 | 32.13254 | 43.07963 |
Cacosternum kinangopensis | Anura | LC | Ground-dwelling | 19.525231 | 36.81419 | 31.24061 | 42.62619 |
Cacosternum kinangopensis | Anura | LC | Ground-dwelling | 18.588528 | 36.68644 | 31.08688 | 42.43990 |
Cacosternum kinangopensis | Anura | LC | Ground-dwelling | 21.272946 | 37.05256 | 30.84193 | 42.30370 |
Cacosternum plimptoni | Anura | LC | Ground-dwelling | 21.094163 | 37.03005 | 31.28210 | 42.43884 |
Cacosternum plimptoni | Anura | LC | Ground-dwelling | 20.259440 | 36.91364 | 31.11477 | 42.24079 |
Cacosternum plimptoni | Anura | LC | Ground-dwelling | 22.898884 | 37.28173 | 31.58248 | 42.83609 |
Cacosternum striatum | Anura | LC | Ground-dwelling | 22.449149 | 37.13906 | 31.32045 | 42.53145 |
Cacosternum striatum | Anura | LC | Ground-dwelling | 21.174274 | 36.96499 | 31.59108 | 42.78459 |
Cacosternum striatum | Anura | LC | Ground-dwelling | 24.439178 | 37.41077 | 31.64941 | 42.77757 |
Cacosternum parvum | Anura | LC | Ground-dwelling | 22.214324 | 37.19132 | 32.14808 | 43.25607 |
Cacosternum parvum | Anura | LC | Ground-dwelling | 20.893775 | 37.00838 | 31.17870 | 42.35336 |
Cacosternum parvum | Anura | LC | Ground-dwelling | 24.429864 | 37.49824 | 32.44393 | 43.53919 |
Cacosternum nanum | Anura | LC | Ground-dwelling | 21.500935 | 37.05413 | 31.18128 | 42.73434 |
Cacosternum nanum | Anura | LC | Ground-dwelling | 20.108571 | 36.86353 | 30.94741 | 42.44297 |
Cacosternum nanum | Anura | LC | Ground-dwelling | 23.748454 | 37.36179 | 31.45875 | 43.06416 |
Cacosternum capense | Anura | NT | Fossorial | 20.329402 | 37.86184 | 32.66149 | 43.65856 |
Cacosternum capense | Anura | NT | Fossorial | 18.958042 | 37.67556 | 32.35811 | 43.34583 |
Cacosternum capense | Anura | NT | Fossorial | 23.234216 | 38.25644 | 32.82146 | 43.76731 |
Cacosternum namaquense | Anura | LC | Ground-dwelling | 19.814521 | 36.74831 | 31.02150 | 41.66796 |
Cacosternum namaquense | Anura | LC | Ground-dwelling | 18.629339 | 36.58764 | 30.85985 | 41.52070 |
Cacosternum namaquense | Anura | LC | Ground-dwelling | 22.539951 | 37.11776 | 31.58907 | 42.25885 |
Cacosternum karooicum | Anura | LC | Ground-dwelling | 20.232442 | 36.82921 | 30.97088 | 41.83004 |
Cacosternum karooicum | Anura | LC | Ground-dwelling | 18.703971 | 36.61943 | 30.70163 | 41.53484 |
Cacosternum karooicum | Anura | LC | Ground-dwelling | 23.034525 | 37.21381 | 31.19404 | 42.14757 |
Cacosternum platys | Anura | NT | Ground-dwelling | 20.684432 | 36.88619 | 31.72551 | 42.68460 |
Cacosternum platys | Anura | NT | Ground-dwelling | 19.364134 | 36.70830 | 31.45069 | 42.44521 |
Cacosternum platys | Anura | NT | Ground-dwelling | 23.509188 | 37.26678 | 31.98357 | 43.02014 |
Microbatrachella capensis | Anura | CR | Semi-aquatic | 20.397272 | 37.15612 | 31.86260 | 42.88331 |
Microbatrachella capensis | Anura | CR | Semi-aquatic | 19.105333 | 36.98298 | 31.70542 | 42.70139 |
Microbatrachella capensis | Anura | CR | Semi-aquatic | 22.950470 | 37.49830 | 32.00089 | 43.11752 |
Poyntonia paludicola | Anura | NT | Stream-dwelling | 20.324283 | 36.35812 | 30.85830 | 41.80664 |
Poyntonia paludicola | Anura | NT | Stream-dwelling | 19.000076 | 36.18013 | 30.59689 | 41.59326 |
Poyntonia paludicola | Anura | NT | Stream-dwelling | 22.957017 | 36.71199 | 31.20746 | 42.12631 |
Anhydrophryne hewitti | Anura | LC | Ground-dwelling | 22.116458 | 37.00354 | 31.33945 | 42.36042 |
Anhydrophryne hewitti | Anura | LC | Ground-dwelling | 20.847811 | 36.83389 | 31.16473 | 42.22011 |
Anhydrophryne hewitti | Anura | LC | Ground-dwelling | 24.063303 | 37.26387 | 31.61856 | 42.67201 |
Anhydrophryne ngongoniensis | Anura | EN | Ground-dwelling | 21.558750 | 36.99823 | 31.54385 | 42.28392 |
Anhydrophryne ngongoniensis | Anura | EN | Ground-dwelling | 20.236435 | 36.81894 | 31.51573 | 42.26845 |
Anhydrophryne ngongoniensis | Anura | EN | Ground-dwelling | 23.484683 | 37.25935 | 31.88964 | 42.62639 |
Anhydrophryne rattrayi | Anura | VU | Ground-dwelling | 20.359510 | 36.79213 | 30.60897 | 41.74347 |
Anhydrophryne rattrayi | Anura | VU | Ground-dwelling | 18.811550 | 36.58337 | 30.39928 | 41.40965 |
Anhydrophryne rattrayi | Anura | VU | Ground-dwelling | 22.663297 | 37.10284 | 31.52334 | 42.65312 |
Tomopterna cryptotis | Anura | LC | Ground-dwelling | 25.019559 | 37.41002 | 32.23764 | 42.54130 |
Tomopterna cryptotis | Anura | LC | Ground-dwelling | 23.771067 | 37.23873 | 32.01609 | 42.30116 |
Tomopterna cryptotis | Anura | LC | Ground-dwelling | 27.424792 | 37.74001 | 32.76499 | 43.12708 |
Tomopterna tandyi | Anura | LC | Ground-dwelling | 22.013264 | 36.95909 | 31.44812 | 41.98316 |
Tomopterna tandyi | Anura | LC | Ground-dwelling | 20.581697 | 36.76734 | 31.21414 | 41.82091 |
Tomopterna tandyi | Anura | LC | Ground-dwelling | 24.498942 | 37.29204 | 31.73422 | 42.22020 |
Tomopterna damarensis | Anura | DD | Fossorial | 23.354408 | 38.19233 | 32.44576 | 43.26568 |
Tomopterna damarensis | Anura | DD | Fossorial | 21.380231 | 37.92469 | 32.19832 | 42.97483 |
Tomopterna damarensis | Anura | DD | Fossorial | 25.796200 | 38.52336 | 32.98684 | 43.74303 |
Tomopterna delalandii | Anura | LC | Semi-aquatic | 20.288898 | 37.07820 | 31.03852 | 42.01566 |
Tomopterna delalandii | Anura | LC | Semi-aquatic | 18.890314 | 36.88611 | 30.81048 | 41.76251 |
Tomopterna delalandii | Anura | LC | Semi-aquatic | 22.949219 | 37.44358 | 31.39620 | 42.35854 |
Tomopterna gallmanni | Anura | LC | Ground-dwelling | 21.723130 | 37.02736 | 31.75326 | 42.07546 |
Tomopterna gallmanni | Anura | LC | Ground-dwelling | 20.859341 | 36.91094 | 31.63502 | 41.95861 |
Tomopterna gallmanni | Anura | LC | Ground-dwelling | 23.515399 | 37.26893 | 31.89359 | 42.25829 |
Tomopterna tuberculosa | Anura | LC | Semi-aquatic | 23.463453 | 37.48811 | 32.28286 | 42.69608 |
Tomopterna tuberculosa | Anura | LC | Semi-aquatic | 22.436552 | 37.34993 | 32.15491 | 42.55537 |
Tomopterna tuberculosa | Anura | LC | Semi-aquatic | 25.584304 | 37.77347 | 32.72385 | 43.27980 |
Tomopterna elegans | Anura | LC | Ground-dwelling | 25.705473 | 37.53370 | 32.04600 | 42.65480 |
Tomopterna elegans | Anura | LC | Ground-dwelling | 24.729591 | 37.40085 | 31.80743 | 42.38245 |
Tomopterna elegans | Anura | LC | Ground-dwelling | 27.435232 | 37.76920 | 32.18515 | 42.79961 |
Tomopterna wambensis | Anura | LC | Semi-aquatic | 22.385930 | 37.29809 | 32.39881 | 43.24178 |
Tomopterna wambensis | Anura | LC | Semi-aquatic | 21.553917 | 37.18714 | 32.01892 | 42.83704 |
Tomopterna wambensis | Anura | LC | Semi-aquatic | 23.969807 | 37.50929 | 32.37376 | 43.21898 |
Tomopterna kachowskii | Anura | LC | Ground-dwelling | 21.467487 | 37.02947 | 31.15671 | 41.74387 |
Tomopterna kachowskii | Anura | LC | Ground-dwelling | 20.600126 | 36.91074 | 31.03543 | 41.63485 |
Tomopterna kachowskii | Anura | LC | Ground-dwelling | 23.259570 | 37.27477 | 31.28048 | 41.85797 |
Tomopterna krugerensis | Anura | LC | Ground-dwelling | 23.393704 | 37.22497 | 31.93578 | 42.62826 |
Tomopterna krugerensis | Anura | LC | Ground-dwelling | 21.950085 | 37.03004 | 31.70535 | 42.37748 |
Tomopterna krugerensis | Anura | LC | Ground-dwelling | 25.831272 | 37.55411 | 32.17807 | 42.82365 |
Tomopterna luganga | Anura | LC | Semi-aquatic | 21.929974 | 37.22793 | 31.84470 | 42.25268 |
Tomopterna luganga | Anura | LC | Semi-aquatic | 21.014423 | 37.10133 | 31.77117 | 42.11111 |
Tomopterna luganga | Anura | LC | Semi-aquatic | 23.998407 | 37.51394 | 32.22877 | 42.75128 |
Tomopterna marmorata | Anura | LC | Ground-dwelling | 23.728794 | 37.26387 | 31.50304 | 42.02266 |
Tomopterna marmorata | Anura | LC | Ground-dwelling | 22.578833 | 37.10725 | 31.60432 | 42.04333 |
Tomopterna marmorata | Anura | LC | Ground-dwelling | 25.942904 | 37.56541 | 32.14278 | 42.80472 |
Tomopterna milletihorsini | Anura | DD | Ground-dwelling | 27.374228 | 37.72109 | 31.96505 | 42.56709 |
Tomopterna milletihorsini | Anura | DD | Ground-dwelling | 26.536306 | 37.61022 | 31.87586 | 42.47906 |
Tomopterna milletihorsini | Anura | DD | Ground-dwelling | 29.566533 | 38.01115 | 32.23294 | 42.88189 |
Tomopterna natalensis | Anura | LC | Ground-dwelling | 22.131726 | 37.10014 | 31.67351 | 42.07365 |
Tomopterna natalensis | Anura | LC | Ground-dwelling | 20.828982 | 36.92216 | 31.41324 | 41.84399 |
Tomopterna natalensis | Anura | LC | Ground-dwelling | 24.399969 | 37.41005 | 32.08132 | 42.49192 |
Platymantis levigatus | Anura | EN | Ground-dwelling | 27.473534 | 36.30012 | 31.42559 | 40.15885 |
Platymantis levigatus | Anura | EN | Ground-dwelling | 27.067989 | 36.24388 | 31.35583 | 40.08025 |
Platymantis levigatus | Anura | EN | Ground-dwelling | 28.250304 | 36.40784 | 31.55921 | 40.30939 |
Platymantis mimulus | Anura | LC | Ground-dwelling | 27.706067 | 35.00696 | 31.51208 | 38.82990 |
Platymantis mimulus | Anura | LC | Ground-dwelling | 27.199350 | 34.93726 | 31.51752 | 38.78538 |
Platymantis mimulus | Anura | LC | Ground-dwelling | 28.675393 | 35.14030 | 31.50571 | 38.88756 |
Platymantis naomii | Anura | NT | Ground-dwelling | 27.300462 | 34.93528 | 31.43095 | 38.78289 |
Platymantis naomii | Anura | NT | Ground-dwelling | 26.857937 | 34.87371 | 31.63422 | 38.93097 |
Platymantis naomii | Anura | NT | Ground-dwelling | 28.156659 | 35.05440 | 31.48973 | 38.86622 |
Platymantis panayensis | Anura | EN | Arboreal | 27.278237 | 35.76146 | 32.64227 | 38.99837 |
Platymantis panayensis | Anura | EN | Arboreal | 26.901959 | 35.70895 | 32.59430 | 38.93783 |
Platymantis panayensis | Anura | EN | Arboreal | 28.116520 | 35.87844 | 32.72314 | 39.13325 |
Platymantis rabori | Anura | LC | Arboreal | 27.442038 | 36.01081 | 31.99747 | 40.81123 |
Platymantis rabori | Anura | LC | Arboreal | 26.944996 | 35.94356 | 31.92123 | 40.75824 |
Platymantis rabori | Anura | LC | Arboreal | 28.567511 | 36.16307 | 32.07345 | 40.99453 |
Platymantis isarog | Anura | LC | Arboreal | 27.692333 | 36.06398 | 31.50060 | 40.33329 |
Platymantis isarog | Anura | LC | Arboreal | 27.179908 | 35.99256 | 31.58948 | 40.39612 |
Platymantis isarog | Anura | LC | Arboreal | 28.646470 | 36.19696 | 31.74037 | 40.58390 |
Platymantis cornutus | Anura | LC | Arboreal | 27.851477 | 36.13248 | 31.51259 | 40.91115 |
Platymantis cornutus | Anura | LC | Arboreal | 27.340335 | 36.06107 | 31.44754 | 40.83485 |
Platymantis cornutus | Anura | LC | Arboreal | 28.781554 | 36.26242 | 31.13288 | 40.61195 |
Platymantis cagayanensis | Anura | NT | Ground-dwelling | 27.723616 | 36.20805 | 31.39795 | 40.74512 |
Platymantis cagayanensis | Anura | NT | Ground-dwelling | 27.228446 | 36.14010 | 31.33077 | 40.66170 |
Platymantis cagayanensis | Anura | NT | Ground-dwelling | 28.631165 | 36.33261 | 31.52106 | 40.89802 |
Platymantis diesmosi | Anura | EN | Ground-dwelling | 27.692333 | 36.18465 | 31.53440 | 40.77663 |
Platymantis diesmosi | Anura | EN | Ground-dwelling | 27.179908 | 36.11481 | 31.48326 | 40.65478 |
Platymantis diesmosi | Anura | EN | Ground-dwelling | 28.646470 | 36.31469 | 31.51510 | 40.85532 |
Platymantis lawtoni | Anura | EN | Arboreal | 27.473534 | 36.04622 | 30.79242 | 40.27517 |
Platymantis lawtoni | Anura | EN | Arboreal | 27.067989 | 35.99081 | 30.75992 | 40.21563 |
Platymantis lawtoni | Anura | EN | Arboreal | 28.250304 | 36.15235 | 30.85468 | 40.38922 |
Platymantis guentheri | Anura | LC | Arboreal | 27.488331 | 35.98959 | 31.00429 | 39.94637 |
Platymantis guentheri | Anura | LC | Arboreal | 26.947770 | 35.91518 | 30.92473 | 39.87022 |
Platymantis guentheri | Anura | LC | Arboreal | 28.599812 | 36.14259 | 31.16787 | 40.17164 |
Platymantis subterrestris | Anura | EN | Arboreal | 27.934264 | 36.05437 | 31.74467 | 40.49747 |
Platymantis subterrestris | Anura | EN | Arboreal | 27.417482 | 35.98233 | 31.70299 | 40.42788 |
Platymantis subterrestris | Anura | EN | Arboreal | 28.922353 | 36.19212 | 31.82438 | 40.58990 |
Platymantis hazelae | Anura | VU | Arboreal | 27.141048 | 35.41963 | 32.05128 | 38.41469 |
Platymantis hazelae | Anura | VU | Arboreal | 26.666658 | 35.35429 | 31.94526 | 38.28545 |
Platymantis hazelae | Anura | VU | Arboreal | 28.227957 | 35.56936 | 32.11574 | 38.57940 |
Platymantis pygmaeus | Anura | LC | Ground-dwelling | 27.885410 | 35.68102 | 32.51247 | 38.75568 |
Platymantis pygmaeus | Anura | LC | Ground-dwelling | 27.379283 | 35.61036 | 32.40655 | 38.67175 |
Platymantis pygmaeus | Anura | LC | Ground-dwelling | 28.783076 | 35.80633 | 32.62081 | 38.90454 |
Platymantis indeprensus | Anura | NT | Ground-dwelling | 27.300462 | 36.08438 | 31.66527 | 40.89687 |
Platymantis indeprensus | Anura | NT | Ground-dwelling | 26.857937 | 36.02232 | 31.62358 | 40.82577 |
Platymantis indeprensus | Anura | NT | Ground-dwelling | 28.156659 | 36.20446 | 31.82018 | 41.03967 |
Platymantis paengi | Anura | EN | Ground-dwelling | 27.327106 | 36.07838 | 31.84603 | 40.79706 |
Platymantis paengi | Anura | EN | Ground-dwelling | 26.940217 | 36.02424 | 31.30087 | 40.25498 |
Platymantis paengi | Anura | EN | Ground-dwelling | 28.192445 | 36.19948 | 31.59378 | 40.57288 |
Platymantis insulatus | Anura | CR | Ground-dwelling | 27.142546 | 35.95890 | 31.45533 | 40.64012 |
Platymantis insulatus | Anura | CR | Ground-dwelling | 26.677595 | 35.89500 | 31.35595 | 40.48239 |
Platymantis insulatus | Anura | CR | Ground-dwelling | 28.343377 | 36.12392 | 31.49610 | 40.63873 |
Platymantis taylori | Anura | VU | Ground-dwelling | 27.819778 | 36.14006 | 31.74630 | 40.77843 |
Platymantis taylori | Anura | VU | Ground-dwelling | 27.308976 | 36.07031 | 31.66032 | 40.69015 |
Platymantis taylori | Anura | VU | Ground-dwelling | 28.704512 | 36.26086 | 31.84601 | 41.03950 |
Platymantis negrosensis | Anura | NT | Arboreal | 27.209642 | 36.12247 | 31.87440 | 41.15102 |
Platymantis negrosensis | Anura | NT | Arboreal | 26.784309 | 36.06324 | 31.42977 | 40.66494 |
Platymantis negrosensis | Anura | NT | Arboreal | 28.172238 | 36.25653 | 31.46146 | 40.74159 |
Platymantis pseudodorsalis | Anura | NT | Ground-dwelling | 27.300462 | 36.08085 | 31.47463 | 40.52613 |
Platymantis pseudodorsalis | Anura | NT | Ground-dwelling | 26.857937 | 36.01995 | 31.76592 | 40.81725 |
Platymantis pseudodorsalis | Anura | NT | Ground-dwelling | 28.156659 | 36.19866 | 31.92002 | 40.98902 |
Platymantis polillensis | Anura | LC | Arboreal | 27.769171 | 36.01488 | 31.11424 | 40.18327 |
Platymantis polillensis | Anura | LC | Arboreal | 27.289578 | 35.94948 | 31.01748 | 40.10318 |
Platymantis polillensis | Anura | LC | Arboreal | 28.619206 | 36.13080 | 31.37012 | 40.41638 |
Platymantis sierramadrensis | Anura | VU | Arboreal | 28.019440 | 36.13503 | 31.57257 | 40.72848 |
Platymantis sierramadrensis | Anura | VU | Arboreal | 27.511354 | 36.06498 | 31.50405 | 40.62047 |
Platymantis sierramadrensis | Anura | VU | Arboreal | 28.872181 | 36.25258 | 31.81043 | 40.96170 |
Platymantis spelaeus | Anura | EN | Ground-dwelling | 27.695959 | 36.26223 | 31.76284 | 41.01119 |
Platymantis spelaeus | Anura | EN | Ground-dwelling | 27.266915 | 36.20329 | 31.69293 | 40.93515 |
Platymantis spelaeus | Anura | EN | Ground-dwelling | 28.548102 | 36.37930 | 31.87236 | 41.16623 |
Lankanectes corrugatus | Anura | NT | Ground-dwelling | 27.662834 | 37.24688 | 31.99028 | 42.39397 |
Lankanectes corrugatus | Anura | NT | Ground-dwelling | 26.894204 | 37.14161 | 31.93178 | 42.31546 |
Lankanectes corrugatus | Anura | NT | Ground-dwelling | 29.593339 | 37.51128 | 32.21726 | 42.70432 |
Nyctibatrachus sylvaticus | Anura | DD | Stream-dwelling | 26.781316 | 36.52192 | 31.41652 | 41.78512 |
Nyctibatrachus sylvaticus | Anura | DD | Stream-dwelling | 26.036271 | 36.42145 | 31.38689 | 41.69039 |
Nyctibatrachus sylvaticus | Anura | DD | Stream-dwelling | 28.329553 | 36.73070 | 31.45621 | 41.83340 |
Nyctibatrachus major | Anura | VU | Stream-dwelling | 27.072533 | 36.56483 | 31.65085 | 41.68834 |
Nyctibatrachus major | Anura | VU | Stream-dwelling | 26.181863 | 36.44297 | 31.56770 | 41.58423 |
Nyctibatrachus major | Anura | VU | Stream-dwelling | 28.980735 | 36.82593 | 32.05576 | 42.13669 |
Nyctibatrachus dattatreyaensis | Anura | CR | Stream-dwelling | 26.190234 | 36.42812 | 31.61771 | 41.96118 |
Nyctibatrachus dattatreyaensis | Anura | CR | Stream-dwelling | 25.268410 | 36.30229 | 31.54286 | 41.85750 |
Nyctibatrachus dattatreyaensis | Anura | CR | Stream-dwelling | 28.649558 | 36.76383 | 31.77346 | 42.21478 |
Nyctibatrachus karnatakaensis | Anura | EN | Stream-dwelling | 26.190234 | 36.37431 | 31.28586 | 41.78100 |
Nyctibatrachus karnatakaensis | Anura | EN | Stream-dwelling | 25.268410 | 36.24839 | 31.21268 | 41.67969 |
Nyctibatrachus karnatakaensis | Anura | EN | Stream-dwelling | 28.649558 | 36.71025 | 30.89282 | 41.54800 |
Nyctibatrachus sanctipalustris | Anura | EN | Semi-aquatic | 26.421968 | 37.26303 | 32.33263 | 43.18579 |
Nyctibatrachus sanctipalustris | Anura | EN | Semi-aquatic | 25.572415 | 37.14763 | 32.22355 | 42.97459 |
Nyctibatrachus sanctipalustris | Anura | EN | Semi-aquatic | 28.581294 | 37.55634 | 32.50966 | 43.51649 |
Nyctibatrachus kempholeyensis | Anura | DD | Stream-dwelling | 26.781316 | 36.54303 | 31.24278 | 41.31266 |
Nyctibatrachus kempholeyensis | Anura | DD | Stream-dwelling | 26.036271 | 36.43983 | 30.81297 | 40.82699 |
Nyctibatrachus kempholeyensis | Anura | DD | Stream-dwelling | 28.329553 | 36.75751 | 31.30195 | 41.38729 |
Nyctibatrachus humayuni | Anura | VU | Stream-dwelling | 26.454491 | 36.58054 | 31.46179 | 42.16282 |
Nyctibatrachus humayuni | Anura | VU | Stream-dwelling | 25.581347 | 36.46101 | 31.34839 | 42.04671 |
Nyctibatrachus humayuni | Anura | VU | Stream-dwelling | 28.570901 | 36.87028 | 31.54145 | 42.34201 |
Nyctibatrachus petraeus | Anura | NT | Stream-dwelling | 26.689315 | 36.57499 | 31.50915 | 42.07525 |
Nyctibatrachus petraeus | Anura | NT | Stream-dwelling | 25.816044 | 36.45569 | 31.29614 | 41.83364 |
Nyctibatrachus petraeus | Anura | NT | Stream-dwelling | 28.966493 | 36.88608 | 31.48029 | 42.09946 |
Nyctibatrachus aliciae | Anura | EN | Semi-aquatic | 26.976945 | 37.34702 | 32.07606 | 42.72544 |
Nyctibatrachus aliciae | Anura | EN | Semi-aquatic | 26.116342 | 37.23203 | 32.10672 | 42.74510 |
Nyctibatrachus aliciae | Anura | EN | Semi-aquatic | 28.865176 | 37.59932 | 32.46526 | 43.12598 |
Nyctibatrachus vasanthi | Anura | EN | Stream-dwelling | 27.573236 | 36.64860 | 31.26072 | 41.37014 |
Nyctibatrachus vasanthi | Anura | EN | Stream-dwelling | 26.914010 | 36.55717 | 31.19190 | 41.27107 |
Nyctibatrachus vasanthi | Anura | EN | Stream-dwelling | 28.939685 | 36.83813 | 31.37241 | 41.63516 |
Nyctibatrachus deccanensis | Anura | VU | Semi-aquatic | 27.214563 | 37.36908 | 31.81625 | 42.11316 |
Nyctibatrachus deccanensis | Anura | VU | Semi-aquatic | 26.272814 | 37.24176 | 31.75230 | 41.99819 |
Nyctibatrachus deccanensis | Anura | VU | Semi-aquatic | 29.205387 | 37.63823 | 32.52162 | 42.93884 |
Nyctibatrachus minor | Anura | EN | Semi-aquatic | 27.183363 | 37.40096 | 31.55233 | 41.85967 |
Nyctibatrachus minor | Anura | EN | Semi-aquatic | 26.247524 | 37.27450 | 31.56195 | 41.81257 |
Nyctibatrachus minor | Anura | EN | Semi-aquatic | 29.126577 | 37.66353 | 31.81069 | 42.21205 |
Nyctibatrachus beddomii | Anura | EN | Semi-aquatic | 27.533330 | 37.48210 | 31.75398 | 42.30928 |
Nyctibatrachus beddomii | Anura | EN | Semi-aquatic | 26.606822 | 37.35576 | 31.44225 | 41.96711 |
Nyctibatrachus beddomii | Anura | EN | Semi-aquatic | 29.362240 | 37.73149 | 32.06821 | 42.61930 |
Nyctibatrachus minimus | Anura | DD | Ground-dwelling | 27.292479 | 37.18135 | 32.36356 | 42.50269 |
Nyctibatrachus minimus | Anura | DD | Ground-dwelling | 26.570303 | 37.08405 | 31.95644 | 42.06441 |
Nyctibatrachus minimus | Anura | DD | Ground-dwelling | 28.916568 | 37.40016 | 32.52993 | 42.72655 |
Indirana beddomii | Anura | LC | Ground-dwelling | 27.006183 | 38.26764 | 33.43041 | 43.47663 |
Indirana beddomii | Anura | LC | Ground-dwelling | 26.147259 | 38.15423 | 33.33728 | 43.36582 |
Indirana beddomii | Anura | LC | Ground-dwelling | 28.983993 | 38.52878 | 33.61588 | 43.80632 |
Indirana brachytarsus | Anura | EN | Stream-dwelling | 27.128468 | 37.67565 | 32.80054 | 42.76226 |
Indirana brachytarsus | Anura | EN | Stream-dwelling | 26.212772 | 37.55272 | 32.76539 | 42.63394 |
Indirana brachytarsus | Anura | EN | Stream-dwelling | 29.096128 | 37.93980 | 32.49595 | 42.62822 |
Indirana leithii | Anura | VU | Ground-dwelling | 26.795314 | 38.29165 | 33.88150 | 43.40973 |
Indirana leithii | Anura | VU | Ground-dwelling | 25.975258 | 38.18312 | 33.76904 | 43.28834 |
Indirana leithii | Anura | VU | Ground-dwelling | 28.721160 | 38.54654 | 34.06996 | 43.69120 |
Indirana semipalmata | Anura | LC | Stream-dwelling | 27.270873 | 37.69277 | 32.58859 | 42.45861 |
Indirana semipalmata | Anura | LC | Stream-dwelling | 26.402361 | 37.57696 | 32.54718 | 42.36521 |
Indirana semipalmata | Anura | LC | Stream-dwelling | 29.059384 | 37.93127 | 33.17406 | 43.21920 |
Indirana gundia | Anura | CR | Stream-dwelling | 26.781316 | 37.60717 | 32.60808 | 42.48704 |
Indirana gundia | Anura | CR | Stream-dwelling | 26.036271 | 37.50919 | 32.50345 | 42.38073 |
Indirana gundia | Anura | CR | Stream-dwelling | 28.329553 | 37.81079 | 32.82550 | 42.73866 |
Indirana longicrus | Anura | DD | Stream-dwelling | 26.485775 | 37.52140 | 32.39812 | 42.49212 |
Indirana longicrus | Anura | DD | Stream-dwelling | 25.652340 | 37.41126 | 32.80118 | 42.86322 |
Indirana longicrus | Anura | DD | Stream-dwelling | 28.489556 | 37.78621 | 32.91152 | 43.12822 |
Indirana diplosticta | Anura | EN | Stream-dwelling | 27.742707 | 37.60638 | 32.63035 | 42.63518 |
Indirana diplosticta | Anura | EN | Stream-dwelling | 26.960018 | 37.50222 | 32.57396 | 42.53707 |
Indirana diplosticta | Anura | EN | Stream-dwelling | 29.248683 | 37.80678 | 32.61253 | 42.74094 |
Indirana leptodactyla | Anura | EN | Ground-dwelling | 27.533330 | 38.19580 | 33.11464 | 43.16363 |
Indirana leptodactyla | Anura | EN | Ground-dwelling | 26.606822 | 38.07445 | 32.82646 | 42.89262 |
Indirana leptodactyla | Anura | EN | Ground-dwelling | 29.362240 | 38.43535 | 33.73477 | 43.87540 |
Indirana phrynoderma | Anura | CR | Ground-dwelling | 27.974551 | 38.20538 | 33.55821 | 43.23870 |
Indirana phrynoderma | Anura | CR | Ground-dwelling | 26.918577 | 38.06514 | 33.33038 | 42.94548 |
Indirana phrynoderma | Anura | CR | Ground-dwelling | 30.000028 | 38.47437 | 33.68424 | 43.44707 |
Ingerana borealis | Anura | LC | Semi-aquatic | 24.543592 | 38.26617 | 33.71790 | 43.07264 |
Ingerana borealis | Anura | LC | Semi-aquatic | 23.516267 | 38.13036 | 33.56471 | 42.89883 |
Ingerana borealis | Anura | LC | Semi-aquatic | 26.324957 | 38.50166 | 33.96804 | 43.28726 |
Ingerana tenasserimensis | Anura | LC | Ground-dwelling | 27.640659 | 38.48717 | 34.13723 | 43.55746 |
Ingerana tenasserimensis | Anura | LC | Ground-dwelling | 26.825530 | 38.37872 | 34.00986 | 43.48055 |
Ingerana tenasserimensis | Anura | LC | Ground-dwelling | 29.362694 | 38.71630 | 34.33865 | 43.82302 |
Ingerana charlesdarwini | Anura | CR | Arboreal | 28.432263 | 38.35586 | 33.51112 | 42.89426 |
Ingerana charlesdarwini | Anura | CR | Arboreal | 27.796089 | 38.27261 | 33.39793 | 42.76396 |
Ingerana charlesdarwini | Anura | CR | Arboreal | 29.962546 | 38.55611 | 33.77377 | 43.22452 |
Ingerana reticulata | Anura | DD | Stream-dwelling | 16.274470 | 36.24814 | 31.45475 | 40.83689 |
Ingerana reticulata | Anura | DD | Stream-dwelling | 14.438870 | 36.00628 | 31.07771 | 40.48709 |
Ingerana reticulata | Anura | DD | Stream-dwelling | 18.508255 | 36.54248 | 31.60766 | 40.91778 |
Occidozyga baluensis | Anura | LC | Aquatic | 27.771863 | 38.32698 | 33.99206 | 42.68865 |
Occidozyga baluensis | Anura | LC | Aquatic | 27.137202 | 38.24374 | 33.96147 | 42.64141 |
Occidozyga baluensis | Anura | LC | Aquatic | 29.088050 | 38.49959 | 34.16673 | 42.92324 |
Occidozyga celebensis | Anura | LC | Semi-aquatic | 26.824312 | 38.20719 | 34.01301 | 42.32269 |
Occidozyga celebensis | Anura | LC | Semi-aquatic | 26.344757 | 38.14098 | 33.93941 | 42.24607 |
Occidozyga celebensis | Anura | LC | Semi-aquatic | 27.929021 | 38.35971 | 34.14364 | 42.51507 |
Occidozyga lima | Anura | LC | Semi-aquatic | 27.391924 | 38.24092 | 34.21876 | 42.81076 |
Occidozyga lima | Anura | LC | Semi-aquatic | 26.524395 | 38.12491 | 34.10911 | 42.64387 |
Occidozyga lima | Anura | LC | Semi-aquatic | 29.108759 | 38.47048 | 34.32107 | 43.02693 |
Occidozyga magnapustulosa | Anura | LC | Aquatic | 27.552881 | 38.05981 | 33.58018 | 42.82064 |
Occidozyga magnapustulosa | Anura | LC | Aquatic | 26.610830 | 37.93338 | 33.31239 | 42.47389 |
Occidozyga magnapustulosa | Anura | LC | Aquatic | 29.440183 | 38.31311 | 33.78302 | 43.14731 |
Occidozyga martensii | Anura | LC | Aquatic | 27.301051 | 37.99403 | 33.79027 | 42.06379 |
Occidozyga martensii | Anura | LC | Aquatic | 26.396933 | 37.87170 | 33.60092 | 41.85577 |
Occidozyga martensii | Anura | LC | Aquatic | 29.081319 | 38.23490 | 33.92128 | 42.30153 |
Occidozyga semipalmata | Anura | LC | Aquatic | 26.860564 | 38.01310 | 34.13073 | 42.52873 |
Occidozyga semipalmata | Anura | LC | Aquatic | 26.384643 | 37.95032 | 34.05512 | 42.44946 |
Occidozyga semipalmata | Anura | LC | Aquatic | 27.929490 | 38.15411 | 33.88130 | 42.35299 |
Occidozyga sumatrana | Anura | LC | Semi-aquatic | 27.598089 | 38.20351 | 33.46867 | 42.63565 |
Occidozyga sumatrana | Anura | LC | Semi-aquatic | 26.993504 | 38.12351 | 33.43601 | 42.58015 |
Occidozyga sumatrana | Anura | LC | Semi-aquatic | 28.836129 | 38.36733 | 33.67008 | 42.89270 |
Occidozyga floresiana | Anura | VU | Semi-aquatic | 26.978847 | 37.48508 | 33.77759 | 41.23553 |
Occidozyga floresiana | Anura | VU | Semi-aquatic | 26.418764 | 37.40787 | 33.67394 | 41.13311 |
Occidozyga floresiana | Anura | VU | Semi-aquatic | 28.259761 | 37.66166 | 33.82447 | 41.38055 |
Occidozyga diminutiva | Anura | NT | Stream-dwelling | 27.036207 | 37.23682 | 32.75615 | 41.78861 |
Occidozyga diminutiva | Anura | NT | Stream-dwelling | 26.712392 | 37.19357 | 32.72670 | 41.74453 |
Occidozyga diminutiva | Anura | NT | Stream-dwelling | 27.934527 | 37.35679 | 32.79568 | 41.90872 |
Allopaa hazarensis | Anura | LC | Semi-aquatic | 14.237908 | 38.03408 | 33.17552 | 42.36375 |
Allopaa hazarensis | Anura | LC | Semi-aquatic | 11.828419 | 37.71660 | 33.13048 | 42.28408 |
Allopaa hazarensis | Anura | LC | Semi-aquatic | 17.703455 | 38.49071 | 33.75485 | 42.78477 |
Chrysopaa sternosignata | Anura | LC | Aquatic | 21.472925 | 38.82169 | 34.65123 | 43.29898 |
Chrysopaa sternosignata | Anura | LC | Aquatic | 19.669400 | 38.58448 | 34.10444 | 42.80016 |
Chrysopaa sternosignata | Anura | LC | Aquatic | 24.378524 | 39.20385 | 35.10845 | 43.73883 |
Ombrana sikimensis | Anura | LC | Stream-dwelling | 20.184299 | 37.98466 | 33.91199 | 42.42984 |
Ombrana sikimensis | Anura | LC | Stream-dwelling | 18.918588 | 37.81648 | 33.82190 | 42.29534 |
Ombrana sikimensis | Anura | LC | Stream-dwelling | 22.001359 | 38.22608 | 34.26005 | 42.73176 |
Euphlyctis hexadactylus | Anura | LC | Semi-aquatic | 27.665118 | 40.75952 | 36.76608 | 44.79252 |
Euphlyctis hexadactylus | Anura | LC | Semi-aquatic | 26.696515 | 40.63696 | 36.63956 | 44.64550 |
Euphlyctis hexadactylus | Anura | LC | Semi-aquatic | 29.760671 | 41.02466 | 37.17099 | 45.29906 |
Euphlyctis cyanophlyctis | Anura | LC | Semi-aquatic | 25.972047 | 40.66493 | 36.75090 | 44.53337 |
Euphlyctis cyanophlyctis | Anura | LC | Semi-aquatic | 24.700752 | 40.50019 | 36.71104 | 44.42675 |
Euphlyctis cyanophlyctis | Anura | LC | Semi-aquatic | 28.241007 | 40.95896 | 36.95930 | 44.81635 |
Euphlyctis ehrenbergii | Anura | LC | Semi-aquatic | 24.551145 | 40.45222 | 36.31717 | 44.62544 |
Euphlyctis ehrenbergii | Anura | LC | Semi-aquatic | 23.594725 | 40.32590 | 36.16171 | 44.43087 |
Euphlyctis ehrenbergii | Anura | LC | Semi-aquatic | 26.396171 | 40.69589 | 36.60923 | 44.98098 |
Euphlyctis ghoshi | Anura | DD | Semi-aquatic | 28.910609 | 41.09776 | 36.61022 | 44.87469 |
Euphlyctis ghoshi | Anura | DD | Semi-aquatic | 28.102788 | 40.99232 | 37.28285 | 45.54687 |
Euphlyctis ghoshi | Anura | DD | Semi-aquatic | 30.449565 | 41.29862 | 36.75815 | 45.12177 |
Hoplobatrachus crassus | Anura | LC | Fossorial | 27.275274 | 42.21399 | 38.42299 | 46.28572 |
Hoplobatrachus crassus | Anura | LC | Fossorial | 26.198222 | 42.07527 | 38.27849 | 46.06144 |
Hoplobatrachus crassus | Anura | LC | Fossorial | 29.429990 | 42.49152 | 38.71207 | 46.73443 |
Hoplobatrachus tigerinus | Anura | LC | Semi-aquatic | 26.477236 | 41.54451 | 37.84612 | 45.02258 |
Hoplobatrachus tigerinus | Anura | LC | Semi-aquatic | 25.270738 | 41.38940 | 37.66563 | 44.72578 |
Hoplobatrachus tigerinus | Anura | LC | Semi-aquatic | 28.649644 | 41.82381 | 38.05592 | 45.39661 |
Hoplobatrachus occipitalis | Anura | LC | Ground-dwelling | 26.364553 | 40.67511 | 36.30175 | 44.60751 |
Hoplobatrachus occipitalis | Anura | LC | Ground-dwelling | 25.446693 | 40.55759 | 36.28361 | 44.51882 |
Hoplobatrachus occipitalis | Anura | LC | Ground-dwelling | 28.393487 | 40.93487 | 36.30137 | 44.78555 |
Nannophrys ceylonensis | Anura | VU | Aquatic | 27.311256 | 40.56443 | 36.36457 | 45.13833 |
Nannophrys ceylonensis | Anura | VU | Aquatic | 26.578946 | 40.46905 | 36.25485 | 45.03360 |
Nannophrys ceylonensis | Anura | VU | Aquatic | 29.131810 | 40.80154 | 36.54474 | 45.42486 |
Nannophrys marmorata | Anura | EN | Semi-aquatic | 27.311256 | 40.60773 | 36.44840 | 44.85846 |
Nannophrys marmorata | Anura | EN | Semi-aquatic | 26.578946 | 40.51406 | 36.37160 | 44.81879 |
Nannophrys marmorata | Anura | EN | Semi-aquatic | 29.131810 | 40.84060 | 36.54772 | 44.98911 |
Nannophrys naeyakai | Anura | EN | Stream-dwelling | 28.037441 | 39.93329 | 35.80398 | 44.81341 |
Nannophrys naeyakai | Anura | EN | Stream-dwelling | 27.226686 | 39.82581 | 35.61228 | 44.64072 |
Nannophrys naeyakai | Anura | EN | Stream-dwelling | 30.094095 | 40.20596 | 36.09443 | 45.28825 |
Fejervarya iskandari | Anura | LC | Ground-dwelling | 27.998314 | 40.18917 | 35.93370 | 44.20228 |
Fejervarya iskandari | Anura | LC | Ground-dwelling | 27.225793 | 40.08892 | 36.27918 | 44.45298 |
Fejervarya iskandari | Anura | LC | Ground-dwelling | 29.639961 | 40.40221 | 35.95621 | 44.33284 |
Fejervarya orissaensis | Anura | LC | Ground-dwelling | 27.945045 | 40.26589 | 36.48773 | 44.14118 |
Fejervarya orissaensis | Anura | LC | Ground-dwelling | 26.828421 | 40.12018 | 36.42214 | 43.98128 |
Fejervarya orissaensis | Anura | LC | Ground-dwelling | 29.977872 | 40.53116 | 36.97264 | 44.74918 |
Fejervarya moodiei | Anura | LC | Semi-aquatic | 27.963945 | 40.54507 | 36.30309 | 44.90936 |
Fejervarya moodiei | Anura | LC | Semi-aquatic | 27.344908 | 40.46412 | 36.21510 | 44.82157 |
Fejervarya moodiei | Anura | LC | Semi-aquatic | 29.276102 | 40.71667 | 36.45485 | 45.02209 |
Fejervarya multistriata | Anura | DD | Semi-aquatic | 27.409068 | 40.37615 | 36.35604 | 44.45280 |
Fejervarya multistriata | Anura | DD | Semi-aquatic | 26.657677 | 40.27853 | 36.26466 | 44.29394 |
Fejervarya multistriata | Anura | DD | Semi-aquatic | 28.852586 | 40.56368 | 36.69119 | 44.89013 |
Fejervarya triora | Anura | LC | Ground-dwelling | 28.757981 | 40.29625 | 36.36859 | 44.45599 |
Fejervarya triora | Anura | LC | Ground-dwelling | 27.647547 | 40.15139 | 36.38465 | 44.46531 |
Fejervarya triora | Anura | LC | Ground-dwelling | 30.790423 | 40.56138 | 36.60041 | 44.80057 |
Fejervarya verruculosa | Anura | LC | Ground-dwelling | 27.305552 | 40.08786 | 35.73765 | 44.05210 |
Fejervarya verruculosa | Anura | LC | Ground-dwelling | 26.735238 | 40.01371 | 35.70513 | 43.98315 |
Fejervarya verruculosa | Anura | LC | Ground-dwelling | 28.436888 | 40.23496 | 35.89964 | 44.28700 |
Fejervarya vittigera | Anura | LC | Ground-dwelling | 27.561339 | 40.16196 | 36.08737 | 44.62528 |
Fejervarya vittigera | Anura | LC | Ground-dwelling | 27.075210 | 40.09870 | 36.06118 | 44.54652 |
Fejervarya vittigera | Anura | LC | Ground-dwelling | 28.581351 | 40.29469 | 36.14232 | 44.75891 |
Sphaerotheca breviceps | Anura | LC | Ground-dwelling | 27.017795 | 40.04633 | 35.70738 | 43.68563 |
Sphaerotheca breviceps | Anura | LC | Ground-dwelling | 25.821835 | 39.89110 | 35.70284 | 43.63130 |
Sphaerotheca breviceps | Anura | LC | Ground-dwelling | 29.198812 | 40.32940 | 36.01326 | 44.16130 |
Sphaerotheca dobsonii | Anura | LC | Fossorial | 27.479726 | 41.12708 | 36.45641 | 45.08461 |
Sphaerotheca dobsonii | Anura | LC | Fossorial | 26.547199 | 41.00779 | 36.38554 | 44.93794 |
Sphaerotheca dobsonii | Anura | LC | Fossorial | 29.535965 | 41.39012 | 37.30033 | 46.01954 |
Sphaerotheca leucorhynchus | Anura | DD | Fossorial | 26.870883 | 41.02848 | 37.05844 | 45.34334 |
Sphaerotheca leucorhynchus | Anura | DD | Fossorial | 25.920847 | 40.90625 | 36.79916 | 45.02421 |
Sphaerotheca leucorhynchus | Anura | DD | Fossorial | 28.911091 | 41.29097 | 37.40002 | 45.87048 |
Sphaerotheca maskeyi | Anura | LC | Fossorial | 22.153699 | 40.37637 | 35.96788 | 44.28485 |
Sphaerotheca maskeyi | Anura | LC | Fossorial | 21.010926 | 40.22980 | 35.80091 | 44.14921 |
Sphaerotheca maskeyi | Anura | LC | Fossorial | 23.686004 | 40.57290 | 36.18322 | 44.56793 |
Sphaerotheca rolandae | Anura | LC | Fossorial | 28.096623 | 41.19857 | 37.16381 | 45.99634 |
Sphaerotheca rolandae | Anura | LC | Fossorial | 27.091353 | 41.06877 | 36.77380 | 45.55027 |
Sphaerotheca rolandae | Anura | LC | Fossorial | 30.193948 | 41.46937 | 37.03619 | 46.09033 |
Sphaerotheca swani | Anura | DD | Fossorial | 25.718021 | 40.84173 | 35.99814 | 44.51682 |
Sphaerotheca swani | Anura | DD | Fossorial | 24.884280 | 40.73315 | 35.94707 | 44.42132 |
Sphaerotheca swani | Anura | DD | Fossorial | 27.258757 | 41.04239 | 36.36584 | 44.88819 |
Limnonectes acanthi | Anura | NT | Stream-dwelling | 27.724965 | 38.15449 | 34.69809 | 42.20524 |
Limnonectes acanthi | Anura | NT | Stream-dwelling | 27.280459 | 38.09501 | 34.65856 | 42.14111 |
Limnonectes acanthi | Anura | NT | Stream-dwelling | 28.714498 | 38.28693 | 34.81153 | 42.35242 |
Limnonectes arathooni | Anura | VU | Ground-dwelling | 26.995195 | 38.64228 | 34.59648 | 42.63887 |
Limnonectes arathooni | Anura | VU | Ground-dwelling | 26.556956 | 38.58504 | 34.48072 | 42.54066 |
Limnonectes arathooni | Anura | VU | Ground-dwelling | 28.016889 | 38.77573 | 34.65234 | 42.78112 |
Limnonectes microtympanum | Anura | EN | Stream-dwelling | 26.639294 | 37.93723 | 34.19063 | 41.96771 |
Limnonectes microtympanum | Anura | EN | Stream-dwelling | 26.286033 | 37.89086 | 34.15802 | 41.91790 |
Limnonectes microtympanum | Anura | EN | Stream-dwelling | 27.659920 | 38.07117 | 34.28589 | 42.13438 |
Limnonectes asperatus | Anura | LC | Ground-dwelling | 28.366507 | 38.88602 | 34.20546 | 42.40803 |
Limnonectes asperatus | Anura | LC | Ground-dwelling | 27.614805 | 38.78742 | 34.70233 | 42.87722 |
Limnonectes asperatus | Anura | LC | Ground-dwelling | 29.856694 | 39.08149 | 34.48127 | 42.73364 |
Limnonectes kuhlii | Anura | LC | Stream-dwelling | 27.275423 | 38.00794 | 33.82415 | 41.72161 |
Limnonectes kuhlii | Anura | LC | Stream-dwelling | 26.657741 | 37.92783 | 33.77647 | 41.62355 |
Limnonectes kuhlii | Anura | LC | Stream-dwelling | 28.512588 | 38.16840 | 34.02824 | 41.96462 |
Limnonectes fujianensis | Anura | LC | Semi-aquatic | 27.362215 | 39.00771 | 34.88464 | 42.95934 |
Limnonectes fujianensis | Anura | LC | Semi-aquatic | 26.060290 | 38.83514 | 35.05751 | 43.04887 |
Limnonectes fujianensis | Anura | LC | Semi-aquatic | 29.599941 | 39.30431 | 35.10391 | 43.29531 |
Limnonectes namiyei | Anura | EN | Stream-dwelling | 27.508538 | 38.04999 | 34.12539 | 42.02012 |
Limnonectes namiyei | Anura | EN | Stream-dwelling | 26.808429 | 37.95669 | 33.99445 | 41.87444 |
Limnonectes namiyei | Anura | EN | Stream-dwelling | 28.598246 | 38.19521 | 34.02826 | 42.00035 |
Limnonectes poilani | Anura | LC | Stream-dwelling | 28.218021 | 37.47090 | 34.23179 | 40.68385 |
Limnonectes poilani | Anura | LC | Stream-dwelling | 27.244467 | 37.33963 | 34.06002 | 40.49239 |
Limnonectes poilani | Anura | LC | Stream-dwelling | 30.051218 | 37.71807 | 34.49246 | 41.08028 |
Limnonectes dabanus | Anura | LC | Semi-aquatic | 28.257899 | 39.14828 | 35.03555 | 43.20212 |
Limnonectes dabanus | Anura | LC | Semi-aquatic | 27.264316 | 39.01574 | 34.97775 | 43.08454 |
Limnonectes dabanus | Anura | LC | Semi-aquatic | 30.092127 | 39.39297 | 35.00968 | 43.27086 |
Limnonectes gyldenstolpei | Anura | LC | Ground-dwelling | 27.838643 | 38.78055 | 34.95376 | 42.78481 |
Limnonectes gyldenstolpei | Anura | LC | Ground-dwelling | 26.921021 | 38.66133 | 34.89614 | 42.69450 |
Limnonectes gyldenstolpei | Anura | LC | Ground-dwelling | 29.665814 | 39.01793 | 35.04455 | 43.03745 |
Limnonectes dammermani | Anura | LC | Stream-dwelling | 27.227550 | 38.10827 | 34.21138 | 42.40799 |
Limnonectes dammermani | Anura | LC | Stream-dwelling | 26.670896 | 38.03436 | 33.95236 | 42.13016 |
Limnonectes dammermani | Anura | LC | Stream-dwelling | 28.350405 | 38.25735 | 34.26078 | 42.45212 |
Limnonectes diuatus | Anura | VU | Stream-dwelling | 27.578204 | 38.15079 | 34.10486 | 42.12107 |
Limnonectes diuatus | Anura | VU | Stream-dwelling | 26.898940 | 38.06285 | 34.03367 | 42.04201 |
Limnonectes diuatus | Anura | VU | Stream-dwelling | 28.946926 | 38.32798 | 34.29008 | 42.38366 |
Limnonectes doriae | Anura | LC | Ground-dwelling | 27.755593 | 38.76245 | 34.88577 | 42.63140 |
Limnonectes doriae | Anura | LC | Ground-dwelling | 26.971935 | 38.66007 | 34.80195 | 42.55197 |
Limnonectes doriae | Anura | LC | Ground-dwelling | 29.433288 | 38.98162 | 35.06289 | 42.95637 |
Limnonectes hascheanus | Anura | LC | Ground-dwelling | 27.411570 | 38.64124 | 34.61725 | 42.24435 |
Limnonectes hascheanus | Anura | LC | Ground-dwelling | 26.632643 | 38.54052 | 34.51363 | 42.11755 |
Limnonectes hascheanus | Anura | LC | Ground-dwelling | 29.037879 | 38.85154 | 34.89821 | 42.63735 |
Limnonectes limborgi | Anura | LC | Ground-dwelling | 26.902288 | 38.60421 | 34.95633 | 42.72013 |
Limnonectes limborgi | Anura | LC | Ground-dwelling | 25.977717 | 38.48165 | 34.85937 | 42.64376 |
Limnonectes limborgi | Anura | LC | Ground-dwelling | 28.749545 | 38.84908 | 35.07463 | 42.91418 |
Limnonectes plicatellus | Anura | LC | Stream-dwelling | 28.211627 | 38.16211 | 34.16943 | 42.37291 |
Limnonectes plicatellus | Anura | LC | Stream-dwelling | 27.524926 | 38.07080 | 34.06187 | 42.23304 |
Limnonectes plicatellus | Anura | LC | Stream-dwelling | 29.604125 | 38.34726 | 34.03479 | 42.31517 |
Limnonectes kohchangae | Anura | LC | Ground-dwelling | 28.763054 | 38.89936 | 34.82866 | 42.90115 |
Limnonectes kohchangae | Anura | LC | Ground-dwelling | 27.877537 | 38.78314 | 35.11406 | 43.13781 |
Limnonectes kohchangae | Anura | LC | Ground-dwelling | 30.540541 | 39.13263 | 34.99273 | 43.14816 |
Limnonectes finchi | Anura | LC | Ground-dwelling | 27.701335 | 38.37455 | 35.01741 | 41.76381 |
Limnonectes finchi | Anura | LC | Ground-dwelling | 27.060880 | 38.28910 | 34.96447 | 41.66187 |
Limnonectes finchi | Anura | LC | Ground-dwelling | 29.023813 | 38.55101 | 35.06397 | 41.92771 |
Limnonectes ingeri | Anura | LC | Stream-dwelling | 27.517277 | 37.75887 | 34.55526 | 41.22761 |
Limnonectes ingeri | Anura | LC | Stream-dwelling | 26.932930 | 37.68019 | 34.53039 | 41.15779 |
Limnonectes ingeri | Anura | LC | Stream-dwelling | 28.780339 | 37.92894 | 34.48588 | 41.20513 |
Limnonectes fragilis | Anura | VU | Stream-dwelling | 27.983220 | 38.10091 | 33.90442 | 41.83709 |
Limnonectes fragilis | Anura | VU | Stream-dwelling | 27.369547 | 38.02009 | 34.06261 | 41.95609 |
Limnonectes fragilis | Anura | VU | Stream-dwelling | 29.121736 | 38.25083 | 34.11215 | 42.07364 |
Limnonectes grunniens | Anura | LC | Semi-aquatic | 26.964790 | 38.93820 | 35.00540 | 43.01964 |
Limnonectes grunniens | Anura | LC | Semi-aquatic | 26.386449 | 38.86097 | 35.02019 | 42.97233 |
Limnonectes grunniens | Anura | LC | Semi-aquatic | 28.201995 | 39.10341 | 35.06423 | 43.15591 |
Limnonectes ibanorum | Anura | LC | Semi-aquatic | 27.898434 | 38.97568 | 34.96932 | 42.96495 |
Limnonectes ibanorum | Anura | LC | Semi-aquatic | 27.204884 | 38.88355 | 35.02649 | 42.99874 |
Limnonectes ibanorum | Anura | LC | Semi-aquatic | 29.291845 | 39.16080 | 35.13658 | 43.13921 |
Limnonectes heinrichi | Anura | VU | Stream-dwelling | 27.268793 | 37.44758 | 34.08523 | 41.11752 |
Limnonectes heinrichi | Anura | VU | Stream-dwelling | 26.829377 | 37.38820 | 33.66057 | 40.66066 |
Limnonectes heinrichi | Anura | VU | Stream-dwelling | 28.234574 | 37.57807 | 34.19014 | 41.29703 |
Limnonectes modestus | Anura | LC | Semi-aquatic | 27.017380 | 38.30731 | 34.79717 | 41.99145 |
Limnonectes modestus | Anura | LC | Semi-aquatic | 26.550149 | 38.24519 | 34.73116 | 41.88534 |
Limnonectes modestus | Anura | LC | Semi-aquatic | 28.096988 | 38.45085 | 34.85572 | 42.11825 |
Limnonectes macrocephalus | Anura | NT | Semi-aquatic | 27.806311 | 38.17368 | 34.55202 | 41.28353 |
Limnonectes macrocephalus | Anura | NT | Semi-aquatic | 27.297847 | 38.10606 | 34.54214 | 41.26341 |
Limnonectes macrocephalus | Anura | NT | Semi-aquatic | 28.780176 | 38.30319 | 34.58810 | 41.42137 |
Limnonectes visayanus | Anura | NT | Stream-dwelling | 27.211410 | 37.26410 | 33.88812 | 40.68368 |
Limnonectes visayanus | Anura | NT | Stream-dwelling | 26.782281 | 37.20687 | 33.83390 | 40.61937 |
Limnonectes visayanus | Anura | NT | Stream-dwelling | 28.200588 | 37.39602 | 33.96018 | 40.83941 |
Limnonectes magnus | Anura | NT | Stream-dwelling | 27.370942 | 37.40996 | 34.32118 | 41.11046 |
Limnonectes magnus | Anura | NT | Stream-dwelling | 26.860372 | 37.34095 | 34.31883 | 41.01149 |
Limnonectes magnus | Anura | NT | Stream-dwelling | 28.453171 | 37.55622 | 34.56070 | 41.44995 |
Limnonectes kadarsani | Anura | LC | Stream-dwelling | 27.403319 | 38.09345 | 34.14526 | 42.22057 |
Limnonectes kadarsani | Anura | LC | Stream-dwelling | 26.821651 | 38.01615 | 34.08988 | 42.18281 |
Limnonectes kadarsani | Anura | LC | Stream-dwelling | 28.594547 | 38.25175 | 34.30023 | 42.42210 |
Limnonectes microdiscus | Anura | LC | Ground-dwelling | 27.523986 | 38.61655 | 34.57920 | 42.67912 |
Limnonectes microdiscus | Anura | LC | Ground-dwelling | 26.888960 | 38.53385 | 34.38883 | 42.44943 |
Limnonectes microdiscus | Anura | LC | Ground-dwelling | 28.809029 | 38.78389 | 34.78070 | 42.92291 |
Limnonectes kenepaiensis | Anura | VU | Ground-dwelling | 27.731968 | 38.96912 | 35.04793 | 42.97741 |
Limnonectes kenepaiensis | Anura | VU | Ground-dwelling | 27.241321 | 38.90231 | 35.00425 | 42.91335 |
Limnonectes kenepaiensis | Anura | VU | Ground-dwelling | 28.733798 | 39.10554 | 35.18063 | 43.15744 |
Limnonectes khammonensis | Anura | DD | Ground-dwelling | 28.303951 | 38.99512 | 34.99240 | 42.77371 |
Limnonectes khammonensis | Anura | DD | Ground-dwelling | 27.377110 | 38.87212 | 35.00142 | 42.72591 |
Limnonectes khammonensis | Anura | DD | Ground-dwelling | 30.366965 | 39.26890 | 35.13209 | 42.97232 |
Limnonectes khasianus | Anura | LC | Ground-dwelling | 25.605456 | 38.43091 | 34.55287 | 42.47512 |
Limnonectes khasianus | Anura | LC | Ground-dwelling | 24.726405 | 38.31582 | 34.44744 | 42.35709 |
Limnonectes khasianus | Anura | LC | Ground-dwelling | 27.264789 | 38.64815 | 34.78349 | 42.80981 |
Limnonectes leporinus | Anura | LC | Ground-dwelling | 27.853447 | 38.86226 | 34.75217 | 42.48764 |
Limnonectes leporinus | Anura | LC | Ground-dwelling | 27.220732 | 38.77880 | 34.74778 | 42.41992 |
Limnonectes leporinus | Anura | LC | Ground-dwelling | 29.170079 | 39.03594 | 34.78605 | 42.59175 |
Limnonectes leytensis | Anura | LC | Stream-dwelling | 27.373434 | 38.13310 | 34.41526 | 41.93771 |
Limnonectes leytensis | Anura | LC | Stream-dwelling | 26.890113 | 38.06841 | 34.33733 | 41.82157 |
Limnonectes leytensis | Anura | LC | Stream-dwelling | 28.424691 | 38.27380 | 34.57715 | 42.18241 |
Limnonectes macrodon | Anura | LC | Semi-aquatic | 27.600141 | 38.96991 | 34.65376 | 42.41723 |
Limnonectes macrodon | Anura | LC | Semi-aquatic | 26.958813 | 38.88482 | 34.57466 | 42.31819 |
Limnonectes macrodon | Anura | LC | Semi-aquatic | 28.876242 | 39.13923 | 34.82846 | 42.69312 |
Limnonectes shompenorum | Anura | LC | Ground-dwelling | 27.452763 | 38.68320 | 34.76222 | 42.78547 |
Limnonectes shompenorum | Anura | LC | Ground-dwelling | 26.914395 | 38.61176 | 34.72560 | 42.70639 |
Limnonectes shompenorum | Anura | LC | Ground-dwelling | 28.593511 | 38.83458 | 34.86471 | 42.96111 |
Limnonectes paramacrodon | Anura | LC | Semi-aquatic | 28.031207 | 38.99533 | 35.08746 | 43.29910 |
Limnonectes paramacrodon | Anura | LC | Semi-aquatic | 27.395893 | 38.91136 | 34.80414 | 43.01001 |
Limnonectes paramacrodon | Anura | LC | Semi-aquatic | 29.394164 | 39.17547 | 35.21667 | 43.45114 |
Limnonectes macrognathus | Anura | LC | Ground-dwelling | 27.786626 | 38.79230 | 34.32139 | 42.21948 |
Limnonectes macrognathus | Anura | LC | Ground-dwelling | 27.030414 | 38.69362 | 34.25738 | 42.12501 |
Limnonectes macrognathus | Anura | LC | Ground-dwelling | 29.428365 | 39.00655 | 34.78619 | 42.82205 |
Limnonectes mawlyndipi | Anura | DD | Ground-dwelling | 22.878119 | 38.18490 | 34.65751 | 41.97727 |
Limnonectes mawlyndipi | Anura | DD | Ground-dwelling | 21.570552 | 38.01165 | 34.50474 | 41.78924 |
Limnonectes mawlyndipi | Anura | DD | Ground-dwelling | 25.033585 | 38.47051 | 34.93012 | 42.32456 |
Limnonectes micrixalus | Anura | DD | Stream-dwelling | 26.723445 | 38.10491 | 34.47764 | 42.09924 |
Limnonectes micrixalus | Anura | DD | Stream-dwelling | 26.446530 | 38.06757 | 34.43335 | 42.05236 |
Limnonectes micrixalus | Anura | DD | Stream-dwelling | 27.565855 | 38.21851 | 34.47683 | 42.14768 |
Limnonectes nitidus | Anura | EN | Stream-dwelling | 27.573696 | 38.16110 | 34.18374 | 42.18033 |
Limnonectes nitidus | Anura | EN | Stream-dwelling | 26.813863 | 38.06114 | 34.10456 | 42.09261 |
Limnonectes nitidus | Anura | EN | Stream-dwelling | 28.996984 | 38.34834 | 34.30377 | 42.41281 |
Limnonectes palavanensis | Anura | LC | Stream-dwelling | 27.664924 | 38.18619 | 34.37076 | 42.16026 |
Limnonectes palavanensis | Anura | LC | Stream-dwelling | 27.084097 | 38.10972 | 34.28397 | 42.08170 |
Limnonectes palavanensis | Anura | LC | Stream-dwelling | 28.903927 | 38.34932 | 34.43116 | 42.29795 |
Limnonectes parvus | Anura | LC | Stream-dwelling | 27.446727 | 38.12589 | 33.80672 | 42.11480 |
Limnonectes parvus | Anura | LC | Stream-dwelling | 26.906173 | 38.05548 | 33.73794 | 41.99386 |
Limnonectes parvus | Anura | LC | Stream-dwelling | 28.598672 | 38.27594 | 34.33163 | 42.72552 |
Limnonectes tweediei | Anura | LC | Ground-dwelling | 28.122771 | 38.79341 | 34.99382 | 42.73707 |
Limnonectes tweediei | Anura | LC | Ground-dwelling | 27.434236 | 38.70283 | 34.91271 | 42.61245 |
Limnonectes tweediei | Anura | LC | Ground-dwelling | 29.539728 | 38.97984 | 35.16231 | 43.08443 |
Nanorana aenea | Anura | LC | Ground-dwelling | 25.007362 | 41.46956 | 37.09973 | 45.12220 |
Nanorana aenea | Anura | LC | Ground-dwelling | 24.049355 | 41.34818 | 37.03918 | 45.01655 |
Nanorana aenea | Anura | LC | Ground-dwelling | 26.965939 | 41.71770 | 37.23243 | 45.38919 |
Nanorana unculuanus | Anura | VU | Stream-dwelling | 23.126176 | 40.65236 | 36.33944 | 44.01911 |
Nanorana unculuanus | Anura | VU | Stream-dwelling | 22.080291 | 40.52031 | 36.37025 | 44.02184 |
Nanorana unculuanus | Anura | VU | Stream-dwelling | 25.220601 | 40.91681 | 36.85058 | 44.56728 |
Nanorana annandalii | Anura | NT | Stream-dwelling | 19.565867 | 40.23733 | 36.17554 | 44.14425 |
Nanorana annandalii | Anura | NT | Stream-dwelling | 18.339023 | 40.08267 | 36.05623 | 43.96910 |
Nanorana annandalii | Anura | NT | Stream-dwelling | 21.358728 | 40.46335 | 36.34989 | 44.32805 |
Nanorana arnoldi | Anura | DD | Stream-dwelling | 16.773094 | 39.82674 | 35.66218 | 43.18120 |
Nanorana arnoldi | Anura | DD | Stream-dwelling | 15.340870 | 39.64217 | 35.65920 | 43.15534 |
Nanorana arnoldi | Anura | DD | Stream-dwelling | 19.054769 | 40.12076 | 35.91687 | 43.38706 |
Nanorana maculosa | Anura | VU | Stream-dwelling | 22.537233 | 40.54468 | 36.55140 | 44.39880 |
Nanorana maculosa | Anura | VU | Stream-dwelling | 21.553350 | 40.42084 | 36.46179 | 44.23383 |
Nanorana maculosa | Anura | VU | Stream-dwelling | 24.556818 | 40.79888 | 36.97812 | 44.89770 |
Nanorana medogensis | Anura | EN | Stream-dwelling | 16.274470 | 39.80525 | 36.26686 | 43.90603 |
Nanorana medogensis | Anura | EN | Stream-dwelling | 14.438870 | 39.56805 | 35.92149 | 43.59058 |
Nanorana medogensis | Anura | EN | Stream-dwelling | 18.508255 | 40.09390 | 36.58570 | 44.22879 |
Nanorana blanfordii | Anura | LC | Stream-dwelling | 18.865073 | 40.04087 | 36.23128 | 44.06109 |
Nanorana blanfordii | Anura | LC | Stream-dwelling | 16.953321 | 39.79709 | 36.09952 | 43.93740 |
Nanorana blanfordii | Anura | LC | Stream-dwelling | 20.944022 | 40.30596 | 36.53443 | 44.43154 |
Nanorana conaensis | Anura | DD | Stream-dwelling | 18.123993 | 39.89616 | 36.27102 | 44.03762 |
Nanorana conaensis | Anura | DD | Stream-dwelling | 16.919588 | 39.73959 | 36.07966 | 43.80691 |
Nanorana conaensis | Anura | DD | Stream-dwelling | 20.034315 | 40.14449 | 36.05262 | 43.89865 |
Nanorana ercepeae | Anura | NT | Stream-dwelling | 20.643088 | 40.32694 | 36.50960 | 44.08836 |
Nanorana ercepeae | Anura | NT | Stream-dwelling | 18.866951 | 40.09972 | 36.25784 | 43.77892 |
Nanorana ercepeae | Anura | NT | Stream-dwelling | 22.793637 | 40.60205 | 36.86806 | 44.47827 |
Nanorana taihangnica | Anura | LC | Stream-dwelling | 22.575038 | 40.54413 | 36.89190 | 44.58800 |
Nanorana taihangnica | Anura | LC | Stream-dwelling | 19.980073 | 40.21481 | 36.38564 | 44.03726 |
Nanorana taihangnica | Anura | LC | Stream-dwelling | 26.210517 | 41.00550 | 37.35867 | 45.19984 |
Nanorana liebigii | Anura | LC | Stream-dwelling | 16.715152 | 39.83180 | 35.78846 | 43.52509 |
Nanorana liebigii | Anura | LC | Stream-dwelling | 14.903685 | 39.60111 | 35.54209 | 43.33113 |
Nanorana liebigii | Anura | LC | Stream-dwelling | 19.118218 | 40.13783 | 36.19874 | 43.89661 |
Nanorana minica | Anura | LC | Stream-dwelling | 17.789425 | 39.94441 | 36.45471 | 44.11004 |
Nanorana minica | Anura | LC | Stream-dwelling | 15.620371 | 39.66523 | 35.98798 | 43.62594 |
Nanorana minica | Anura | LC | Stream-dwelling | 20.261152 | 40.26255 | 36.29218 | 43.91232 |
Nanorana mokokchungensis | Anura | DD | Stream-dwelling | 26.428880 | 40.96881 | 37.09323 | 44.86924 |
Nanorana mokokchungensis | Anura | DD | Stream-dwelling | 25.647236 | 40.87010 | 36.98096 | 44.72394 |
Nanorana mokokchungensis | Anura | DD | Stream-dwelling | 28.107161 | 41.18076 | 37.00007 | 44.92288 |
Nanorana parkeri | Anura | LC | Ground-dwelling | 11.016543 | 39.70561 | 35.62298 | 43.40788 |
Nanorana parkeri | Anura | LC | Ground-dwelling | 8.948305 | 39.43840 | 35.51839 | 43.26334 |
Nanorana parkeri | Anura | LC | Ground-dwelling | 13.752554 | 40.05910 | 36.07502 | 43.80202 |
Nanorana pleskei | Anura | LC | Aquatic | 13.699426 | 40.11980 | 35.91907 | 43.67741 |
Nanorana pleskei | Anura | LC | Aquatic | 11.270339 | 39.80502 | 35.62446 | 43.31110 |
Nanorana pleskei | Anura | LC | Aquatic | 16.563161 | 40.49090 | 36.65118 | 44.42482 |
Nanorana ventripunctata | Anura | LC | Semi-aquatic | 16.274528 | 40.57701 | 36.64169 | 44.44415 |
Nanorana ventripunctata | Anura | LC | Semi-aquatic | 14.858923 | 40.39714 | 36.48960 | 44.32346 |
Nanorana ventripunctata | Anura | LC | Semi-aquatic | 18.530362 | 40.86364 | 37.25057 | 45.04143 |
Nanorana polunini | Anura | LC | Stream-dwelling | 17.472125 | 39.97378 | 36.37846 | 43.35665 |
Nanorana polunini | Anura | LC | Stream-dwelling | 15.888175 | 39.77252 | 36.48460 | 43.45722 |
Nanorana polunini | Anura | LC | Stream-dwelling | 19.632302 | 40.24825 | 36.69637 | 43.68119 |
Nanorana quadranus | Anura | NT | Stream-dwelling | 23.494118 | 40.67900 | 36.46196 | 44.47085 |
Nanorana quadranus | Anura | NT | Stream-dwelling | 20.879571 | 40.34991 | 36.56995 | 44.45881 |
Nanorana quadranus | Anura | NT | Stream-dwelling | 26.762139 | 41.09034 | 37.00409 | 45.02716 |
Nanorana rarica | Anura | DD | Semi-aquatic | 12.257130 | 40.12666 | 36.39918 | 44.17461 |
Nanorana rarica | Anura | DD | Semi-aquatic | 9.625352 | 39.78777 | 36.16125 | 44.06600 |
Nanorana rarica | Anura | DD | Semi-aquatic | 15.282354 | 40.51622 | 36.80879 | 44.46436 |
Nanorana rostandi | Anura | VU | Stream-dwelling | 16.243126 | 39.73757 | 36.00423 | 43.67028 |
Nanorana rostandi | Anura | VU | Stream-dwelling | 14.305865 | 39.49088 | 35.64684 | 43.31408 |
Nanorana rostandi | Anura | VU | Stream-dwelling | 19.135171 | 40.10585 | 36.35045 | 44.04444 |
Nanorana vicina | Anura | LC | Stream-dwelling | 15.514905 | 39.62636 | 35.92309 | 43.72476 |
Nanorana vicina | Anura | LC | Stream-dwelling | 13.058761 | 39.31880 | 35.26028 | 43.11095 |
Nanorana vicina | Anura | LC | Stream-dwelling | 18.314223 | 39.97690 | 36.27745 | 43.99696 |
Nanorana yunnanensis | Anura | EN | Stream-dwelling | 22.767181 | 40.59079 | 36.85274 | 44.37584 |
Nanorana yunnanensis | Anura | EN | Stream-dwelling | 21.491979 | 40.42830 | 36.69289 | 44.24078 |
Nanorana yunnanensis | Anura | EN | Stream-dwelling | 24.936567 | 40.86721 | 37.09772 | 44.62753 |
Quasipaa boulengeri | Anura | VU | Stream-dwelling | 24.444253 | 41.98772 | 38.86930 | 45.77545 |
Quasipaa boulengeri | Anura | VU | Stream-dwelling | 22.535309 | 41.74385 | 38.18408 | 45.02569 |
Quasipaa boulengeri | Anura | VU | Stream-dwelling | 27.006346 | 42.31504 | 39.01476 | 46.11561 |
Quasipaa verrucospinosa | Anura | LC | Stream-dwelling | 25.774213 | 42.11561 | 38.63950 | 46.01573 |
Quasipaa verrucospinosa | Anura | LC | Stream-dwelling | 24.819417 | 41.99562 | 38.03747 | 45.35198 |
Quasipaa verrucospinosa | Anura | LC | Stream-dwelling | 27.673070 | 42.35424 | 38.86511 | 46.41935 |
Quasipaa jiulongensis | Anura | VU | Stream-dwelling | 26.796261 | 42.22534 | 38.68041 | 45.41068 |
Quasipaa jiulongensis | Anura | VU | Stream-dwelling | 25.215259 | 42.02341 | 38.64066 | 45.28409 |
Quasipaa jiulongensis | Anura | VU | Stream-dwelling | 29.375743 | 42.55479 | 38.94278 | 45.85477 |
Quasipaa shini | Anura | EN | Stream-dwelling | 26.633452 | 42.25893 | 38.76057 | 46.14120 |
Quasipaa shini | Anura | EN | Stream-dwelling | 25.366177 | 42.09840 | 38.63940 | 45.92390 |
Quasipaa shini | Anura | EN | Stream-dwelling | 28.901591 | 42.54625 | 38.65335 | 46.20626 |
Quasipaa exilispinosa | Anura | LC | Stream-dwelling | 27.376992 | 42.71709 | 39.33498 | 45.86439 |
Quasipaa exilispinosa | Anura | LC | Stream-dwelling | 26.060565 | 42.55491 | 39.19087 | 45.66113 |
Quasipaa exilispinosa | Anura | LC | Stream-dwelling | 29.752883 | 43.00979 | 39.63098 | 46.32904 |
Quasipaa yei | Anura | VU | Stream-dwelling | 27.724204 | 42.20993 | 38.37960 | 46.12037 |
Quasipaa yei | Anura | VU | Stream-dwelling | 24.926582 | 41.85503 | 37.86726 | 45.51373 |
Quasipaa yei | Anura | VU | Stream-dwelling | 30.789178 | 42.59873 | 38.50897 | 46.57916 |
Quasipaa delacouri | Anura | LC | Stream-dwelling | 26.204096 | 41.49676 | 37.52356 | 45.01541 |
Quasipaa delacouri | Anura | LC | Stream-dwelling | 25.183716 | 41.36840 | 37.40479 | 44.85875 |
Quasipaa delacouri | Anura | LC | Stream-dwelling | 28.147432 | 41.74122 | 37.77759 | 45.45854 |
Quasipaa fasciculispina | Anura | LC | Stream-dwelling | 29.003605 | 41.89902 | 38.05565 | 45.38456 |
Quasipaa fasciculispina | Anura | LC | Stream-dwelling | 28.049291 | 41.77914 | 37.92728 | 45.21063 |
Quasipaa fasciculispina | Anura | LC | Stream-dwelling | 30.902969 | 42.13764 | 38.07794 | 45.59641 |
Amolops archotaphus | Anura | DD | Stream-dwelling | 25.466407 | 36.49570 | 31.80941 | 40.69265 |
Amolops archotaphus | Anura | DD | Stream-dwelling | 24.424144 | 36.35569 | 32.11521 | 40.99174 |
Amolops archotaphus | Anura | DD | Stream-dwelling | 27.514201 | 36.77078 | 32.00288 | 40.99968 |
Amolops aniqiaoensis | Anura | VU | Stream-dwelling | 16.274470 | 35.32776 | 31.68451 | 39.93035 |
Amolops aniqiaoensis | Anura | VU | Stream-dwelling | 14.438870 | 35.08547 | 31.39833 | 39.71181 |
Amolops aniqiaoensis | Anura | VU | Stream-dwelling | 18.508255 | 35.62262 | 32.02206 | 40.22868 |
Amolops assamensis | Anura | DD | Stream-dwelling | 26.220454 | 36.70865 | 32.39366 | 41.01959 |
Amolops assamensis | Anura | DD | Stream-dwelling | 25.541192 | 36.61728 | 32.20981 | 40.80346 |
Amolops assamensis | Anura | DD | Stream-dwelling | 27.727905 | 36.91142 | 32.61585 | 41.26979 |
Amolops bellulus | Anura | NT | Stream-dwelling | 19.727425 | 35.79637 | 31.15010 | 39.81533 |
Amolops bellulus | Anura | NT | Stream-dwelling | 18.633451 | 35.64851 | 31.07096 | 39.75095 |
Amolops bellulus | Anura | NT | Stream-dwelling | 21.562968 | 36.04446 | 31.78770 | 40.53457 |
Amolops chakrataensis | Anura | DD | Stream-dwelling | 21.322882 | 35.98224 | 31.70186 | 40.09008 |
Amolops chakrataensis | Anura | DD | Stream-dwelling | 19.688684 | 35.76248 | 31.47089 | 39.84341 |
Amolops chakrataensis | Anura | DD | Stream-dwelling | 22.921071 | 36.19715 | 31.86844 | 40.28537 |
Amolops chunganensis | Anura | LC | Ground-dwelling | 23.960706 | 37.01724 | 32.93569 | 41.36150 |
Amolops chunganensis | Anura | LC | Ground-dwelling | 21.942787 | 36.75300 | 32.72464 | 41.07174 |
Amolops chunganensis | Anura | LC | Ground-dwelling | 26.612427 | 37.36447 | 33.26201 | 41.84756 |
Amolops compotrix | Anura | LC | Stream-dwelling | 27.965701 | 36.92294 | 32.46372 | 41.28209 |
Amolops compotrix | Anura | LC | Stream-dwelling | 27.058481 | 36.79803 | 32.31027 | 41.09265 |
Amolops compotrix | Anura | LC | Stream-dwelling | 29.743221 | 37.16768 | 32.67144 | 41.53513 |
Amolops cucae | Anura | EN | Stream-dwelling | 25.770069 | 36.53254 | 31.79784 | 40.37965 |
Amolops cucae | Anura | EN | Stream-dwelling | 24.729135 | 36.39274 | 31.61425 | 40.20417 |
Amolops cucae | Anura | EN | Stream-dwelling | 27.661013 | 36.78651 | 32.12379 | 40.70038 |
Amolops vitreus | Anura | VU | Stream-dwelling | 24.510928 | 36.39329 | 32.40268 | 40.82856 |
Amolops vitreus | Anura | VU | Stream-dwelling | 23.498034 | 36.25989 | 32.23771 | 40.69655 |
Amolops vitreus | Anura | VU | Stream-dwelling | 26.508575 | 36.65638 | 32.57597 | 41.03298 |
Amolops cremnobatus | Anura | LC | Stream-dwelling | 27.149555 | 36.82415 | 32.09267 | 41.02005 |
Amolops cremnobatus | Anura | LC | Stream-dwelling | 26.219971 | 36.70427 | 32.36749 | 41.22588 |
Amolops cremnobatus | Anura | LC | Stream-dwelling | 29.029989 | 37.06666 | 32.23151 | 41.24407 |
Amolops daiyunensis | Anura | NT | Stream-dwelling | 27.017174 | 36.67972 | 32.34813 | 41.07731 |
Amolops daiyunensis | Anura | NT | Stream-dwelling | 25.847703 | 36.52285 | 32.23913 | 40.94940 |
Amolops daiyunensis | Anura | NT | Stream-dwelling | 29.414927 | 37.00135 | 32.56463 | 41.39315 |
Amolops iriodes | Anura | DD | Ground-dwelling | 26.309342 | 37.42383 | 32.75941 | 41.52038 |
Amolops iriodes | Anura | DD | Ground-dwelling | 25.260109 | 37.28430 | 32.84107 | 41.55670 |
Amolops iriodes | Anura | DD | Ground-dwelling | 28.080535 | 37.65938 | 33.12100 | 42.02085 |
Amolops formosus | Anura | LC | Stream-dwelling | 19.471509 | 35.78397 | 31.43064 | 40.04094 |
Amolops formosus | Anura | LC | Stream-dwelling | 17.915356 | 35.57621 | 31.30805 | 39.91400 |
Amolops formosus | Anura | LC | Stream-dwelling | 21.615463 | 36.07022 | 31.83584 | 40.46673 |
Amolops gerbillus | Anura | LC | Stream-dwelling | 20.593910 | 35.91928 | 31.98049 | 40.26587 |
Amolops gerbillus | Anura | LC | Stream-dwelling | 19.313420 | 35.74951 | 31.91861 | 40.21613 |
Amolops gerbillus | Anura | LC | Stream-dwelling | 22.561743 | 36.18017 | 32.32906 | 40.57289 |
Amolops granulosus | Anura | LC | Ground-dwelling | 21.560593 | 36.58512 | 32.53615 | 40.53214 |
Amolops granulosus | Anura | LC | Ground-dwelling | 19.057451 | 36.25559 | 32.31184 | 40.24767 |
Amolops granulosus | Anura | LC | Ground-dwelling | 24.498670 | 36.97191 | 32.82104 | 40.96805 |
Amolops lifanensis | Anura | LC | Stream-dwelling | 19.006161 | 35.66260 | 31.70012 | 39.62688 |
Amolops lifanensis | Anura | LC | Stream-dwelling | 16.550090 | 35.32491 | 31.33575 | 39.15732 |
Amolops lifanensis | Anura | LC | Stream-dwelling | 21.708454 | 36.03414 | 31.87596 | 39.81340 |
Amolops hainanensis | Anura | EN | Stream-dwelling | 27.983220 | 36.83808 | 32.54961 | 41.07291 |
Amolops hainanensis | Anura | EN | Stream-dwelling | 27.369547 | 36.75707 | 32.63941 | 41.11033 |
Amolops hainanensis | Anura | EN | Stream-dwelling | 29.121736 | 36.98836 | 32.66547 | 41.23975 |
Amolops hongkongensis | Anura | EN | Stream-dwelling | 27.409068 | 36.82603 | 32.12289 | 41.48359 |
Amolops hongkongensis | Anura | EN | Stream-dwelling | 26.657677 | 36.72380 | 32.06115 | 41.32874 |
Amolops hongkongensis | Anura | EN | Stream-dwelling | 28.852586 | 37.02241 | 32.10870 | 41.57680 |
Amolops jaunsari | Anura | DD | Stream-dwelling | 21.488480 | 36.02790 | 31.47964 | 40.41615 |
Amolops jaunsari | Anura | DD | Stream-dwelling | 19.378597 | 35.74480 | 31.25651 | 40.07797 |
Amolops jaunsari | Anura | DD | Stream-dwelling | 23.270639 | 36.26702 | 31.67844 | 40.60715 |
Amolops jinjiangensis | Anura | LC | Stream-dwelling | 16.622172 | 35.34688 | 31.16985 | 39.85109 |
Amolops jinjiangensis | Anura | LC | Stream-dwelling | 15.033584 | 35.13463 | 30.98151 | 39.64422 |
Amolops jinjiangensis | Anura | LC | Stream-dwelling | 18.844124 | 35.64374 | 31.64750 | 40.38891 |
Amolops tuberodepressus | Anura | VU | Stream-dwelling | 22.537233 | 36.13638 | 31.96809 | 40.65974 |
Amolops tuberodepressus | Anura | VU | Stream-dwelling | 21.553350 | 36.00599 | 31.81948 | 40.52563 |
Amolops tuberodepressus | Anura | VU | Stream-dwelling | 24.556818 | 36.40402 | 32.23957 | 40.98498 |
Amolops loloensis | Anura | VU | Stream-dwelling | 20.402796 | 35.83800 | 31.50278 | 40.17903 |
Amolops loloensis | Anura | VU | Stream-dwelling | 18.828296 | 35.62654 | 31.50992 | 40.19028 |
Amolops loloensis | Anura | VU | Stream-dwelling | 22.585950 | 36.13120 | 31.87038 | 40.48510 |
Amolops mantzorum | Anura | LC | Stream-dwelling | 18.050190 | 35.55001 | 31.27562 | 39.71909 |
Amolops mantzorum | Anura | LC | Stream-dwelling | 16.162066 | 35.29678 | 31.05448 | 39.44754 |
Amolops mantzorum | Anura | LC | Stream-dwelling | 20.509253 | 35.87982 | 31.24306 | 39.75753 |
Amolops kaulbacki | Anura | DD | Stream-dwelling | 18.902632 | 35.64055 | 31.26621 | 39.66577 |
Amolops kaulbacki | Anura | DD | Stream-dwelling | 17.678012 | 35.47266 | 31.03095 | 39.43759 |
Amolops kaulbacki | Anura | DD | Stream-dwelling | 20.816900 | 35.90300 | 31.60085 | 39.90839 |
Amolops larutensis | Anura | LC | Stream-dwelling | 28.010226 | 36.93980 | 32.89818 | 41.65071 |
Amolops larutensis | Anura | LC | Stream-dwelling | 27.326858 | 36.84647 | 32.78187 | 41.56396 |
Amolops larutensis | Anura | LC | Stream-dwelling | 29.425141 | 37.13302 | 32.98283 | 41.83231 |
Amolops longimanus | Anura | DD | Ground-dwelling | 22.253983 | 36.76203 | 32.81579 | 41.17701 |
Amolops longimanus | Anura | DD | Ground-dwelling | 21.309989 | 36.63311 | 32.63766 | 41.02650 |
Amolops longimanus | Anura | DD | Ground-dwelling | 24.030407 | 37.00465 | 32.92365 | 41.37197 |
Amolops marmoratus | Anura | LC | Stream-dwelling | 22.929813 | 36.28306 | 31.70120 | 40.46008 |
Amolops marmoratus | Anura | LC | Stream-dwelling | 21.807970 | 36.13254 | 31.61136 | 40.35683 |
Amolops marmoratus | Anura | LC | Stream-dwelling | 24.784247 | 36.53189 | 31.91114 | 40.73785 |
Amolops medogensis | Anura | EN | Stream-dwelling | 16.274470 | 35.40192 | 31.26886 | 40.04212 |
Amolops medogensis | Anura | EN | Stream-dwelling | 14.438870 | 35.15574 | 30.86547 | 39.70888 |
Amolops medogensis | Anura | EN | Stream-dwelling | 18.508255 | 35.70152 | 31.54048 | 40.31917 |
Amolops mengyangensis | Anura | DD | Stream-dwelling | 22.925496 | 36.15542 | 31.99281 | 40.53891 |
Amolops mengyangensis | Anura | DD | Stream-dwelling | 21.932124 | 36.01984 | 31.88870 | 40.47998 |
Amolops mengyangensis | Anura | DD | Stream-dwelling | 24.998979 | 36.43842 | 32.19500 | 40.84933 |
Amolops minutus | Anura | EN | Stream-dwelling | 25.386180 | 36.58447 | 32.42799 | 41.41215 |
Amolops minutus | Anura | EN | Stream-dwelling | 24.362627 | 36.44774 | 32.19234 | 41.12117 |
Amolops minutus | Anura | EN | Stream-dwelling | 27.369961 | 36.84947 | 32.56281 | 41.61501 |
Amolops monticola | Anura | LC | Stream-dwelling | 17.157859 | 35.37552 | 31.32458 | 39.74605 |
Amolops monticola | Anura | LC | Stream-dwelling | 15.446903 | 35.14253 | 31.12020 | 39.50111 |
Amolops monticola | Anura | LC | Stream-dwelling | 19.388678 | 35.67931 | 31.54167 | 39.97866 |
Amolops panhai | Anura | LC | Stream-dwelling | 28.238657 | 36.90296 | 32.22459 | 40.72507 |
Amolops panhai | Anura | LC | Stream-dwelling | 27.515200 | 36.80870 | 32.11582 | 40.56372 |
Amolops panhai | Anura | LC | Stream-dwelling | 29.857943 | 37.11393 | 32.47626 | 41.13643 |
Amolops ricketti | Anura | LC | Stream-dwelling | 27.064811 | 36.80908 | 32.50700 | 41.24853 |
Amolops ricketti | Anura | LC | Stream-dwelling | 25.654354 | 36.61848 | 32.37792 | 41.11585 |
Amolops ricketti | Anura | LC | Stream-dwelling | 29.437106 | 37.12965 | 32.59408 | 41.37887 |
Amolops wuyiensis | Anura | LC | Stream-dwelling | 26.811613 | 36.78398 | 32.65976 | 41.36861 |
Amolops wuyiensis | Anura | LC | Stream-dwelling | 25.195182 | 36.57117 | 32.51933 | 41.10717 |
Amolops wuyiensis | Anura | LC | Stream-dwelling | 29.238532 | 37.10349 | 32.95919 | 41.80214 |
Amolops spinapectoralis | Anura | LC | Stream-dwelling | 27.809515 | 36.89242 | 32.40868 | 41.17135 |
Amolops spinapectoralis | Anura | LC | Stream-dwelling | 26.870861 | 36.76619 | 32.12453 | 40.87160 |
Amolops spinapectoralis | Anura | LC | Stream-dwelling | 29.564709 | 37.12847 | 32.58041 | 41.41473 |
Amolops splendissimus | Anura | VU | Stream-dwelling | 25.209311 | 36.57554 | 31.74538 | 40.50113 |
Amolops splendissimus | Anura | VU | Stream-dwelling | 24.193130 | 36.44090 | 31.65282 | 40.40968 |
Amolops splendissimus | Anura | VU | Stream-dwelling | 27.169630 | 36.83529 | 32.54763 | 41.35700 |
Amolops torrentis | Anura | VU | Stream-dwelling | 27.983220 | 36.84583 | 32.76749 | 41.40201 |
Amolops torrentis | Anura | VU | Stream-dwelling | 27.369547 | 36.76308 | 32.72059 | 41.34386 |
Amolops torrentis | Anura | VU | Stream-dwelling | 29.121736 | 36.99936 | 32.89555 | 41.57902 |
Amolops viridimaculatus | Anura | LC | Stream-dwelling | 20.758119 | 35.98108 | 31.42580 | 40.24552 |
Amolops viridimaculatus | Anura | LC | Stream-dwelling | 19.621641 | 35.82565 | 31.28294 | 40.08020 |
Amolops viridimaculatus | Anura | LC | Stream-dwelling | 22.689564 | 36.24524 | 31.84764 | 40.67120 |
Babina holsti | Anura | EN | Semi-aquatic | 27.471030 | 37.13144 | 32.88953 | 41.04494 |
Babina holsti | Anura | EN | Semi-aquatic | 26.758684 | 37.03525 | 32.81747 | 40.92594 |
Babina holsti | Anura | EN | Semi-aquatic | 28.510642 | 37.27182 | 33.10937 | 41.33478 |
Babina subaspera | Anura | EN | Ground-dwelling | 27.202498 | 36.84550 | 32.87103 | 40.69760 |
Babina subaspera | Anura | EN | Ground-dwelling | 26.297523 | 36.72218 | 32.89357 | 40.67114 |
Babina subaspera | Anura | EN | Ground-dwelling | 28.150634 | 36.97470 | 33.02372 | 40.91862 |
Odorrana absita | Anura | LC | Stream-dwelling | 27.796495 | 36.27250 | 32.30704 | 40.28580 |
Odorrana absita | Anura | LC | Stream-dwelling | 26.864557 | 36.14847 | 32.13586 | 40.03817 |
Odorrana absita | Anura | LC | Stream-dwelling | 29.545363 | 36.50526 | 32.46771 | 40.59857 |
Odorrana khalam | Anura | LC | Stream-dwelling | 28.040920 | 36.31602 | 32.25340 | 39.86681 |
Odorrana khalam | Anura | LC | Stream-dwelling | 27.104234 | 36.19115 | 32.24748 | 39.83497 |
Odorrana khalam | Anura | LC | Stream-dwelling | 29.821524 | 36.55339 | 32.41392 | 40.15869 |
Odorrana amamiensis | Anura | EN | Stream-dwelling | 27.264420 | 36.28430 | 32.34286 | 40.14635 |
Odorrana amamiensis | Anura | EN | Stream-dwelling | 26.360691 | 36.16424 | 32.06532 | 39.83086 |
Odorrana amamiensis | Anura | EN | Stream-dwelling | 28.196021 | 36.40807 | 32.41170 | 40.20718 |
Odorrana narina | Anura | EN | Stream-dwelling | 27.508538 | 36.30670 | 32.42785 | 40.55773 |
Odorrana narina | Anura | EN | Stream-dwelling | 26.808429 | 36.21192 | 32.34401 | 40.44819 |
Odorrana narina | Anura | EN | Stream-dwelling | 28.598246 | 36.45423 | 32.56045 | 40.72823 |
Odorrana supranarina | Anura | EN | Stream-dwelling | 27.938607 | 36.30495 | 32.36121 | 40.00509 |
Odorrana supranarina | Anura | EN | Stream-dwelling | 27.237240 | 36.21136 | 32.25695 | 39.87506 |
Odorrana supranarina | Anura | EN | Stream-dwelling | 29.033540 | 36.45106 | 32.50009 | 40.20043 |
Odorrana jingdongensis | Anura | VU | Stream-dwelling | 22.922182 | 35.69745 | 32.17427 | 39.75878 |
Odorrana jingdongensis | Anura | VU | Stream-dwelling | 21.891184 | 35.55814 | 32.02500 | 39.59750 |
Odorrana jingdongensis | Anura | VU | Stream-dwelling | 25.043830 | 35.98414 | 32.40988 | 40.11873 |
Odorrana grahami | Anura | VU | Stream-dwelling | 21.272411 | 35.45275 | 31.60282 | 39.23904 |
Odorrana grahami | Anura | VU | Stream-dwelling | 19.937391 | 35.27589 | 31.74518 | 39.32664 |
Odorrana grahami | Anura | VU | Stream-dwelling | 23.405338 | 35.73533 | 32.11955 | 39.81603 |
Odorrana junlianensis | Anura | LC | Stream-dwelling | 23.936746 | 35.85305 | 31.91518 | 39.87644 |
Odorrana junlianensis | Anura | LC | Stream-dwelling | 22.565718 | 35.66945 | 31.71267 | 39.66893 |
Odorrana junlianensis | Anura | LC | Stream-dwelling | 26.131941 | 36.14703 | 32.06668 | 40.14215 |
Odorrana anlungensis | Anura | EN | Stream-dwelling | 24.074792 | 35.83705 | 32.23506 | 39.75131 |
Odorrana anlungensis | Anura | EN | Stream-dwelling | 22.845305 | 35.67404 | 32.08497 | 39.55376 |
Odorrana anlungensis | Anura | EN | Stream-dwelling | 26.192038 | 36.11775 | 32.20000 | 39.74104 |
Odorrana aureola | Anura | LC | Stream-dwelling | 27.294275 | 36.29042 | 32.73469 | 40.21063 |
Odorrana aureola | Anura | LC | Stream-dwelling | 26.310768 | 36.15807 | 32.69945 | 40.15355 |
Odorrana aureola | Anura | LC | Stream-dwelling | 29.194803 | 36.54616 | 32.91765 | 40.52080 |
Odorrana livida | Anura | DD | Stream-dwelling | 28.143149 | 36.45313 | 32.39080 | 40.32236 |
Odorrana livida | Anura | DD | Stream-dwelling | 27.160259 | 36.31849 | 32.36034 | 40.22588 |
Odorrana livida | Anura | DD | Stream-dwelling | 29.857786 | 36.68799 | 32.57850 | 40.59346 |
Odorrana chloronota | Anura | LC | Stream-dwelling | 26.808310 | 36.23261 | 32.46540 | 40.23255 |
Odorrana chloronota | Anura | LC | Stream-dwelling | 25.686424 | 36.07964 | 31.96892 | 39.75211 |
Odorrana chloronota | Anura | LC | Stream-dwelling | 28.808949 | 36.50541 | 32.62811 | 40.49830 |
Odorrana leporipes | Anura | DD | Stream-dwelling | 28.195252 | 36.32000 | 31.93308 | 40.05642 |
Odorrana leporipes | Anura | DD | Stream-dwelling | 27.230849 | 36.18958 | 31.78262 | 39.79556 |
Odorrana leporipes | Anura | DD | Stream-dwelling | 30.005757 | 36.56485 | 32.17235 | 40.35104 |
Odorrana graminea | Anura | LC | Stream-dwelling | 27.929724 | 36.36427 | 32.38884 | 40.49653 |
Odorrana graminea | Anura | LC | Stream-dwelling | 27.064899 | 36.24777 | 32.39120 | 40.43228 |
Odorrana graminea | Anura | LC | Stream-dwelling | 29.590298 | 36.58798 | 32.51742 | 40.72885 |
Odorrana bacboensis | Anura | LC | Stream-dwelling | 26.192503 | 36.12453 | 31.95282 | 39.82874 |
Odorrana bacboensis | Anura | LC | Stream-dwelling | 25.138893 | 35.98246 | 31.86562 | 39.69321 |
Odorrana bacboensis | Anura | LC | Stream-dwelling | 28.164631 | 36.39047 | 32.05816 | 40.16781 |
Odorrana hainanensis | Anura | VU | Stream-dwelling | 27.973108 | 36.39744 | 32.74673 | 40.76496 |
Odorrana hainanensis | Anura | VU | Stream-dwelling | 27.367922 | 36.31646 | 32.69232 | 40.67353 |
Odorrana hainanensis | Anura | VU | Stream-dwelling | 29.095461 | 36.54763 | 32.84974 | 40.93864 |
Odorrana banaorum | Anura | LC | Stream-dwelling | 28.218021 | 36.30304 | 32.53162 | 39.96363 |
Odorrana banaorum | Anura | LC | Stream-dwelling | 27.244467 | 36.17410 | 32.43197 | 39.83081 |
Odorrana banaorum | Anura | LC | Stream-dwelling | 30.051218 | 36.54581 | 32.56414 | 40.05593 |
Odorrana morafkai | Anura | LC | Stream-dwelling | 28.260179 | 36.36432 | 32.79487 | 40.63649 |
Odorrana morafkai | Anura | LC | Stream-dwelling | 27.277442 | 36.23365 | 32.08318 | 39.89495 |
Odorrana morafkai | Anura | LC | Stream-dwelling | 30.129706 | 36.61289 | 33.07847 | 41.07004 |
Odorrana bolavensis | Anura | EN | Stream-dwelling | 28.429363 | 36.38537 | 32.29258 | 40.36505 |
Odorrana bolavensis | Anura | EN | Stream-dwelling | 27.427371 | 36.25116 | 32.18132 | 40.25093 |
Odorrana bolavensis | Anura | EN | Stream-dwelling | 30.308497 | 36.63707 | 32.58276 | 40.77460 |
Odorrana chapaensis | Anura | LC | Stream-dwelling | 25.664715 | 36.08480 | 32.06441 | 39.53731 |
Odorrana chapaensis | Anura | LC | Stream-dwelling | 24.659701 | 35.94810 | 32.02933 | 39.36715 |
Odorrana chapaensis | Anura | LC | Stream-dwelling | 27.578222 | 36.34507 | 32.25804 | 39.84822 |
Odorrana geminata | Anura | VU | Stream-dwelling | 25.551597 | 35.97657 | 32.18083 | 40.03245 |
Odorrana geminata | Anura | VU | Stream-dwelling | 24.468624 | 35.83156 | 32.00784 | 39.85096 |
Odorrana geminata | Anura | VU | Stream-dwelling | 27.471804 | 36.23367 | 32.22660 | 40.23938 |
Odorrana exiliversabilis | Anura | LC | Stream-dwelling | 27.061869 | 36.33841 | 32.09938 | 39.99859 |
Odorrana exiliversabilis | Anura | LC | Stream-dwelling | 25.256305 | 36.09705 | 31.91220 | 39.74868 |
Odorrana exiliversabilis | Anura | LC | Stream-dwelling | 29.695910 | 36.69053 | 32.36709 | 40.45349 |
Odorrana nasuta | Anura | LC | Stream-dwelling | 27.983220 | 36.41896 | 32.51232 | 40.18748 |
Odorrana nasuta | Anura | LC | Stream-dwelling | 27.369547 | 36.33707 | 32.48797 | 40.10489 |
Odorrana nasuta | Anura | LC | Stream-dwelling | 29.121736 | 36.57089 | 33.06441 | 40.78105 |
Odorrana versabilis | Anura | LC | Stream-dwelling | 26.831427 | 36.33765 | 32.70584 | 40.13618 |
Odorrana versabilis | Anura | LC | Stream-dwelling | 25.488642 | 36.15707 | 32.65141 | 39.98436 |
Odorrana versabilis | Anura | LC | Stream-dwelling | 29.249445 | 36.66283 | 33.24750 | 40.76069 |
Odorrana gigatympana | Anura | LC | Stream-dwelling | 28.027437 | 36.38318 | 32.41469 | 40.51562 |
Odorrana gigatympana | Anura | LC | Stream-dwelling | 27.043389 | 36.25007 | 32.24389 | 40.28991 |
Odorrana gigatympana | Anura | LC | Stream-dwelling | 29.817040 | 36.62526 | 32.67936 | 40.85459 |
Odorrana hejiangensis | Anura | VU | Stream-dwelling | 24.772382 | 35.90693 | 32.16364 | 40.04234 |
Odorrana hejiangensis | Anura | VU | Stream-dwelling | 22.393874 | 35.58720 | 31.69409 | 39.49622 |
Odorrana hejiangensis | Anura | VU | Stream-dwelling | 27.589531 | 36.28562 | 32.59561 | 40.58087 |
Odorrana hosii | Anura | LC | Stream-dwelling | 27.995492 | 36.30605 | 32.37796 | 40.51780 |
Odorrana hosii | Anura | LC | Stream-dwelling | 27.366398 | 36.22206 | 32.24279 | 40.34359 |
Odorrana hosii | Anura | LC | Stream-dwelling | 29.329414 | 36.48414 | 32.29526 | 40.49492 |
Odorrana schmackeri | Anura | LC | Stream-dwelling | 25.655823 | 36.06292 | 32.44587 | 39.82101 |
Odorrana schmackeri | Anura | LC | Stream-dwelling | 23.693956 | 35.79743 | 32.29682 | 39.56348 |
Odorrana schmackeri | Anura | LC | Stream-dwelling | 28.267428 | 36.41635 | 32.45708 | 39.94891 |
Odorrana indeprensa | Anura | VU | Stream-dwelling | 28.891752 | 36.50177 | 32.59936 | 40.58010 |
Odorrana indeprensa | Anura | VU | Stream-dwelling | 27.953121 | 36.37686 | 32.64858 | 40.55346 |
Odorrana indeprensa | Anura | VU | Stream-dwelling | 30.694826 | 36.74174 | 32.78557 | 40.82606 |
Odorrana ishikawae | Anura | EN | Stream-dwelling | 27.508538 | 36.29930 | 32.26520 | 40.11613 |
Odorrana ishikawae | Anura | EN | Stream-dwelling | 26.808429 | 36.20417 | 32.19312 | 39.98098 |
Odorrana ishikawae | Anura | EN | Stream-dwelling | 28.598246 | 36.44736 | 32.37161 | 40.31548 |
Odorrana kuangwuensis | Anura | VU | Stream-dwelling | 23.654003 | 35.75533 | 31.97661 | 39.39054 |
Odorrana kuangwuensis | Anura | VU | Stream-dwelling | 20.988610 | 35.40052 | 31.59472 | 39.00544 |
Odorrana kuangwuensis | Anura | VU | Stream-dwelling | 26.743395 | 36.16658 | 32.09190 | 39.77581 |
Odorrana margaretae | Anura | LC | Stream-dwelling | 24.117725 | 35.91027 | 32.10242 | 39.75884 |
Odorrana margaretae | Anura | LC | Stream-dwelling | 22.195553 | 35.64799 | 31.76478 | 39.37149 |
Odorrana margaretae | Anura | LC | Stream-dwelling | 26.636290 | 36.25392 | 32.23399 | 39.93684 |
Odorrana lungshengensis | Anura | LC | Stream-dwelling | 26.218523 | 36.10504 | 32.48657 | 40.30284 |
Odorrana lungshengensis | Anura | LC | Stream-dwelling | 24.787444 | 35.91331 | 32.29507 | 39.98675 |
Odorrana lungshengensis | Anura | LC | Stream-dwelling | 28.631244 | 36.42827 | 32.64736 | 40.61301 |
Odorrana mawphlangensis | Anura | DD | Stream-dwelling | 24.495122 | 35.87103 | 32.49935 | 40.32068 |
Odorrana mawphlangensis | Anura | DD | Stream-dwelling | 23.356764 | 35.71574 | 32.18786 | 39.95707 |
Odorrana mawphlangensis | Anura | DD | Stream-dwelling | 26.219962 | 36.10631 | 32.37671 | 40.26205 |
Odorrana monjerai | Anura | DD | Stream-dwelling | 28.529251 | 36.34318 | 32.47731 | 40.41786 |
Odorrana monjerai | Anura | DD | Stream-dwelling | 27.924333 | 36.26244 | 32.45237 | 40.32426 |
Odorrana monjerai | Anura | DD | Stream-dwelling | 30.019938 | 36.54214 | 32.75448 | 40.79271 |
Odorrana nasica | Anura | LC | Stream-dwelling | 27.432476 | 36.30500 | 32.47298 | 39.91514 |
Odorrana nasica | Anura | LC | Stream-dwelling | 26.553667 | 36.18928 | 32.36673 | 39.73894 |
Odorrana nasica | Anura | LC | Stream-dwelling | 29.223820 | 36.54088 | 32.71464 | 40.25873 |
Odorrana orba | Anura | LC | Stream-dwelling | 27.884935 | 36.31777 | 32.26885 | 40.05487 |
Odorrana orba | Anura | LC | Stream-dwelling | 27.019294 | 36.20103 | 32.18243 | 39.91533 |
Odorrana orba | Anura | LC | Stream-dwelling | 29.650641 | 36.55588 | 32.35354 | 40.28349 |
Odorrana splendida | Anura | EN | Stream-dwelling | 27.202498 | 36.24545 | 32.36451 | 40.08769 |
Odorrana splendida | Anura | EN | Stream-dwelling | 26.297523 | 36.12246 | 32.25584 | 39.97926 |
Odorrana splendida | Anura | EN | Stream-dwelling | 28.150634 | 36.37431 | 32.50081 | 40.26241 |
Odorrana utsunomiyaorum | Anura | EN | Stream-dwelling | 27.938607 | 36.30563 | 32.99025 | 39.32078 |
Odorrana utsunomiyaorum | Anura | EN | Stream-dwelling | 27.237240 | 36.21047 | 32.73765 | 39.00829 |
Odorrana utsunomiyaorum | Anura | EN | Stream-dwelling | 29.033540 | 36.45420 | 33.14875 | 39.54459 |
Odorrana tiannanensis | Anura | LC | Stream-dwelling | 26.300716 | 36.11064 | 32.19461 | 39.73394 |
Odorrana tiannanensis | Anura | LC | Stream-dwelling | 25.399129 | 35.98951 | 32.13807 | 39.57700 |
Odorrana tiannanensis | Anura | LC | Stream-dwelling | 28.038789 | 36.34414 | 32.74936 | 40.40767 |
Odorrana tormota | Anura | LC | Stream-dwelling | 27.248838 | 36.34096 | 32.23219 | 40.28849 |
Odorrana tormota | Anura | LC | Stream-dwelling | 24.706081 | 35.99271 | 32.09027 | 40.05704 |
Odorrana tormota | Anura | LC | Stream-dwelling | 30.217387 | 36.74752 | 32.56323 | 40.79021 |
Odorrana trankieni | Anura | NT | Stream-dwelling | 27.178957 | 36.25287 | 32.13967 | 40.18220 |
Odorrana trankieni | Anura | NT | Stream-dwelling | 26.128114 | 36.11008 | 32.06642 | 40.06629 |
Odorrana trankieni | Anura | NT | Stream-dwelling | 29.022643 | 36.50339 | 32.48282 | 40.60741 |
Odorrana wuchuanensis | Anura | VU | Stream-dwelling | 25.702710 | 36.05296 | 32.53911 | 39.85610 |
Odorrana wuchuanensis | Anura | VU | Stream-dwelling | 24.008746 | 35.82816 | 32.29647 | 39.56688 |
Odorrana wuchuanensis | Anura | VU | Stream-dwelling | 27.999739 | 36.35780 | 32.66681 | 40.07456 |
Odorrana yentuensis | Anura | EN | Stream-dwelling | 27.506654 | 36.30705 | 31.90372 | 40.05367 |
Odorrana yentuensis | Anura | EN | Stream-dwelling | 26.474634 | 36.16849 | 31.82776 | 39.93866 |
Odorrana yentuensis | Anura | EN | Stream-dwelling | 29.260779 | 36.54256 | 32.10965 | 40.36631 |
Rana amurensis | Anura | LC | Semi-aquatic | 16.328611 | 35.15458 | 31.87946 | 38.60002 |
Rana amurensis | Anura | LC | Semi-aquatic | 11.962901 | 34.57878 | 31.16465 | 37.91912 |
Rana amurensis | Anura | LC | Semi-aquatic | 21.571157 | 35.84603 | 32.40478 | 39.08401 |
Rana coreana | Anura | LC | Semi-aquatic | 23.320064 | 36.14206 | 32.90639 | 39.61500 |
Rana coreana | Anura | LC | Semi-aquatic | 20.553881 | 35.77242 | 32.57370 | 39.25384 |
Rana coreana | Anura | LC | Semi-aquatic | 26.359371 | 36.54821 | 33.05258 | 39.92803 |
Rana sakuraii | Anura | LC | Stream-dwelling | 24.761382 | 35.49468 | 31.74650 | 38.91812 |
Rana sakuraii | Anura | LC | Stream-dwelling | 21.919096 | 35.10485 | 31.32561 | 38.36954 |
Rana sakuraii | Anura | LC | Stream-dwelling | 27.610036 | 35.88538 | 32.11217 | 39.44688 |
Rana tagoi | Anura | LC | Ground-dwelling | 24.849723 | 36.13080 | 32.95128 | 39.61552 |
Rana tagoi | Anura | LC | Ground-dwelling | 22.097647 | 35.76292 | 32.66126 | 39.22537 |
Rana tagoi | Anura | LC | Ground-dwelling | 27.530517 | 36.48915 | 33.28134 | 40.09533 |
Rana pyrenaica | Anura | EN | Stream-dwelling | 20.165167 | 34.50683 | 32.10506 | 36.74550 |
Rana pyrenaica | Anura | EN | Stream-dwelling | 17.833458 | 34.19685 | 31.94741 | 36.48817 |
Rana pyrenaica | Anura | EN | Stream-dwelling | 23.591681 | 34.96237 | 32.50019 | 37.32587 |
Rana italica | Anura | LC | Stream-dwelling | 22.545589 | 34.75813 | 32.11456 | 37.52202 |
Rana italica | Anura | LC | Stream-dwelling | 19.858732 | 34.39797 | 31.80860 | 37.08688 |
Rana italica | Anura | LC | Stream-dwelling | 26.301036 | 35.26154 | 32.50562 | 38.17983 |
Rana asiatica | Anura | LC | Semi-aquatic | 15.512037 | 34.74382 | 32.20354 | 37.22760 |
Rana asiatica | Anura | LC | Semi-aquatic | 13.379545 | 34.45788 | 31.89683 | 36.89768 |
Rana asiatica | Anura | LC | Semi-aquatic | 18.693691 | 35.17044 | 32.79812 | 37.87074 |
Rana macrocnemis | Anura | LC | Semi-aquatic | 20.016354 | 35.31685 | 32.46753 | 37.77904 |
Rana macrocnemis | Anura | LC | Semi-aquatic | 17.873614 | 35.02980 | 32.39540 | 37.51736 |
Rana macrocnemis | Anura | LC | Semi-aquatic | 23.067251 | 35.72555 | 32.91976 | 38.48223 |
Rana tavasensis | Anura | EN | Stream-dwelling | 21.490171 | 34.70092 | 31.79436 | 37.67374 |
Rana tavasensis | Anura | EN | Stream-dwelling | 19.594163 | 34.45234 | 31.46507 | 37.22953 |
Rana tavasensis | Anura | EN | Stream-dwelling | 24.295345 | 35.06869 | 32.20449 | 38.25233 |
Rana pseudodalmatina | Anura | LC | Semi-aquatic | 19.774314 | 35.35917 | 32.62836 | 37.98525 |
Rana pseudodalmatina | Anura | LC | Semi-aquatic | 18.174706 | 35.14610 | 32.35999 | 37.72625 |
Rana pseudodalmatina | Anura | LC | Semi-aquatic | 21.964085 | 35.65086 | 32.53899 | 38.11301 |
Rana aurora | Anura | LC | Semi-aquatic | 16.404796 | 34.55410 | 31.96548 | 37.02603 |
Rana aurora | Anura | LC | Semi-aquatic | 14.272303 | 34.27166 | 31.72382 | 36.78901 |
Rana aurora | Anura | LC | Semi-aquatic | 19.802466 | 35.00411 | 32.48268 | 37.59813 |
Rana muscosa | Anura | EN | Stream-dwelling | 19.885307 | 34.18343 | 31.49950 | 36.84436 |
Rana muscosa | Anura | EN | Stream-dwelling | 18.161438 | 33.95172 | 31.22422 | 36.49750 |
Rana muscosa | Anura | EN | Stream-dwelling | 22.651540 | 34.55526 | 31.91715 | 37.31150 |
Rana sierrae | Anura | VU | Semi-aquatic | 17.609670 | 34.78357 | 32.34166 | 37.45515 |
Rana sierrae | Anura | VU | Semi-aquatic | 16.039696 | 34.57027 | 31.98240 | 37.03279 |
Rana sierrae | Anura | VU | Semi-aquatic | 20.407391 | 35.16369 | 32.64552 | 37.80909 |
Rana draytonii | Anura | NT | Semi-aquatic | 19.365479 | 35.06222 | 32.46000 | 37.38904 |
Rana draytonii | Anura | NT | Semi-aquatic | 17.910787 | 34.86047 | 32.29916 | 37.14075 |
Rana draytonii | Anura | NT | Semi-aquatic | 21.771255 | 35.39587 | 32.71652 | 37.75574 |
Rana chaochiaoensis | Anura | LC | Ground-dwelling | 21.121714 | 35.78473 | 32.96849 | 38.79257 |
Rana chaochiaoensis | Anura | LC | Ground-dwelling | 19.853529 | 35.61611 | 32.67367 | 38.41876 |
Rana chaochiaoensis | Anura | LC | Ground-dwelling | 23.239685 | 36.06634 | 33.12333 | 39.02745 |
Rana zhenhaiensis | Anura | LC | Semi-aquatic | 27.142783 | 36.79179 | 33.72231 | 39.70032 |
Rana zhenhaiensis | Anura | LC | Semi-aquatic | 25.372539 | 36.55603 | 33.54940 | 39.39597 |
Rana zhenhaiensis | Anura | LC | Semi-aquatic | 29.643311 | 37.12480 | 33.93166 | 40.08877 |
Rana omeimontis | Anura | LC | Ground-dwelling | 23.379389 | 35.99927 | 32.89433 | 38.73399 |
Rana omeimontis | Anura | LC | Ground-dwelling | 21.254579 | 35.71906 | 32.58311 | 38.31668 |
Rana omeimontis | Anura | LC | Ground-dwelling | 25.962749 | 36.33996 | 33.33929 | 39.35476 |
Rana hanluica | Anura | LC | Semi-aquatic | 26.722333 | 36.70545 | 33.74963 | 39.40329 |
Rana hanluica | Anura | LC | Semi-aquatic | 25.209454 | 36.50353 | 33.54662 | 39.09755 |
Rana hanluica | Anura | LC | Semi-aquatic | 29.242225 | 37.04177 | 34.19652 | 40.08225 |
Rana japonica | Anura | LC | Semi-aquatic | 24.964597 | 36.49212 | 33.32138 | 39.27097 |
Rana japonica | Anura | LC | Semi-aquatic | 22.253970 | 36.13560 | 33.15086 | 38.91322 |
Rana japonica | Anura | LC | Semi-aquatic | 27.597099 | 36.83836 | 33.93239 | 40.01893 |
Rana kukunoris | Anura | LC | Semi-aquatic | 13.376753 | 32.39580 | 30.24623 | 34.54251 |
Rana kukunoris | Anura | LC | Semi-aquatic | 10.835358 | 32.04070 | 29.87785 | 34.22914 |
Rana kukunoris | Anura | LC | Semi-aquatic | 16.741716 | 32.86597 | 30.65993 | 35.03960 |
Rana huanrensis | Anura | LC | Stream-dwelling | 22.334312 | 32.60514 | 29.99157 | 35.25895 |
Rana huanrensis | Anura | LC | Stream-dwelling | 19.158205 | 32.17039 | 29.62944 | 34.79434 |
Rana huanrensis | Anura | LC | Stream-dwelling | 25.604472 | 33.05276 | 30.43126 | 35.89442 |
Rana pirica | Anura | LC | Ground-dwelling | 17.506996 | 31.81525 | 29.29838 | 34.59927 |
Rana pirica | Anura | LC | Ground-dwelling | 14.119150 | 31.34025 | 28.68235 | 33.94330 |
Rana pirica | Anura | LC | Ground-dwelling | 21.198356 | 32.33281 | 29.68358 | 35.11631 |
Rana ornativentris | Anura | LC | Semi-aquatic | 24.783936 | 33.38336 | 30.57259 | 36.03871 |
Rana ornativentris | Anura | LC | Semi-aquatic | 22.009402 | 32.99511 | 30.20541 | 35.39562 |
Rana ornativentris | Anura | LC | Semi-aquatic | 27.508036 | 33.76455 | 31.11107 | 36.70986 |
Rana dalmatina | Anura | LC | Semi-aquatic | 19.460560 | 35.64432 | 32.19784 | 39.17094 |
Rana dalmatina | Anura | LC | Semi-aquatic | 16.944647 | 35.30604 | 31.95606 | 38.86691 |
Rana dalmatina | Anura | LC | Semi-aquatic | 23.584401 | 36.19879 | 32.52322 | 39.67642 |
Rana latastei | Anura | VU | Ground-dwelling | 20.836358 | 35.62537 | 32.54733 | 39.28360 |
Rana latastei | Anura | VU | Ground-dwelling | 18.281790 | 35.28326 | 32.30788 | 38.97400 |
Rana latastei | Anura | VU | Ground-dwelling | 24.572671 | 36.12573 | 32.85580 | 39.75034 |
Rana graeca | Anura | LC | Aquatic | 20.372061 | 35.67923 | 32.08356 | 39.25492 |
Rana graeca | Anura | LC | Aquatic | 18.534537 | 35.43027 | 31.92415 | 39.05726 |
Rana graeca | Anura | LC | Aquatic | 23.666000 | 36.12553 | 32.59957 | 39.84647 |
Rana johnsi | Anura | LC | Ground-dwelling | 25.736824 | 36.26853 | 32.92922 | 39.86438 |
Rana johnsi | Anura | LC | Ground-dwelling | 24.424365 | 36.09213 | 32.71682 | 39.61521 |
Rana johnsi | Anura | LC | Ground-dwelling | 27.861208 | 36.55407 | 32.96526 | 39.98203 |
Rana tsushimensis | Anura | NT | Semi-aquatic | 25.390618 | 36.37773 | 32.64823 | 39.82254 |
Rana tsushimensis | Anura | NT | Semi-aquatic | 22.797802 | 36.02741 | 32.51440 | 39.50766 |
Rana tsushimensis | Anura | NT | Semi-aquatic | 27.992222 | 36.72924 | 33.02996 | 40.35817 |
Rana sangzhiensis | Anura | LC | Stream-dwelling | 26.343107 | 35.64019 | 32.27354 | 39.35432 |
Rana sangzhiensis | Anura | LC | Stream-dwelling | 24.783609 | 35.43335 | 32.26705 | 39.21289 |
Rana sangzhiensis | Anura | LC | Stream-dwelling | 28.659150 | 35.94738 | 32.41349 | 39.61434 |
Rana shuchinae | Anura | LC | Stream-dwelling | 17.200640 | 34.39598 | 30.93655 | 37.65287 |
Rana shuchinae | Anura | LC | Stream-dwelling | 15.781758 | 34.20511 | 30.60529 | 37.36408 |
Rana shuchinae | Anura | LC | Stream-dwelling | 19.327422 | 34.68209 | 31.10450 | 37.88230 |
Glandirana minima | Anura | EN | Semi-aquatic | 26.835754 | 37.25560 | 33.21104 | 41.30523 |
Glandirana minima | Anura | EN | Semi-aquatic | 25.627480 | 37.09425 | 33.13761 | 41.13128 |
Glandirana minima | Anura | EN | Semi-aquatic | 28.967165 | 37.54023 | 33.32407 | 41.55094 |
Pterorana khare | Anura | LC | Aquatic | 25.609534 | 37.09841 | 33.13380 | 41.16110 |
Pterorana khare | Anura | LC | Aquatic | 24.644097 | 36.96872 | 33.08626 | 41.12411 |
Pterorana khare | Anura | LC | Aquatic | 27.332633 | 37.32988 | 33.36583 | 41.56943 |
Sanguirana everetti | Anura | NT | Stream-dwelling | 27.350210 | 36.35559 | 32.88949 | 40.42398 |
Sanguirana everetti | Anura | NT | Stream-dwelling | 26.837937 | 36.28711 | 32.82176 | 40.34166 |
Sanguirana everetti | Anura | NT | Stream-dwelling | 28.560828 | 36.51743 | 33.00824 | 40.53680 |
Sanguirana igorota | Anura | VU | Stream-dwelling | 27.862648 | 36.40652 | 32.49442 | 40.03924 |
Sanguirana igorota | Anura | VU | Stream-dwelling | 27.350302 | 36.33889 | 32.44231 | 39.94851 |
Sanguirana igorota | Anura | VU | Stream-dwelling | 28.834871 | 36.53486 | 32.58081 | 40.21140 |
Sanguirana sanguinea | Anura | LC | Stream-dwelling | 27.697059 | 36.40696 | 32.77967 | 39.95876 |
Sanguirana sanguinea | Anura | LC | Stream-dwelling | 27.224648 | 36.34420 | 32.67259 | 39.83360 |
Sanguirana sanguinea | Anura | LC | Stream-dwelling | 28.695406 | 36.53958 | 32.68519 | 39.98379 |
Sanguirana tipanan | Anura | VU | Semi-aquatic | 28.019440 | 37.28859 | 33.59532 | 40.90928 |
Sanguirana tipanan | Anura | VU | Semi-aquatic | 27.511354 | 37.22016 | 33.58190 | 40.88072 |
Sanguirana tipanan | Anura | VU | Semi-aquatic | 28.872181 | 37.40343 | 33.68634 | 41.01900 |
Hylarana chitwanensis | Anura | DD | Ground-dwelling | 21.857965 | 36.40839 | 32.30646 | 40.02220 |
Hylarana chitwanensis | Anura | DD | Ground-dwelling | 20.811643 | 36.27090 | 32.19686 | 39.88638 |
Hylarana chitwanensis | Anura | DD | Ground-dwelling | 23.316911 | 36.60009 | 32.73007 | 40.47465 |
Hylarana garoensis | Anura | LC | Ground-dwelling | 22.536198 | 36.57771 | 32.75124 | 40.57105 |
Hylarana garoensis | Anura | LC | Ground-dwelling | 21.472644 | 36.43348 | 32.62685 | 40.39012 |
Hylarana garoensis | Anura | LC | Ground-dwelling | 24.354313 | 36.82426 | 33.05736 | 40.94652 |
Hylarana macrodactyla | Anura | LC | Ground-dwelling | 27.765901 | 37.15104 | 33.11430 | 41.38082 |
Hylarana macrodactyla | Anura | LC | Ground-dwelling | 26.877689 | 37.03297 | 33.07585 | 41.26977 |
Hylarana macrodactyla | Anura | LC | Ground-dwelling | 29.518375 | 37.38399 | 33.34517 | 41.73395 |
Hylarana margariana | Anura | DD | Stream-dwelling | 26.112715 | 36.33281 | 32.28349 | 40.07174 |
Hylarana margariana | Anura | DD | Stream-dwelling | 25.241461 | 36.21630 | 32.23627 | 40.01362 |
Hylarana margariana | Anura | DD | Stream-dwelling | 28.014113 | 36.58708 | 32.44850 | 40.33479 |
Hylarana montivaga | Anura | EN | Stream-dwelling | 27.525862 | 36.62549 | 33.00662 | 40.71951 |
Hylarana montivaga | Anura | EN | Stream-dwelling | 26.639648 | 36.50606 | 32.81857 | 40.55086 |
Hylarana montivaga | Anura | EN | Stream-dwelling | 29.009085 | 36.82536 | 33.09787 | 40.84921 |
Hylarana persimilis | Anura | DD | Ground-dwelling | 28.988631 | 37.43266 | 33.20516 | 41.73698 |
Hylarana persimilis | Anura | DD | Ground-dwelling | 28.144858 | 37.32245 | 33.13652 | 41.64079 |
Hylarana persimilis | Anura | DD | Ground-dwelling | 30.837882 | 37.67421 | 33.42817 | 42.10754 |
Hylarana taipehensis | Anura | LC | Ground-dwelling | 27.554368 | 37.20649 | 32.96593 | 41.18289 |
Hylarana taipehensis | Anura | LC | Ground-dwelling | 26.569660 | 37.07477 | 33.05710 | 41.19582 |
Hylarana taipehensis | Anura | LC | Ground-dwelling | 29.405710 | 37.45413 | 33.17414 | 41.47521 |
Hylarana tytleri | Anura | LC | Ground-dwelling | 26.937863 | 37.20473 | 33.02384 | 41.02327 |
Hylarana tytleri | Anura | LC | Ground-dwelling | 26.006357 | 37.08072 | 32.93457 | 40.88677 |
Hylarana tytleri | Anura | LC | Ground-dwelling | 28.672614 | 37.43566 | 33.36517 | 41.42807 |
Pelophylax bedriagae | Anura | LC | Aquatic | 22.595495 | 37.60101 | 34.05052 | 41.38002 |
Pelophylax bedriagae | Anura | LC | Aquatic | 21.036037 | 37.39476 | 33.94859 | 41.33612 |
Pelophylax bedriagae | Anura | LC | Aquatic | 25.208560 | 37.94661 | 34.30929 | 41.68617 |
Pelophylax caralitanus | Anura | NT | Aquatic | 21.186283 | 37.49488 | 33.96792 | 41.38803 |
Pelophylax caralitanus | Anura | NT | Aquatic | 19.174006 | 37.22904 | 33.66995 | 41.05951 |
Pelophylax caralitanus | Anura | NT | Aquatic | 24.423554 | 37.92255 | 34.26173 | 41.66508 |
Pelophylax cerigensis | Anura | CR | Aquatic | 24.477234 | 37.90900 | 34.05021 | 41.87392 |
Pelophylax cerigensis | Anura | CR | Aquatic | 23.032615 | 37.72034 | 33.86687 | 41.69472 |
Pelophylax cerigensis | Anura | CR | Aquatic | 26.183646 | 38.13186 | 34.27413 | 42.18903 |
Pelophylax kurtmuelleri | Anura | LC | Aquatic | 21.960765 | 37.51939 | 34.03220 | 41.19983 |
Pelophylax kurtmuelleri | Anura | LC | Aquatic | 20.104130 | 37.27803 | 33.87769 | 41.03761 |
Pelophylax kurtmuelleri | Anura | LC | Aquatic | 24.952985 | 37.90838 | 34.26859 | 41.51758 |
Pelophylax ridibundus | Anura | LC | Semi-aquatic | 19.302386 | 37.23100 | 33.70015 | 40.96823 |
Pelophylax ridibundus | Anura | LC | Semi-aquatic | 16.666414 | 36.88373 | 33.38688 | 40.60720 |
Pelophylax ridibundus | Anura | LC | Semi-aquatic | 23.504013 | 37.78455 | 33.98542 | 41.40312 |
Pelophylax bergeri | Anura | LC | Semi-aquatic | 23.178926 | 37.72301 | 34.63700 | 40.83910 |
Pelophylax bergeri | Anura | LC | Semi-aquatic | 20.735549 | 37.40006 | 34.60410 | 40.68190 |
Pelophylax bergeri | Anura | LC | Semi-aquatic | 26.566569 | 38.17077 | 34.93034 | 41.28242 |
Pelophylax shqipericus | Anura | VU | Aquatic | 22.153414 | 37.47166 | 34.16088 | 40.51626 |
Pelophylax shqipericus | Anura | VU | Aquatic | 19.788197 | 37.16083 | 33.91227 | 40.20674 |
Pelophylax shqipericus | Anura | VU | Aquatic | 25.282068 | 37.88283 | 34.57759 | 41.04267 |
Pelophylax chosenicus | Anura | VU | Semi-aquatic | 22.976152 | 37.70928 | 34.00636 | 41.50796 |
Pelophylax chosenicus | Anura | VU | Semi-aquatic | 19.444360 | 37.23864 | 33.54997 | 40.93688 |
Pelophylax chosenicus | Anura | VU | Semi-aquatic | 26.119149 | 38.12811 | 34.61585 | 42.40034 |
Pelophylax plancyi | Anura | LC | Semi-aquatic | 24.832794 | 37.92345 | 34.15605 | 41.52474 |
Pelophylax plancyi | Anura | LC | Semi-aquatic | 21.986100 | 37.55222 | 33.95548 | 41.16331 |
Pelophylax plancyi | Anura | LC | Semi-aquatic | 28.408374 | 38.38973 | 34.71229 | 42.31006 |
Pelophylax nigromaculatus | Anura | NT | Aquatic | 22.641696 | 37.54416 | 33.73959 | 41.32926 |
Pelophylax nigromaculatus | Anura | NT | Aquatic | 19.880875 | 37.18654 | 33.45296 | 40.92980 |
Pelophylax nigromaculatus | Anura | NT | Aquatic | 26.015863 | 37.98124 | 34.21807 | 41.99538 |
Pelophylax hubeiensis | Anura | LC | Aquatic | 26.791384 | 38.24419 | 34.20262 | 41.74732 |
Pelophylax hubeiensis | Anura | LC | Aquatic | 24.582095 | 37.94475 | 34.01650 | 41.43969 |
Pelophylax hubeiensis | Anura | LC | Aquatic | 29.521183 | 38.61419 | 34.57530 | 42.30786 |
Pelophylax cretensis | Anura | VU | Semi-aquatic | 24.762404 | 37.93901 | 34.31101 | 41.83775 |
Pelophylax cretensis | Anura | VU | Semi-aquatic | 23.272976 | 37.74050 | 34.17535 | 41.62162 |
Pelophylax cretensis | Anura | VU | Semi-aquatic | 26.601642 | 38.18413 | 34.49768 | 42.11802 |
Pelophylax epeiroticus | Anura | NT | Aquatic | 20.505632 | 37.31414 | 33.40082 | 40.96758 |
Pelophylax epeiroticus | Anura | NT | Aquatic | 18.660087 | 37.06696 | 33.54295 | 40.93147 |
Pelophylax epeiroticus | Anura | NT | Aquatic | 23.182525 | 37.67266 | 34.03177 | 41.80500 |
Pelophylax fukienensis | Anura | LC | Aquatic | 27.127433 | 38.20154 | 34.36496 | 41.81005 |
Pelophylax fukienensis | Anura | LC | Aquatic | 25.381414 | 37.96943 | 34.27667 | 41.64593 |
Pelophylax fukienensis | Anura | LC | Aquatic | 29.492726 | 38.51598 | 34.65254 | 42.28300 |
Pelophylax porosus | Anura | LC | Semi-aquatic | 24.777645 | 37.91234 | 34.12485 | 41.61035 |
Pelophylax porosus | Anura | LC | Semi-aquatic | 21.932166 | 37.54309 | 33.73177 | 41.22225 |
Pelophylax porosus | Anura | LC | Semi-aquatic | 27.597107 | 38.27821 | 34.43734 | 42.14265 |
Pelophylax tenggerensis | Anura | EN | Aquatic | 18.453190 | 37.00002 | 33.18759 | 40.79848 |
Pelophylax tenggerensis | Anura | EN | Aquatic | 16.257496 | 36.71110 | 32.89172 | 40.46464 |
Pelophylax tenggerensis | Anura | EN | Aquatic | 21.854806 | 37.44762 | 33.69497 | 41.35503 |
Pelophylax terentievi | Anura | DD | Semi-aquatic | 14.527116 | 36.52046 | 33.12909 | 40.41270 |
Pelophylax terentievi | Anura | DD | Semi-aquatic | 12.806363 | 36.29452 | 32.62917 | 39.95494 |
Pelophylax terentievi | Anura | DD | Semi-aquatic | 16.972788 | 36.84157 | 33.43298 | 40.77949 |
Clinotarsus alticola | Anura | LC | Stream-dwelling | 26.057144 | 36.76719 | 32.51907 | 41.32927 |
Clinotarsus alticola | Anura | LC | Stream-dwelling | 25.081027 | 36.63442 | 32.53557 | 41.29163 |
Clinotarsus alticola | Anura | LC | Stream-dwelling | 27.825196 | 37.00768 | 32.70898 | 41.60487 |
Clinotarsus curtipes | Anura | NT | Ground-dwelling | 27.086390 | 37.49043 | 33.12603 | 42.11545 |
Clinotarsus curtipes | Anura | NT | Ground-dwelling | 26.162056 | 37.36674 | 32.86561 | 41.82480 |
Clinotarsus curtipes | Anura | NT | Ground-dwelling | 29.079973 | 37.75719 | 33.29014 | 42.26363 |
Huia cavitympanum | Anura | LC | Ground-dwelling | 27.745394 | 37.57933 | 33.36603 | 42.34848 |
Huia cavitympanum | Anura | LC | Ground-dwelling | 27.066991 | 37.48937 | 33.40784 | 42.38388 |
Huia cavitympanum | Anura | LC | Ground-dwelling | 29.081902 | 37.75656 | 33.76155 | 42.83851 |
Meristogenys amoropalamus | Anura | LC | Stream-dwelling | 27.248468 | 36.92067 | 32.39749 | 41.29988 |
Meristogenys amoropalamus | Anura | LC | Stream-dwelling | 26.606125 | 36.83272 | 32.18631 | 41.03696 |
Meristogenys amoropalamus | Anura | LC | Stream-dwelling | 28.505666 | 37.09280 | 32.55260 | 41.49755 |
Meristogenys orphnocnemis | Anura | LC | Stream-dwelling | 27.598368 | 36.96168 | 32.21721 | 41.55527 |
Meristogenys orphnocnemis | Anura | LC | Stream-dwelling | 27.021869 | 36.88403 | 32.09428 | 41.43554 |
Meristogenys orphnocnemis | Anura | LC | Stream-dwelling | 28.864178 | 37.13216 | 32.33196 | 41.68376 |
Meristogenys whiteheadi | Anura | LC | Stream-dwelling | 27.712530 | 36.89568 | 32.63153 | 41.75941 |
Meristogenys whiteheadi | Anura | LC | Stream-dwelling | 27.074604 | 36.81197 | 32.57313 | 41.63720 |
Meristogenys whiteheadi | Anura | LC | Stream-dwelling | 28.989887 | 37.06331 | 32.74002 | 41.98406 |
Meristogenys poecilus | Anura | LC | Stream-dwelling | 28.106922 | 37.02740 | 31.71875 | 41.30672 |
Meristogenys poecilus | Anura | LC | Stream-dwelling | 27.407142 | 36.93423 | 32.03242 | 41.57253 |
Meristogenys poecilus | Anura | LC | Stream-dwelling | 29.515030 | 37.21489 | 31.78621 | 41.43760 |
Meristogenys macrophthalmus | Anura | DD | Stream-dwelling | 28.009915 | 36.99197 | 32.46607 | 41.38491 |
Meristogenys macrophthalmus | Anura | DD | Stream-dwelling | 27.437948 | 36.91677 | 32.42998 | 41.31721 |
Meristogenys macrophthalmus | Anura | DD | Stream-dwelling | 29.203890 | 37.14894 | 32.63244 | 41.66115 |
Meristogenys jerboa | Anura | VU | Stream-dwelling | 28.227657 | 37.03215 | 32.88106 | 41.77385 |
Meristogenys jerboa | Anura | VU | Stream-dwelling | 27.648754 | 36.95465 | 32.77114 | 41.63172 |
Meristogenys jerboa | Anura | VU | Stream-dwelling | 29.438147 | 37.19420 | 32.71877 | 41.65362 |
Meristogenys phaeomerus | Anura | LC | Stream-dwelling | 28.014386 | 37.00230 | 32.55960 | 41.65635 |
Meristogenys phaeomerus | Anura | LC | Stream-dwelling | 27.285540 | 36.90468 | 32.45185 | 41.50357 |
Meristogenys phaeomerus | Anura | LC | Stream-dwelling | 29.429651 | 37.19186 | 32.78356 | 41.99067 |
Meristogenys kinabaluensis | Anura | LC | Stream-dwelling | 27.304737 | 36.82502 | 32.87915 | 41.62282 |
Meristogenys kinabaluensis | Anura | LC | Stream-dwelling | 26.659684 | 36.74043 | 32.79681 | 41.51519 |
Meristogenys kinabaluensis | Anura | LC | Stream-dwelling | 28.598966 | 36.99474 | 33.06814 | 41.83875 |
Staurois parvus | Anura | VU | Stream-dwelling | 27.153735 | 37.17386 | 32.71970 | 42.47827 |
Staurois parvus | Anura | VU | Stream-dwelling | 26.549222 | 37.09266 | 32.57872 | 42.34992 |
Staurois parvus | Anura | VU | Stream-dwelling | 28.381676 | 37.33878 | 32.86022 | 42.58803 |
Staurois tuberilinguis | Anura | LC | Stream-dwelling | 27.758282 | 37.26767 | 32.46388 | 41.97055 |
Staurois tuberilinguis | Anura | LC | Stream-dwelling | 27.132227 | 37.18277 | 32.43124 | 41.93277 |
Staurois tuberilinguis | Anura | LC | Stream-dwelling | 29.086516 | 37.44777 | 32.66825 | 42.21219 |
Staurois latopalmatus | Anura | LC | Stream-dwelling | 27.808160 | 37.19676 | 32.27737 | 42.03446 |
Staurois latopalmatus | Anura | LC | Stream-dwelling | 27.188254 | 37.11336 | 32.19591 | 41.94776 |
Staurois latopalmatus | Anura | LC | Stream-dwelling | 29.121024 | 37.37340 | 32.51161 | 42.27972 |
Buergeria buergeri | Anura | LC | Stream-dwelling | 24.797913 | 38.78047 | 34.68157 | 42.65575 |
Buergeria buergeri | Anura | LC | Stream-dwelling | 22.028832 | 38.41757 | 34.62828 | 42.59243 |
Buergeria buergeri | Anura | LC | Stream-dwelling | 27.511825 | 39.13613 | 34.86139 | 42.99141 |
Buergeria oxycephala | Anura | VU | Stream-dwelling | 27.983220 | 39.18482 | 35.26177 | 43.41188 |
Buergeria oxycephala | Anura | VU | Stream-dwelling | 27.369547 | 39.10430 | 35.17962 | 43.32314 |
Buergeria oxycephala | Anura | VU | Stream-dwelling | 29.121736 | 39.33419 | 35.38500 | 43.60985 |
Buergeria robusta | Anura | LC | Stream-dwelling | 27.514509 | 39.12294 | 35.05533 | 43.38863 |
Buergeria robusta | Anura | LC | Stream-dwelling | 26.761020 | 39.02242 | 34.92775 | 43.26474 |
Buergeria robusta | Anura | LC | Stream-dwelling | 28.703695 | 39.28160 | 35.43897 | 43.87326 |
Chiromantis kelleri | Anura | LC | Arboreal | 23.951203 | 37.55699 | 33.47448 | 41.23668 |
Chiromantis kelleri | Anura | LC | Arboreal | 23.107853 | 37.44376 | 33.34141 | 41.08048 |
Chiromantis kelleri | Anura | LC | Arboreal | 25.546138 | 37.77112 | 33.72235 | 41.53313 |
Chiromantis petersii | Anura | LC | Arboreal | 22.263985 | 37.24796 | 33.11152 | 41.04852 |
Chiromantis petersii | Anura | LC | Arboreal | 21.443081 | 37.13857 | 33.03351 | 40.96051 |
Chiromantis petersii | Anura | LC | Arboreal | 24.010498 | 37.48067 | 33.17731 | 41.23576 |
Chiromantis xerampelina | Anura | LC | Arboreal | 24.282750 | 37.44128 | 33.16119 | 41.34451 |
Chiromantis xerampelina | Anura | LC | Arboreal | 23.244063 | 37.30595 | 32.94808 | 41.23700 |
Chiromantis xerampelina | Anura | LC | Arboreal | 26.360925 | 37.71205 | 33.49217 | 41.87737 |
Chiromantis rufescens | Anura | LC | Arboreal | 27.139446 | 37.85512 | 33.52349 | 42.13927 |
Chiromantis rufescens | Anura | LC | Arboreal | 26.434537 | 37.76141 | 33.44887 | 42.04259 |
Chiromantis rufescens | Anura | LC | Arboreal | 28.692379 | 38.06155 | 33.60400 | 42.35665 |
Feihyla kajau | Anura | LC | Arboreal | 27.783815 | 37.95704 | 33.79048 | 42.05596 |
Feihyla kajau | Anura | LC | Arboreal | 27.125446 | 37.86877 | 33.66675 | 41.92009 |
Feihyla kajau | Anura | LC | Arboreal | 29.119692 | 38.13616 | 33.68315 | 41.97931 |
Feihyla palpebralis | Anura | NT | Arboreal | 26.548561 | 37.78456 | 33.58595 | 41.95947 |
Feihyla palpebralis | Anura | NT | Arboreal | 25.548985 | 37.65120 | 33.49410 | 41.80916 |
Feihyla palpebralis | Anura | NT | Arboreal | 28.385516 | 38.02962 | 33.71839 | 42.23565 |
Ghatixalus asterops | Anura | DD | Stream-dwelling | 27.766641 | 38.01607 | 34.19462 | 42.08893 |
Ghatixalus asterops | Anura | DD | Stream-dwelling | 26.846355 | 37.89240 | 33.99565 | 41.82868 |
Ghatixalus asterops | Anura | DD | Stream-dwelling | 29.519349 | 38.25161 | 34.20862 | 42.25971 |
Ghatixalus variabilis | Anura | EN | Stream-dwelling | 26.793491 | 37.88312 | 33.81814 | 42.06926 |
Ghatixalus variabilis | Anura | EN | Stream-dwelling | 25.581038 | 37.71664 | 33.54691 | 41.70891 |
Ghatixalus variabilis | Anura | EN | Stream-dwelling | 29.313470 | 38.22913 | 33.92260 | 42.26203 |
Polypedates chlorophthalmus | Anura | DD | Stream-dwelling | 27.852353 | 38.18665 | 34.29443 | 41.67617 |
Polypedates chlorophthalmus | Anura | DD | Stream-dwelling | 27.344212 | 38.11919 | 34.17215 | 41.54118 |
Polypedates chlorophthalmus | Anura | DD | Stream-dwelling | 29.128276 | 38.35604 | 34.51854 | 41.95957 |
Polypedates colletti | Anura | LC | Arboreal | 27.893442 | 38.77152 | 35.03760 | 42.38112 |
Polypedates colletti | Anura | LC | Arboreal | 27.261056 | 38.68656 | 34.95739 | 42.28385 |
Polypedates colletti | Anura | LC | Arboreal | 29.197085 | 38.94666 | 35.17483 | 42.58698 |
Polypedates cruciger | Anura | LC | Arboreal | 27.836836 | 38.65855 | 35.07323 | 42.63618 |
Polypedates cruciger | Anura | LC | Arboreal | 27.080005 | 38.55795 | 34.97774 | 42.50813 |
Polypedates cruciger | Anura | LC | Arboreal | 29.708980 | 38.90739 | 35.32199 | 43.00983 |
Polypedates insularis | Anura | EN | Arboreal | 27.695788 | 38.63618 | 35.20010 | 42.63877 |
Polypedates insularis | Anura | EN | Arboreal | 27.210062 | 38.57260 | 35.14790 | 42.55513 |
Polypedates insularis | Anura | EN | Arboreal | 28.809854 | 38.78199 | 35.00077 | 42.52122 |
Polypedates macrotis | Anura | LC | Arboreal | 27.994940 | 38.65319 | 35.09417 | 42.59878 |
Polypedates macrotis | Anura | LC | Arboreal | 27.384976 | 38.57235 | 34.95095 | 42.35875 |
Polypedates macrotis | Anura | LC | Arboreal | 29.285219 | 38.82419 | 35.21385 | 42.78409 |
Polypedates maculatus | Anura | LC | Arboreal | 26.718138 | 38.56603 | 34.84544 | 42.13765 |
Polypedates maculatus | Anura | LC | Arboreal | 25.583265 | 38.41452 | 34.69109 | 41.90249 |
Polypedates maculatus | Anura | LC | Arboreal | 28.884617 | 38.85525 | 35.09968 | 42.56829 |
Polypedates megacephalus | Anura | LC | Arboreal | 26.887184 | 38.64725 | 34.95799 | 42.38868 |
Polypedates megacephalus | Anura | LC | Arboreal | 25.749370 | 38.49514 | 34.84065 | 42.24091 |
Polypedates megacephalus | Anura | LC | Arboreal | 28.908920 | 38.91753 | 35.10162 | 42.64080 |
Polypedates mutus | Anura | LC | Arboreal | 26.545179 | 38.53446 | 34.98050 | 42.29350 |
Polypedates mutus | Anura | LC | Arboreal | 25.515722 | 38.39793 | 34.77244 | 41.98174 |
Polypedates mutus | Anura | LC | Arboreal | 28.476944 | 38.79067 | 34.88727 | 42.30715 |
Polypedates occidentalis | Anura | DD | Arboreal | 28.304066 | 38.71496 | 35.03748 | 42.30844 |
Polypedates occidentalis | Anura | DD | Arboreal | 27.264133 | 38.57553 | 35.00911 | 42.17695 |
Polypedates occidentalis | Anura | DD | Arboreal | 30.248374 | 38.97566 | 35.30744 | 42.63992 |
Polypedates otilophus | Anura | LC | Arboreal | 27.685937 | 38.64592 | 34.85436 | 42.81063 |
Polypedates otilophus | Anura | LC | Arboreal | 27.065292 | 38.56432 | 34.78102 | 42.69882 |
Polypedates otilophus | Anura | LC | Arboreal | 28.970541 | 38.81482 | 35.02602 | 43.03140 |
Polypedates pseudocruciger | Anura | LC | Arboreal | 27.299385 | 38.62902 | 34.65310 | 42.06616 |
Polypedates pseudocruciger | Anura | LC | Arboreal | 26.453069 | 38.51844 | 34.86541 | 42.26144 |
Polypedates pseudocruciger | Anura | LC | Arboreal | 29.028735 | 38.85499 | 34.75701 | 42.20803 |
Polypedates taeniatus | Anura | LC | Arboreal | 24.360837 | 38.23364 | 34.79299 | 41.73448 |
Polypedates taeniatus | Anura | LC | Arboreal | 23.090399 | 38.06850 | 34.63128 | 41.52024 |
Polypedates taeniatus | Anura | LC | Arboreal | 26.054888 | 38.45385 | 34.96637 | 42.03383 |
Polypedates zed | Anura | DD | Arboreal | 21.857965 | 37.88963 | 34.52224 | 41.57129 |
Polypedates zed | Anura | DD | Arboreal | 20.811643 | 37.75033 | 34.37415 | 41.37308 |
Polypedates zed | Anura | DD | Arboreal | 23.316911 | 38.08387 | 34.83330 | 41.90963 |
Taruga eques | Anura | EN | Arboreal | 27.311256 | 38.53215 | 34.77455 | 42.67897 |
Taruga eques | Anura | EN | Arboreal | 26.578946 | 38.43421 | 34.72681 | 42.53380 |
Taruga eques | Anura | EN | Arboreal | 29.131810 | 38.77562 | 34.81338 | 42.82424 |
Taruga fastigo | Anura | EN | Arboreal | 27.155513 | 38.50985 | 34.95021 | 42.39532 |
Taruga fastigo | Anura | EN | Arboreal | 26.400558 | 38.41063 | 34.81793 | 42.25951 |
Taruga fastigo | Anura | EN | Arboreal | 29.086524 | 38.76366 | 35.16538 | 42.66850 |
Taruga longinasus | Anura | EN | Arboreal | 27.311256 | 38.51529 | 35.04449 | 42.87541 |
Taruga longinasus | Anura | EN | Arboreal | 26.578946 | 38.41803 | 35.00738 | 42.78702 |
Taruga longinasus | Anura | EN | Arboreal | 29.131810 | 38.75709 | 35.17447 | 43.11512 |
Gracixalus ananjevae | Anura | LC | Arboreal | 27.606870 | 37.80468 | 33.09092 | 41.84912 |
Gracixalus ananjevae | Anura | LC | Arboreal | 26.713921 | 37.68756 | 33.00295 | 41.69132 |
Gracixalus ananjevae | Anura | LC | Arboreal | 29.401076 | 38.04000 | 33.70242 | 42.51001 |
Gracixalus jinxiuensis | Anura | DD | Arboreal | 27.259361 | 37.83339 | 33.49980 | 42.00482 |
Gracixalus jinxiuensis | Anura | DD | Arboreal | 26.062559 | 37.67504 | 33.33737 | 41.81555 |
Gracixalus jinxiuensis | Anura | DD | Arboreal | 29.398145 | 38.11636 | 34.09072 | 42.66354 |
Gracixalus medogensis | Anura | DD | Arboreal | 16.274470 | 36.35408 | 32.29085 | 40.86294 |
Gracixalus medogensis | Anura | DD | Arboreal | 14.438870 | 36.11454 | 31.93763 | 40.54074 |
Gracixalus medogensis | Anura | DD | Arboreal | 18.508255 | 36.64558 | 32.55476 | 41.09670 |
Gracixalus gracilipes | Anura | LC | Arboreal | 25.625176 | 37.64374 | 33.86699 | 42.64356 |
Gracixalus gracilipes | Anura | LC | Arboreal | 24.575010 | 37.49951 | 33.79992 | 42.47562 |
Gracixalus gracilipes | Anura | LC | Arboreal | 27.623000 | 37.91811 | 33.48009 | 42.38865 |
Gracixalus quangi | Anura | LC | Arboreal | 26.030616 | 37.62886 | 33.51143 | 42.38658 |
Gracixalus quangi | Anura | LC | Arboreal | 25.108357 | 37.50587 | 33.25932 | 42.08367 |
Gracixalus quangi | Anura | LC | Arboreal | 27.883579 | 37.87596 | 33.78134 | 42.77913 |
Gracixalus supercornutus | Anura | NT | Arboreal | 27.796495 | 37.89588 | 33.60763 | 42.17886 |
Gracixalus supercornutus | Anura | NT | Arboreal | 26.864557 | 37.77209 | 33.45234 | 41.95868 |
Gracixalus supercornutus | Anura | NT | Arboreal | 29.545363 | 38.12819 | 33.71486 | 42.38998 |
Rhacophorus vampyrus | Anura | EN | Arboreal | 28.175925 | 38.07332 | 33.57690 | 42.17928 |
Rhacophorus vampyrus | Anura | EN | Arboreal | 27.169330 | 37.93738 | 33.38770 | 42.03071 |
Rhacophorus vampyrus | Anura | EN | Arboreal | 29.908032 | 38.30723 | 33.80036 | 42.44226 |
Kurixalus appendiculatus | Anura | LC | Arboreal | 27.432982 | 37.34690 | 33.18556 | 41.05285 |
Kurixalus appendiculatus | Anura | LC | Arboreal | 26.920809 | 37.27749 | 33.15881 | 40.98535 |
Kurixalus appendiculatus | Anura | LC | Arboreal | 28.493243 | 37.49058 | 33.68429 | 41.57169 |
Kurixalus baliogaster | Anura | LC | Arboreal | 28.052768 | 37.12617 | 33.37558 | 41.07599 |
Kurixalus baliogaster | Anura | LC | Arboreal | 27.083443 | 36.99921 | 33.25534 | 40.84286 |
Kurixalus baliogaster | Anura | LC | Arboreal | 29.829230 | 37.35884 | 33.24015 | 41.07327 |
Kurixalus banaensis | Anura | LC | Arboreal | 27.797727 | 37.13992 | 33.46864 | 40.78854 |
Kurixalus banaensis | Anura | LC | Arboreal | 26.954953 | 37.02941 | 33.39673 | 40.68471 |
Kurixalus banaensis | Anura | LC | Arboreal | 29.474037 | 37.35971 | 33.55925 | 41.05462 |
Kurixalus bisacculus | Anura | LC | Arboreal | 28.186229 | 37.29930 | 33.80414 | 41.56561 |
Kurixalus bisacculus | Anura | LC | Arboreal | 27.273845 | 37.17851 | 33.72436 | 41.40736 |
Kurixalus bisacculus | Anura | LC | Arboreal | 29.968635 | 37.53527 | 33.90971 | 41.79489 |
Kurixalus odontotarsus | Anura | LC | Arboreal | 24.798197 | 36.78692 | 33.09448 | 40.59909 |
Kurixalus odontotarsus | Anura | LC | Arboreal | 23.711157 | 36.64334 | 33.17482 | 40.66672 |
Kurixalus odontotarsus | Anura | LC | Arboreal | 26.856287 | 37.05874 | 33.42811 | 40.97326 |
Kurixalus verrucosus | Anura | LC | Arboreal | 26.955854 | 36.99216 | 33.14766 | 40.62228 |
Kurixalus verrucosus | Anura | LC | Arboreal | 26.026481 | 36.86958 | 33.04830 | 40.47578 |
Kurixalus verrucosus | Anura | LC | Arboreal | 28.744523 | 37.22809 | 33.43136 | 41.05767 |
Kurixalus naso | Anura | LC | Arboreal | 20.613281 | 36.23615 | 32.72694 | 40.20358 |
Kurixalus naso | Anura | LC | Arboreal | 19.393894 | 36.06975 | 32.41200 | 39.91747 |
Kurixalus naso | Anura | LC | Arboreal | 22.483458 | 36.49135 | 32.90144 | 40.45858 |
Kurixalus idiootocus | Anura | LC | Arboreal | 27.514509 | 36.71353 | 33.48212 | 39.91425 |
Kurixalus idiootocus | Anura | LC | Arboreal | 26.761020 | 36.61125 | 33.43693 | 39.79429 |
Kurixalus idiootocus | Anura | LC | Arboreal | 28.703695 | 36.87494 | 33.52928 | 40.16489 |
Pseudophilautus abundus | Anura | EN | Arboreal | 27.311256 | 37.90260 | 34.01490 | 41.80013 |
Pseudophilautus abundus | Anura | EN | Arboreal | 26.578946 | 37.80475 | 34.08158 | 41.91017 |
Pseudophilautus abundus | Anura | EN | Arboreal | 29.131810 | 38.14588 | 34.20577 | 42.04210 |
Pseudophilautus alto | Anura | EN | Arboreal | 27.311256 | 37.84454 | 33.39034 | 42.07010 |
Pseudophilautus alto | Anura | EN | Arboreal | 26.578946 | 37.74635 | 33.54793 | 42.21897 |
Pseudophilautus alto | Anura | EN | Arboreal | 29.131810 | 38.08865 | 33.80222 | 42.46892 |
Pseudophilautus amboli | Anura | CR | Arboreal | 25.972769 | 37.73680 | 33.30756 | 41.53093 |
Pseudophilautus amboli | Anura | CR | Arboreal | 24.906036 | 37.59431 | 33.73540 | 41.83578 |
Pseudophilautus amboli | Anura | CR | Arboreal | 28.600218 | 38.08779 | 33.61587 | 41.86986 |
Pseudophilautus wynaadensis | Anura | EN | Arboreal | 27.183363 | 37.99320 | 34.32336 | 42.80992 |
Pseudophilautus wynaadensis | Anura | EN | Arboreal | 26.247524 | 37.86622 | 34.09014 | 42.51418 |
Pseudophilautus wynaadensis | Anura | EN | Arboreal | 29.126577 | 38.25687 | 34.53495 | 43.11957 |
Pseudophilautus asankai | Anura | EN | Arboreal | 27.311256 | 37.99376 | 33.88457 | 42.18580 |
Pseudophilautus asankai | Anura | EN | Arboreal | 26.578946 | 37.89390 | 33.89160 | 42.17080 |
Pseudophilautus asankai | Anura | EN | Arboreal | 29.131810 | 38.24202 | 34.04535 | 42.44762 |
Pseudophilautus auratus | Anura | EN | Arboreal | 27.155513 | 37.95002 | 34.03666 | 42.47977 |
Pseudophilautus auratus | Anura | EN | Arboreal | 26.400558 | 37.84767 | 33.94398 | 42.36887 |
Pseudophilautus auratus | Anura | EN | Arboreal | 29.086524 | 38.21180 | 34.17105 | 42.78057 |
Pseudophilautus caeruleus | Anura | EN | Arboreal | 27.155513 | 37.96946 | 33.83271 | 41.84951 |
Pseudophilautus caeruleus | Anura | EN | Arboreal | 26.400558 | 37.86616 | 33.74214 | 41.72059 |
Pseudophilautus caeruleus | Anura | EN | Arboreal | 29.086524 | 38.23366 | 33.97430 | 42.18639 |
Pseudophilautus cavirostris | Anura | VU | Arboreal | 27.311256 | 37.96627 | 33.69352 | 41.94537 |
Pseudophilautus cavirostris | Anura | VU | Arboreal | 26.578946 | 37.86915 | 33.66953 | 41.87787 |
Pseudophilautus cavirostris | Anura | VU | Arboreal | 29.131810 | 38.20772 | 33.80043 | 42.23623 |
Pseudophilautus cuspis | Anura | EN | Ground-dwelling | 27.311256 | 38.11032 | 33.82323 | 42.33826 |
Pseudophilautus cuspis | Anura | EN | Ground-dwelling | 26.578946 | 38.01172 | 33.70749 | 42.20050 |
Pseudophilautus cuspis | Anura | EN | Ground-dwelling | 29.131810 | 38.35545 | 33.89297 | 42.55998 |
Pseudophilautus decoris | Anura | CR | Arboreal | 27.155513 | 37.92468 | 33.66400 | 41.82345 |
Pseudophilautus decoris | Anura | CR | Arboreal | 26.400558 | 37.82317 | 33.63278 | 41.70900 |
Pseudophilautus decoris | Anura | CR | Arboreal | 29.086524 | 38.18431 | 34.10782 | 42.38331 |
Pseudophilautus mittermeieri | Anura | VU | Arboreal | 27.311256 | 37.98296 | 34.10168 | 42.43266 |
Pseudophilautus mittermeieri | Anura | VU | Arboreal | 26.578946 | 37.88480 | 34.00285 | 42.34676 |
Pseudophilautus mittermeieri | Anura | VU | Arboreal | 29.131810 | 38.22700 | 34.04109 | 42.44870 |
Pseudophilautus femoralis | Anura | EN | Arboreal | 27.311256 | 38.05644 | 33.74723 | 42.01141 |
Pseudophilautus femoralis | Anura | EN | Arboreal | 26.578946 | 37.95743 | 33.64193 | 41.92999 |
Pseudophilautus femoralis | Anura | EN | Arboreal | 29.131810 | 38.30258 | 33.85569 | 42.28067 |
Pseudophilautus poppiae | Anura | CR | Arboreal | 27.155513 | 37.96489 | 33.87229 | 42.17662 |
Pseudophilautus poppiae | Anura | CR | Arboreal | 26.400558 | 37.86576 | 33.76348 | 42.00949 |
Pseudophilautus poppiae | Anura | CR | Arboreal | 29.086524 | 38.21843 | 33.89667 | 42.41352 |
Pseudophilautus mooreorum | Anura | CR | Arboreal | 27.466999 | 37.94703 | 33.99265 | 42.28814 |
Pseudophilautus mooreorum | Anura | CR | Arboreal | 26.757334 | 37.85293 | 33.89715 | 42.18462 |
Pseudophilautus mooreorum | Anura | CR | Arboreal | 29.177097 | 38.17379 | 34.19780 | 42.55550 |
Pseudophilautus fergusonianus | Anura | LC | Arboreal | 27.714531 | 37.97058 | 33.68218 | 42.22317 |
Pseudophilautus fergusonianus | Anura | LC | Arboreal | 26.942611 | 37.86710 | 33.57896 | 42.07621 |
Pseudophilautus fergusonianus | Anura | LC | Arboreal | 29.621272 | 38.22617 | 33.55619 | 42.24767 |
Pseudophilautus folicola | Anura | VU | Arboreal | 27.311256 | 37.88683 | 33.92833 | 42.22377 |
Pseudophilautus folicola | Anura | VU | Arboreal | 26.578946 | 37.79001 | 33.80818 | 42.07919 |
Pseudophilautus folicola | Anura | VU | Arboreal | 29.131810 | 38.12752 | 34.08778 | 42.46060 |
Pseudophilautus frankenbergi | Anura | EN | Arboreal | 27.537965 | 37.85444 | 33.91114 | 42.10571 |
Pseudophilautus frankenbergi | Anura | EN | Arboreal | 26.783377 | 37.75588 | 33.80451 | 41.94074 |
Pseudophilautus frankenbergi | Anura | EN | Arboreal | 29.426420 | 38.10110 | 33.89792 | 42.20890 |
Pseudophilautus fulvus | Anura | EN | Arboreal | 27.311256 | 37.85140 | 33.52242 | 41.83644 |
Pseudophilautus fulvus | Anura | EN | Arboreal | 26.578946 | 37.75242 | 33.64884 | 41.95154 |
Pseudophilautus fulvus | Anura | EN | Arboreal | 29.131810 | 38.09746 | 33.53526 | 41.91965 |
Pseudophilautus schmarda | Anura | EN | Arboreal | 27.311256 | 37.94574 | 33.88629 | 42.21286 |
Pseudophilautus schmarda | Anura | EN | Arboreal | 26.578946 | 37.84794 | 33.78687 | 42.07656 |
Pseudophilautus schmarda | Anura | EN | Arboreal | 29.131810 | 38.18888 | 34.03206 | 42.51969 |
Pseudophilautus kani | Anura | LC | Arboreal | 27.573236 | 37.87766 | 34.07029 | 42.68464 |
Pseudophilautus kani | Anura | LC | Arboreal | 26.914010 | 37.78999 | 33.60271 | 42.15823 |
Pseudophilautus kani | Anura | LC | Arboreal | 28.939685 | 38.05939 | 34.09238 | 42.84469 |
Pseudophilautus limbus | Anura | EN | Arboreal | 27.311256 | 37.97538 | 34.11393 | 42.37939 |
Pseudophilautus limbus | Anura | EN | Arboreal | 26.578946 | 37.87663 | 33.98848 | 42.25586 |
Pseudophilautus limbus | Anura | EN | Arboreal | 29.131810 | 38.22087 | 34.29549 | 42.63365 |
Pseudophilautus lunatus | Anura | CR | Arboreal | 27.155513 | 37.92940 | 33.60158 | 42.00179 |
Pseudophilautus lunatus | Anura | CR | Arboreal | 26.400558 | 37.82802 | 33.88561 | 42.26895 |
Pseudophilautus lunatus | Anura | CR | Arboreal | 29.086524 | 38.18871 | 33.73025 | 42.21918 |
Pseudophilautus macropus | Anura | EN | Stream-dwelling | 27.466999 | 37.45309 | 32.99473 | 41.27934 |
Pseudophilautus macropus | Anura | EN | Stream-dwelling | 26.757334 | 37.35775 | 32.86474 | 41.11244 |
Pseudophilautus macropus | Anura | EN | Stream-dwelling | 29.177097 | 37.68282 | 33.39587 | 41.76431 |
Pseudophilautus microtympanum | Anura | EN | Arboreal | 27.311256 | 38.01321 | 33.88976 | 41.81107 |
Pseudophilautus microtympanum | Anura | EN | Arboreal | 26.578946 | 37.91514 | 33.81129 | 41.68815 |
Pseudophilautus microtympanum | Anura | EN | Arboreal | 29.131810 | 38.25702 | 34.23758 | 42.21239 |
Pseudophilautus steineri | Anura | EN | Arboreal | 27.466999 | 37.93334 | 33.87843 | 42.06926 |
Pseudophilautus steineri | Anura | EN | Arboreal | 26.757334 | 37.83830 | 33.80139 | 41.95676 |
Pseudophilautus steineri | Anura | EN | Arboreal | 29.177097 | 38.16237 | 34.04782 | 42.33444 |
Pseudophilautus nemus | Anura | EN | Arboreal | 27.311256 | 37.99314 | 33.71310 | 42.00697 |
Pseudophilautus nemus | Anura | EN | Arboreal | 26.578946 | 37.89500 | 33.63919 | 41.88390 |
Pseudophilautus nemus | Anura | EN | Arboreal | 29.131810 | 38.23711 | 34.13551 | 42.54787 |
Pseudophilautus ocularis | Anura | CR | Arboreal | 27.155513 | 37.91350 | 33.99743 | 41.76080 |
Pseudophilautus ocularis | Anura | CR | Arboreal | 26.400558 | 37.81350 | 33.91338 | 41.66012 |
Pseudophilautus ocularis | Anura | CR | Arboreal | 29.086524 | 38.16928 | 34.21240 | 42.03985 |
Pseudophilautus reticulatus | Anura | VU | Arboreal | 27.311256 | 37.91359 | 33.67745 | 42.08987 |
Pseudophilautus reticulatus | Anura | VU | Arboreal | 26.578946 | 37.81608 | 33.60575 | 41.94726 |
Pseudophilautus reticulatus | Anura | VU | Arboreal | 29.131810 | 38.15601 | 34.03003 | 42.57156 |
Pseudophilautus pleurotaenia | Anura | VU | Arboreal | 27.489517 | 37.95891 | 33.72847 | 42.44453 |
Pseudophilautus pleurotaenia | Anura | VU | Arboreal | 26.730738 | 37.85774 | 33.66637 | 42.35925 |
Pseudophilautus pleurotaenia | Anura | VU | Arboreal | 29.328246 | 38.20407 | 33.93293 | 42.68674 |
Pseudophilautus popularis | Anura | VU | Arboreal | 27.710053 | 38.00867 | 33.92111 | 41.95008 |
Pseudophilautus popularis | Anura | VU | Arboreal | 26.959105 | 37.90796 | 33.74606 | 41.77732 |
Pseudophilautus popularis | Anura | VU | Arboreal | 29.525512 | 38.25213 | 34.08164 | 42.15059 |
Pseudophilautus regius | Anura | LC | Arboreal | 27.752668 | 38.00060 | 33.44919 | 41.70425 |
Pseudophilautus regius | Anura | LC | Arboreal | 27.014869 | 37.90078 | 33.38121 | 41.53567 |
Pseudophilautus regius | Anura | LC | Arboreal | 29.584693 | 38.24846 | 34.06128 | 42.56721 |
Pseudophilautus rus | Anura | NT | Arboreal | 27.311256 | 37.87906 | 34.07027 | 42.21244 |
Pseudophilautus rus | Anura | NT | Arboreal | 26.578946 | 37.78242 | 34.04297 | 42.09772 |
Pseudophilautus rus | Anura | NT | Arboreal | 29.131810 | 38.11931 | 33.85061 | 42.11301 |
Pseudophilautus sarasinorum | Anura | EN | Stream-dwelling | 27.553317 | 37.46717 | 33.62523 | 41.64873 |
Pseudophilautus sarasinorum | Anura | EN | Stream-dwelling | 26.794859 | 37.36627 | 33.80018 | 41.79634 |
Pseudophilautus sarasinorum | Anura | EN | Stream-dwelling | 29.452572 | 37.71984 | 33.90224 | 41.99870 |
Pseudophilautus semiruber | Anura | EN | Ground-dwelling | 27.311256 | 38.13119 | 33.75824 | 42.00240 |
Pseudophilautus semiruber | Anura | EN | Ground-dwelling | 26.578946 | 38.03341 | 34.20390 | 42.40926 |
Pseudophilautus semiruber | Anura | EN | Ground-dwelling | 29.131810 | 38.37426 | 34.06438 | 42.37775 |
Pseudophilautus simba | Anura | CR | Ground-dwelling | 27.155513 | 38.05802 | 33.93553 | 42.21551 |
Pseudophilautus simba | Anura | CR | Ground-dwelling | 26.400558 | 37.95614 | 33.86144 | 42.10122 |
Pseudophilautus simba | Anura | CR | Ground-dwelling | 29.086524 | 38.31859 | 34.17717 | 42.51253 |
Pseudophilautus singu | Anura | EN | Arboreal | 27.311256 | 37.97260 | 34.02687 | 42.27283 |
Pseudophilautus singu | Anura | EN | Arboreal | 26.578946 | 37.87522 | 33.91712 | 42.14805 |
Pseudophilautus singu | Anura | EN | Arboreal | 29.131810 | 38.21470 | 34.17922 | 42.46504 |
Pseudophilautus sordidus | Anura | VU | Arboreal | 27.311256 | 37.99033 | 33.87859 | 41.88057 |
Pseudophilautus sordidus | Anura | VU | Arboreal | 26.578946 | 37.89172 | 33.82446 | 41.78823 |
Pseudophilautus sordidus | Anura | VU | Arboreal | 29.131810 | 38.23548 | 34.13760 | 42.19966 |
Pseudophilautus stellatus | Anura | CR | Arboreal | 27.155513 | 37.94523 | 33.83435 | 42.29850 |
Pseudophilautus stellatus | Anura | CR | Arboreal | 26.400558 | 37.84545 | 33.55420 | 41.95572 |
Pseudophilautus stellatus | Anura | CR | Arboreal | 29.086524 | 38.20045 | 34.06458 | 42.63050 |
Pseudophilautus stictomerus | Anura | VU | Arboreal | 27.710053 | 37.95234 | 33.66293 | 42.32646 |
Pseudophilautus stictomerus | Anura | VU | Arboreal | 26.959105 | 37.85140 | 33.59412 | 42.25361 |
Pseudophilautus stictomerus | Anura | VU | Arboreal | 29.525512 | 38.19634 | 33.89311 | 42.62528 |
Pseudophilautus stuarti | Anura | CR | Arboreal | 27.466999 | 37.94584 | 34.14122 | 41.73635 |
Pseudophilautus stuarti | Anura | CR | Arboreal | 26.757334 | 37.85085 | 34.05093 | 41.58253 |
Pseudophilautus stuarti | Anura | CR | Arboreal | 29.177097 | 38.17476 | 34.09807 | 41.76006 |
Pseudophilautus tanu | Anura | EN | Arboreal | 27.155513 | 37.90905 | 33.68138 | 42.08429 |
Pseudophilautus tanu | Anura | EN | Arboreal | 26.400558 | 37.80844 | 33.38643 | 41.76655 |
Pseudophilautus tanu | Anura | EN | Arboreal | 29.086524 | 38.16639 | 33.72106 | 42.16548 |
Pseudophilautus viridis | Anura | EN | Arboreal | 27.311256 | 37.97281 | 33.75697 | 41.90765 |
Pseudophilautus viridis | Anura | EN | Arboreal | 26.578946 | 37.87526 | 33.61783 | 41.72735 |
Pseudophilautus viridis | Anura | EN | Arboreal | 29.131810 | 38.21532 | 34.28576 | 42.53234 |
Pseudophilautus zorro | Anura | VU | Ground-dwelling | 27.311256 | 38.15445 | 33.86071 | 42.17818 |
Pseudophilautus zorro | Anura | VU | Ground-dwelling | 26.578946 | 38.05572 | 33.82260 | 42.13002 |
Pseudophilautus zorro | Anura | VU | Ground-dwelling | 29.131810 | 38.39990 | 34.10556 | 42.48829 |
Raorchestes akroparallagi | Anura | LC | Arboreal | 27.080195 | 37.86972 | 33.53408 | 42.28526 |
Raorchestes akroparallagi | Anura | LC | Arboreal | 26.181409 | 37.75087 | 33.48928 | 42.17788 |
Raorchestes akroparallagi | Anura | LC | Arboreal | 28.998381 | 38.12335 | 33.79722 | 42.53927 |
Raorchestes bobingeri | Anura | NT | Arboreal | 27.573236 | 37.87003 | 33.13103 | 41.65916 |
Raorchestes bobingeri | Anura | NT | Arboreal | 26.914010 | 37.78210 | 33.03937 | 41.54306 |
Raorchestes bobingeri | Anura | NT | Arboreal | 28.939685 | 38.05230 | 33.68039 | 42.27095 |
Raorchestes glandulosus | Anura | VU | Arboreal | 27.033697 | 37.82793 | 33.77983 | 42.23850 |
Raorchestes glandulosus | Anura | VU | Arboreal | 26.150821 | 37.70778 | 33.63327 | 42.10689 |
Raorchestes glandulosus | Anura | VU | Arboreal | 28.951259 | 38.08889 | 34.04628 | 42.58972 |
Raorchestes anili | Anura | LC | Ground-dwelling | 27.391492 | 38.08066 | 33.99732 | 42.51124 |
Raorchestes anili | Anura | LC | Ground-dwelling | 26.520098 | 37.96407 | 34.02648 | 42.44574 |
Raorchestes anili | Anura | LC | Ground-dwelling | 29.151046 | 38.31610 | 34.40167 | 43.05406 |
Raorchestes kaikatti | Anura | CR | Arboreal | 28.304066 | 38.03899 | 33.97397 | 42.28654 |
Raorchestes kaikatti | Anura | CR | Arboreal | 27.264133 | 37.90122 | 33.60033 | 41.85366 |
Raorchestes kaikatti | Anura | CR | Arboreal | 30.248374 | 38.29659 | 34.35396 | 42.80595 |
Raorchestes sushili | Anura | CR | Arboreal | 28.304066 | 38.04010 | 33.97699 | 42.27911 |
Raorchestes sushili | Anura | CR | Arboreal | 27.264133 | 37.90059 | 33.86135 | 42.12280 |
Raorchestes sushili | Anura | CR | Arboreal | 30.248374 | 38.30094 | 34.15105 | 42.51872 |
Raorchestes beddomii | Anura | LC | Arboreal | 27.718290 | 38.02975 | 33.29592 | 42.02461 |
Raorchestes beddomii | Anura | LC | Arboreal | 26.863269 | 37.91576 | 33.23712 | 41.91949 |
Raorchestes beddomii | Anura | LC | Arboreal | 29.374433 | 38.25055 | 33.59569 | 42.41345 |
Raorchestes munnarensis | Anura | EN | Ground-dwelling | 27.766641 | 38.14019 | 34.18371 | 42.52765 |
Raorchestes munnarensis | Anura | EN | Ground-dwelling | 26.846355 | 38.01687 | 34.11898 | 42.46461 |
Raorchestes munnarensis | Anura | EN | Ground-dwelling | 29.519349 | 38.37507 | 34.37815 | 42.74746 |
Raorchestes resplendens | Anura | CR | Ground-dwelling | 27.645036 | 38.17782 | 34.14178 | 42.53017 |
Raorchestes resplendens | Anura | CR | Ground-dwelling | 26.573021 | 38.03456 | 34.04339 | 42.34330 |
Raorchestes resplendens | Anura | CR | Ground-dwelling | 29.751682 | 38.45933 | 34.41144 | 42.93890 |
Raorchestes dubois | Anura | VU | Arboreal | 27.766641 | 37.97606 | 33.55989 | 42.16056 |
Raorchestes dubois | Anura | VU | Arboreal | 26.846355 | 37.85228 | 33.47255 | 42.04294 |
Raorchestes dubois | Anura | VU | Arboreal | 29.519349 | 38.21180 | 33.70086 | 42.42614 |
Raorchestes bombayensis | Anura | VU | Arboreal | 26.598890 | 37.73380 | 33.23611 | 41.66198 |
Raorchestes bombayensis | Anura | VU | Arboreal | 25.757878 | 37.62576 | 33.15050 | 41.54079 |
Raorchestes bombayensis | Anura | VU | Arboreal | 28.608625 | 37.99198 | 33.44070 | 41.93694 |
Raorchestes tuberohumerus | Anura | LC | Arboreal | 26.826753 | 37.81788 | 33.11332 | 41.65750 |
Raorchestes tuberohumerus | Anura | LC | Arboreal | 25.923869 | 37.69908 | 33.02489 | 41.53717 |
Raorchestes tuberohumerus | Anura | LC | Arboreal | 28.991412 | 38.10272 | 33.34550 | 41.98882 |
Raorchestes charius | Anura | EN | Arboreal | 26.485775 | 37.75379 | 33.95700 | 42.73907 |
Raorchestes charius | Anura | EN | Arboreal | 25.652340 | 37.64460 | 33.82577 | 42.59927 |
Raorchestes charius | Anura | EN | Arboreal | 28.489556 | 38.01629 | 34.23581 | 43.17462 |
Raorchestes griet | Anura | CR | Arboreal | 27.645036 | 37.94882 | 33.62969 | 42.25179 |
Raorchestes griet | Anura | CR | Arboreal | 26.573021 | 37.80634 | 33.58403 | 42.21642 |
Raorchestes griet | Anura | CR | Arboreal | 29.751682 | 38.22881 | 33.79626 | 42.51549 |
Raorchestes coonoorensis | Anura | LC | Arboreal | 26.793491 | 37.91404 | 33.22075 | 41.90418 |
Raorchestes coonoorensis | Anura | LC | Arboreal | 25.581038 | 37.75304 | 32.84430 | 41.43329 |
Raorchestes coonoorensis | Anura | LC | Arboreal | 29.313470 | 38.24867 | 33.49411 | 42.23808 |
Raorchestes chlorosomma | Anura | EN | Arboreal | 27.497928 | 37.97351 | 33.98884 | 41.94529 |
Raorchestes chlorosomma | Anura | EN | Arboreal | 26.637465 | 37.85782 | 33.87885 | 41.80047 |
Raorchestes chlorosomma | Anura | EN | Arboreal | 29.154837 | 38.19629 | 34.16264 | 42.21043 |
Raorchestes luteolus | Anura | LC | Arboreal | 26.769555 | 37.80757 | 33.45343 | 41.56865 |
Raorchestes luteolus | Anura | LC | Arboreal | 25.867399 | 37.68906 | 33.34860 | 41.44192 |
Raorchestes luteolus | Anura | LC | Arboreal | 29.099508 | 38.11364 | 33.93170 | 42.13278 |
Raorchestes travancoricus | Anura | EN | Arboreal | 27.350820 | 37.88169 | 33.53811 | 41.80567 |
Raorchestes travancoricus | Anura | EN | Arboreal | 26.701910 | 37.79635 | 33.69523 | 41.94449 |
Raorchestes travancoricus | Anura | EN | Arboreal | 28.557991 | 38.04044 | 33.75709 | 42.08385 |
Raorchestes chotta | Anura | DD | Arboreal | 27.573236 | 37.91993 | 33.88237 | 42.15369 |
Raorchestes chotta | Anura | DD | Arboreal | 26.914010 | 37.83105 | 33.81565 | 42.06952 |
Raorchestes chotta | Anura | DD | Arboreal | 28.939685 | 38.10418 | 33.83953 | 42.13442 |
Raorchestes chromasynchysi | Anura | VU | Arboreal | 26.764380 | 37.76723 | 33.65921 | 42.32972 |
Raorchestes chromasynchysi | Anura | VU | Arboreal | 25.864005 | 37.64994 | 33.61081 | 42.24649 |
Raorchestes chromasynchysi | Anura | VU | Arboreal | 28.802287 | 38.03270 | 33.85395 | 42.62541 |
Raorchestes signatus | Anura | EN | Arboreal | 27.206732 | 37.96200 | 33.64938 | 42.21189 |
Raorchestes signatus | Anura | EN | Arboreal | 26.054875 | 37.80978 | 33.56582 | 42.07900 |
Raorchestes signatus | Anura | EN | Arboreal | 29.684065 | 38.28938 | 33.89558 | 42.55764 |
Raorchestes tinniens | Anura | EN | Ground-dwelling | 26.793491 | 38.00904 | 33.75191 | 42.44354 |
Raorchestes tinniens | Anura | EN | Ground-dwelling | 25.581038 | 37.84428 | 33.52461 | 42.14652 |
Raorchestes tinniens | Anura | EN | Ground-dwelling | 29.313470 | 38.35146 | 34.11388 | 42.93066 |
Raorchestes graminirupes | Anura | VU | Ground-dwelling | 27.573236 | 38.17442 | 33.56101 | 42.38077 |
Raorchestes graminirupes | Anura | VU | Ground-dwelling | 26.914010 | 38.08486 | 33.39719 | 42.18241 |
Raorchestes graminirupes | Anura | VU | Ground-dwelling | 28.939685 | 38.36006 | 33.72291 | 42.66232 |
Raorchestes gryllus | Anura | VU | Arboreal | 27.960153 | 37.97986 | 33.67550 | 42.05136 |
Raorchestes gryllus | Anura | VU | Arboreal | 27.022721 | 37.85512 | 33.52344 | 41.82659 |
Raorchestes gryllus | Anura | VU | Arboreal | 29.618000 | 38.20045 | 33.89594 | 42.34343 |
Raorchestes menglaensis | Anura | LC | Stream-dwelling | 24.390696 | 36.92145 | 32.68639 | 41.00115 |
Raorchestes menglaensis | Anura | LC | Stream-dwelling | 23.434874 | 36.79413 | 32.48604 | 40.80246 |
Raorchestes menglaensis | Anura | LC | Stream-dwelling | 26.218755 | 37.16498 | 32.92162 | 41.33592 |
Raorchestes longchuanensis | Anura | LC | Arboreal | 24.237001 | 37.42369 | 33.29131 | 41.57186 |
Raorchestes longchuanensis | Anura | LC | Arboreal | 23.195216 | 37.28654 | 33.11030 | 41.34481 |
Raorchestes longchuanensis | Anura | LC | Arboreal | 26.202179 | 37.68242 | 33.48345 | 41.87462 |
Raorchestes marki | Anura | CR | Arboreal | 28.304066 | 37.99040 | 33.51655 | 42.41701 |
Raorchestes marki | Anura | CR | Arboreal | 27.264133 | 37.85294 | 33.12159 | 41.96148 |
Raorchestes marki | Anura | CR | Arboreal | 30.248374 | 38.24740 | 33.68795 | 42.58968 |
Raorchestes nerostagona | Anura | EN | Arboreal | 26.793491 | 37.81731 | 33.73462 | 42.04373 |
Raorchestes nerostagona | Anura | EN | Arboreal | 25.581038 | 37.65350 | 33.30839 | 41.58503 |
Raorchestes nerostagona | Anura | EN | Arboreal | 29.313470 | 38.15778 | 34.04206 | 42.38571 |
Raorchestes ochlandrae | Anura | LC | Arboreal | 27.205186 | 37.93696 | 33.82032 | 42.25607 |
Raorchestes ochlandrae | Anura | LC | Arboreal | 26.297845 | 37.81577 | 33.79634 | 42.20862 |
Raorchestes ochlandrae | Anura | LC | Arboreal | 29.104954 | 38.19072 | 34.04169 | 42.46391 |
Raorchestes parvulus | Anura | LC | Arboreal | 27.131255 | 37.93913 | 33.39286 | 42.32880 |
Raorchestes parvulus | Anura | LC | Arboreal | 26.220796 | 37.81648 | 33.25474 | 42.15111 |
Raorchestes parvulus | Anura | LC | Arboreal | 28.932207 | 38.18175 | 33.53912 | 42.58515 |
Raorchestes ponmudi | Anura | LC | Arboreal | 27.358853 | 37.95091 | 33.92412 | 42.45896 |
Raorchestes ponmudi | Anura | LC | Arboreal | 26.480690 | 37.83192 | 33.65136 | 42.14607 |
Raorchestes ponmudi | Anura | LC | Arboreal | 29.137190 | 38.19188 | 34.07462 | 42.68355 |
Nyctixalus margaritifer | Anura | LC | Arboreal | 27.610608 | 37.65040 | 33.44869 | 41.02539 |
Nyctixalus margaritifer | Anura | LC | Arboreal | 26.917000 | 37.55785 | 33.37597 | 40.94196 |
Nyctixalus margaritifer | Anura | LC | Arboreal | 29.077758 | 37.84617 | 33.92300 | 41.59459 |
Nyctixalus spinosus | Anura | LC | Ground-dwelling | 27.348447 | 37.78131 | 33.91775 | 41.81460 |
Nyctixalus spinosus | Anura | LC | Ground-dwelling | 26.844745 | 37.71324 | 33.87343 | 41.75156 |
Nyctixalus spinosus | Anura | LC | Ground-dwelling | 28.433196 | 37.92790 | 33.96542 | 41.95034 |
Philautus abditus | Anura | LC | Stream-dwelling | 27.945777 | 36.79288 | 32.53066 | 40.60228 |
Philautus abditus | Anura | LC | Stream-dwelling | 26.933358 | 36.65842 | 32.42506 | 40.48584 |
Philautus abditus | Anura | LC | Stream-dwelling | 29.780452 | 37.03654 | 32.69171 | 40.82532 |
Philautus acutirostris | Anura | LC | Arboreal | 27.400303 | 36.00058 | 32.65412 | 39.14196 |
Philautus acutirostris | Anura | LC | Arboreal | 26.851423 | 35.92585 | 32.57768 | 39.02211 |
Philautus acutirostris | Anura | LC | Arboreal | 28.558507 | 36.15827 | 32.76404 | 39.36799 |
Philautus acutus | Anura | LC | Arboreal | 27.002711 | 37.12422 | 32.85158 | 41.44174 |
Philautus acutus | Anura | LC | Arboreal | 26.369992 | 37.03943 | 32.79419 | 41.34687 |
Philautus acutus | Anura | LC | Arboreal | 28.309782 | 37.29939 | 32.85233 | 41.47707 |
Philautus aurantium | Anura | VU | Arboreal | 27.355101 | 37.25908 | 32.97711 | 41.29583 |
Philautus aurantium | Anura | VU | Arboreal | 26.788195 | 37.18115 | 33.04030 | 41.32798 |
Philautus aurantium | Anura | VU | Arboreal | 28.477535 | 37.41336 | 33.25257 | 41.64923 |
Philautus amoenus | Anura | LC | Arboreal | 27.024307 | 37.20566 | 33.53475 | 41.17287 |
Philautus amoenus | Anura | LC | Arboreal | 26.595031 | 37.14781 | 33.49945 | 41.09523 |
Philautus amoenus | Anura | LC | Arboreal | 27.949343 | 37.33034 | 33.38258 | 41.10688 |
Philautus mjobergi | Anura | LC | Arboreal | 27.102893 | 37.25705 | 33.41302 | 41.67207 |
Philautus mjobergi | Anura | LC | Arboreal | 26.534412 | 37.17900 | 33.35191 | 41.56769 |
Philautus mjobergi | Anura | LC | Arboreal | 28.250047 | 37.41455 | 33.59081 | 41.93130 |
Philautus aurifasciatus | Anura | LC | Arboreal | 27.645892 | 37.23956 | 33.19499 | 41.33434 |
Philautus aurifasciatus | Anura | LC | Arboreal | 27.026156 | 37.15518 | 33.17081 | 41.25207 |
Philautus aurifasciatus | Anura | LC | Arboreal | 28.904330 | 37.41090 | 33.08430 | 41.28712 |
Philautus bunitus | Anura | LC | Arboreal | 27.451149 | 37.32105 | 33.27964 | 41.21365 |
Philautus bunitus | Anura | LC | Arboreal | 26.903246 | 37.24747 | 33.25932 | 41.13282 |
Philautus bunitus | Anura | LC | Arboreal | 28.618708 | 37.47785 | 33.39818 | 41.37210 |
Philautus kerangae | Anura | VU | Arboreal | 26.797163 | 37.23084 | 32.93260 | 41.00063 |
Philautus kerangae | Anura | VU | Arboreal | 26.278658 | 37.16043 | 32.88381 | 40.91296 |
Philautus kerangae | Anura | VU | Arboreal | 28.133809 | 37.41236 | 33.44976 | 41.59770 |
Philautus cardamonus | Anura | EN | Arboreal | 28.953590 | 37.48880 | 33.32985 | 41.61999 |
Philautus cardamonus | Anura | EN | Arboreal | 28.024487 | 37.36304 | 33.33723 | 41.55276 |
Philautus cardamonus | Anura | EN | Arboreal | 30.890544 | 37.75098 | 33.53292 | 42.02411 |
Philautus cornutus | Anura | EN | Arboreal | 28.891527 | 37.48834 | 33.20435 | 41.42740 |
Philautus cornutus | Anura | EN | Arboreal | 28.270457 | 37.40408 | 33.13717 | 41.32652 |
Philautus cornutus | Anura | EN | Arboreal | 30.176096 | 37.66260 | 33.26289 | 41.59745 |
Philautus davidlabangi | Anura | LC | Arboreal | 27.963074 | 37.26572 | 32.82686 | 40.92989 |
Philautus davidlabangi | Anura | LC | Arboreal | 27.332960 | 37.18218 | 32.77019 | 40.82620 |
Philautus davidlabangi | Anura | LC | Arboreal | 29.230818 | 37.43380 | 32.97487 | 41.15851 |
Philautus disgregus | Anura | NT | Arboreal | 27.979376 | 37.32735 | 33.68264 | 41.73615 |
Philautus disgregus | Anura | NT | Arboreal | 27.469671 | 37.25895 | 33.71968 | 41.74426 |
Philautus disgregus | Anura | NT | Arboreal | 29.213872 | 37.49300 | 33.84735 | 41.93654 |
Philautus erythrophthalmus | Anura | EN | Arboreal | 27.631116 | 37.25914 | 33.34055 | 41.44710 |
Philautus erythrophthalmus | Anura | EN | Arboreal | 27.037922 | 37.17840 | 33.25215 | 41.32075 |
Philautus erythrophthalmus | Anura | EN | Arboreal | 28.870513 | 37.42783 | 33.47705 | 41.56964 |
Philautus everetti | Anura | EN | Arboreal | 27.669291 | 37.17338 | 33.08769 | 40.91805 |
Philautus everetti | Anura | EN | Arboreal | 27.260233 | 37.11854 | 33.12246 | 40.94036 |
Philautus everetti | Anura | EN | Arboreal | 28.619811 | 37.30080 | 33.34206 | 41.20328 |
Philautus garo | Anura | DD | Arboreal | 25.381128 | 36.81686 | 32.50221 | 40.72146 |
Philautus garo | Anura | DD | Arboreal | 24.427616 | 36.69173 | 32.48698 | 40.64793 |
Philautus garo | Anura | DD | Arboreal | 26.997123 | 37.02894 | 32.78278 | 41.08808 |
Philautus gunungensis | Anura | LC | Arboreal | 27.024307 | 37.18509 | 33.11982 | 40.99653 |
Philautus gunungensis | Anura | LC | Arboreal | 26.595031 | 37.12601 | 33.07157 | 40.91549 |
Philautus gunungensis | Anura | LC | Arboreal | 27.949343 | 37.31240 | 33.45130 | 41.39594 |
Philautus hosii | Anura | LC | Arboreal | 27.665117 | 37.21742 | 33.17684 | 41.03004 |
Philautus hosii | Anura | LC | Arboreal | 27.033778 | 37.13153 | 33.10257 | 40.89578 |
Philautus hosii | Anura | LC | Arboreal | 28.959809 | 37.39356 | 33.37397 | 41.34002 |
Philautus ingeri | Anura | VU | Arboreal | 27.125504 | 37.22720 | 32.92933 | 40.76911 |
Philautus ingeri | Anura | VU | Arboreal | 26.575272 | 37.15305 | 32.89548 | 40.69944 |
Philautus ingeri | Anura | VU | Arboreal | 28.301937 | 37.38573 | 33.40369 | 41.32380 |
Philautus kempiae | Anura | CR | Arboreal | 25.381128 | 36.93361 | 32.93414 | 40.93818 |
Philautus kempiae | Anura | CR | Arboreal | 24.427616 | 36.80441 | 32.77466 | 40.76568 |
Philautus kempiae | Anura | CR | Arboreal | 26.997123 | 37.15258 | 33.05053 | 41.19286 |
Philautus kempii | Anura | DD | Arboreal | 17.560163 | 35.89480 | 31.77485 | 39.55872 |
Philautus kempii | Anura | DD | Arboreal | 15.953397 | 35.67742 | 31.57906 | 39.38047 |
Philautus kempii | Anura | DD | Arboreal | 19.738095 | 36.18945 | 32.04887 | 39.84905 |
Philautus leitensis | Anura | LC | Arboreal | 27.411466 | 37.20678 | 33.21919 | 41.19032 |
Philautus leitensis | Anura | LC | Arboreal | 26.886289 | 37.13719 | 32.94698 | 40.91228 |
Philautus leitensis | Anura | LC | Arboreal | 28.518196 | 37.35342 | 33.38452 | 41.41949 |
Philautus longicrus | Anura | VU | Arboreal | 27.474901 | 37.22419 | 33.09666 | 41.45841 |
Philautus longicrus | Anura | VU | Arboreal | 27.063697 | 37.16830 | 33.02188 | 41.34933 |
Philautus longicrus | Anura | VU | Arboreal | 28.399008 | 37.34978 | 33.08288 | 41.53130 |
Philautus maosonensis | Anura | DD | Arboreal | 26.981046 | 37.09924 | 32.91436 | 41.25637 |
Philautus maosonensis | Anura | DD | Arboreal | 25.937273 | 36.95794 | 32.77510 | 41.04426 |
Philautus maosonensis | Anura | DD | Arboreal | 28.818410 | 37.34798 | 33.40395 | 41.83032 |
Philautus microdiscus | Anura | CR | Arboreal | 20.728415 | 36.26533 | 32.83598 | 40.19319 |
Philautus microdiscus | Anura | CR | Arboreal | 19.727354 | 36.13243 | 32.68934 | 40.05260 |
Philautus microdiscus | Anura | CR | Arboreal | 22.414085 | 36.48910 | 33.01559 | 40.40804 |
Philautus namdaphaensis | Anura | DD | Arboreal | 22.075347 | 36.47299 | 32.48093 | 40.89190 |
Philautus namdaphaensis | Anura | DD | Arboreal | 21.132319 | 36.34551 | 32.41030 | 40.81537 |
Philautus namdaphaensis | Anura | DD | Arboreal | 23.819751 | 36.70879 | 32.71073 | 41.16210 |
Philautus pallidipes | Anura | LC | Arboreal | 28.268583 | 37.38431 | 33.31484 | 41.25997 |
Philautus pallidipes | Anura | LC | Arboreal | 27.422313 | 37.26995 | 33.18360 | 41.05786 |
Philautus pallidipes | Anura | LC | Arboreal | 30.172717 | 37.64160 | 33.41488 | 41.50416 |
Philautus petersi | Anura | DD | Ground-dwelling | 27.463377 | 37.34174 | 33.42364 | 41.24506 |
Philautus petersi | Anura | DD | Ground-dwelling | 27.000707 | 37.28033 | 33.32526 | 41.19225 |
Philautus petersi | Anura | DD | Ground-dwelling | 28.247701 | 37.44585 | 33.49620 | 41.40511 |
Philautus poecilius | Anura | LC | Arboreal | 27.427926 | 37.23891 | 33.17899 | 40.83090 |
Philautus poecilius | Anura | LC | Arboreal | 26.826940 | 37.15806 | 33.07896 | 40.70803 |
Philautus poecilius | Anura | LC | Arboreal | 28.741186 | 37.41559 | 33.17429 | 40.81169 |
Philautus refugii | Anura | VU | Arboreal | 27.980788 | 37.30117 | 33.35858 | 41.41352 |
Philautus refugii | Anura | VU | Arboreal | 27.395411 | 37.22211 | 33.28802 | 41.31365 |
Philautus refugii | Anura | VU | Arboreal | 29.127482 | 37.45605 | 33.47125 | 41.59527 |
Philautus saueri | Anura | LC | Arboreal | 27.024307 | 37.26353 | 33.27773 | 41.30631 |
Philautus saueri | Anura | LC | Arboreal | 26.595031 | 37.20516 | 33.29997 | 41.29479 |
Philautus saueri | Anura | LC | Arboreal | 27.949343 | 37.38931 | 33.47726 | 41.52886 |
Philautus schmackeri | Anura | EN | Arboreal | 27.687848 | 37.24868 | 33.08388 | 41.11192 |
Philautus schmackeri | Anura | EN | Arboreal | 27.085516 | 37.16777 | 32.95120 | 40.99724 |
Philautus schmackeri | Anura | EN | Arboreal | 28.658100 | 37.37902 | 33.19017 | 41.22362 |
Philautus similipalensis | Anura | DD | Ground-dwelling | 29.838298 | 37.71990 | 33.26830 | 41.40140 |
Philautus similipalensis | Anura | DD | Ground-dwelling | 28.889868 | 37.59241 | 33.13445 | 41.23437 |
Philautus similipalensis | Anura | DD | Ground-dwelling | 31.731476 | 37.97440 | 33.44715 | 41.69095 |
Philautus surrufus | Anura | NT | Arboreal | 27.395282 | 37.11314 | 33.25890 | 41.23445 |
Philautus surrufus | Anura | NT | Arboreal | 26.775983 | 37.02812 | 33.20807 | 41.12885 |
Philautus surrufus | Anura | NT | Arboreal | 28.709832 | 37.29361 | 33.58058 | 41.68105 |
Philautus tectus | Anura | LC | Arboreal | 27.850977 | 37.29918 | 33.12165 | 41.18982 |
Philautus tectus | Anura | LC | Arboreal | 27.290747 | 37.22310 | 33.07874 | 41.06933 |
Philautus tectus | Anura | LC | Arboreal | 29.101908 | 37.46906 | 33.19173 | 41.38622 |
Philautus tytthus | Anura | DD | Arboreal | 23.871863 | 36.71780 | 32.72547 | 40.78958 |
Philautus tytthus | Anura | DD | Arboreal | 23.018673 | 36.60441 | 32.59547 | 40.63020 |
Philautus tytthus | Anura | DD | Arboreal | 25.579815 | 36.94479 | 32.94083 | 41.01306 |
Philautus umbra | Anura | LC | Arboreal | 27.086462 | 37.25324 | 33.02069 | 41.15129 |
Philautus umbra | Anura | LC | Arboreal | 26.556259 | 37.18210 | 33.12127 | 41.21993 |
Philautus umbra | Anura | LC | Arboreal | 28.322808 | 37.41915 | 33.12069 | 41.31178 |
Philautus vermiculatus | Anura | LC | Arboreal | 28.065994 | 37.29599 | 32.79996 | 41.36972 |
Philautus vermiculatus | Anura | LC | Arboreal | 27.379019 | 37.20282 | 32.69710 | 41.22351 |
Philautus vermiculatus | Anura | LC | Arboreal | 29.476469 | 37.48730 | 33.00545 | 41.67865 |
Philautus vittiger | Anura | NT | Arboreal | 27.829675 | 37.27817 | 33.12588 | 41.53475 |
Philautus vittiger | Anura | NT | Arboreal | 27.084147 | 37.17778 | 33.02970 | 41.38051 |
Philautus vittiger | Anura | NT | Arboreal | 29.480753 | 37.50051 | 33.14672 | 41.69425 |
Philautus worcesteri | Anura | LC | Arboreal | 27.541664 | 37.42441 | 33.33735 | 41.54641 |
Philautus worcesteri | Anura | LC | Arboreal | 26.977030 | 37.34764 | 33.25528 | 41.47485 |
Philautus worcesteri | Anura | LC | Arboreal | 28.701827 | 37.58214 | 33.55761 | 41.85778 |
Rhacophorus angulirostris | Anura | NT | Arboreal | 26.801121 | 37.82619 | 33.62341 | 41.79609 |
Rhacophorus angulirostris | Anura | NT | Arboreal | 26.209815 | 37.74652 | 33.58532 | 41.70428 |
Rhacophorus angulirostris | Anura | NT | Arboreal | 27.867897 | 37.96991 | 33.79888 | 42.03587 |
Rhacophorus annamensis | Anura | LC | Stream-dwelling | 28.214757 | 37.57439 | 33.65676 | 41.99045 |
Rhacophorus annamensis | Anura | LC | Stream-dwelling | 27.253915 | 37.44374 | 33.49691 | 41.73859 |
Rhacophorus annamensis | Anura | LC | Stream-dwelling | 30.051705 | 37.82418 | 33.22080 | 41.67647 |
Rhacophorus exechopygus | Anura | LC | Arboreal | 27.937048 | 37.97195 | 33.86374 | 41.70719 |
Rhacophorus exechopygus | Anura | LC | Arboreal | 27.035297 | 37.85022 | 33.77475 | 41.56309 |
Rhacophorus exechopygus | Anura | LC | Arboreal | 29.685331 | 38.20794 | 34.06691 | 42.02709 |
Rhacophorus baluensis | Anura | LC | Arboreal | 27.287180 | 37.96743 | 33.58654 | 41.75543 |
Rhacophorus baluensis | Anura | LC | Arboreal | 26.669139 | 37.88467 | 33.55949 | 41.68021 |
Rhacophorus baluensis | Anura | LC | Arboreal | 28.538383 | 38.13496 | 33.81528 | 42.04270 |
Rhacophorus barisani | Anura | LC | Stream-dwelling | 28.197935 | 37.54641 | 33.09478 | 41.99585 |
Rhacophorus barisani | Anura | LC | Stream-dwelling | 27.533927 | 37.45811 | 33.06471 | 41.92656 |
Rhacophorus barisani | Anura | LC | Stream-dwelling | 29.465843 | 37.71503 | 33.24174 | 42.23020 |
Rhacophorus gauni | Anura | LC | Arboreal | 27.881298 | 38.05800 | 33.96998 | 42.49303 |
Rhacophorus gauni | Anura | LC | Arboreal | 27.208885 | 37.96708 | 33.88883 | 42.39971 |
Rhacophorus gauni | Anura | LC | Arboreal | 29.224869 | 38.23966 | 34.07265 | 42.65599 |
Rhacophorus gadingensis | Anura | LC | Arboreal | 27.811826 | 37.99279 | 33.80157 | 42.07715 |
Rhacophorus gadingensis | Anura | LC | Arboreal | 27.298663 | 37.92402 | 33.75496 | 41.98984 |
Rhacophorus gadingensis | Anura | LC | Arboreal | 28.868384 | 38.13439 | 33.99876 | 42.32771 |
Rhacophorus bifasciatus | Anura | LC | Stream-dwelling | 27.852341 | 37.42632 | 33.11500 | 41.76096 |
Rhacophorus bifasciatus | Anura | LC | Stream-dwelling | 27.235070 | 37.34463 | 33.15102 | 41.77141 |
Rhacophorus bifasciatus | Anura | LC | Stream-dwelling | 29.019814 | 37.58083 | 33.37580 | 42.06400 |
Rhacophorus bimaculatus | Anura | LC | Arboreal | 27.490312 | 37.94718 | 33.85623 | 42.16976 |
Rhacophorus bimaculatus | Anura | LC | Arboreal | 26.975554 | 37.87749 | 33.78666 | 42.07384 |
Rhacophorus bimaculatus | Anura | LC | Arboreal | 28.545924 | 38.09010 | 33.86833 | 42.28625 |
Rhacophorus bipunctatus | Anura | LC | Arboreal | 25.665733 | 37.64093 | 33.22115 | 41.81730 |
Rhacophorus bipunctatus | Anura | LC | Arboreal | 24.711516 | 37.51253 | 33.15231 | 41.64611 |
Rhacophorus bipunctatus | Anura | LC | Arboreal | 27.413163 | 37.87608 | 33.50878 | 42.18202 |
Rhacophorus rhodopus | Anura | LC | Arboreal | 25.309506 | 37.60471 | 33.69158 | 41.92937 |
Rhacophorus rhodopus | Anura | LC | Arboreal | 24.260384 | 37.46345 | 33.40929 | 41.59850 |
Rhacophorus rhodopus | Anura | LC | Arboreal | 27.261390 | 37.86750 | 33.89046 | 42.21423 |
Rhacophorus reinwardtii | Anura | LC | Arboreal | 27.275423 | 37.89266 | 33.76210 | 41.95309 |
Rhacophorus reinwardtii | Anura | LC | Arboreal | 26.657741 | 37.80925 | 33.60454 | 41.75650 |
Rhacophorus reinwardtii | Anura | LC | Arboreal | 28.512588 | 38.05972 | 33.84708 | 42.15215 |
Rhacophorus calcadensis | Anura | EN | Arboreal | 27.840779 | 38.01739 | 33.75027 | 42.18045 |
Rhacophorus calcadensis | Anura | EN | Arboreal | 26.917055 | 37.89386 | 33.65086 | 42.05981 |
Rhacophorus calcadensis | Anura | EN | Arboreal | 29.646580 | 38.25887 | 33.90859 | 42.48475 |
Rhacophorus calcaneus | Anura | EN | Arboreal | 27.525862 | 37.81234 | 33.33250 | 41.90108 |
Rhacophorus calcaneus | Anura | EN | Arboreal | 26.639648 | 37.69452 | 33.30877 | 41.82601 |
Rhacophorus calcaneus | Anura | EN | Arboreal | 29.009085 | 38.00952 | 33.61414 | 42.26293 |
Rhacophorus catamitus | Anura | LC | Stream-dwelling | 28.133705 | 37.51409 | 33.29460 | 41.70308 |
Rhacophorus catamitus | Anura | LC | Stream-dwelling | 27.441742 | 37.42239 | 33.27002 | 41.64870 |
Rhacophorus catamitus | Anura | LC | Stream-dwelling | 29.405666 | 37.68265 | 33.45606 | 41.92249 |
Rhacophorus translineatus | Anura | NT | Arboreal | 18.121681 | 36.69838 | 32.59396 | 40.38539 |
Rhacophorus translineatus | Anura | NT | Arboreal | 16.622302 | 36.50072 | 32.49801 | 40.25815 |
Rhacophorus translineatus | Anura | NT | Arboreal | 20.066832 | 36.95482 | 33.03432 | 40.69385 |
Rhacophorus pardalis | Anura | LC | Arboreal | 27.648652 | 37.91122 | 33.48318 | 41.75211 |
Rhacophorus pardalis | Anura | LC | Arboreal | 27.077629 | 37.83535 | 33.43279 | 41.72378 |
Rhacophorus pardalis | Anura | LC | Arboreal | 28.836729 | 38.06908 | 33.66413 | 41.96063 |
Rhacophorus fasciatus | Anura | LC | Arboreal | 27.594237 | 37.81869 | 33.36583 | 42.24183 |
Rhacophorus fasciatus | Anura | LC | Arboreal | 26.963303 | 37.73483 | 33.67251 | 42.57209 |
Rhacophorus fasciatus | Anura | LC | Arboreal | 28.853534 | 37.98608 | 33.91909 | 42.89167 |
Rhacophorus harrissoni | Anura | LC | Arboreal | 27.951097 | 37.94371 | 33.46669 | 41.86563 |
Rhacophorus harrissoni | Anura | LC | Arboreal | 27.317751 | 37.85994 | 33.37795 | 41.77456 |
Rhacophorus harrissoni | Anura | LC | Arboreal | 29.249966 | 38.11552 | 33.88715 | 42.40823 |
Rhacophorus rufipes | Anura | LC | Arboreal | 28.090920 | 37.91896 | 33.81667 | 42.19300 |
Rhacophorus rufipes | Anura | LC | Arboreal | 27.438169 | 37.83322 | 33.73409 | 42.09536 |
Rhacophorus rufipes | Anura | LC | Arboreal | 29.438853 | 38.09603 | 33.84439 | 42.38756 |
Rhacophorus georgii | Anura | LC | Arboreal | 26.883158 | 37.91500 | 33.41208 | 41.84996 |
Rhacophorus georgii | Anura | LC | Arboreal | 26.439800 | 37.85559 | 33.38385 | 41.79252 |
Rhacophorus georgii | Anura | LC | Arboreal | 28.031229 | 38.06885 | 33.48517 | 41.99869 |
Rhacophorus helenae | Anura | EN | Arboreal | 29.081685 | 38.17519 | 33.40348 | 42.15497 |
Rhacophorus helenae | Anura | EN | Arboreal | 27.942736 | 38.02322 | 33.35646 | 42.01323 |
Rhacophorus helenae | Anura | EN | Arboreal | 31.279434 | 38.46845 | 33.86253 | 42.78450 |
Rhacophorus kio | Anura | LC | Arboreal | 25.719853 | 37.69258 | 33.64457 | 41.96064 |
Rhacophorus kio | Anura | LC | Arboreal | 24.735228 | 37.56111 | 33.48091 | 41.84648 |
Rhacophorus kio | Anura | LC | Arboreal | 27.643517 | 37.94943 | 33.63881 | 42.19155 |
Rhacophorus hoanglienensis | Anura | LC | Arboreal | 25.395220 | 37.77048 | 33.57588 | 42.37005 |
Rhacophorus hoanglienensis | Anura | LC | Arboreal | 24.324553 | 37.62668 | 33.27745 | 42.02753 |
Rhacophorus hoanglienensis | Anura | LC | Arboreal | 27.328481 | 38.03014 | 33.66006 | 42.57185 |
Rhacophorus lateralis | Anura | VU | Arboreal | 26.803594 | 37.88257 | 33.57333 | 42.06034 |
Rhacophorus lateralis | Anura | VU | Arboreal | 25.852289 | 37.75537 | 33.44847 | 41.87281 |
Rhacophorus lateralis | Anura | VU | Arboreal | 28.940355 | 38.16828 | 33.74047 | 42.36102 |
Rhacophorus malabaricus | Anura | LC | Arboreal | 27.034890 | 37.89656 | 33.53986 | 42.12827 |
Rhacophorus malabaricus | Anura | LC | Arboreal | 26.151061 | 37.77760 | 33.45528 | 42.04205 |
Rhacophorus malabaricus | Anura | LC | Arboreal | 29.096273 | 38.17400 | 33.79327 | 42.50924 |
Rhacophorus pseudomalabaricus | Anura | VU | Arboreal | 27.766641 | 38.00520 | 33.84739 | 42.49420 |
Rhacophorus pseudomalabaricus | Anura | VU | Arboreal | 26.846355 | 37.88275 | 33.51716 | 42.12087 |
Rhacophorus pseudomalabaricus | Anura | VU | Arboreal | 29.519349 | 38.23843 | 33.93000 | 42.70075 |
Rhacophorus margaritifer | Anura | LC | Stream-dwelling | 27.597362 | 37.44351 | 33.24299 | 41.52927 |
Rhacophorus margaritifer | Anura | LC | Stream-dwelling | 26.883526 | 37.34738 | 33.26543 | 41.53481 |
Rhacophorus margaritifer | Anura | LC | Stream-dwelling | 29.056283 | 37.63998 | 33.46824 | 41.80411 |
Rhacophorus marmoridorsum | Anura | VU | Arboreal | 27.677048 | 37.85799 | 33.82200 | 42.41198 |
Rhacophorus marmoridorsum | Anura | VU | Arboreal | 26.812794 | 37.74538 | 33.75551 | 42.28782 |
Rhacophorus marmoridorsum | Anura | VU | Arboreal | 29.355604 | 38.07670 | 34.03113 | 42.73108 |
Rhacophorus modestus | Anura | LC | Stream-dwelling | 28.607019 | 37.59719 | 33.51972 | 41.98919 |
Rhacophorus modestus | Anura | LC | Stream-dwelling | 27.962609 | 37.50932 | 33.42567 | 41.85071 |
Rhacophorus modestus | Anura | LC | Stream-dwelling | 29.777542 | 37.75680 | 33.54833 | 42.10392 |
Rhacophorus monticola | Anura | VU | Stream-dwelling | 26.574272 | 37.36472 | 32.87453 | 41.41243 |
Rhacophorus monticola | Anura | VU | Stream-dwelling | 26.200405 | 37.31455 | 32.86089 | 41.34430 |
Rhacophorus monticola | Anura | VU | Stream-dwelling | 27.546809 | 37.49523 | 33.27334 | 41.83877 |
Rhacophorus nigropalmatus | Anura | LC | Arboreal | 28.115558 | 37.97061 | 33.77217 | 42.14472 |
Rhacophorus nigropalmatus | Anura | LC | Arboreal | 27.470023 | 37.88316 | 33.71754 | 42.04754 |
Rhacophorus nigropalmatus | Anura | LC | Arboreal | 29.484062 | 38.15598 | 33.81086 | 42.20532 |
Rhacophorus orlovi | Anura | LC | Stream-dwelling | 27.980583 | 37.50414 | 33.18477 | 41.93981 |
Rhacophorus orlovi | Anura | LC | Stream-dwelling | 27.012452 | 37.37659 | 33.08136 | 41.78406 |
Rhacophorus orlovi | Anura | LC | Stream-dwelling | 29.823591 | 37.74695 | 33.51992 | 42.41797 |
Rhacophorus verrucopus | Anura | NT | Arboreal | 16.274470 | 36.47723 | 32.71323 | 40.83886 |
Rhacophorus verrucopus | Anura | NT | Arboreal | 14.438870 | 36.23514 | 32.56071 | 40.72830 |
Rhacophorus verrucopus | Anura | NT | Arboreal | 18.508255 | 36.77185 | 33.09831 | 41.20270 |
Rhacophorus poecilonotus | Anura | LC | Arboreal | 27.437897 | 37.94362 | 34.10139 | 42.48782 |
Rhacophorus poecilonotus | Anura | LC | Arboreal | 26.739272 | 37.85054 | 33.95892 | 42.27104 |
Rhacophorus poecilonotus | Anura | LC | Arboreal | 28.736277 | 38.11660 | 33.99775 | 42.47797 |
Rhacophorus robertingeri | Anura | LC | Stream-dwelling | 27.925238 | 37.47238 | 33.23811 | 41.97105 |
Rhacophorus robertingeri | Anura | LC | Stream-dwelling | 27.018206 | 37.35259 | 33.12601 | 41.77229 |
Rhacophorus robertingeri | Anura | LC | Stream-dwelling | 29.688937 | 37.70530 | 33.37625 | 42.19253 |
Rhacophorus robinsonii | Anura | LC | Arboreal | 28.018322 | 38.01194 | 33.51137 | 42.27775 |
Rhacophorus robinsonii | Anura | LC | Arboreal | 27.343295 | 37.92231 | 33.45236 | 42.15279 |
Rhacophorus robinsonii | Anura | LC | Arboreal | 29.421697 | 38.19827 | 33.42865 | 42.31566 |
Rhacophorus spelaeus | Anura | VU | Arboreal | 28.167127 | 37.99173 | 33.87879 | 42.52135 |
Rhacophorus spelaeus | Anura | VU | Arboreal | 27.268118 | 37.86975 | 33.55544 | 42.21599 |
Rhacophorus spelaeus | Anura | VU | Arboreal | 30.222900 | 38.27066 | 34.03693 | 42.84786 |
Rhacophorus tuberculatus | Anura | DD | Arboreal | 20.242946 | 36.92517 | 33.01404 | 40.62834 |
Rhacophorus tuberculatus | Anura | DD | Arboreal | 18.955932 | 36.75173 | 32.74124 | 40.32731 |
Rhacophorus tuberculatus | Anura | DD | Arboreal | 22.077404 | 37.17238 | 33.24056 | 40.94490 |
Rhacophorus turpes | Anura | DD | Arboreal | 23.871863 | 37.41834 | 32.89773 | 41.55940 |
Rhacophorus turpes | Anura | DD | Arboreal | 23.018673 | 37.30502 | 32.87810 | 41.53227 |
Rhacophorus turpes | Anura | DD | Arboreal | 25.579815 | 37.64520 | 33.06801 | 41.72442 |
Theloderma asperum | Anura | LC | Ground-dwelling | 27.827289 | 38.16278 | 33.87086 | 42.34521 |
Theloderma asperum | Anura | LC | Ground-dwelling | 27.135714 | 38.06844 | 33.81472 | 42.25402 |
Theloderma asperum | Anura | LC | Ground-dwelling | 29.396136 | 38.37679 | 34.21444 | 42.81860 |
Theloderma rhododiscus | Anura | LC | Arboreal | 26.371306 | 37.81811 | 33.37234 | 41.87602 |
Theloderma rhododiscus | Anura | LC | Arboreal | 25.161554 | 37.65448 | 33.24628 | 41.67968 |
Theloderma rhododiscus | Anura | LC | Arboreal | 28.643043 | 38.12537 | 33.48384 | 42.17743 |
Theloderma bicolor | Anura | LC | Ground-dwelling | 23.572100 | 37.69398 | 33.63080 | 41.71645 |
Theloderma bicolor | Anura | LC | Ground-dwelling | 22.518210 | 37.55137 | 33.58053 | 41.59980 |
Theloderma bicolor | Anura | LC | Ground-dwelling | 25.592778 | 37.96741 | 33.75067 | 42.05280 |
Theloderma corticale | Anura | LC | Ground-dwelling | 27.249135 | 38.02406 | 33.62135 | 42.10577 |
Theloderma corticale | Anura | LC | Ground-dwelling | 26.132531 | 37.87543 | 33.51439 | 41.95857 |
Theloderma corticale | Anura | LC | Ground-dwelling | 29.258228 | 38.29149 | 33.77336 | 42.27282 |
Theloderma gordoni | Anura | LC | Ground-dwelling | 26.683310 | 38.01293 | 34.08623 | 42.68062 |
Theloderma gordoni | Anura | LC | Ground-dwelling | 25.741015 | 37.88808 | 33.97345 | 42.55817 |
Theloderma gordoni | Anura | LC | Ground-dwelling | 28.538736 | 38.25875 | 34.33047 | 43.00476 |
Theloderma leporosum | Anura | LC | Arboreal | 28.226648 | 38.06889 | 33.55447 | 42.00285 |
Theloderma leporosum | Anura | LC | Arboreal | 27.535734 | 37.97539 | 33.40782 | 41.84831 |
Theloderma leporosum | Anura | LC | Arboreal | 29.632116 | 38.25908 | 33.81890 | 42.31991 |
Theloderma horridum | Anura | LC | Arboreal | 27.845755 | 38.02211 | 33.73430 | 42.11922 |
Theloderma horridum | Anura | LC | Arboreal | 27.209342 | 37.93642 | 33.60399 | 41.95495 |
Theloderma horridum | Anura | LC | Arboreal | 29.180008 | 38.20175 | 33.93166 | 42.41519 |
Theloderma laeve | Anura | LC | Arboreal | 28.085660 | 37.99932 | 33.79761 | 42.06545 |
Theloderma laeve | Anura | LC | Arboreal | 27.118880 | 37.87174 | 33.70661 | 41.92597 |
Theloderma laeve | Anura | LC | Arboreal | 29.869118 | 38.23467 | 33.87063 | 42.32878 |
Theloderma lateriticum | Anura | LC | Arboreal | 26.494364 | 37.76310 | 33.72598 | 41.94701 |
Theloderma lateriticum | Anura | LC | Arboreal | 25.424342 | 37.62076 | 33.63572 | 41.83832 |
Theloderma lateriticum | Anura | LC | Arboreal | 28.393173 | 38.01568 | 34.05010 | 42.32085 |
Theloderma licin | Anura | LC | Arboreal | 27.928559 | 38.01558 | 33.48714 | 42.42548 |
Theloderma licin | Anura | LC | Arboreal | 27.266511 | 37.92655 | 33.15659 | 42.11090 |
Theloderma licin | Anura | LC | Arboreal | 29.350478 | 38.20680 | 33.73981 | 42.68681 |
Theloderma moloch | Anura | LC | Arboreal | 18.060324 | 36.72451 | 32.67601 | 40.93660 |
Theloderma moloch | Anura | LC | Arboreal | 16.736093 | 36.54686 | 32.20816 | 40.45729 |
Theloderma moloch | Anura | LC | Arboreal | 20.208336 | 37.01267 | 32.71523 | 40.89888 |
Theloderma nagalandense | Anura | DD | Arboreal | 25.168744 | 37.55519 | 33.46962 | 41.74740 |
Theloderma nagalandense | Anura | DD | Arboreal | 24.059773 | 37.40765 | 33.52913 | 41.72933 |
Theloderma nagalandense | Anura | DD | Arboreal | 27.014796 | 37.80078 | 33.63628 | 42.02892 |
Theloderma nebulosum | Anura | EN | Arboreal | 27.862376 | 37.79804 | 33.76400 | 42.47339 |
Theloderma nebulosum | Anura | EN | Arboreal | 26.877827 | 37.66599 | 33.31487 | 42.03384 |
Theloderma nebulosum | Anura | EN | Arboreal | 29.653583 | 38.03829 | 33.88605 | 42.64172 |
Theloderma truongsonense | Anura | LC | Stream-dwelling | 27.984193 | 37.46133 | 33.25220 | 41.67821 |
Theloderma truongsonense | Anura | LC | Stream-dwelling | 27.061526 | 37.33679 | 33.19023 | 41.61930 |
Theloderma truongsonense | Anura | LC | Stream-dwelling | 29.721696 | 37.69585 | 33.22210 | 41.67071 |
Theloderma phrynoderma | Anura | LC | Arboreal | 27.677413 | 37.98706 | 33.46691 | 41.84355 |
Theloderma phrynoderma | Anura | LC | Arboreal | 26.814906 | 37.87140 | 33.31458 | 41.69076 |
Theloderma phrynoderma | Anura | LC | Arboreal | 29.397478 | 38.21771 | 33.67309 | 42.08375 |
Theloderma ryabovi | Anura | EN | Arboreal | 27.381646 | 38.00208 | 34.15540 | 42.16697 |
Theloderma ryabovi | Anura | EN | Arboreal | 26.478123 | 37.87957 | 34.06167 | 42.06363 |
Theloderma ryabovi | Anura | EN | Arboreal | 29.024164 | 38.22479 | 34.33931 | 42.49529 |
Theloderma stellatum | Anura | LC | Arboreal | 28.563425 | 37.97527 | 34.02209 | 42.53071 |
Theloderma stellatum | Anura | LC | Arboreal | 27.647166 | 37.85270 | 33.89254 | 42.34821 |
Theloderma stellatum | Anura | LC | Arboreal | 30.321837 | 38.21051 | 34.14180 | 42.82839 |
Liuixalus hainanus | Anura | VU | Arboreal | 27.854635 | 38.27627 | 33.26873 | 42.69065 |
Liuixalus hainanus | Anura | VU | Arboreal | 27.235597 | 38.19396 | 33.15745 | 42.53313 |
Liuixalus hainanus | Anura | VU | Arboreal | 28.998611 | 38.42838 | 33.30195 | 42.75263 |
Liuixalus ocellatus | Anura | VU | Arboreal | 27.983220 | 38.35160 | 34.07831 | 42.77490 |
Liuixalus ocellatus | Anura | VU | Arboreal | 27.369547 | 38.26890 | 33.99589 | 42.65702 |
Liuixalus ocellatus | Anura | VU | Arboreal | 29.121736 | 38.50503 | 34.15062 | 42.84999 |
Liuixalus romeri | Anura | EN | Arboreal | 27.409068 | 38.17672 | 33.50849 | 42.46453 |
Liuixalus romeri | Anura | EN | Arboreal | 26.657677 | 38.07775 | 33.41795 | 42.39792 |
Liuixalus romeri | Anura | EN | Arboreal | 28.852586 | 38.36687 | 33.50383 | 42.54761 |
Boophis albilabris | Anura | LC | Arboreal | 25.896662 | 37.53089 | 32.73897 | 43.00575 |
Boophis albilabris | Anura | LC | Arboreal | 24.912283 | 37.39912 | 32.68486 | 42.90788 |
Boophis albilabris | Anura | LC | Arboreal | 27.469572 | 37.74144 | 32.60429 | 42.92267 |
Boophis occidentalis | Anura | LC | Stream-dwelling | 26.388558 | 37.13187 | 31.93870 | 41.86599 |
Boophis occidentalis | Anura | LC | Stream-dwelling | 25.533891 | 37.01977 | 31.84196 | 41.76115 |
Boophis occidentalis | Anura | LC | Stream-dwelling | 27.923201 | 37.33315 | 32.05376 | 41.96504 |
Boophis albipunctatus | Anura | LC | Stream-dwelling | 25.475841 | 37.09853 | 32.15509 | 42.15201 |
Boophis albipunctatus | Anura | LC | Stream-dwelling | 24.546273 | 36.97536 | 32.08914 | 42.06554 |
Boophis albipunctatus | Anura | LC | Stream-dwelling | 26.998319 | 37.30025 | 32.64801 | 42.63317 |
Boophis tampoka | Anura | LC | Arboreal | 27.263183 | 37.80377 | 32.90928 | 42.87617 |
Boophis tampoka | Anura | LC | Arboreal | 26.467215 | 37.69758 | 32.84767 | 42.75820 |
Boophis tampoka | Anura | LC | Arboreal | 28.839590 | 38.01408 | 33.11404 | 43.10981 |
Boophis jaegeri | Anura | EN | Arboreal | 27.017361 | 37.81726 | 32.29890 | 42.56852 |
Boophis jaegeri | Anura | EN | Arboreal | 26.114116 | 37.69536 | 32.18542 | 42.43567 |
Boophis jaegeri | Anura | EN | Arboreal | 28.461743 | 38.01219 | 32.76564 | 43.09947 |
Boophis anjanaharibeensis | Anura | EN | Arboreal | 26.619944 | 37.80642 | 32.30738 | 42.33410 |
Boophis anjanaharibeensis | Anura | EN | Arboreal | 25.452459 | 37.64763 | 32.12779 | 42.10695 |
Boophis anjanaharibeensis | Anura | EN | Arboreal | 28.354195 | 38.04229 | 32.45175 | 42.56059 |
Boophis septentrionalis | Anura | LC | Stream-dwelling | 26.468223 | 37.27540 | 32.10439 | 42.36239 |
Boophis septentrionalis | Anura | LC | Stream-dwelling | 25.459427 | 37.13853 | 31.82382 | 42.03540 |
Boophis septentrionalis | Anura | LC | Stream-dwelling | 28.070801 | 37.49284 | 32.11924 | 42.43851 |
Boophis englaenderi | Anura | VU | Stream-dwelling | 26.528930 | 37.28305 | 32.69083 | 42.39153 |
Boophis englaenderi | Anura | VU | Stream-dwelling | 25.419726 | 37.13115 | 32.53044 | 42.24104 |
Boophis englaenderi | Anura | VU | Stream-dwelling | 28.243385 | 37.51784 | 32.87909 | 42.66026 |
Boophis ankaratra | Anura | LC | Stream-dwelling | 25.497870 | 37.10752 | 31.82963 | 41.79182 |
Boophis ankaratra | Anura | LC | Stream-dwelling | 24.577429 | 36.98367 | 31.68080 | 41.61120 |
Boophis ankaratra | Anura | LC | Stream-dwelling | 27.095682 | 37.32252 | 32.09145 | 42.13699 |
Boophis schuboeae | Anura | EN | Stream-dwelling | 25.602585 | 37.16029 | 32.57684 | 42.64765 |
Boophis schuboeae | Anura | EN | Stream-dwelling | 24.578700 | 37.01971 | 32.45557 | 42.50933 |
Boophis schuboeae | Anura | EN | Stream-dwelling | 27.455263 | 37.41465 | 32.79450 | 42.93299 |
Boophis andreonei | Anura | VU | Arboreal | 26.546214 | 37.65361 | 33.08352 | 42.72634 |
Boophis andreonei | Anura | VU | Arboreal | 25.367540 | 37.49556 | 32.99896 | 42.59175 |
Boophis andreonei | Anura | VU | Arboreal | 28.327551 | 37.89249 | 33.09221 | 42.76088 |
Boophis sibilans | Anura | LC | Stream-dwelling | 25.867244 | 37.14474 | 32.32355 | 41.97075 |
Boophis sibilans | Anura | LC | Stream-dwelling | 24.870294 | 37.01180 | 32.15622 | 41.84244 |
Boophis sibilans | Anura | LC | Stream-dwelling | 27.466336 | 37.35797 | 32.57506 | 42.37900 |
Boophis blommersae | Anura | VU | Arboreal | 26.391357 | 37.68413 | 32.66649 | 42.92664 |
Boophis blommersae | Anura | VU | Arboreal | 25.436319 | 37.55486 | 32.61911 | 42.89690 |
Boophis blommersae | Anura | VU | Arboreal | 28.033766 | 37.90644 | 32.92421 | 43.20085 |
Boophis andohahela | Anura | VU | Arboreal | 25.774919 | 37.57267 | 32.16849 | 42.26323 |
Boophis andohahela | Anura | VU | Arboreal | 24.871122 | 37.45508 | 31.97806 | 42.07179 |
Boophis andohahela | Anura | VU | Arboreal | 27.311404 | 37.77257 | 32.41799 | 42.50678 |
Boophis elenae | Anura | NT | Arboreal | 25.151522 | 37.51028 | 32.67133 | 42.41123 |
Boophis elenae | Anura | NT | Arboreal | 24.190649 | 37.38043 | 32.56994 | 42.23312 |
Boophis elenae | Anura | NT | Arboreal | 26.805723 | 37.73383 | 33.12614 | 42.87530 |
Boophis axelmeyeri | Anura | LC | Stream-dwelling | 26.474601 | 37.23470 | 32.13629 | 42.18549 |
Boophis axelmeyeri | Anura | LC | Stream-dwelling | 25.400486 | 37.08845 | 32.06590 | 42.11149 |
Boophis axelmeyeri | Anura | LC | Stream-dwelling | 28.135561 | 37.46085 | 32.14518 | 42.20186 |
Boophis burgeri | Anura | DD | Arboreal | 24.729470 | 37.44937 | 32.43800 | 43.00439 |
Boophis burgeri | Anura | DD | Arboreal | 23.657799 | 37.30421 | 32.32946 | 42.87567 |
Boophis burgeri | Anura | DD | Arboreal | 26.293435 | 37.66122 | 32.84529 | 43.36511 |
Boophis reticulatus | Anura | LC | Stream-dwelling | 25.851323 | 37.13679 | 32.04609 | 42.00495 |
Boophis reticulatus | Anura | LC | Stream-dwelling | 24.882914 | 37.00656 | 32.00627 | 41.98486 |
Boophis reticulatus | Anura | LC | Stream-dwelling | 27.402921 | 37.34546 | 32.31692 | 42.26414 |
Boophis rufioculis | Anura | NT | Stream-dwelling | 25.072747 | 36.98123 | 31.77387 | 42.21096 |
Boophis rufioculis | Anura | NT | Stream-dwelling | 24.148189 | 36.85702 | 31.66764 | 42.05803 |
Boophis rufioculis | Anura | NT | Stream-dwelling | 26.550602 | 37.17978 | 31.29853 | 41.75145 |
Boophis boehmei | Anura | EN | Stream-dwelling | 25.435229 | 37.08109 | 32.12298 | 41.90057 |
Boophis boehmei | Anura | EN | Stream-dwelling | 24.536662 | 36.96098 | 31.99661 | 41.73111 |
Boophis boehmei | Anura | EN | Stream-dwelling | 26.941863 | 37.28247 | 32.32688 | 42.22679 |
Boophis quasiboehmei | Anura | NT | Stream-dwelling | 25.774919 | 37.11444 | 32.14745 | 41.78054 |
Boophis quasiboehmei | Anura | NT | Stream-dwelling | 24.871122 | 36.99254 | 32.03810 | 41.65398 |
Boophis quasiboehmei | Anura | NT | Stream-dwelling | 27.311404 | 37.32166 | 32.33334 | 42.03685 |
Boophis popi | Anura | VU | Stream-dwelling | 25.566154 | 37.08416 | 31.73561 | 41.52627 |
Boophis popi | Anura | VU | Stream-dwelling | 24.592758 | 36.95199 | 32.25617 | 41.99635 |
Boophis popi | Anura | VU | Stream-dwelling | 27.269300 | 37.31541 | 31.94526 | 41.72268 |
Boophis fayi | Anura | VU | Arboreal | 26.497739 | 37.69657 | 33.01433 | 43.19556 |
Boophis fayi | Anura | VU | Arboreal | 25.382162 | 37.54406 | 32.87230 | 42.99709 |
Boophis fayi | Anura | VU | Arboreal | 28.185205 | 37.92727 | 33.26649 | 43.43529 |
Boophis brachychir | Anura | VU | Stream-dwelling | 26.513683 | 37.24105 | 32.57190 | 42.57119 |
Boophis brachychir | Anura | VU | Stream-dwelling | 25.554706 | 37.11432 | 32.58287 | 42.60829 |
Boophis brachychir | Anura | VU | Stream-dwelling | 28.075686 | 37.44746 | 32.79576 | 42.83481 |
Boophis entingae | Anura | LC | Stream-dwelling | 26.130041 | 37.23996 | 31.83970 | 42.10123 |
Boophis entingae | Anura | LC | Stream-dwelling | 25.162696 | 37.11078 | 32.04639 | 42.25499 |
Boophis entingae | Anura | LC | Stream-dwelling | 27.702238 | 37.44993 | 32.23201 | 42.48648 |
Boophis goudotii | Anura | LC | Arboreal | 25.817713 | 37.60432 | 32.14688 | 42.50954 |
Boophis goudotii | Anura | LC | Arboreal | 24.863335 | 37.47541 | 32.06700 | 42.38803 |
Boophis goudotii | Anura | LC | Arboreal | 27.380452 | 37.81539 | 32.28194 | 42.70851 |
Boophis obscurus | Anura | NT | Arboreal | 25.830781 | 37.53760 | 32.06757 | 42.31941 |
Boophis obscurus | Anura | NT | Arboreal | 24.867818 | 37.40956 | 31.94122 | 42.03506 |
Boophis obscurus | Anura | NT | Arboreal | 27.526775 | 37.76313 | 32.72079 | 43.13390 |
Boophis luciae | Anura | LC | Stream-dwelling | 25.192832 | 37.07748 | 32.36197 | 42.48220 |
Boophis luciae | Anura | LC | Stream-dwelling | 24.267116 | 36.95390 | 32.02811 | 42.07264 |
Boophis luciae | Anura | LC | Stream-dwelling | 26.725205 | 37.28205 | 32.53980 | 42.67771 |
Boophis luteus | Anura | LC | Stream-dwelling | 25.650597 | 37.03454 | 32.36414 | 42.18654 |
Boophis luteus | Anura | LC | Stream-dwelling | 24.714066 | 36.90927 | 32.17646 | 42.00706 |
Boophis luteus | Anura | LC | Stream-dwelling | 27.179914 | 37.23909 | 32.54273 | 42.47904 |
Boophis madagascariensis | Anura | LC | Arboreal | 25.784129 | 37.55096 | 32.79190 | 42.78354 |
Boophis madagascariensis | Anura | LC | Arboreal | 24.832566 | 37.42322 | 32.87421 | 42.77142 |
Boophis madagascariensis | Anura | LC | Arboreal | 27.331390 | 37.75868 | 33.02806 | 43.01659 |
Boophis roseipalmatus | Anura | LC | Stream-dwelling | 26.514231 | 37.23135 | 31.98143 | 41.95188 |
Boophis roseipalmatus | Anura | LC | Stream-dwelling | 25.570045 | 37.10174 | 31.78217 | 41.74934 |
Boophis roseipalmatus | Anura | LC | Stream-dwelling | 28.013291 | 37.43712 | 31.89053 | 41.79234 |
Boophis liami | Anura | CR | Stream-dwelling | 24.729470 | 37.07403 | 31.91840 | 41.65800 |
Boophis liami | Anura | CR | Stream-dwelling | 23.657799 | 36.93156 | 31.84713 | 41.52525 |
Boophis liami | Anura | CR | Stream-dwelling | 26.293435 | 37.28196 | 32.21942 | 42.06156 |
Boophis sambirano | Anura | EN | Stream-dwelling | 26.375246 | 37.25490 | 32.80385 | 42.32409 |
Boophis sambirano | Anura | EN | Stream-dwelling | 25.218471 | 37.09870 | 32.74380 | 42.19046 |
Boophis sambirano | Anura | EN | Stream-dwelling | 28.241907 | 37.50697 | 33.00868 | 42.54897 |
Boophis mandraka | Anura | DD | Stream-dwelling | 25.675466 | 37.18665 | 32.35612 | 42.17199 |
Boophis mandraka | Anura | DD | Stream-dwelling | 24.907261 | 37.08516 | 31.87468 | 41.65914 |
Boophis mandraka | Anura | DD | Stream-dwelling | 27.038275 | 37.36671 | 32.44108 | 42.27683 |
Boophis andrangoloaka | Anura | EN | Arboreal | 25.675466 | 37.51886 | 32.02718 | 41.86567 |
Boophis andrangoloaka | Anura | EN | Arboreal | 24.907261 | 37.41562 | 31.92868 | 41.75623 |
Boophis andrangoloaka | Anura | EN | Arboreal | 27.038275 | 37.70200 | 32.18781 | 42.08330 |
Boophis rhodoscelis | Anura | EN | Arboreal | 25.277369 | 37.45230 | 32.78361 | 42.36753 |
Boophis rhodoscelis | Anura | EN | Arboreal | 24.368665 | 37.33140 | 32.57057 | 42.17828 |
Boophis rhodoscelis | Anura | EN | Arboreal | 26.813621 | 37.65670 | 33.01099 | 42.58232 |
Boophis laurenti | Anura | EN | Stream-dwelling | 26.085788 | 37.24624 | 32.40793 | 42.16077 |
Boophis laurenti | Anura | EN | Stream-dwelling | 25.201041 | 37.12747 | 32.16575 | 41.89051 |
Boophis laurenti | Anura | EN | Stream-dwelling | 27.693333 | 37.46206 | 32.64138 | 42.43136 |
Boophis lilianae | Anura | DD | Stream-dwelling | 25.602585 | 37.07790 | 32.20187 | 41.76083 |
Boophis lilianae | Anura | DD | Stream-dwelling | 24.578700 | 36.94212 | 32.02747 | 41.60217 |
Boophis lilianae | Anura | DD | Stream-dwelling | 27.455263 | 37.32358 | 32.30624 | 41.97584 |
Boophis arcanus | Anura | EN | Arboreal | 25.225466 | 37.62410 | 32.61524 | 42.78213 |
Boophis arcanus | Anura | EN | Arboreal | 24.377363 | 37.50879 | 32.45901 | 42.67755 |
Boophis arcanus | Anura | EN | Arboreal | 26.827794 | 37.84194 | 32.75291 | 43.07769 |
Boophis feonnyala | Anura | EN | Arboreal | 24.767754 | 37.48583 | 32.50703 | 42.60073 |
Boophis feonnyala | Anura | EN | Arboreal | 23.933069 | 37.37441 | 32.33011 | 42.43665 |
Boophis feonnyala | Anura | EN | Arboreal | 26.123086 | 37.66674 | 32.67996 | 42.71574 |
Boophis haematopus | Anura | EN | Arboreal | 25.470711 | 37.65068 | 32.72194 | 42.56048 |
Boophis haematopus | Anura | EN | Arboreal | 24.638202 | 37.53913 | 32.52251 | 42.34891 |
Boophis haematopus | Anura | EN | Arboreal | 26.815810 | 37.83090 | 32.84059 | 42.71151 |
Boophis pyrrhus | Anura | LC | Stream-dwelling | 25.423294 | 37.14813 | 31.95346 | 42.25013 |
Boophis pyrrhus | Anura | LC | Stream-dwelling | 24.462497 | 37.02311 | 31.79944 | 42.09010 |
Boophis pyrrhus | Anura | LC | Stream-dwelling | 26.954930 | 37.34742 | 31.76438 | 42.14725 |
Boophis miniatus | Anura | VU | Stream-dwelling | 25.774919 | 37.17185 | 31.75498 | 41.76051 |
Boophis miniatus | Anura | VU | Stream-dwelling | 24.871122 | 37.05188 | 31.67067 | 41.68275 |
Boophis miniatus | Anura | VU | Stream-dwelling | 27.311404 | 37.37582 | 31.88516 | 41.94937 |
Boophis baetkei | Anura | CR | Arboreal | 26.423580 | 37.70112 | 32.84776 | 42.64785 |
Boophis baetkei | Anura | CR | Arboreal | 25.872015 | 37.62736 | 32.79400 | 42.59733 |
Boophis baetkei | Anura | CR | Arboreal | 27.617485 | 37.86079 | 32.96414 | 42.80979 |
Boophis ulftunni | Anura | VU | Stream-dwelling | 26.479599 | 37.29638 | 32.43488 | 42.29598 |
Boophis ulftunni | Anura | VU | Stream-dwelling | 25.415257 | 37.15578 | 32.23908 | 42.15600 |
Boophis ulftunni | Anura | VU | Stream-dwelling | 28.128079 | 37.51413 | 32.51640 | 42.49423 |
Boophis majori | Anura | VU | Stream-dwelling | 25.798160 | 37.18592 | 32.59796 | 41.96368 |
Boophis majori | Anura | VU | Stream-dwelling | 24.840228 | 37.05599 | 32.35249 | 41.73042 |
Boophis majori | Anura | VU | Stream-dwelling | 27.496485 | 37.41628 | 32.85188 | 42.17598 |
Boophis narinsi | Anura | EN | Stream-dwelling | 25.602585 | 37.15722 | 32.28852 | 41.77908 |
Boophis narinsi | Anura | EN | Stream-dwelling | 24.578700 | 37.01882 | 32.15964 | 41.65154 |
Boophis narinsi | Anura | EN | Stream-dwelling | 27.455263 | 37.40765 | 32.62055 | 42.13987 |
Boophis picturatus | Anura | LC | Stream-dwelling | 25.381360 | 37.13793 | 32.80545 | 42.35570 |
Boophis picturatus | Anura | LC | Stream-dwelling | 24.458523 | 37.01227 | 32.37150 | 41.92179 |
Boophis picturatus | Anura | LC | Stream-dwelling | 26.934492 | 37.34940 | 32.81214 | 42.33681 |
Boophis microtympanum | Anura | LC | Stream-dwelling | 25.649628 | 37.09919 | 31.96233 | 41.63962 |
Boophis microtympanum | Anura | LC | Stream-dwelling | 24.725974 | 36.97454 | 31.94469 | 41.55105 |
Boophis microtympanum | Anura | LC | Stream-dwelling | 27.274397 | 37.31845 | 32.16122 | 41.84687 |
Boophis williamsi | Anura | CR | Stream-dwelling | 24.836345 | 36.99984 | 32.37168 | 41.71653 |
Boophis williamsi | Anura | CR | Stream-dwelling | 23.792153 | 36.85964 | 32.39489 | 41.64490 |
Boophis williamsi | Anura | CR | Stream-dwelling | 26.512837 | 37.22493 | 32.39234 | 41.84147 |
Boophis marojezensis | Anura | LC | Stream-dwelling | 25.769134 | 37.20496 | 31.77506 | 41.51928 |
Boophis marojezensis | Anura | LC | Stream-dwelling | 24.738928 | 37.06744 | 31.67712 | 41.39488 |
Boophis marojezensis | Anura | LC | Stream-dwelling | 27.392805 | 37.42171 | 31.85125 | 41.67859 |
Boophis vittatus | Anura | VU | Stream-dwelling | 26.553610 | 37.23208 | 32.25186 | 42.26556 |
Boophis vittatus | Anura | VU | Stream-dwelling | 25.434453 | 37.08536 | 32.10718 | 42.07975 |
Boophis vittatus | Anura | VU | Stream-dwelling | 28.279144 | 37.45831 | 32.43874 | 42.53923 |
Boophis bottae | Anura | LC | Stream-dwelling | 25.378486 | 37.15424 | 32.06673 | 42.12056 |
Boophis bottae | Anura | LC | Stream-dwelling | 24.441033 | 37.02976 | 31.81577 | 41.89411 |
Boophis bottae | Anura | LC | Stream-dwelling | 26.892581 | 37.35529 | 32.30233 | 42.34128 |
Boophis erythrodactylus | Anura | LC | Arboreal | 25.309137 | 37.56597 | 32.71440 | 42.13060 |
Boophis erythrodactylus | Anura | LC | Arboreal | 24.373551 | 37.43875 | 32.59027 | 42.00813 |
Boophis erythrodactylus | Anura | LC | Arboreal | 26.906299 | 37.78316 | 32.95639 | 42.37178 |
Boophis rappiodes | Anura | LC | Stream-dwelling | 25.415210 | 37.07592 | 32.57796 | 42.05280 |
Boophis rappiodes | Anura | LC | Stream-dwelling | 24.505779 | 36.95421 | 32.23847 | 41.71967 |
Boophis rappiodes | Anura | LC | Stream-dwelling | 26.933828 | 37.27917 | 32.74143 | 42.21185 |
Boophis tasymena | Anura | LC | Stream-dwelling | 25.553660 | 37.08708 | 32.33018 | 42.08152 |
Boophis tasymena | Anura | LC | Stream-dwelling | 24.623028 | 36.96356 | 32.23504 | 42.04331 |
Boophis tasymena | Anura | LC | Stream-dwelling | 27.068176 | 37.28810 | 32.52572 | 42.27718 |
Boophis viridis | Anura | LC | Stream-dwelling | 25.746618 | 37.09073 | 32.58361 | 41.82450 |
Boophis viridis | Anura | LC | Stream-dwelling | 24.784368 | 36.96288 | 32.24296 | 41.47712 |
Boophis viridis | Anura | LC | Stream-dwelling | 27.307988 | 37.29817 | 32.81659 | 42.05089 |
Boophis periegetes | Anura | NT | Stream-dwelling | 25.774919 | 37.15198 | 31.64908 | 41.70410 |
Boophis periegetes | Anura | NT | Stream-dwelling | 24.871122 | 37.03001 | 31.53676 | 41.60688 |
Boophis periegetes | Anura | NT | Stream-dwelling | 27.311404 | 37.35932 | 31.85698 | 41.94148 |
Boophis solomaso | Anura | EN | Arboreal | 25.303936 | 37.55287 | 32.97880 | 43.41253 |
Boophis solomaso | Anura | EN | Arboreal | 24.287723 | 37.41438 | 32.69641 | 43.06802 |
Boophis solomaso | Anura | EN | Arboreal | 26.785470 | 37.75478 | 32.87330 | 43.42343 |
Boophis haingana | Anura | EN | Stream-dwelling | 25.690591 | 37.19315 | 32.10333 | 41.70748 |
Boophis haingana | Anura | EN | Stream-dwelling | 24.820352 | 37.07646 | 32.01747 | 41.55910 |
Boophis haingana | Anura | EN | Stream-dwelling | 27.041343 | 37.37426 | 32.36137 | 42.06120 |
Boophis miadana | Anura | EN | Stream-dwelling | 25.690591 | 37.07528 | 32.34588 | 41.83808 |
Boophis miadana | Anura | EN | Stream-dwelling | 24.820352 | 36.96158 | 32.21468 | 41.77389 |
Boophis miadana | Anura | EN | Stream-dwelling | 27.041343 | 37.25176 | 32.48447 | 42.00211 |
Boophis piperatus | Anura | EN | Arboreal | 25.602585 | 37.57935 | 32.86865 | 42.53723 |
Boophis piperatus | Anura | EN | Arboreal | 24.578700 | 37.44331 | 32.84509 | 42.48043 |
Boophis piperatus | Anura | EN | Arboreal | 27.455263 | 37.82552 | 32.95520 | 42.68534 |
Boophis sandrae | Anura | EN | Stream-dwelling | 25.602585 | 37.16952 | 32.06389 | 41.92785 |
Boophis sandrae | Anura | EN | Stream-dwelling | 24.578700 | 37.03587 | 31.93334 | 41.77765 |
Boophis sandrae | Anura | EN | Stream-dwelling | 27.455263 | 37.41135 | 32.21538 | 42.09199 |
Boophis spinophis | Anura | VU | Arboreal | 25.639025 | 37.58516 | 32.47825 | 42.31198 |
Boophis spinophis | Anura | VU | Arboreal | 24.742981 | 37.46666 | 32.62605 | 42.41982 |
Boophis spinophis | Anura | VU | Arboreal | 27.246769 | 37.79780 | 32.37476 | 42.26350 |
Boophis tsilomaro | Anura | CR | Stream-dwelling | 26.714144 | 37.34694 | 32.94492 | 42.95019 |
Boophis tsilomaro | Anura | CR | Stream-dwelling | 26.022414 | 37.25342 | 32.80466 | 42.81452 |
Boophis tsilomaro | Anura | CR | Stream-dwelling | 27.874484 | 37.50383 | 33.02694 | 43.10563 |
Boophis opisthodon | Anura | LC | Arboreal | 25.647294 | 37.56131 | 32.97425 | 42.39467 |
Boophis opisthodon | Anura | LC | Arboreal | 24.769106 | 37.44427 | 32.83730 | 42.23854 |
Boophis opisthodon | Anura | LC | Arboreal | 27.109980 | 37.75625 | 33.05639 | 42.56200 |
Boophis calcaratus | Anura | LC | Stream-dwelling | 25.398262 | 37.06290 | 31.94972 | 41.79363 |
Boophis calcaratus | Anura | LC | Stream-dwelling | 24.495032 | 36.94177 | 31.79335 | 41.60973 |
Boophis calcaratus | Anura | LC | Stream-dwelling | 26.886084 | 37.26243 | 32.11500 | 41.99361 |
Boophis guibei | Anura | LC | Arboreal | 25.531364 | 37.55082 | 32.77024 | 42.65432 |
Boophis guibei | Anura | LC | Arboreal | 24.529072 | 37.41704 | 32.40281 | 42.25699 |
Boophis guibei | Anura | LC | Arboreal | 27.157874 | 37.76792 | 32.94088 | 42.87181 |
Boophis lichenoides | Anura | LC | Arboreal | 25.746394 | 37.59447 | 32.53490 | 42.55691 |
Boophis lichenoides | Anura | LC | Arboreal | 24.788256 | 37.46495 | 32.54739 | 42.54263 |
Boophis lichenoides | Anura | LC | Arboreal | 27.279910 | 37.80175 | 32.71949 | 42.72771 |
Boophis doulioti | Anura | LC | Arboreal | 26.270344 | 37.64306 | 32.18551 | 42.05101 |
Boophis doulioti | Anura | LC | Arboreal | 25.433396 | 37.53102 | 32.08716 | 41.93088 |
Boophis doulioti | Anura | LC | Arboreal | 27.787153 | 37.84612 | 32.33850 | 42.29549 |
Boophis tephraeomystax | Anura | LC | Arboreal | 25.990444 | 37.54994 | 32.49033 | 42.47854 |
Boophis tephraeomystax | Anura | LC | Arboreal | 25.048745 | 37.42637 | 32.44325 | 42.42346 |
Boophis tephraeomystax | Anura | LC | Arboreal | 27.521670 | 37.75087 | 32.75475 | 42.73048 |
Boophis xerophilus | Anura | LC | Arboreal | 26.149051 | 37.64399 | 32.58838 | 42.57694 |
Boophis xerophilus | Anura | LC | Arboreal | 25.269872 | 37.52646 | 32.54280 | 42.53193 |
Boophis xerophilus | Anura | LC | Arboreal | 27.693770 | 37.85048 | 32.73341 | 42.76687 |
Boophis idae | Anura | LC | Arboreal | 25.361452 | 37.53684 | 32.71662 | 42.50443 |
Boophis idae | Anura | LC | Arboreal | 24.472376 | 37.41576 | 32.47072 | 42.24222 |
Boophis idae | Anura | LC | Arboreal | 26.881960 | 37.74392 | 32.76809 | 42.57621 |
Boophis pauliani | Anura | LC | Arboreal | 25.395618 | 37.60060 | 32.42007 | 42.44471 |
Boophis pauliani | Anura | LC | Arboreal | 24.486340 | 37.47697 | 32.31143 | 42.31253 |
Boophis pauliani | Anura | LC | Arboreal | 26.914390 | 37.80711 | 32.72040 | 42.80835 |
Blommersia angolafa | Anura | LC | Arboreal | 26.268414 | 37.68389 | 32.67459 | 42.81592 |
Blommersia angolafa | Anura | LC | Arboreal | 25.249860 | 37.54677 | 32.61898 | 42.70963 |
Blommersia angolafa | Anura | LC | Arboreal | 27.841554 | 37.89568 | 32.82303 | 43.09442 |
Blommersia grandisonae | Anura | LC | Arboreal | 25.769712 | 37.69418 | 33.04804 | 43.17538 |
Blommersia grandisonae | Anura | LC | Arboreal | 24.815441 | 37.56501 | 32.65523 | 42.69924 |
Blommersia grandisonae | Anura | LC | Arboreal | 27.304308 | 37.90191 | 33.20209 | 43.36638 |
Blommersia kely | Anura | LC | Ground-dwelling | 25.310096 | 37.82161 | 32.75174 | 43.22189 |
Blommersia kely | Anura | LC | Ground-dwelling | 24.359848 | 37.69054 | 32.64939 | 43.07781 |
Blommersia kely | Anura | LC | Ground-dwelling | 26.898375 | 38.04069 | 32.60822 | 43.09720 |
Blommersia sarotra | Anura | LC | Ground-dwelling | 24.997491 | 37.71106 | 32.30406 | 42.47468 |
Blommersia sarotra | Anura | LC | Ground-dwelling | 24.092207 | 37.58965 | 32.26184 | 42.36165 |
Blommersia sarotra | Anura | LC | Ground-dwelling | 26.488832 | 37.91105 | 32.31525 | 42.53032 |
Blommersia blommersae | Anura | LC | Arboreal | 25.026778 | 37.47795 | 32.18899 | 42.39265 |
Blommersia blommersae | Anura | LC | Arboreal | 24.091698 | 37.35104 | 32.29779 | 42.54976 |
Blommersia blommersae | Anura | LC | Arboreal | 26.580229 | 37.68879 | 32.42701 | 42.63330 |
Blommersia dejongi | Anura | LC | Ground-dwelling | 26.307383 | 37.79440 | 32.71902 | 42.93081 |
Blommersia dejongi | Anura | LC | Ground-dwelling | 25.276805 | 37.65641 | 32.54354 | 42.73412 |
Blommersia dejongi | Anura | LC | Ground-dwelling | 27.869396 | 38.00353 | 32.81284 | 43.13988 |
Blommersia galani | Anura | LC | Ground-dwelling | 26.277662 | 37.78581 | 31.99744 | 42.12815 |
Blommersia galani | Anura | LC | Ground-dwelling | 25.175391 | 37.63677 | 31.87278 | 41.98503 |
Blommersia galani | Anura | LC | Ground-dwelling | 27.933403 | 38.00970 | 32.13286 | 42.33551 |
Blommersia domerguei | Anura | LC | Ground-dwelling | 25.467322 | 37.70071 | 31.87830 | 42.12651 |
Blommersia domerguei | Anura | LC | Ground-dwelling | 24.555209 | 37.57684 | 31.73983 | 42.01190 |
Blommersia domerguei | Anura | LC | Ground-dwelling | 27.045271 | 37.91499 | 32.12403 | 42.37040 |
Blommersia variabilis | Anura | LC | Arboreal | 26.937894 | 37.75335 | 32.90493 | 43.14433 |
Blommersia variabilis | Anura | LC | Arboreal | 25.795704 | 37.59801 | 32.61140 | 42.82659 |
Blommersia variabilis | Anura | LC | Arboreal | 28.688809 | 37.99149 | 33.40655 | 43.75916 |
Blommersia wittei | Anura | LC | Arboreal | 26.605905 | 37.54357 | 32.37502 | 42.81661 |
Blommersia wittei | Anura | LC | Arboreal | 25.751405 | 37.43134 | 32.32563 | 42.71394 |
Blommersia wittei | Anura | LC | Arboreal | 28.102519 | 37.74013 | 32.48796 | 43.03690 |
Guibemantis albolineatus | Anura | LC | Arboreal | 25.549068 | 37.51325 | 32.45274 | 42.18680 |
Guibemantis albolineatus | Anura | LC | Arboreal | 24.634984 | 37.39227 | 32.16510 | 41.89736 |
Guibemantis albolineatus | Anura | LC | Arboreal | 27.011937 | 37.70687 | 32.79992 | 42.53996 |
Guibemantis bicalcaratus | Anura | LC | Arboreal | 25.787076 | 37.56890 | 32.35375 | 41.95191 |
Guibemantis bicalcaratus | Anura | LC | Arboreal | 24.852353 | 37.44332 | 32.66294 | 42.19489 |
Guibemantis bicalcaratus | Anura | LC | Arboreal | 27.308532 | 37.77330 | 33.39680 | 43.00865 |
Guibemantis methueni | Anura | LC | Arboreal | 25.561986 | 37.54566 | 32.60348 | 42.40316 |
Guibemantis methueni | Anura | LC | Arboreal | 24.616713 | 37.41854 | 32.55287 | 42.26516 |
Guibemantis methueni | Anura | LC | Arboreal | 27.056534 | 37.74664 | 33.00990 | 42.85907 |
Guibemantis annulatus | Anura | EN | Arboreal | 25.470711 | 37.52056 | 32.86732 | 42.39388 |
Guibemantis annulatus | Anura | EN | Arboreal | 24.638202 | 37.41006 | 32.85034 | 42.36799 |
Guibemantis annulatus | Anura | EN | Arboreal | 26.815810 | 37.69910 | 33.00992 | 42.60427 |
Guibemantis flavobrunneus | Anura | LC | Arboreal | 25.771201 | 37.52925 | 32.63564 | 42.44730 |
Guibemantis flavobrunneus | Anura | LC | Arboreal | 24.800593 | 37.39810 | 32.41019 | 42.18623 |
Guibemantis flavobrunneus | Anura | LC | Arboreal | 27.342755 | 37.74159 | 32.83148 | 42.69925 |
Guibemantis pulcher | Anura | LC | Arboreal | 25.784281 | 37.50956 | 32.76127 | 42.59453 |
Guibemantis pulcher | Anura | LC | Arboreal | 24.823025 | 37.38169 | 32.59330 | 42.44178 |
Guibemantis pulcher | Anura | LC | Arboreal | 27.328540 | 37.71498 | 32.92641 | 42.76452 |
Guibemantis tasifotsy | Anura | VU | Arboreal | 25.979190 | 37.60393 | 32.69919 | 42.38086 |
Guibemantis tasifotsy | Anura | VU | Arboreal | 25.066433 | 37.48030 | 32.61154 | 42.29354 |
Guibemantis tasifotsy | Anura | VU | Arboreal | 27.619601 | 37.82614 | 32.85710 | 42.69542 |
Guibemantis punctatus | Anura | CR | Arboreal | 25.675466 | 37.62847 | 32.84415 | 42.43209 |
Guibemantis punctatus | Anura | CR | Arboreal | 24.907261 | 37.52347 | 32.73602 | 42.32385 |
Guibemantis punctatus | Anura | CR | Arboreal | 27.038275 | 37.81476 | 33.29103 | 42.86842 |
Guibemantis wattersoni | Anura | EN | Arboreal | 25.470711 | 37.55743 | 32.72159 | 42.68610 |
Guibemantis wattersoni | Anura | EN | Arboreal | 24.638202 | 37.44472 | 32.53166 | 42.49556 |
Guibemantis wattersoni | Anura | EN | Arboreal | 26.815810 | 37.73954 | 32.72482 | 42.74961 |
Guibemantis liber | Anura | LC | Arboreal | 25.892538 | 37.55015 | 32.76908 | 42.65683 |
Guibemantis liber | Anura | LC | Arboreal | 24.946307 | 37.42495 | 32.46064 | 42.32459 |
Guibemantis liber | Anura | LC | Arboreal | 27.444567 | 37.75551 | 32.95525 | 42.91000 |
Guibemantis timidus | Anura | LC | Arboreal | 25.538229 | 37.47934 | 32.65630 | 42.26325 |
Guibemantis timidus | Anura | LC | Arboreal | 24.613275 | 37.35764 | 32.55618 | 42.13475 |
Guibemantis timidus | Anura | LC | Arboreal | 27.049968 | 37.67824 | 32.67388 | 42.35329 |
Guibemantis depressiceps | Anura | LC | Arboreal | 25.746765 | 37.50460 | 32.42598 | 42.37501 |
Guibemantis depressiceps | Anura | LC | Arboreal | 24.801870 | 37.37896 | 32.31514 | 42.20463 |
Guibemantis depressiceps | Anura | LC | Arboreal | 27.292074 | 37.71009 | 32.84840 | 42.89722 |
Guibemantis kathrinae | Anura | VU | Arboreal | 25.515732 | 37.60776 | 32.58937 | 42.77860 |
Guibemantis kathrinae | Anura | VU | Arboreal | 24.383507 | 37.45269 | 32.47695 | 42.60285 |
Guibemantis kathrinae | Anura | VU | Arboreal | 27.156508 | 37.83249 | 32.50626 | 42.80081 |
Guibemantis tornieri | Anura | LC | Arboreal | 25.471019 | 37.55330 | 32.56151 | 42.67812 |
Guibemantis tornieri | Anura | LC | Arboreal | 24.552532 | 37.42919 | 32.61524 | 42.74077 |
Guibemantis tornieri | Anura | LC | Arboreal | 26.983301 | 37.75765 | 32.87045 | 42.96227 |
Mantella crocea | Anura | VU | Semi-aquatic | 25.623238 | 37.97984 | 33.08573 | 43.01629 |
Mantella crocea | Anura | VU | Semi-aquatic | 24.651281 | 37.85032 | 32.88509 | 42.80084 |
Mantella crocea | Anura | VU | Semi-aquatic | 27.120065 | 38.17932 | 33.49931 | 43.49313 |
Mantella milotympanum | Anura | CR | Ground-dwelling | 24.729470 | 37.60356 | 33.11680 | 43.09371 |
Mantella milotympanum | Anura | CR | Ground-dwelling | 23.657799 | 37.46012 | 32.98079 | 42.90269 |
Mantella milotympanum | Anura | CR | Ground-dwelling | 26.293435 | 37.81288 | 33.03986 | 43.06299 |
Mantella pulchra | Anura | NT | Ground-dwelling | 25.820947 | 37.73516 | 32.63003 | 42.66343 |
Mantella pulchra | Anura | NT | Ground-dwelling | 24.758126 | 37.59371 | 32.58591 | 42.58238 |
Mantella pulchra | Anura | NT | Ground-dwelling | 27.415655 | 37.94739 | 32.94784 | 42.99533 |
Mantella madagascariensis | Anura | VU | Stream-dwelling | 25.151522 | 37.03477 | 32.04510 | 41.89655 |
Mantella madagascariensis | Anura | VU | Stream-dwelling | 24.190649 | 36.90523 | 32.65876 | 42.53060 |
Mantella madagascariensis | Anura | VU | Stream-dwelling | 26.805723 | 37.25779 | 32.21079 | 42.10747 |
Mantella betsileo | Anura | LC | Ground-dwelling | 26.321041 | 37.73236 | 32.33030 | 42.33491 |
Mantella betsileo | Anura | LC | Ground-dwelling | 25.487274 | 37.62102 | 33.04792 | 43.01575 |
Mantella betsileo | Anura | LC | Ground-dwelling | 27.834066 | 37.93440 | 32.68358 | 42.73339 |
Mantella ebenaui | Anura | LC | Ground-dwelling | 26.636476 | 37.79993 | 32.42568 | 42.42658 |
Mantella ebenaui | Anura | LC | Ground-dwelling | 25.670327 | 37.67189 | 32.21089 | 42.25925 |
Mantella ebenaui | Anura | LC | Ground-dwelling | 28.189938 | 38.00580 | 32.51599 | 42.62037 |
Mantella viridis | Anura | EN | Stream-dwelling | 26.423580 | 37.21227 | 32.33554 | 42.34356 |
Mantella viridis | Anura | EN | Stream-dwelling | 25.872015 | 37.13773 | 32.27909 | 42.27758 |
Mantella viridis | Anura | EN | Stream-dwelling | 27.617485 | 37.37362 | 32.17045 | 42.20088 |
Mantella expectata | Anura | EN | Stream-dwelling | 26.078978 | 37.15497 | 32.19544 | 42.13383 |
Mantella expectata | Anura | EN | Stream-dwelling | 25.114010 | 37.02508 | 31.86164 | 41.81564 |
Mantella expectata | Anura | EN | Stream-dwelling | 27.601032 | 37.35984 | 32.46821 | 42.44656 |
Mantella laevigata | Anura | LC | Ground-dwelling | 26.190707 | 37.71308 | 33.05470 | 42.75131 |
Mantella laevigata | Anura | LC | Ground-dwelling | 25.140152 | 37.57256 | 32.86510 | 42.50307 |
Mantella laevigata | Anura | LC | Ground-dwelling | 27.785131 | 37.92635 | 33.56447 | 43.32202 |
Mantella manery | Anura | VU | Ground-dwelling | 26.918314 | 37.82693 | 32.50547 | 42.59953 |
Mantella manery | Anura | VU | Ground-dwelling | 25.746346 | 37.67041 | 32.35941 | 42.36427 |
Mantella manery | Anura | VU | Ground-dwelling | 28.625131 | 38.05488 | 32.57843 | 42.77039 |
Mantella baroni | Anura | LC | Ground-dwelling | 25.300021 | 37.73376 | 32.88695 | 42.28532 |
Mantella baroni | Anura | LC | Ground-dwelling | 24.372862 | 37.60768 | 32.77462 | 42.16733 |
Mantella baroni | Anura | LC | Ground-dwelling | 26.887229 | 37.94959 | 33.16151 | 42.58217 |
Mantella haraldmeieri | Anura | EN | Stream-dwelling | 25.770504 | 37.15881 | 31.86987 | 41.67576 |
Mantella haraldmeieri | Anura | EN | Stream-dwelling | 24.923021 | 37.04442 | 31.78671 | 41.58972 |
Mantella haraldmeieri | Anura | EN | Stream-dwelling | 27.165830 | 37.34715 | 32.00678 | 41.81742 |
Mantella nigricans | Anura | LC | Stream-dwelling | 26.391343 | 37.20625 | 32.48914 | 42.20003 |
Mantella nigricans | Anura | LC | Stream-dwelling | 25.324579 | 37.06400 | 32.21469 | 41.93719 |
Mantella nigricans | Anura | LC | Stream-dwelling | 28.032039 | 37.42503 | 32.54301 | 42.23512 |
Mantella cowanii | Anura | EN | Stream-dwelling | 25.304756 | 37.11969 | 32.74949 | 42.51528 |
Mantella cowanii | Anura | EN | Stream-dwelling | 24.297784 | 36.98466 | 32.58802 | 42.33257 |
Mantella cowanii | Anura | EN | Stream-dwelling | 26.985265 | 37.34504 | 32.88303 | 42.73062 |
Mantella bernhardi | Anura | VU | Ground-dwelling | 25.787368 | 37.73603 | 32.90508 | 42.59703 |
Mantella bernhardi | Anura | VU | Ground-dwelling | 24.943500 | 37.62321 | 32.83876 | 42.53410 |
Mantella bernhardi | Anura | VU | Ground-dwelling | 27.336983 | 37.94319 | 32.98207 | 42.76068 |
Wakea madinika | Anura | DD | Ground-dwelling | 27.320578 | 37.92075 | 32.76386 | 42.92622 |
Wakea madinika | Anura | DD | Ground-dwelling | 26.205818 | 37.77004 | 32.65015 | 42.76074 |
Wakea madinika | Anura | DD | Ground-dwelling | 29.049002 | 38.15443 | 32.93463 | 43.23708 |
Boehmantis microtympanum | Anura | VU | Stream-dwelling | 25.578699 | 37.07394 | 31.79077 | 41.82505 |
Boehmantis microtympanum | Anura | VU | Stream-dwelling | 24.709513 | 36.95531 | 31.99438 | 42.01816 |
Boehmantis microtympanum | Anura | VU | Stream-dwelling | 26.984864 | 37.26586 | 31.92753 | 41.99236 |
Gephyromantis ambohitra | Anura | VU | Stream-dwelling | 26.576611 | 37.15897 | 32.13102 | 42.40159 |
Gephyromantis ambohitra | Anura | VU | Stream-dwelling | 25.558240 | 37.02066 | 31.95443 | 42.24188 |
Gephyromantis ambohitra | Anura | VU | Stream-dwelling | 28.227027 | 37.38312 | 32.44387 | 42.77476 |
Gephyromantis asper | Anura | LC | Ground-dwelling | 25.536614 | 37.67885 | 32.21081 | 42.40901 |
Gephyromantis asper | Anura | LC | Ground-dwelling | 24.560241 | 37.54698 | 32.11157 | 42.27447 |
Gephyromantis asper | Anura | LC | Ground-dwelling | 27.091599 | 37.88885 | 32.36886 | 42.64802 |
Gephyromantis tahotra | Anura | VU | Stream-dwelling | 26.546214 | 37.29670 | 31.57114 | 41.86618 |
Gephyromantis tahotra | Anura | VU | Stream-dwelling | 25.367540 | 37.13653 | 31.40327 | 41.68078 |
Gephyromantis tahotra | Anura | VU | Stream-dwelling | 28.327551 | 37.53876 | 31.72946 | 42.18949 |
Gephyromantis horridus | Anura | VU | Ground-dwelling | 26.391357 | 37.84619 | 33.11403 | 42.82111 |
Gephyromantis horridus | Anura | VU | Ground-dwelling | 25.436319 | 37.71857 | 33.05479 | 42.76429 |
Gephyromantis horridus | Anura | VU | Ground-dwelling | 28.033766 | 38.06566 | 33.40333 | 43.16751 |
Gephyromantis malagasius | Anura | LC | Arboreal | 25.591705 | 37.53003 | 32.76316 | 42.62196 |
Gephyromantis malagasius | Anura | LC | Arboreal | 24.699433 | 37.40836 | 32.39083 | 42.25011 |
Gephyromantis malagasius | Anura | LC | Arboreal | 27.057617 | 37.72991 | 32.89912 | 42.72531 |
Gephyromantis striatus | Anura | VU | Arboreal | 26.173851 | 37.71472 | 32.86821 | 42.88875 |
Gephyromantis striatus | Anura | VU | Arboreal | 25.134716 | 37.57328 | 32.65978 | 42.66466 |
Gephyromantis striatus | Anura | VU | Arboreal | 27.818623 | 37.93859 | 33.15217 | 43.24345 |
Gephyromantis ventrimaculatus | Anura | LC | Ground-dwelling | 25.384175 | 37.71777 | 33.14528 | 43.24127 |
Gephyromantis ventrimaculatus | Anura | LC | Ground-dwelling | 24.486006 | 37.59688 | 33.03647 | 43.05003 |
Gephyromantis ventrimaculatus | Anura | LC | Ground-dwelling | 26.871796 | 37.91800 | 33.06382 | 43.25903 |
Gephyromantis klemmeri | Anura | EN | Ground-dwelling | 26.301993 | 37.85096 | 32.87430 | 42.92652 |
Gephyromantis klemmeri | Anura | EN | Ground-dwelling | 25.109214 | 37.69055 | 32.76580 | 42.83477 |
Gephyromantis klemmeri | Anura | EN | Ground-dwelling | 28.019582 | 38.08196 | 32.63248 | 42.80213 |
Gephyromantis rivicola | Anura | VU | Stream-dwelling | 26.359835 | 37.18866 | 32.37276 | 42.53360 |
Gephyromantis rivicola | Anura | VU | Stream-dwelling | 25.360614 | 37.05478 | 32.27369 | 42.39720 |
Gephyromantis rivicola | Anura | VU | Stream-dwelling | 27.914576 | 37.39697 | 32.59797 | 42.83377 |
Gephyromantis silvanus | Anura | VU | Stream-dwelling | 26.604575 | 37.27337 | 32.19651 | 42.14863 |
Gephyromantis silvanus | Anura | VU | Stream-dwelling | 25.523230 | 37.12730 | 32.05510 | 41.91250 |
Gephyromantis silvanus | Anura | VU | Stream-dwelling | 28.317986 | 37.50482 | 32.26552 | 42.32885 |
Gephyromantis webbi | Anura | EN | Stream-dwelling | 26.604575 | 37.25107 | 31.97342 | 42.28712 |
Gephyromantis webbi | Anura | EN | Stream-dwelling | 25.523230 | 37.10422 | 32.03305 | 42.33755 |
Gephyromantis webbi | Anura | EN | Stream-dwelling | 28.317986 | 37.48376 | 32.13310 | 42.47364 |
Gephyromantis atsingy | Anura | EN | Arboreal | 27.071073 | 37.80153 | 32.68959 | 42.46758 |
Gephyromantis atsingy | Anura | EN | Arboreal | 26.258359 | 37.69063 | 32.61083 | 42.40852 |
Gephyromantis atsingy | Anura | EN | Arboreal | 28.680915 | 38.02122 | 32.84561 | 42.71455 |
Gephyromantis azzurrae | Anura | EN | Stream-dwelling | 25.961269 | 37.11389 | 32.60768 | 42.28013 |
Gephyromantis azzurrae | Anura | EN | Stream-dwelling | 24.978178 | 36.98459 | 32.59258 | 42.27990 |
Gephyromantis azzurrae | Anura | EN | Stream-dwelling | 27.647933 | 37.33574 | 32.91448 | 42.59913 |
Gephyromantis corvus | Anura | EN | Ground-dwelling | 26.218902 | 37.82508 | 33.07894 | 43.32171 |
Gephyromantis corvus | Anura | EN | Ground-dwelling | 25.207850 | 37.68640 | 32.80872 | 43.08571 |
Gephyromantis corvus | Anura | EN | Ground-dwelling | 27.941344 | 38.06135 | 33.27973 | 43.60176 |
Gephyromantis pseudoasper | Anura | LC | Arboreal | 26.496016 | 37.64552 | 32.60850 | 42.53140 |
Gephyromantis pseudoasper | Anura | LC | Arboreal | 25.551648 | 37.51814 | 32.51436 | 42.36827 |
Gephyromantis pseudoasper | Anura | LC | Arboreal | 28.012704 | 37.85010 | 32.88485 | 42.81013 |
Gephyromantis blanci | Anura | NT | Ground-dwelling | 25.690033 | 37.67811 | 32.15085 | 42.38881 |
Gephyromantis blanci | Anura | NT | Ground-dwelling | 24.757640 | 37.55263 | 32.00842 | 42.24308 |
Gephyromantis blanci | Anura | NT | Ground-dwelling | 27.299940 | 37.89476 | 32.31831 | 42.69166 |
Gephyromantis runewsweeki | Anura | VU | Ground-dwelling | 25.602585 | 37.65210 | 32.56559 | 42.56705 |
Gephyromantis runewsweeki | Anura | VU | Ground-dwelling | 24.578700 | 37.51315 | 32.58132 | 42.49420 |
Gephyromantis runewsweeki | Anura | VU | Ground-dwelling | 27.455263 | 37.90352 | 33.04913 | 43.19038 |
Gephyromantis enki | Anura | VU | Ground-dwelling | 25.712116 | 37.67300 | 32.55371 | 42.79107 |
Gephyromantis enki | Anura | VU | Ground-dwelling | 24.752880 | 37.54297 | 32.42859 | 42.60417 |
Gephyromantis enki | Anura | VU | Ground-dwelling | 27.420593 | 37.90459 | 32.84621 | 43.19288 |
Gephyromantis boulengeri | Anura | LC | Arboreal | 25.672015 | 37.57485 | 32.59197 | 42.35014 |
Gephyromantis boulengeri | Anura | LC | Arboreal | 24.715716 | 37.44741 | 32.41344 | 42.20355 |
Gephyromantis boulengeri | Anura | LC | Arboreal | 27.155593 | 37.77256 | 32.56384 | 42.41611 |
Gephyromantis eiselti | Anura | EN | Arboreal | 24.739076 | 37.42110 | 31.48156 | 41.82133 |
Gephyromantis eiselti | Anura | EN | Arboreal | 23.834706 | 37.29868 | 32.21835 | 42.50360 |
Gephyromantis eiselti | Anura | EN | Arboreal | 26.202108 | 37.61915 | 31.56235 | 41.96270 |
Gephyromantis mafy | Anura | CR | Arboreal | 25.150122 | 37.39954 | 31.77692 | 42.26722 |
Gephyromantis mafy | Anura | CR | Arboreal | 24.244361 | 37.27654 | 32.22416 | 42.67712 |
Gephyromantis mafy | Anura | CR | Arboreal | 26.459742 | 37.57738 | 31.90911 | 42.43722 |
Gephyromantis thelenae | Anura | EN | Arboreal | 24.739076 | 37.35286 | 32.51297 | 42.63941 |
Gephyromantis thelenae | Anura | EN | Arboreal | 23.834706 | 37.23340 | 32.39662 | 42.51050 |
Gephyromantis thelenae | Anura | EN | Arboreal | 26.202108 | 37.54610 | 32.65808 | 42.85566 |
Gephyromantis decaryi | Anura | NT | Arboreal | 25.690033 | 37.50849 | 32.57310 | 42.43868 |
Gephyromantis decaryi | Anura | NT | Arboreal | 24.757640 | 37.38065 | 32.46860 | 42.40563 |
Gephyromantis decaryi | Anura | NT | Arboreal | 27.299940 | 37.72922 | 32.79051 | 42.75805 |
Gephyromantis hintelmannae | Anura | EN | Arboreal | 25.225466 | 37.45236 | 32.73804 | 42.70221 |
Gephyromantis hintelmannae | Anura | EN | Arboreal | 24.377363 | 37.33667 | 32.54099 | 42.49849 |
Gephyromantis hintelmannae | Anura | EN | Arboreal | 26.827794 | 37.67093 | 32.98528 | 43.00867 |
Gephyromantis verrucosus | Anura | LC | Arboreal | 26.100375 | 37.57265 | 32.32252 | 42.01248 |
Gephyromantis verrucosus | Anura | LC | Arboreal | 25.199325 | 37.45084 | 32.24333 | 41.92480 |
Gephyromantis verrucosus | Anura | LC | Arboreal | 27.715869 | 37.79103 | 32.71238 | 42.33763 |
Gephyromantis leucocephalus | Anura | NT | Ground-dwelling | 25.578699 | 37.67044 | 32.56629 | 42.95363 |
Gephyromantis leucocephalus | Anura | NT | Ground-dwelling | 24.709513 | 37.55407 | 32.49774 | 42.88045 |
Gephyromantis leucocephalus | Anura | NT | Ground-dwelling | 26.984864 | 37.85869 | 32.70006 | 43.08695 |
Gephyromantis ranjomavo | Anura | EN | Stream-dwelling | 26.301993 | 37.20493 | 32.88220 | 42.43163 |
Gephyromantis ranjomavo | Anura | EN | Stream-dwelling | 25.109214 | 37.04430 | 32.14204 | 41.72102 |
Gephyromantis ranjomavo | Anura | EN | Stream-dwelling | 28.019582 | 37.43623 | 32.82105 | 42.32286 |
Gephyromantis spiniferus | Anura | VU | Ground-dwelling | 25.803641 | 37.75987 | 33.22142 | 43.10057 |
Gephyromantis spiniferus | Anura | VU | Ground-dwelling | 24.919859 | 37.64167 | 33.13717 | 42.99208 |
Gephyromantis spiniferus | Anura | VU | Ground-dwelling | 27.287428 | 37.95831 | 33.36286 | 43.33673 |
Gephyromantis cornutus | Anura | VU | Stream-dwelling | 24.997491 | 36.85826 | 31.76670 | 42.01085 |
Gephyromantis cornutus | Anura | VU | Stream-dwelling | 24.092207 | 36.73674 | 31.68465 | 41.91976 |
Gephyromantis cornutus | Anura | VU | Stream-dwelling | 26.488832 | 37.05845 | 31.95125 | 42.28009 |
Gephyromantis tschenki | Anura | LC | Arboreal | 25.532378 | 37.47081 | 32.36336 | 42.71487 |
Gephyromantis tschenki | Anura | LC | Arboreal | 24.599704 | 37.34510 | 32.19688 | 42.58785 |
Gephyromantis tschenki | Anura | LC | Arboreal | 27.135806 | 37.68692 | 32.50113 | 42.83859 |
Gephyromantis redimitus | Anura | LC | Arboreal | 25.806878 | 37.49936 | 32.74600 | 42.90020 |
Gephyromantis redimitus | Anura | LC | Arboreal | 24.857706 | 37.37033 | 32.64712 | 42.78071 |
Gephyromantis redimitus | Anura | LC | Arboreal | 27.338078 | 37.70749 | 32.78244 | 42.98819 |
Gephyromantis granulatus | Anura | LC | Ground-dwelling | 26.468223 | 37.80528 | 33.20454 | 42.80747 |
Gephyromantis granulatus | Anura | LC | Ground-dwelling | 25.459427 | 37.66750 | 33.13258 | 42.76420 |
Gephyromantis granulatus | Anura | LC | Ground-dwelling | 28.070801 | 38.02415 | 33.53275 | 43.09882 |
Gephyromantis moseri | Anura | LC | Arboreal | 25.922686 | 37.51431 | 32.49341 | 42.53861 |
Gephyromantis moseri | Anura | LC | Arboreal | 24.880724 | 37.37451 | 32.29681 | 42.29516 |
Gephyromantis moseri | Anura | LC | Arboreal | 27.523678 | 37.72912 | 32.68452 | 42.77798 |
Gephyromantis leucomaculatus | Anura | LC | Ground-dwelling | 26.332444 | 37.71995 | 32.57910 | 42.53769 |
Gephyromantis leucomaculatus | Anura | LC | Ground-dwelling | 25.298873 | 37.57961 | 32.56967 | 42.52830 |
Gephyromantis leucomaculatus | Anura | LC | Ground-dwelling | 27.920851 | 37.93563 | 32.80177 | 42.80487 |
Gephyromantis zavona | Anura | EN | Stream-dwelling | 26.627621 | 37.14107 | 31.65582 | 42.17659 |
Gephyromantis zavona | Anura | EN | Stream-dwelling | 25.453649 | 36.98424 | 31.44541 | 41.90509 |
Gephyromantis zavona | Anura | EN | Stream-dwelling | 28.430208 | 37.38186 | 31.82801 | 42.49256 |
Gephyromantis salegy | Anura | VU | Arboreal | 26.479599 | 37.63793 | 32.68160 | 42.64472 |
Gephyromantis salegy | Anura | VU | Arboreal | 25.415257 | 37.49545 | 32.45153 | 42.30812 |
Gephyromantis salegy | Anura | VU | Arboreal | 28.128079 | 37.85860 | 32.91240 | 42.97093 |
Gephyromantis schilfi | Anura | VU | Arboreal | 26.717182 | 37.60886 | 32.88795 | 42.71868 |
Gephyromantis schilfi | Anura | VU | Arboreal | 25.516610 | 37.44678 | 32.70840 | 42.48124 |
Gephyromantis schilfi | Anura | VU | Arboreal | 28.413195 | 37.83782 | 33.24957 | 43.17508 |
Gephyromantis tandroka | Anura | VU | Stream-dwelling | 26.546214 | 37.14180 | 31.80319 | 42.01809 |
Gephyromantis tandroka | Anura | VU | Stream-dwelling | 25.367540 | 36.98375 | 31.70263 | 41.83389 |
Gephyromantis tandroka | Anura | VU | Stream-dwelling | 28.327551 | 37.38066 | 32.44887 | 42.72425 |
Gephyromantis luteus | Anura | LC | Ground-dwelling | 25.766551 | 37.73869 | 32.64129 | 42.54778 |
Gephyromantis luteus | Anura | LC | Ground-dwelling | 24.836615 | 37.61366 | 32.51080 | 42.45223 |
Gephyromantis luteus | Anura | LC | Ground-dwelling | 27.269395 | 37.94074 | 32.90310 | 42.84262 |
Gephyromantis sculpturatus | Anura | LC | Ground-dwelling | 25.378486 | 37.69941 | 33.08074 | 42.56778 |
Gephyromantis sculpturatus | Anura | LC | Ground-dwelling | 24.441033 | 37.57468 | 32.93775 | 42.42027 |
Gephyromantis sculpturatus | Anura | LC | Ground-dwelling | 26.892581 | 37.90087 | 33.16946 | 42.80219 |
Gephyromantis plicifer | Anura | LC | Arboreal | 25.730364 | 37.49884 | 32.27819 | 42.09504 |
Gephyromantis plicifer | Anura | LC | Arboreal | 24.809748 | 37.37398 | 32.34333 | 42.08389 |
Gephyromantis plicifer | Anura | LC | Arboreal | 27.290480 | 37.71043 | 32.50580 | 42.37533 |
Mantidactylus aerumnalis | Anura | LC | Ground-dwelling | 25.503851 | 37.65397 | 32.82529 | 42.53246 |
Mantidactylus aerumnalis | Anura | LC | Ground-dwelling | 24.570940 | 37.52786 | 32.90353 | 42.55894 |
Mantidactylus aerumnalis | Anura | LC | Ground-dwelling | 27.063242 | 37.86476 | 33.04970 | 42.68704 |
Mantidactylus albofrenatus | Anura | EN | Stream-dwelling | 24.739076 | 36.92703 | 31.70918 | 41.51439 |
Mantidactylus albofrenatus | Anura | EN | Stream-dwelling | 23.834706 | 36.80424 | 31.56682 | 41.36175 |
Mantidactylus albofrenatus | Anura | EN | Stream-dwelling | 26.202108 | 37.12568 | 32.00824 | 41.88263 |
Mantidactylus brevipalmatus | Anura | LC | Stream-dwelling | 25.675167 | 37.03215 | 32.32160 | 42.25151 |
Mantidactylus brevipalmatus | Anura | LC | Stream-dwelling | 24.773886 | 36.91047 | 32.21672 | 42.06029 |
Mantidactylus brevipalmatus | Anura | LC | Stream-dwelling | 27.262247 | 37.24643 | 32.43207 | 42.47311 |
Mantidactylus delormei | Anura | EN | Stream-dwelling | 25.924720 | 37.10461 | 31.74711 | 42.02257 |
Mantidactylus delormei | Anura | EN | Stream-dwelling | 24.993594 | 36.98063 | 31.90911 | 42.16736 |
Mantidactylus delormei | Anura | EN | Stream-dwelling | 27.613976 | 37.32956 | 31.96628 | 42.31364 |
Mantidactylus paidroa | Anura | EN | Stream-dwelling | 25.602585 | 36.97834 | 32.36618 | 42.19057 |
Mantidactylus paidroa | Anura | EN | Stream-dwelling | 24.578700 | 36.84427 | 32.19460 | 42.00894 |
Mantidactylus paidroa | Anura | EN | Stream-dwelling | 27.455263 | 37.22094 | 32.48343 | 42.43406 |
Mantidactylus alutus | Anura | LC | Semi-aquatic | 25.536642 | 37.82942 | 33.10916 | 43.05100 |
Mantidactylus alutus | Anura | LC | Semi-aquatic | 24.615810 | 37.70349 | 33.06947 | 42.96239 |
Mantidactylus alutus | Anura | LC | Semi-aquatic | 27.145531 | 38.04944 | 33.12844 | 43.10548 |
Mantidactylus curtus | Anura | LC | Stream-dwelling | 26.106733 | 37.04758 | 31.93963 | 42.28938 |
Mantidactylus curtus | Anura | LC | Stream-dwelling | 25.190726 | 36.92499 | 31.73356 | 42.09307 |
Mantidactylus curtus | Anura | LC | Stream-dwelling | 27.656887 | 37.25503 | 32.17863 | 42.56820 |
Mantidactylus madecassus | Anura | EN | Stream-dwelling | 25.846506 | 37.12295 | 32.07909 | 42.45430 |
Mantidactylus madecassus | Anura | EN | Stream-dwelling | 24.935190 | 36.99973 | 31.88550 | 42.19407 |
Mantidactylus madecassus | Anura | EN | Stream-dwelling | 27.501229 | 37.34668 | 32.59204 | 42.97369 |
Mantidactylus pauliani | Anura | CR | Stream-dwelling | 24.836345 | 36.96559 | 32.69395 | 42.28862 |
Mantidactylus pauliani | Anura | CR | Stream-dwelling | 23.792153 | 36.82341 | 32.47831 | 42.12542 |
Mantidactylus pauliani | Anura | CR | Stream-dwelling | 26.512837 | 37.19387 | 32.91883 | 42.53247 |
Mantidactylus bellyi | Anura | LC | Stream-dwelling | 26.573062 | 37.10463 | 32.18254 | 42.06440 |
Mantidactylus bellyi | Anura | LC | Stream-dwelling | 25.679168 | 36.98553 | 32.07611 | 41.90733 |
Mantidactylus bellyi | Anura | LC | Stream-dwelling | 27.973568 | 37.29123 | 32.57247 | 42.47370 |
Mantidactylus ulcerosus | Anura | LC | Stream-dwelling | 26.296132 | 37.08281 | 32.33798 | 41.93911 |
Mantidactylus ulcerosus | Anura | LC | Stream-dwelling | 25.336037 | 36.95339 | 32.26087 | 41.84494 |
Mantidactylus ulcerosus | Anura | LC | Stream-dwelling | 27.852477 | 37.29259 | 32.45004 | 42.08206 |
Mantidactylus betsileanus | Anura | LC | Stream-dwelling | 26.019188 | 37.03450 | 31.99790 | 42.26596 |
Mantidactylus betsileanus | Anura | LC | Stream-dwelling | 25.111837 | 36.91299 | 31.93072 | 42.15597 |
Mantidactylus betsileanus | Anura | LC | Stream-dwelling | 27.539082 | 37.23803 | 32.33062 | 42.65027 |
Mantidactylus noralottae | Anura | DD | Arboreal | 25.961269 | 37.55949 | 32.78382 | 42.64173 |
Mantidactylus noralottae | Anura | DD | Arboreal | 24.978178 | 37.42576 | 32.67355 | 42.47933 |
Mantidactylus noralottae | Anura | DD | Arboreal | 27.647933 | 37.78893 | 33.18303 | 43.02202 |
Mantidactylus ambohimitombi | Anura | DD | Stream-dwelling | 25.418478 | 37.09522 | 32.15801 | 41.97643 |
Mantidactylus ambohimitombi | Anura | DD | Stream-dwelling | 24.380128 | 36.95548 | 32.00623 | 41.80641 |
Mantidactylus ambohimitombi | Anura | DD | Stream-dwelling | 27.144012 | 37.32744 | 32.43234 | 42.31522 |
Mantidactylus ambreensis | Anura | LC | Stream-dwelling | 26.477690 | 37.19299 | 31.84505 | 41.70993 |
Mantidactylus ambreensis | Anura | LC | Stream-dwelling | 25.630003 | 37.07851 | 32.10080 | 41.86864 |
Mantidactylus ambreensis | Anura | LC | Stream-dwelling | 27.932386 | 37.38945 | 32.04031 | 42.07570 |
Mantidactylus femoralis | Anura | LC | Stream-dwelling | 25.945766 | 37.05437 | 31.96244 | 41.89375 |
Mantidactylus femoralis | Anura | LC | Stream-dwelling | 24.999699 | 36.92499 | 31.96780 | 41.87934 |
Mantidactylus femoralis | Anura | LC | Stream-dwelling | 27.498833 | 37.26677 | 32.04939 | 42.09503 |
Mantidactylus zolitschka | Anura | CR | Stream-dwelling | 24.739076 | 36.92716 | 32.11133 | 42.23035 |
Mantidactylus zolitschka | Anura | CR | Stream-dwelling | 23.834706 | 36.80424 | 31.92264 | 42.07527 |
Mantidactylus zolitschka | Anura | CR | Stream-dwelling | 26.202108 | 37.12602 | 32.41657 | 42.49929 |
Mantidactylus mocquardi | Anura | LC | Stream-dwelling | 25.844407 | 37.09749 | 32.42942 | 42.40372 |
Mantidactylus mocquardi | Anura | LC | Stream-dwelling | 24.886954 | 36.96459 | 32.38836 | 42.30062 |
Mantidactylus mocquardi | Anura | LC | Stream-dwelling | 27.402084 | 37.31370 | 32.66244 | 42.68479 |
Mantidactylus biporus | Anura | LC | Stream-dwelling | 25.782653 | 37.05952 | 32.05278 | 41.88101 |
Mantidactylus biporus | Anura | LC | Stream-dwelling | 24.835387 | 36.93418 | 32.30852 | 42.14454 |
Mantidactylus biporus | Anura | LC | Stream-dwelling | 27.324323 | 37.26350 | 32.24831 | 42.05304 |
Mantidactylus bourgati | Anura | EN | Stream-dwelling | 25.785526 | 37.11804 | 32.34523 | 42.26653 |
Mantidactylus bourgati | Anura | EN | Stream-dwelling | 24.846068 | 36.98977 | 32.18776 | 42.04665 |
Mantidactylus bourgati | Anura | EN | Stream-dwelling | 27.489738 | 37.35074 | 32.85096 | 42.80831 |
Mantidactylus charlotteae | Anura | LC | Stream-dwelling | 25.668212 | 37.06318 | 32.28904 | 42.02828 |
Mantidactylus charlotteae | Anura | LC | Stream-dwelling | 24.773673 | 36.94357 | 32.23277 | 41.86930 |
Mantidactylus charlotteae | Anura | LC | Stream-dwelling | 27.135756 | 37.25942 | 32.32920 | 42.16243 |
Mantidactylus opiparis | Anura | LC | Stream-dwelling | 25.972981 | 37.08271 | 32.32116 | 42.34289 |
Mantidactylus opiparis | Anura | LC | Stream-dwelling | 25.010558 | 36.95201 | 32.16158 | 42.03267 |
Mantidactylus opiparis | Anura | LC | Stream-dwelling | 27.512046 | 37.29174 | 32.45630 | 42.53195 |
Mantidactylus melanopleura | Anura | LC | Stream-dwelling | 25.748146 | 37.01244 | 32.27709 | 42.33508 |
Mantidactylus melanopleura | Anura | LC | Stream-dwelling | 24.801522 | 36.88426 | 32.16131 | 42.22123 |
Mantidactylus melanopleura | Anura | LC | Stream-dwelling | 27.284598 | 37.22049 | 32.41249 | 42.52454 |
Mantidactylus zipperi | Anura | LC | Stream-dwelling | 25.422906 | 37.06192 | 32.27364 | 42.06958 |
Mantidactylus zipperi | Anura | LC | Stream-dwelling | 24.571327 | 36.94695 | 32.16190 | 41.99081 |
Mantidactylus zipperi | Anura | LC | Stream-dwelling | 26.868033 | 37.25703 | 32.55887 | 42.28836 |
Mantidactylus lugubris | Anura | LC | Stream-dwelling | 25.758979 | 37.07742 | 31.71999 | 41.57537 |
Mantidactylus lugubris | Anura | LC | Stream-dwelling | 24.827728 | 36.95177 | 31.66109 | 41.48578 |
Mantidactylus lugubris | Anura | LC | Stream-dwelling | 27.272153 | 37.28160 | 32.06097 | 41.88326 |
Mantidactylus tricinctus | Anura | VU | Stream-dwelling | 25.638683 | 37.02713 | 31.71662 | 42.01842 |
Mantidactylus tricinctus | Anura | VU | Stream-dwelling | 24.799889 | 36.91415 | 31.69943 | 41.95486 |
Mantidactylus tricinctus | Anura | VU | Stream-dwelling | 27.020977 | 37.21330 | 31.75924 | 42.03837 |
Mantidactylus majori | Anura | LC | Stream-dwelling | 25.618556 | 37.06533 | 32.04901 | 42.15720 |
Mantidactylus majori | Anura | LC | Stream-dwelling | 24.714944 | 36.94303 | 31.62541 | 41.74060 |
Mantidactylus majori | Anura | LC | Stream-dwelling | 27.110413 | 37.26726 | 32.24719 | 42.39269 |
Mantidactylus argenteus | Anura | LC | Arboreal | 25.627756 | 37.46927 | 31.79110 | 42.03098 |
Mantidactylus argenteus | Anura | LC | Arboreal | 24.659837 | 37.34152 | 31.56584 | 41.81595 |
Mantidactylus argenteus | Anura | LC | Arboreal | 27.225038 | 37.68008 | 31.93751 | 42.16856 |
Mantidactylus cowanii | Anura | NT | Stream-dwelling | 25.310413 | 36.99354 | 32.34948 | 42.23423 |
Mantidactylus cowanii | Anura | NT | Stream-dwelling | 24.403402 | 36.87330 | 32.25074 | 42.12487 |
Mantidactylus cowanii | Anura | NT | Stream-dwelling | 26.841470 | 37.19652 | 32.48219 | 42.40153 |
Mantidactylus grandidieri | Anura | LC | Stream-dwelling | 25.680880 | 37.00961 | 31.78347 | 41.78462 |
Mantidactylus grandidieri | Anura | LC | Stream-dwelling | 24.732898 | 36.88223 | 31.80399 | 41.79479 |
Mantidactylus grandidieri | Anura | LC | Stream-dwelling | 27.223847 | 37.21695 | 32.05678 | 42.08739 |
Mantidactylus guttulatus | Anura | LC | Stream-dwelling | 25.941056 | 37.10835 | 32.19262 | 42.03858 |
Mantidactylus guttulatus | Anura | LC | Stream-dwelling | 24.929788 | 36.97044 | 32.00169 | 41.84779 |
Mantidactylus guttulatus | Anura | LC | Stream-dwelling | 27.561844 | 37.32938 | 32.47268 | 42.33605 |
Spinomantis aglavei | Anura | LC | Stream-dwelling | 25.779100 | 37.09414 | 31.93181 | 41.94978 |
Spinomantis aglavei | Anura | LC | Stream-dwelling | 24.827036 | 36.96815 | 31.78533 | 41.75395 |
Spinomantis aglavei | Anura | LC | Stream-dwelling | 27.314717 | 37.29735 | 32.07076 | 42.27106 |
Spinomantis fimbriatus | Anura | LC | Arboreal | 26.028721 | 37.59378 | 32.44081 | 42.07408 |
Spinomantis fimbriatus | Anura | LC | Arboreal | 25.004396 | 37.45713 | 32.33276 | 41.92990 |
Spinomantis fimbriatus | Anura | LC | Arboreal | 27.617157 | 37.80567 | 33.51740 | 43.22701 |
Spinomantis tavaratra | Anura | VU | Arboreal | 26.717182 | 37.64475 | 32.65472 | 42.18507 |
Spinomantis tavaratra | Anura | VU | Arboreal | 25.516610 | 37.48480 | 32.65151 | 42.14318 |
Spinomantis tavaratra | Anura | VU | Arboreal | 28.413195 | 37.87071 | 32.86188 | 42.53683 |
Spinomantis phantasticus | Anura | LC | Stream-dwelling | 25.929276 | 37.21698 | 32.77333 | 42.66290 |
Spinomantis phantasticus | Anura | LC | Stream-dwelling | 24.924470 | 37.08032 | 32.63966 | 42.49814 |
Spinomantis phantasticus | Anura | LC | Stream-dwelling | 27.484736 | 37.42854 | 32.39558 | 42.41588 |
Spinomantis bertini | Anura | NT | Stream-dwelling | 25.730364 | 37.18358 | 32.14260 | 41.89479 |
Spinomantis bertini | Anura | NT | Stream-dwelling | 24.809748 | 37.05985 | 31.98217 | 41.67791 |
Spinomantis bertini | Anura | NT | Stream-dwelling | 27.290480 | 37.39325 | 32.26211 | 42.23362 |
Spinomantis guibei | Anura | VU | Stream-dwelling | 25.502557 | 37.14347 | 32.61896 | 42.45288 |
Spinomantis guibei | Anura | VU | Stream-dwelling | 24.610707 | 37.02207 | 32.53331 | 42.38226 |
Spinomantis guibei | Anura | VU | Stream-dwelling | 26.900475 | 37.33375 | 32.86515 | 42.75903 |
Spinomantis microtis | Anura | EN | Stream-dwelling | 25.584456 | 37.08721 | 31.68785 | 41.76474 |
Spinomantis microtis | Anura | EN | Stream-dwelling | 24.742056 | 36.97437 | 31.60096 | 41.71643 |
Spinomantis microtis | Anura | EN | Stream-dwelling | 26.930508 | 37.26751 | 31.88335 | 41.93393 |
Spinomantis brunae | Anura | EN | Stream-dwelling | 25.466906 | 37.06466 | 32.16889 | 42.29829 |
Spinomantis brunae | Anura | EN | Stream-dwelling | 24.625422 | 36.95192 | 32.09677 | 42.16454 |
Spinomantis brunae | Anura | EN | Stream-dwelling | 26.813879 | 37.24514 | 32.28433 | 42.47973 |
Spinomantis elegans | Anura | NT | Stream-dwelling | 25.774919 | 37.18986 | 32.31387 | 42.36570 |
Spinomantis elegans | Anura | NT | Stream-dwelling | 24.871122 | 37.06911 | 32.23465 | 42.23765 |
Spinomantis elegans | Anura | NT | Stream-dwelling | 27.311404 | 37.39516 | 32.53566 | 42.66354 |
Spinomantis peraccae | Anura | LC | Arboreal | 25.883523 | 37.53855 | 32.53790 | 42.20394 |
Spinomantis peraccae | Anura | LC | Arboreal | 24.912601 | 37.40676 | 32.73340 | 42.39964 |
Spinomantis peraccae | Anura | LC | Arboreal | 27.455964 | 37.75198 | 32.82024 | 42.58897 |
Spinomantis massi | Anura | VU | Arboreal | 26.546214 | 37.75666 | 32.45519 | 42.46578 |
Spinomantis massi | Anura | VU | Arboreal | 25.367540 | 37.59620 | 32.41816 | 42.45227 |
Spinomantis massi | Anura | VU | Arboreal | 28.327551 | 37.99916 | 32.95141 | 43.01273 |
Tsingymantis antitra | Anura | EN | Ground-dwelling | 26.777976 | 37.93903 | 33.20328 | 42.71794 |
Tsingymantis antitra | Anura | EN | Ground-dwelling | 25.898010 | 37.82036 | 33.03923 | 42.55595 |
Tsingymantis antitra | Anura | EN | Ground-dwelling | 28.212146 | 38.13244 | 33.32440 | 42.91329 |
Laliostoma labrosum | Anura | LC | Ground-dwelling | 26.316188 | 37.84088 | 32.93384 | 42.95855 |
Laliostoma labrosum | Anura | LC | Ground-dwelling | 25.443221 | 37.72324 | 32.27218 | 42.21102 |
Laliostoma labrosum | Anura | LC | Ground-dwelling | 27.868431 | 38.05005 | 32.77242 | 42.76584 |
Aglyptodactylus securifer | Anura | LC | Ground-dwelling | 26.662165 | 37.85017 | 32.89946 | 43.06646 |
Aglyptodactylus securifer | Anura | LC | Ground-dwelling | 25.845356 | 37.74021 | 32.48620 | 42.57928 |
Aglyptodactylus securifer | Anura | LC | Ground-dwelling | 28.181085 | 38.05465 | 32.90090 | 43.13414 |
Aglyptodactylus laticeps | Anura | VU | Ground-dwelling | 26.606275 | 37.79261 | 32.51769 | 42.53287 |
Aglyptodactylus laticeps | Anura | VU | Ground-dwelling | 25.958709 | 37.70614 | 32.44637 | 42.46968 |
Aglyptodactylus laticeps | Anura | VU | Ground-dwelling | 28.049789 | 37.98536 | 32.61968 | 42.77181 |
Aglyptodactylus madagascariensis | Anura | LC | Ground-dwelling | 25.681353 | 37.69273 | 32.99810 | 42.85009 |
Aglyptodactylus madagascariensis | Anura | LC | Ground-dwelling | 24.773713 | 37.57145 | 33.01798 | 42.78586 |
Aglyptodactylus madagascariensis | Anura | LC | Ground-dwelling | 27.181600 | 37.89319 | 33.46464 | 43.35603 |
Oreobates gemcare | Anura | LC | Ground-dwelling | 15.323045 | 29.21292 | 27.55093 | 30.86369 |
Oreobates gemcare | Anura | LC | Ground-dwelling | 11.264668 | 28.67456 | 26.81254 | 30.30896 |
Oreobates gemcare | Anura | LC | Ground-dwelling | 17.134228 | 29.45319 | 27.84971 | 31.18063 |
Oreobates granulosus | Anura | LC | Ground-dwelling | 16.352910 | 32.36632 | 29.98707 | 34.14674 |
Oreobates granulosus | Anura | LC | Ground-dwelling | 14.218975 | 32.06884 | 29.86243 | 34.07058 |
Oreobates granulosus | Anura | LC | Ground-dwelling | 18.036078 | 32.60095 | 30.25132 | 34.36804 |
Pristimantis pharangobates | Anura | LC | Ground-dwelling | 19.200181 | 29.40335 | 27.61615 | 30.97388 |
Pristimantis pharangobates | Anura | LC | Ground-dwelling | 18.021458 | 29.24175 | 27.48971 | 30.87331 |
Pristimantis pharangobates | Anura | LC | Ground-dwelling | 20.549752 | 29.58838 | 27.89031 | 31.25995 |
Dryophytes walkeri | Anura | VU | Ground-dwelling | 25.787055 | 39.58424 | 37.64371 | 41.35655 |
Dryophytes walkeri | Anura | VU | Ground-dwelling | 24.644620 | 39.43683 | 37.65094 | 41.30550 |
Dryophytes walkeri | Anura | VU | Ground-dwelling | 27.866455 | 39.85255 | 37.92302 | 41.81937 |
Dendropsophus molitor | Anura | LC | Arboreal | 22.857619 | 38.49287 | 37.52418 | 39.56680 |
Dendropsophus molitor | Anura | LC | Arboreal | 21.992219 | 38.39643 | 37.30945 | 39.31401 |
Dendropsophus molitor | Anura | LC | Arboreal | 24.550765 | 38.68157 | 37.67214 | 39.77947 |
Paramesotriton labiatus | Caudata | CR | Aquatic | 27.631583 | 37.12158 | 34.77820 | 39.68821 |
Paramesotriton labiatus | Caudata | CR | Aquatic | 26.346214 | 36.94356 | 34.68991 | 39.44892 |
Paramesotriton labiatus | Caudata | CR | Aquatic | 30.128926 | 37.46746 | 34.82481 | 40.14652 |
Hyloxalus italoi | Anura | LC | Stream-dwelling | 24.503623 | 36.92006 | 34.84727 | 39.08964 |
Hyloxalus italoi | Anura | LC | Stream-dwelling | 23.557331 | 36.78982 | 34.76117 | 38.98553 |
Hyloxalus italoi | Anura | LC | Stream-dwelling | 26.208543 | 37.15470 | 35.06694 | 39.51138 |
Polypedates braueri | Anura | LC | Arboreal | 25.034347 | 39.18997 | 38.02705 | 40.56970 |
Polypedates braueri | Anura | LC | Arboreal | 22.851602 | 38.88510 | 37.63637 | 40.19182 |
Polypedates braueri | Anura | LC | Arboreal | 28.012911 | 39.60599 | 38.18387 | 40.81862 |
Hynobius fucus | Caudata | NT | Ground-dwelling | 27.280048 | 33.32358 | 31.62748 | 35.11280 |
Hynobius fucus | Caudata | NT | Ground-dwelling | 26.473775 | 33.21172 | 31.55965 | 34.92628 |
Hynobius fucus | Caudata | NT | Ground-dwelling | 28.570568 | 33.50262 | 31.67258 | 35.34356 |
Cynops orientalis | Caudata | LC | Aquatic | 27.117176 | 38.40461 | 37.09093 | 39.82511 |
Cynops orientalis | Caudata | LC | Aquatic | 24.877928 | 38.07696 | 36.91712 | 39.40851 |
Cynops orientalis | Caudata | LC | Aquatic | 29.894371 | 38.81096 | 37.18091 | 40.25057 |
Cophixalus australis | Anura | LC | Ground-dwelling | 25.496409 | 36.05861 | 33.57494 | 38.52744 |
Cophixalus australis | Anura | LC | Ground-dwelling | 24.644024 | 35.93354 | 33.60252 | 38.45554 |
Cophixalus australis | Anura | LC | Ground-dwelling | 27.008762 | 36.28051 | 33.72561 | 38.83136 |
Chalcorana labialis | Anura | LC | Stream-dwelling | 28.269630 | 36.68664 | 34.17343 | 38.90216 |
Chalcorana labialis | Anura | LC | Stream-dwelling | 27.589447 | 36.59705 | 34.15340 | 38.80894 |
Chalcorana labialis | Anura | LC | Stream-dwelling | 29.681324 | 36.87259 | 34.27350 | 39.12111 |
Kalophrynus limbooliati | Anura | NT | Ground-dwelling | 28.697277 | 36.99935 | 34.58953 | 39.53248 |
Kalophrynus limbooliati | Anura | NT | Ground-dwelling | 28.021171 | 36.90391 | 34.53671 | 39.44440 |
Kalophrynus limbooliati | Anura | NT | Ground-dwelling | 29.951963 | 37.17646 | 34.68755 | 39.72416 |
Pristimantis matidiktyo | Anura | LC | Ground-dwelling | 24.905312 | 37.47246 | 35.12816 | 39.68796 |
Pristimantis matidiktyo | Anura | LC | Ground-dwelling | 23.900087 | 37.32398 | 35.09442 | 39.61280 |
Pristimantis matidiktyo | Anura | LC | Ground-dwelling | 26.646903 | 37.72971 | 35.52074 | 40.14572 |
Pristimantis festae | Anura | EN | Ground-dwelling | 19.805326 | 33.17275 | 31.26704 | 35.49058 |
Pristimantis festae | Anura | EN | Ground-dwelling | 17.198230 | 32.80636 | 30.76504 | 34.96372 |
Pristimantis festae | Anura | EN | Ground-dwelling | 22.861501 | 33.60225 | 31.43178 | 35.73872 |
# Summarise data at the species level
data_summary <- imputed_data %>%
group_by(species, order, IUCN_status, ecotype) %>%
summarise(acclimation_temperature = mean(acclimation_temperature), predicted_CTmax = mean(predicted_CTmax))
# Display data
kable(data_summary, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
species | order | IUCN_status | ecotype | acclimation_temperature | predicted_CTmax |
---|---|---|---|---|---|
Acanthixalus sonjae | Anura | VU | Arboreal | 27.738310 | 40.28680 |
Acanthixalus spinosus | Anura | LC | Arboreal | 27.608434 | 40.30035 |
Acris crepitans | Anura | LC | Semi-aquatic | 25.773274 | 41.34736 |
Acris gryllus | Anura | LC | Semi-aquatic | 27.125172 | 40.43394 |
Adelastes hylonomos | Anura | DD | Ground-dwelling | 27.872682 | 39.94362 |
Adelophryne adiastola | Anura | LC | Ground-dwelling | 28.922331 | 37.55118 |
Adelophryne baturitensis | Anura | VU | Ground-dwelling | 26.374203 | 37.27218 |
Adelophryne gutturosa | Anura | LC | Ground-dwelling | 27.440515 | 37.16846 |
Adelophryne maranguapensis | Anura | EN | Ground-dwelling | 26.677394 | 37.34379 |
Adelophryne pachydactyla | Anura | DD | Ground-dwelling | 25.133960 | 36.99328 |
Adelophryne patamona | Anura | DD | Ground-dwelling | 26.912428 | 37.23610 |
Adelotus brevis | Anura | NT | Ground-dwelling | 23.482815 | 35.35564 |
Adelphobates castaneoticus | Anura | LC | Ground-dwelling | 27.985162 | 36.45032 |
Adelphobates galactonotus | Anura | LC | Ground-dwelling | 28.127846 | 36.32727 |
Adelphobates quinquevittatus | Anura | LC | Ground-dwelling | 28.759664 | 36.59402 |
Adenomera ajurauna | Anura | DD | Ground-dwelling | 25.741310 | 38.31598 |
Adenomera andreae | Anura | LC | Ground-dwelling | 27.611502 | 37.98509 |
Adenomera araucaria | Anura | LC | Ground-dwelling | 24.832390 | 38.56469 |
Adenomera bokermanni | Anura | LC | Ground-dwelling | 25.749377 | 38.78708 |
Adenomera coca | Anura | LC | Ground-dwelling | 14.531854 | 37.27352 |
Adenomera diptyx | Anura | LC | Ground-dwelling | 27.366998 | 39.03299 |
Adenomera heyeri | Anura | LC | Ground-dwelling | 27.571832 | 39.16406 |
Adenomera hylaedactyla | Anura | LC | Ground-dwelling | 27.449580 | 39.01177 |
Adenomera lutzi | Anura | EN | Ground-dwelling | 26.912428 | 38.99195 |
Adenomera marmorata | Anura | LC | Ground-dwelling | 25.898103 | 38.81683 |
Adenomera martinezi | Anura | NT | Ground-dwelling | 27.802296 | 39.03145 |
Adenomera nana | Anura | LC | Ground-dwelling | 24.805488 | 38.74329 |
Adenomera thomei | Anura | LC | Ground-dwelling | 25.570611 | 38.73502 |
Adenomus kandianus | Anura | EN | Stream-dwelling | 27.674004 | 38.53231 |
Adenomus kelaartii | Anura | VU | Ground-dwelling | 27.915921 | 39.07011 |
Afrixalus aureus | Anura | LC | Arboreal | 24.629277 | 40.17262 |
Afrixalus clarkei | Anura | EN | Arboreal | 22.928430 | 39.99125 |
Afrixalus delicatus | Anura | LC | Arboreal | 25.245068 | 40.27799 |
Afrixalus dorsalis | Anura | LC | Arboreal | 27.669475 | 40.62888 |
Afrixalus dorsimaculatus | Anura | EN | Arboreal | 25.085794 | 40.16187 |
Afrixalus enseticola | Anura | VU | Arboreal | 20.737132 | 39.66511 |
Afrixalus equatorialis | Anura | LC | Arboreal | 28.193266 | 40.68377 |
Afrixalus fornasini | Anura | LC | Arboreal | 25.314319 | 40.21980 |
Afrixalus fulvovittatus | Anura | LC | Arboreal | 27.692634 | 40.65210 |
Afrixalus knysnae | Anura | EN | Arboreal | 21.316819 | 39.73949 |
Afrixalus lacteus | Anura | EN | Arboreal | 26.644872 | 40.33627 |
Afrixalus laevis | Anura | LC | Arboreal | 27.218830 | 40.53338 |
Afrixalus leucostictus | Anura | LC | Arboreal | 26.678241 | 40.51118 |
Afrixalus lindholmi | Anura | DD | Arboreal | 27.721230 | 40.46212 |
Afrixalus morerei | Anura | VU | Arboreal | 23.098365 | 39.87642 |
Afrixalus nigeriensis | Anura | LC | Arboreal | 27.830100 | 40.62173 |
Afrixalus orophilus | Anura | LC | Arboreal | 23.122838 | 40.00679 |
Afrixalus osorioi | Anura | LC | Arboreal | 27.211696 | 40.58621 |
Afrixalus paradorsalis | Anura | LC | Arboreal | 27.206980 | 40.51636 |
Afrixalus quadrivittatus | Anura | LC | Arboreal | 26.528613 | 40.45887 |
Afrixalus schneideri | Anura | DD | Arboreal | 27.191396 | 40.59684 |
Afrixalus septentrionalis | Anura | LC | Arboreal | 23.635249 | 40.16080 |
Afrixalus spinifrons | Anura | LC | Arboreal | 22.222429 | 39.81147 |
Afrixalus stuhlmanni | Anura | LC | Arboreal | 25.041008 | 40.32416 |
Afrixalus sylvaticus | Anura | VU | Arboreal | 25.425752 | 40.28704 |
Afrixalus uluguruensis | Anura | VU | Arboreal | 22.671316 | 39.90067 |
Afrixalus upembae | Anura | DD | Arboreal | 25.112742 | 40.15182 |
Afrixalus vibekensis | Anura | LC | Arboreal | 27.695589 | 40.61924 |
Afrixalus vittiger | Anura | LC | Arboreal | 27.888935 | 40.64777 |
Afrixalus weidholzi | Anura | LC | Arboreal | 27.627444 | 40.48990 |
Afrixalus wittei | Anura | LC | Arboreal | 24.469331 | 40.19427 |
Agalychnis annae | Anura | VU | Arboreal | 25.355630 | 38.96983 |
Agalychnis callidryas | Anura | LC | Arboreal | 27.027464 | 39.19257 |
Agalychnis dacnicolor | Anura | LC | Arboreal | 25.561211 | 36.47570 |
Agalychnis hulli | Anura | LC | Arboreal | 25.901217 | 39.52579 |
Agalychnis lemur | Anura | CR | Arboreal | 26.472323 | 39.07939 |
Agalychnis moreletii | Anura | LC | Arboreal | 26.441680 | 39.16885 |
Agalychnis saltator | Anura | LC | Arboreal | 25.939451 | 39.14728 |
Agalychnis spurrelli | Anura | LC | Arboreal | 26.147596 | 40.93406 |
Aglyptodactylus laticeps | Anura | VU | Ground-dwelling | 26.871591 | 37.82804 |
Aglyptodactylus madagascariensis | Anura | LC | Ground-dwelling | 25.878889 | 37.71913 |
Aglyptodactylus securifer | Anura | LC | Ground-dwelling | 26.896202 | 37.88168 |
Alexteroon hypsiphonus | Anura | LC | Stream-dwelling | 27.509881 | 40.29299 |
Alexteroon jynx | Anura | CR | Stream-dwelling | 27.191396 | 40.19051 |
Alexteroon obstetricans | Anura | LC | Stream-dwelling | 27.294083 | 40.32573 |
Allobates algorei | Anura | NT | Ground-dwelling | 24.754779 | 37.03970 |
Allobates bromelicola | Anura | VU | Ground-dwelling | 27.121618 | 37.42698 |
Allobates brunneus | Anura | LC | Ground-dwelling | 28.415909 | 37.60736 |
Allobates caeruleodactylus | Anura | DD | Ground-dwelling | 28.891242 | 37.67423 |
Allobates caribe | Anura | CR | Ground-dwelling | 27.162122 | 37.40443 |
Allobates chalcopis | Anura | CR | Ground-dwelling | 27.317704 | 37.53737 |
Allobates conspicuus | Anura | DD | Ground-dwelling | 26.742275 | 36.52354 |
Allobates crombiei | Anura | LC | Ground-dwelling | 28.266142 | 37.45338 |
Allobates femoralis | Anura | LC | Ground-dwelling | 27.722453 | 40.01460 |
Allobates fratisenescus | Anura | VU | Ground-dwelling | 24.511831 | 36.98508 |
Allobates fuscellus | Anura | DD | Ground-dwelling | 29.124621 | 37.70276 |
Allobates gasconi | Anura | DD | Ground-dwelling | 28.759030 | 37.57526 |
Allobates goianus | Anura | DD | Ground-dwelling | 26.734517 | 37.34480 |
Allobates granti | Anura | LC | Ground-dwelling | 27.620083 | 37.44901 |
Allobates humilis | Anura | EN | Ground-dwelling | 26.905506 | 37.28300 |
Allobates insperatus | Anura | LC | Ground-dwelling | 25.881928 | 37.57966 |
Allobates juanii | Anura | EN | Ground-dwelling | 23.473175 | 36.87043 |
Allobates kingsburyi | Anura | EN | Ground-dwelling | 22.966949 | 36.85220 |
Allobates mandelorum | Anura | EN | Ground-dwelling | 27.321014 | 37.49160 |
Allobates marchesianus | Anura | LC | Ground-dwelling | 28.386233 | 37.63582 |
Allobates masniger | Anura | DD | Ground-dwelling | 28.012140 | 37.58463 |
Allobates melanolaemus | Anura | LC | Ground-dwelling | 29.154281 | 37.64444 |
Allobates myersi | Anura | LC | Ground-dwelling | 28.459222 | 37.63841 |
Allobates nidicola | Anura | DD | Ground-dwelling | 28.828154 | 37.61843 |
Allobates niputidea | Anura | LC | Ground-dwelling | 26.433010 | 37.35650 |
Allobates olfersioides | Anura | VU | Ground-dwelling | 25.560209 | 37.00793 |
Allobates ornatus | Anura | DD | Ground-dwelling | 24.265362 | 37.05261 |
Allobates paleovarzensis | Anura | NT | Ground-dwelling | 28.770483 | 37.68163 |
Allobates pittieri | Anura | LC | Ground-dwelling | 26.527844 | 37.24325 |
Allobates sanmartini | Anura | DD | Ground-dwelling | 26.811162 | 37.49791 |
Allobates subfolionidificans | Anura | VU | Ground-dwelling | 29.735647 | 37.34992 |
Allobates sumtuosus | Anura | DD | Ground-dwelling | 27.704698 | 37.49668 |
Allobates talamancae | Anura | LC | Ground-dwelling | 26.350304 | 37.27681 |
Allobates trilineatus | Anura | LC | Ground-dwelling | 25.320487 | 35.53237 |
Allobates undulatus | Anura | VU | Ground-dwelling | 26.985548 | 37.30944 |
Allobates vanzolinius | Anura | LC | Ground-dwelling | 29.268942 | 37.74159 |
Allobates wayuu | Anura | LC | Ground-dwelling | 26.947588 | 37.34352 |
Allobates zaparo | Anura | LC | Ground-dwelling | 25.757528 | 38.04492 |
Allopaa hazarensis | Anura | LC | Semi-aquatic | 14.589927 | 38.08046 |
Allophryne ruthveni | Anura | LC | Arboreal | 27.900675 | 38.52926 |
Alsodes australis | Anura | DD | Stream-dwelling | 10.577743 | 32.82909 |
Alsodes barrioi | Anura | EN | Stream-dwelling | 18.092293 | 33.55501 |
Alsodes gargola | Anura | LC | Semi-aquatic | 15.661694 | 33.37069 |
Alsodes hugoi | Anura | VU | Stream-dwelling | 14.537408 | 33.22947 |
Alsodes igneus | Anura | VU | Stream-dwelling | 17.368160 | 33.49634 |
Alsodes kaweshkari | Anura | DD | Semi-aquatic | 7.336478 | 32.97922 |
Alsodes montanus | Anura | VU | Stream-dwelling | 17.085973 | 33.58831 |
Alsodes monticola | Anura | DD | Stream-dwelling | 11.515858 | 32.92579 |
Alsodes nodosus | Anura | NT | Stream-dwelling | 18.981236 | 34.28596 |
Alsodes norae | Anura | EN | Semi-aquatic | 18.073200 | 34.40775 |
Alsodes pehuenche | Anura | CR | Stream-dwelling | 12.733881 | 32.78695 |
Alsodes tumultuosus | Anura | VU | Stream-dwelling | 18.662681 | 33.79152 |
Alsodes valdiviensis | Anura | EN | Semi-aquatic | 17.192536 | 34.55965 |
Alsodes vanzolinii | Anura | EN | Stream-dwelling | 17.799914 | 34.16364 |
Alsodes verrucosus | Anura | EN | Semi-aquatic | 16.381629 | 34.42344 |
Alsodes vittatus | Anura | DD | Stream-dwelling | 16.557126 | 33.62020 |
Altiphrynoides malcolmi | Anura | EN | Ground-dwelling | 19.684511 | 37.72988 |
Alytes cisternasii | Anura | LC | Ground-dwelling | 21.364012 | 36.49542 |
Alytes dickhilleni | Anura | EN | Ground-dwelling | 22.594227 | 37.36329 |
Alytes maurus | Anura | EN | Ground-dwelling | 22.121484 | 37.36057 |
Alytes muletensis | Anura | EN | Stream-dwelling | 23.507478 | 37.44535 |
Alytes obstetricans | Anura | LC | Ground-dwelling | 19.736880 | 36.14389 |
Amazophrynella bokermanni | Anura | LC | Ground-dwelling | 28.049575 | 38.95834 |
Amazophrynella minuta | Anura | LC | Ground-dwelling | 27.623350 | 38.80588 |
Ambystoma altamirani | Caudata | EN | Stream-dwelling | 20.209526 | 35.77932 |
Ambystoma amblycephalum | Caudata | CR | Semi-aquatic | 22.433401 | 37.04337 |
Ambystoma andersoni | Caudata | CR | Stream-dwelling | 22.433401 | 36.39309 |
Ambystoma annulatum | Caudata | LC | Fossorial | 25.079562 | 38.13816 |
Ambystoma barbouri | Caudata | NT | Ground-dwelling | 25.604403 | 37.39327 |
Ambystoma bishopi | Caudata | EN | Ground-dwelling | 28.185000 | 37.55902 |
Ambystoma californiense | Caudata | VU | Ground-dwelling | 19.999347 | 36.53515 |
Ambystoma cingulatum | Caudata | EN | Fossorial | 27.264308 | 38.38339 |
Ambystoma dumerilii | Caudata | CR | Aquatic | 22.433401 | 37.12875 |
Ambystoma flavipiperatum | Caudata | EN | Ground-dwelling | 24.471010 | 37.09704 |
Ambystoma gracile | Caudata | LC | Ground-dwelling | 16.224597 | 35.90710 |
Ambystoma granulosum | Caudata | EN | Aquatic | 22.543758 | 36.99498 |
Ambystoma jeffersonianum | Caudata | LC | Aquatic | 22.633651 | 36.60130 |
Ambystoma laterale | Caudata | LC | Ground-dwelling | 18.906708 | 36.19013 |
Ambystoma leorae | Caudata | CR | Aquatic | 21.930907 | 36.85315 |
Ambystoma lermaense | Caudata | EN | Aquatic | 22.202700 | 36.86151 |
Ambystoma mabeei | Caudata | LC | Ground-dwelling | 25.060467 | 37.67417 |
Ambystoma macrodactylum | Caudata | LC | Ground-dwelling | 15.969546 | 34.47822 |
Ambystoma maculatum | Caudata | LC | Ground-dwelling | 22.443331 | 37.36210 |
Ambystoma mavortium | Caudata | LC | Ground-dwelling | 20.563313 | 36.43171 |
Ambystoma mexicanum | Caudata | CR | Aquatic | 21.070217 | 36.98694 |
Ambystoma opacum | Caudata | LC | Ground-dwelling | 25.294028 | 37.75684 |
Ambystoma ordinarium | Caudata | EN | Ground-dwelling | 23.150337 | 37.03730 |
Ambystoma rivulare | Caudata | EN | Aquatic | 22.038399 | 37.19838 |
Ambystoma rosaceum | Caudata | LC | Semi-aquatic | 23.974936 | 37.43089 |
Ambystoma silvense | Caudata | DD | Aquatic | 23.230567 | 36.23587 |
Ambystoma talpoideum | Caudata | LC | Semi-aquatic | 27.085577 | 37.97717 |
Ambystoma taylori | Caudata | CR | Aquatic | 21.551792 | 36.81904 |
Ambystoma texanum | Caudata | LC | Semi-aquatic | 25.610459 | 37.58264 |
Ambystoma tigrinum | Caudata | LC | Ground-dwelling | 22.098493 | 37.23356 |
Ambystoma velasci | Caudata | LC | Ground-dwelling | 23.600746 | 36.89029 |
Ameerega bassleri | Anura | VU | Ground-dwelling | 23.844339 | 37.82231 |
Ameerega berohoka | Anura | LC | Ground-dwelling | 27.904869 | 38.46073 |
Ameerega bilinguis | Anura | LC | Ground-dwelling | 26.736616 | 38.27586 |
Ameerega boliviana | Anura | NT | Ground-dwelling | 20.217030 | 37.40230 |
Ameerega braccata | Anura | LC | Ground-dwelling | 28.340957 | 38.50616 |
Ameerega cainarachi | Anura | EN | Stream-dwelling | 24.549794 | 37.43202 |
Ameerega flavopicta | Anura | LC | Stream-dwelling | 27.083582 | 37.73705 |
Ameerega hahneli | Anura | LC | Ground-dwelling | 27.792350 | 38.74487 |
Ameerega macero | Anura | LC | Ground-dwelling | 23.253479 | 37.79831 |
Ameerega parvula | Anura | LC | Ground-dwelling | 26.551563 | 38.22459 |
Ameerega petersi | Anura | LC | Ground-dwelling | 24.618155 | 38.03778 |
Ameerega picta | Anura | LC | Ground-dwelling | 27.754778 | 38.53271 |
Ameerega planipaleae | Anura | CR | Stream-dwelling | 21.293309 | 36.94278 |
Ameerega pongoensis | Anura | VU | Stream-dwelling | 25.117167 | 37.41512 |
Ameerega pulchripecta | Anura | LC | Ground-dwelling | 27.462954 | 38.45460 |
Ameerega rubriventris | Anura | EN | Ground-dwelling | 23.734104 | 37.85074 |
Ameerega silverstonei | Anura | EN | Ground-dwelling | 24.078841 | 37.80190 |
Ameerega simulans | Anura | LC | Ground-dwelling | 20.656135 | 37.46586 |
Ameerega smaragdina | Anura | DD | Ground-dwelling | 21.293309 | 37.56870 |
Ameerega trivittata | Anura | LC | Ground-dwelling | 27.930350 | 39.17997 |
Ameerega yungicola | Anura | LC | Ground-dwelling | 20.255892 | 37.38366 |
Amietia angolensis | Anura | LC | Semi-aquatic | 24.783454 | 37.64339 |
Amietia desaegeri | Anura | LC | Semi-aquatic | 24.100171 | 37.60000 |
Amietia fuscigula | Anura | LC | Semi-aquatic | 20.948960 | 37.23441 |
Amietia inyangae | Anura | EN | Stream-dwelling | 24.369951 | 36.76699 |
Amietia johnstoni | Anura | EN | Stream-dwelling | 25.902836 | 36.92308 |
Amietia ruwenzorica | Anura | LC | Stream-dwelling | 24.199112 | 36.65278 |
Amietia tenuoplicata | Anura | LC | Stream-dwelling | 23.553261 | 36.65452 |
Amietia vandijki | Anura | LC | Stream-dwelling | 21.466944 | 36.43746 |
Amietia vertebralis | Anura | LC | Aquatic | 21.036443 | 37.06254 |
Amietia wittei | Anura | LC | Stream-dwelling | 21.761097 | 36.34462 |
Amolops aniqiaoensis | Anura | VU | Stream-dwelling | 16.407198 | 35.34528 |
Amolops archotaphus | Anura | DD | Stream-dwelling | 25.801584 | 36.54072 |
Amolops assamensis | Anura | DD | Stream-dwelling | 26.496517 | 36.74578 |
Amolops bellulus | Anura | NT | Stream-dwelling | 19.974615 | 35.82978 |
Amolops chakrataensis | Anura | DD | Stream-dwelling | 21.310879 | 35.98062 |
Amolops chunganensis | Anura | LC | Ground-dwelling | 24.171973 | 37.04490 |
Amolops compotrix | Anura | LC | Stream-dwelling | 28.255801 | 36.96288 |
Amolops cremnobatus | Anura | LC | Stream-dwelling | 27.466505 | 36.86503 |
Amolops cucae | Anura | EN | Stream-dwelling | 26.053406 | 36.57060 |
Amolops daiyunensis | Anura | NT | Stream-dwelling | 27.426601 | 36.73464 |
Amolops formosus | Anura | LC | Stream-dwelling | 19.667443 | 35.81013 |
Amolops gerbillus | Anura | LC | Stream-dwelling | 20.823024 | 35.94965 |
Amolops granulosus | Anura | LC | Ground-dwelling | 21.705572 | 36.60420 |
Amolops hainanensis | Anura | EN | Stream-dwelling | 28.158168 | 36.86117 |
Amolops hongkongensis | Anura | EN | Stream-dwelling | 27.639777 | 36.85741 |
Amolops iriodes | Anura | DD | Ground-dwelling | 26.549996 | 37.45584 |
Amolops jaunsari | Anura | DD | Stream-dwelling | 21.379239 | 36.01324 |
Amolops jinjiangensis | Anura | LC | Stream-dwelling | 16.833293 | 35.37508 |
Amolops kaulbacki | Anura | DD | Stream-dwelling | 19.132514 | 35.67207 |
Amolops larutensis | Anura | LC | Stream-dwelling | 28.254075 | 36.97310 |
Amolops lifanensis | Anura | LC | Stream-dwelling | 19.088235 | 35.67388 |
Amolops loloensis | Anura | VU | Stream-dwelling | 20.605681 | 35.86525 |
Amolops longimanus | Anura | DD | Ground-dwelling | 22.531459 | 36.79993 |
Amolops mantzorum | Anura | LC | Stream-dwelling | 18.240503 | 35.57553 |
Amolops marmoratus | Anura | LC | Stream-dwelling | 23.174010 | 36.31583 |
Amolops medogensis | Anura | EN | Stream-dwelling | 16.407198 | 35.41973 |
Amolops mengyangensis | Anura | DD | Stream-dwelling | 23.285533 | 36.20456 |
Amolops minutus | Anura | EN | Stream-dwelling | 25.706256 | 36.62723 |
Amolops monticola | Anura | LC | Stream-dwelling | 17.331147 | 35.39912 |
Amolops panhai | Anura | LC | Stream-dwelling | 28.537267 | 36.94186 |
Amolops ricketti | Anura | LC | Stream-dwelling | 27.385424 | 36.85241 |
Amolops spinapectoralis | Anura | LC | Stream-dwelling | 28.081695 | 36.92903 |
Amolops splendissimus | Anura | VU | Stream-dwelling | 25.524024 | 36.61724 |
Amolops torrentis | Anura | VU | Stream-dwelling | 28.158168 | 36.86942 |
Amolops tuberodepressus | Anura | VU | Stream-dwelling | 22.882467 | 36.18213 |
Amolops viridimaculatus | Anura | LC | Stream-dwelling | 21.023108 | 36.01733 |
Amolops vitreus | Anura | VU | Stream-dwelling | 24.839179 | 36.43652 |
Amolops wuyiensis | Anura | LC | Stream-dwelling | 27.081775 | 36.81954 |
Amphiuma means | Caudata | LC | Aquatic | 27.051725 | 36.72320 |
Amphiuma pholeter | Caudata | NT | Aquatic | 28.045080 | 36.97124 |
Amphiuma tridactylum | Caudata | LC | Semi-aquatic | 27.437190 | 37.36525 |
Anaxyrus americanus | Anura | LC | Ground-dwelling | 19.437975 | 38.94980 |
Anaxyrus boreas | Anura | LC | Ground-dwelling | 16.131054 | 37.09030 |
Anaxyrus californicus | Anura | EN | Ground-dwelling | 21.407108 | 38.62474 |
Anaxyrus canorus | Anura | VU | Ground-dwelling | 18.475797 | 37.58671 |
Anaxyrus cognatus | Anura | LC | Fossorial | 21.891636 | 40.70719 |
Anaxyrus compactilis | Anura | LC | Fossorial | 23.329664 | 38.31282 |
Anaxyrus debilis | Anura | LC | Fossorial | 23.639236 | 40.27481 |
Anaxyrus exsul | Anura | VU | Ground-dwelling | 20.008940 | 37.56700 |
Anaxyrus fowleri | Anura | LC | Ground-dwelling | 24.684565 | 38.68819 |
Anaxyrus hemiophrys | Anura | LC | Ground-dwelling | 18.890723 | 38.42907 |
Anaxyrus houstonensis | Anura | CR | Ground-dwelling | 27.255792 | 39.47409 |
Anaxyrus kelloggi | Anura | LC | Ground-dwelling | 25.305430 | 39.12746 |
Anaxyrus mexicanus | Anura | LC | Ground-dwelling | 23.971402 | 38.98031 |
Anaxyrus microscaphus | Anura | LC | Ground-dwelling | 20.570728 | 38.45710 |
Anaxyrus nelsoni | Anura | CR | Ground-dwelling | 19.670812 | 37.43562 |
Anaxyrus punctatus | Anura | LC | Fossorial | 22.924643 | 40.25089 |
Anaxyrus quercicus | Anura | LC | Ground-dwelling | 27.015115 | 39.34868 |
Anaxyrus retiformis | Anura | LC | Fossorial | 24.132993 | 40.70314 |
Anaxyrus speciosus | Anura | LC | Fossorial | 24.472267 | 40.01324 |
Anaxyrus terrestris | Anura | LC | Fossorial | 27.089481 | 39.24333 |
Anaxyrus woodhousii | Anura | LC | Fossorial | 21.967853 | 39.76147 |
Andinobates altobueyensis | Anura | DD | Ground-dwelling | 26.784389 | 37.34244 |
Andinobates bombetes | Anura | VU | Ground-dwelling | 23.588316 | 36.93904 |
Andinobates claudiae | Anura | DD | Ground-dwelling | 27.943292 | 37.46307 |
Andinobates daleswansoni | Anura | EN | Ground-dwelling | 24.273090 | 36.91445 |
Andinobates dorisswansonae | Anura | VU | Ground-dwelling | 23.325958 | 36.88097 |
Andinobates fulguritus | Anura | LC | Ground-dwelling | 26.380959 | 37.33823 |
Andinobates minutus | Anura | LC | Ground-dwelling | 26.651260 | 37.27408 |
Andinobates opisthomelas | Anura | VU | Ground-dwelling | 24.838052 | 37.13616 |
Andinobates tolimensis | Anura | VU | Ground-dwelling | 23.325958 | 36.92022 |
Andinobates virolinensis | Anura | VU | Ground-dwelling | 24.077466 | 36.99981 |
Andrias davidianus | Caudata | CR | Aquatic | 25.555638 | 36.17504 |
Andrias japonicus | Caudata | VU | Stream-dwelling | 25.277977 | 35.31699 |
Aneides aeneus | Caudata | NT | Ground-dwelling | 25.307443 | 34.12264 |
Aneides ferreus | Caudata | LC | Ground-dwelling | 18.268632 | 33.47621 |
Aneides flavipunctatus | Caudata | LC | Ground-dwelling | 17.799062 | 33.48912 |
Aneides hardii | Caudata | NT | Ground-dwelling | 21.523079 | 33.95467 |
Aneides lugubris | Caudata | LC | Arboreal | 19.788891 | 33.63134 |
Aneides vagrans | Caudata | LC | Ground-dwelling | 16.053921 | 33.30115 |
Anhydrophryne hewitti | Anura | LC | Ground-dwelling | 22.342524 | 37.03377 |
Anhydrophryne ngongoniensis | Anura | EN | Ground-dwelling | 21.759956 | 37.02551 |
Anhydrophryne rattrayi | Anura | VU | Ground-dwelling | 20.611452 | 36.82611 |
Anodonthyla boulengerii | Anura | NT | Arboreal | 25.855889 | 37.92700 |
Anodonthyla emilei | Anura | EN | Arboreal | 25.878849 | 37.95145 |
Anodonthyla hutchisoni | Anura | EN | Arboreal | 26.773003 | 37.97053 |
Anodonthyla jeanbai | Anura | EN | Arboreal | 25.850762 | 37.84056 |
Anodonthyla montana | Anura | VU | Arboreal | 26.326721 | 38.00952 |
Anodonthyla moramora | Anura | EN | Arboreal | 25.878849 | 37.88613 |
Anodonthyla nigrigularis | Anura | EN | Arboreal | 25.641574 | 37.85173 |
Anodonthyla pollicaris | Anura | DD | Arboreal | 24.925297 | 37.74798 |
Anodonthyla rouxae | Anura | EN | Arboreal | 26.004297 | 37.97428 |
Anodonthyla theoi | Anura | CR | Arboreal | 26.568359 | 37.96014 |
Anodonthyla vallani | Anura | CR | Arboreal | 25.873667 | 37.84325 |
Anomaloglossus ayarzaguenai | Anura | VU | Stream-dwelling | 25.633941 | 36.51181 |
Anomaloglossus baeobatrachus | Anura | DD | Ground-dwelling | 27.782474 | 37.49277 |
Anomaloglossus beebei | Anura | EN | Arboreal | 26.912428 | 37.16703 |
Anomaloglossus breweri | Anura | NT | Semi-aquatic | 25.977024 | 37.47837 |
Anomaloglossus degranvillei | Anura | CR | Stream-dwelling | 27.946998 | 36.94437 |
Anomaloglossus guanayensis | Anura | NT | Stream-dwelling | 26.985548 | 36.78979 |
Anomaloglossus kaiei | Anura | EN | Ground-dwelling | 26.912428 | 37.41780 |
Anomaloglossus murisipanensis | Anura | VU | Ground-dwelling | 25.977024 | 37.23037 |
Anomaloglossus parimae | Anura | DD | Stream-dwelling | 26.218949 | 36.69732 |
Anomaloglossus parkerae | Anura | DD | Ground-dwelling | 25.810804 | 37.17219 |
Anomaloglossus praderioi | Anura | EN | Ground-dwelling | 26.671496 | 37.40590 |
Anomaloglossus roraima | Anura | EN | Ground-dwelling | 26.671496 | 37.34000 |
Anomaloglossus rufulus | Anura | NT | Ground-dwelling | 25.619235 | 37.18781 |
Anomaloglossus shrevei | Anura | NT | Stream-dwelling | 25.966820 | 36.62712 |
Anomaloglossus stepheni | Anura | LC | Ground-dwelling | 28.695109 | 37.68629 |
Anomaloglossus tamacuarensis | Anura | DD | Stream-dwelling | 27.246851 | 36.80795 |
Anomaloglossus tepuyensis | Anura | DD | Stream-dwelling | 26.143635 | 36.64279 |
Anomaloglossus triunfo | Anura | DD | Stream-dwelling | 26.310247 | 36.64516 |
Anomaloglossus wothuja | Anura | LC | Stream-dwelling | 27.917613 | 36.87274 |
Ansonia albomaculata | Anura | LC | Ground-dwelling | 27.632204 | 39.02128 |
Ansonia endauensis | Anura | NT | Stream-dwelling | 28.737514 | 38.67313 |
Ansonia fuliginea | Anura | LC | Ground-dwelling | 27.189560 | 38.98302 |
Ansonia glandulosa | Anura | LC | Stream-dwelling | 28.629805 | 38.55626 |
Ansonia hanitschi | Anura | LC | Ground-dwelling | 27.625883 | 38.96231 |
Ansonia inthanon | Anura | LC | Stream-dwelling | 27.603657 | 38.46262 |
Ansonia jeetsukumarani | Anura | VU | Stream-dwelling | 27.683081 | 38.42392 |
Ansonia kraensis | Anura | LC | Stream-dwelling | 28.407510 | 38.44927 |
Ansonia latidisca | Anura | EN | Arboreal | 27.992958 | 38.89438 |
Ansonia latiffi | Anura | NT | Stream-dwelling | 28.504789 | 38.54554 |
Ansonia latirostra | Anura | DD | Arboreal | 28.738896 | 39.10406 |
Ansonia longidigita | Anura | LC | Ground-dwelling | 27.947861 | 39.07891 |
Ansonia malayana | Anura | LC | Stream-dwelling | 28.105097 | 38.60781 |
Ansonia mcgregori | Anura | LC | Stream-dwelling | 27.520314 | 38.49733 |
Ansonia minuta | Anura | LC | Stream-dwelling | 28.311981 | 38.51637 |
Ansonia muelleri | Anura | LC | Stream-dwelling | 27.694014 | 38.46792 |
Ansonia platysoma | Anura | LC | Stream-dwelling | 27.138200 | 38.30799 |
Ansonia siamensis | Anura | EN | Stream-dwelling | 27.716765 | 38.37112 |
Ansonia spinulifer | Anura | LC | Ground-dwelling | 28.100047 | 39.00336 |
Ansonia thinthinae | Anura | EN | Stream-dwelling | 27.755283 | 38.44179 |
Ansonia tiomanica | Anura | LC | Stream-dwelling | 28.772152 | 38.53174 |
Ansonia torrentis | Anura | LC | Stream-dwelling | 27.227495 | 38.35259 |
Aphantophryne minuta | Anura | LC | Ground-dwelling | 26.923029 | 35.35487 |
Aphantophryne pansa | Anura | LC | Ground-dwelling | 26.322432 | 35.28173 |
Aphantophryne sabini | Anura | LC | Ground-dwelling | 28.037156 | 35.51209 |
Aplastodiscus albofrenatus | Anura | LC | Arboreal | 26.019422 | 38.73508 |
Aplastodiscus albosignatus | Anura | LC | Arboreal | 25.461996 | 39.09573 |
Aplastodiscus arildae | Anura | LC | Arboreal | 25.897058 | 38.56318 |
Aplastodiscus callipygius | Anura | LC | Arboreal | 25.796172 | 39.08464 |
Aplastodiscus cavicola | Anura | NT | Arboreal | 25.736999 | 39.10134 |
Aplastodiscus cochranae | Anura | LC | Arboreal | 24.666127 | 38.90662 |
Aplastodiscus ehrhardti | Anura | LC | Arboreal | 24.565783 | 38.88788 |
Aplastodiscus eugenioi | Anura | NT | Arboreal | 25.663609 | 38.70978 |
Aplastodiscus flumineus | Anura | DD | Arboreal | 26.561451 | 39.09225 |
Aplastodiscus ibirapitanga | Anura | LC | Arboreal | 25.401274 | 39.58215 |
Aplastodiscus leucopygius | Anura | LC | Arboreal | 26.020919 | 39.08469 |
Aplastodiscus musicus | Anura | DD | Arboreal | 26.561451 | 39.09064 |
Aplastodiscus perviridis | Anura | LC | Arboreal | 26.182734 | 39.09679 |
Aplastodiscus sibilatus | Anura | DD | Arboreal | 25.142042 | 37.80260 |
Aplastodiscus weygoldti | Anura | NT | Arboreal | 25.677963 | 38.20336 |
Arcovomer passarellii | Anura | LC | Ground-dwelling | 25.718208 | 39.68943 |
Arenophryne rotunda | Anura | LC | Fossorial | 24.341993 | 37.06564 |
Arlequinus krebsi | Anura | EN | Arboreal | 26.437601 | 40.43178 |
Aromobates capurinensis | Anura | DD | Stream-dwelling | 25.673615 | 36.67437 |
Aromobates duranti | Anura | CR | Stream-dwelling | 25.673615 | 36.59987 |
Aromobates mayorgai | Anura | EN | Stream-dwelling | 26.315006 | 36.66920 |
Aromobates meridensis | Anura | CR | Stream-dwelling | 25.673615 | 36.65707 |
Aromobates molinarii | Anura | CR | Stream-dwelling | 25.673615 | 36.55949 |
Aromobates orostoma | Anura | CR | Stream-dwelling | 25.673615 | 36.61981 |
Aromobates saltuensis | Anura | EN | Stream-dwelling | 24.801343 | 36.41331 |
Arthroleptella bicolor | Anura | LC | Ground-dwelling | 20.334999 | 36.93182 |
Arthroleptella drewesii | Anura | NT | Stream-dwelling | 20.081240 | 36.36446 |
Arthroleptella landdrosia | Anura | NT | Ground-dwelling | 20.760458 | 37.02789 |
Arthroleptella lightfooti | Anura | NT | Ground-dwelling | 21.185918 | 37.11783 |
Arthroleptella rugosa | Anura | CR | Ground-dwelling | 20.081240 | 36.94361 |
Arthroleptella subvoce | Anura | CR | Ground-dwelling | 20.750387 | 36.96103 |
Arthroleptella villiersi | Anura | LC | Ground-dwelling | 20.760458 | 37.00078 |
Arthroleptides martiensseni | Anura | EN | Stream-dwelling | 25.085794 | 36.75974 |
Arthroleptides yakusini | Anura | EN | Stream-dwelling | 23.610604 | 36.60895 |
Arthroleptis adelphus | Anura | LC | Ground-dwelling | 27.297887 | 39.13951 |
Arthroleptis adolfifriederici | Anura | LC | Ground-dwelling | 22.554502 | 38.45415 |
Arthroleptis affinis | Anura | LC | Ground-dwelling | 23.564158 | 38.69995 |
Arthroleptis anotis | Anura | DD | Ground-dwelling | 23.549259 | 38.63458 |
Arthroleptis aureoli | Anura | NT | Stream-dwelling | 27.600884 | 38.39571 |
Arthroleptis bioko | Anura | EN | Ground-dwelling | 26.388381 | 39.00536 |
Arthroleptis bivittatus | Anura | DD | Ground-dwelling | 27.571212 | 39.17814 |
Arthroleptis brevipes | Anura | DD | Ground-dwelling | 28.531313 | 39.27297 |
Arthroleptis carquejai | Anura | DD | Ground-dwelling | 25.398624 | 38.80172 |
Arthroleptis crusculum | Anura | NT | Ground-dwelling | 27.693138 | 39.07995 |
Arthroleptis fichika | Anura | EN | Ground-dwelling | 25.090940 | 38.80752 |
Arthroleptis formosus | Anura | DD | Ground-dwelling | 28.021273 | 38.98821 |
Arthroleptis francei | Anura | VU | Ground-dwelling | 26.095628 | 38.96260 |
Arthroleptis hematogaster | Anura | DD | Ground-dwelling | 24.207253 | 38.61926 |
Arthroleptis kidogo | Anura | CR | Ground-dwelling | 24.229692 | 38.76996 |
Arthroleptis krokosua | Anura | CR | Ground-dwelling | 27.827392 | 39.16161 |
Arthroleptis kutogundua | Anura | CR | Ground-dwelling | 21.612409 | 38.36600 |
Arthroleptis lameerei | Anura | LC | Ground-dwelling | 25.322604 | 38.87011 |
Arthroleptis langeri | Anura | EN | Ground-dwelling | 27.537570 | 39.09239 |
Arthroleptis lonnbergi | Anura | DD | Ground-dwelling | 24.800427 | 38.76672 |
Arthroleptis loveridgei | Anura | DD | Ground-dwelling | 26.161874 | 38.96307 |
Arthroleptis mossoensis | Anura | DD | Ground-dwelling | 23.371271 | 38.58360 |
Arthroleptis nguruensis | Anura | VU | Ground-dwelling | 24.229692 | 38.82192 |
Arthroleptis nikeae | Anura | CR | Ground-dwelling | 23.164809 | 38.58320 |
Arthroleptis nimbaensis | Anura | DD | Ground-dwelling | 27.635550 | 39.10210 |
Arthroleptis nlonakoensis | Anura | EN | Ground-dwelling | 26.446823 | 38.94580 |
Arthroleptis palava | Anura | LC | Ground-dwelling | 26.519367 | 39.02444 |
Arthroleptis perreti | Anura | EN | Ground-dwelling | 27.125406 | 39.10537 |
Arthroleptis phrynoides | Anura | DD | Ground-dwelling | 27.947324 | 39.13095 |
Arthroleptis poecilonotus | Anura | LC | Ground-dwelling | 27.518019 | 39.14834 |
Arthroleptis pyrrhoscelis | Anura | LC | Ground-dwelling | 23.921618 | 38.62490 |
Arthroleptis reichei | Anura | LC | Ground-dwelling | 22.875574 | 38.47452 |
Arthroleptis schubotzi | Anura | LC | Ground-dwelling | 23.123362 | 38.55252 |
Arthroleptis spinalis | Anura | DD | Ground-dwelling | 23.463978 | 38.66552 |
Arthroleptis stenodactylus | Anura | LC | Ground-dwelling | 24.712829 | 38.75798 |
Arthroleptis stridens | Anura | DD | Ground-dwelling | 25.085794 | 38.75966 |
Arthroleptis sylvaticus | Anura | LC | Ground-dwelling | 27.557642 | 39.20348 |
Arthroleptis taeniatus | Anura | LC | Ground-dwelling | 27.500044 | 39.01982 |
Arthroleptis tanneri | Anura | EN | Ground-dwelling | 25.090940 | 38.78991 |
Arthroleptis troglodytes | Anura | CR | Ground-dwelling | 25.633273 | 38.82636 |
Arthroleptis tuberosus | Anura | DD | Ground-dwelling | 27.432377 | 39.05102 |
Arthroleptis variabilis | Anura | LC | Ground-dwelling | 27.506001 | 39.10835 |
Arthroleptis vercammeni | Anura | DD | Ground-dwelling | 24.550522 | 38.66920 |
Arthroleptis wahlbergii | Anura | LC | Ground-dwelling | 22.810637 | 38.44647 |
Arthroleptis xenochirus | Anura | LC | Ground-dwelling | 24.413328 | 38.82651 |
Arthroleptis xenodactyloides | Anura | LC | Ground-dwelling | 24.832967 | 38.86961 |
Arthroleptis xenodactylus | Anura | EN | Ground-dwelling | 25.085794 | 38.83069 |
Arthroleptis zimmeri | Anura | DD | Ground-dwelling | 27.227980 | 39.04184 |
Ascaphus montanus | Anura | LC | Stream-dwelling | 17.475081 | 31.52563 |
Ascaphus truei | Anura | LC | Stream-dwelling | 16.605578 | 31.05533 |
Assa darlingtoni | Anura | LC | Ground-dwelling | 23.359177 | 34.75425 |
Asterophrys leucopus | Anura | LC | Ground-dwelling | 27.343824 | 35.46587 |
Asterophrys turpicola | Anura | LC | Ground-dwelling | 27.293219 | 35.50532 |
Astylosternus batesi | Anura | LC | Ground-dwelling | 27.595345 | 39.12875 |
Astylosternus diadematus | Anura | LC | Stream-dwelling | 26.771745 | 38.38640 |
Astylosternus fallax | Anura | VU | Stream-dwelling | 27.025561 | 38.49076 |
Astylosternus laticephalus | Anura | NT | Ground-dwelling | 27.566236 | 39.08498 |
Astylosternus laurenti | Anura | EN | Stream-dwelling | 26.905359 | 38.49969 |
Astylosternus montanus | Anura | LC | Stream-dwelling | 26.467810 | 38.34101 |
Astylosternus nganhanus | Anura | CR | Ground-dwelling | 26.479731 | 38.97767 |
Astylosternus occidentalis | Anura | LC | Ground-dwelling | 27.650950 | 39.11024 |
Astylosternus perreti | Anura | EN | Stream-dwelling | 26.644872 | 38.41388 |
Astylosternus ranoides | Anura | EN | Ground-dwelling | 26.186967 | 38.91237 |
Astylosternus rheophilus | Anura | NT | Stream-dwelling | 26.573552 | 38.36081 |
Astylosternus schioetzi | Anura | EN | Stream-dwelling | 26.869052 | 38.41723 |
Atelognathus ceii | Anura | DD | Semi-aquatic | 12.011296 | 35.38200 |
Atelognathus nitoi | Anura | VU | Semi-aquatic | 15.827908 | 36.02434 |
Atelognathus patagonicus | Anura | CR | Semi-aquatic | 17.470295 | 36.22044 |
Atelognathus praebasalticus | Anura | EN | Ground-dwelling | 17.791261 | 36.07950 |
Atelognathus reverberii | Anura | VU | Semi-aquatic | 16.331137 | 36.13535 |
Atelognathus salai | Anura | LC | Semi-aquatic | 11.844156 | 35.48592 |
Atelognathus solitarius | Anura | DD | Ground-dwelling | 15.404470 | 35.68518 |
Atelopus andinus | Anura | EN | Stream-dwelling | 24.479751 | 37.22993 |
Atelopus arsyecue | Anura | CR | Stream-dwelling | 25.584086 | 37.41383 |
Atelopus balios | Anura | CR | Stream-dwelling | 26.948386 | 37.66224 |
Atelopus bomolochos | Anura | CR | Stream-dwelling | 25.876801 | 37.44732 |
Atelopus carauta | Anura | DD | Stream-dwelling | 26.439037 | 37.53638 |
Atelopus carrikeri | Anura | EN | Stream-dwelling | 25.584086 | 37.42113 |
Atelopus certus | Anura | CR | Stream-dwelling | 26.979060 | 37.62212 |
Atelopus chirripoensis | Anura | DD | Ground-dwelling | 17.152122 | 36.89386 |
Atelopus chrysocorallus | Anura | CR | Stream-dwelling | 26.854615 | 37.53980 |
Atelopus coynei | Anura | CR | Stream-dwelling | 20.760710 | 36.80661 |
Atelopus cruciger | Anura | CR | Stream-dwelling | 27.121618 | 37.59342 |
Atelopus dimorphus | Anura | DD | Stream-dwelling | 23.639051 | 37.08908 |
Atelopus elegans | Anura | EN | Stream-dwelling | 23.729301 | 36.13381 |
Atelopus epikeisthos | Anura | EN | Stream-dwelling | 23.472623 | 37.12119 |
Atelopus exiguus | Anura | EN | Stream-dwelling | 24.212864 | 37.31757 |
Atelopus famelicus | Anura | CR | Stream-dwelling | 25.763603 | 37.40915 |
Atelopus flavescens | Anura | VU | Stream-dwelling | 27.127543 | 37.51209 |
Atelopus franciscus | Anura | LC | Stream-dwelling | 27.284011 | 37.53439 |
Atelopus galactogaster | Anura | DD | Stream-dwelling | 26.170801 | 37.45271 |
Atelopus glyphus | Anura | CR | Stream-dwelling | 27.251842 | 37.73344 |
Atelopus guitarraensis | Anura | DD | Stream-dwelling | 23.902018 | 37.20909 |
Atelopus ignescens | Anura | CR | Stream-dwelling | 21.736140 | 36.87885 |
Atelopus laetissimus | Anura | EN | Stream-dwelling | 27.127537 | 37.62669 |
Atelopus limosus | Anura | CR | Stream-dwelling | 27.298692 | 37.76606 |
Atelopus longibrachius | Anura | EN | Stream-dwelling | 25.851729 | 37.41471 |
Atelopus longirostris | Anura | CR | Stream-dwelling | 20.760710 | 36.77902 |
Atelopus lozanoi | Anura | EN | Stream-dwelling | 22.707356 | 37.08422 |
Atelopus mandingues | Anura | DD | Stream-dwelling | 22.776145 | 37.05705 |
Atelopus mittermeieri | Anura | EN | Stream-dwelling | 22.327385 | 36.98341 |
Atelopus mucubajiensis | Anura | CR | Stream-dwelling | 26.956396 | 37.56652 |
Atelopus muisca | Anura | CR | Stream-dwelling | 22.776145 | 36.98875 |
Atelopus nahumae | Anura | EN | Stream-dwelling | 26.910833 | 37.54423 |
Atelopus nanay | Anura | CR | Stream-dwelling | 26.948386 | 37.59769 |
Atelopus nepiozomus | Anura | EN | Stream-dwelling | 23.017328 | 37.06648 |
Atelopus oxapampae | Anura | EN | Stream-dwelling | 21.293309 | 36.88469 |
Atelopus palmatus | Anura | CR | Stream-dwelling | 22.391675 | 36.94306 |
Atelopus podocarpus | Anura | CR | Stream-dwelling | 23.195043 | 37.10949 |
Atelopus pulcher | Anura | VU | Stream-dwelling | 23.480464 | 37.15728 |
Atelopus pyrodactylus | Anura | CR | Stream-dwelling | 22.692835 | 37.00079 |
Atelopus reticulatus | Anura | DD | Stream-dwelling | 23.639051 | 37.10944 |
Atelopus sanjosei | Anura | CR | Stream-dwelling | 25.895034 | 37.47202 |
Atelopus seminiferus | Anura | EN | Stream-dwelling | 23.128864 | 37.12944 |
Atelopus simulatus | Anura | CR | Ground-dwelling | 22.265123 | 37.53058 |
Atelopus siranus | Anura | DD | Stream-dwelling | 22.825311 | 36.95470 |
Atelopus spumarius | Anura | VU | Stream-dwelling | 27.754105 | 36.97011 |
Atelopus spurrelli | Anura | NT | Stream-dwelling | 25.953687 | 37.40951 |
Atelopus tricolor | Anura | CR | Stream-dwelling | 21.367657 | 37.00582 |
Atelopus varius | Anura | CR | Stream-dwelling | 26.140631 | 37.49324 |
Atelopus walkeri | Anura | DD | Stream-dwelling | 26.018926 | 37.47385 |
Atopophrynus syntomopus | Anura | CR | Stream-dwelling | 23.046042 | 33.71120 |
Aubria masako | Anura | LC | Semi-aquatic | 27.892545 | 38.09856 |
Aubria occidentalis | Anura | LC | Semi-aquatic | 27.693214 | 38.10864 |
Aubria subsigillata | Anura | LC | Semi-aquatic | 27.630789 | 38.16471 |
Austrochaperina adamantina | Anura | NT | Ground-dwelling | 26.680670 | 35.35959 |
Austrochaperina adelphe | Anura | LC | Ground-dwelling | 28.538996 | 35.58259 |
Austrochaperina aquilonia | Anura | NT | Ground-dwelling | 26.680670 | 35.41954 |
Austrochaperina archboldi | Anura | DD | Ground-dwelling | 27.404249 | 35.47581 |
Austrochaperina basipalmata | Anura | LC | Stream-dwelling | 26.733425 | 34.79702 |
Austrochaperina blumi | Anura | LC | Ground-dwelling | 25.609209 | 35.24424 |
Austrochaperina brevipes | Anura | DD | Ground-dwelling | 26.923029 | 35.45788 |
Austrochaperina derongo | Anura | LC | Ground-dwelling | 26.583634 | 35.16890 |
Austrochaperina fryi | Anura | LC | Ground-dwelling | 26.621351 | 35.34964 |
Austrochaperina gracilipes | Anura | LC | Ground-dwelling | 27.892259 | 35.48968 |
Austrochaperina hooglandi | Anura | LC | Ground-dwelling | 27.067330 | 35.43852 |
Austrochaperina kosarek | Anura | DD | Ground-dwelling | 26.375358 | 35.31942 |
Austrochaperina macrorhyncha | Anura | LC | Stream-dwelling | 26.870165 | 34.70748 |
Austrochaperina mehelyi | Anura | LC | Ground-dwelling | 26.519185 | 35.27069 |
Austrochaperina minutissima | Anura | DD | Ground-dwelling | 28.031168 | 35.62525 |
Austrochaperina novaebritanniae | Anura | VU | Ground-dwelling | 28.131049 | 35.52848 |
Austrochaperina palmipes | Anura | LC | Stream-dwelling | 27.169237 | 34.74356 |
Austrochaperina parkeri | Anura | DD | Ground-dwelling | 27.078714 | 35.42617 |
Austrochaperina pluvialis | Anura | LC | Ground-dwelling | 26.156668 | 35.26109 |
Austrochaperina polysticta | Anura | DD | Ground-dwelling | 26.251026 | 35.20556 |
Austrochaperina rivularis | Anura | LC | Semi-aquatic | 27.456544 | 35.71878 |
Austrochaperina robusta | Anura | LC | Ground-dwelling | 25.452157 | 35.08667 |
Austrochaperina septentrionalis | Anura | LC | Ground-dwelling | 26.472942 | 35.35414 |
Austrochaperina yelaensis | Anura | LC | Ground-dwelling | 27.553773 | 35.58010 |
Babina holsti | Anura | EN | Semi-aquatic | 27.580119 | 37.14617 |
Babina subaspera | Anura | EN | Ground-dwelling | 27.216885 | 36.84746 |
Balebreviceps hillmani | Anura | CR | Ground-dwelling | 20.234697 | 37.49721 |
Barbarophryne brongersmai | Anura | LC | Ground-dwelling | 22.431698 | 38.51438 |
Barbourula busuangensis | Anura | NT | Aquatic | 27.846436 | 37.51143 |
Barbourula kalimantanensis | Anura | EN | Aquatic | 29.336636 | 37.56042 |
Barycholos pulcher | Anura | LC | Ground-dwelling | 25.221183 | 32.50409 |
Barycholos ternetzi | Anura | LC | Ground-dwelling | 27.253490 | 32.71612 |
Barygenys atra | Anura | LC | Ground-dwelling | 27.170143 | 35.41202 |
Barygenys cheesmanae | Anura | DD | Ground-dwelling | 25.808903 | 35.22765 |
Barygenys exsul | Anura | LC | Ground-dwelling | 27.553773 | 35.47455 |
Barygenys flavigularis | Anura | DD | Ground-dwelling | 27.123724 | 35.44752 |
Barygenys maculata | Anura | LC | Ground-dwelling | 27.607723 | 35.57605 |
Barygenys nana | Anura | LC | Ground-dwelling | 26.092828 | 35.27304 |
Barygenys parvula | Anura | NT | Ground-dwelling | 26.903425 | 35.38585 |
Batrachoseps attenuatus | Caudata | LC | Ground-dwelling | 19.062249 | 34.54276 |
Batrachoseps campi | Caudata | NT | Ground-dwelling | 18.247349 | 34.54463 |
Batrachoseps diabolicus | Caudata | DD | Ground-dwelling | 20.474355 | 34.71138 |
Batrachoseps gabrieli | Caudata | DD | Ground-dwelling | 20.322920 | 34.67462 |
Batrachoseps gavilanensis | Caudata | LC | Ground-dwelling | 19.834503 | 34.60404 |
Batrachoseps gregarius | Caudata | LC | Ground-dwelling | 19.282231 | 34.51679 |
Batrachoseps incognitus | Caudata | DD | Ground-dwelling | 19.514781 | 34.62037 |
Batrachoseps kawia | Caudata | NT | Ground-dwelling | 16.085801 | 34.14434 |
Batrachoseps luciae | Caudata | LC | Ground-dwelling | 19.452318 | 34.54507 |
Batrachoseps major | Caudata | LC | Ground-dwelling | 21.538060 | 34.84094 |
Batrachoseps minor | Caudata | DD | Ground-dwelling | 20.078065 | 34.60920 |
Batrachoseps nigriventris | Caudata | LC | Ground-dwelling | 20.731025 | 34.73768 |
Batrachoseps pacificus | Caudata | LC | Ground-dwelling | 19.481863 | 34.57037 |
Batrachoseps regius | Caudata | VU | Ground-dwelling | 21.581392 | 34.81300 |
Batrachoseps relictus | Caudata | DD | Ground-dwelling | 18.025694 | 34.30858 |
Batrachoseps robustus | Caudata | NT | Ground-dwelling | 19.456212 | 34.58410 |
Batrachoseps simatus | Caudata | VU | Ground-dwelling | 18.025694 | 34.35462 |
Batrachoseps stebbinsi | Caudata | VU | Ground-dwelling | 19.427013 | 34.56965 |
Batrachoseps wrighti | Caudata | NT | Ground-dwelling | 18.189715 | 34.52751 |
Batrachuperus karlschmidti | Caudata | VU | Stream-dwelling | 16.510075 | 32.86059 |
Batrachuperus londongensis | Caudata | EN | Stream-dwelling | 20.848232 | 33.30131 |
Batrachuperus pinchonii | Caudata | VU | Semi-aquatic | 18.469796 | 33.85586 |
Batrachuperus tibetanus | Caudata | VU | Semi-aquatic | 17.802325 | 34.18262 |
Batrachuperus yenyuanensis | Caudata | EN | Semi-aquatic | 20.282691 | 33.93119 |
Batrachyla antartandica | Anura | LC | Ground-dwelling | 13.393199 | 35.37927 |
Batrachyla fitzroya | Anura | VU | Ground-dwelling | 15.847672 | 35.70763 |
Batrachyla leptopus | Anura | LC | Ground-dwelling | 14.595775 | 35.49713 |
Batrachyla nibaldoi | Anura | LC | Ground-dwelling | 9.444704 | 34.80310 |
Batrachyla taeniata | Anura | LC | Ground-dwelling | 15.000111 | 35.64217 |
Blommersia angolafa | Anura | LC | Arboreal | 26.453276 | 37.70878 |
Blommersia blommersae | Anura | LC | Arboreal | 25.232902 | 37.50593 |
Blommersia dejongi | Anura | LC | Ground-dwelling | 26.484528 | 37.81811 |
Blommersia domerguei | Anura | LC | Ground-dwelling | 25.689267 | 37.73085 |
Blommersia galani | Anura | LC | Ground-dwelling | 26.462152 | 37.81076 |
Blommersia grandisonae | Anura | LC | Arboreal | 25.963154 | 37.72037 |
Blommersia kely | Anura | LC | Ground-dwelling | 25.522773 | 37.85095 |
Blommersia sarotra | Anura | LC | Ground-dwelling | 25.192843 | 37.73725 |
Blommersia variabilis | Anura | LC | Arboreal | 27.140802 | 37.78095 |
Blommersia wittei | Anura | LC | Arboreal | 26.819943 | 37.57168 |
Boana albomarginata | Anura | LC | Arboreal | 25.677009 | 40.44275 |
Boana albopunctata | Anura | LC | Arboreal | 27.136692 | 38.84520 |
Boana boans | Anura | LC | Arboreal | 27.492211 | 40.45893 |
Boana cinerascens | Anura | LC | Arboreal | 27.775058 | 40.02453 |
Boana crepitans | Anura | LC | Arboreal | 26.408906 | 39.75542 |
Boana curupi | Anura | LC | Arboreal | 27.204028 | 38.06212 |
Boana faber | Anura | LC | Arboreal | 25.960281 | 40.91830 |
Boana fasciata | Anura | LC | Arboreal | 27.674729 | 39.93550 |
Boana geographica | Anura | LC | Arboreal | 27.270378 | 40.82012 |
Boana lanciformis | Anura | LC | Arboreal | 27.548262 | 41.40106 |
Boana pardalis | Anura | LC | Arboreal | 25.864258 | 41.60776 |
Boana pellucens | Anura | LC | Arboreal | 24.528305 | 40.30949 |
Boana pulchella | Anura | LC | Arboreal | 24.301597 | 37.43644 |
Boana punctata | Anura | LC | Arboreal | 27.294781 | 40.69742 |
Boana raniceps | Anura | LC | Arboreal | 27.604656 | 41.88333 |
Boana semilineata | Anura | LC | Arboreal | 25.643020 | 39.82591 |
Boehmantis microtympanum | Anura | VU | Stream-dwelling | 25.757692 | 37.09837 |
Bokermannohyla ahenea | Anura | DD | Arboreal | 26.714437 | 39.41886 |
Bokermannohyla alvarengai | Anura | LC | Stream-dwelling | 25.599042 | 38.86556 |
Bokermannohyla astartea | Anura | LC | Arboreal | 25.983974 | 39.29013 |
Bokermannohyla caramaschii | Anura | LC | Arboreal | 25.732565 | 39.37966 |
Bokermannohyla carvalhoi | Anura | LC | Stream-dwelling | 25.880419 | 38.97038 |
Bokermannohyla circumdata | Anura | LC | Arboreal | 25.813035 | 39.22074 |
Bokermannohyla diamantina | Anura | LC | Stream-dwelling | 25.469777 | 38.81539 |
Bokermannohyla feioi | Anura | DD | Arboreal | 25.986631 | 39.40794 |
Bokermannohyla gouveai | Anura | DD | Arboreal | 26.714437 | 39.47466 |
Bokermannohyla hylax | Anura | LC | Stream-dwelling | 25.259627 | 38.72696 |
Bokermannohyla ibitiguara | Anura | DD | Stream-dwelling | 25.893387 | 38.92256 |
Bokermannohyla ibitipoca | Anura | DD | Ground-dwelling | 25.986631 | 39.46694 |
Bokermannohyla itapoty | Anura | LC | Stream-dwelling | 25.141358 | 38.86695 |
Bokermannohyla izecksohni | Anura | CR | Stream-dwelling | 26.685256 | 39.02938 |
Bokermannohyla langei | Anura | DD | Stream-dwelling | 24.076546 | 38.68242 |
Bokermannohyla lucianae | Anura | DD | Arboreal | 25.575562 | 39.33023 |
Bokermannohyla luctuosa | Anura | LC | Stream-dwelling | 26.126466 | 38.96905 |
Bokermannohyla martinsi | Anura | LC | Stream-dwelling | 25.416083 | 38.90390 |
Bokermannohyla nanuzae | Anura | LC | Stream-dwelling | 25.220967 | 38.70840 |
Bokermannohyla oxente | Anura | LC | Stream-dwelling | 25.044554 | 38.80370 |
Bokermannohyla pseudopseudis | Anura | LC | Stream-dwelling | 27.148932 | 39.05212 |
Bokermannohyla ravida | Anura | CR | Stream-dwelling | 25.896628 | 38.85506 |
Bokermannohyla sagarana | Anura | NT | Stream-dwelling | 25.448851 | 38.73576 |
Bokermannohyla saxicola | Anura | LC | Stream-dwelling | 25.647486 | 38.88290 |
Bokermannohyla sazimai | Anura | DD | Stream-dwelling | 26.051435 | 38.93204 |
Bokermannohyla vulcaniae | Anura | VU | Stream-dwelling | 26.229490 | 38.96412 |
Bolitoglossa adspersa | Caudata | NT | Ground-dwelling | 23.375757 | 35.01615 |
Bolitoglossa alberchi | Caudata | VU | Arboreal | 27.571965 | 35.41554 |
Bolitoglossa altamazonica | Caudata | LC | Arboreal | 26.928397 | 35.31727 |
Bolitoglossa alvaradoi | Caudata | VU | Arboreal | 25.166998 | 35.13810 |
Bolitoglossa anthracina | Caudata | EN | Ground-dwelling | 28.045611 | 35.62816 |
Bolitoglossa biseriata | Caudata | LC | Arboreal | 26.013559 | 35.20968 |
Bolitoglossa borburata | Caudata | VU | Ground-dwelling | 26.774814 | 35.49960 |
Bolitoglossa bramei | Caudata | LC | Ground-dwelling | 24.380342 | 35.23452 |
Bolitoglossa capitana | Caudata | CR | Ground-dwelling | 25.027891 | 35.22293 |
Bolitoglossa carri | Caudata | CR | Arboreal | 24.318740 | 35.02266 |
Bolitoglossa celaque | Caudata | CR | Ground-dwelling | 26.199074 | 35.39871 |
Bolitoglossa cerroensis | Caudata | LC | Ground-dwelling | 17.152122 | 34.21138 |
Bolitoglossa chica | Caudata | CR | Arboreal | 24.641474 | 35.04432 |
Bolitoglossa colonnea | Caudata | LC | Arboreal | 26.327226 | 35.27273 |
Bolitoglossa compacta | Caudata | EN | Arboreal | 27.994452 | 35.45897 |
Bolitoglossa conanti | Caudata | VU | Arboreal | 26.473536 | 35.26234 |
Bolitoglossa copia | Caudata | CR | Ground-dwelling | 27.865817 | 35.60891 |
Bolitoglossa cuchumatana | Caudata | EN | Ground-dwelling | 25.015983 | 35.26934 |
Bolitoglossa cuna | Caudata | EN | Arboreal | 27.784908 | 35.48244 |
Bolitoglossa decora | Caudata | CR | Arboreal | 26.500799 | 35.22431 |
Bolitoglossa diaphora | Caudata | EN | Arboreal | 25.474466 | 35.15167 |
Bolitoglossa digitigrada | Caudata | DD | Ground-dwelling | 15.595790 | 34.12010 |
Bolitoglossa diminuta | Caudata | LC | Arboreal | 17.152122 | 34.23649 |
Bolitoglossa dofleini | Caudata | NT | Ground-dwelling | 26.510805 | 35.46937 |
Bolitoglossa dunni | Caudata | EN | Arboreal | 25.474466 | 35.15033 |
Bolitoglossa engelhardti | Caudata | EN | Arboreal | 25.044144 | 35.01740 |
Bolitoglossa epimela | Caudata | DD | Arboreal | 22.496670 | 34.74709 |
Bolitoglossa equatoriana | Caudata | LC | Arboreal | 25.602727 | 35.08541 |
Bolitoglossa flavimembris | Caudata | EN | Arboreal | 25.619531 | 35.24712 |
Bolitoglossa flaviventris | Caudata | EN | Arboreal | 25.619531 | 35.22976 |
Bolitoglossa franklini | Caudata | VU | Arboreal | 25.619531 | 35.21967 |
Bolitoglossa gomezi | Caudata | EN | Arboreal | 22.598867 | 34.75931 |
Bolitoglossa gracilis | Caudata | LC | Arboreal | 22.496670 | 34.70474 |
Bolitoglossa guaramacalensis | Caudata | EN | Ground-dwelling | 26.854615 | 35.53345 |
Bolitoglossa hartwegi | Caudata | VU | Ground-dwelling | 27.537114 | 35.56283 |
Bolitoglossa heiroreias | Caudata | EN | Ground-dwelling | 27.418815 | 35.50751 |
Bolitoglossa helmrichi | Caudata | VU | Arboreal | 26.351315 | 35.24076 |
Bolitoglossa hermosa | Caudata | LC | Arboreal | 24.338588 | 35.01215 |
Bolitoglossa hiemalis | Caudata | VU | Arboreal | 24.198867 | 35.05630 |
Bolitoglossa hypacra | Caudata | EN | Ground-dwelling | 26.189446 | 35.35404 |
Bolitoglossa indio | Caudata | EN | Ground-dwelling | 27.999336 | 35.71748 |
Bolitoglossa insularis | Caudata | CR | Arboreal | 27.511979 | 35.34534 |
Bolitoglossa jacksoni | Caudata | CR | Ground-dwelling | 22.662030 | 34.88489 |
Bolitoglossa lignicolor | Caudata | LC | Arboreal | 25.625888 | 35.15869 |
Bolitoglossa lincolni | Caudata | NT | Arboreal | 25.887566 | 35.22440 |
Bolitoglossa longissima | Caudata | CR | Arboreal | 26.625597 | 35.32198 |
Bolitoglossa lozanoi | Caudata | LC | Arboreal | 24.298380 | 35.03017 |
Bolitoglossa macrinii | Caudata | EN | Ground-dwelling | 27.045406 | 35.50188 |
Bolitoglossa magnifica | Caudata | EN | Ground-dwelling | 28.045611 | 35.66510 |
Bolitoglossa marmorea | Caudata | EN | Arboreal | 28.045611 | 35.45565 |
Bolitoglossa medemi | Caudata | LC | Arboreal | 26.620298 | 35.23989 |
Bolitoglossa meliana | Caudata | EN | Ground-dwelling | 24.928522 | 35.28320 |
Bolitoglossa mexicana | Caudata | LC | Arboreal | 26.874817 | 35.34260 |
Bolitoglossa minutula | Caudata | EN | Arboreal | 24.380342 | 35.02958 |
Bolitoglossa mombachoensis | Caudata | VU | Arboreal | 27.511979 | 35.41207 |
Bolitoglossa morio | Caudata | VU | Arboreal | 25.230886 | 35.09370 |
Bolitoglossa mulleri | Caudata | VU | Ground-dwelling | 25.645832 | 35.30342 |
Bolitoglossa nicefori | Caudata | LC | Arboreal | 23.646500 | 34.84944 |
Bolitoglossa nigrescens | Caudata | DD | Ground-dwelling | 22.557623 | 35.01034 |
Bolitoglossa oaxacensis | Caudata | EN | Ground-dwelling | 26.249975 | 35.35197 |
Bolitoglossa obscura | Caudata | DD | Ground-dwelling | 17.152122 | 34.28511 |
Bolitoglossa occidentalis | Caudata | LC | Arboreal | 26.906744 | 35.33661 |
Bolitoglossa odonnelli | Caudata | NT | Arboreal | 26.158443 | 35.23308 |
Bolitoglossa oresbia | Caudata | CR | Arboreal | 24.318740 | 34.98574 |
Bolitoglossa orestes | Caudata | EN | Ground-dwelling | 26.494876 | 35.44109 |
Bolitoglossa palmata | Caudata | LC | Arboreal | 22.977548 | 34.82095 |
Bolitoglossa pandi | Caudata | EN | Ground-dwelling | 25.264015 | 35.27981 |
Bolitoglossa paraensis | Caudata | DD | Arboreal | 27.914577 | 35.40482 |
Bolitoglossa peruviana | Caudata | DD | Arboreal | 24.265362 | 35.00238 |
Bolitoglossa pesrubra | Caudata | LC | Ground-dwelling | 17.152122 | 34.35948 |
Bolitoglossa phalarosoma | Caudata | NT | Ground-dwelling | 23.589426 | 35.05958 |
Bolitoglossa platydactyla | Caudata | LC | Arboreal | 25.449534 | 35.20336 |
Bolitoglossa porrasorum | Caudata | EN | Arboreal | 26.359827 | 35.22150 |
Bolitoglossa ramosi | Caudata | NT | Arboreal | 24.136537 | 34.99442 |
Bolitoglossa riletti | Caudata | EN | Arboreal | 25.492332 | 35.19302 |
Bolitoglossa robusta | Caudata | VU | Ground-dwelling | 26.203694 | 35.50123 |
Bolitoglossa rostrata | Caudata | NT | Arboreal | 26.131005 | 35.22358 |
Bolitoglossa rufescens | Caudata | LC | Arboreal | 26.366490 | 35.23682 |
Bolitoglossa salvinii | Caudata | VU | Arboreal | 26.839927 | 35.34877 |
Bolitoglossa savagei | Caudata | NT | Arboreal | 27.127537 | 35.30799 |
Bolitoglossa schizodactyla | Caudata | LC | Arboreal | 26.505798 | 35.29822 |
Bolitoglossa silverstonei | Caudata | DD | Arboreal | 25.939855 | 35.19025 |
Bolitoglossa sima | Caudata | LC | Arboreal | 24.131886 | 34.96832 |
Bolitoglossa sombra | Caudata | NT | Arboreal | 27.994452 | 35.51940 |
Bolitoglossa sooyorum | Caudata | EN | Arboreal | 17.152122 | 34.14158 |
Bolitoglossa striatula | Caudata | LC | Arboreal | 26.749826 | 35.31878 |
Bolitoglossa stuarti | Caudata | VU | Arboreal | 26.057831 | 35.14781 |
Bolitoglossa subpalmata | Caudata | LC | Arboreal | 24.241567 | 34.90223 |
Bolitoglossa suchitanensis | Caudata | CR | Arboreal | 27.418815 | 35.32682 |
Bolitoglossa synoria | Caudata | CR | Arboreal | 27.418815 | 35.37934 |
Bolitoglossa tatamae | Caudata | EN | Arboreal | 25.141645 | 35.15390 |
Bolitoglossa taylori | Caudata | EN | Arboreal | 27.251842 | 35.34441 |
Bolitoglossa tica | Caudata | DD | Arboreal | 22.557623 | 34.65574 |
Bolitoglossa vallecula | Caudata | LC | Arboreal | 23.207284 | 34.96187 |
Bolitoglossa veracrucis | Caudata | EN | Arboreal | 27.658423 | 35.37501 |
Bolitoglossa walkeri | Caudata | NT | Arboreal | 23.688838 | 34.92130 |
Bolitoglossa yucatana | Caudata | LC | Ground-dwelling | 27.792904 | 35.64822 |
Bolitoglossa zapoteca | Caudata | EN | Ground-dwelling | 27.639256 | 35.53174 |
Bombina bombina | Anura | LC | Aquatic | 19.600839 | 36.31431 |
Bombina lichuanensis | Anura | VU | Aquatic | 23.860005 | 36.93560 |
Bombina orientalis | Anura | LC | Semi-aquatic | 21.354441 | 36.71735 |
Bombina variegata | Anura | LC | Aquatic | 20.134362 | 36.43913 |
Boophis albilabris | Anura | LC | Arboreal | 26.092839 | 37.55715 |
Boophis albipunctatus | Anura | LC | Stream-dwelling | 25.673478 | 37.12471 |
Boophis andohahela | Anura | VU | Arboreal | 25.985815 | 37.60011 |
Boophis andrangoloaka | Anura | EN | Arboreal | 25.873667 | 37.54549 |
Boophis andreonei | Anura | VU | Arboreal | 26.747102 | 37.68055 |
Boophis anjanaharibeensis | Anura | EN | Arboreal | 26.808866 | 37.83211 |
Boophis ankaratra | Anura | LC | Stream-dwelling | 25.723660 | 37.13790 |
Boophis arcanus | Anura | EN | Arboreal | 25.476874 | 37.65828 |
Boophis axelmeyeri | Anura | LC | Stream-dwelling | 26.670216 | 37.26133 |
Boophis baetkei | Anura | CR | Arboreal | 26.637693 | 37.72976 |
Boophis blommersae | Anura | VU | Arboreal | 26.620481 | 37.71514 |
Boophis boehmei | Anura | EN | Stream-dwelling | 25.637918 | 37.10818 |
Boophis bottae | Anura | LC | Stream-dwelling | 25.570700 | 37.17976 |
Boophis brachychir | Anura | VU | Stream-dwelling | 26.714692 | 37.26761 |
Boophis burgeri | Anura | DD | Arboreal | 24.893568 | 37.47160 |
Boophis calcaratus | Anura | LC | Stream-dwelling | 25.593126 | 37.08903 |
Boophis doulioti | Anura | LC | Arboreal | 26.496964 | 37.67340 |
Boophis elenae | Anura | NT | Arboreal | 25.382631 | 37.54151 |
Boophis englaenderi | Anura | VU | Stream-dwelling | 26.730680 | 37.31068 |
Boophis entingae | Anura | LC | Stream-dwelling | 26.331658 | 37.26689 |
Boophis erythrodactylus | Anura | LC | Arboreal | 25.529662 | 37.59596 |
Boophis fayi | Anura | VU | Arboreal | 26.688369 | 37.72263 |
Boophis feonnyala | Anura | EN | Arboreal | 24.941303 | 37.50899 |
Boophis goudotii | Anura | LC | Arboreal | 26.020500 | 37.63171 |
Boophis guibei | Anura | LC | Arboreal | 25.739437 | 37.57859 |
Boophis haematopus | Anura | EN | Arboreal | 25.641574 | 37.67357 |
Boophis haingana | Anura | EN | Stream-dwelling | 25.850762 | 37.21462 |
Boophis idae | Anura | LC | Arboreal | 25.571929 | 37.56550 |
Boophis jaegeri | Anura | EN | Arboreal | 27.197740 | 37.84161 |
Boophis laurenti | Anura | EN | Stream-dwelling | 26.326721 | 37.27859 |
Boophis liami | Anura | CR | Stream-dwelling | 24.893568 | 37.09585 |
Boophis lichenoides | Anura | LC | Arboreal | 25.938187 | 37.62039 |
Boophis lilianae | Anura | DD | Stream-dwelling | 25.878849 | 37.11453 |
Boophis luciae | Anura | LC | Stream-dwelling | 25.395051 | 37.10448 |
Boophis luteus | Anura | LC | Stream-dwelling | 25.848192 | 37.06097 |
Boophis madagascariensis | Anura | LC | Arboreal | 25.982695 | 37.57762 |
Boophis majori | Anura | VU | Stream-dwelling | 26.044957 | 37.21940 |
Boophis mandraka | Anura | DD | Stream-dwelling | 25.873667 | 37.21284 |
Boophis marojezensis | Anura | LC | Stream-dwelling | 25.966956 | 37.23137 |
Boophis miadana | Anura | EN | Stream-dwelling | 25.850762 | 37.09621 |
Boophis microtympanum | Anura | LC | Stream-dwelling | 25.883333 | 37.13072 |
Boophis miniatus | Anura | VU | Stream-dwelling | 25.985815 | 37.19985 |
Boophis narinsi | Anura | EN | Stream-dwelling | 25.878849 | 37.19457 |
Boophis obscurus | Anura | NT | Arboreal | 26.075125 | 37.57010 |
Boophis occidentalis | Anura | LC | Stream-dwelling | 26.615217 | 37.16160 |
Boophis opisthodon | Anura | LC | Arboreal | 25.842126 | 37.58728 |
Boophis pauliani | Anura | LC | Arboreal | 25.598783 | 37.62823 |
Boophis periegetes | Anura | NT | Stream-dwelling | 25.985815 | 37.18043 |
Boophis picturatus | Anura | LC | Stream-dwelling | 25.591459 | 37.16653 |
Boophis piperatus | Anura | EN | Arboreal | 25.878849 | 37.61606 |
Boophis popi | Anura | VU | Stream-dwelling | 25.809404 | 37.11719 |
Boophis pyrrhus | Anura | LC | Stream-dwelling | 25.613574 | 37.17289 |
Boophis quasiboehmei | Anura | NT | Stream-dwelling | 25.985815 | 37.14288 |
Boophis rappiodes | Anura | LC | Stream-dwelling | 25.618272 | 37.10310 |
Boophis reticulatus | Anura | LC | Stream-dwelling | 26.045719 | 37.16294 |
Boophis rhodoscelis | Anura | EN | Arboreal | 25.486552 | 37.48013 |
Boophis roseipalmatus | Anura | LC | Stream-dwelling | 26.699189 | 37.25674 |
Boophis rufioculis | Anura | NT | Stream-dwelling | 25.257180 | 37.00601 |
Boophis sambirano | Anura | EN | Stream-dwelling | 26.611874 | 37.28686 |
Boophis sandrae | Anura | EN | Stream-dwelling | 25.878849 | 37.20558 |
Boophis schuboeae | Anura | EN | Stream-dwelling | 25.878849 | 37.19822 |
Boophis septentrionalis | Anura | LC | Stream-dwelling | 26.666151 | 37.30226 |
Boophis sibilans | Anura | LC | Stream-dwelling | 26.067958 | 37.17150 |
Boophis solomaso | Anura | EN | Arboreal | 25.459043 | 37.57401 |
Boophis spinophis | Anura | VU | Arboreal | 25.876258 | 37.61654 |
Boophis tampoka | Anura | LC | Arboreal | 27.523329 | 37.83848 |
Boophis tasymena | Anura | LC | Stream-dwelling | 25.748289 | 37.11291 |
Boophis tephraeomystax | Anura | LC | Arboreal | 26.186953 | 37.57573 |
Boophis tsilomaro | Anura | CR | Stream-dwelling | 26.870347 | 37.36806 |
Boophis ulftunni | Anura | VU | Stream-dwelling | 26.674312 | 37.32210 |
Boophis viridis | Anura | LC | Stream-dwelling | 25.946325 | 37.11726 |
Boophis vittatus | Anura | VU | Stream-dwelling | 26.755735 | 37.25858 |
Boophis williamsi | Anura | CR | Stream-dwelling | 25.047111 | 37.02814 |
Boophis xerophilus | Anura | LC | Arboreal | 26.370898 | 37.67364 |
Brachycephalus alipioi | Anura | DD | Ground-dwelling | 25.882443 | 36.86904 |
Brachycephalus brunneus | Anura | DD | Ground-dwelling | 24.076546 | 36.61716 |
Brachycephalus didactylus | Anura | LC | Ground-dwelling | 25.898882 | 36.84949 |
Brachycephalus ephippium | Anura | LC | Ground-dwelling | 25.644437 | 36.75274 |
Brachycephalus ferruginus | Anura | DD | Ground-dwelling | 24.076546 | 36.59358 |
Brachycephalus hermogenesi | Anura | LC | Ground-dwelling | 25.916037 | 36.88094 |
Brachycephalus izecksohni | Anura | DD | Ground-dwelling | 24.452954 | 36.63509 |
Brachycephalus nodoterga | Anura | DD | Ground-dwelling | 26.100808 | 36.88902 |
Brachycephalus pernix | Anura | DD | Ground-dwelling | 24.076546 | 36.62105 |
Brachycephalus pombali | Anura | DD | Ground-dwelling | 24.076546 | 36.63789 |
Brachycephalus vertebralis | Anura | DD | Ground-dwelling | 25.945038 | 36.89392 |
Bradytriton silus | Caudata | EN | Ground-dwelling | 25.458050 | 35.25300 |
Breviceps acutirostris | Anura | LC | Fossorial | 20.760336 | 38.48869 |
Breviceps adspersus | Anura | LC | Fossorial | 23.570948 | 39.03233 |
Breviceps bagginsi | Anura | NT | Fossorial | 22.656584 | 38.89477 |
Breviceps fichus | Anura | LC | Fossorial | 22.718272 | 38.96963 |
Breviceps fuscus | Anura | LC | Fossorial | 21.243853 | 38.75530 |
Breviceps gibbosus | Anura | NT | Fossorial | 21.001216 | 38.69188 |
Breviceps macrops | Anura | NT | Fossorial | 19.818320 | 38.55251 |
Breviceps montanus | Anura | LC | Fossorial | 20.944245 | 38.68382 |
Breviceps mossambicus | Anura | LC | Fossorial | 24.659477 | 39.17774 |
Breviceps namaquensis | Anura | LC | Fossorial | 20.504383 | 38.60059 |
Breviceps poweri | Anura | LC | Fossorial | 24.701932 | 39.14497 |
Breviceps rosei | Anura | LC | Fossorial | 20.748707 | 38.67321 |
Breviceps sopranus | Anura | LC | Fossorial | 23.994885 | 39.08456 |
Breviceps sylvestris | Anura | NT | Fossorial | 23.571001 | 38.96559 |
Breviceps verrucosus | Anura | LC | Fossorial | 22.082123 | 38.84260 |
Bromeliohyla bromeliacia | Anura | LC | Arboreal | 25.836263 | 39.61475 |
Bromeliohyla dendroscarta | Anura | EN | Arboreal | 24.877841 | 39.60097 |
Bryophryne bustamantei | Anura | LC | Ground-dwelling | 18.526994 | 29.42924 |
Bryophryne cophites | Anura | EN | Ground-dwelling | 14.573980 | 28.88458 |
Bryophryne hanssaueri | Anura | LC | Ground-dwelling | 14.573980 | 26.84399 |
Bryophryne nubilosus | Anura | LC | Ground-dwelling | 14.573980 | 27.79591 |
Bryophryne zonalis | Anura | DD | Ground-dwelling | 16.124027 | 29.06804 |
Buergeria buergeri | Anura | LC | Stream-dwelling | 24.779523 | 38.77806 |
Buergeria japonica | Anura | LC | Stream-dwelling | 27.364566 | 42.42741 |
Buergeria oxycephala | Anura | VU | Stream-dwelling | 28.158168 | 39.20777 |
Buergeria robusta | Anura | LC | Stream-dwelling | 27.659741 | 39.14232 |
Bufo ailaoanus | Anura | EN | Ground-dwelling | 22.776844 | 38.14185 |
Bufo aspinius | Anura | EN | Ground-dwelling | 19.730674 | 37.60945 |
Bufo bankorensis | Anura | LC | Ground-dwelling | 27.659741 | 39.90260 |
Bufo bufo | Anura | LC | Ground-dwelling | 18.399248 | 36.59578 |
Bufo cryptotympanicus | Anura | LC | Ground-dwelling | 27.141420 | 38.69097 |
Bufo eichwaldi | Anura | VU | Ground-dwelling | 19.754688 | 37.70858 |
Bufo gargarizans | Anura | LC | Ground-dwelling | 21.547784 | 37.45023 |
Bufo japonicus | Anura | LC | Ground-dwelling | 24.583291 | 38.30057 |
Bufo pageoti | Anura | LC | Ground-dwelling | 24.010444 | 38.21840 |
Bufo stejnegeri | Anura | LC | Ground-dwelling | 21.922708 | 37.95689 |
Bufo torrenticola | Anura | LC | Ground-dwelling | 24.922435 | 38.31224 |
Bufo tuberculatus | Anura | NT | Ground-dwelling | 14.960066 | 37.13719 |
Bufo verrucosissimus | Anura | NT | Ground-dwelling | 20.046666 | 37.70461 |
Bufoides meghalayanus | Anura | CR | Stream-dwelling | 23.160752 | 37.55810 |
Bufotes balearicus | Anura | LC | Ground-dwelling | 23.040906 | 38.97394 |
Bufotes boulengeri | Anura | LC | Ground-dwelling | 23.570923 | 39.56118 |
Bufotes latastii | Anura | LC | Ground-dwelling | 11.886503 | 37.44792 |
Bufotes luristanicus | Anura | LC | Ground-dwelling | 23.843311 | 39.02069 |
Bufotes oblongus | Anura | LC | Ground-dwelling | 20.317986 | 38.54715 |
Bufotes pseudoraddei | Anura | LC | Ground-dwelling | 16.716450 | 38.06262 |
Bufotes surdus | Anura | LC | Ground-dwelling | 24.383117 | 39.02273 |
Bufotes turanensis | Anura | LC | Ground-dwelling | 20.748044 | 38.56036 |
Bufotes variabilis | Anura | DD | Ground-dwelling | 20.423317 | 38.60514 |
Bufotes viridis | Anura | LC | Ground-dwelling | 19.928238 | 38.54712 |
Bufotes zamdaensis | Anura | DD | Ground-dwelling | 10.162427 | 37.20107 |
Bufotes zugmayeri | Anura | LC | Ground-dwelling | 20.205191 | 38.49797 |
Cacosternum boettgeri | Anura | LC | Ground-dwelling | 22.536368 | 37.23070 |
Cacosternum capense | Anura | NT | Fossorial | 20.840554 | 37.93128 |
Cacosternum karooicum | Anura | LC | Ground-dwelling | 20.656979 | 36.88748 |
Cacosternum kinangopensis | Anura | LC | Ground-dwelling | 19.795568 | 36.85106 |
Cacosternum leleupi | Anura | DD | Ground-dwelling | 24.621056 | 37.44957 |
Cacosternum namaquense | Anura | LC | Ground-dwelling | 20.327937 | 36.81791 |
Cacosternum nanum | Anura | LC | Ground-dwelling | 21.785986 | 37.09315 |
Cacosternum parvum | Anura | LC | Ground-dwelling | 22.512654 | 37.23265 |
Cacosternum platys | Anura | NT | Ground-dwelling | 21.185918 | 36.95376 |
Cacosternum plimptoni | Anura | LC | Ground-dwelling | 21.417496 | 37.07514 |
Cacosternum striatum | Anura | LC | Ground-dwelling | 22.687534 | 37.17161 |
Callixalus pictus | Anura | VU | Arboreal | 24.207253 | 40.10604 |
Callulina dawida | Anura | CR | Ground-dwelling | 24.513211 | 38.13491 |
Callulina hanseni | Anura | CR | Arboreal | 24.229692 | 37.94445 |
Callulina kanga | Anura | CR | Arboreal | 23.240992 | 37.85175 |
Callulina kisiwamsitu | Anura | EN | Arboreal | 25.085794 | 38.11232 |
Callulina kreffti | Anura | LC | Ground-dwelling | 24.120968 | 38.09435 |
Callulina laphami | Anura | CR | Ground-dwelling | 22.975393 | 37.80001 |
Callulina meteora | Anura | CR | Ground-dwelling | 24.229692 | 38.00859 |
Callulina shengena | Anura | CR | Arboreal | 23.549259 | 37.82283 |
Callulina stanleyi | Anura | CR | Arboreal | 23.549259 | 37.91939 |
Callulops boettgeri | Anura | DD | Ground-dwelling | 27.806165 | 35.44936 |
Callulops comptus | Anura | LC | Ground-dwelling | 25.600164 | 35.19325 |
Callulops doriae | Anura | LC | Fossorial | 27.314266 | 36.32844 |
Callulops dubius | Anura | DD | Ground-dwelling | 27.688151 | 35.52909 |
Callulops fuscus | Anura | DD | Ground-dwelling | 27.503461 | 35.36991 |
Callulops glandulosus | Anura | DD | Ground-dwelling | 25.222749 | 35.07696 |
Callulops humicola | Anura | LC | Ground-dwelling | 26.165987 | 35.19135 |
Callulops kopsteini | Anura | DD | Ground-dwelling | 27.394424 | 35.47908 |
Callulops marmoratus | Anura | DD | Ground-dwelling | 25.844142 | 35.11194 |
Callulops personatus | Anura | LC | Ground-dwelling | 26.593090 | 35.22548 |
Callulops robustus | Anura | LC | Ground-dwelling | 28.053530 | 35.52361 |
Callulops sagittatus | Anura | DD | Ground-dwelling | 27.821029 | 35.42945 |
Callulops stictogaster | Anura | LC | Ground-dwelling | 26.135498 | 35.24061 |
Callulops wilhelmanus | Anura | LC | Ground-dwelling | 25.851574 | 35.10413 |
Calotriton arnoldi | Caudata | CR | Stream-dwelling | 22.618672 | 36.18668 |
Calotriton asper | Caudata | LC | Aquatic | 20.522739 | 36.72091 |
Calyptocephalella gayi | Anura | VU | Semi-aquatic | 18.545296 | 35.48209 |
Capensibufo rosei | Anura | CR | Ground-dwelling | 21.643866 | 38.17566 |
Capensibufo tradouwi | Anura | LC | Ground-dwelling | 20.902333 | 38.01483 |
Cardioglossa alsco | Anura | EN | Stream-dwelling | 26.357174 | 38.38893 |
Cardioglossa cyaneospila | Anura | NT | Stream-dwelling | 22.643923 | 37.89071 |
Cardioglossa elegans | Anura | LC | Stream-dwelling | 27.261780 | 38.52308 |
Cardioglossa escalerae | Anura | LC | Ground-dwelling | 27.065792 | 39.10077 |
Cardioglossa gracilis | Anura | LC | Stream-dwelling | 27.425378 | 38.44030 |
Cardioglossa gratiosa | Anura | LC | Stream-dwelling | 27.598533 | 38.54087 |
Cardioglossa leucomystax | Anura | LC | Stream-dwelling | 27.538947 | 38.58442 |
Cardioglossa manengouba | Anura | CR | Stream-dwelling | 27.125406 | 38.44336 |
Cardioglossa melanogaster | Anura | VU | Stream-dwelling | 26.848365 | 38.26790 |
Cardioglossa nigromaculata | Anura | LC | Ground-dwelling | 26.956146 | 39.12168 |
Cardioglossa oreas | Anura | EN | Stream-dwelling | 26.186967 | 38.27619 |
Cardioglossa pulchra | Anura | EN | Stream-dwelling | 26.848365 | 38.40028 |
Cardioglossa schioetzi | Anura | VU | Ground-dwelling | 26.971511 | 38.94276 |
Cardioglossa trifasciata | Anura | CR | Stream-dwelling | 27.125406 | 38.50455 |
Cardioglossa venusta | Anura | EN | Stream-dwelling | 26.644872 | 38.51102 |
Celsiella revocata | Anura | VU | Stream-dwelling | 26.990795 | 37.15500 |
Celsiella vozmedianoi | Anura | EN | Stream-dwelling | 27.162122 | 37.21919 |
Centrolene acanthidiocephalum | Anura | DD | Stream-dwelling | 24.655161 | 36.74271 |
Centrolene antioquiense | Anura | NT | Stream-dwelling | 23.702532 | 36.58799 |
Centrolene azulae | Anura | DD | Stream-dwelling | 23.639051 | 36.63404 |
Centrolene ballux | Anura | EN | Stream-dwelling | 20.357864 | 36.14118 |
Centrolene buckleyi | Anura | CR | Arboreal | 21.772196 | 36.87032 |
Centrolene condor | Anura | EN | Stream-dwelling | 24.985852 | 36.82009 |
Centrolene heloderma | Anura | VU | Stream-dwelling | 23.038570 | 36.56249 |
Centrolene hybrida | Anura | LC | Stream-dwelling | 24.071993 | 36.72441 |
Centrolene lemniscatum | Anura | DD | Stream-dwelling | 20.676160 | 36.24785 |
Centrolene lynchi | Anura | EN | Stream-dwelling | 19.955019 | 36.21787 |
Centrolene medemi | Anura | EN | Stream-dwelling | 24.573686 | 36.85400 |
Centrolene muelleri | Anura | DD | Stream-dwelling | 21.684497 | 36.44397 |
Centrolene paezorum | Anura | DD | Arboreal | 22.965861 | 37.03440 |
Centrolene petrophilum | Anura | EN | Stream-dwelling | 22.672962 | 36.40842 |
Centrolene quindianum | Anura | VU | Stream-dwelling | 21.976471 | 36.36312 |
Centrolene robledoi | Anura | LC | Stream-dwelling | 23.732043 | 36.66538 |
Centrolene sanchezi | Anura | EN | Stream-dwelling | 24.311409 | 36.73500 |
Centrolene savagei | Anura | LC | Stream-dwelling | 23.651260 | 36.70811 |
Centrolene solitaria | Anura | EN | Stream-dwelling | 24.984184 | 36.87386 |
Centrolene venezuelense | Anura | LC | Arboreal | 26.180732 | 37.42952 |
Ceratophrys aurita | Anura | LC | Ground-dwelling | 25.567487 | 40.18355 |
Ceratophrys calcarata | Anura | LC | Fossorial | 27.187233 | 41.26734 |
Ceratophrys cornuta | Anura | LC | Ground-dwelling | 27.581916 | 40.38829 |
Ceratophrys cranwelli | Anura | LC | Fossorial | 26.543791 | 41.29429 |
Ceratophrys joazeirensis | Anura | LC | Fossorial | 25.658555 | 40.94949 |
Ceratophrys ornata | Anura | NT | Fossorial | 22.833026 | 40.66578 |
Ceratophrys stolzmanni | Anura | VU | Fossorial | 24.489585 | 40.89575 |
Ceratophrys testudo | Anura | DD | Ground-dwelling | 22.391675 | 39.69411 |
Ceuthomantis aracamuni | Anura | VU | Stream-dwelling | 27.148514 | 36.60049 |
Ceuthomantis cavernibardus | Anura | DD | Ground-dwelling | 27.345187 | 37.13779 |
Ceuthomantis duellmani | Anura | NT | Ground-dwelling | 25.633941 | 36.94058 |
Chacophrys pierottii | Anura | LC | Fossorial | 25.281818 | 41.30955 |
Chalcorana labialis | Anura | LC | Stream-dwelling | 28.513467 | 36.71876 |
Chaltenobatrachus grandisonae | Anura | LC | Ground-dwelling | 9.302062 | 34.32942 |
Chaperina fusca | Anura | LC | Ground-dwelling | 28.087198 | 37.97000 |
Charadrahyla altipotens | Anura | EN | Stream-dwelling | 26.750407 | 39.32493 |
Charadrahyla chaneque | Anura | VU | Stream-dwelling | 27.916913 | 39.53108 |
Charadrahyla nephila | Anura | EN | Stream-dwelling | 24.877841 | 39.11710 |
Charadrahyla taeniopus | Anura | VU | Stream-dwelling | 24.292827 | 38.94413 |
Charadrahyla trux | Anura | EN | Stream-dwelling | 24.898057 | 39.20608 |
Chiasmocleis albopunctata | Anura | LC | Ground-dwelling | 27.636008 | 39.15798 |
Chiasmocleis anatipes | Anura | LC | Ground-dwelling | 25.720042 | 38.93187 |
Chiasmocleis atlantica | Anura | LC | Ground-dwelling | 25.957753 | 38.89244 |
Chiasmocleis avilapiresae | Anura | LC | Ground-dwelling | 28.598105 | 39.29131 |
Chiasmocleis bassleri | Anura | LC | Fossorial | 27.977183 | 39.48638 |
Chiasmocleis capixaba | Anura | LC | Ground-dwelling | 25.482296 | 38.85121 |
Chiasmocleis carvalhoi | Anura | LC | Ground-dwelling | 28.825682 | 39.29089 |
Chiasmocleis centralis | Anura | DD | Fossorial | 27.681265 | 40.22685 |
Chiasmocleis cordeiroi | Anura | DD | Ground-dwelling | 25.290920 | 38.87725 |
Chiasmocleis crucis | Anura | DD | Ground-dwelling | 25.290920 | 38.87659 |
Chiasmocleis devriesi | Anura | LC | Ground-dwelling | 29.259139 | 39.41411 |
Chiasmocleis gnoma | Anura | DD | Ground-dwelling | 25.575562 | 38.98301 |
Chiasmocleis leucosticta | Anura | LC | Ground-dwelling | 25.613517 | 38.81315 |
Chiasmocleis mantiqueira | Anura | DD | Ground-dwelling | 25.385011 | 38.83824 |
Chiasmocleis mehelyi | Anura | DD | Ground-dwelling | 28.424427 | 39.25723 |
Chiasmocleis sapiranga | Anura | DD | Ground-dwelling | 25.347262 | 38.83671 |
Chiasmocleis schubarti | Anura | LC | Ground-dwelling | 25.619304 | 38.91709 |
Chiasmocleis shudikarensis | Anura | LC | Ground-dwelling | 28.309660 | 39.16878 |
Chiasmocleis ventrimaculata | Anura | LC | Ground-dwelling | 25.287059 | 39.05689 |
Chimerella mariaelenae | Anura | LC | Arboreal | 23.968092 | 37.32826 |
Chioglossa lusitanica | Caudata | NT | Semi-aquatic | 19.397356 | 35.90501 |
Chiromantis kelleri | Anura | LC | Arboreal | 24.201731 | 37.59062 |
Chiromantis petersii | Anura | LC | Arboreal | 22.572522 | 37.28907 |
Chiromantis rufescens | Anura | LC | Arboreal | 27.422120 | 37.89269 |
Chiromantis xerampelina | Anura | LC | Arboreal | 24.629246 | 37.48643 |
Chiropterotriton arboreus | Caudata | CR | Arboreal | 22.456489 | 34.25029 |
Chiropterotriton chiropterus | Caudata | CR | Arboreal | 23.670587 | 34.55569 |
Chiropterotriton chondrostega | Caudata | EN | Ground-dwelling | 22.985598 | 34.62620 |
Chiropterotriton cracens | Caudata | VU | Arboreal | 23.875739 | 34.34074 |
Chiropterotriton dimidiatus | Caudata | VU | Ground-dwelling | 22.456489 | 34.70079 |
Chiropterotriton lavae | Caudata | CR | Arboreal | 23.670587 | 34.64732 |
Chiropterotriton magnipes | Caudata | EN | Ground-dwelling | 24.768025 | 34.80108 |
Chiropterotriton multidentatus | Caudata | EN | Arboreal | 23.434675 | 34.12898 |
Chiropterotriton orculus | Caudata | VU | Ground-dwelling | 22.628670 | 34.62606 |
Chiropterotriton priscus | Caudata | NT | Ground-dwelling | 23.616357 | 34.76496 |
Chiropterotriton terrestris | Caudata | CR | Ground-dwelling | 22.456489 | 34.51213 |
Choerophryne allisoni | Anura | DD | Ground-dwelling | 27.746469 | 35.43948 |
Choerophryne burtoni | Anura | LC | Ground-dwelling | 26.648279 | 35.33633 |
Choerophryne longirostris | Anura | NT | Ground-dwelling | 26.680670 | 35.43326 |
Choerophryne proboscidea | Anura | LC | Ground-dwelling | 26.804713 | 35.31035 |
Choerophryne rostellifer | Anura | LC | Ground-dwelling | 27.110137 | 35.51442 |
Chrysobatrachus cupreonitens | Anura | EN | Ground-dwelling | 24.760431 | 40.32205 |
Chrysopaa sternosignata | Anura | LC | Aquatic | 21.840283 | 38.87001 |
Churamiti maridadi | Anura | CR | Arboreal | 23.164809 | 38.45230 |
Clinotarsus alticola | Anura | LC | Stream-dwelling | 26.321123 | 36.80310 |
Clinotarsus curtipes | Anura | NT | Ground-dwelling | 27.442806 | 37.53812 |
Cochranella duidaeana | Anura | VU | Arboreal | 25.966820 | 37.38187 |
Cochranella euhystrix | Anura | CR | Stream-dwelling | 24.501951 | 36.75748 |
Cochranella euknemos | Anura | LC | Stream-dwelling | 27.173527 | 37.11358 |
Cochranella geijskesi | Anura | LC | Stream-dwelling | 27.864585 | 37.18824 |
Cochranella granulosa | Anura | LC | Stream-dwelling | 26.857850 | 37.10394 |
Cochranella litoralis | Anura | VU | Arboreal | 24.237877 | 37.21247 |
Cochranella mache | Anura | NT | Stream-dwelling | 25.040235 | 36.90191 |
Cochranella nola | Anura | LC | Stream-dwelling | 20.474365 | 36.24395 |
Cochranella phryxa | Anura | DD | Arboreal | 21.367657 | 36.80487 |
Cochranella ramirezi | Anura | NT | Stream-dwelling | 26.854328 | 36.97990 |
Cochranella resplendens | Anura | LC | Arboreal | 24.570365 | 37.23554 |
Cochranella riveroi | Anura | VU | Arboreal | 27.148514 | 37.53012 |
Cochranella xanthocheridia | Anura | VU | Stream-dwelling | 26.309963 | 36.95214 |
Colostethus agilis | Anura | EN | Stream-dwelling | 24.488847 | 36.42008 |
Colostethus furviventris | Anura | DD | Ground-dwelling | 25.897334 | 37.32270 |
Colostethus imbricolus | Anura | EN | Stream-dwelling | 26.270731 | 36.70531 |
Colostethus inguinalis | Anura | LC | Stream-dwelling | 26.203944 | 36.65937 |
Colostethus jacobuspetersi | Anura | CR | Stream-dwelling | 19.955019 | 33.04428 |
Colostethus latinasus | Anura | CR | Stream-dwelling | 26.419274 | 36.63794 |
Colostethus lynchi | Anura | DD | Stream-dwelling | 26.170801 | 36.70192 |
Colostethus mertensi | Anura | VU | Stream-dwelling | 22.973694 | 36.21107 |
Colostethus panamansis | Anura | LC | Stream-dwelling | 27.267328 | 36.88392 |
Colostethus poecilonotus | Anura | DD | Stream-dwelling | 20.676160 | 35.86808 |
Colostethus pratti | Anura | LC | Ground-dwelling | 27.152895 | 37.40522 |
Colostethus ruthveni | Anura | NT | Ground-dwelling | 27.054234 | 37.38271 |
Colostethus thorntoni | Anura | VU | Stream-dwelling | 23.702532 | 36.34465 |
Colostethus ucumari | Anura | EN | Stream-dwelling | 21.387901 | 35.95434 |
Conraua alleni | Anura | LC | Stream-dwelling | 27.645187 | 37.15143 |
Conraua beccarii | Anura | LC | Aquatic | 22.692453 | 37.27820 |
Conraua crassipes | Anura | LC | Stream-dwelling | 27.458357 | 37.16659 |
Conraua derooi | Anura | CR | Stream-dwelling | 28.529434 | 37.36481 |
Conraua goliath | Anura | EN | Stream-dwelling | 26.912407 | 37.04253 |
Conraua robusta | Anura | VU | Stream-dwelling | 26.757210 | 37.13678 |
Cophixalus aenigma | Anura | VU | Ground-dwelling | 26.770769 | 31.93758 |
Cophixalus ateles | Anura | LC | Ground-dwelling | 28.253641 | 35.55341 |
Cophixalus australis | Anura | LC | Ground-dwelling | 25.716398 | 36.09088 |
Cophixalus balbus | Anura | LC | Ground-dwelling | 26.815468 | 35.47824 |
Cophixalus bewaniensis | Anura | DD | Ground-dwelling | 27.435119 | 35.45390 |
Cophixalus biroi | Anura | LC | Arboreal | 26.857727 | 35.17441 |
Cophixalus bombiens | Anura | LC | Ground-dwelling | 27.142482 | 35.05508 |
Cophixalus cheesmanae | Anura | LC | Arboreal | 26.953586 | 35.26999 |
Cophixalus concinnus | Anura | CR | Ground-dwelling | 26.770769 | 32.54635 |
Cophixalus crepitans | Anura | LC | Ground-dwelling | 27.713309 | 35.49277 |
Cophixalus cryptotympanum | Anura | LC | Arboreal | 27.678143 | 35.32172 |
Cophixalus daymani | Anura | DD | Ground-dwelling | 27.678143 | 35.54617 |
Cophixalus exiguus | Anura | LC | Ground-dwelling | 27.553338 | 37.00910 |
Cophixalus hosmeri | Anura | EN | Arboreal | 26.770769 | 34.54901 |
Cophixalus humicola | Anura | LC | Ground-dwelling | 27.420124 | 35.48242 |
Cophixalus infacetus | Anura | LC | Ground-dwelling | 25.979991 | 36.23516 |
Cophixalus kaindiensis | Anura | NT | Ground-dwelling | 27.123724 | 35.41876 |
Cophixalus mcdonaldi | Anura | CR | Arboreal | 25.349393 | 34.76999 |
Cophixalus misimae | Anura | CR | Ground-dwelling | 28.053530 | 35.58199 |
Cophixalus montanus | Anura | DD | Ground-dwelling | 27.806165 | 35.48532 |
Cophixalus monticola | Anura | CR | Arboreal | 26.770769 | 33.94986 |
Cophixalus neglectus | Anura | CR | Ground-dwelling | 25.057956 | 33.78706 |
Cophixalus nubicola | Anura | VU | Ground-dwelling | 25.302822 | 35.28140 |
Cophixalus ornatus | Anura | LC | Arboreal | 25.914362 | 34.53138 |
Cophixalus parkeri | Anura | LC | Arboreal | 26.531987 | 35.27392 |
Cophixalus peninsularis | Anura | DD | Arboreal | 27.713309 | 35.39473 |
Cophixalus pipilans | Anura | LC | Ground-dwelling | 26.470859 | 35.29121 |
Cophixalus pulchellus | Anura | DD | Arboreal | 27.640106 | 35.48146 |
Cophixalus riparius | Anura | LC | Ground-dwelling | 26.561291 | 35.26635 |
Cophixalus saxatilis | Anura | LC | Ground-dwelling | 27.553338 | 36.29204 |
Cophixalus shellyi | Anura | LC | Arboreal | 26.579382 | 35.18030 |
Cophixalus sphagnicola | Anura | EN | Ground-dwelling | 27.123724 | 35.34194 |
Cophixalus tagulensis | Anura | DD | Stream-dwelling | 27.393260 | 34.79336 |
Cophixalus tetzlaffi | Anura | DD | Arboreal | 27.036350 | 35.19231 |
Cophixalus timidus | Anura | CR | Arboreal | 27.537304 | 35.31361 |
Cophixalus tridactylus | Anura | DD | Ground-dwelling | 28.031168 | 35.48436 |
Cophixalus variabilis | Anura | LC | Ground-dwelling | 27.766333 | 35.42897 |
Cophixalus verecundus | Anura | LC | Ground-dwelling | 28.037156 | 35.44217 |
Cophixalus verrucosus | Anura | LC | Arboreal | 27.407842 | 35.41382 |
Cophixalus zweifeli | Anura | LC | Ground-dwelling | 27.790765 | 35.49349 |
Cophyla berara | Anura | EN | Arboreal | 26.870347 | 37.94474 |
Cophyla occultans | Anura | VU | Arboreal | 26.719720 | 37.90472 |
Cophyla phyllodactyla | Anura | LC | Arboreal | 26.830751 | 37.97836 |
Copiula exspectata | Anura | DD | Ground-dwelling | 26.372759 | 35.29939 |
Copiula fistulans | Anura | LC | Ground-dwelling | 27.000028 | 35.46483 |
Copiula major | Anura | DD | Ground-dwelling | 28.031168 | 35.50245 |
Copiula minor | Anura | LC | Ground-dwelling | 27.379962 | 35.49038 |
Copiula obsti | Anura | DD | Ground-dwelling | 28.031168 | 35.50330 |
Copiula oxyrhina | Anura | LC | Ground-dwelling | 28.053530 | 35.62946 |
Copiula pipiens | Anura | LC | Ground-dwelling | 27.051912 | 35.43940 |
Copiula tyleri | Anura | LC | Ground-dwelling | 26.892563 | 35.51787 |
Corythomantis greeningi | Anura | LC | Arboreal | 26.033842 | 40.09760 |
Craugastor alfredi | Anura | LC | Arboreal | 27.020193 | 36.61815 |
Craugastor amniscola | Anura | VU | Stream-dwelling | 25.901343 | 35.94564 |
Craugastor angelicus | Anura | CR | Stream-dwelling | 27.731359 | 36.32655 |
Craugastor aphanus | Anura | EN | Ground-dwelling | 25.474466 | 36.67500 |
Craugastor augusti | Anura | LC | Ground-dwelling | 24.200783 | 36.31445 |
Craugastor aurilegulus | Anura | VU | Stream-dwelling | 26.278457 | 36.00591 |
Craugastor azueroensis | Anura | EN | Stream-dwelling | 26.275222 | 36.13027 |
Craugastor batrachylus | Anura | DD | Ground-dwelling | 23.875739 | 36.32757 |
Craugastor berkenbuschii | Anura | LC | Stream-dwelling | 25.225505 | 35.94306 |
Craugastor bocourti | Anura | EN | Arboreal | 26.075416 | 36.49897 |
Craugastor bransfordii | Anura | LC | Ground-dwelling | 26.786091 | 36.74854 |
Craugastor brocchi | Anura | VU | Stream-dwelling | 25.462435 | 35.99055 |
Craugastor campbelli | Anura | CR | Arboreal | 25.474466 | 36.46219 |
Craugastor chac | Anura | LC | Ground-dwelling | 26.463013 | 36.66723 |
Craugastor charadra | Anura | VU | Stream-dwelling | 26.473536 | 36.03417 |
Craugastor chingopetaca | Anura | VU | Ground-dwelling | 27.691165 | 36.92987 |
Craugastor coffeus | Anura | CR | Ground-dwelling | 26.138128 | 36.53246 |
Craugastor crassidigitus | Anura | LC | Ground-dwelling | 26.936382 | 37.54566 |
Craugastor cuaquero | Anura | DD | Ground-dwelling | 27.731359 | 36.88368 |
Craugastor cyanochthebius | Anura | EN | Arboreal | 25.474466 | 36.42463 |
Craugastor daryi | Anura | EN | Stream-dwelling | 25.349043 | 35.57151 |
Craugastor decoratus | Anura | LC | Arboreal | 24.518565 | 36.30394 |
Craugastor emcelae | Anura | CR | Ground-dwelling | 27.994452 | 36.90438 |
Craugastor emleni | Anura | EN | Ground-dwelling | 25.576439 | 36.58345 |
Craugastor escoces | Anura | CR | Stream-dwelling | 27.731359 | 36.21644 |
Craugastor fitzingeri | Anura | LC | Ground-dwelling | 26.812109 | 38.46130 |
Craugastor fleischmanni | Anura | CR | Stream-dwelling | 27.731359 | 36.25573 |
Craugastor glaucus | Anura | EN | Ground-dwelling | 27.194866 | 36.85722 |
Craugastor gollmeri | Anura | LC | Ground-dwelling | 26.779860 | 36.76161 |
Craugastor greggi | Anura | EN | Stream-dwelling | 23.968709 | 35.81130 |
Craugastor guerreroensis | Anura | EN | Ground-dwelling | 25.457526 | 36.52432 |
Craugastor gulosus | Anura | CR | Ground-dwelling | 24.380342 | 36.43902 |
Craugastor hobartsmithi | Anura | LC | Ground-dwelling | 25.303696 | 36.52275 |
Craugastor inachus | Anura | CR | Stream-dwelling | 27.110302 | 36.23299 |
Craugastor laevissimus | Anura | EN | Stream-dwelling | 26.630581 | 36.16533 |
Craugastor laticeps | Anura | LC | Ground-dwelling | 26.887605 | 36.74548 |
Craugastor lauraster | Anura | LC | Ground-dwelling | 26.791078 | 36.75074 |
Craugastor lineatus | Anura | LC | Ground-dwelling | 26.379870 | 36.72910 |
Craugastor loki | Anura | LC | Ground-dwelling | 26.652294 | 35.94649 |
Craugastor longirostris | Anura | LC | Ground-dwelling | 25.857168 | 40.03914 |
Craugastor matudai | Anura | EN | Ground-dwelling | 26.235202 | 36.58994 |
Craugastor megacephalus | Anura | LC | Ground-dwelling | 26.911973 | 36.63022 |
Craugastor megalotympanum | Anura | EN | Ground-dwelling | 27.340327 | 36.91699 |
Craugastor melanostictus | Anura | LC | Ground-dwelling | 26.440663 | 36.72010 |
Craugastor mexicanus | Anura | LC | Ground-dwelling | 24.976744 | 35.92426 |
Craugastor milesi | Anura | CR | Stream-dwelling | 25.474466 | 35.94533 |
Craugastor mimus | Anura | LC | Ground-dwelling | 26.587873 | 36.72383 |
Craugastor monnichorum | Anura | EN | Ground-dwelling | 27.067969 | 36.82566 |
Craugastor montanus | Anura | EN | Ground-dwelling | 26.885462 | 36.70397 |
Craugastor nefrens | Anura | CR | Arboreal | 25.474466 | 36.51217 |
Craugastor noblei | Anura | LC | Ground-dwelling | 26.835731 | 36.83365 |
Craugastor obesus | Anura | CR | Stream-dwelling | 27.994452 | 36.30467 |
Craugastor occidentalis | Anura | LC | Ground-dwelling | 25.134861 | 36.47173 |
Craugastor omiltemanus | Anura | LC | Ground-dwelling | 25.559113 | 36.03844 |
Craugastor opimus | Anura | LC | Ground-dwelling | 26.490708 | 36.64065 |
Craugastor palenque | Anura | VU | Stream-dwelling | 26.471393 | 36.11186 |
Craugastor pechorum | Anura | EN | Stream-dwelling | 26.423793 | 36.18001 |
Craugastor pelorus | Anura | VU | Stream-dwelling | 27.958357 | 36.36224 |
Craugastor persimilis | Anura | LC | Ground-dwelling | 24.312211 | 36.48403 |
Craugastor podiciferus | Anura | LC | Ground-dwelling | 25.746687 | 36.57346 |
Craugastor polymniae | Anura | NT | Arboreal | 22.681874 | 36.06014 |
Craugastor polyptychus | Anura | LC | Ground-dwelling | 24.312211 | 36.42835 |
Craugastor pozo | Anura | CR | Ground-dwelling | 27.337554 | 36.77760 |
Craugastor psephosypharus | Anura | NT | Ground-dwelling | 26.492495 | 36.69384 |
Craugastor pygmaeus | Anura | LC | Ground-dwelling | 26.071316 | 36.64900 |
Craugastor raniformis | Anura | LC | Ground-dwelling | 26.108760 | 37.45439 |
Craugastor ranoides | Anura | CR | Stream-dwelling | 27.409431 | 36.09250 |
Craugastor rayo | Anura | EN | Stream-dwelling | 17.152122 | 36.80196 |
Craugastor rhodopis | Anura | LC | Ground-dwelling | 24.732453 | 34.93023 |
Craugastor rivulus | Anura | VU | Stream-dwelling | 24.937621 | 35.93491 |
Craugastor rostralis | Anura | VU | Ground-dwelling | 26.473536 | 36.70978 |
Craugastor rugosus | Anura | LC | Ground-dwelling | 24.985341 | 36.01946 |
Craugastor rugulosus | Anura | LC | Stream-dwelling | 26.453613 | 35.97726 |
Craugastor rupinius | Anura | LC | Ground-dwelling | 26.659205 | 36.60987 |
Craugastor sabrinus | Anura | NT | Ground-dwelling | 26.704409 | 36.71873 |
Craugastor sandersoni | Anura | EN | Stream-dwelling | 26.512609 | 36.06845 |
Craugastor silvicola | Anura | DD | Ground-dwelling | 28.096738 | 36.92681 |
Craugastor spatulatus | Anura | EN | Ground-dwelling | 24.925561 | 36.48972 |
Craugastor stadelmani | Anura | CR | Stream-dwelling | 26.359827 | 36.18131 |
Craugastor stejnegerianus | Anura | LC | Ground-dwelling | 23.992746 | 36.34252 |
Craugastor stuarti | Anura | VU | Stream-dwelling | 25.994708 | 35.94722 |
Craugastor tabasarae | Anura | CR | Arboreal | 26.711713 | 38.52725 |
Craugastor talamancae | Anura | LC | Arboreal | 26.902873 | 37.38187 |
Craugastor tarahumaraensis | Anura | LC | Ground-dwelling | 24.395400 | 36.39567 |
Craugastor taurus | Anura | EN | Stream-dwelling | 27.413059 | 35.99851 |
Craugastor taylori | Anura | CR | Ground-dwelling | 28.254069 | 36.95984 |
Craugastor underwoodi | Anura | LC | Ground-dwelling | 25.746687 | 36.58874 |
Craugastor uno | Anura | VU | Ground-dwelling | 25.963008 | 36.65078 |
Craugastor vocalis | Anura | LC | Arboreal | 25.017837 | 36.45354 |
Craugastor vulcani | Anura | EN | Stream-dwelling | 27.340327 | 36.16378 |
Craugastor xucanebi | Anura | VU | Ground-dwelling | 25.462435 | 36.56254 |
Craugastor yucatanensis | Anura | NT | Ground-dwelling | 27.720569 | 36.83231 |
Crinia bilingua | Anura | LC | Semi-aquatic | 28.059965 | 36.95912 |
Crinia deserticola | Anura | LC | Ground-dwelling | 25.871326 | 36.41819 |
Crinia georgiana | Anura | LC | Ground-dwelling | 20.029898 | 35.58104 |
Crinia glauerti | Anura | LC | Ground-dwelling | 19.782633 | 35.51285 |
Crinia insignifera | Anura | LC | Ground-dwelling | 20.861641 | 35.73876 |
Crinia nimbus | Anura | LC | Ground-dwelling | 16.143565 | 34.69687 |
Crinia parinsignifera | Anura | LC | Ground-dwelling | 22.005880 | 36.38861 |
Crinia pseudinsignifera | Anura | LC | Ground-dwelling | 20.680445 | 35.71931 |
Crinia remota | Anura | LC | Ground-dwelling | 27.727604 | 36.58740 |
Crinia riparia | Anura | LC | Stream-dwelling | 21.635756 | 35.26242 |
Crinia signifera | Anura | LC | Ground-dwelling | 20.824835 | 35.75982 |
Crinia sloanei | Anura | DD | Ground-dwelling | 21.643351 | 35.84259 |
Crinia subinsignifera | Anura | LC | Ground-dwelling | 19.430828 | 35.55190 |
Crinia tasmaniensis | Anura | NT | Aquatic | 16.572454 | 34.93300 |
Crinia tinnula | Anura | VU | Ground-dwelling | 23.147243 | 36.16709 |
Crossodactylodes bokermanni | Anura | NT | Arboreal | 25.848416 | 39.29806 |
Crossodactylodes izecksohni | Anura | NT | Ground-dwelling | 25.780363 | 39.40108 |
Crossodactylodes pintoi | Anura | DD | Ground-dwelling | 26.900371 | 39.58043 |
Crossodactylus aeneus | Anura | DD | Stream-dwelling | 25.971802 | 36.48206 |
Crossodactylus bokermanni | Anura | DD | Stream-dwelling | 24.594125 | 36.26222 |
Crossodactylus caramaschii | Anura | LC | Stream-dwelling | 26.224611 | 36.44698 |
Crossodactylus cyclospinus | Anura | DD | Ground-dwelling | 25.570778 | 37.06869 |
Crossodactylus dantei | Anura | DD | Stream-dwelling | 25.717618 | 36.45160 |
Crossodactylus dispar | Anura | DD | Stream-dwelling | 25.884900 | 36.56237 |
Crossodactylus gaudichaudii | Anura | LC | Stream-dwelling | 25.818289 | 36.47595 |
Crossodactylus grandis | Anura | DD | Stream-dwelling | 26.714437 | 36.58624 |
Crossodactylus lutzorum | Anura | DD | Stream-dwelling | 24.908486 | 36.30559 |
Crossodactylus schmidti | Anura | NT | Stream-dwelling | 26.937501 | 36.39089 |
Crossodactylus trachystomus | Anura | DD | Stream-dwelling | 25.220967 | 36.41798 |
Cruziohyla calcarifer | Anura | LC | Arboreal | 25.069627 | 39.74203 |
Cruziohyla craspedopus | Anura | LC | Arboreal | 27.853871 | 39.75005 |
Cryptobatrachus boulengeri | Anura | VU | Stream-dwelling | 27.177346 | 37.37975 |
Cryptobatrachus fuhrmanni | Anura | LC | Stream-dwelling | 24.297754 | 36.98166 |
Cryptobranchus alleganiensis | Caudata | VU | Stream-dwelling | 24.534220 | 35.65815 |
Cryptothylax greshoffii | Anura | LC | Arboreal | 28.004166 | 39.79262 |
Cryptothylax minutus | Anura | DD | Arboreal | 28.365283 | 39.87188 |
Cryptotriton alvarezdeltoroi | Caudata | EN | Ground-dwelling | 27.958357 | 35.42940 |
Cryptotriton monzoni | Caudata | CR | Arboreal | 27.418815 | 35.17119 |
Cryptotriton nasalis | Caudata | EN | Arboreal | 25.474466 | 34.89288 |
Cryptotriton sierraminensis | Caudata | CR | Arboreal | 26.801790 | 35.18130 |
Cryptotriton veraepacis | Caudata | CR | Arboreal | 25.349043 | 34.93650 |
Ctenophryne aequatorialis | Anura | EN | Ground-dwelling | 23.042671 | 38.45808 |
Ctenophryne aterrima | Anura | LC | Ground-dwelling | 25.500839 | 38.74449 |
Ctenophryne barbatula | Anura | EN | Ground-dwelling | 21.293309 | 38.27611 |
Ctenophryne carpish | Anura | EN | Ground-dwelling | 22.692835 | 38.42140 |
Ctenophryne geayi | Anura | LC | Fossorial | 27.503489 | 40.16382 |
Ctenophryne minor | Anura | DD | Ground-dwelling | 25.763603 | 38.78732 |
Cycloramphus acangatan | Anura | VU | Ground-dwelling | 26.230104 | 37.62665 |
Cycloramphus asper | Anura | DD | Stream-dwelling | 24.666127 | 36.90611 |
Cycloramphus bandeirensis | Anura | DD | Stream-dwelling | 25.804730 | 37.04777 |
Cycloramphus bolitoglossus | Anura | DD | Ground-dwelling | 24.968342 | 37.52467 |
Cycloramphus boraceiensis | Anura | LC | Stream-dwelling | 25.888359 | 37.05139 |
Cycloramphus brasiliensis | Anura | NT | Stream-dwelling | 26.612447 | 37.15081 |
Cycloramphus carvalhoi | Anura | DD | Ground-dwelling | 26.714437 | 37.74655 |
Cycloramphus catarinensis | Anura | DD | Ground-dwelling | 24.890967 | 37.43949 |
Cycloramphus cedrensis | Anura | DD | Stream-dwelling | 24.923386 | 36.91333 |
Cycloramphus diringshofeni | Anura | DD | Ground-dwelling | 24.923386 | 37.57332 |
Cycloramphus dubius | Anura | LC | Stream-dwelling | 26.100808 | 36.98619 |
Cycloramphus duseni | Anura | DD | Stream-dwelling | 24.264750 | 36.78580 |
Cycloramphus eleutherodactylus | Anura | DD | Ground-dwelling | 26.100659 | 37.54010 |
Cycloramphus faustoi | Anura | CR | Stream-dwelling | 24.541828 | 36.81523 |
Cycloramphus fuliginosus | Anura | LC | Stream-dwelling | 25.653109 | 36.90669 |
Cycloramphus granulosus | Anura | DD | Stream-dwelling | 25.655903 | 36.95077 |
Cycloramphus izecksohni | Anura | DD | Stream-dwelling | 24.823516 | 36.90275 |
Cycloramphus juimirim | Anura | DD | Stream-dwelling | 26.483769 | 37.00972 |
Cycloramphus lutzorum | Anura | DD | Stream-dwelling | 25.708717 | 36.95304 |
Cycloramphus migueli | Anura | DD | Ground-dwelling | 25.433241 | 37.53720 |
Cycloramphus mirandaribeiroi | Anura | DD | Stream-dwelling | 24.076546 | 36.76392 |
Cycloramphus ohausi | Anura | DD | Stream-dwelling | 26.561451 | 37.13208 |
Cycloramphus organensis | Anura | DD | Ground-dwelling | 26.222532 | 37.63898 |
Cycloramphus rhyakonastes | Anura | LC | Stream-dwelling | 24.264750 | 36.69705 |
Cycloramphus semipalmatus | Anura | NT | Stream-dwelling | 25.842462 | 36.98936 |
Cycloramphus stejnegeri | Anura | DD | Ground-dwelling | 26.561451 | 37.71046 |
Cycloramphus valae | Anura | DD | Stream-dwelling | 24.832390 | 36.77750 |
Cyclorana alboguttata | Anura | LC | Fossorial | 25.245123 | 40.23933 |
Cyclorana australis | Anura | LC | Fossorial | 27.115732 | 40.53779 |
Cyclorana brevipes | Anura | LC | Fossorial | 25.024737 | 40.11857 |
Cyclorana cryptotis | Anura | LC | Fossorial | 27.630825 | 40.20151 |
Cyclorana cultripes | Anura | LC | Fossorial | 25.210857 | 39.97785 |
Cyclorana longipes | Anura | LC | Fossorial | 27.757735 | 40.21860 |
Cyclorana maculosa | Anura | LC | Fossorial | 27.086446 | 40.12158 |
Cyclorana maini | Anura | LC | Fossorial | 24.139385 | 39.71855 |
Cyclorana manya | Anura | LC | Ground-dwelling | 27.470148 | 39.26400 |
Cyclorana novaehollandiae | Anura | LC | Fossorial | 25.263213 | 40.07103 |
Cyclorana platycephala | Anura | LC | Fossorial | 24.106506 | 39.66049 |
Cyclorana vagitus | Anura | LC | Ground-dwelling | 27.912414 | 39.35691 |
Cyclorana verrucosa | Anura | LC | Ground-dwelling | 23.995390 | 38.70900 |
Cynops ensicauda | Caudata | VU | Semi-aquatic | 27.459041 | 37.76809 |
Cynops orientalis | Caudata | LC | Aquatic | 27.296492 | 38.43084 |
Cynops pyrrhogaster | Caudata | NT | Aquatic | 24.831461 | 37.36820 |
Dasypops schirchi | Anura | VU | Ground-dwelling | 25.440299 | 39.23137 |
Dendrobates auratus | Anura | LC | Arboreal | 26.872392 | 36.12723 |
Dendrobates leucomelas | Anura | LC | Ground-dwelling | 27.069394 | 36.25718 |
Dendrobates nubeculosus | Anura | DD | Ground-dwelling | 27.273349 | 36.26240 |
Dendrobates tinctorius | Anura | LC | Ground-dwelling | 27.634502 | 36.27345 |
Dendrobates truncatus | Anura | LC | Ground-dwelling | 26.090033 | 36.02161 |
Dendrophryniscus berthalutzae | Anura | LC | Ground-dwelling | 24.848540 | 38.48806 |
Dendrophryniscus brevipollicatus | Anura | LC | Ground-dwelling | 25.731762 | 38.64234 |
Dendrophryniscus carvalhoi | Anura | EN | Ground-dwelling | 25.780363 | 38.63662 |
Dendrophryniscus krausae | Anura | DD | Ground-dwelling | 24.675082 | 38.51068 |
Dendrophryniscus leucomystax | Anura | LC | Ground-dwelling | 25.946098 | 38.60674 |
Dendrophryniscus proboscideus | Anura | DD | Ground-dwelling | 25.580083 | 38.66175 |
Dendrophryniscus stawiarskyi | Anura | DD | Ground-dwelling | 25.193051 | 38.55494 |
Dendropsophus acreanus | Anura | LC | Arboreal | 27.437922 | 39.59908 |
Dendropsophus amicorum | Anura | CR | Arboreal | 26.512811 | 39.34266 |
Dendropsophus anataliasiasi | Anura | LC | Arboreal | 28.039030 | 39.59007 |
Dendropsophus anceps | Anura | LC | Arboreal | 25.783667 | 38.48105 |
Dendropsophus aperomeus | Anura | LC | Arboreal | 22.215423 | 38.80584 |
Dendropsophus araguaya | Anura | DD | Arboreal | 28.087613 | 39.62913 |
Dendropsophus battersbyi | Anura | DD | Arboreal | 26.059239 | 39.33252 |
Dendropsophus berthalutzae | Anura | LC | Arboreal | 25.724969 | 39.22320 |
Dendropsophus bifurcus | Anura | LC | Arboreal | 26.612696 | 40.61988 |
Dendropsophus bipunctatus | Anura | LC | Arboreal | 25.559113 | 39.17893 |
Dendropsophus bogerti | Anura | LC | Arboreal | 24.667136 | 39.09452 |
Dendropsophus bokermanni | Anura | LC | Arboreal | 27.068784 | 39.26777 |
Dendropsophus branneri | Anura | LC | Arboreal | 26.171617 | 39.21296 |
Dendropsophus brevifrons | Anura | LC | Arboreal | 27.292773 | 39.04357 |
Dendropsophus cachimbo | Anura | DD | Arboreal | 27.627043 | 39.43833 |
Dendropsophus carnifex | Anura | LC | Arboreal | 20.357864 | 39.06586 |
Dendropsophus cerradensis | Anura | DD | Arboreal | 28.495858 | 39.59927 |
Dendropsophus columbianus | Anura | LC | Arboreal | 23.424122 | 38.88123 |
Dendropsophus cruzi | Anura | LC | Arboreal | 27.483785 | 39.40032 |
Dendropsophus decipiens | Anura | LC | Arboreal | 26.000427 | 37.57455 |
Dendropsophus delarivai | Anura | LC | Arboreal | 21.374359 | 38.75539 |
Dendropsophus dutrai | Anura | DD | Arboreal | 25.568736 | 39.21987 |
Dendropsophus ebraccatus | Anura | LC | Arboreal | 26.315557 | 41.16053 |
Dendropsophus elegans | Anura | LC | Arboreal | 25.642711 | 38.95188 |
Dendropsophus elianeae | Anura | LC | Arboreal | 27.614484 | 39.46240 |
Dendropsophus garagoensis | Anura | LC | Arboreal | 21.635496 | 38.81709 |
Dendropsophus gaucheri | Anura | LC | Arboreal | 27.310570 | 39.44360 |
Dendropsophus giesleri | Anura | LC | Arboreal | 25.935007 | 39.35880 |
Dendropsophus gryllatus | Anura | EN | Arboreal | 26.492617 | 39.38078 |
Dendropsophus haddadi | Anura | LC | Arboreal | 25.452224 | 37.49919 |
Dendropsophus haraldschultzi | Anura | LC | Arboreal | 28.221121 | 39.56977 |
Dendropsophus jimi | Anura | LC | Arboreal | 26.204206 | 39.29304 |
Dendropsophus joannae | Anura | DD | Arboreal | 26.093068 | 39.34245 |
Dendropsophus juliani | Anura | LC | Arboreal | 28.319663 | 39.28517 |
Dendropsophus koechlini | Anura | LC | Arboreal | 26.511801 | 39.88397 |
Dendropsophus leali | Anura | LC | Arboreal | 27.647982 | 39.47427 |
Dendropsophus leucophyllatus | Anura | LC | Arboreal | 27.682505 | 40.90721 |
Dendropsophus limai | Anura | DD | Arboreal | 26.100808 | 39.29183 |
Dendropsophus luteoocellatus | Anura | LC | Arboreal | 26.706239 | 39.37550 |
Dendropsophus marmoratus | Anura | LC | Arboreal | 27.685951 | 41.20292 |
Dendropsophus mathiassoni | Anura | LC | Arboreal | 25.902772 | 39.22489 |
Dendropsophus melanargyreus | Anura | LC | Arboreal | 28.038188 | 40.34036 |
Dendropsophus meridensis | Anura | EN | Arboreal | 26.315006 | 39.23188 |
Dendropsophus meridianus | Anura | LC | Arboreal | 26.139322 | 40.05475 |
Dendropsophus microcephalus | Anura | LC | Arboreal | 27.817589 | 39.52707 |
Dendropsophus microps | Anura | LC | Arboreal | 25.512886 | 39.24881 |
Dendropsophus minimus | Anura | DD | Arboreal | 27.713726 | 39.57622 |
Dendropsophus minusculus | Anura | LC | Arboreal | 26.834742 | 39.01926 |
Dendropsophus minutus | Anura | LC | Arboreal | 27.146531 | 36.68436 |
Dendropsophus miyatai | Anura | LC | Arboreal | 28.174783 | 39.57863 |
Dendropsophus molitor | Anura | LC | Arboreal | 23.133534 | 38.52362 |
Dendropsophus nahdereri | Anura | LC | Arboreal | 24.676541 | 39.07518 |
Dendropsophus nanus | Anura | LC | Arboreal | 27.360017 | 39.50671 |
Dendropsophus novaisi | Anura | DD | Arboreal | 25.265065 | 40.72616 |
Dendropsophus oliveirai | Anura | LC | Arboreal | 25.429361 | 39.24590 |
Dendropsophus padreluna | Anura | LC | Arboreal | 25.264015 | 39.27090 |
Dendropsophus parviceps | Anura | LC | Arboreal | 27.642072 | 39.23710 |
Dendropsophus pauiniensis | Anura | LC | Arboreal | 29.313518 | 39.65297 |
Dendropsophus phlebodes | Anura | LC | Arboreal | 26.933782 | 39.35373 |
Dendropsophus praestans | Anura | LC | Arboreal | 23.532804 | 38.91484 |
Dendropsophus pseudomeridianus | Anura | LC | Arboreal | 26.283101 | 39.30081 |
Dendropsophus reichlei | Anura | LC | Arboreal | 24.237789 | 39.17382 |
Dendropsophus rhea | Anura | DD | Arboreal | 26.255622 | 39.34419 |
Dendropsophus rhodopeplus | Anura | LC | Arboreal | 26.559980 | 39.33239 |
Dendropsophus riveroi | Anura | LC | Arboreal | 27.578064 | 39.53953 |
Dendropsophus robertmertensi | Anura | LC | Arboreal | 27.247135 | 39.47485 |
Dendropsophus rossalleni | Anura | LC | Arboreal | 27.536702 | 39.47597 |
Dendropsophus rubicundulus | Anura | LC | Arboreal | 27.808066 | 39.14474 |
Dendropsophus ruschii | Anura | DD | Stream-dwelling | 25.960155 | 38.82913 |
Dendropsophus sanborni | Anura | LC | Arboreal | 25.398394 | 38.66284 |
Dendropsophus sarayacuensis | Anura | LC | Arboreal | 27.479768 | 40.11249 |
Dendropsophus sartori | Anura | LC | Arboreal | 26.026173 | 39.33582 |
Dendropsophus schubarti | Anura | LC | Arboreal | 27.194186 | 38.40187 |
Dendropsophus seniculus | Anura | LC | Arboreal | 25.811706 | 39.88124 |
Dendropsophus soaresi | Anura | LC | Arboreal | 26.654593 | 39.29160 |
Dendropsophus stingi | Anura | LC | Arboreal | 22.707356 | 38.79190 |
Dendropsophus studerae | Anura | DD | Arboreal | 25.646250 | 39.28343 |
Dendropsophus subocularis | Anura | LC | Arboreal | 26.164225 | 39.31133 |
Dendropsophus timbeba | Anura | LC | Arboreal | 28.110142 | 39.58654 |
Dendropsophus tintinnabulum | Anura | DD | Arboreal | 28.702738 | 39.55289 |
Dendropsophus triangulum | Anura | LC | Arboreal | 27.646987 | 40.40873 |
Dendropsophus tritaeniatus | Anura | LC | Arboreal | 27.549505 | 39.11010 |
Dendropsophus virolinensis | Anura | LC | Arboreal | 22.327385 | 38.81960 |
Dendropsophus walfordi | Anura | LC | Arboreal | 28.413231 | 39.64983 |
Dendropsophus werneri | Anura | LC | Arboreal | 25.442044 | 39.19621 |
Dendropsophus xapuriensis | Anura | LC | Arboreal | 28.110142 | 39.49541 |
Dendropsophus yaracuyanus | Anura | EN | Arboreal | 26.601412 | 39.37143 |
Dendrotriton bromeliacius | Caudata | CR | Arboreal | 24.928522 | 35.03750 |
Dendrotriton chujorum | Caudata | CR | Arboreal | 22.662030 | 34.79236 |
Dendrotriton cuchumatanus | Caudata | CR | Arboreal | 22.662030 | 34.73941 |
Dendrotriton kekchiorum | Caudata | CR | Arboreal | 25.349043 | 35.09067 |
Dendrotriton megarhinus | Caudata | VU | Arboreal | 27.337554 | 35.35586 |
Dendrotriton rabbi | Caudata | CR | Arboreal | 22.662030 | 34.77409 |
Dendrotriton sanctibarbarus | Caudata | CR | Arboreal | 26.199074 | 35.22021 |
Dendrotriton xolocalcae | Caudata | VU | Arboreal | 25.275389 | 35.07660 |
Dermatonotus muelleri | Anura | LC | Fossorial | 27.020960 | 42.30867 |
Desmognathus abditus | Caudata | NT | Semi-aquatic | 26.356968 | 35.28367 |
Desmognathus aeneus | Caudata | NT | Semi-aquatic | 27.537673 | 35.17627 |
Desmognathus apalachicolae | Caudata | LC | Semi-aquatic | 28.062047 | 35.51204 |
Desmognathus auriculatus | Caudata | LC | Semi-aquatic | 25.298117 | 35.11676 |
Desmognathus brimleyorum | Caudata | LC | Semi-aquatic | 26.947408 | 35.82675 |
Desmognathus carolinensis | Caudata | LC | Semi-aquatic | 26.207634 | 35.13370 |
Desmognathus folkertsi | Caudata | DD | Semi-aquatic | 26.950810 | 34.67904 |
Desmognathus fuscus | Caudata | LC | Semi-aquatic | 24.023747 | 35.62162 |
Desmognathus imitator | Caudata | NT | Semi-aquatic | 26.514326 | 35.28786 |
Desmognathus marmoratus | Caudata | LC | Semi-aquatic | 26.406589 | 34.67088 |
Desmognathus monticola | Caudata | LC | Semi-aquatic | 25.478165 | 35.29317 |
Desmognathus ochrophaeus | Caudata | LC | Ground-dwelling | 22.540643 | 34.13248 |
Desmognathus ocoee | Caudata | LC | Aquatic | 27.101724 | 35.31309 |
Desmognathus orestes | Caudata | LC | Ground-dwelling | 25.906741 | 35.23962 |
Desmognathus quadramaculatus | Caudata | LC | Semi-aquatic | 26.070850 | 33.69661 |
Desmognathus santeetlah | Caudata | NT | Semi-aquatic | 26.591833 | 35.24782 |
Desmognathus welteri | Caudata | LC | Semi-aquatic | 25.946996 | 35.29489 |
Desmognathus wrighti | Caudata | LC | Ground-dwelling | 26.248866 | 34.76759 |
Diasporus anthrax | Anura | VU | Arboreal | 24.378682 | 37.08018 |
Diasporus diastema | Anura | LC | Arboreal | 26.971043 | 37.43427 |
Diasporus gularis | Anura | LC | Arboreal | 25.356227 | 37.26345 |
Diasporus hylaeformis | Anura | LC | Arboreal | 26.112788 | 37.31997 |
Diasporus quidditus | Anura | LC | Arboreal | 26.490708 | 37.40321 |
Diasporus tigrillo | Anura | NT | Arboreal | 17.152122 | 36.12977 |
Diasporus tinker | Anura | LC | Arboreal | 25.914869 | 37.28944 |
Diasporus ventrimaculatus | Anura | LC | Arboreal | 22.547707 | 36.87783 |
Diasporus vocator | Anura | LC | Ground-dwelling | 26.018200 | 37.46944 |
Dicamptodon aterrimus | Caudata | LC | Semi-aquatic | 17.101000 | 31.37457 |
Dicamptodon copei | Caudata | LC | Semi-aquatic | 17.347847 | 31.43012 |
Dicamptodon ensatus | Caudata | NT | Semi-aquatic | 18.759912 | 31.64686 |
Dicamptodon tenebrosus | Caudata | LC | Semi-aquatic | 18.157101 | 30.64604 |
Didynamipus sjostedti | Anura | VU | Ground-dwelling | 27.149317 | 38.93885 |
Dischidodactylus colonnelloi | Anura | NT | Ground-dwelling | 25.966820 | 33.50341 |
Dischidodactylus duidensis | Anura | NT | Ground-dwelling | 25.966820 | 33.63090 |
Discoglossus galganoi | Anura | LC | Ground-dwelling | 20.978326 | 36.36188 |
Discoglossus montalentii | Anura | NT | Stream-dwelling | 23.907151 | 36.47700 |
Discoglossus pictus | Anura | LC | Ground-dwelling | 23.610725 | 37.67673 |
Discoglossus sardus | Anura | LC | Semi-aquatic | 24.112551 | 37.70948 |
Discoglossus scovazzi | Anura | LC | Ground-dwelling | 22.242137 | 37.14216 |
Dryaderces pearsoni | Anura | LC | Arboreal | 24.422344 | 39.77109 |
Dryophytes andersonii | Anura | NT | Arboreal | 25.245655 | 41.14011 |
Dryophytes chrysoscelis | Anura | LC | Arboreal | 23.585198 | 40.72708 |
Dryophytes cinereus | Anura | LC | Arboreal | 26.544490 | 40.49593 |
Dryophytes squirellus | Anura | LC | Arboreal | 27.010215 | 39.14930 |
Dryophytes versicolor | Anura | LC | Arboreal | 22.427734 | 40.18615 |
Dryophytes walkeri | Anura | VU | Ground-dwelling | 26.099377 | 39.62454 |
Duellmanohyla chamulae | Anura | EN | Stream-dwelling | 27.856972 | 39.31893 |
Duellmanohyla ignicolor | Anura | NT | Stream-dwelling | 22.681874 | 38.69132 |
Duellmanohyla lythrodes | Anura | EN | Stream-dwelling | 22.547707 | 38.67094 |
Duellmanohyla rufioculis | Anura | LC | Stream-dwelling | 26.413149 | 39.22395 |
Duellmanohyla salvavida | Anura | EN | Stream-dwelling | 26.359827 | 39.25951 |
Duellmanohyla schmidtorum | Anura | NT | Arboreal | 27.265994 | 39.76709 |
Duellmanohyla soralia | Anura | EN | Stream-dwelling | 25.474466 | 39.10842 |
Duellmanohyla uranochroa | Anura | VU | Stream-dwelling | 25.742721 | 39.12069 |
Duttaphrynus atukoralei | Anura | LC | Ground-dwelling | 28.283385 | 39.20717 |
Duttaphrynus beddomii | Anura | EN | Ground-dwelling | 27.436624 | 39.10207 |
Duttaphrynus brevirostris | Anura | DD | Ground-dwelling | 26.875890 | 38.96001 |
Duttaphrynus crocus | Anura | DD | Ground-dwelling | 28.060554 | 39.14880 |
Duttaphrynus dhufarensis | Anura | LC | Ground-dwelling | 26.396144 | 38.98432 |
Duttaphrynus himalayanus | Anura | LC | Ground-dwelling | 17.040383 | 37.71068 |
Duttaphrynus hololius | Anura | DD | Ground-dwelling | 27.484257 | 39.10020 |
Duttaphrynus kotagamai | Anura | EN | Stream-dwelling | 27.674004 | 38.52603 |
Duttaphrynus melanostictus | Anura | LC | Ground-dwelling | 27.297149 | 39.04040 |
Duttaphrynus microtympanum | Anura | VU | Ground-dwelling | 27.689666 | 39.06526 |
Duttaphrynus noellerti | Anura | CR | Ground-dwelling | 27.674004 | 39.12732 |
Duttaphrynus olivaceus | Anura | LC | Ground-dwelling | 25.555449 | 38.85446 |
Duttaphrynus parietalis | Anura | NT | Ground-dwelling | 27.521169 | 39.00541 |
Duttaphrynus scaber | Anura | LC | Ground-dwelling | 27.735331 | 39.12624 |
Duttaphrynus scorteccii | Anura | DD | Ground-dwelling | 24.960146 | 38.67214 |
Duttaphrynus silentvalleyensis | Anura | DD | Stream-dwelling | 27.229333 | 38.51447 |
Duttaphrynus stomaticus | Anura | LC | Ground-dwelling | 25.566819 | 38.86884 |
Duttaphrynus stuarti | Anura | DD | Ground-dwelling | 16.296188 | 37.60106 |
Duttaphrynus sumatranus | Anura | DD | Stream-dwelling | 28.953653 | 38.61715 |
Duttaphrynus valhallae | Anura | DD | Ground-dwelling | 27.719854 | 39.08125 |
Dyscophus antongilii | Anura | LC | Ground-dwelling | 25.909711 | 37.45396 |
Dyscophus guineti | Anura | LC | Ground-dwelling | 25.903595 | 37.41835 |
Dyscophus insularis | Anura | LC | Ground-dwelling | 26.780872 | 37.67815 |
Echinotriton andersoni | Caudata | VU | Ground-dwelling | 27.426915 | 37.23031 |
Echinotriton chinhaiensis | Caudata | CR | Semi-aquatic | 26.353124 | 37.28446 |
Ecnomiohyla fimbrimembra | Anura | VU | Arboreal | 27.872730 | 39.91963 |
Ecnomiohyla miliaria | Anura | LC | Arboreal | 26.366312 | 39.69064 |
Ecnomiohyla minera | Anura | VU | Arboreal | 25.470278 | 39.54116 |
Ecnomiohyla phantasmagoria | Anura | DD | Arboreal | 27.116029 | 39.64954 |
Ecnomiohyla salvaje | Anura | EN | Arboreal | 26.446640 | 39.59994 |
Ecnomiohyla thysanota | Anura | DD | Arboreal | 28.084410 | 39.85482 |
Ecnomiohyla valancifer | Anura | CR | Arboreal | 27.246796 | 39.78186 |
Edalorhina nasuta | Anura | DD | Ground-dwelling | 21.293309 | 39.11863 |
Edalorhina perezi | Anura | LC | Ground-dwelling | 27.472338 | 39.87779 |
Elachistocleis bicolor | Anura | LC | Ground-dwelling | 25.444636 | 40.29163 |
Elachistocleis bumbameuboi | Anura | DD | Ground-dwelling | 28.118040 | 40.21410 |
Elachistocleis carvalhoi | Anura | LC | Ground-dwelling | 28.115455 | 40.11957 |
Elachistocleis erythrogaster | Anura | NT | Fossorial | 24.832390 | 40.69351 |
Elachistocleis helianneae | Anura | LC | Ground-dwelling | 28.506363 | 40.16861 |
Elachistocleis matogrosso | Anura | LC | Ground-dwelling | 28.346739 | 40.20173 |
Elachistocleis ovalis | Anura | LC | Ground-dwelling | 27.329532 | 40.28098 |
Elachistocleis panamensis | Anura | LC | Ground-dwelling | 26.878044 | 39.95379 |
Elachistocleis pearsei | Anura | LC | Ground-dwelling | 26.579021 | 39.95016 |
Elachistocleis piauiensis | Anura | LC | Fossorial | 26.992571 | 41.01712 |
Elachistocleis skotogaster | Anura | LC | Ground-dwelling | 21.207480 | 39.26198 |
Elachistocleis surinamensis | Anura | LC | Ground-dwelling | 26.865438 | 40.25495 |
Elachistocleis surumu | Anura | DD | Ground-dwelling | 26.980457 | 40.00518 |
Eleutherodactylus abbotti | Anura | LC | Ground-dwelling | 27.495746 | 37.95103 |
Eleutherodactylus acmonis | Anura | EN | Ground-dwelling | 27.562183 | 37.98041 |
Eleutherodactylus adelus | Anura | EN | Ground-dwelling | 27.366651 | 38.68829 |
Eleutherodactylus albipes | Anura | CR | Ground-dwelling | 27.614799 | 38.01530 |
Eleutherodactylus albolabris | Anura | LC | Arboreal | 25.798221 | 37.55591 |
Eleutherodactylus alcoae | Anura | LC | Ground-dwelling | 27.542308 | 38.11753 |
Eleutherodactylus alticola | Anura | CR | Ground-dwelling | 27.737137 | 36.79960 |
Eleutherodactylus amadeus | Anura | CR | Ground-dwelling | 27.822577 | 37.97878 |
Eleutherodactylus amplinympha | Anura | EN | Arboreal | 26.442520 | 38.30562 |
Eleutherodactylus andrewsi | Anura | EN | Stream-dwelling | 27.737137 | 36.13568 |
Eleutherodactylus angustidigitorum | Anura | LC | Ground-dwelling | 24.325483 | 37.48523 |
Eleutherodactylus antillensis | Anura | LC | Ground-dwelling | 27.179744 | 45.48420 |
Eleutherodactylus apostates | Anura | CR | Ground-dwelling | 27.822577 | 38.13406 |
Eleutherodactylus armstrongi | Anura | EN | Arboreal | 27.542308 | 37.90914 |
Eleutherodactylus atkinsi | Anura | LC | Ground-dwelling | 27.534126 | 38.04955 |
Eleutherodactylus audanti | Anura | VU | Ground-dwelling | 27.702299 | 37.97748 |
Eleutherodactylus auriculatoides | Anura | VU | Arboreal | 26.991300 | 37.75529 |
Eleutherodactylus auriculatus | Anura | LC | Arboreal | 27.520657 | 37.79129 |
Eleutherodactylus bakeri | Anura | CR | Arboreal | 27.822577 | 37.94394 |
Eleutherodactylus barlagnei | Anura | EN | Stream-dwelling | 26.795585 | 37.86941 |
Eleutherodactylus bartonsmithi | Anura | CR | Arboreal | 27.581470 | 37.89290 |
Eleutherodactylus blairhedgesi | Anura | CR | Ground-dwelling | 27.301388 | 38.76281 |
Eleutherodactylus bresslerae | Anura | CR | Ground-dwelling | 27.510782 | 37.98067 |
Eleutherodactylus brevirostris | Anura | CR | Ground-dwelling | 27.822577 | 38.06947 |
Eleutherodactylus brittoni | Anura | LC | Ground-dwelling | 27.011994 | 36.51035 |
Eleutherodactylus caribe | Anura | CR | Ground-dwelling | 27.523870 | 38.00877 |
Eleutherodactylus casparii | Anura | EN | Ground-dwelling | 27.643132 | 39.03029 |
Eleutherodactylus cavernicola | Anura | CR | Ground-dwelling | 27.504519 | 36.88949 |
Eleutherodactylus chlorophenax | Anura | CR | Ground-dwelling | 27.822577 | 38.05001 |
Eleutherodactylus cochranae | Anura | LC | Arboreal | 27.071064 | 39.37864 |
Eleutherodactylus cooki | Anura | EN | Ground-dwelling | 26.947933 | 39.39453 |
Eleutherodactylus coqui | Anura | LC | Ground-dwelling | 26.083947 | 40.90880 |
Eleutherodactylus corona | Anura | CR | Arboreal | 27.523870 | 37.82462 |
Eleutherodactylus counouspeus | Anura | EN | Ground-dwelling | 27.822577 | 38.01135 |
Eleutherodactylus cubanus | Anura | CR | Ground-dwelling | 27.614799 | 38.05333 |
Eleutherodactylus cundalli | Anura | VU | Ground-dwelling | 27.568588 | 36.69839 |
Eleutherodactylus cuneatus | Anura | LC | Ground-dwelling | 27.630529 | 37.94503 |
Eleutherodactylus cystignathoides | Anura | LC | Ground-dwelling | 24.513708 | 37.48011 |
Eleutherodactylus dennisi | Anura | LC | Ground-dwelling | 24.033580 | 37.46241 |
Eleutherodactylus dilatus | Anura | LC | Ground-dwelling | 25.457526 | 37.66425 |
Eleutherodactylus dimidiatus | Anura | NT | Ground-dwelling | 27.556167 | 38.13660 |
Eleutherodactylus diplasius | Anura | CR | Arboreal | 27.822577 | 37.74976 |
Eleutherodactylus dolomedes | Anura | CR | Arboreal | 27.523870 | 37.87252 |
Eleutherodactylus eileenae | Anura | NT | Arboreal | 27.486164 | 37.88846 |
Eleutherodactylus emiliae | Anura | EN | Ground-dwelling | 27.709367 | 38.17767 |
Eleutherodactylus etheridgei | Anura | EN | Ground-dwelling | 27.886726 | 38.01219 |
Eleutherodactylus eunaster | Anura | CR | Arboreal | 27.822577 | 37.85860 |
Eleutherodactylus flavescens | Anura | NT | Ground-dwelling | 27.138011 | 37.90314 |
Eleutherodactylus fowleri | Anura | CR | Arboreal | 27.582022 | 37.81730 |
Eleutherodactylus furcyensis | Anura | CR | Ground-dwelling | 27.582022 | 37.98770 |
Eleutherodactylus fuscus | Anura | EN | Ground-dwelling | 27.491538 | 36.69654 |
Eleutherodactylus glamyrus | Anura | EN | Arboreal | 27.614799 | 37.88597 |
Eleutherodactylus glandulifer | Anura | CR | Stream-dwelling | 27.822577 | 37.27570 |
Eleutherodactylus glaphycompus | Anura | EN | Ground-dwelling | 27.828823 | 38.07257 |
Eleutherodactylus glaucoreius | Anura | EN | Ground-dwelling | 27.596018 | 36.75454 |
Eleutherodactylus goini | Anura | VU | Ground-dwelling | 27.440766 | 38.82233 |
Eleutherodactylus gossei | Anura | VU | Ground-dwelling | 27.545850 | 35.99394 |
Eleutherodactylus grabhami | Anura | EN | Ground-dwelling | 27.512405 | 36.95863 |
Eleutherodactylus grahami | Anura | EN | Ground-dwelling | 28.196464 | 37.94317 |
Eleutherodactylus grandis | Anura | EN | Ground-dwelling | 20.209526 | 36.85980 |
Eleutherodactylus greyi | Anura | EN | Ground-dwelling | 27.579183 | 37.90973 |
Eleutherodactylus griphus | Anura | EN | Ground-dwelling | 27.453434 | 36.80400 |
Eleutherodactylus gryllus | Anura | CR | Ground-dwelling | 26.895578 | 39.44209 |
Eleutherodactylus guanahacabibes | Anura | EN | Ground-dwelling | 27.455733 | 38.88408 |
Eleutherodactylus guantanamera | Anura | VU | Arboreal | 27.761412 | 37.85071 |
Eleutherodactylus gundlachi | Anura | EN | Ground-dwelling | 27.598135 | 36.97142 |
Eleutherodactylus guttilatus | Anura | LC | Ground-dwelling | 22.967170 | 37.39208 |
Eleutherodactylus haitianus | Anura | EN | Ground-dwelling | 27.074157 | 37.91164 |
Eleutherodactylus hedricki | Anura | EN | Arboreal | 26.947933 | 39.34725 |
Eleutherodactylus heminota | Anura | VU | Arboreal | 27.702299 | 37.88515 |
Eleutherodactylus hypostenor | Anura | EN | Fossorial | 27.392803 | 38.83535 |
Eleutherodactylus iberia | Anura | CR | Ground-dwelling | 27.510782 | 37.96736 |
Eleutherodactylus inoptatus | Anura | NT | Ground-dwelling | 27.399358 | 37.92958 |
Eleutherodactylus intermedius | Anura | EN | Ground-dwelling | 27.719198 | 37.92732 |
Eleutherodactylus interorbitalis | Anura | LC | Ground-dwelling | 24.982538 | 37.69562 |
Eleutherodactylus ionthus | Anura | EN | Arboreal | 27.684286 | 37.78845 |
Eleutherodactylus jamaicensis | Anura | CR | Arboreal | 27.549902 | 36.62972 |
Eleutherodactylus jaumei | Anura | CR | Ground-dwelling | 27.614799 | 38.02875 |
Eleutherodactylus johnstonei | Anura | LC | Ground-dwelling | 26.384983 | 38.82813 |
Eleutherodactylus juanariveroi | Anura | CR | Arboreal | 27.000287 | 37.75126 |
Eleutherodactylus jugans | Anura | CR | Ground-dwelling | 27.582022 | 38.03411 |
Eleutherodactylus junori | Anura | CR | Ground-dwelling | 27.453434 | 36.69593 |
Eleutherodactylus klinikowskii | Anura | EN | Arboreal | 27.421610 | 37.78878 |
Eleutherodactylus lamprotes | Anura | CR | Arboreal | 27.822577 | 37.86821 |
Eleutherodactylus leberi | Anura | EN | Arboreal | 27.592556 | 37.93930 |
Eleutherodactylus lentus | Anura | EN | Ground-dwelling | 27.053915 | 37.84754 |
Eleutherodactylus leoncei | Anura | EN | Ground-dwelling | 27.582022 | 38.03619 |
Eleutherodactylus leprus | Anura | LC | Ground-dwelling | 26.615753 | 37.73000 |
Eleutherodactylus limbatus | Anura | VU | Ground-dwelling | 27.520337 | 37.95711 |
Eleutherodactylus locustus | Anura | EN | Ground-dwelling | 26.947933 | 39.41718 |
Eleutherodactylus longipes | Anura | LC | Ground-dwelling | 23.766035 | 37.46216 |
Eleutherodactylus luteolus | Anura | EN | Ground-dwelling | 27.491538 | 36.79565 |
Eleutherodactylus maestrensis | Anura | DD | Ground-dwelling | 27.592556 | 38.12627 |
Eleutherodactylus mariposa | Anura | CR | Arboreal | 27.652158 | 37.89949 |
Eleutherodactylus marnockii | Anura | LC | Ground-dwelling | 24.663276 | 37.70097 |
Eleutherodactylus martinicensis | Anura | NT | Ground-dwelling | 27.054082 | 38.52126 |
Eleutherodactylus maurus | Anura | VU | Ground-dwelling | 23.760426 | 37.36942 |
Eleutherodactylus melacara | Anura | EN | Arboreal | 27.570363 | 37.89638 |
Eleutherodactylus michaelschmidi | Anura | EN | Ground-dwelling | 27.592556 | 37.90425 |
Eleutherodactylus minutus | Anura | EN | Ground-dwelling | 26.991300 | 37.87858 |
Eleutherodactylus modestus | Anura | LC | Ground-dwelling | 26.357765 | 37.83804 |
Eleutherodactylus monensis | Anura | VU | Ground-dwelling | 27.006480 | 37.77161 |
Eleutherodactylus montanus | Anura | EN | Arboreal | 26.991300 | 37.77185 |
Eleutherodactylus nitidus | Anura | LC | Ground-dwelling | 24.432589 | 37.59836 |
Eleutherodactylus nortoni | Anura | CR | Arboreal | 27.702299 | 37.82596 |
Eleutherodactylus notidodes | Anura | EN | Ground-dwelling | 27.322727 | 38.00086 |
Eleutherodactylus nubicola | Anura | EN | Ground-dwelling | 27.737137 | 36.77174 |
Eleutherodactylus orientalis | Anura | CR | Ground-dwelling | 27.510782 | 37.97474 |
Eleutherodactylus oxyrhyncus | Anura | CR | Ground-dwelling | 27.828823 | 38.06467 |
Eleutherodactylus pallidus | Anura | LC | Ground-dwelling | 25.520838 | 37.75386 |
Eleutherodactylus pantoni | Anura | VU | Ground-dwelling | 27.573404 | 36.82764 |
Eleutherodactylus parabates | Anura | EN | Ground-dwelling | 27.322727 | 37.90251 |
Eleutherodactylus paralius | Anura | NT | Ground-dwelling | 27.184021 | 37.99019 |
Eleutherodactylus parapelates | Anura | CR | Fossorial | 27.822577 | 38.95439 |
Eleutherodactylus patriciae | Anura | EN | Ground-dwelling | 27.074157 | 37.99647 |
Eleutherodactylus paulsoni | Anura | CR | Ground-dwelling | 27.822577 | 37.97738 |
Eleutherodactylus pentasyringos | Anura | EN | Ground-dwelling | 27.596018 | 36.71571 |
Eleutherodactylus pezopetrus | Anura | CR | Ground-dwelling | 27.652158 | 38.76641 |
Eleutherodactylus pictissimus | Anura | LC | Ground-dwelling | 27.620697 | 37.94380 |
Eleutherodactylus pinarensis | Anura | EN | Ground-dwelling | 27.443331 | 38.83706 |
Eleutherodactylus pinchoni | Anura | EN | Ground-dwelling | 26.795585 | 38.46535 |
Eleutherodactylus pipilans | Anura | LC | Ground-dwelling | 26.793819 | 37.84489 |
Eleutherodactylus pituinus | Anura | EN | Ground-dwelling | 27.452105 | 37.95172 |
Eleutherodactylus planirostris | Anura | LC | Ground-dwelling | 27.509882 | 39.57513 |
Eleutherodactylus poolei | Anura | CR | Ground-dwelling | 27.615665 | 37.90884 |
Eleutherodactylus portoricensis | Anura | EN | Arboreal | 26.947933 | 38.01534 |
Eleutherodactylus principalis | Anura | EN | Arboreal | 27.581470 | 37.78190 |
Eleutherodactylus probolaeus | Anura | EN | Ground-dwelling | 27.333685 | 37.87787 |
Eleutherodactylus rhodesi | Anura | CR | Ground-dwelling | 27.615665 | 37.92630 |
Eleutherodactylus richmondi | Anura | EN | Ground-dwelling | 26.967448 | 36.06096 |
Eleutherodactylus ricordii | Anura | VU | Ground-dwelling | 27.702767 | 38.01624 |
Eleutherodactylus riparius | Anura | LC | Ground-dwelling | 27.490988 | 37.92287 |
Eleutherodactylus rivularis | Anura | CR | Stream-dwelling | 27.592556 | 37.34004 |
Eleutherodactylus rogersi | Anura | LC | Ground-dwelling | 27.514327 | 38.93096 |
Eleutherodactylus ronaldi | Anura | VU | Arboreal | 27.630529 | 37.84238 |
Eleutherodactylus rubrimaculatus | Anura | LC | Arboreal | 26.436284 | 37.69213 |
Eleutherodactylus rufescens | Anura | VU | Ground-dwelling | 24.900279 | 37.60152 |
Eleutherodactylus rufifemoralis | Anura | EN | Ground-dwelling | 27.322727 | 38.00513 |
Eleutherodactylus ruthae | Anura | EN | Ground-dwelling | 27.268600 | 37.80060 |
Eleutherodactylus saxatilis | Anura | NT | Ground-dwelling | 24.339830 | 37.49418 |
Eleutherodactylus schwartzi | Anura | EN | Arboreal | 27.307342 | 39.60023 |
Eleutherodactylus sciagraphus | Anura | CR | Ground-dwelling | 27.523870 | 37.90352 |
Eleutherodactylus semipalmatus | Anura | CR | Stream-dwelling | 27.523870 | 37.37791 |
Eleutherodactylus simulans | Anura | EN | Stream-dwelling | 27.510782 | 38.31419 |
Eleutherodactylus sisyphodemus | Anura | CR | Ground-dwelling | 27.453434 | 36.73614 |
Eleutherodactylus sommeri | Anura | EN | Arboreal | 27.352654 | 37.83090 |
Eleutherodactylus symingtoni | Anura | CR | Ground-dwelling | 27.420242 | 37.92649 |
Eleutherodactylus syristes | Anura | LC | Ground-dwelling | 25.730310 | 37.60785 |
Eleutherodactylus teretistes | Anura | VU | Ground-dwelling | 26.071220 | 37.78692 |
Eleutherodactylus tetajulia | Anura | CR | Ground-dwelling | 27.510782 | 37.86862 |
Eleutherodactylus thomasi | Anura | EN | Ground-dwelling | 27.443945 | 38.83212 |
Eleutherodactylus thorectes | Anura | CR | Ground-dwelling | 27.822577 | 38.11761 |
Eleutherodactylus toa | Anura | EN | Stream-dwelling | 27.581470 | 37.40200 |
Eleutherodactylus tonyi | Anura | CR | Ground-dwelling | 27.418378 | 38.84121 |
Eleutherodactylus turquinensis | Anura | CR | Stream-dwelling | 27.570363 | 37.20572 |
Eleutherodactylus unicolor | Anura | CR | Ground-dwelling | 26.895578 | 37.17115 |
Eleutherodactylus varians | Anura | VU | Arboreal | 27.501161 | 37.82141 |
Eleutherodactylus varleyi | Anura | LC | Arboreal | 27.541721 | 37.78503 |
Eleutherodactylus ventrilineatus | Anura | CR | Ground-dwelling | 27.822577 | 37.98980 |
Eleutherodactylus verrucipes | Anura | LC | Ground-dwelling | 23.398189 | 37.43768 |
Eleutherodactylus verruculatus | Anura | DD | Ground-dwelling | 25.789382 | 37.02382 |
Eleutherodactylus warreni | Anura | CR | Ground-dwelling | 27.569939 | 38.05176 |
Eleutherodactylus weinlandi | Anura | LC | Ground-dwelling | 27.284379 | 37.80637 |
Eleutherodactylus wetmorei | Anura | VU | Arboreal | 27.702299 | 37.88778 |
Eleutherodactylus wightmanae | Anura | EN | Ground-dwelling | 26.967448 | 38.44741 |
Eleutherodactylus zeus | Anura | EN | Ground-dwelling | 27.421610 | 37.83616 |
Eleutherodactylus zugi | Anura | EN | Ground-dwelling | 27.431507 | 37.96426 |
Engystomops coloradorum | Anura | DD | Ground-dwelling | 23.223818 | 39.58919 |
Engystomops freibergi | Anura | LC | Ground-dwelling | 27.203910 | 38.85152 |
Engystomops guayaco | Anura | VU | Ground-dwelling | 25.400340 | 39.79879 |
Engystomops montubio | Anura | LC | Ground-dwelling | 24.805125 | 40.03025 |
Engystomops petersi | Anura | LC | Ground-dwelling | 26.307738 | 39.15097 |
Engystomops pustulatus | Anura | LC | Ground-dwelling | 24.976623 | 39.80387 |
Engystomops pustulosus | Anura | LC | Ground-dwelling | 26.715957 | 40.22347 |
Engystomops randi | Anura | LC | Ground-dwelling | 24.012050 | 40.34653 |
Ensatina eschscholtzii | Caudata | LC | Ground-dwelling | 18.836284 | 32.91529 |
Epidalea calamita | Anura | LC | Ground-dwelling | 18.946651 | 37.84349 |
Epipedobates anthonyi | Anura | NT | Stream-dwelling | 24.287714 | 38.08664 |
Epipedobates boulengeri | Anura | LC | Ground-dwelling | 24.596625 | 38.45501 |
Epipedobates espinosai | Anura | DD | Ground-dwelling | 26.492617 | 38.30124 |
Epipedobates machalilla | Anura | LC | Ground-dwelling | 24.205183 | 38.42124 |
Epipedobates narinensis | Anura | DD | Ground-dwelling | 25.685333 | 38.35300 |
Epipedobates tricolor | Anura | VU | Ground-dwelling | 24.376884 | 38.16998 |
Ericabatrachus baleensis | Anura | CR | Stream-dwelling | 20.234697 | 36.08897 |
Espadarana andina | Anura | LC | Stream-dwelling | 25.196056 | 36.30884 |
Espadarana callistomma | Anura | LC | Stream-dwelling | 25.022677 | 36.68396 |
Espadarana prosoblepon | Anura | LC | Stream-dwelling | 25.946623 | 34.64812 |
Euparkerella brasiliensis | Anura | LC | Ground-dwelling | 26.561451 | 32.60237 |
Euparkerella cochranae | Anura | LC | Ground-dwelling | 26.139322 | 32.52436 |
Euparkerella robusta | Anura | VU | Ground-dwelling | 25.062742 | 32.37005 |
Euparkerella tridactyla | Anura | VU | Ground-dwelling | 25.780363 | 32.53310 |
Euphlyctis cyanophlyctis | Anura | LC | Semi-aquatic | 26.304602 | 40.70802 |
Euphlyctis ehrenbergii | Anura | LC | Semi-aquatic | 24.847347 | 40.49134 |
Euphlyctis ghoshi | Anura | DD | Semi-aquatic | 29.154321 | 41.12957 |
Euphlyctis hexadactylus | Anura | LC | Semi-aquatic | 28.040768 | 40.80705 |
Euproctus montanus | Caudata | LC | Ground-dwelling | 23.907151 | 36.90737 |
Euproctus platycephalus | Caudata | VU | Semi-aquatic | 24.223789 | 37.05327 |
Eupsophus calcaratus | Anura | LC | Ground-dwelling | 12.642379 | 34.41997 |
Eupsophus emiliopugini | Anura | LC | Stream-dwelling | 13.959862 | 33.98838 |
Eupsophus insularis | Anura | CR | Ground-dwelling | 17.600648 | 35.18766 |
Eupsophus roseus | Anura | LC | Ground-dwelling | 17.544739 | 35.07897 |
Eupsophus vertebralis | Anura | LC | Stream-dwelling | 16.949035 | 34.42205 |
Eurycea bislineata | Caudata | LC | Semi-aquatic | 20.187894 | 35.95183 |
Eurycea chisholmensis | Caudata | VU | Aquatic | 26.949102 | 37.10387 |
Eurycea cirrigera | Caudata | LC | Semi-aquatic | 25.996266 | 36.89886 |
Eurycea guttolineata | Caudata | LC | Semi-aquatic | 26.517536 | 37.18805 |
Eurycea junaluska | Caudata | VU | Semi-aquatic | 26.581556 | 37.03581 |
Eurycea longicauda | Caudata | LC | Semi-aquatic | 24.434459 | 36.55944 |
Eurycea lucifuga | Caudata | LC | Ground-dwelling | 25.546638 | 36.39959 |
Eurycea multiplicata | Caudata | LC | Semi-aquatic | 26.029694 | 37.69546 |
Eurycea nana | Caudata | VU | Semi-aquatic | 26.983744 | 37.94661 |
Eurycea naufragia | Caudata | CR | Semi-aquatic | 26.993225 | 37.19732 |
Eurycea pterophila | Caudata | DD | Aquatic | 26.653134 | 37.12976 |
Eurycea quadridigitata | Caudata | LC | Semi-aquatic | 27.194656 | 37.82619 |
Eurycea sosorum | Caudata | VU | Aquatic | 26.993225 | 36.44107 |
Eurycea tonkawae | Caudata | EN | Aquatic | 26.993225 | 37.13338 |
Eurycea tridentifera | Caudata | VU | Aquatic | 26.414533 | 37.05075 |
Eurycea troglodytes | Caudata | DD | Aquatic | 26.391024 | 37.08305 |
Eurycea tynerensis | Caudata | NT | Aquatic | 24.563444 | 36.85870 |
Eurycea waterlooensis | Caudata | VU | Aquatic | 26.993225 | 37.12570 |
Eurycea wilderae | Caudata | LC | Semi-aquatic | 26.288242 | 36.96612 |
Excidobates captivus | Anura | VU | Stream-dwelling | 24.921417 | 36.24945 |
Excidobates mysteriosus | Anura | EN | Arboreal | 22.464285 | 36.34906 |
Exerodonta abdivita | Anura | NT | Arboreal | 25.036151 | 39.41800 |
Exerodonta bivocata | Anura | EN | Stream-dwelling | 27.856972 | 39.41679 |
Exerodonta catracha | Anura | NT | Arboreal | 25.258907 | 39.50650 |
Exerodonta chimalapa | Anura | EN | Stream-dwelling | 27.717146 | 39.35949 |
Exerodonta melanomma | Anura | VU | Arboreal | 26.427187 | 39.69618 |
Exerodonta perkinsi | Anura | EN | Stream-dwelling | 24.849453 | 38.92487 |
Exerodonta smaragdina | Anura | LC | Arboreal | 24.904230 | 39.51408 |
Exerodonta sumichrasti | Anura | LC | Arboreal | 26.695158 | 39.72291 |
Exerodonta xera | Anura | VU | Arboreal | 24.564704 | 39.44796 |
Feihyla kajau | Anura | LC | Arboreal | 28.009651 | 37.98732 |
Feihyla palpebralis | Anura | NT | Arboreal | 26.827687 | 37.82180 |
Fejervarya cancrivora | Anura | LC | Ground-dwelling | 27.854868 | 40.98138 |
Fejervarya iskandari | Anura | LC | Ground-dwelling | 28.288023 | 40.22677 |
Fejervarya limnocharis | Anura | LC | Ground-dwelling | 26.626652 | 40.14625 |
Fejervarya moodiei | Anura | LC | Semi-aquatic | 28.194985 | 40.57529 |
Fejervarya multistriata | Anura | DD | Semi-aquatic | 27.639777 | 40.40612 |
Fejervarya orissaensis | Anura | LC | Ground-dwelling | 28.250446 | 40.30574 |
Fejervarya triora | Anura | LC | Ground-dwelling | 29.065317 | 40.33634 |
Fejervarya verruculosa | Anura | LC | Ground-dwelling | 27.492559 | 40.11217 |
Fejervarya vittigera | Anura | LC | Ground-dwelling | 27.739300 | 40.18512 |
Flectonotus fitzgeraldi | Anura | LC | Arboreal | 26.772971 | 37.59875 |
Flectonotus pygmaeus | Anura | LC | Arboreal | 26.029395 | 37.56772 |
Fritziana fissilis | Anura | LC | Arboreal | 25.954326 | 37.57091 |
Fritziana goeldii | Anura | LC | Arboreal | 25.980442 | 37.63515 |
Fritziana ohausi | Anura | LC | Arboreal | 25.896259 | 37.62943 |
Frostius erythrophthalmus | Anura | DD | Ground-dwelling | 24.983588 | 38.52893 |
Frostius pernambucensis | Anura | LC | Ground-dwelling | 25.528334 | 38.68918 |
Gabohyla pauloalvini | Anura | DD | Arboreal | 25.544068 | 40.42354 |
Gastrophryne carolinensis | Anura | LC | Fossorial | 26.564516 | 40.63907 |
Gastrophryne elegans | Anura | LC | Ground-dwelling | 26.471036 | 39.84661 |
Gastrophryne olivacea | Anura | LC | Ground-dwelling | 24.731973 | 39.61817 |
Gastrophrynoides borneensis | Anura | LC | Fossorial | 28.036755 | 37.52218 |
Gastrotheca abdita | Anura | DD | Arboreal | 24.252411 | 37.66802 |
Gastrotheca albolineata | Anura | LC | Arboreal | 25.965675 | 37.95137 |
Gastrotheca andaquiensis | Anura | LC | Arboreal | 23.808080 | 37.61630 |
Gastrotheca antoniiochoai | Anura | DD | Stream-dwelling | 14.573980 | 35.96970 |
Gastrotheca argenteovirens | Anura | LC | Stream-dwelling | 24.224868 | 37.68334 |
Gastrotheca atympana | Anura | VU | Arboreal | 19.166548 | 37.25514 |
Gastrotheca aureomaculata | Anura | EN | Arboreal | 24.159301 | 38.17772 |
Gastrotheca bufona | Anura | VU | Arboreal | 24.386658 | 37.82577 |
Gastrotheca carinaceps | Anura | DD | Arboreal | 21.293309 | 37.36445 |
Gastrotheca christiani | Anura | CR | Arboreal | 23.101751 | 37.48121 |
Gastrotheca chrysosticta | Anura | EN | Arboreal | 22.724761 | 37.42706 |
Gastrotheca cornuta | Anura | EN | Arboreal | 25.665134 | 37.96895 |
Gastrotheca dendronastes | Anura | EN | Arboreal | 24.742392 | 37.82576 |
Gastrotheca dunni | Anura | LC | Arboreal | 22.164220 | 37.84086 |
Gastrotheca ernestoi | Anura | DD | Arboreal | 26.253245 | 38.10717 |
Gastrotheca espeletia | Anura | EN | Arboreal | 23.705943 | 37.68966 |
Gastrotheca excubitor | Anura | VU | Arboreal | 17.325511 | 36.76474 |
Gastrotheca fissipes | Anura | LC | Arboreal | 25.456469 | 37.91740 |
Gastrotheca flamma | Anura | DD | Arboreal | 25.202473 | 37.86711 |
Gastrotheca fulvorufa | Anura | DD | Arboreal | 25.747012 | 37.87004 |
Gastrotheca galeata | Anura | DD | Ground-dwelling | 22.881730 | 37.75790 |
Gastrotheca gracilis | Anura | EN | Arboreal | 21.092690 | 37.27175 |
Gastrotheca griswoldi | Anura | LC | Ground-dwelling | 17.508487 | 36.90655 |
Gastrotheca guentheri | Anura | DD | Arboreal | 25.253704 | 37.90364 |
Gastrotheca helenae | Anura | EN | Ground-dwelling | 22.438970 | 37.65827 |
Gastrotheca lateonota | Anura | VU | Arboreal | 22.953674 | 37.55318 |
Gastrotheca lauzuricae | Anura | CR | Arboreal | 14.531854 | 36.37959 |
Gastrotheca litonedis | Anura | CR | Arboreal | 21.477341 | 37.57384 |
Gastrotheca longipes | Anura | LC | Arboreal | 24.741573 | 37.95570 |
Gastrotheca marsupiata | Anura | LC | Arboreal | 17.322826 | 36.79364 |
Gastrotheca microdiscus | Anura | LC | Arboreal | 25.743180 | 37.97969 |
Gastrotheca monticola | Anura | LC | Arboreal | 21.986519 | 37.47620 |
Gastrotheca nicefori | Anura | LC | Arboreal | 24.870699 | 38.17754 |
Gastrotheca ochoai | Anura | EN | Arboreal | 16.316902 | 36.63908 |
Gastrotheca orophylax | Anura | VU | Arboreal | 22.982001 | 37.70836 |
Gastrotheca ossilaginis | Anura | DD | Arboreal | 22.692835 | 37.53004 |
Gastrotheca ovifera | Anura | VU | Arboreal | 26.774814 | 38.33549 |
Gastrotheca pacchamama | Anura | EN | Ground-dwelling | 17.796799 | 37.19578 |
Gastrotheca peruana | Anura | LC | Ground-dwelling | 19.248711 | 37.17184 |
Gastrotheca phalarosa | Anura | DD | Arboreal | 22.692835 | 37.84969 |
Gastrotheca piperata | Anura | LC | Arboreal | 18.545793 | 37.06775 |
Gastrotheca plumbea | Anura | VU | Arboreal | 23.419102 | 37.80723 |
Gastrotheca pseustes | Anura | NT | Arboreal | 23.476428 | 37.16514 |
Gastrotheca psychrophila | Anura | EN | Ground-dwelling | 22.745113 | 37.70889 |
Gastrotheca rebeccae | Anura | EN | Arboreal | 17.117738 | 36.79893 |
Gastrotheca riobambae | Anura | EN | Arboreal | 21.035801 | 37.91612 |
Gastrotheca ruizi | Anura | NT | Arboreal | 24.453276 | 38.14327 |
Gastrotheca splendens | Anura | DD | Arboreal | 22.559731 | 37.48728 |
Gastrotheca stictopleura | Anura | EN | Arboreal | 20.217487 | 37.21042 |
Gastrotheca testudinea | Anura | LC | Arboreal | 21.041435 | 37.51817 |
Gastrotheca trachyceps | Anura | EN | Arboreal | 22.965861 | 37.97250 |
Gastrotheca walkeri | Anura | VU | Arboreal | 26.774814 | 38.06015 |
Gastrotheca weinlandii | Anura | LC | Arboreal | 24.245277 | 37.77473 |
Gastrotheca williamsoni | Anura | DD | Stream-dwelling | 26.940736 | 37.63482 |
Gastrotheca zeugocystis | Anura | DD | Ground-dwelling | 15.720102 | 36.75518 |
Geobatrachus walkeri | Anura | EN | Ground-dwelling | 27.127537 | 33.71332 |
Geocrinia alba | Anura | CR | Ground-dwelling | 20.155529 | 34.61743 |
Geocrinia laevis | Anura | LC | Ground-dwelling | 17.277954 | 34.01036 |
Geocrinia leai | Anura | LC | Ground-dwelling | 19.782633 | 34.48185 |
Geocrinia lutea | Anura | LC | Ground-dwelling | 18.840788 | 34.42048 |
Geocrinia rosea | Anura | LC | Ground-dwelling | 19.316558 | 34.50250 |
Geocrinia victoriana | Anura | LC | Ground-dwelling | 18.969221 | 34.97101 |
Geocrinia vitellina | Anura | VU | Ground-dwelling | 20.090669 | 34.58972 |
Gephyromantis ambohitra | Anura | VU | Stream-dwelling | 26.787293 | 37.18758 |
Gephyromantis asper | Anura | LC | Ground-dwelling | 25.729485 | 37.70489 |
Gephyromantis atsingy | Anura | EN | Arboreal | 27.336782 | 37.83779 |
Gephyromantis azzurrae | Anura | EN | Stream-dwelling | 26.195793 | 37.14474 |
Gephyromantis blanci | Anura | NT | Ground-dwelling | 25.915871 | 37.70850 |
Gephyromantis boulengeri | Anura | LC | Arboreal | 25.847775 | 37.59827 |
Gephyromantis cornutus | Anura | VU | Stream-dwelling | 25.192843 | 36.88448 |
Gephyromantis corvus | Anura | EN | Ground-dwelling | 26.456032 | 37.85761 |
Gephyromantis decaryi | Anura | NT | Arboreal | 25.915871 | 37.53945 |
Gephyromantis eiselti | Anura | EN | Arboreal | 24.925297 | 37.44631 |
Gephyromantis enki | Anura | VU | Ground-dwelling | 25.961863 | 37.70685 |
Gephyromantis granulatus | Anura | LC | Ground-dwelling | 26.666151 | 37.83231 |
Gephyromantis hintelmannae | Anura | EN | Arboreal | 25.476874 | 37.48666 |
Gephyromantis horridus | Anura | VU | Ground-dwelling | 26.620481 | 37.87681 |
Gephyromantis klemmeri | Anura | EN | Ground-dwelling | 26.476930 | 37.87449 |
Gephyromantis leucocephalus | Anura | NT | Ground-dwelling | 25.757692 | 37.69440 |
Gephyromantis leucomaculatus | Anura | LC | Ground-dwelling | 26.517390 | 37.74506 |
Gephyromantis luteus | Anura | LC | Ground-dwelling | 25.957520 | 37.76436 |
Gephyromantis mafy | Anura | CR | Arboreal | 25.284742 | 37.41782 |
Gephyromantis malagasius | Anura | LC | Arboreal | 25.782918 | 37.55610 |
Gephyromantis moseri | Anura | LC | Arboreal | 26.109029 | 37.53931 |
Gephyromantis plicifer | Anura | LC | Arboreal | 25.943531 | 37.52775 |
Gephyromantis pseudoasper | Anura | LC | Arboreal | 26.686789 | 37.67125 |
Gephyromantis ranjomavo | Anura | EN | Stream-dwelling | 26.476930 | 37.22849 |
Gephyromantis redimitus | Anura | LC | Arboreal | 26.000887 | 37.52573 |
Gephyromantis rivicola | Anura | VU | Stream-dwelling | 26.545008 | 37.21347 |
Gephyromantis runewsweeki | Anura | VU | Ground-dwelling | 25.878849 | 37.68959 |
Gephyromantis salegy | Anura | VU | Arboreal | 26.674312 | 37.66399 |
Gephyromantis schilfi | Anura | VU | Arboreal | 26.882329 | 37.63115 |
Gephyromantis sculpturatus | Anura | LC | Ground-dwelling | 25.570700 | 37.72499 |
Gephyromantis silvanus | Anura | VU | Stream-dwelling | 26.815264 | 37.30183 |
Gephyromantis spiniferus | Anura | VU | Ground-dwelling | 26.003643 | 37.78662 |
Gephyromantis striatus | Anura | VU | Arboreal | 26.375730 | 37.74220 |
Gephyromantis tahotra | Anura | VU | Stream-dwelling | 26.747102 | 37.32400 |
Gephyromantis tandroka | Anura | VU | Stream-dwelling | 26.747102 | 37.16873 |
Gephyromantis thelenae | Anura | EN | Arboreal | 24.925297 | 37.37745 |
Gephyromantis tschenki | Anura | LC | Arboreal | 25.755963 | 37.50094 |
Gephyromantis ventrimaculatus | Anura | LC | Ground-dwelling | 25.580659 | 37.74421 |
Gephyromantis verrucosus | Anura | LC | Arboreal | 26.338523 | 37.60484 |
Gephyromantis webbi | Anura | EN | Stream-dwelling | 26.815264 | 37.27968 |
Gephyromantis zavona | Anura | EN | Stream-dwelling | 26.837159 | 37.16906 |
Ghatixalus asterops | Anura | DD | Stream-dwelling | 28.044115 | 38.05336 |
Ghatixalus variabilis | Anura | EN | Stream-dwelling | 27.229333 | 37.94296 |
Ghatophryne ornata | Anura | EN | Stream-dwelling | 27.049047 | 38.33527 |
Ghatophryne rubigina | Anura | VU | Stream-dwelling | 27.917429 | 38.41084 |
Glandirana minima | Anura | EN | Semi-aquatic | 27.143466 | 37.29669 |
Glyphoglossus molossus | Anura | NT | Fossorial | 28.459918 | 39.37733 |
Gracixalus ananjevae | Anura | LC | Arboreal | 27.907289 | 37.84408 |
Gracixalus gracilipes | Anura | LC | Arboreal | 25.941062 | 37.68712 |
Gracixalus jinxiuensis | Anura | DD | Arboreal | 27.573355 | 37.87493 |
Gracixalus medogensis | Anura | DD | Arboreal | 16.407198 | 36.37140 |
Gracixalus quangi | Anura | LC | Arboreal | 26.340851 | 37.67023 |
Gracixalus supercornutus | Anura | NT | Arboreal | 28.068805 | 37.93206 |
Guibemantis albolineatus | Anura | LC | Arboreal | 25.731997 | 37.53746 |
Guibemantis annulatus | Anura | EN | Arboreal | 25.641574 | 37.54324 |
Guibemantis bicalcaratus | Anura | LC | Arboreal | 25.982654 | 37.59517 |
Guibemantis depressiceps | Anura | LC | Arboreal | 25.946903 | 37.53122 |
Guibemantis flavobrunneus | Anura | LC | Arboreal | 25.971516 | 37.55631 |
Guibemantis kathrinae | Anura | VU | Arboreal | 25.685249 | 37.63098 |
Guibemantis liber | Anura | LC | Arboreal | 26.094471 | 37.57687 |
Guibemantis methueni | Anura | LC | Arboreal | 25.745078 | 37.57028 |
Guibemantis pulcher | Anura | LC | Arboreal | 25.978615 | 37.53541 |
Guibemantis punctatus | Anura | CR | Arboreal | 25.873667 | 37.65557 |
Guibemantis tasifotsy | Anura | VU | Arboreal | 26.221742 | 37.63679 |
Guibemantis timidus | Anura | LC | Arboreal | 25.733824 | 37.50507 |
Guibemantis tornieri | Anura | LC | Arboreal | 25.668951 | 37.58005 |
Guibemantis wattersoni | Anura | EN | Arboreal | 25.641574 | 37.58057 |
Gyrinophilus porphyriticus | Caudata | LC | Semi-aquatic | 23.391986 | 34.62786 |
Haddadus aramunha | Anura | DD | Ground-dwelling | 24.806811 | 35.66519 |
Haddadus binotatus | Anura | LC | Ground-dwelling | 25.665324 | 35.82294 |
Haddadus plicifer | Anura | DD | Ground-dwelling | 25.850479 | 35.76821 |
Hadromophryne natalensis | Anura | LC | Stream-dwelling | 22.466979 | 35.87960 |
Hamptophryne alios | Anura | DD | Ground-dwelling | 24.860802 | 39.64313 |
Hamptophryne boliviana | Anura | LC | Ground-dwelling | 27.694279 | 40.04706 |
Heleioporus albopunctatus | Anura | LC | Fossorial | 21.283553 | 35.54987 |
Heleioporus australiacus | Anura | VU | Fossorial | 20.153778 | 35.39083 |
Heleioporus barycragus | Anura | LC | Fossorial | 20.659860 | 35.47031 |
Heleioporus eyrei | Anura | LC | Fossorial | 20.608269 | 35.39907 |
Heleioporus inornatus | Anura | LC | Fossorial | 19.892446 | 35.32135 |
Heleioporus psammophilus | Anura | LC | Fossorial | 20.752432 | 35.41234 |
Heleophryne hewitti | Anura | EN | Ground-dwelling | 21.483726 | 36.23809 |
Heleophryne orientalis | Anura | LC | Stream-dwelling | 21.600927 | 35.66479 |
Heleophryne purcelli | Anura | LC | Stream-dwelling | 20.916017 | 35.55324 |
Heleophryne regis | Anura | LC | Stream-dwelling | 21.326063 | 35.56354 |
Heleophryne rosei | Anura | CR | Stream-dwelling | 20.727970 | 35.46003 |
Hemidactylium scutatum | Caudata | LC | Semi-aquatic | 22.980600 | 36.21887 |
Hemiphractus bubalus | Anura | VU | Arboreal | 24.439397 | 37.44198 |
Hemiphractus fasciatus | Anura | VU | Arboreal | 24.845811 | 37.60009 |
Hemiphractus helioi | Anura | LC | Arboreal | 22.580151 | 37.27196 |
Hemiphractus johnsoni | Anura | EN | Arboreal | 22.605131 | 37.19378 |
Hemiphractus proboscideus | Anura | LC | Arboreal | 27.366189 | 37.80487 |
Hemiphractus scutatus | Anura | LC | Arboreal | 26.732934 | 37.68889 |
Hemisus barotseensis | Anura | DD | Fossorial | 24.981682 | 39.18983 |
Hemisus brachydactylus | Anura | DD | Fossorial | 22.834772 | 38.86203 |
Hemisus guineensis | Anura | LC | Fossorial | 25.627906 | 39.27454 |
Hemisus guttatus | Anura | NT | Fossorial | 22.910338 | 38.77671 |
Hemisus marmoratus | Anura | LC | Fossorial | 25.737781 | 39.23957 |
Hemisus microscaphus | Anura | LC | Fossorial | 21.754487 | 38.73659 |
Hemisus olivaceus | Anura | LC | Fossorial | 26.518532 | 39.36108 |
Hemisus perreti | Anura | LC | Fossorial | 28.170348 | 39.56152 |
Hemisus wittei | Anura | DD | Fossorial | 24.264466 | 39.02948 |
Heterixalus alboguttatus | Anura | LC | Arboreal | 25.523605 | 40.23995 |
Heterixalus andrakata | Anura | LC | Arboreal | 26.242584 | 40.33783 |
Heterixalus betsileo | Anura | LC | Arboreal | 25.704377 | 40.17610 |
Heterixalus boettgeri | Anura | LC | Arboreal | 25.625335 | 40.27468 |
Heterixalus carbonei | Anura | LC | Arboreal | 27.078569 | 40.48256 |
Heterixalus luteostriatus | Anura | LC | Arboreal | 26.779964 | 40.43770 |
Heterixalus madagascariensis | Anura | LC | Arboreal | 25.983766 | 40.29408 |
Heterixalus punctatus | Anura | LC | Arboreal | 25.983766 | 40.30600 |
Heterixalus rutenbergi | Anura | LC | Arboreal | 25.733911 | 40.31226 |
Heterixalus tricolor | Anura | LC | Arboreal | 27.525133 | 40.43839 |
Heterixalus variabilis | Anura | LC | Arboreal | 27.113784 | 40.42027 |
Hildebrandtia macrotympanum | Anura | LC | Fossorial | 25.192187 | 38.53960 |
Hildebrandtia ornata | Anura | LC | Fossorial | 25.475340 | 38.73432 |
Hildebrandtia ornatissima | Anura | DD | Fossorial | 24.535935 | 38.48292 |
Holoaden bradei | Anura | CR | Ground-dwelling | 26.714437 | 32.65022 |
Holoaden luederwaldti | Anura | DD | Ground-dwelling | 25.764576 | 32.54039 |
Holoaden pholeter | Anura | DD | Ground-dwelling | 26.900371 | 32.63835 |
Hoplobatrachus crassus | Anura | LC | Fossorial | 27.634495 | 42.26026 |
Hoplobatrachus occipitalis | Anura | LC | Ground-dwelling | 26.734911 | 40.72252 |
Hoplobatrachus rugulosus | Anura | LC | Semi-aquatic | 27.274891 | 42.57358 |
Hoplobatrachus tigerinus | Anura | LC | Semi-aquatic | 26.799206 | 41.58591 |
Hoplophryne rogersi | Anura | EN | Arboreal | 24.470860 | 37.98123 |
Hoplophryne uluguruensis | Anura | EN | Arboreal | 24.046750 | 37.99461 |
Huia cavitympanum | Anura | LC | Ground-dwelling | 27.964762 | 37.60842 |
Hyalinobatrachium aureoguttatum | Anura | LC | Stream-dwelling | 25.485184 | 37.10463 |
Hyalinobatrachium cappellei | Anura | LC | Stream-dwelling | 27.895868 | 37.41936 |
Hyalinobatrachium chirripoi | Anura | LC | Stream-dwelling | 25.731187 | 37.08370 |
Hyalinobatrachium colymbiphyllum | Anura | LC | Stream-dwelling | 26.028520 | 37.20024 |
Hyalinobatrachium duranti | Anura | EN | Stream-dwelling | 26.315006 | 37.20463 |
Hyalinobatrachium esmeralda | Anura | EN | Stream-dwelling | 22.707356 | 36.71934 |
Hyalinobatrachium fleischmanni | Anura | LC | Stream-dwelling | 26.393427 | 37.20158 |
Hyalinobatrachium fragile | Anura | NT | Stream-dwelling | 27.028993 | 37.31220 |
Hyalinobatrachium guairarepanense | Anura | EN | Stream-dwelling | 26.646904 | 37.21766 |
Hyalinobatrachium iaspidiense | Anura | LC | Stream-dwelling | 28.040612 | 37.47417 |
Hyalinobatrachium ibama | Anura | LC | Stream-dwelling | 23.935812 | 36.86736 |
Hyalinobatrachium orientale | Anura | VU | Stream-dwelling | 26.934003 | 37.24674 |
Hyalinobatrachium pallidum | Anura | NT | Stream-dwelling | 26.930340 | 37.23915 |
Hyalinobatrachium pellucidum | Anura | NT | Stream-dwelling | 22.906313 | 36.75067 |
Hyalinobatrachium talamancae | Anura | LC | Stream-dwelling | 22.496670 | 36.72113 |
Hyalinobatrachium tatayoi | Anura | LC | Stream-dwelling | 26.011047 | 37.13586 |
Hyalinobatrachium taylori | Anura | LC | Stream-dwelling | 27.033008 | 37.27075 |
Hyalinobatrachium valerioi | Anura | LC | Stream-dwelling | 25.138066 | 37.01406 |
Hyalinobatrachium vireovittatum | Anura | LC | Stream-dwelling | 26.190465 | 37.17706 |
Hydrolaetare caparu | Anura | DD | Fossorial | 28.610797 | 41.22613 |
Hydrolaetare dantasi | Anura | LC | Ground-dwelling | 28.110142 | 40.08745 |
Hydrolaetare schmidti | Anura | LC | Ground-dwelling | 28.437003 | 40.16103 |
Hydromantes brunus | Caudata | NT | Ground-dwelling | 18.342087 | 33.87436 |
Hydromantes platycephalus | Caudata | LC | Ground-dwelling | 19.152874 | 33.97885 |
Hydromantes shastae | Caudata | NT | Ground-dwelling | 18.775161 | 33.91533 |
Hyla annectans | Anura | LC | Arboreal | 23.899955 | 39.42799 |
Hyla arborea | Anura | LC | Arboreal | 19.275935 | 38.22310 |
Hyla chinensis | Anura | LC | Arboreal | 27.368700 | 40.08671 |
Hyla hallowellii | Anura | LC | Arboreal | 27.426915 | 39.98121 |
Hyla intermedia | Anura | LC | Arboreal | 23.577550 | 39.47004 |
Hyla meridionalis | Anura | LC | Arboreal | 21.989022 | 37.69538 |
Hyla sanchiangensis | Anura | LC | Arboreal | 27.616569 | 39.95835 |
Hyla sarda | Anura | LC | Arboreal | 23.967108 | 39.53549 |
Hyla savignyi | Anura | LC | Arboreal | 22.141936 | 39.18959 |
Hyla simplex | Anura | LC | Arboreal | 27.957260 | 39.95353 |
Hyla tsinlingensis | Anura | LC | Arboreal | 23.301016 | 39.33340 |
Hyla zhaopingensis | Anura | DD | Arboreal | 28.217679 | 40.05659 |
Hylarana chitwanensis | Anura | DD | Ground-dwelling | 21.995506 | 36.42646 |
Hylarana erythraea | Anura | LC | Ground-dwelling | 28.040018 | 36.18373 |
Hylarana garoensis | Anura | LC | Ground-dwelling | 22.787719 | 36.61182 |
Hylarana latouchii | Anura | LC | Ground-dwelling | 27.402373 | 38.41878 |
Hylarana macrodactyla | Anura | LC | Ground-dwelling | 28.053988 | 37.18933 |
Hylarana margariana | Anura | DD | Stream-dwelling | 26.456096 | 36.37873 |
Hylarana montivaga | Anura | EN | Stream-dwelling | 27.724865 | 36.65230 |
Hylarana persimilis | Anura | DD | Ground-dwelling | 29.323791 | 37.47644 |
Hylarana taipehensis | Anura | LC | Ground-dwelling | 27.843246 | 37.24513 |
Hylarana tytleri | Anura | LC | Ground-dwelling | 27.205611 | 37.24037 |
Hylodes amnicola | Anura | DD | Stream-dwelling | 26.222532 | 36.74766 |
Hylodes asper | Anura | LC | Stream-dwelling | 25.741442 | 36.66544 |
Hylodes babax | Anura | DD | Stream-dwelling | 25.804730 | 36.79319 |
Hylodes cardosoi | Anura | LC | Stream-dwelling | 25.509007 | 36.66268 |
Hylodes charadranaetes | Anura | DD | Stream-dwelling | 26.561451 | 36.82664 |
Hylodes dactylocinus | Anura | DD | Stream-dwelling | 26.483769 | 36.65416 |
Hylodes fredi | Anura | DD | Stream-dwelling | 25.175640 | 36.59261 |
Hylodes glaber | Anura | DD | Stream-dwelling | 26.714437 | 36.75638 |
Hylodes heyeri | Anura | DD | Stream-dwelling | 25.629717 | 36.62771 |
Hylodes lateristrigatus | Anura | LC | Stream-dwelling | 25.799146 | 36.70725 |
Hylodes magalhaesi | Anura | DD | Stream-dwelling | 26.301910 | 36.78424 |
Hylodes meridionalis | Anura | LC | Stream-dwelling | 24.364029 | 36.48419 |
Hylodes mertensi | Anura | DD | Stream-dwelling | 25.741310 | 36.58746 |
Hylodes nasus | Anura | LC | Stream-dwelling | 25.722613 | 36.72826 |
Hylodes ornatus | Anura | LC | Stream-dwelling | 25.920279 | 36.64654 |
Hylodes otavioi | Anura | DD | Stream-dwelling | 24.594125 | 36.60196 |
Hylodes perplicatus | Anura | LC | Stream-dwelling | 24.641106 | 36.41039 |
Hylodes phyllodes | Anura | LC | Stream-dwelling | 25.946292 | 36.71082 |
Hylodes pipilans | Anura | DD | Stream-dwelling | 26.900371 | 36.86921 |
Hylodes regius | Anura | DD | Stream-dwelling | 26.453073 | 36.71894 |
Hylodes sazimai | Anura | DD | Stream-dwelling | 25.920279 | 36.59850 |
Hylodes uai | Anura | DD | Stream-dwelling | 25.220967 | 36.50172 |
Hylodes vanzolinii | Anura | DD | Stream-dwelling | 25.804730 | 36.69417 |
Hylomantis aspera | Anura | LC | Arboreal | 25.372266 | 38.64297 |
Hylomantis granulosa | Anura | LC | Arboreal | 25.492189 | 38.92815 |
Hylophorbus nigrinus | Anura | LC | Ground-dwelling | 24.989357 | 35.14214 |
Hylophorbus picoides | Anura | LC | Ground-dwelling | 27.533759 | 35.56154 |
Hylophorbus rainerguentheri | Anura | LC | Ground-dwelling | 26.562135 | 35.39362 |
Hylophorbus richardsi | Anura | LC | Ground-dwelling | 26.627955 | 35.40277 |
Hylophorbus rufescens | Anura | DD | Ground-dwelling | 27.753927 | 35.63299 |
Hylophorbus sextus | Anura | LC | Ground-dwelling | 27.787567 | 35.56727 |
Hylophorbus tetraphonus | Anura | LC | Ground-dwelling | 27.671108 | 35.55300 |
Hylophorbus wondiwoi | Anura | LC | Ground-dwelling | 28.031168 | 35.67204 |
Hylorina sylvatica | Anura | LC | Semi-aquatic | 13.935372 | 34.81037 |
Hyloscirtus albopunctulatus | Anura | LC | Arboreal | 26.777172 | 38.58424 |
Hyloscirtus alytolylax | Anura | LC | Stream-dwelling | 24.424816 | 36.88330 |
Hyloscirtus armatus | Anura | NT | Stream-dwelling | 19.237089 | 37.18930 |
Hyloscirtus bogotensis | Anura | NT | Stream-dwelling | 23.849641 | 37.83536 |
Hyloscirtus callipeza | Anura | VU | Stream-dwelling | 24.232290 | 37.98619 |
Hyloscirtus caucanus | Anura | EN | Stream-dwelling | 24.189077 | 37.92497 |
Hyloscirtus charazani | Anura | CR | Stream-dwelling | 17.139218 | 36.92367 |
Hyloscirtus colymba | Anura | EN | Stream-dwelling | 27.366637 | 38.36247 |
Hyloscirtus denticulentus | Anura | VU | Stream-dwelling | 22.976165 | 37.76686 |
Hyloscirtus jahni | Anura | VU | Stream-dwelling | 26.494876 | 38.22595 |
Hyloscirtus larinopygion | Anura | LC | Arboreal | 22.556074 | 38.05063 |
Hyloscirtus lascinius | Anura | LC | Arboreal | 25.767301 | 38.57854 |
Hyloscirtus lindae | Anura | LC | Stream-dwelling | 24.050687 | 36.36176 |
Hyloscirtus lynchi | Anura | CR | Stream-dwelling | 22.135560 | 37.48349 |
Hyloscirtus pacha | Anura | EN | Stream-dwelling | 23.289544 | 37.73705 |
Hyloscirtus palmeri | Anura | LC | Stream-dwelling | 25.284997 | 37.98686 |
Hyloscirtus pantostictus | Anura | CR | Stream-dwelling | 22.211278 | 37.64195 |
Hyloscirtus phyllognathus | Anura | LC | Stream-dwelling | 22.431215 | 37.20129 |
Hyloscirtus piceigularis | Anura | EN | Stream-dwelling | 24.841526 | 37.87700 |
Hyloscirtus platydactylus | Anura | VU | Stream-dwelling | 26.315006 | 38.13088 |
Hyloscirtus psarolaimus | Anura | VU | Stream-dwelling | 21.819483 | 37.56242 |
Hyloscirtus ptychodactylus | Anura | EN | Stream-dwelling | 23.223818 | 37.73577 |
Hyloscirtus sarampiona | Anura | EN | Stream-dwelling | 22.965861 | 37.61455 |
Hyloscirtus simmonsi | Anura | VU | Stream-dwelling | 24.552956 | 37.20414 |
Hyloscirtus staufferorum | Anura | EN | Stream-dwelling | 23.970925 | 37.71305 |
Hyloscirtus tapichalaca | Anura | EN | Stream-dwelling | 24.012885 | 37.81860 |
Hyloscirtus torrenticola | Anura | VU | Stream-dwelling | 24.291871 | 37.98210 |
Hyloxalus aeruginosus | Anura | DD | Stream-dwelling | 20.676160 | 35.68787 |
Hyloxalus anthracinus | Anura | CR | Ground-dwelling | 20.702287 | 36.23360 |
Hyloxalus awa | Anura | LC | Ground-dwelling | 24.044633 | 36.98059 |
Hyloxalus azureiventris | Anura | EN | Ground-dwelling | 24.576112 | 36.87777 |
Hyloxalus betancuri | Anura | DD | Stream-dwelling | 25.897334 | 36.38850 |
Hyloxalus bocagei | Anura | LC | Stream-dwelling | 24.474489 | 37.55121 |
Hyloxalus borjai | Anura | DD | Stream-dwelling | 22.164220 | 35.90748 |
Hyloxalus breviquartus | Anura | LC | Ground-dwelling | 23.972642 | 36.75082 |
Hyloxalus cevallosi | Anura | EN | Ground-dwelling | 25.683944 | 36.93211 |
Hyloxalus chlorocraspedus | Anura | DD | Arboreal | 26.115054 | 36.88841 |
Hyloxalus chocoensis | Anura | EN | Ground-dwelling | 25.515912 | 37.05394 |
Hyloxalus craspedoceps | Anura | DD | Stream-dwelling | 24.265362 | 36.15573 |
Hyloxalus delatorreae | Anura | CR | Stream-dwelling | 20.760710 | 35.66317 |
Hyloxalus elachyhistus | Anura | LC | Stream-dwelling | 23.574579 | 36.19227 |
Hyloxalus eleutherodactylus | Anura | DD | Stream-dwelling | 24.265362 | 36.21453 |
Hyloxalus exasperatus | Anura | DD | Ground-dwelling | 23.289544 | 36.82064 |
Hyloxalus excisus | Anura | DD | Semi-aquatic | 22.164220 | 36.81090 |
Hyloxalus faciopunctulatus | Anura | DD | Ground-dwelling | 29.379028 | 37.56153 |
Hyloxalus fallax | Anura | DD | Ground-dwelling | 25.189103 | 36.99169 |
Hyloxalus fascianigrus | Anura | VU | Ground-dwelling | 24.996510 | 36.98619 |
Hyloxalus fuliginosus | Anura | DD | Stream-dwelling | 23.837156 | 36.17270 |
Hyloxalus idiomelus | Anura | DD | Stream-dwelling | 21.684497 | 35.91485 |
Hyloxalus infraguttatus | Anura | NT | Ground-dwelling | 24.647492 | 36.98717 |
Hyloxalus insulatus | Anura | VU | Stream-dwelling | 22.438421 | 35.98734 |
Hyloxalus italoi | Anura | LC | Stream-dwelling | 24.756499 | 36.95486 |
Hyloxalus lehmanni | Anura | NT | Ground-dwelling | 23.978694 | 36.76542 |
Hyloxalus leucophaeus | Anura | DD | Stream-dwelling | 22.692835 | 35.97024 |
Hyloxalus littoralis | Anura | LC | Ground-dwelling | 21.294067 | 36.55429 |
Hyloxalus maculosus | Anura | DD | Stream-dwelling | 24.037810 | 36.75119 |
Hyloxalus mittermeieri | Anura | DD | Stream-dwelling | 20.676160 | 35.67269 |
Hyloxalus mystax | Anura | DD | Stream-dwelling | 25.876801 | 36.42771 |
Hyloxalus nexipus | Anura | LC | Stream-dwelling | 23.910353 | 36.91149 |
Hyloxalus parcus | Anura | DD | Stream-dwelling | 24.985852 | 36.34675 |
Hyloxalus patitae | Anura | DD | Stream-dwelling | 22.825311 | 36.06213 |
Hyloxalus pinguis | Anura | EN | Ground-dwelling | 22.965861 | 36.63986 |
Hyloxalus pulchellus | Anura | NT | Ground-dwelling | 23.277277 | 34.60161 |
Hyloxalus pulcherrimus | Anura | DD | Stream-dwelling | 21.278613 | 35.68894 |
Hyloxalus pumilus | Anura | DD | Stream-dwelling | 25.876801 | 36.42376 |
Hyloxalus ramosi | Anura | EN | Ground-dwelling | 23.912703 | 36.81536 |
Hyloxalus ruizi | Anura | CR | Ground-dwelling | 25.027891 | 36.91967 |
Hyloxalus saltuarius | Anura | DD | Ground-dwelling | 25.529583 | 37.12575 |
Hyloxalus sauli | Anura | LC | Ground-dwelling | 24.979564 | 37.62380 |
Hyloxalus shuar | Anura | NT | Ground-dwelling | 23.982510 | 36.83980 |
Hyloxalus sordidatus | Anura | DD | Stream-dwelling | 22.971692 | 35.98807 |
Hyloxalus spilotogaster | Anura | DD | Ground-dwelling | 24.252411 | 36.78076 |
Hyloxalus subpunctatus | Anura | LC | Ground-dwelling | 23.287490 | 36.68559 |
Hyloxalus sylvaticus | Anura | EN | Stream-dwelling | 22.881730 | 35.99632 |
Hyloxalus toachi | Anura | EN | Ground-dwelling | 23.191329 | 36.88769 |
Hyloxalus utcubambensis | Anura | DD | Ground-dwelling | 21.985724 | 36.46882 |
Hyloxalus vergeli | Anura | VU | Ground-dwelling | 22.970058 | 36.80325 |
Hyloxalus vertebralis | Anura | CR | Stream-dwelling | 23.751204 | 35.25042 |
Hymenochirus boettgeri | Anura | LC | Aquatic | 27.590348 | 37.34730 |
Hymenochirus boulengeri | Anura | DD | Aquatic | 27.323659 | 37.42844 |
Hymenochirus curtipes | Anura | LC | Semi-aquatic | 28.194243 | 37.51601 |
Hymenochirus feae | Anura | DD | Aquatic | 28.080402 | 37.45220 |
Hynobius abei | Caudata | EN | Ground-dwelling | 24.668112 | 33.84328 |
Hynobius amjiensis | Caudata | EN | Semi-aquatic | 26.975317 | 34.36470 |
Hynobius arisanensis | Caudata | EN | Semi-aquatic | 27.631912 | 34.15439 |
Hynobius boulengeri | Caudata | EN | Semi-aquatic | 25.803987 | 34.25101 |
Hynobius chinensis | Caudata | DD | Semi-aquatic | 24.335745 | 34.03046 |
Hynobius dunni | Caudata | VU | Semi-aquatic | 26.194441 | 34.23006 |
Hynobius formosanus | Caudata | EN | Semi-aquatic | 27.111431 | 34.13006 |
Hynobius fucus | Caudata | NT | Ground-dwelling | 27.441464 | 33.34597 |
Hynobius guabangshanensis | Caudata | CR | Semi-aquatic | 27.752760 | 34.41367 |
Hynobius hidamontanus | Caudata | EN | Semi-aquatic | 22.860364 | 33.69563 |
Hynobius katoi | Caudata | EN | Semi-aquatic | 25.298876 | 34.16109 |
Hynobius kimurae | Caudata | LC | Fossorial | 24.601754 | 34.83361 |
Hynobius leechii | Caudata | LC | Ground-dwelling | 21.686141 | 33.36613 |
Hynobius lichenatus | Caudata | LC | Semi-aquatic | 23.723781 | 33.98580 |
Hynobius maoershanensis | Caudata | CR | Aquatic | 26.709196 | 34.26909 |
Hynobius naevius | Caudata | EN | Ground-dwelling | 25.659493 | 33.90279 |
Hynobius nebulosus | Caudata | LC | Semi-aquatic | 25.591636 | 34.21797 |
Hynobius nigrescens | Caudata | LC | Ground-dwelling | 23.805659 | 33.74626 |
Hynobius okiensis | Caudata | EN | Ground-dwelling | 25.019973 | 33.80856 |
Hynobius quelpaertensis | Caudata | VU | Semi-aquatic | 24.198406 | 34.03600 |
Hynobius retardatus | Caudata | LC | Semi-aquatic | 19.710834 | 33.38648 |
Hynobius sonani | Caudata | EN | Semi-aquatic | 27.558269 | 34.23204 |
Hynobius stejnegeri | Caudata | NT | Semi-aquatic | 26.158497 | 34.32591 |
Hynobius takedai | Caudata | EN | Semi-aquatic | 23.374551 | 33.90137 |
Hynobius tokyoensis | Caudata | VU | Semi-aquatic | 25.037030 | 34.09829 |
Hynobius tsuensis | Caudata | NT | Semi-aquatic | 25.393547 | 34.11588 |
Hynobius turkestanicus | Caudata | DD | Semi-aquatic | 14.888156 | 32.69288 |
Hynobius yangi | Caudata | EN | Semi-aquatic | 24.087076 | 33.96816 |
Hynobius yiwuensis | Caudata | LC | Semi-aquatic | 26.674234 | 34.33524 |
Hyperolius acuticeps | Anura | LC | Arboreal | 23.576816 | 40.28014 |
Hyperolius acutirostris | Anura | LC | Arboreal | 26.838834 | 40.63508 |
Hyperolius ademetzi | Anura | EN | Arboreal | 26.644872 | 40.70017 |
Hyperolius adspersus | Anura | LC | Arboreal | 27.672493 | 40.80606 |
Hyperolius argus | Anura | LC | Arboreal | 25.683872 | 40.48183 |
Hyperolius atrigularis | Anura | DD | Arboreal | 23.363909 | 40.23288 |
Hyperolius balfouri | Anura | LC | Arboreal | 26.260290 | 40.57855 |
Hyperolius baumanni | Anura | LC | Arboreal | 28.557661 | 41.04633 |
Hyperolius benguellensis | Anura | LC | Arboreal | 24.556634 | 40.39470 |
Hyperolius bicolor | Anura | DD | Arboreal | 27.022934 | 40.63643 |
Hyperolius bobirensis | Anura | VU | Arboreal | 27.729107 | 40.91033 |
Hyperolius bolifambae | Anura | LC | Arboreal | 26.889379 | 40.74340 |
Hyperolius bopeleti | Anura | VU | Arboreal | 26.949638 | 40.79640 |
Hyperolius brachiofasciatus | Anura | DD | Arboreal | 27.137777 | 40.75006 |
Hyperolius camerunensis | Anura | LC | Arboreal | 26.509925 | 40.67570 |
Hyperolius castaneus | Anura | LC | Arboreal | 23.389956 | 40.32800 |
Hyperolius chlorosteus | Anura | LC | Arboreal | 27.676050 | 40.76128 |
Hyperolius chrysogaster | Anura | NT | Arboreal | 23.828760 | 40.18945 |
Hyperolius cinereus | Anura | LC | Arboreal | 23.930790 | 40.26417 |
Hyperolius cinnamomeoventris | Anura | LC | Arboreal | 26.577998 | 40.63093 |
Hyperolius concolor | Anura | LC | Arboreal | 27.785333 | 40.76611 |
Hyperolius constellatus | Anura | VU | Arboreal | 23.832094 | 40.28710 |
Hyperolius cystocandicans | Anura | EN | Arboreal | 21.422362 | 39.96838 |
Hyperolius dartevellei | Anura | LC | Arboreal | 26.958723 | 40.73242 |
Hyperolius diaphanus | Anura | DD | Arboreal | 24.986402 | 40.53114 |
Hyperolius dintelmanni | Anura | EN | Arboreal | 27.191396 | 40.80813 |
Hyperolius discodactylus | Anura | LC | Arboreal | 23.353776 | 40.16272 |
Hyperolius endjami | Anura | LC | Arboreal | 26.641773 | 40.60293 |
Hyperolius fasciatus | Anura | DD | Arboreal | 26.763698 | 40.70735 |
Hyperolius ferreirai | Anura | DD | Arboreal | 26.763698 | 40.74281 |
Hyperolius ferrugineus | Anura | DD | Arboreal | 25.278286 | 40.48050 |
Hyperolius friedemanni | Anura | DD | Arboreal | 23.139713 | 40.18430 |
Hyperolius frontalis | Anura | LC | Arboreal | 23.800564 | 40.32083 |
Hyperolius fuscigula | Anura | DD | Arboreal | 26.301903 | 40.65244 |
Hyperolius fusciventris | Anura | LC | Arboreal | 27.727860 | 40.78713 |
Hyperolius ghesquieri | Anura | DD | Arboreal | 28.340147 | 40.83697 |
Hyperolius glandicolor | Anura | LC | Arboreal | 23.484108 | 40.19091 |
Hyperolius gularis | Anura | DD | Arboreal | 27.300545 | 40.74753 |
Hyperolius guttulatus | Anura | LC | Arboreal | 27.737338 | 40.73881 |
Hyperolius horstockii | Anura | LC | Arboreal | 21.007762 | 39.76878 |
Hyperolius howelli | Anura | LC | Arboreal | 21.586452 | 40.03838 |
Hyperolius hutsebauti | Anura | LC | Arboreal | 26.376287 | 40.71707 |
Hyperolius igbettensis | Anura | LC | Arboreal | 27.660892 | 40.68106 |
Hyperolius inornatus | Anura | DD | Arboreal | 28.358838 | 40.91061 |
Hyperolius inyangae | Anura | VU | Arboreal | 23.913002 | 40.35112 |
Hyperolius jackie | Anura | DD | Arboreal | 21.922171 | 40.05235 |
Hyperolius jacobseni | Anura | DD | Arboreal | 27.646331 | 40.69134 |
Hyperolius kachalolae | Anura | LC | Arboreal | 24.308309 | 40.29494 |
Hyperolius kibarae | Anura | DD | Arboreal | 25.072460 | 40.55922 |
Hyperolius kihangensis | Anura | EN | Arboreal | 21.685335 | 39.99349 |
Hyperolius kivuensis | Anura | LC | Arboreal | 24.200055 | 40.31959 |
Hyperolius kuligae | Anura | LC | Arboreal | 26.425399 | 40.62911 |
Hyperolius lamottei | Anura | LC | Arboreal | 27.565794 | 40.73851 |
Hyperolius langi | Anura | LC | Arboreal | 25.342108 | 40.43108 |
Hyperolius lateralis | Anura | LC | Arboreal | 23.627978 | 40.21580 |
Hyperolius laurenti | Anura | NT | Arboreal | 27.953732 | 40.77104 |
Hyperolius leleupi | Anura | EN | Arboreal | 23.945073 | 40.31694 |
Hyperolius leucotaenius | Anura | EN | Arboreal | 24.463491 | 40.41249 |
Hyperolius lupiroensis | Anura | DD | Arboreal | 23.752891 | 40.20925 |
Hyperolius major | Anura | LC | Arboreal | 24.757063 | 40.48441 |
Hyperolius marginatus | Anura | LC | Arboreal | 24.696138 | 40.33695 |
Hyperolius mariae | Anura | LC | Arboreal | 24.970272 | 40.36252 |
Hyperolius marmoratus | Anura | LC | Arboreal | 24.446217 | 46.10154 |
Hyperolius minutissimus | Anura | VU | Arboreal | 22.685843 | 40.14595 |
Hyperolius mitchelli | Anura | LC | Arboreal | 25.337788 | 40.67598 |
Hyperolius molleri | Anura | LC | Arboreal | 27.185336 | 40.71062 |
Hyperolius montanus | Anura | LC | Arboreal | 21.178117 | 39.93638 |
Hyperolius mosaicus | Anura | LC | Arboreal | 27.034546 | 40.76041 |
Hyperolius nasicus | Anura | LC | Arboreal | 24.177631 | 40.29787 |
Hyperolius nasutus | Anura | LC | Arboreal | 24.627053 | 40.44029 |
Hyperolius nienokouensis | Anura | EN | Arboreal | 27.659304 | 40.81866 |
Hyperolius nimbae | Anura | EN | Arboreal | 27.635550 | 40.78649 |
Hyperolius nitidulus | Anura | LC | Arboreal | 27.655941 | 40.84867 |
Hyperolius obscurus | Anura | DD | Arboreal | 25.699383 | 40.64709 |
Hyperolius occidentalis | Anura | LC | Arboreal | 27.416980 | 40.75387 |
Hyperolius ocellatus | Anura | LC | Arboreal | 27.442391 | 40.89660 |
Hyperolius parallelus | Anura | LC | Arboreal | 25.627324 | 40.47684 |
Hyperolius pardalis | Anura | LC | Arboreal | 27.325387 | 40.66101 |
Hyperolius parkeri | Anura | LC | Arboreal | 25.997471 | 40.52071 |
Hyperolius phantasticus | Anura | LC | Arboreal | 27.975535 | 40.80969 |
Hyperolius pickersgilli | Anura | EN | Arboreal | 22.941548 | 40.09450 |
Hyperolius picturatus | Anura | LC | Arboreal | 27.677690 | 40.82477 |
Hyperolius pictus | Anura | LC | Arboreal | 22.474501 | 40.16271 |
Hyperolius platyceps | Anura | LC | Arboreal | 27.698609 | 40.81809 |
Hyperolius polli | Anura | DD | Arboreal | 27.952435 | 40.88881 |
Hyperolius polystictus | Anura | VU | Arboreal | 24.438148 | 40.41973 |
Hyperolius poweri | Anura | LC | Arboreal | 23.128579 | 40.09301 |
Hyperolius pseudargus | Anura | LC | Arboreal | 22.718272 | 40.03974 |
Hyperolius puncticulatus | Anura | EN | Arboreal | 25.609096 | 40.60474 |
Hyperolius pusillus | Anura | LC | Arboreal | 25.165863 | 40.36344 |
Hyperolius pustulifer | Anura | DD | Arboreal | 21.922171 | 40.02853 |
Hyperolius pyrrhodictyon | Anura | LC | Arboreal | 24.439259 | 40.29755 |
Hyperolius quadratomaculatus | Anura | DD | Arboreal | 26.408772 | 40.65051 |
Hyperolius quinquevittatus | Anura | LC | Arboreal | 24.548856 | 40.42519 |
Hyperolius rhizophilus | Anura | DD | Arboreal | 28.928989 | 40.95128 |
Hyperolius rhodesianus | Anura | LC | Arboreal | 24.327795 | 40.26056 |
Hyperolius riggenbachi | Anura | LC | Arboreal | 26.369320 | 40.57573 |
Hyperolius robustus | Anura | DD | Arboreal | 28.343170 | 40.97004 |
Hyperolius rubrovermiculatus | Anura | EN | Arboreal | 25.469893 | 40.41486 |
Hyperolius rwandae | Anura | LC | Arboreal | 22.334128 | 40.12514 |
Hyperolius sankuruensis | Anura | DD | Arboreal | 28.104585 | 40.92168 |
Hyperolius schoutedeni | Anura | LC | Arboreal | 27.596468 | 40.86499 |
Hyperolius semidiscus | Anura | LC | Arboreal | 22.444607 | 40.13276 |
Hyperolius sheldricki | Anura | DD | Arboreal | 24.846766 | 40.41954 |
Hyperolius soror | Anura | LC | Arboreal | 27.699239 | 40.74097 |
Hyperolius spinigularis | Anura | VU | Arboreal | 25.899987 | 40.57040 |
Hyperolius steindachneri | Anura | LC | Arboreal | 25.208113 | 40.46916 |
Hyperolius stenodactylus | Anura | DD | Arboreal | 26.939613 | 40.73272 |
Hyperolius substriatus | Anura | LC | Arboreal | 24.830986 | 40.50885 |
Hyperolius swynnertoni | Anura | LC | Arboreal | 25.308072 | 40.60732 |
Hyperolius sylvaticus | Anura | LC | Arboreal | 27.831453 | 40.96397 |
Hyperolius tanneri | Anura | CR | Arboreal | 25.090940 | 40.55611 |
Hyperolius thomensis | Anura | EN | Arboreal | 27.104015 | 40.67603 |
Hyperolius torrentis | Anura | VU | Arboreal | 28.381916 | 40.81114 |
Hyperolius tuberculatus | Anura | LC | Arboreal | 27.456434 | 40.78952 |
Hyperolius tuberilinguis | Anura | LC | Arboreal | 25.146918 | 39.12172 |
Hyperolius veithi | Anura | LC | Arboreal | 28.396396 | 40.83036 |
Hyperolius vilhenai | Anura | DD | Arboreal | 25.825412 | 40.72018 |
Hyperolius viridiflavus | Anura | LC | Arboreal | 24.785074 | 40.92617 |
Hyperolius viridigulosus | Anura | NT | Arboreal | 27.557566 | 40.79125 |
Hyperolius viridis | Anura | LC | Arboreal | 22.640339 | 40.18008 |
Hyperolius watsonae | Anura | CR | Arboreal | 25.469893 | 40.58226 |
Hyperolius xenorhinus | Anura | DD | Arboreal | 25.264248 | 40.52451 |
Hyperolius zonatus | Anura | LC | Semi-aquatic | 27.707282 | 41.13106 |
Hypopachus barberi | Anura | NT | Ground-dwelling | 26.140555 | 39.73780 |
Hypopachus pictiventris | Anura | LC | Ground-dwelling | 26.413976 | 39.87426 |
Hypopachus variolosus | Anura | LC | Ground-dwelling | 26.294631 | 39.88912 |
Ichthyosaura alpestris | Caudata | LC | Ground-dwelling | 19.340904 | 36.37482 |
Ikakogi tayrona | Anura | VU | Stream-dwelling | 27.127537 | 37.26156 |
Incilius alvarius | Anura | LC | Ground-dwelling | 23.516470 | 39.77127 |
Incilius aucoinae | Anura | LC | Ground-dwelling | 25.556516 | 39.70885 |
Incilius bocourti | Anura | LC | Ground-dwelling | 25.721881 | 39.53250 |
Incilius campbelli | Anura | LC | Stream-dwelling | 26.448978 | 39.11666 |
Incilius canaliferus | Anura | LC | Ground-dwelling | 27.123233 | 39.41697 |
Incilius cavifrons | Anura | EN | Stream-dwelling | 27.340327 | 39.20831 |
Incilius chompipe | Anura | EN | Ground-dwelling | 24.241567 | 39.50370 |
Incilius coccifer | Anura | LC | Ground-dwelling | 26.806928 | 39.86545 |
Incilius coniferus | Anura | LC | Ground-dwelling | 26.316540 | 39.78332 |
Incilius cristatus | Anura | EN | Ground-dwelling | 24.647146 | 39.50525 |
Incilius cycladen | Anura | VU | Ground-dwelling | 25.328169 | 39.70630 |
Incilius epioticus | Anura | VU | Ground-dwelling | 24.380342 | 39.48302 |
Incilius gemmifer | Anura | EN | Ground-dwelling | 26.134371 | 39.67445 |
Incilius guanacaste | Anura | EN | Ground-dwelling | 26.749134 | 39.80740 |
Incilius holdridgei | Anura | CR | Ground-dwelling | 27.731359 | 39.88827 |
Incilius ibarrai | Anura | LC | Ground-dwelling | 25.613458 | 39.69718 |
Incilius leucomyos | Anura | NT | Ground-dwelling | 26.187288 | 39.74094 |
Incilius luetkenii | Anura | LC | Ground-dwelling | 26.902817 | 39.94073 |
Incilius macrocristatus | Anura | NT | Ground-dwelling | 27.801042 | 39.94248 |
Incilius marmoreus | Anura | LC | Ground-dwelling | 26.483756 | 40.49796 |
Incilius mazatlanensis | Anura | LC | Ground-dwelling | 25.509473 | 40.08211 |
Incilius melanochlorus | Anura | LC | Ground-dwelling | 26.486482 | 39.73700 |
Incilius nebulifer | Anura | LC | Ground-dwelling | 25.941913 | 39.67748 |
Incilius occidentalis | Anura | LC | Ground-dwelling | 24.305857 | 39.60374 |
Incilius perplexus | Anura | LC | Ground-dwelling | 25.262770 | 39.65699 |
Incilius pisinnus | Anura | EN | Ground-dwelling | 24.478778 | 39.54633 |
Incilius porteri | Anura | LC | Ground-dwelling | 26.106517 | 39.75832 |
Incilius signifer | Anura | LC | Ground-dwelling | 27.069244 | 39.88020 |
Incilius spiculatus | Anura | EN | Stream-dwelling | 22.681874 | 38.68815 |
Incilius tacanensis | Anura | EN | Stream-dwelling | 25.619531 | 39.06689 |
Incilius tutelarius | Anura | VU | Stream-dwelling | 26.435028 | 39.14503 |
Incilius valliceps | Anura | LC | Ground-dwelling | 27.062612 | 39.84352 |
Indirana beddomii | Anura | LC | Ground-dwelling | 27.379145 | 38.31688 |
Indirana brachytarsus | Anura | EN | Stream-dwelling | 27.479123 | 37.72272 |
Indirana diplosticta | Anura | EN | Stream-dwelling | 27.983803 | 37.63846 |
Indirana gundia | Anura | CR | Stream-dwelling | 27.049047 | 37.64238 |
Indirana leithii | Anura | VU | Ground-dwelling | 27.163911 | 38.34044 |
Indirana leptodactyla | Anura | EN | Ground-dwelling | 27.834131 | 38.23520 |
Indirana longicrus | Anura | DD | Stream-dwelling | 26.875890 | 37.57296 |
Indirana phrynoderma | Anura | CR | Ground-dwelling | 28.297719 | 38.24829 |
Indirana semipalmata | Anura | LC | Stream-dwelling | 27.577539 | 37.73367 |
Ingerana borealis | Anura | LC | Semi-aquatic | 24.794939 | 38.29940 |
Ingerana charlesdarwini | Anura | CR | Arboreal | 28.730299 | 38.39486 |
Ingerana reticulata | Anura | DD | Stream-dwelling | 16.407198 | 36.26563 |
Ingerana tenasserimensis | Anura | LC | Ground-dwelling | 27.942961 | 38.52740 |
Ingerophrynus biporcatus | Anura | LC | Ground-dwelling | 28.007009 | 39.16300 |
Ingerophrynus celebensis | Anura | LC | Ground-dwelling | 27.037055 | 38.94955 |
Ingerophrynus claviger | Anura | LC | Ground-dwelling | 27.465804 | 38.92305 |
Ingerophrynus divergens | Anura | LC | Ground-dwelling | 28.183685 | 39.11725 |
Ingerophrynus galeatus | Anura | LC | Ground-dwelling | 27.695416 | 39.09752 |
Ingerophrynus gollum | Anura | EN | Stream-dwelling | 28.335018 | 38.51433 |
Ingerophrynus kumquat | Anura | EN | Ground-dwelling | 28.481475 | 39.14033 |
Ingerophrynus macrotis | Anura | LC | Ground-dwelling | 27.345822 | 39.03928 |
Ingerophrynus parvus | Anura | LC | Stream-dwelling | 28.581511 | 38.54241 |
Ingerophrynus philippinicus | Anura | LC | Ground-dwelling | 27.931168 | 39.11378 |
Ingerophrynus quadriporcatus | Anura | LC | Ground-dwelling | 28.388189 | 39.11104 |
Insuetophrynus acarpicus | Anura | EN | Stream-dwelling | 17.544929 | 36.15299 |
Ischnocnema bolbodactyla | Anura | LC | Ground-dwelling | 25.851477 | 36.85993 |
Ischnocnema epipeda | Anura | NT | Ground-dwelling | 25.780363 | 36.79875 |
Ischnocnema erythromera | Anura | DD | Ground-dwelling | 26.561451 | 37.00509 |
Ischnocnema gehrti | Anura | DD | Ground-dwelling | 25.741310 | 36.84217 |
Ischnocnema gualteri | Anura | LC | Ground-dwelling | 26.561451 | 37.01549 |
Ischnocnema guentheri | Anura | LC | Ground-dwelling | 25.764344 | 36.91415 |
Ischnocnema henselii | Anura | LC | Ground-dwelling | 25.378418 | 36.84593 |
Ischnocnema hoehnei | Anura | LC | Ground-dwelling | 25.764576 | 36.78992 |
Ischnocnema holti | Anura | DD | Ground-dwelling | 26.714437 | 36.93642 |
Ischnocnema izecksohni | Anura | DD | Ground-dwelling | 25.220967 | 36.75290 |
Ischnocnema juipoca | Anura | LC | Ground-dwelling | 26.121025 | 36.78272 |
Ischnocnema lactea | Anura | LC | Ground-dwelling | 25.980139 | 36.83159 |
Ischnocnema manezinho | Anura | NT | Ground-dwelling | 24.676795 | 36.73378 |
Ischnocnema nasuta | Anura | LC | Arboreal | 25.934239 | 36.64654 |
Ischnocnema nigriventris | Anura | DD | Ground-dwelling | 25.741310 | 36.80074 |
Ischnocnema octavioi | Anura | LC | Ground-dwelling | 26.096995 | 36.83790 |
Ischnocnema oea | Anura | NT | Ground-dwelling | 25.780363 | 36.91998 |
Ischnocnema paranaensis | Anura | DD | Ground-dwelling | 24.076546 | 36.50762 |
Ischnocnema parva | Anura | LC | Ground-dwelling | 25.862742 | 36.71857 |
Ischnocnema penaxavantinho | Anura | DD | Ground-dwelling | 26.206370 | 36.84387 |
Ischnocnema pusilla | Anura | DD | Ground-dwelling | 25.945038 | 36.83820 |
Ischnocnema randorum | Anura | DD | Ground-dwelling | 24.541828 | 36.76031 |
Ischnocnema sambaqui | Anura | DD | Ground-dwelling | 24.076546 | 36.65066 |
Ischnocnema spanios | Anura | DD | Ground-dwelling | 25.141569 | 36.75120 |
Ischnocnema venancioi | Anura | LC | Ground-dwelling | 26.348097 | 36.92737 |
Ischnocnema verrucosa | Anura | DD | Ground-dwelling | 25.835132 | 36.79215 |
Isthmohyla angustilineata | Anura | CR | Arboreal | 27.888486 | 40.04502 |
Isthmohyla debilis | Anura | CR | Arboreal | 27.359743 | 39.96076 |
Isthmohyla graceae | Anura | CR | Arboreal | 26.090327 | 39.94537 |
Isthmohyla infucata | Anura | EN | Arboreal | 27.943292 | 39.97451 |
Isthmohyla insolita | Anura | EN | Stream-dwelling | 26.359827 | 39.40152 |
Isthmohyla lancasteri | Anura | LC | Arboreal | 25.245561 | 39.76010 |
Isthmohyla picadoi | Anura | LC | Arboreal | 25.800655 | 39.82027 |
Isthmohyla pictipes | Anura | CR | Stream-dwelling | 25.742721 | 39.26460 |
Isthmohyla pseudopuma | Anura | LC | Arboreal | 25.746687 | 39.76204 |
Isthmohyla rivularis | Anura | EN | Stream-dwelling | 27.888486 | 39.62190 |
Isthmohyla tica | Anura | CR | Stream-dwelling | 27.888486 | 39.47545 |
Isthmohyla xanthosticta | Anura | DD | Arboreal | 27.731359 | 40.01481 |
Isthmohyla zeteki | Anura | VU | Arboreal | 25.742721 | 39.73025 |
Itapotihyla langsdorffii | Anura | LC | Arboreal | 25.797899 | 39.81811 |
Ixalotriton niger | Caudata | EN | Ground-dwelling | 27.717146 | 35.58402 |
Ixalotriton parvus | Caudata | CR | Arboreal | 28.096738 | 35.41428 |
Kalophrynus baluensis | Anura | LC | Ground-dwelling | 26.959611 | 36.90298 |
Kalophrynus bunguranus | Anura | DD | Ground-dwelling | 27.552443 | 37.14801 |
Kalophrynus eok | Anura | DD | Ground-dwelling | 26.158013 | 36.90857 |
Kalophrynus heterochirus | Anura | LC | Ground-dwelling | 28.010703 | 37.10240 |
Kalophrynus interlineatus | Anura | LC | Ground-dwelling | 27.540714 | 37.05854 |
Kalophrynus intermedius | Anura | LC | Ground-dwelling | 28.444029 | 37.16228 |
Kalophrynus limbooliati | Anura | NT | Ground-dwelling | 28.890137 | 37.02657 |
Kalophrynus minusculus | Anura | LC | Ground-dwelling | 28.261916 | 37.28342 |
Kalophrynus nubicola | Anura | LC | Ground-dwelling | 27.227495 | 37.01882 |
Kalophrynus orangensis | Anura | LC | Ground-dwelling | 27.295018 | 37.08473 |
Kalophrynus palmatissimus | Anura | EN | Ground-dwelling | 28.220033 | 37.04861 |
Kalophrynus pleurostigma | Anura | LC | Ground-dwelling | 28.436829 | 37.38669 |
Kalophrynus punctatus | Anura | LC | Ground-dwelling | 27.761890 | 37.08544 |
Kalophrynus robinsoni | Anura | DD | Ground-dwelling | 28.598454 | 37.31736 |
Kalophrynus subterrestris | Anura | LC | Ground-dwelling | 28.097365 | 37.06838 |
Kaloula assamensis | Anura | LC | Arboreal | 26.236185 | 38.21156 |
Kaloula aureata | Anura | DD | Arboreal | 28.597859 | 38.40519 |
Kaloula baleata | Anura | LC | Arboreal | 27.481917 | 38.29938 |
Kaloula borealis | Anura | LC | Ground-dwelling | 23.262885 | 37.93864 |
Kaloula conjuncta | Anura | LC | Ground-dwelling | 27.642081 | 38.27359 |
Kaloula kalingensis | Anura | LC | Arboreal | 27.864325 | 36.95067 |
Kaloula kokacii | Anura | LC | Arboreal | 27.879887 | 37.82352 |
Kaloula mediolineata | Anura | NT | Ground-dwelling | 28.729169 | 38.55533 |
Kaloula picta | Anura | LC | Ground-dwelling | 27.737658 | 38.25586 |
Kaloula pulchra | Anura | LC | Ground-dwelling | 27.848416 | 41.11518 |
Kaloula rigida | Anura | LC | Ground-dwelling | 27.991122 | 38.17767 |
Kaloula rugifera | Anura | LC | Ground-dwelling | 21.426060 | 37.69533 |
Kaloula verrucosa | Anura | LC | Ground-dwelling | 21.666479 | 37.76741 |
Kaloula walteri | Anura | VU | Stream-dwelling | 27.757881 | 37.74118 |
Karsenia koreana | Caudata | LC | Ground-dwelling | 23.953713 | 34.63354 |
Kassina arboricola | Anura | VU | Semi-aquatic | 27.718303 | 40.61057 |
Kassina cassinoides | Anura | LC | Semi-aquatic | 27.762649 | 40.64758 |
Kassina cochranae | Anura | LC | Arboreal | 27.679596 | 40.27314 |
Kassina decorata | Anura | VU | Semi-aquatic | 26.605270 | 40.55767 |
Kassina fusca | Anura | LC | Ground-dwelling | 27.937786 | 40.36528 |
Kassina jozani | Anura | EN | Ground-dwelling | 25.862318 | 40.06070 |
Kassina kuvangensis | Anura | LC | Semi-aquatic | 24.143692 | 40.13392 |
Kassina lamottei | Anura | LC | Ground-dwelling | 27.727678 | 40.31582 |
Kassina maculata | Anura | LC | Ground-dwelling | 25.629594 | 40.07643 |
Kassina maculifer | Anura | LC | Ground-dwelling | 24.556952 | 40.00672 |
Kassina maculosa | Anura | LC | Ground-dwelling | 27.049837 | 40.32456 |
Kassina mertensi | Anura | LC | Ground-dwelling | 26.613301 | 40.33388 |
Kassina schioetzi | Anura | LC | Ground-dwelling | 27.881718 | 40.35231 |
Kassina senegalensis | Anura | LC | Ground-dwelling | 25.450188 | 40.07236 |
Kassina somalica | Anura | LC | Ground-dwelling | 24.299361 | 39.95389 |
Kassina wazae | Anura | DD | Semi-aquatic | 27.838013 | 40.61340 |
Kassinula wittei | Anura | LC | Arboreal | 24.211793 | 40.27139 |
Kurixalus appendiculatus | Anura | LC | Arboreal | 27.615678 | 37.37166 |
Kurixalus baliogaster | Anura | LC | Arboreal | 28.321814 | 37.16141 |
Kurixalus banaensis | Anura | LC | Arboreal | 28.075572 | 37.17635 |
Kurixalus bisacculus | Anura | LC | Arboreal | 28.476236 | 37.33769 |
Kurixalus eiffingeri | Anura | LC | Arboreal | 27.581338 | 35.53656 |
Kurixalus idiootocus | Anura | LC | Arboreal | 27.659741 | 36.73324 |
Kurixalus naso | Anura | LC | Arboreal | 20.830211 | 36.26575 |
Kurixalus odontotarsus | Anura | LC | Arboreal | 25.121880 | 36.82967 |
Kurixalus verrucosus | Anura | LC | Arboreal | 27.242286 | 37.02995 |
Laliostoma labrosum | Anura | LC | Ground-dwelling | 26.542613 | 37.87139 |
Lankanectes corrugatus | Anura | NT | Ground-dwelling | 28.050126 | 37.29992 |
Lanzarana largeni | Anura | LC | Ground-dwelling | 25.751629 | 37.77229 |
Laotriton laoensis | Caudata | EN | Aquatic | 27.181236 | 37.56830 |
Latonia nigriventer | Anura | CR | Semi-aquatic | 23.639626 | 37.25621 |
Laurentophryne parkeri | Anura | DD | Ground-dwelling | 24.550522 | 38.48585 |
Lechriodus aganoposis | Anura | LC | Ground-dwelling | 26.718630 | 38.30228 |
Lechriodus fletcheri | Anura | LC | Ground-dwelling | 22.667575 | 37.38302 |
Lechriodus melanopyga | Anura | LC | Ground-dwelling | 27.200975 | 38.44274 |
Lechriodus platyceps | Anura | LC | Ground-dwelling | 27.025160 | 37.96546 |
Leiopelma archeyi | Anura | CR | Ground-dwelling | 19.283251 | 34.54102 |
Leiopelma hamiltoni | Anura | VU | Ground-dwelling | 18.504937 | 34.44758 |
Leiopelma hochstetteri | Anura | LC | Semi-aquatic | 19.354432 | 34.84508 |
Leiopelma pakeka | Anura | VU | Ground-dwelling | 17.018164 | 34.24279 |
Lepidobatrachus asper | Anura | NT | Ground-dwelling | 26.635503 | 40.91373 |
Lepidobatrachus laevis | Anura | LC | Ground-dwelling | 26.987012 | 41.00028 |
Lepidobatrachus llanensis | Anura | LC | Fossorial | 25.440836 | 42.85574 |
Leptobrachella baluensis | Anura | LC | Ground-dwelling | 27.138200 | 37.50945 |
Leptobrachella brevicrus | Anura | LC | Stream-dwelling | 27.321843 | 37.04895 |
Leptobrachella mjobergi | Anura | DD | Ground-dwelling | 27.322531 | 37.57046 |
Leptobrachella natunae | Anura | DD | Stream-dwelling | 27.552443 | 37.02432 |
Leptobrachella palmata | Anura | CR | Stream-dwelling | 28.513629 | 37.07994 |
Leptobrachella parva | Anura | LC | Ground-dwelling | 27.680243 | 37.69976 |
Leptobrachella serasanae | Anura | NT | Ground-dwelling | 27.936990 | 37.67306 |
Leptobrachium abbotti | Anura | LC | Ground-dwelling | 27.921698 | 37.54504 |
Leptobrachium ailaonicum | Anura | LC | Ground-dwelling | 23.748918 | 37.26123 |
Leptobrachium banae | Anura | LC | Ground-dwelling | 28.086887 | 37.72298 |
Leptobrachium boringii | Anura | EN | Ground-dwelling | 22.951704 | 37.08756 |
Leptobrachium buchardi | Anura | EN | Ground-dwelling | 28.721743 | 37.82487 |
Leptobrachium chapaense | Anura | LC | Ground-dwelling | 24.708620 | 37.32488 |
Leptobrachium gunungense | Anura | LC | Ground-dwelling | 27.189560 | 37.53956 |
Leptobrachium hainanense | Anura | VU | Ground-dwelling | 28.145497 | 37.74217 |
Leptobrachium hasseltii | Anura | LC | Ground-dwelling | 27.793307 | 37.63506 |
Leptobrachium hendricksoni | Anura | LC | Ground-dwelling | 28.378091 | 37.73514 |
Leptobrachium huashen | Anura | LC | Ground-dwelling | 23.347902 | 37.15980 |
Leptobrachium leishanense | Anura | EN | Ground-dwelling | 26.105134 | 37.47972 |
Leptobrachium leucops | Anura | VU | Ground-dwelling | 28.417762 | 37.82807 |
Leptobrachium liui | Anura | LC | Ground-dwelling | 27.517799 | 37.71370 |
Leptobrachium montanum | Anura | LC | Ground-dwelling | 27.795013 | 37.61805 |
Leptobrachium mouhoti | Anura | LC | Ground-dwelling | 28.394649 | 37.82660 |
Leptobrachium ngoclinhense | Anura | EN | Ground-dwelling | 27.911823 | 37.67350 |
Leptobrachium nigrops | Anura | LC | Ground-dwelling | 28.615478 | 37.75364 |
Leptobrachium promustache | Anura | EN | Stream-dwelling | 25.805111 | 36.79420 |
Leptobrachium pullum | Anura | LC | Ground-dwelling | 28.279834 | 37.74876 |
Leptobrachium smithi | Anura | LC | Ground-dwelling | 27.929637 | 37.70003 |
Leptobrachium xanthops | Anura | EN | Stream-dwelling | 27.662974 | 37.06273 |
Leptobrachium xanthospilum | Anura | EN | Stream-dwelling | 27.253507 | 37.06018 |
Leptodactylodon albiventris | Anura | EN | Stream-dwelling | 26.821882 | 38.38106 |
Leptodactylodon axillaris | Anura | CR | Ground-dwelling | 25.683805 | 38.81768 |
Leptodactylodon bicolor | Anura | NT | Stream-dwelling | 26.642228 | 38.36431 |
Leptodactylodon blanci | Anura | EN | Stream-dwelling | 28.414125 | 38.63096 |
Leptodactylodon boulengeri | Anura | NT | Stream-dwelling | 26.601273 | 38.31077 |
Leptodactylodon bueanus | Anura | EN | Stream-dwelling | 27.196836 | 38.44554 |
Leptodactylodon erythrogaster | Anura | CR | Stream-dwelling | 27.125406 | 38.36470 |
Leptodactylodon mertensi | Anura | EN | Stream-dwelling | 26.644872 | 38.37538 |
Leptodactylodon ornatus | Anura | EN | Stream-dwelling | 26.599971 | 38.33340 |
Leptodactylodon ovatus | Anura | LC | Stream-dwelling | 26.846848 | 38.41759 |
Leptodactylodon perreti | Anura | EN | Stream-dwelling | 26.197768 | 38.22781 |
Leptodactylodon polyacanthus | Anura | VU | Stream-dwelling | 26.504936 | 38.33325 |
Leptodactylodon stevarti | Anura | EN | Stream-dwelling | 27.222655 | 38.35888 |
Leptodactylodon ventrimarmoratus | Anura | VU | Ground-dwelling | 26.806103 | 39.03875 |
Leptodactylodon wildi | Anura | CR | Stream-dwelling | 27.191396 | 38.50747 |
Leptodactylus albilabris | Anura | LC | Semi-aquatic | 27.145140 | 38.11377 |
Leptodactylus bolivianus | Anura | LC | Semi-aquatic | 27.461815 | 39.11325 |
Leptodactylus bufonius | Anura | LC | Ground-dwelling | 26.478249 | 42.32555 |
Leptodactylus caatingae | Anura | LC | Ground-dwelling | 25.845100 | 39.86194 |
Leptodactylus camaquara | Anura | DD | Fossorial | 25.329739 | 40.85240 |
Leptodactylus chaquensis | Anura | LC | Semi-aquatic | 26.466739 | 39.93452 |
Leptodactylus colombiensis | Anura | LC | Ground-dwelling | 24.837567 | 39.79297 |
Leptodactylus cunicularius | Anura | LC | Ground-dwelling | 25.919190 | 40.02113 |
Leptodactylus cupreus | Anura | DD | Fossorial | 25.847809 | 40.82219 |
Leptodactylus didymus | Anura | LC | Ground-dwelling | 22.294262 | 38.11654 |
Leptodactylus diedrus | Anura | LC | Ground-dwelling | 28.755703 | 40.59126 |
Leptodactylus discodactylus | Anura | LC | Ground-dwelling | 27.583881 | 40.64693 |
Leptodactylus elenae | Anura | LC | Ground-dwelling | 27.347744 | 39.50375 |
Leptodactylus fallax | Anura | CR | Ground-dwelling | 27.145519 | 40.00683 |
Leptodactylus flavopictus | Anura | LC | Ground-dwelling | 25.666220 | 39.93976 |
Leptodactylus fragilis | Anura | LC | Ground-dwelling | 26.617669 | 41.53463 |
Leptodactylus furnarius | Anura | LC | Ground-dwelling | 26.635312 | 39.55104 |
Leptodactylus fuscus | Anura | LC | Ground-dwelling | 27.240801 | 42.33657 |
Leptodactylus gracilis | Anura | LC | Ground-dwelling | 24.783012 | 40.54040 |
Leptodactylus griseigularis | Anura | LC | Ground-dwelling | 19.680667 | 39.61921 |
Leptodactylus hylodes | Anura | DD | Ground-dwelling | 25.273849 | 39.82789 |
Leptodactylus jolyi | Anura | LC | Ground-dwelling | 26.399841 | 40.39840 |
Leptodactylus knudseni | Anura | LC | Ground-dwelling | 27.604761 | 40.05174 |
Leptodactylus labrosus | Anura | LC | Ground-dwelling | 24.344225 | 39.42177 |
Leptodactylus labyrinthicus | Anura | LC | Semi-aquatic | 27.477757 | 40.25226 |
Leptodactylus laticeps | Anura | NT | Ground-dwelling | 26.671880 | 39.99030 |
Leptodactylus latinasus | Anura | LC | Ground-dwelling | 25.443049 | 41.63056 |
Leptodactylus latrans | Anura | LC | Semi-aquatic | 26.741048 | 40.73776 |
Leptodactylus lauramiriamae | Anura | DD | Ground-dwelling | 28.103544 | 40.20437 |
Leptodactylus leptodactyloides | Anura | LC | Ground-dwelling | 27.710451 | 39.69157 |
Leptodactylus lithonaetes | Anura | LC | Stream-dwelling | 27.932965 | 41.21593 |
Leptodactylus longirostris | Anura | LC | Ground-dwelling | 27.183543 | 41.40373 |
Leptodactylus magistris | Anura | CR | Stream-dwelling | 26.512811 | 39.21615 |
Leptodactylus marambaiae | Anura | LC | Ground-dwelling | 25.471995 | 39.95267 |
Leptodactylus melanonotus | Anura | LC | Ground-dwelling | 26.603701 | 39.39484 |
Leptodactylus myersi | Anura | LC | Ground-dwelling | 27.448942 | 40.10063 |
Leptodactylus mystaceus | Anura | LC | Ground-dwelling | 27.676232 | 39.33752 |
Leptodactylus mystacinus | Anura | LC | Ground-dwelling | 25.712786 | 41.71357 |
Leptodactylus natalensis | Anura | LC | Ground-dwelling | 26.013038 | 39.92380 |
Leptodactylus nesiotus | Anura | LC | Ground-dwelling | 27.142160 | 39.74042 |
Leptodactylus notoaktites | Anura | LC | Ground-dwelling | 25.751105 | 39.16252 |
Leptodactylus paraensis | Anura | LC | Ground-dwelling | 28.059848 | 40.15158 |
Leptodactylus pentadactylus | Anura | LC | Ground-dwelling | 27.650132 | 40.04420 |
Leptodactylus peritoaktites | Anura | EN | Ground-dwelling | 25.726422 | 39.96949 |
Leptodactylus petersii | Anura | LC | Ground-dwelling | 27.974449 | 39.88384 |
Leptodactylus plaumanni | Anura | LC | Ground-dwelling | 25.706669 | 40.33886 |
Leptodactylus podicipinus | Anura | LC | Ground-dwelling | 27.751496 | 41.76791 |
Leptodactylus poecilochilus | Anura | LC | Ground-dwelling | 26.930583 | 38.98174 |
Leptodactylus pustulatus | Anura | LC | Ground-dwelling | 27.967129 | 40.20717 |
Leptodactylus rhodomerus | Anura | LC | Ground-dwelling | 25.162080 | 39.87387 |
Leptodactylus rhodomystax | Anura | LC | Ground-dwelling | 27.854827 | 39.33237 |
Leptodactylus rhodonotus | Anura | LC | Ground-dwelling | 23.506702 | 39.60243 |
Leptodactylus riveroi | Anura | LC | Ground-dwelling | 28.390929 | 40.44451 |
Leptodactylus rugosus | Anura | LC | Ground-dwelling | 26.438698 | 39.95536 |
Leptodactylus sabanensis | Anura | LC | Ground-dwelling | 26.170031 | 39.95669 |
Leptodactylus savagei | Anura | LC | Ground-dwelling | 27.017935 | 40.12248 |
Leptodactylus sertanejo | Anura | LC | Ground-dwelling | 26.761439 | 39.96964 |
Leptodactylus silvanimbus | Anura | CR | Ground-dwelling | 26.808944 | 40.03980 |
Leptodactylus spixi | Anura | LC | Ground-dwelling | 25.619060 | 39.15943 |
Leptodactylus stenodema | Anura | LC | Ground-dwelling | 27.995075 | 40.29015 |
Leptodactylus syphax | Anura | LC | Ground-dwelling | 26.998200 | 39.83675 |
Leptodactylus tapiti | Anura | DD | Ground-dwelling | 26.643224 | 40.03974 |
Leptodactylus troglodytes | Anura | LC | Ground-dwelling | 26.476424 | 41.27491 |
Leptodactylus turimiquensis | Anura | NT | Ground-dwelling | 26.813880 | 40.14707 |
Leptodactylus validus | Anura | LC | Ground-dwelling | 26.926455 | 40.12400 |
Leptodactylus vastus | Anura | LC | Ground-dwelling | 26.865228 | 40.06635 |
Leptodactylus ventrimaculatus | Anura | LC | Ground-dwelling | 25.164513 | 39.22826 |
Leptodactylus viridis | Anura | DD | Ground-dwelling | 25.483560 | 39.94468 |
Leptodactylus wagneri | Anura | LC | Ground-dwelling | 26.194859 | 39.40479 |
Leptopelis anchietae | Anura | LC | Ground-dwelling | 24.741233 | 38.65024 |
Leptopelis argenteus | Anura | LC | Ground-dwelling | 25.440502 | 38.79986 |
Leptopelis aubryi | Anura | LC | Arboreal | 27.730148 | 38.97567 |
Leptopelis aubryioides | Anura | LC | Arboreal | 27.431543 | 38.95184 |
Leptopelis bequaerti | Anura | DD | Arboreal | 27.573012 | 38.96833 |
Leptopelis bocagii | Anura | LC | Fossorial | 24.042690 | 39.60522 |
Leptopelis boulengeri | Anura | LC | Arboreal | 27.667417 | 38.95935 |
Leptopelis brevipes | Anura | DD | Arboreal | 26.388381 | 38.78722 |
Leptopelis brevirostris | Anura | LC | Arboreal | 27.333884 | 38.85842 |
Leptopelis bufonides | Anura | LC | Fossorial | 27.794140 | 40.10290 |
Leptopelis calcaratus | Anura | LC | Arboreal | 27.448755 | 38.98934 |
Leptopelis christyi | Anura | LC | Arboreal | 24.591443 | 38.49343 |
Leptopelis concolor | Anura | LC | Arboreal | 25.069954 | 38.62236 |
Leptopelis crystallinoron | Anura | DD | Arboreal | 27.222655 | 38.81964 |
Leptopelis cynnamomeus | Anura | LC | Arboreal | 24.599653 | 38.51867 |
Leptopelis fenestratus | Anura | DD | Arboreal | 25.264248 | 38.63031 |
Leptopelis fiziensis | Anura | DD | Arboreal | 24.419975 | 38.38181 |
Leptopelis flavomaculatus | Anura | LC | Arboreal | 25.192029 | 38.69591 |
Leptopelis gramineus | Anura | LC | Fossorial | 20.547985 | 39.16841 |
Leptopelis jordani | Anura | DD | Arboreal | 25.672523 | 38.60589 |
Leptopelis karissimbensis | Anura | VU | Arboreal | 22.614538 | 38.18677 |
Leptopelis kivuensis | Anura | LC | Arboreal | 23.183914 | 38.22809 |
Leptopelis lebeaui | Anura | DD | Arboreal | 25.800228 | 38.65733 |
Leptopelis mackayi | Anura | VU | Arboreal | 24.722684 | 38.59516 |
Leptopelis macrotis | Anura | NT | Stream-dwelling | 27.663194 | 38.50945 |
Leptopelis marginatus | Anura | DD | Arboreal | 24.114851 | 38.40103 |
Leptopelis millsoni | Anura | LC | Arboreal | 27.554003 | 38.82315 |
Leptopelis modestus | Anura | LC | Stream-dwelling | 26.516002 | 38.39248 |
Leptopelis mossambicus | Anura | LC | Arboreal | 25.136643 | 38.55662 |
Leptopelis natalensis | Anura | LC | Arboreal | 22.506444 | 38.26395 |
Leptopelis nordequatorialis | Anura | LC | Arboreal | 26.270303 | 38.75189 |
Leptopelis notatus | Anura | LC | Arboreal | 27.558097 | 38.85442 |
Leptopelis occidentalis | Anura | NT | Arboreal | 27.721961 | 38.82501 |
Leptopelis ocellatus | Anura | LC | Arboreal | 27.886757 | 39.11803 |
Leptopelis oryi | Anura | LC | Arboreal | 26.049646 | 38.65090 |
Leptopelis palmatus | Anura | EN | Stream-dwelling | 27.266657 | 38.34678 |
Leptopelis parbocagii | Anura | LC | Fossorial | 24.466037 | 39.56725 |
Leptopelis parkeri | Anura | EN | Arboreal | 23.982484 | 38.45462 |
Leptopelis parvus | Anura | DD | Arboreal | 25.072460 | 38.61807 |
Leptopelis ragazzii | Anura | VU | Stream-dwelling | 20.362967 | 37.57870 |
Leptopelis rufus | Anura | LC | Arboreal | 27.531393 | 38.92504 |
Leptopelis spiritusnoctis | Anura | LC | Arboreal | 27.768404 | 38.98548 |
Leptopelis susanae | Anura | EN | Stream-dwelling | 21.386135 | 37.63185 |
Leptopelis uluguruensis | Anura | NT | Arboreal | 23.910615 | 38.51304 |
Leptopelis vannutellii | Anura | LC | Arboreal | 22.133823 | 38.10902 |
Leptopelis vermiculatus | Anura | EN | Arboreal | 23.605043 | 38.39684 |
Leptopelis viridis | Anura | LC | Arboreal | 27.628262 | 38.86802 |
Leptopelis xenodactylus | Anura | EN | Arboreal | 21.940017 | 38.18294 |
Leptopelis yaldeni | Anura | VU | Arboreal | 23.089824 | 38.37389 |
Leptopelis zebra | Anura | LC | Arboreal | 26.814317 | 38.81048 |
Leptophryne borbonica | Anura | LC | Ground-dwelling | 28.238874 | 39.02414 |
Leptophryne cruentata | Anura | CR | Stream-dwelling | 28.621205 | 38.45525 |
Limnodynastes convexiusculus | Anura | LC | Semi-aquatic | 27.593212 | 36.46086 |
Limnodynastes depressus | Anura | LC | Ground-dwelling | 28.288099 | 35.54549 |
Limnodynastes dorsalis | Anura | LC | Semi-aquatic | 20.615130 | 35.94070 |
Limnodynastes dumerilii | Anura | LC | Ground-dwelling | 20.442020 | 35.27358 |
Limnodynastes fletcheri | Anura | LC | Semi-aquatic | 22.824617 | 33.62474 |
Limnodynastes interioris | Anura | LC | Semi-aquatic | 21.618127 | 35.72508 |
Limnodynastes lignarius | Anura | LC | Ground-dwelling | 28.241070 | 36.50374 |
Limnodynastes peronii | Anura | LC | Ground-dwelling | 22.189174 | 36.30601 |
Limnodynastes salmini | Anura | LC | Ground-dwelling | 23.548054 | 36.22573 |
Limnodynastes tasmaniensis | Anura | LC | Semi-aquatic | 22.744494 | 36.33481 |
Limnodynastes terraereginae | Anura | LC | Semi-aquatic | 24.653879 | 36.24539 |
Limnomedusa macroglossa | Anura | LC | Semi-aquatic | 24.808156 | 39.32600 |
Limnonectes acanthi | Anura | NT | Stream-dwelling | 27.906641 | 38.17881 |
Limnonectes arathooni | Anura | VU | Ground-dwelling | 27.189680 | 38.66769 |
Limnonectes asperatus | Anura | LC | Ground-dwelling | 28.612669 | 38.91831 |
Limnonectes blythii | Anura | LC | Stream-dwelling | 28.356025 | 37.15312 |
Limnonectes dabanus | Anura | LC | Semi-aquatic | 28.538114 | 39.18566 |
Limnonectes dammermani | Anura | LC | Stream-dwelling | 27.416283 | 38.13333 |
Limnonectes diuatus | Anura | VU | Stream-dwelling | 27.808024 | 38.18054 |
Limnonectes doriae | Anura | LC | Ground-dwelling | 28.053605 | 38.80138 |
Limnonectes finchi | Anura | LC | Ground-dwelling | 27.928676 | 38.40488 |
Limnonectes fragilis | Anura | VU | Stream-dwelling | 28.158168 | 38.12394 |
Limnonectes fujianensis | Anura | LC | Semi-aquatic | 27.674149 | 39.04905 |
Limnonectes grunniens | Anura | LC | Semi-aquatic | 27.184411 | 38.96753 |
Limnonectes gyldenstolpei | Anura | LC | Ground-dwelling | 28.141826 | 38.81994 |
Limnonectes hascheanus | Anura | LC | Ground-dwelling | 27.694030 | 38.67777 |
Limnonectes heinrichi | Anura | VU | Stream-dwelling | 27.444248 | 37.47128 |
Limnonectes ibanorum | Anura | LC | Semi-aquatic | 28.131721 | 39.00668 |
Limnonectes ingeri | Anura | LC | Stream-dwelling | 27.743515 | 37.78934 |
Limnonectes kadarsani | Anura | LC | Stream-dwelling | 27.606506 | 38.12045 |
Limnonectes kenepaiensis | Anura | VU | Ground-dwelling | 27.902362 | 38.99233 |
Limnonectes khammonensis | Anura | DD | Ground-dwelling | 28.682675 | 39.04538 |
Limnonectes khasianus | Anura | LC | Ground-dwelling | 25.865550 | 38.46496 |
Limnonectes kohchangae | Anura | LC | Ground-dwelling | 29.060378 | 38.93837 |
Limnonectes kuhlii | Anura | LC | Stream-dwelling | 27.481917 | 38.03472 |
Limnonectes leporinus | Anura | LC | Ground-dwelling | 28.081420 | 38.89234 |
Limnonectes leytensis | Anura | LC | Stream-dwelling | 27.562746 | 38.15844 |
Limnonectes limborgi | Anura | LC | Ground-dwelling | 27.209850 | 38.64498 |
Limnonectes macrocephalus | Anura | NT | Semi-aquatic | 27.961445 | 38.19431 |
Limnonectes macrodon | Anura | LC | Semi-aquatic | 27.811732 | 38.99799 |
Limnonectes macrognathus | Anura | LC | Ground-dwelling | 28.081802 | 38.83082 |
Limnonectes magnus | Anura | NT | Stream-dwelling | 27.561495 | 37.43571 |
Limnonectes malesianus | Anura | LC | Stream-dwelling | 28.450644 | 37.51892 |
Limnonectes mawlyndipi | Anura | DD | Ground-dwelling | 23.160752 | 38.22235 |
Limnonectes micrixalus | Anura | DD | Stream-dwelling | 26.911943 | 38.13033 |
Limnonectes microdiscus | Anura | LC | Ground-dwelling | 27.740658 | 38.64476 |
Limnonectes microtympanum | Anura | EN | Stream-dwelling | 26.861749 | 37.96642 |
Limnonectes modestus | Anura | LC | Semi-aquatic | 27.221506 | 38.33445 |
Limnonectes namiyei | Anura | EN | Stream-dwelling | 27.638404 | 38.06729 |
Limnonectes nitidus | Anura | EN | Stream-dwelling | 27.794848 | 38.19019 |
Limnonectes palavanensis | Anura | LC | Stream-dwelling | 27.884316 | 38.21508 |
Limnonectes paramacrodon | Anura | LC | Semi-aquatic | 28.273755 | 39.02739 |
Limnonectes parvus | Anura | LC | Stream-dwelling | 27.650524 | 38.15244 |
Limnonectes plicatellus | Anura | LC | Stream-dwelling | 28.446893 | 38.19339 |
Limnonectes poilani | Anura | LC | Stream-dwelling | 28.504569 | 37.50954 |
Limnonectes shompenorum | Anura | LC | Ground-dwelling | 27.653557 | 38.70985 |
Limnonectes tweediei | Anura | LC | Ground-dwelling | 28.365578 | 38.82536 |
Limnonectes visayanus | Anura | NT | Stream-dwelling | 27.398093 | 37.28900 |
Limnonectes woodworthi | Anura | LC | Semi-aquatic | 27.867994 | 37.56747 |
Lissotriton boscai | Caudata | LC | Semi-aquatic | 20.564606 | 36.89227 |
Lissotriton helveticus | Caudata | LC | Semi-aquatic | 18.260584 | 36.49498 |
Lissotriton italicus | Caudata | LC | Semi-aquatic | 23.675850 | 37.19632 |
Lissotriton montandoni | Caudata | LC | Ground-dwelling | 19.186578 | 36.30125 |
Lissotriton vulgaris | Caudata | LC | Semi-aquatic | 14.796267 | 35.98073 |
Lithobates berlandieri | Anura | LC | Semi-aquatic | 24.199626 | 39.86380 |
Lithobates bwana | Anura | LC | Semi-aquatic | 24.870264 | 37.83133 |
Lithobates catesbeianus | Anura | LC | Semi-aquatic | 22.864518 | 36.77046 |
Lithobates clamitans | Anura | LC | Semi-aquatic | 22.369361 | 36.79024 |
Lithobates palmipes | Anura | LC | Semi-aquatic | 27.496003 | 37.46595 |
Lithobates palustris | Anura | LC | Semi-aquatic | 23.205541 | 33.83851 |
Lithobates pipiens | Anura | LC | Semi-aquatic | 19.431149 | 36.03282 |
Lithobates sphenocephalus | Anura | LC | Semi-aquatic | 26.061328 | 39.14735 |
Lithobates sylvaticus | Anura | LC | Semi-aquatic | 16.397544 | 34.47081 |
Lithobates vaillanti | Anura | LC | Semi-aquatic | 26.361325 | 38.58177 |
Lithobates virgatipes | Anura | LC | Semi-aquatic | 25.343812 | 38.07110 |
Lithobates warszewitschii | Anura | LC | Stream-dwelling | 27.011867 | 34.72109 |
Lithodytes lineatus | Anura | LC | Ground-dwelling | 27.453822 | 39.83997 |
Litoria adelaidensis | Anura | LC | Arboreal | 20.624590 | 37.33595 |
Litoria albolabris | Anura | DD | Arboreal | 25.926222 | 39.45630 |
Litoria amboinensis | Anura | LC | Arboreal | 27.208547 | 38.08096 |
Litoria andiirrmalin | Anura | VU | Stream-dwelling | 27.562130 | 36.96596 |
Litoria angiana | Anura | LC | Stream-dwelling | 26.663280 | 37.50715 |
Litoria arfakiana | Anura | LC | Arboreal | 26.885546 | 38.05603 |
Litoria aruensis | Anura | DD | Arboreal | 26.821126 | 38.10375 |
Litoria auae | Anura | LC | Arboreal | 27.327789 | 38.22888 |
Litoria aurea | Anura | VU | Semi-aquatic | 20.641657 | 36.20077 |
Litoria becki | Anura | LC | Stream-dwelling | 26.487831 | 37.41027 |
Litoria biakensis | Anura | DD | Arboreal | 27.350340 | 38.03269 |
Litoria bibonius | Anura | LC | Arboreal | 27.379962 | 38.06947 |
Litoria bicolor | Anura | LC | Arboreal | 27.685227 | 40.87850 |
Litoria booroolongensis | Anura | CR | Stream-dwelling | 21.712188 | 35.61471 |
Litoria brevipalmata | Anura | EN | Ground-dwelling | 22.860151 | 37.64851 |
Litoria brongersmai | Anura | LC | Stream-dwelling | 25.745007 | 37.44493 |
Litoria bulmeri | Anura | LC | Stream-dwelling | 27.209817 | 37.68630 |
Litoria burrowsi | Anura | NT | Arboreal | 16.291351 | 36.63695 |
Litoria caerulea | Anura | LC | Arboreal | 25.482487 | 39.32497 |
Litoria capitula | Anura | DD | Arboreal | 27.454284 | 38.16140 |
Litoria cavernicola | Anura | DD | Arboreal | 27.758132 | 39.06659 |
Litoria chloris | Anura | LC | Arboreal | 23.252540 | 39.17450 |
Litoria chloronota | Anura | LC | Semi-aquatic | 27.785597 | 38.72549 |
Litoria chrisdahli | Anura | LC | Arboreal | 26.057487 | 37.99861 |
Litoria christianbergmanni | Anura | LC | Arboreal | 27.314380 | 38.24952 |
Litoria citropa | Anura | LC | Stream-dwelling | 20.228303 | 33.91890 |
Litoria congenita | Anura | LC | Arboreal | 27.337468 | 39.15207 |
Litoria contrastens | Anura | LC | Semi-aquatic | 26.610265 | 38.31446 |
Litoria cooloolensis | Anura | EN | Arboreal | 23.933724 | 37.72722 |
Litoria coplandi | Anura | LC | Arboreal | 27.598159 | 38.37887 |
Litoria cyclorhyncha | Anura | LC | Semi-aquatic | 20.080030 | 36.65206 |
Litoria dahlii | Anura | LC | Semi-aquatic | 27.949422 | 39.47342 |
Litoria darlingtoni | Anura | LC | Arboreal | 26.017530 | 37.97540 |
Litoria daviesae | Anura | VU | Stream-dwelling | 22.094493 | 35.00965 |
Litoria dayi | Anura | EN | Stream-dwelling | 26.203584 | 37.58995 |
Litoria dentata | Anura | LC | Arboreal | 22.603880 | 38.55456 |
Litoria dorsalis | Anura | LC | Arboreal | 27.337400 | 38.12230 |
Litoria dorsivena | Anura | LC | Stream-dwelling | 26.665234 | 37.58210 |
Litoria dux | Anura | LC | Arboreal | 25.720021 | 37.90665 |
Litoria electrica | Anura | LC | Arboreal | 25.999663 | 39.18154 |
Litoria elkeae | Anura | LC | Arboreal | 26.731891 | 37.95265 |
Litoria eucnemis | Anura | LC | Stream-dwelling | 27.064215 | 36.13678 |
Litoria everetti | Anura | DD | Arboreal | 27.525278 | 38.15225 |
Litoria ewingii | Anura | LC | Arboreal | 18.181251 | 34.76419 |
Litoria exophthalmia | Anura | LC | Stream-dwelling | 26.471903 | 37.42840 |
Litoria fallax | Anura | LC | Arboreal | 23.742641 | 39.52168 |
Litoria flavescens | Anura | LC | Arboreal | 27.703831 | 38.07476 |
Litoria freycineti | Anura | VU | Ground-dwelling | 22.657494 | 36.73647 |
Litoria fuscula | Anura | DD | Stream-dwelling | 24.020029 | 37.30228 |
Litoria genimaculata | Anura | LC | Arboreal | 26.948392 | 37.46570 |
Litoria gilleni | Anura | LC | Arboreal | 23.609203 | 38.54697 |
Litoria gracilenta | Anura | LC | Arboreal | 24.532375 | 38.57518 |
Litoria graminea | Anura | LC | Arboreal | 27.116758 | 38.04210 |
Litoria havina | Anura | LC | Arboreal | 27.679420 | 38.09940 |
Litoria hilli | Anura | LC | Arboreal | 27.393260 | 38.26828 |
Litoria humboldtorum | Anura | LC | Arboreal | 26.860920 | 38.10847 |
Litoria hunti | Anura | LC | Arboreal | 26.903474 | 37.97146 |
Litoria impura | Anura | LC | Arboreal | 27.362517 | 38.16011 |
Litoria inermis | Anura | LC | Ground-dwelling | 26.743650 | 37.20537 |
Litoria infrafrenata | Anura | LC | Arboreal | 27.350401 | 38.10725 |
Litoria iris | Anura | LC | Arboreal | 26.486192 | 38.01191 |
Litoria jervisiensis | Anura | LC | Arboreal | 20.601137 | 35.14466 |
Litoria jungguy | Anura | LC | Stream-dwelling | 26.348368 | 36.18726 |
Litoria kumae | Anura | LC | Arboreal | 25.925352 | 38.96439 |
Litoria latopalmata | Anura | LC | Ground-dwelling | 24.415190 | 36.82170 |
Litoria lesueurii | Anura | LC | Stream-dwelling | 20.415206 | 34.82786 |
Litoria leucova | Anura | LC | Stream-dwelling | 27.764437 | 37.70404 |
Litoria littlejohni | Anura | LC | Arboreal | 21.053375 | 34.91136 |
Litoria longicrus | Anura | DD | Arboreal | 27.533759 | 38.09161 |
Litoria longirostris | Anura | LC | Arboreal | 27.713309 | 38.15806 |
Litoria lorica | Anura | CR | Stream-dwelling | 26.770769 | 37.54083 |
Litoria louisiadensis | Anura | LC | Stream-dwelling | 27.553773 | 37.63922 |
Litoria lutea | Anura | LC | Arboreal | 27.810824 | 38.21551 |
Litoria macki | Anura | LC | Stream-dwelling | 24.020029 | 37.26891 |
Litoria majikthise | Anura | LC | Arboreal | 27.821029 | 38.13942 |
Litoria mareku | Anura | DD | Arboreal | 28.031168 | 38.22195 |
Litoria megalops | Anura | DD | Stream-dwelling | 24.020029 | 37.27550 |
Litoria meiriana | Anura | LC | Semi-aquatic | 28.142185 | 38.65377 |
Litoria microbelos | Anura | LC | Ground-dwelling | 27.907461 | 38.44291 |
Litoria micromembrana | Anura | LC | Stream-dwelling | 26.714442 | 37.55035 |
Litoria modica | Anura | LC | Stream-dwelling | 26.874936 | 37.64367 |
Litoria moorei | Anura | LC | Semi-aquatic | 20.723806 | 36.77675 |
Litoria mucro | Anura | LC | Arboreal | 26.995571 | 38.07802 |
Litoria multicolor | Anura | DD | Arboreal | 27.945788 | 38.24220 |
Litoria multiplica | Anura | LC | Stream-dwelling | 26.017530 | 37.50268 |
Litoria myola | Anura | CR | Stream-dwelling | 26.770769 | 37.47494 |
Litoria mystax | Anura | DD | Arboreal | 25.273758 | 37.95695 |
Litoria nannotis | Anura | LC | Stream-dwelling | 26.176582 | 37.57629 |
Litoria napaea | Anura | LC | Stream-dwelling | 25.858870 | 37.52936 |
Litoria nasuta | Anura | LC | Ground-dwelling | 26.741259 | 36.70320 |
Litoria nigrofrenata | Anura | LC | Ground-dwelling | 27.694468 | 38.69207 |
Litoria nigropunctata | Anura | LC | Arboreal | 26.888792 | 38.15046 |
Litoria nudidigita | Anura | LC | Arboreal | 19.751147 | 34.76507 |
Litoria obtusirostris | Anura | DD | Arboreal | 26.874997 | 38.08856 |
Litoria oenicolen | Anura | LC | Stream-dwelling | 26.658461 | 37.51391 |
Litoria ollauro | Anura | LC | Arboreal | 27.678143 | 38.22691 |
Litoria olongburensis | Anura | VU | Arboreal | 23.668655 | 38.76041 |
Litoria pallida | Anura | LC | Ground-dwelling | 27.377629 | 37.25249 |
Litoria paraewingi | Anura | LC | Arboreal | 20.081886 | 34.60333 |
Litoria pearsoniana | Anura | LC | Stream-dwelling | 22.845590 | 34.54193 |
Litoria peronii | Anura | LC | Arboreal | 22.305924 | 37.29098 |
Litoria personata | Anura | LC | Ground-dwelling | 28.573975 | 38.49772 |
Litoria phyllochroa | Anura | LC | Stream-dwelling | 22.446513 | 34.34262 |
Litoria pratti | Anura | DD | Stream-dwelling | 27.867454 | 37.84031 |
Litoria pronimia | Anura | LC | Arboreal | 26.172960 | 38.01132 |
Litoria prora | Anura | LC | Arboreal | 27.839557 | 38.24729 |
Litoria purpureolata | Anura | LC | Arboreal | 26.167068 | 38.00791 |
Litoria pygmaea | Anura | LC | Arboreal | 27.181843 | 38.06158 |
Litoria quadrilineata | Anura | DD | Arboreal | 27.443780 | 38.25270 |
Litoria raniformis | Anura | EN | Semi-aquatic | 18.506576 | 36.49806 |
Litoria rara | Anura | DD | Arboreal | 26.593990 | 38.10325 |
Litoria revelata | Anura | LC | Arboreal | 22.797876 | 35.09995 |
Litoria rheocola | Anura | EN | Arboreal | 26.325611 | 38.06503 |
Litoria richardsi | Anura | LC | Arboreal | 26.206369 | 37.91421 |
Litoria rivicola | Anura | LC | Stream-dwelling | 27.324747 | 37.71843 |
Litoria rothii | Anura | LC | Arboreal | 27.176837 | 39.19962 |
Litoria rubella | Anura | LC | Arboreal | 25.191368 | 39.81536 |
Litoria rubrops | Anura | LC | Arboreal | 27.633568 | 38.23406 |
Litoria sanguinolenta | Anura | LC | Arboreal | 27.695247 | 38.14930 |
Litoria scabra | Anura | LC | Stream-dwelling | 24.020029 | 37.24592 |
Litoria singadanae | Anura | LC | Arboreal | 25.720021 | 37.86051 |
Litoria spartacus | Anura | DD | Arboreal | 27.217699 | 38.17985 |
Litoria spenceri | Anura | CR | Stream-dwelling | 19.736473 | 34.47344 |
Litoria spinifera | Anura | LC | Stream-dwelling | 25.844142 | 37.59189 |
Litoria splendida | Anura | LC | Arboreal | 27.970032 | 39.13788 |
Litoria staccato | Anura | LC | Ground-dwelling | 28.081750 | 38.44526 |
Litoria subglandulosa | Anura | VU | Stream-dwelling | 22.885692 | 35.02532 |
Litoria thesaurensis | Anura | LC | Arboreal | 27.350314 | 38.11750 |
Litoria timida | Anura | LC | Arboreal | 27.915848 | 38.29669 |
Litoria tornieri | Anura | LC | Ground-dwelling | 28.118074 | 37.42417 |
Litoria tyleri | Anura | LC | Arboreal | 22.148094 | 37.54261 |
Litoria umarensis | Anura | DD | Arboreal | 28.031168 | 38.14046 |
Litoria umbonata | Anura | DD | Arboreal | 25.820430 | 37.91526 |
Litoria vagabunda | Anura | DD | Arboreal | 27.321133 | 38.11375 |
Litoria verae | Anura | DD | Arboreal | 28.031168 | 38.26518 |
Litoria verreauxii | Anura | LC | Ground-dwelling | 20.936977 | 34.08071 |
Litoria vocivincens | Anura | LC | Ground-dwelling | 27.387613 | 38.30164 |
Litoria wapogaensis | Anura | DD | Stream-dwelling | 24.020029 | 37.21400 |
Litoria watjulumensis | Anura | LC | Ground-dwelling | 27.731799 | 38.47915 |
Litoria wilcoxii | Anura | LC | Stream-dwelling | 24.038674 | 35.80368 |
Litoria wisselensis | Anura | DD | Semi-aquatic | 25.808020 | 38.37186 |
Litoria wollastoni | Anura | LC | Arboreal | 26.685475 | 38.06066 |
Litoria xanthomera | Anura | LC | Arboreal | 26.129469 | 39.24095 |
Liua shihi | Caudata | LC | Semi-aquatic | 24.987408 | 34.45484 |
Liua tsinpaensis | Caudata | VU | Semi-aquatic | 22.423793 | 34.10784 |
Liuixalus hainanus | Anura | VU | Arboreal | 28.029614 | 38.29954 |
Liuixalus ocellatus | Anura | VU | Arboreal | 28.158168 | 38.37518 |
Liuixalus romeri | Anura | EN | Arboreal | 27.639777 | 38.20711 |
Lyciasalamandra antalyana | Caudata | EN | Ground-dwelling | 23.805359 | 35.65436 |
Lyciasalamandra atifi | Caudata | EN | Ground-dwelling | 22.867086 | 35.40453 |
Lyciasalamandra fazilae | Caudata | EN | Ground-dwelling | 22.848776 | 35.46833 |
Lyciasalamandra flavimembris | Caudata | EN | Ground-dwelling | 23.796745 | 35.58650 |
Lyciasalamandra helverseni | Caudata | VU | Ground-dwelling | 24.243332 | 35.65842 |
Lyciasalamandra luschani | Caudata | VU | Ground-dwelling | 22.570085 | 35.38200 |
Lynchius flavomaculatus | Anura | DD | Ground-dwelling | 22.990209 | 34.29582 |
Lynchius nebulanastes | Anura | EN | Ground-dwelling | 22.881730 | 34.25896 |
Lynchius parkeri | Anura | EN | Ground-dwelling | 22.881730 | 34.31975 |
Lynchius simmonsi | Anura | VU | Ground-dwelling | 25.876801 | 34.66725 |
Lysapsus caraya | Anura | LC | Aquatic | 28.188656 | 40.96546 |
Lysapsus laevis | Anura | LC | Aquatic | 25.872276 | 40.43471 |
Lysapsus limellum | Anura | LC | Aquatic | 27.243384 | 41.13491 |
Macrogenioglottus alipioi | Anura | LC | Semi-aquatic | 25.682559 | 37.94587 |
Madecassophryne truebae | Anura | EN | Ground-dwelling | 25.752340 | 37.98664 |
Mannophryne caquetio | Anura | EN | Stream-dwelling | 26.601412 | 36.67077 |
Mannophryne collaris | Anura | EN | Stream-dwelling | 25.673615 | 36.56827 |
Mannophryne cordilleriana | Anura | VU | Stream-dwelling | 26.956396 | 36.71972 |
Mannophryne herminae | Anura | NT | Stream-dwelling | 26.940736 | 36.64400 |
Mannophryne lamarcai | Anura | EN | Stream-dwelling | 26.512811 | 36.69712 |
Mannophryne larandina | Anura | DD | Ground-dwelling | 26.854615 | 37.32542 |
Mannophryne leonardoi | Anura | NT | Stream-dwelling | 27.086121 | 36.66373 |
Mannophryne neblina | Anura | CR | Stream-dwelling | 27.121618 | 36.71169 |
Mannophryne oblitterata | Anura | NT | Stream-dwelling | 26.563037 | 36.70465 |
Mannophryne olmonae | Anura | VU | Stream-dwelling | 26.692732 | 36.69680 |
Mannophryne riveroi | Anura | EN | Stream-dwelling | 26.667627 | 36.74506 |
Mannophryne speeri | Anura | CR | Stream-dwelling | 25.511265 | 36.51860 |
Mannophryne trinitatis | Anura | LC | Stream-dwelling | 26.424572 | 36.71962 |
Mannophryne trujillensis | Anura | EN | Stream-dwelling | 26.854615 | 36.66464 |
Mannophryne venezuelensis | Anura | NT | Stream-dwelling | 26.832038 | 36.71822 |
Mannophryne yustizi | Anura | EN | Stream-dwelling | 25.511265 | 36.42713 |
Mantella baroni | Anura | LC | Ground-dwelling | 25.520037 | 37.76368 |
Mantella bernhardi | Anura | VU | Ground-dwelling | 26.022617 | 37.76747 |
Mantella betsileo | Anura | LC | Ground-dwelling | 26.547460 | 37.76260 |
Mantella cowanii | Anura | EN | Stream-dwelling | 25.529268 | 37.14980 |
Mantella crocea | Anura | VU | Semi-aquatic | 25.798195 | 38.00316 |
Mantella ebenaui | Anura | LC | Ground-dwelling | 26.832247 | 37.82588 |
Mantella expectata | Anura | EN | Stream-dwelling | 26.264673 | 37.17996 |
Mantella haraldmeieri | Anura | EN | Stream-dwelling | 25.953118 | 37.18346 |
Mantella laevigata | Anura | LC | Ground-dwelling | 26.371997 | 37.73733 |
Mantella madagascariensis | Anura | VU | Stream-dwelling | 25.382631 | 37.06593 |
Mantella manery | Anura | VU | Ground-dwelling | 27.096597 | 37.85074 |
Mantella milotympanum | Anura | CR | Ground-dwelling | 24.893568 | 37.62552 |
Mantella nigricans | Anura | LC | Stream-dwelling | 26.582654 | 37.23176 |
Mantella pulchra | Anura | NT | Ground-dwelling | 25.998243 | 37.75875 |
Mantella viridis | Anura | EN | Stream-dwelling | 26.637693 | 37.24121 |
Mantidactylus aerumnalis | Anura | LC | Ground-dwelling | 25.712678 | 37.68220 |
Mantidactylus albofrenatus | Anura | EN | Stream-dwelling | 24.925297 | 36.95231 |
Mantidactylus alutus | Anura | LC | Semi-aquatic | 25.765995 | 37.86078 |
Mantidactylus ambohimitombi | Anura | DD | Stream-dwelling | 25.647539 | 37.12605 |
Mantidactylus ambreensis | Anura | LC | Stream-dwelling | 26.680026 | 37.22032 |
Mantidactylus argenteus | Anura | LC | Arboreal | 25.837543 | 37.49696 |
Mantidactylus bellyi | Anura | LC | Stream-dwelling | 26.741933 | 37.12713 |
Mantidactylus betsileanus | Anura | LC | Stream-dwelling | 26.223369 | 37.06184 |
Mantidactylus biporus | Anura | LC | Stream-dwelling | 25.980788 | 37.08573 |
Mantidactylus bourgati | Anura | EN | Stream-dwelling | 26.040443 | 37.15285 |
Mantidactylus brevipalmatus | Anura | LC | Stream-dwelling | 25.903767 | 37.06302 |
Mantidactylus charlotteae | Anura | LC | Stream-dwelling | 25.859213 | 37.08872 |
Mantidactylus cowanii | Anura | NT | Stream-dwelling | 25.518428 | 37.02112 |
Mantidactylus curtus | Anura | LC | Stream-dwelling | 26.318115 | 37.07586 |
Mantidactylus delormei | Anura | EN | Stream-dwelling | 26.177430 | 37.13827 |
Mantidactylus femoralis | Anura | LC | Stream-dwelling | 26.148099 | 37.08205 |
Mantidactylus grandidieri | Anura | LC | Stream-dwelling | 25.879208 | 37.03626 |
Mantidactylus guttulatus | Anura | LC | Stream-dwelling | 26.144229 | 37.13605 |
Mantidactylus lugubris | Anura | LC | Stream-dwelling | 25.952953 | 37.10360 |
Mantidactylus madecassus | Anura | EN | Stream-dwelling | 26.094308 | 37.15645 |
Mantidactylus majori | Anura | LC | Stream-dwelling | 25.814637 | 37.09187 |
Mantidactylus melanopleura | Anura | LC | Stream-dwelling | 25.944755 | 37.03906 |
Mantidactylus mocquardi | Anura | LC | Stream-dwelling | 26.044482 | 37.12526 |
Mantidactylus noralottae | Anura | DD | Arboreal | 26.195793 | 37.59139 |
Mantidactylus opiparis | Anura | LC | Stream-dwelling | 26.165195 | 37.10882 |
Mantidactylus paidroa | Anura | EN | Stream-dwelling | 25.878849 | 37.01452 |
Mantidactylus pauliani | Anura | CR | Stream-dwelling | 25.047111 | 36.99429 |
Mantidactylus tricinctus | Anura | VU | Stream-dwelling | 25.819850 | 37.05153 |
Mantidactylus ulcerosus | Anura | LC | Stream-dwelling | 26.494882 | 37.10960 |
Mantidactylus zipperi | Anura | LC | Stream-dwelling | 25.620755 | 37.08863 |
Mantidactylus zolitschka | Anura | CR | Stream-dwelling | 24.925297 | 36.95247 |
Mantophryne lateralis | Anura | LC | Ground-dwelling | 27.178877 | 35.40021 |
Mantophryne louisiadensis | Anura | LC | Ground-dwelling | 27.553773 | 35.41390 |
Megaelosia apuana | Anura | DD | Stream-dwelling | 25.882443 | 36.66442 |
Megaelosia bocainensis | Anura | DD | Stream-dwelling | 26.714437 | 36.80336 |
Megaelosia boticariana | Anura | DD | Stream-dwelling | 25.741310 | 36.68887 |
Megaelosia goeldii | Anura | LC | Stream-dwelling | 26.098283 | 36.67453 |
Megaelosia jordanensis | Anura | DD | Ground-dwelling | 26.191708 | 37.28246 |
Megaelosia lutzae | Anura | DD | Stream-dwelling | 26.714437 | 36.80483 |
Megaelosia massarti | Anura | DD | Stream-dwelling | 25.141569 | 36.61794 |
Megastomatohyla mixe | Anura | CR | Stream-dwelling | 22.681874 | 38.75001 |
Megastomatohyla mixomaculata | Anura | EN | Stream-dwelling | 24.858995 | 38.97268 |
Megastomatohyla nubicola | Anura | CR | Stream-dwelling | 25.789382 | 39.15104 |
Megastomatohyla pellita | Anura | CR | Stream-dwelling | 26.914236 | 39.29905 |
Megophrys kobayashii | Anura | LC | Ground-dwelling | 27.540277 | 37.62548 |
Megophrys ligayae | Anura | NT | Ground-dwelling | 27.845204 | 37.68533 |
Megophrys montana | Anura | LC | Ground-dwelling | 27.450287 | 37.54270 |
Megophrys nasuta | Anura | LC | Ground-dwelling | 28.326690 | 37.65016 |
Megophrys stejnegeri | Anura | LC | Ground-dwelling | 27.599783 | 37.60844 |
Melanobatrachus indicus | Anura | VU | Ground-dwelling | 27.927840 | 37.77857 |
Melanophryniscus admirabilis | Anura | CR | Stream-dwelling | 25.377939 | 37.78918 |
Melanophryniscus alipioi | Anura | DD | Ground-dwelling | 24.076546 | 38.17256 |
Melanophryniscus atroluteus | Anura | LC | Ground-dwelling | 24.940495 | 38.31786 |
Melanophryniscus cambaraensis | Anura | DD | Stream-dwelling | 24.675082 | 37.79387 |
Melanophryniscus cupreuscapularis | Anura | NT | Ground-dwelling | 27.241941 | 38.64887 |
Melanophryniscus devincenzii | Anura | EN | Stream-dwelling | 24.705411 | 38.19548 |
Melanophryniscus dorsalis | Anura | VU | Ground-dwelling | 24.335058 | 38.37511 |
Melanophryniscus fulvoguttatus | Anura | LC | Ground-dwelling | 28.017801 | 38.71107 |
Melanophryniscus klappenbachi | Anura | LC | Ground-dwelling | 27.781100 | 38.69472 |
Melanophryniscus krauczuki | Anura | LC | Stream-dwelling | 27.157010 | 38.98387 |
Melanophryniscus langonei | Anura | CR | Stream-dwelling | 24.890107 | 37.61511 |
Melanophryniscus macrogranulosus | Anura | VU | Ground-dwelling | 24.884955 | 38.24680 |
Melanophryniscus montevidensis | Anura | VU | Ground-dwelling | 22.212080 | 37.90976 |
Melanophryniscus moreirae | Anura | NT | Ground-dwelling | 26.714437 | 38.54828 |
Melanophryniscus orejasmirandai | Anura | VU | Ground-dwelling | 21.862607 | 38.02003 |
Melanophryniscus pachyrhynus | Anura | DD | Ground-dwelling | 24.168876 | 38.28587 |
Melanophryniscus peritus | Anura | CR | Ground-dwelling | 26.412111 | 38.52396 |
Melanophryniscus rubriventris | Anura | LC | Ground-dwelling | 19.423294 | 35.74294 |
Melanophryniscus sanmartini | Anura | NT | Ground-dwelling | 23.103259 | 38.12361 |
Melanophryniscus simplex | Anura | DD | Ground-dwelling | 24.898854 | 38.40994 |
Melanophryniscus spectabilis | Anura | DD | Ground-dwelling | 25.257994 | 38.38146 |
Melanophryniscus stelzneri | Anura | LC | Ground-dwelling | 21.704839 | 37.90605 |
Melanophryniscus tumifrons | Anura | LC | Ground-dwelling | 24.978947 | 38.43274 |
Meristogenys amoropalamus | Anura | LC | Stream-dwelling | 27.453420 | 36.94873 |
Meristogenys jerboa | Anura | VU | Stream-dwelling | 28.438186 | 37.06033 |
Meristogenys kinabaluensis | Anura | LC | Stream-dwelling | 27.521129 | 36.85340 |
Meristogenys macrophthalmus | Anura | DD | Stream-dwelling | 28.217251 | 37.01923 |
Meristogenys orphnocnemis | Anura | LC | Stream-dwelling | 27.828139 | 36.99262 |
Meristogenys phaeomerus | Anura | LC | Stream-dwelling | 28.243192 | 37.03295 |
Meristogenys poecilus | Anura | LC | Stream-dwelling | 28.343031 | 37.05884 |
Meristogenys whiteheadi | Anura | LC | Stream-dwelling | 27.925674 | 36.92365 |
Mertensiella caucasica | Caudata | VU | Semi-aquatic | 19.468288 | 35.85275 |
Mertensophryne anotis | Anura | LC | Ground-dwelling | 26.517866 | 38.84957 |
Mertensophryne howelli | Anura | EN | Ground-dwelling | 26.181850 | 38.82352 |
Mertensophryne lindneri | Anura | LC | Ground-dwelling | 25.450257 | 38.68999 |
Mertensophryne lonnbergi | Anura | VU | Ground-dwelling | 21.651044 | 38.25944 |
Mertensophryne loveridgei | Anura | LC | Ground-dwelling | 25.778053 | 38.75894 |
Mertensophryne melanopleura | Anura | LC | Ground-dwelling | 24.441557 | 38.52050 |
Mertensophryne micranotis | Anura | LC | Ground-dwelling | 25.138953 | 38.70568 |
Mertensophryne mocquardi | Anura | DD | Ground-dwelling | 21.261217 | 38.15609 |
Mertensophryne nairobiensis | Anura | DD | Ground-dwelling | 21.601189 | 38.20590 |
Mertensophryne nyikae | Anura | NT | Ground-dwelling | 22.179062 | 38.26662 |
Mertensophryne schmidti | Anura | DD | Ground-dwelling | 25.800228 | 38.72915 |
Mertensophryne taitana | Anura | LC | Ground-dwelling | 23.388085 | 38.46018 |
Mertensophryne usambarae | Anura | CR | Ground-dwelling | 25.090940 | 38.70256 |
Mertensophryne uzunguensis | Anura | VU | Ground-dwelling | 22.132744 | 38.24623 |
Metacrinia nichollsi | Anura | LC | Ground-dwelling | 19.113387 | 35.19458 |
Metaphrynella pollicaris | Anura | LC | Arboreal | 28.362280 | 38.08167 |
Metaphrynella sundana | Anura | LC | Arboreal | 28.045567 | 38.02666 |
Metaphryniscus sosai | Anura | NT | Ground-dwelling | 25.966820 | 38.65222 |
Micrixalus elegans | Anura | DD | Stream-dwelling | 26.875890 | 37.11753 |
Micrixalus fuscus | Anura | NT | Stream-dwelling | 27.563293 | 37.15593 |
Micrixalus gadgili | Anura | EN | Stream-dwelling | 27.525072 | 37.20030 |
Micrixalus kottigeharensis | Anura | CR | Semi-aquatic | 26.875890 | 37.96465 |
Micrixalus narainensis | Anura | DD | Stream-dwelling | 26.875890 | 37.11797 |
Micrixalus nudis | Anura | VU | Semi-aquatic | 27.780236 | 38.05323 |
Micrixalus phyllophilus | Anura | VU | Stream-dwelling | 27.676074 | 37.13762 |
Micrixalus saxicola | Anura | VU | Stream-dwelling | 27.052461 | 37.18246 |
Micrixalus silvaticus | Anura | DD | Stream-dwelling | 27.631649 | 37.22605 |
Micrixalus swamianus | Anura | DD | Ground-dwelling | 26.875890 | 37.67881 |
Micrixalus thampii | Anura | DD | Stream-dwelling | 27.229333 | 37.14607 |
Microbatrachella capensis | Anura | CR | Semi-aquatic | 20.817692 | 37.21247 |
Microhyla achatina | Anura | LC | Ground-dwelling | 27.581954 | 38.03390 |
Microhyla berdmorei | Anura | LC | Ground-dwelling | 27.464920 | 38.57049 |
Microhyla borneensis | Anura | LC | Ground-dwelling | 28.663384 | 38.16950 |
Microhyla butleri | Anura | LC | Ground-dwelling | 27.111809 | 38.51555 |
Microhyla chakrapanii | Anura | DD | Ground-dwelling | 28.674045 | 38.65340 |
Microhyla fissipes | Anura | LC | Ground-dwelling | 26.551013 | 39.37055 |
Microhyla heymonsi | Anura | LC | Ground-dwelling | 27.461709 | 40.56870 |
Microhyla karunaratnei | Anura | EN | Ground-dwelling | 27.547532 | 38.62017 |
Microhyla maculifera | Anura | DD | Ground-dwelling | 28.262351 | 38.66876 |
Microhyla mantheyi | Anura | LC | Ground-dwelling | 28.543996 | 37.44006 |
Microhyla mixtura | Anura | LC | Ground-dwelling | 24.658481 | 38.07920 |
Microhyla okinavensis | Anura | LC | Ground-dwelling | 27.464438 | 38.54432 |
Microhyla ornata | Anura | LC | Ground-dwelling | 26.825878 | 40.09824 |
Microhyla palmipes | Anura | LC | Ground-dwelling | 28.152734 | 38.67340 |
Microhyla picta | Anura | DD | Ground-dwelling | 27.988984 | 38.70869 |
Microhyla pulchra | Anura | LC | Ground-dwelling | 27.486658 | 38.54517 |
Microhyla pulverata | Anura | DD | Ground-dwelling | 27.253507 | 38.51971 |
Microhyla rubra | Anura | LC | Ground-dwelling | 27.381056 | 38.48795 |
Microhyla sholigari | Anura | EN | Ground-dwelling | 27.550187 | 38.48102 |
Microhyla superciliaris | Anura | LC | Ground-dwelling | 28.400490 | 38.72579 |
Microhyla zeylanica | Anura | EN | Semi-aquatic | 27.547532 | 38.70214 |
Micryletta inornata | Anura | LC | Ground-dwelling | 28.444793 | 38.06469 |
Micryletta steinegeri | Anura | VU | Ground-dwelling | 28.001842 | 38.03914 |
Minyobates steyermarki | Anura | CR | Arboreal | 27.588342 | 36.45158 |
Mixophyes balbus | Anura | VU | Stream-dwelling | 21.413044 | 32.60821 |
Mixophyes carbinensis | Anura | LC | Stream-dwelling | 26.937055 | 33.43103 |
Mixophyes coggeri | Anura | LC | Ground-dwelling | 26.075047 | 33.92230 |
Mixophyes fasciolatus | Anura | LC | Ground-dwelling | 23.097552 | 32.41881 |
Mixophyes fleayi | Anura | EN | Semi-aquatic | 23.723704 | 33.84103 |
Mixophyes hihihorlo | Anura | DD | Ground-dwelling | 27.746469 | 34.30979 |
Mixophyes iteratus | Anura | EN | Stream-dwelling | 22.643465 | 32.49816 |
Mixophyes schevilli | Anura | LC | Stream-dwelling | 26.203584 | 33.35251 |
Morerella cyanophthalma | Anura | VU | Stream-dwelling | 27.339405 | 40.19883 |
Myersiella microps | Anura | LC | Ground-dwelling | 25.776733 | 39.30410 |
Myersiohyla aromatica | Anura | VU | Arboreal | 25.966820 | 39.16809 |
Myersiohyla inparquesi | Anura | NT | Arboreal | 25.966820 | 39.20543 |
Myersiohyla loveridgei | Anura | NT | Ground-dwelling | 25.966820 | 39.27225 |
Myobatrachus gouldii | Anura | LC | Fossorial | 20.855755 | 36.41450 |
Nannophryne apolobambica | Anura | CR | Ground-dwelling | 16.318090 | 37.38368 |
Nannophryne corynetes | Anura | EN | Ground-dwelling | 18.526994 | 37.69009 |
Nannophryne variegata | Anura | LC | Ground-dwelling | 11.581406 | 36.77549 |
Nannophrys ceylonensis | Anura | VU | Aquatic | 27.674004 | 40.61167 |
Nannophrys marmorata | Anura | EN | Semi-aquatic | 27.674004 | 40.65413 |
Nannophrys naeyakai | Anura | EN | Stream-dwelling | 28.452741 | 39.98835 |
Nanorana aenea | Anura | LC | Ground-dwelling | 25.340885 | 41.51181 |
Nanorana annandalii | Anura | NT | Stream-dwelling | 19.754539 | 40.26112 |
Nanorana arnoldi | Anura | DD | Stream-dwelling | 17.056244 | 39.86323 |
Nanorana blanfordii | Anura | LC | Stream-dwelling | 18.920805 | 40.04797 |
Nanorana conaensis | Anura | DD | Stream-dwelling | 18.359299 | 39.92675 |
Nanorana ercepeae | Anura | NT | Stream-dwelling | 20.767892 | 40.34290 |
Nanorana liebigii | Anura | LC | Stream-dwelling | 16.912352 | 39.85691 |
Nanorana maculosa | Anura | VU | Stream-dwelling | 22.882467 | 40.58814 |
Nanorana medogensis | Anura | EN | Stream-dwelling | 16.407198 | 39.82240 |
Nanorana minica | Anura | LC | Stream-dwelling | 17.890316 | 39.95740 |
Nanorana mokokchungensis | Anura | DD | Stream-dwelling | 26.727759 | 41.00656 |
Nanorana parkeri | Anura | LC | Ground-dwelling | 11.239134 | 39.73437 |
Nanorana pleskei | Anura | LC | Aquatic | 13.844309 | 40.13857 |
Nanorana polunini | Anura | LC | Stream-dwelling | 17.664201 | 39.99818 |
Nanorana quadranus | Anura | NT | Stream-dwelling | 23.711943 | 40.70642 |
Nanorana rarica | Anura | DD | Semi-aquatic | 12.388279 | 40.14355 |
Nanorana rostandi | Anura | VU | Stream-dwelling | 16.561387 | 39.77810 |
Nanorana taihangnica | Anura | LC | Stream-dwelling | 22.921876 | 40.58815 |
Nanorana unculuanus | Anura | VU | Stream-dwelling | 23.475689 | 40.69649 |
Nanorana ventripunctata | Anura | LC | Semi-aquatic | 16.554604 | 40.61260 |
Nanorana vicina | Anura | LC | Stream-dwelling | 15.629296 | 39.64069 |
Nanorana yunnanensis | Anura | EN | Stream-dwelling | 23.065242 | 40.62877 |
Nasikabatrachus sahyadrensis | Anura | NT | Fossorial | 27.811422 | 38.65759 |
Natalobatrachus bonebergi | Anura | EN | Stream-dwelling | 22.385133 | 36.56881 |
Nectophryne afra | Anura | LC | Ground-dwelling | 27.383526 | 38.89710 |
Nectophryne batesii | Anura | LC | Ground-dwelling | 27.360841 | 38.81063 |
Nectophrynoides cryptus | Anura | EN | Ground-dwelling | 24.359158 | 38.77638 |
Nectophrynoides frontierei | Anura | DD | Ground-dwelling | 25.080649 | 38.80034 |
Nectophrynoides laevis | Anura | DD | Ground-dwelling | 24.488624 | 38.80392 |
Nectophrynoides laticeps | Anura | CR | Ground-dwelling | 23.164809 | 38.58717 |
Nectophrynoides minutus | Anura | EN | Ground-dwelling | 24.359158 | 38.75023 |
Nectophrynoides paulae | Anura | CR | Arboreal | 23.164809 | 38.40889 |
Nectophrynoides poyntoni | Anura | CR | Ground-dwelling | 21.685335 | 38.38062 |
Nectophrynoides pseudotornieri | Anura | CR | Ground-dwelling | 24.229692 | 38.70665 |
Nectophrynoides tornieri | Anura | LC | Ground-dwelling | 23.828042 | 38.63893 |
Nectophrynoides vestergaardi | Anura | EN | Ground-dwelling | 25.085794 | 38.83852 |
Nectophrynoides viviparus | Anura | LC | Ground-dwelling | 23.100789 | 38.52893 |
Nectophrynoides wendyae | Anura | CR | Ground-dwelling | 21.685335 | 38.36520 |
Necturus alabamensis | Caudata | EN | Aquatic | 27.720247 | 35.34560 |
Necturus beyeri | Caudata | LC | Aquatic | 27.812352 | 35.37773 |
Necturus lewisi | Caudata | NT | Aquatic | 24.774419 | 35.03700 |
Necturus maculosus | Caudata | LC | Aquatic | 22.646398 | 34.60406 |
Necturus punctatus | Caudata | LC | Aquatic | 25.679401 | 35.11203 |
Neobatrachus albipes | Anura | LC | Ground-dwelling | 20.648170 | 34.20707 |
Neobatrachus aquilonius | Anura | LC | Ground-dwelling | 26.942738 | 34.75992 |
Neobatrachus fulvus | Anura | LC | Ground-dwelling | 25.419275 | 34.37765 |
Neobatrachus kunapalari | Anura | LC | Ground-dwelling | 21.330887 | 34.31895 |
Neobatrachus pelobatoides | Anura | LC | Ground-dwelling | 20.818550 | 33.72533 |
Neobatrachus pictus | Anura | LC | Fossorial | 20.690563 | 33.72404 |
Neobatrachus sudelli | Anura | LC | Ground-dwelling | 22.627494 | 33.98102 |
Neobatrachus sutor | Anura | LC | Ground-dwelling | 22.735397 | 34.03067 |
Neobatrachus wilsmorei | Anura | LC | Ground-dwelling | 23.071252 | 34.25229 |
Neurergus crocatus | Caudata | VU | Aquatic | 21.280792 | 36.83985 |
Neurergus kaiseri | Caudata | VU | Semi-aquatic | 23.352765 | 37.11828 |
Neurergus strauchii | Caudata | VU | Semi-aquatic | 20.136634 | 36.72800 |
Niceforonia adenobrachia | Anura | EN | Ground-dwelling | 21.387901 | 32.92938 |
Niceforonia nana | Anura | VU | Ground-dwelling | 23.498591 | 33.33616 |
Nimbaphrynoides occidentalis | Anura | CR | Ground-dwelling | 27.635550 | 38.97517 |
Noblella carrascoicola | Anura | LC | Ground-dwelling | 18.545793 | 31.46042 |
Noblella coloma | Anura | CR | Ground-dwelling | 19.955019 | 31.68530 |
Noblella duellmani | Anura | DD | Ground-dwelling | 21.293309 | 31.81587 |
Noblella heyeri | Anura | LC | Ground-dwelling | 23.200249 | 32.35464 |
Noblella lochites | Anura | EN | Ground-dwelling | 24.985852 | 32.61031 |
Noblella lynchi | Anura | EN | Ground-dwelling | 23.472623 | 32.17365 |
Noblella myrmecoides | Anura | LC | Ground-dwelling | 26.070153 | 32.94437 |
Noblella pygmaea | Anura | LC | Ground-dwelling | 14.573980 | 28.28003 |
Noblella ritarasquinae | Anura | LC | Ground-dwelling | 18.545793 | 31.51352 |
Notaden bennettii | Anura | LC | Ground-dwelling | 23.610744 | 35.25773 |
Notaden melanoscaphus | Anura | LC | Ground-dwelling | 27.924506 | 35.86669 |
Notaden nichollsi | Anura | LC | Fossorial | 25.082603 | 36.41180 |
Notaden weigeli | Anura | LC | Fossorial | 28.109930 | 36.92246 |
Nothophryne broadleyi | Anura | EN | Stream-dwelling | 25.902836 | 37.16747 |
Notophthalmus meridionalis | Caudata | VU | Semi-aquatic | 25.470368 | 38.33913 |
Notophthalmus perstriatus | Caudata | NT | Semi-aquatic | 27.689791 | 38.74691 |
Notophthalmus viridescens | Caudata | LC | Aquatic | 23.037599 | 39.07484 |
Nototriton abscondens | Caudata | LC | Ground-dwelling | 25.171956 | 35.24519 |
Nototriton barbouri | Caudata | EN | Ground-dwelling | 26.218855 | 35.43667 |
Nototriton brodiei | Caudata | EN | Ground-dwelling | 25.474466 | 35.29289 |
Nototriton gamezi | Caudata | LC | Ground-dwelling | 27.731359 | 35.53858 |
Nototriton guanacaste | Caudata | LC | Ground-dwelling | 26.749134 | 35.38664 |
Nototriton lignicola | Caudata | EN | Ground-dwelling | 25.679465 | 35.29719 |
Nototriton limnospectator | Caudata | EN | Ground-dwelling | 25.258907 | 35.23331 |
Nototriton major | Caudata | EN | Ground-dwelling | 17.152122 | 34.27206 |
Nototriton picadoi | Caudata | LC | Ground-dwelling | 24.318821 | 35.12053 |
Nototriton richardi | Caudata | LC | Ground-dwelling | 27.786289 | 35.51642 |
Nototriton saslaya | Caudata | CR | Ground-dwelling | 26.980559 | 35.43555 |
Nototriton stuarti | Caudata | CR | Ground-dwelling | 25.474466 | 35.36105 |
Nototriton tapanti | Caudata | LC | Ground-dwelling | 22.496670 | 34.87600 |
Nyctanolis pernix | Caudata | VU | Ground-dwelling | 25.015983 | 35.16274 |
Nyctibates corrugatus | Anura | LC | Ground-dwelling | 26.911933 | 38.95363 |
Nyctibatrachus aliciae | Anura | EN | Semi-aquatic | 27.319488 | 37.39279 |
Nyctibatrachus beddomii | Anura | EN | Semi-aquatic | 27.834131 | 37.52312 |
Nyctibatrachus dattatreyaensis | Anura | CR | Stream-dwelling | 26.702734 | 36.49808 |
Nyctibatrachus deccanensis | Anura | VU | Semi-aquatic | 27.564255 | 37.41636 |
Nyctibatrachus humayuni | Anura | VU | Stream-dwelling | 26.868913 | 36.63728 |
Nyctibatrachus karnatakaensis | Anura | EN | Stream-dwelling | 26.702734 | 36.44432 |
Nyctibatrachus kempholeyensis | Anura | DD | Stream-dwelling | 27.049047 | 36.58012 |
Nyctibatrachus major | Anura | VU | Stream-dwelling | 27.411710 | 36.61124 |
Nyctibatrachus minimus | Anura | DD | Ground-dwelling | 27.593117 | 37.22185 |
Nyctibatrachus minor | Anura | EN | Semi-aquatic | 27.519155 | 37.44633 |
Nyctibatrachus petraeus | Anura | NT | Stream-dwelling | 27.157284 | 36.63892 |
Nyctibatrachus sanctipalustris | Anura | EN | Semi-aquatic | 26.858559 | 37.32233 |
Nyctibatrachus sylvaticus | Anura | DD | Stream-dwelling | 27.049047 | 36.55803 |
Nyctibatrachus vasanthi | Anura | EN | Stream-dwelling | 27.808977 | 36.68130 |
Nyctimantis rugiceps | Anura | LC | Arboreal | 25.847336 | 39.87987 |
Nyctimystes avocalis | Anura | LC | Stream-dwelling | 27.379962 | 37.63083 |
Nyctimystes cheesmani | Anura | LC | Stream-dwelling | 26.278115 | 37.48109 |
Nyctimystes daymani | Anura | LC | Stream-dwelling | 27.678143 | 37.66339 |
Nyctimystes disruptus | Anura | LC | Stream-dwelling | 26.053860 | 37.49253 |
Nyctimystes fluviatilis | Anura | LC | Stream-dwelling | 26.785311 | 37.56516 |
Nyctimystes foricula | Anura | LC | Stream-dwelling | 26.543377 | 37.55205 |
Nyctimystes granti | Anura | LC | Stream-dwelling | 27.055100 | 37.66603 |
Nyctimystes gularis | Anura | LC | Stream-dwelling | 27.498582 | 37.61239 |
Nyctimystes humeralis | Anura | LC | Stream-dwelling | 26.644116 | 37.53020 |
Nyctimystes kubori | Anura | LC | Stream-dwelling | 26.699212 | 37.49281 |
Nyctimystes kuduki | Anura | DD | Stream-dwelling | 26.688929 | 37.53594 |
Nyctimystes montanus | Anura | DD | Stream-dwelling | 27.860409 | 37.66501 |
Nyctimystes narinosus | Anura | LC | Stream-dwelling | 25.872355 | 37.43712 |
Nyctimystes obsoletus | Anura | DD | Stream-dwelling | 26.251026 | 37.41830 |
Nyctimystes oktediensis | Anura | LC | Arboreal | 27.351580 | 38.08810 |
Nyctimystes papua | Anura | LC | Stream-dwelling | 27.290904 | 37.68336 |
Nyctimystes perimetri | Anura | LC | Stream-dwelling | 27.393260 | 37.65503 |
Nyctimystes persimilis | Anura | LC | Stream-dwelling | 27.607723 | 37.69788 |
Nyctimystes pulcher | Anura | LC | Stream-dwelling | 26.651507 | 37.61477 |
Nyctimystes semipalmatus | Anura | LC | Stream-dwelling | 26.629601 | 37.56008 |
Nyctimystes trachydermis | Anura | LC | Stream-dwelling | 27.180733 | 37.63276 |
Nyctimystes zweifeli | Anura | LC | Stream-dwelling | 26.830266 | 37.59132 |
Nyctixalus margaritifer | Anura | LC | Arboreal | 27.868455 | 37.68481 |
Nyctixalus pictus | Anura | LC | Arboreal | 27.997710 | 37.32184 |
Nyctixalus spinosus | Anura | LC | Ground-dwelling | 27.542129 | 37.80748 |
Nymphargus anomalus | Anura | EN | Stream-dwelling | 22.966949 | 36.56575 |
Nymphargus armatus | Anura | CR | Stream-dwelling | 24.198867 | 36.73820 |
Nymphargus bejaranoi | Anura | EN | Arboreal | 18.545793 | 36.41853 |
Nymphargus buenaventura | Anura | EN | Stream-dwelling | 24.212864 | 36.70865 |
Nymphargus cariticommatus | Anura | EN | Stream-dwelling | 23.865482 | 36.70110 |
Nymphargus chami | Anura | NT | Arboreal | 26.309963 | 37.55189 |
Nymphargus chancas | Anura | EN | Stream-dwelling | 24.381259 | 36.79932 |
Nymphargus cochranae | Anura | LC | Stream-dwelling | 23.033015 | 36.58375 |
Nymphargus cristinae | Anura | EN | Arboreal | 26.439037 | 37.46144 |
Nymphargus garciae | Anura | VU | Arboreal | 23.481345 | 37.05797 |
Nymphargus grandisonae | Anura | LC | Arboreal | 23.919590 | 37.24123 |
Nymphargus griffithsi | Anura | LC | Arboreal | 23.945938 | 37.22825 |
Nymphargus ignotus | Anura | LC | Arboreal | 25.401204 | 37.34667 |
Nymphargus laurae | Anura | EN | Arboreal | 23.837156 | 37.19722 |
Nymphargus luminosus | Anura | EN | Arboreal | 26.439037 | 37.50894 |
Nymphargus luteopunctatus | Anura | EN | Arboreal | 24.364732 | 37.23369 |
Nymphargus mariae | Anura | LC | Arboreal | 23.778253 | 37.11433 |
Nymphargus mixomaculatus | Anura | CR | Stream-dwelling | 15.720102 | 35.66823 |
Nymphargus nephelophila | Anura | DD | Stream-dwelling | 25.868620 | 37.03057 |
Nymphargus ocellatus | Anura | DD | Arboreal | 21.293309 | 36.80849 |
Nymphargus oreonympha | Anura | LC | Arboreal | 25.868620 | 37.38581 |
Nymphargus phenax | Anura | EN | Arboreal | 15.595790 | 36.08439 |
Nymphargus pluvialis | Anura | EN | Stream-dwelling | 17.982179 | 35.93485 |
Nymphargus posadae | Anura | LC | Arboreal | 23.435383 | 37.04151 |
Nymphargus prasinus | Anura | VU | Arboreal | 24.930172 | 37.38627 |
Nymphargus rosada | Anura | VU | Arboreal | 23.267499 | 37.13071 |
Nymphargus ruizi | Anura | VU | Arboreal | 24.532910 | 37.23405 |
Nymphargus siren | Anura | EN | Arboreal | 23.382727 | 37.18203 |
Nymphargus spilotus | Anura | NT | Arboreal | 23.046042 | 37.06303 |
Nymphargus vicenteruedai | Anura | DD | Stream-dwelling | 22.575003 | 36.56173 |
Nymphargus wileyi | Anura | CR | Stream-dwelling | 23.837156 | 36.73585 |
Occidozyga baluensis | Anura | LC | Aquatic | 27.999039 | 38.35677 |
Occidozyga celebensis | Anura | LC | Semi-aquatic | 27.032697 | 38.23596 |
Occidozyga diminutiva | Anura | NT | Stream-dwelling | 27.227709 | 37.26239 |
Occidozyga floresiana | Anura | VU | Semi-aquatic | 27.219124 | 37.51820 |
Occidozyga laevis | Anura | LC | Aquatic | 27.735231 | 36.88111 |
Occidozyga lima | Anura | LC | Semi-aquatic | 27.675026 | 38.27877 |
Occidozyga magnapustulosa | Anura | LC | Aquatic | 27.867965 | 38.10210 |
Occidozyga martensii | Anura | LC | Aquatic | 27.593101 | 38.03354 |
Occidozyga semipalmata | Anura | LC | Aquatic | 27.058232 | 38.03918 |
Occidozyga sumatrana | Anura | LC | Semi-aquatic | 27.809241 | 38.23145 |
Odontobatrachus natator | Anura | LC | Stream-dwelling | 27.668492 | 37.18677 |
Odontophrynus achalensis | Anura | VU | Semi-aquatic | 23.100998 | 36.69219 |
Odontophrynus americanus | Anura | LC | Fossorial | 24.955928 | 38.98209 |
Odontophrynus barrioi | Anura | LC | Ground-dwelling | 20.344381 | 37.63156 |
Odontophrynus carvalhoi | Anura | LC | Ground-dwelling | 26.059131 | 37.74031 |
Odontophrynus cordobae | Anura | LC | Stream-dwelling | 24.116754 | 36.69041 |
Odontophrynus cultripes | Anura | LC | Fossorial | 26.260481 | 38.56222 |
Odontophrynus lavillai | Anura | LC | Fossorial | 25.094398 | 38.40451 |
Odontophrynus occidentalis | Anura | LC | Ground-dwelling | 20.743716 | 35.15138 |
Odorrana absita | Anura | LC | Stream-dwelling | 28.068805 | 36.30874 |
Odorrana amamiensis | Anura | EN | Stream-dwelling | 27.273711 | 36.28554 |
Odorrana anlungensis | Anura | EN | Stream-dwelling | 24.370712 | 35.87628 |
Odorrana aureola | Anura | LC | Stream-dwelling | 27.599949 | 36.33155 |
Odorrana bacboensis | Anura | LC | Stream-dwelling | 26.498676 | 36.16582 |
Odorrana banaorum | Anura | LC | Stream-dwelling | 28.504569 | 36.34098 |
Odorrana bolavensis | Anura | EN | Stream-dwelling | 28.721743 | 36.42453 |
Odorrana chapaensis | Anura | LC | Stream-dwelling | 25.967546 | 36.12599 |
Odorrana chloronota | Anura | LC | Stream-dwelling | 27.101228 | 36.27255 |
Odorrana exiliversabilis | Anura | LC | Stream-dwelling | 27.338028 | 36.37533 |
Odorrana geminata | Anura | VU | Stream-dwelling | 25.830675 | 36.01393 |
Odorrana gigatympana | Anura | LC | Stream-dwelling | 28.295956 | 36.41951 |
Odorrana grahami | Anura | VU | Stream-dwelling | 21.538380 | 35.48799 |
Odorrana graminea | Anura | LC | Stream-dwelling | 28.194974 | 36.40000 |
Odorrana hainanensis | Anura | VU | Stream-dwelling | 28.145497 | 36.42051 |
Odorrana hejiangensis | Anura | VU | Stream-dwelling | 24.918596 | 35.92659 |
Odorrana hosii | Anura | LC | Stream-dwelling | 28.230435 | 36.33741 |
Odorrana indeprensa | Anura | VU | Stream-dwelling | 29.179900 | 36.54012 |
Odorrana ishikawae | Anura | EN | Stream-dwelling | 27.638404 | 36.31694 |
Odorrana jingdongensis | Anura | VU | Stream-dwelling | 23.285732 | 35.74657 |
Odorrana junlianensis | Anura | LC | Stream-dwelling | 24.211468 | 35.88984 |
Odorrana khalam | Anura | LC | Stream-dwelling | 28.322226 | 36.35352 |
Odorrana kuangwuensis | Anura | VU | Stream-dwelling | 23.795336 | 35.77414 |
Odorrana leporipes | Anura | DD | Stream-dwelling | 28.477286 | 36.35814 |
Odorrana livida | Anura | DD | Stream-dwelling | 28.387064 | 36.48654 |
Odorrana lungshengensis | Anura | LC | Stream-dwelling | 26.545737 | 36.14887 |
Odorrana margaretae | Anura | LC | Stream-dwelling | 24.316523 | 35.93739 |
Odorrana mawphlangensis | Anura | DD | Stream-dwelling | 24.690616 | 35.89769 |
Odorrana monjerai | Anura | DD | Stream-dwelling | 28.824507 | 36.38259 |
Odorrana morafkai | Anura | LC | Stream-dwelling | 28.555775 | 36.40362 |
Odorrana narina | Anura | EN | Stream-dwelling | 27.638404 | 36.32428 |
Odorrana nasica | Anura | LC | Stream-dwelling | 27.736654 | 36.34506 |
Odorrana nasuta | Anura | LC | Stream-dwelling | 28.158168 | 36.44231 |
Odorrana orba | Anura | LC | Stream-dwelling | 28.184957 | 36.35823 |
Odorrana schmackeri | Anura | LC | Stream-dwelling | 25.872402 | 36.09223 |
Odorrana splendida | Anura | EN | Stream-dwelling | 27.216885 | 36.24741 |
Odorrana supranarina | Anura | EN | Stream-dwelling | 28.069796 | 36.32246 |
Odorrana swinhoana | Anura | LC | Stream-dwelling | 27.537243 | 36.20910 |
Odorrana tiannanensis | Anura | LC | Stream-dwelling | 26.579545 | 36.14809 |
Odorrana tormota | Anura | LC | Stream-dwelling | 27.390769 | 36.36040 |
Odorrana trankieni | Anura | NT | Stream-dwelling | 27.443238 | 36.28878 |
Odorrana utsunomiyaorum | Anura | EN | Stream-dwelling | 28.069796 | 36.32343 |
Odorrana versabilis | Anura | LC | Stream-dwelling | 27.189838 | 36.38585 |
Odorrana wuchuanensis | Anura | VU | Stream-dwelling | 25.903732 | 36.07964 |
Odorrana yentuensis | Anura | EN | Stream-dwelling | 27.747355 | 36.33937 |
Oedipina alfaroi | Caudata | VU | Ground-dwelling | 24.312211 | 35.04624 |
Oedipina alleni | Caudata | LC | Ground-dwelling | 24.985341 | 35.13692 |
Oedipina altura | Caudata | DD | Ground-dwelling | 17.152122 | 34.20644 |
Oedipina carablanca | Caudata | EN | Ground-dwelling | 27.841219 | 35.56094 |
Oedipina collaris | Caudata | DD | Ground-dwelling | 25.099162 | 35.10608 |
Oedipina complex | Caudata | LC | Ground-dwelling | 25.865207 | 35.26381 |
Oedipina cyclocauda | Caudata | NT | Ground-dwelling | 25.742721 | 35.27970 |
Oedipina elongata | Caudata | LC | Ground-dwelling | 27.004424 | 35.35748 |
Oedipina gephyra | Caudata | CR | Ground-dwelling | 26.218855 | 35.31373 |
Oedipina gracilis | Caudata | EN | Ground-dwelling | 25.166998 | 35.18363 |
Oedipina grandis | Caudata | EN | Fossorial | 28.045611 | 36.54871 |
Oedipina ignea | Caudata | EN | Ground-dwelling | 25.978876 | 35.31445 |
Oedipina maritima | Caudata | CR | Ground-dwelling | 28.249726 | 35.58626 |
Oedipina pacificensis | Caudata | LC | Fossorial | 24.985341 | 36.06149 |
Oedipina parvipes | Caudata | LC | Ground-dwelling | 27.004622 | 35.39769 |
Oedipina paucidentata | Caudata | DD | Ground-dwelling | 17.152122 | 34.27171 |
Oedipina poelzi | Caudata | EN | Ground-dwelling | 25.171956 | 35.24159 |
Oedipina pseudouniformis | Caudata | DD | Ground-dwelling | 22.496670 | 34.91724 |
Oedipina savagei | Caudata | VU | Ground-dwelling | 25.576931 | 35.20128 |
Oedipina stenopodia | Caudata | EN | Ground-dwelling | 27.195014 | 35.46181 |
Oedipina taylori | Caudata | EN | Ground-dwelling | 27.772197 | 35.45123 |
Oedipina tomasi | Caudata | CR | Ground-dwelling | 25.474466 | 35.18356 |
Oedipina uniformis | Caudata | LC | Ground-dwelling | 26.275796 | 35.22060 |
Ololygon agilis | Anura | LC | Arboreal | 25.535122 | 41.35332 |
Ololygon aromothyella | Anura | DD | Arboreal | 26.877164 | 41.16983 |
Ombrana sikimensis | Anura | LC | Stream-dwelling | 20.368082 | 38.00907 |
Ommatotriton ophryticus | Caudata | NT | Ground-dwelling | 19.760312 | 36.43769 |
Ommatotriton vittatus | Caudata | LC | Semi-aquatic | 23.670789 | 37.13485 |
Onychodactylus fischeri | Caudata | LC | Semi-aquatic | 21.283008 | 34.53652 |
Onychodactylus japonicus | Caudata | LC | Semi-aquatic | 24.910996 | 35.03863 |
Oophaga granulifera | Anura | VU | Ground-dwelling | 25.576931 | 34.64883 |
Oophaga occultator | Anura | CR | Ground-dwelling | 25.763603 | 34.16291 |
Oophaga pumilio | Anura | LC | Ground-dwelling | 26.762973 | 32.89321 |
Oophaga sylvatica | Anura | NT | Ground-dwelling | 24.471182 | 34.06883 |
Oophaga vicentei | Anura | EN | Arboreal | 27.293423 | 34.04413 |
Opisthothylax immaculatus | Anura | LC | Arboreal | 27.631210 | 40.57597 |
Oreobates ayacucho | Anura | EN | Ground-dwelling | 18.639686 | 32.74666 |
Oreobates choristolemma | Anura | VU | Ground-dwelling | 20.000781 | 33.50574 |
Oreobates crepitans | Anura | DD | Ground-dwelling | 28.205441 | 35.08306 |
Oreobates cruralis | Anura | LC | Ground-dwelling | 21.233886 | 35.78664 |
Oreobates discoidalis | Anura | DD | Ground-dwelling | 20.008899 | 34.12042 |
Oreobates gemcare | Anura | LC | Ground-dwelling | 14.573980 | 29.11356 |
Oreobates granulosus | Anura | LC | Ground-dwelling | 16.202655 | 32.34537 |
Oreobates heterodactylus | Anura | DD | Ground-dwelling | 28.378616 | 35.03332 |
Oreobates ibischi | Anura | LC | Ground-dwelling | 21.782690 | 34.32341 |
Oreobates lehri | Anura | EN | Ground-dwelling | 17.822366 | 31.49959 |
Oreobates lundbergi | Anura | EN | Ground-dwelling | 21.293309 | 33.95485 |
Oreobates madidi | Anura | LC | Ground-dwelling | 21.018189 | 34.51457 |
Oreobates pereger | Anura | EN | Ground-dwelling | 16.788504 | 32.54609 |
Oreobates quixensis | Anura | LC | Ground-dwelling | 27.326762 | 37.65625 |
Oreobates sanctaecrucis | Anura | LC | Ground-dwelling | 22.321742 | 33.95286 |
Oreobates sanderi | Anura | LC | Ground-dwelling | 19.041148 | 33.24224 |
Oreobates saxatilis | Anura | LC | Ground-dwelling | 21.034111 | 35.57501 |
Oreobates zongoensis | Anura | CR | Ground-dwelling | 17.902178 | 33.51974 |
Oreolalax chuanbeiensis | Anura | EN | Ground-dwelling | 18.740568 | 36.51119 |
Oreolalax granulosus | Anura | NT | Stream-dwelling | 22.882467 | 36.41335 |
Oreolalax jingdongensis | Anura | VU | Stream-dwelling | 22.406826 | 36.44937 |
Oreolalax liangbeiensis | Anura | CR | Ground-dwelling | 20.834276 | 36.85349 |
Oreolalax lichuanensis | Anura | LC | Ground-dwelling | 25.461759 | 37.43558 |
Oreolalax major | Anura | LC | Ground-dwelling | 19.844231 | 36.72827 |
Oreolalax multipunctatus | Anura | EN | Ground-dwelling | 19.508927 | 36.60173 |
Oreolalax nanjiangensis | Anura | VU | Stream-dwelling | 20.277182 | 36.12570 |
Oreolalax omeimontis | Anura | EN | Ground-dwelling | 21.440032 | 36.83692 |
Oreolalax pingii | Anura | EN | Ground-dwelling | 21.043228 | 36.84675 |
Oreolalax popei | Anura | LC | Ground-dwelling | 19.653032 | 36.64878 |
Oreolalax puxiongensis | Anura | EN | Semi-aquatic | 20.834276 | 37.04087 |
Oreolalax rhodostigmatus | Anura | VU | Ground-dwelling | 25.157400 | 37.38848 |
Oreolalax rugosus | Anura | LC | Semi-aquatic | 20.676370 | 37.03218 |
Oreolalax schmidti | Anura | NT | Ground-dwelling | 19.726461 | 36.63540 |
Oreolalax xiangchengensis | Anura | LC | Stream-dwelling | 16.482509 | 35.60959 |
Oreophryne albopunctata | Anura | LC | Arboreal | 27.434668 | 35.31817 |
Oreophryne alticola | Anura | DD | Ground-dwelling | 25.609209 | 35.24301 |
Oreophryne anthonyi | Anura | LC | Arboreal | 27.498582 | 35.33130 |
Oreophryne anulata | Anura | LC | Arboreal | 27.700679 | 35.41530 |
Oreophryne asplenicola | Anura | DD | Arboreal | 26.372759 | 35.11417 |
Oreophryne atrigularis | Anura | DD | Arboreal | 27.032046 | 35.38783 |
Oreophryne biroi | Anura | LC | Arboreal | 26.768437 | 35.17038 |
Oreophryne brachypus | Anura | LC | Arboreal | 27.578589 | 35.23589 |
Oreophryne brevicrus | Anura | DD | Arboreal | 26.232798 | 35.16749 |
Oreophryne brevirostris | Anura | VU | Ground-dwelling | 25.609209 | 35.33368 |
Oreophryne celebensis | Anura | VU | Arboreal | 27.444248 | 35.26196 |
Oreophryne clamata | Anura | DD | Arboreal | 28.031168 | 35.48244 |
Oreophryne crucifer | Anura | LC | Arboreal | 27.027784 | 35.31071 |
Oreophryne flava | Anura | DD | Arboreal | 25.972733 | 35.04837 |
Oreophryne frontifasciata | Anura | DD | Arboreal | 27.157221 | 35.28040 |
Oreophryne geislerorum | Anura | LC | Arboreal | 27.185208 | 35.25311 |
Oreophryne geminus | Anura | DD | Arboreal | 27.821029 | 35.48765 |
Oreophryne habbemensis | Anura | DD | Arboreal | 27.479976 | 35.31556 |
Oreophryne hypsiops | Anura | LC | Arboreal | 26.989146 | 35.31492 |
Oreophryne idenburgensis | Anura | LC | Arboreal | 28.339510 | 35.40652 |
Oreophryne inornata | Anura | LC | Arboreal | 27.379962 | 35.25033 |
Oreophryne insulana | Anura | VU | Arboreal | 27.379962 | 35.32716 |
Oreophryne jeffersoniana | Anura | LC | Arboreal | 27.467110 | 35.25666 |
Oreophryne kampeni | Anura | DD | Arboreal | 28.037156 | 35.35465 |
Oreophryne kapisa | Anura | LC | Arboreal | 26.892847 | 35.19329 |
Oreophryne loriae | Anura | DD | Arboreal | 28.037156 | 35.42914 |
Oreophryne minuta | Anura | LC | Arboreal | 24.020029 | 34.73092 |
Oreophryne moluccensis | Anura | LC | Arboreal | 27.578896 | 35.43058 |
Oreophryne monticola | Anura | EN | Arboreal | 27.702619 | 35.41063 |
Oreophryne notata | Anura | LC | Arboreal | 26.304487 | 35.22025 |
Oreophryne pseudasplenicola | Anura | DD | Arboreal | 26.372759 | 35.12383 |
Oreophryne rookmaakeri | Anura | EN | Arboreal | 26.933835 | 35.26816 |
Oreophryne sibilans | Anura | DD | Arboreal | 28.031168 | 35.40287 |
Oreophryne terrestris | Anura | DD | Arboreal | 27.821029 | 35.41293 |
Oreophryne unicolor | Anura | DD | Arboreal | 27.472200 | 35.26176 |
Oreophryne variabilis | Anura | VU | Arboreal | 27.270879 | 35.37446 |
Oreophryne waira | Anura | DD | Arboreal | 26.372759 | 35.22333 |
Oreophryne wapoga | Anura | DD | Arboreal | 25.755928 | 35.04337 |
Oreophrynella cryptica | Anura | NT | Ground-dwelling | 26.143635 | 38.72277 |
Oreophrynella dendronastes | Anura | DD | Arboreal | 26.912428 | 38.71389 |
Oreophrynella huberi | Anura | VU | Ground-dwelling | 26.310247 | 38.73255 |
Oreophrynella macconnelli | Anura | VU | Arboreal | 26.912428 | 38.66281 |
Oreophrynella nigra | Anura | VU | Ground-dwelling | 26.671496 | 38.80704 |
Oreophrynella quelchii | Anura | VU | Ground-dwelling | 26.671496 | 38.82153 |
Oreophrynella vasquezi | Anura | VU | Ground-dwelling | 25.966470 | 38.75109 |
Oreophrynella weiassipuensis | Anura | DD | Arboreal | 26.671496 | 38.56227 |
Osornophryne antisana | Anura | EN | Ground-dwelling | 22.061283 | 38.04851 |
Osornophryne bufoniformis | Anura | NT | Ground-dwelling | 22.662368 | 38.15369 |
Osornophryne cofanorum | Anura | LC | Arboreal | 22.211278 | 37.95947 |
Osornophryne guacamayo | Anura | VU | Ground-dwelling | 22.001151 | 38.08044 |
Osornophryne percrassa | Anura | VU | Ground-dwelling | 22.658289 | 38.18171 |
Osornophryne puruanta | Anura | EN | Ground-dwelling | 22.211278 | 38.08675 |
Osornophryne sumacoensis | Anura | VU | Ground-dwelling | 23.837156 | 38.39342 |
Osornophryne talipes | Anura | VU | Ground-dwelling | 22.968880 | 38.24947 |
Osteocephalus alboguttatus | Anura | LC | Arboreal | 24.710956 | 39.48205 |
Osteocephalus buckleyi | Anura | LC | Stream-dwelling | 27.559407 | 39.79874 |
Osteocephalus cabrerai | Anura | LC | Arboreal | 27.500440 | 39.80979 |
Osteocephalus castaneicola | Anura | LC | Arboreal | 22.361976 | 39.14172 |
Osteocephalus deridens | Anura | LC | Arboreal | 27.126277 | 39.75413 |
Osteocephalus fuscifacies | Anura | LC | Arboreal | 26.735572 | 39.67241 |
Osteocephalus heyeri | Anura | LC | Arboreal | 29.333404 | 40.09364 |
Osteocephalus leoniae | Anura | LC | Arboreal | 21.985038 | 39.09601 |
Osteocephalus leprieurii | Anura | LC | Arboreal | 27.862594 | 39.87841 |
Osteocephalus mutabor | Anura | LC | Arboreal | 24.830682 | 38.87729 |
Osteocephalus oophagus | Anura | LC | Arboreal | 28.237883 | 39.94198 |
Osteocephalus planiceps | Anura | LC | Arboreal | 26.549532 | 39.71683 |
Osteocephalus subtilis | Anura | LC | Ground-dwelling | 28.683164 | 40.13235 |
Osteocephalus taurinus | Anura | LC | Arboreal | 27.773820 | 39.89630 |
Osteocephalus verruciger | Anura | LC | Stream-dwelling | 24.910426 | 39.04960 |
Osteocephalus yasuni | Anura | LC | Arboreal | 28.322153 | 39.95790 |
Osteopilus crucialis | Anura | VU | Arboreal | 27.512405 | 39.83386 |
Osteopilus dominicensis | Anura | LC | Arboreal | 27.497780 | 39.89824 |
Osteopilus marianae | Anura | EN | Arboreal | 27.453434 | 39.85475 |
Osteopilus ocellatus | Anura | NT | Arboreal | 27.545850 | 39.84273 |
Osteopilus pulchrilineatus | Anura | VU | Arboreal | 27.336324 | 39.91663 |
Osteopilus septentrionalis | Anura | LC | Arboreal | 27.523564 | 39.19547 |
Osteopilus vastus | Anura | VU | Stream-dwelling | 27.259805 | 39.45065 |
Osteopilus wilderi | Anura | VU | Arboreal | 27.568588 | 39.83554 |
Otophryne pyburni | Anura | LC | Ground-dwelling | 27.592049 | 37.61237 |
Otophryne robusta | Anura | LC | Ground-dwelling | 26.255413 | 37.48236 |
Otophryne steyermarki | Anura | LC | Ground-dwelling | 26.094206 | 37.45874 |
Pachyhynobius shangchengensis | Caudata | VU | Semi-aquatic | 27.911080 | 34.78185 |
Pachytriton brevipes | Caudata | LC | Aquatic | 26.739870 | 37.51899 |
Paracassina kounhiensis | Anura | VU | Arboreal | 20.363946 | 39.52541 |
Paracassina obscura | Anura | LC | Arboreal | 21.854238 | 39.79697 |
Paracrinia haswelli | Anura | LC | Stream-dwelling | 20.413292 | 34.35527 |
Paradoxophyla palmata | Anura | LC | Fossorial | 25.769795 | 38.90246 |
Paradoxophyla tiarano | Anura | DD | Ground-dwelling | 26.773003 | 38.07358 |
Paramesotriton caudopunctatus | Caudata | NT | Aquatic | 26.882660 | 37.43051 |
Paramesotriton chinensis | Caudata | LC | Semi-aquatic | 26.930794 | 37.48711 |
Paramesotriton deloustali | Caudata | LC | Aquatic | 26.220075 | 37.31779 |
Paramesotriton fuzhongensis | Caudata | VU | Semi-aquatic | 27.615330 | 37.63905 |
Paramesotriton hongkongensis | Caudata | NT | Ground-dwelling | 27.917902 | 37.40804 |
Paramesotriton labiatus | Caudata | CR | Aquatic | 28.035574 | 37.17754 |
Parapelophryne scalpta | Anura | VU | Ground-dwelling | 28.145497 | 39.14364 |
Paratelmatobius cardosoi | Anura | DD | Ground-dwelling | 25.141569 | 39.26070 |
Paratelmatobius gaigeae | Anura | DD | Ground-dwelling | 26.714437 | 39.52291 |
Paratelmatobius lutzii | Anura | DD | Ground-dwelling | 26.714437 | 39.50522 |
Paratelmatobius mantiqueira | Anura | DD | Ground-dwelling | 26.191708 | 39.43960 |
Paratelmatobius poecilogaster | Anura | DD | Ground-dwelling | 25.141569 | 39.36516 |
Parhoplophryne usambarica | Anura | CR | Ground-dwelling | 25.080649 | 38.32171 |
Parvimolge townsendi | Caudata | VU | Ground-dwelling | 25.132478 | 35.22117 |
Pedostibes kempi | Anura | DD | Arboreal | 25.601956 | 38.60370 |
Pedostibes tuberculosus | Anura | EN | Stream-dwelling | 27.625351 | 38.53499 |
Pelobates cultripes | Anura | VU | Ground-dwelling | 21.056008 | 38.10309 |
Pelobates fuscus | Anura | LC | Ground-dwelling | 18.980009 | 37.30036 |
Pelobates syriacus | Anura | LC | Fossorial | 20.659877 | 38.57710 |
Pelobates varaldii | Anura | EN | Fossorial | 22.877492 | 39.02937 |
Pelodytes caucasicus | Anura | NT | Semi-aquatic | 20.047848 | 36.12808 |
Pelodytes ibericus | Anura | LC | Semi-aquatic | 22.151068 | 35.62989 |
Pelodytes punctatus | Anura | LC | Semi-aquatic | 20.292770 | 35.92195 |
Pelophryne albotaeniata | Anura | VU | Arboreal | 27.811324 | 39.02495 |
Pelophryne api | Anura | LC | Ground-dwelling | 27.321843 | 39.02441 |
Pelophryne brevipes | Anura | LC | Arboreal | 27.770902 | 38.93798 |
Pelophryne guentheri | Anura | LC | Ground-dwelling | 27.524835 | 39.12803 |
Pelophryne lighti | Anura | LC | Arboreal | 27.536705 | 39.00371 |
Pelophryne linanitensis | Anura | CR | Ground-dwelling | 26.158013 | 38.94573 |
Pelophryne misera | Anura | LC | Ground-dwelling | 26.959611 | 38.98532 |
Pelophryne murudensis | Anura | CR | Ground-dwelling | 26.158013 | 38.99166 |
Pelophryne rhopophilia | Anura | VU | Ground-dwelling | 27.599273 | 39.10743 |
Pelophryne signata | Anura | LC | Ground-dwelling | 27.712727 | 39.05545 |
Pelophylax bedriagae | Anura | LC | Aquatic | 22.946697 | 37.64746 |
Pelophylax bergeri | Anura | LC | Semi-aquatic | 23.493682 | 37.76461 |
Pelophylax caralitanus | Anura | NT | Aquatic | 21.594614 | 37.54882 |
Pelophylax cerigensis | Anura | CR | Aquatic | 24.564498 | 37.92040 |
Pelophylax chosenicus | Anura | VU | Semi-aquatic | 22.846554 | 37.69201 |
Pelophylax cretensis | Anura | VU | Semi-aquatic | 24.879008 | 37.95455 |
Pelophylax epeiroticus | Anura | NT | Aquatic | 20.782748 | 37.35125 |
Pelophylax fukienensis | Anura | LC | Aquatic | 27.333858 | 38.22899 |
Pelophylax hubeiensis | Anura | LC | Aquatic | 26.964887 | 38.26771 |
Pelophylax kurtmuelleri | Anura | LC | Aquatic | 22.339293 | 37.56860 |
Pelophylax lessonae | Anura | LC | Semi-aquatic | 19.024567 | 37.12242 |
Pelophylax nigromaculatus | Anura | NT | Aquatic | 22.846145 | 37.57065 |
Pelophylax perezi | Anura | LC | Semi-aquatic | 21.116379 | 38.41357 |
Pelophylax plancyi | Anura | LC | Semi-aquatic | 25.075756 | 37.95513 |
Pelophylax porosus | Anura | LC | Semi-aquatic | 24.768973 | 37.91121 |
Pelophylax ridibundus | Anura | LC | Semi-aquatic | 19.824271 | 37.29976 |
Pelophylax saharicus | Anura | LC | Aquatic | 23.270345 | 38.39977 |
Pelophylax shqipericus | Anura | VU | Aquatic | 22.407893 | 37.50511 |
Pelophylax tenggerensis | Anura | EN | Aquatic | 18.855164 | 37.05291 |
Pelophylax terentievi | Anura | DD | Semi-aquatic | 14.768756 | 36.55218 |
Peltophryne cataulaciceps | Anura | EN | Ground-dwelling | 27.444628 | 38.84295 |
Peltophryne empusa | Anura | VU | Ground-dwelling | 27.534654 | 38.86981 |
Peltophryne florentinoi | Anura | CR | Ground-dwelling | 27.476309 | 38.83360 |
Peltophryne fustiger | Anura | LC | Ground-dwelling | 27.450832 | 38.81687 |
Peltophryne guentheri | Anura | LC | Ground-dwelling | 27.483070 | 38.78990 |
Peltophryne gundlachi | Anura | VU | Ground-dwelling | 27.470163 | 38.76031 |
Peltophryne lemur | Anura | EN | Ground-dwelling | 27.072959 | 38.83379 |
Peltophryne longinasus | Anura | EN | Ground-dwelling | 27.582823 | 38.89166 |
Peltophryne peltocephala | Anura | LC | Ground-dwelling | 27.567168 | 38.79522 |
Peltophryne taladai | Anura | VU | Ground-dwelling | 27.633385 | 38.84072 |
Petropedetes cameronensis | Anura | LC | Stream-dwelling | 27.019060 | 36.96974 |
Petropedetes johnstoni | Anura | LC | Ground-dwelling | 27.038406 | 37.64565 |
Petropedetes palmipes | Anura | VU | Semi-aquatic | 27.066775 | 37.95668 |
Petropedetes parkeri | Anura | DD | Semi-aquatic | 26.930526 | 37.84534 |
Petropedetes perreti | Anura | CR | Stream-dwelling | 26.644872 | 36.98202 |
Phaeognathus hubrichti | Caudata | EN | Ground-dwelling | 28.296362 | 35.00174 |
Phasmahyla cochranae | Anura | LC | Arboreal | 26.039438 | 38.91495 |
Phasmahyla exilis | Anura | LC | Arboreal | 25.596079 | 38.77384 |
Phasmahyla guttata | Anura | LC | Arboreal | 25.847042 | 38.81182 |
Phasmahyla jandaia | Anura | LC | Stream-dwelling | 25.564647 | 38.24147 |
Phasmahyla spectabilis | Anura | DD | Arboreal | 25.655650 | 38.13063 |
Phasmahyla timbo | Anura | DD | Stream-dwelling | 24.908486 | 38.31055 |
Philautus abditus | Anura | LC | Stream-dwelling | 28.219863 | 36.82928 |
Philautus acutirostris | Anura | LC | Arboreal | 27.603411 | 36.02823 |
Philautus acutus | Anura | LC | Arboreal | 27.227495 | 37.15435 |
Philautus amoenus | Anura | LC | Arboreal | 27.189560 | 37.22793 |
Philautus aurantium | Anura | VU | Arboreal | 27.540277 | 37.28453 |
Philautus aurifasciatus | Anura | LC | Arboreal | 27.858793 | 37.26854 |
Philautus bunitus | Anura | LC | Arboreal | 27.657701 | 37.34879 |
Philautus cardamonus | Anura | EN | Arboreal | 29.289540 | 37.53427 |
Philautus cornutus | Anura | EN | Arboreal | 29.112694 | 37.51834 |
Philautus davidlabangi | Anura | LC | Arboreal | 28.175617 | 37.29390 |
Philautus disgregus | Anura | NT | Arboreal | 28.220973 | 37.35977 |
Philautus erythrophthalmus | Anura | EN | Arboreal | 27.846517 | 37.28845 |
Philautus everetti | Anura | EN | Arboreal | 27.849778 | 37.19758 |
Philautus garo | Anura | DD | Arboreal | 25.601956 | 36.84584 |
Philautus gunungensis | Anura | LC | Arboreal | 27.189560 | 37.20784 |
Philautus hosii | Anura | LC | Arboreal | 27.886235 | 37.24750 |
Philautus ingeri | Anura | VU | Arboreal | 27.334238 | 37.25533 |
Philautus kempiae | Anura | CR | Arboreal | 25.601956 | 36.96354 |
Philautus kempii | Anura | DD | Arboreal | 17.750552 | 35.92056 |
Philautus kerangae | Anura | VU | Arboreal | 27.069877 | 37.26787 |
Philautus leitensis | Anura | LC | Arboreal | 27.605317 | 37.23246 |
Philautus longicrus | Anura | VU | Arboreal | 27.645869 | 37.24742 |
Philautus maosonensis | Anura | DD | Arboreal | 27.245576 | 37.13505 |
Philautus microdiscus | Anura | CR | Arboreal | 20.956618 | 36.29562 |
Philautus mjobergi | Anura | LC | Arboreal | 27.295784 | 37.28354 |
Philautus namdaphaensis | Anura | DD | Arboreal | 22.342472 | 36.50910 |
Philautus pallidipes | Anura | LC | Arboreal | 28.621205 | 37.43196 |
Philautus petersi | Anura | DD | Ground-dwelling | 27.570595 | 37.35597 |
Philautus poecilius | Anura | LC | Arboreal | 27.665350 | 37.27085 |
Philautus refugii | Anura | VU | Arboreal | 28.167894 | 37.32644 |
Philautus saueri | Anura | LC | Arboreal | 27.189560 | 37.28600 |
Philautus schmackeri | Anura | EN | Arboreal | 27.810488 | 37.26516 |
Philautus similipalensis | Anura | DD | Ground-dwelling | 30.153214 | 37.76224 |
Philautus surdus | Anura | LC | Arboreal | 27.730695 | 35.53861 |
Philautus surrufus | Anura | NT | Arboreal | 27.627032 | 37.14496 |
Philautus tectus | Anura | LC | Arboreal | 28.081211 | 37.33045 |
Philautus tytthus | Anura | DD | Arboreal | 24.156784 | 36.75566 |
Philautus umbra | Anura | LC | Arboreal | 27.321843 | 37.28483 |
Philautus vermiculatus | Anura | LC | Arboreal | 28.307161 | 37.32870 |
Philautus vittiger | Anura | NT | Arboreal | 28.131525 | 37.31882 |
Philautus worcesteri | Anura | LC | Arboreal | 27.740174 | 37.45139 |
Philoria frosti | Anura | CR | Ground-dwelling | 19.878076 | 30.01431 |
Philoria kundagungan | Anura | EN | Ground-dwelling | 23.593207 | 33.26025 |
Philoria loveridgei | Anura | EN | Ground-dwelling | 23.495554 | 33.43942 |
Philoria pughi | Anura | EN | Stream-dwelling | 23.336562 | 31.43629 |
Philoria richmondensis | Anura | EN | Ground-dwelling | 23.424501 | 33.29616 |
Philoria sphagnicolus | Anura | EN | Ground-dwelling | 22.986318 | 32.13569 |
Phlyctimantis boulengeri | Anura | LC | Arboreal | 27.474043 | 40.17128 |
Phlyctimantis keithae | Anura | EN | Arboreal | 21.685335 | 39.40432 |
Phlyctimantis leonardi | Anura | LC | Arboreal | 27.994923 | 40.17254 |
Phlyctimantis verrucosus | Anura | LC | Arboreal | 26.141902 | 39.92754 |
Phrynella pulchra | Anura | LC | Arboreal | 28.458011 | 38.22490 |
Phrynobatrachus acridoides | Anura | LC | Semi-aquatic | 24.508171 | 37.68587 |
Phrynobatrachus acutirostris | Anura | NT | Stream-dwelling | 23.091156 | 36.65408 |
Phrynobatrachus africanus | Anura | LC | Semi-aquatic | 27.424945 | 38.14526 |
Phrynobatrachus albomarginatus | Anura | DD | Ground-dwelling | 26.858234 | 37.78864 |
Phrynobatrachus alleni | Anura | LC | Semi-aquatic | 27.707689 | 38.05718 |
Phrynobatrachus annulatus | Anura | LC | Semi-aquatic | 27.644337 | 38.11535 |
Phrynobatrachus anotis | Anura | DD | Ground-dwelling | 25.269289 | 37.41045 |
Phrynobatrachus asper | Anura | VU | Semi-aquatic | 24.302798 | 37.74509 |
Phrynobatrachus auritus | Anura | LC | Ground-dwelling | 27.428415 | 37.73637 |
Phrynobatrachus batesii | Anura | LC | Ground-dwelling | 27.176195 | 37.72243 |
Phrynobatrachus bequaerti | Anura | LC | Semi-aquatic | 23.108804 | 37.43991 |
Phrynobatrachus breviceps | Anura | DD | Ground-dwelling | 21.685335 | 36.93624 |
Phrynobatrachus brevipalmatus | Anura | DD | Ground-dwelling | 26.593601 | 37.73817 |
Phrynobatrachus bullans | Anura | LC | Semi-aquatic | 22.079591 | 37.36817 |
Phrynobatrachus calcaratus | Anura | LC | Semi-aquatic | 27.527663 | 38.06136 |
Phrynobatrachus chukuchuku | Anura | CR | Semi-aquatic | 25.817681 | 37.78761 |
Phrynobatrachus cornutus | Anura | LC | Ground-dwelling | 27.520362 | 37.84775 |
Phrynobatrachus cricogaster | Anura | NT | Semi-aquatic | 26.955925 | 37.94941 |
Phrynobatrachus cryptotis | Anura | DD | Ground-dwelling | 25.269289 | 37.54952 |
Phrynobatrachus dalcqi | Anura | DD | Ground-dwelling | 25.375973 | 37.49959 |
Phrynobatrachus dendrobates | Anura | LC | Ground-dwelling | 24.975150 | 37.44065 |
Phrynobatrachus dispar | Anura | LC | Semi-aquatic | 27.266657 | 37.97669 |
Phrynobatrachus elberti | Anura | DD | Ground-dwelling | 27.169992 | 37.84703 |
Phrynobatrachus francisci | Anura | LC | Ground-dwelling | 27.766061 | 37.76883 |
Phrynobatrachus fraterculus | Anura | LC | Semi-aquatic | 27.657048 | 37.99669 |
Phrynobatrachus gastoni | Anura | DD | Ground-dwelling | 27.789084 | 37.86000 |
Phrynobatrachus ghanensis | Anura | NT | Ground-dwelling | 27.578083 | 37.73363 |
Phrynobatrachus giorgii | Anura | DD | Ground-dwelling | 28.317460 | 37.92261 |
Phrynobatrachus graueri | Anura | LC | Semi-aquatic | 22.812033 | 37.60460 |
Phrynobatrachus guineensis | Anura | LC | Arboreal | 27.634723 | 37.65886 |
Phrynobatrachus gutturosus | Anura | LC | Semi-aquatic | 27.878854 | 38.07889 |
Phrynobatrachus hylaios | Anura | LC | Semi-aquatic | 27.326750 | 38.00101 |
Phrynobatrachus inexpectatus | Anura | DD | Ground-dwelling | 19.782608 | 36.75261 |
Phrynobatrachus intermedius | Anura | CR | Semi-aquatic | 27.581893 | 38.11195 |
Phrynobatrachus irangi | Anura | CR | Ground-dwelling | 21.910703 | 37.07943 |
Phrynobatrachus kakamikro | Anura | DD | Ground-dwelling | 22.784709 | 37.09933 |
Phrynobatrachus keniensis | Anura | LC | Semi-aquatic | 21.320855 | 37.25334 |
Phrynobatrachus kinangopensis | Anura | VU | Semi-aquatic | 21.422362 | 37.34711 |
Phrynobatrachus krefftii | Anura | EN | Ground-dwelling | 25.085794 | 37.53630 |
Phrynobatrachus latifrons | Anura | LC | Ground-dwelling | 27.807181 | 37.87410 |
Phrynobatrachus leveleve | Anura | LC | Semi-aquatic | 27.104015 | 37.95812 |
Phrynobatrachus liberiensis | Anura | LC | Semi-aquatic | 27.647507 | 38.05747 |
Phrynobatrachus mababiensis | Anura | LC | Semi-aquatic | 24.201433 | 37.62006 |
Phrynobatrachus minutus | Anura | LC | Semi-aquatic | 21.235176 | 37.24303 |
Phrynobatrachus nanus | Anura | DD | Ground-dwelling | 27.169992 | 37.65814 |
Phrynobatrachus natalensis | Anura | LC | Ground-dwelling | 25.181001 | 37.57710 |
Phrynobatrachus ogoensis | Anura | DD | Ground-dwelling | 28.800383 | 38.07179 |
Phrynobatrachus pakenhami | Anura | EN | Semi-aquatic | 25.412884 | 37.87087 |
Phrynobatrachus pallidus | Anura | LC | Semi-aquatic | 25.512923 | 37.86324 |
Phrynobatrachus parkeri | Anura | LC | Ground-dwelling | 27.773541 | 37.82226 |
Phrynobatrachus parvulus | Anura | LC | Ground-dwelling | 24.256564 | 37.37710 |
Phrynobatrachus perpalmatus | Anura | LC | Semi-aquatic | 25.704168 | 37.76754 |
Phrynobatrachus petropedetoides | Anura | DD | Ground-dwelling | 24.760431 | 37.44591 |
Phrynobatrachus phyllophilus | Anura | LC | Ground-dwelling | 27.647507 | 37.80542 |
Phrynobatrachus pintoi | Anura | EN | Ground-dwelling | 28.021273 | 37.80669 |
Phrynobatrachus plicatus | Anura | LC | Semi-aquatic | 27.825143 | 38.10356 |
Phrynobatrachus pygmaeus | Anura | DD | Ground-dwelling | 27.169992 | 37.65897 |
Phrynobatrachus rouxi | Anura | DD | Ground-dwelling | 21.017652 | 36.99483 |
Phrynobatrachus rungwensis | Anura | LC | Semi-aquatic | 23.586189 | 37.48034 |
Phrynobatrachus sandersoni | Anura | LC | Ground-dwelling | 26.874287 | 37.96222 |
Phrynobatrachus scapularis | Anura | LC | Semi-aquatic | 26.992906 | 37.91189 |
Phrynobatrachus scheffleri | Anura | LC | Semi-aquatic | 23.115202 | 37.49384 |
Phrynobatrachus steindachneri | Anura | CR | Semi-aquatic | 26.097737 | 37.86187 |
Phrynobatrachus sternfeldi | Anura | DD | Ground-dwelling | 27.578482 | 37.74336 |
Phrynobatrachus stewartae | Anura | LC | Semi-aquatic | 23.123424 | 37.33792 |
Phrynobatrachus sulfureogularis | Anura | VU | Ground-dwelling | 23.039952 | 37.14411 |
Phrynobatrachus taiensis | Anura | DD | Ground-dwelling | 27.573070 | 37.88615 |
Phrynobatrachus tokba | Anura | LC | Ground-dwelling | 27.632506 | 37.85360 |
Phrynobatrachus ukingensis | Anura | LC | Semi-aquatic | 23.038101 | 37.38952 |
Phrynobatrachus ungujae | Anura | EN | Ground-dwelling | 25.354542 | 37.47627 |
Phrynobatrachus uzungwensis | Anura | NT | Stream-dwelling | 23.217953 | 36.59663 |
Phrynobatrachus versicolor | Anura | LC | Ground-dwelling | 22.254248 | 37.17374 |
Phrynobatrachus villiersi | Anura | LC | Ground-dwelling | 27.632376 | 37.90663 |
Phrynobatrachus werneri | Anura | LC | Stream-dwelling | 26.612735 | 37.02906 |
Phrynomantis affinis | Anura | LC | Ground-dwelling | 24.261544 | 37.51798 |
Phrynomantis annectens | Anura | LC | Ground-dwelling | 22.381583 | 37.20271 |
Phrynomantis bifasciatus | Anura | LC | Ground-dwelling | 24.182927 | 37.52394 |
Phrynomantis microps | Anura | LC | Ground-dwelling | 27.648286 | 38.04426 |
Phrynomantis somalicus | Anura | LC | Ground-dwelling | 25.755878 | 37.76981 |
Phrynomedusa appendiculata | Anura | NT | Arboreal | 24.720524 | 39.17011 |
Phrynomedusa bokermanni | Anura | DD | Stream-dwelling | 26.100808 | 38.75754 |
Phrynomedusa marginata | Anura | LC | Arboreal | 25.837940 | 39.25109 |
Phrynomedusa vanzolinii | Anura | DD | Stream-dwelling | 25.946292 | 38.81175 |
Phrynopus auriculatus | Anura | DD | Ground-dwelling | 21.293309 | 34.05129 |
Phrynopus barthlenae | Anura | EN | Ground-dwelling | 19.242958 | 33.75379 |
Phrynopus bracki | Anura | DD | Ground-dwelling | 21.293309 | 34.05259 |
Phrynopus bufoides | Anura | DD | Ground-dwelling | 21.293309 | 34.05466 |
Phrynopus dagmarae | Anura | EN | Ground-dwelling | 19.973855 | 33.94436 |
Phrynopus heimorum | Anura | CR | Ground-dwelling | 17.481530 | 33.62365 |
Phrynopus horstpauli | Anura | EN | Arboreal | 19.534037 | 33.66425 |
Phrynopus juninensis | Anura | CR | Ground-dwelling | 17.039787 | 33.49340 |
Phrynopus kauneorum | Anura | EN | Ground-dwelling | 19.679576 | 33.93261 |
Phrynopus kotosh | Anura | DD | Ground-dwelling | 15.720102 | 33.31947 |
Phrynopus miroslawae | Anura | DD | Ground-dwelling | 21.293309 | 34.14639 |
Phrynopus montium | Anura | EN | Ground-dwelling | 17.039787 | 33.55707 |
Phrynopus nicoleae | Anura | DD | Ground-dwelling | 21.293309 | 34.07737 |
Phrynopus oblivius | Anura | DD | Ground-dwelling | 17.039787 | 33.53326 |
Phrynopus paucari | Anura | DD | Ground-dwelling | 21.293309 | 34.00331 |
Phrynopus peruanus | Anura | CR | Ground-dwelling | 17.039787 | 33.45348 |
Phrynopus pesantesi | Anura | DD | Ground-dwelling | 21.293309 | 34.03373 |
Phrynopus tautzorum | Anura | DD | Ground-dwelling | 19.242958 | 33.84706 |
Phrynopus thompsoni | Anura | DD | Ground-dwelling | 22.537771 | 34.25800 |
Phrynopus tribulosus | Anura | LC | Ground-dwelling | 21.293309 | 34.01806 |
Phyllobates aurotaenia | Anura | LC | Ground-dwelling | 25.822018 | 36.80251 |
Phyllobates bicolor | Anura | EN | Ground-dwelling | 25.069361 | 36.66159 |
Phyllobates lugubris | Anura | LC | Ground-dwelling | 26.538178 | 36.94940 |
Phyllobates terribilis | Anura | EN | Ground-dwelling | 26.028080 | 36.88573 |
Phyllobates vittatus | Anura | VU | Stream-dwelling | 23.965250 | 35.97040 |
Phyllodytes acuminatus | Anura | LC | Arboreal | 25.482458 | 39.80672 |
Phyllodytes brevirostris | Anura | DD | Arboreal | 25.850479 | 39.86640 |
Phyllodytes edelmoi | Anura | DD | Arboreal | 25.702849 | 39.88983 |
Phyllodytes gyrinaethes | Anura | DD | Arboreal | 25.702849 | 39.89511 |
Phyllodytes kautskyi | Anura | LC | Arboreal | 25.535122 | 39.77238 |
Phyllodytes luteolus | Anura | LC | Arboreal | 25.482714 | 39.73469 |
Phyllodytes maculosus | Anura | DD | Arboreal | 25.573170 | 39.83630 |
Phyllodytes melanomystax | Anura | LC | Arboreal | 25.351025 | 40.61588 |
Phyllodytes punctatus | Anura | DD | Arboreal | 25.547428 | 39.80995 |
Phyllodytes tuberculosus | Anura | DD | Arboreal | 24.959353 | 39.74471 |
Phyllodytes wuchereri | Anura | DD | Arboreal | 25.379203 | 39.79784 |
Phyllomedusa araguari | Anura | DD | Arboreal | 26.227707 | 40.31366 |
Phyllomedusa bahiana | Anura | LC | Arboreal | 25.262760 | 40.81028 |
Phyllomedusa bicolor | Anura | LC | Arboreal | 27.860104 | 40.58826 |
Phyllomedusa boliviana | Anura | LC | Arboreal | 26.742259 | 40.85539 |
Phyllomedusa burmeisteri | Anura | LC | Arboreal | 25.720126 | 41.68542 |
Phyllomedusa camba | Anura | LC | Arboreal | 26.726963 | 41.44965 |
Phyllomedusa coelestis | Anura | LC | Ground-dwelling | 25.324783 | 40.63783 |
Phyllomedusa distincta | Anura | LC | Arboreal | 25.384568 | 40.89082 |
Phyllomedusa iheringii | Anura | LC | Arboreal | 23.790257 | 40.31856 |
Phyllomedusa neildi | Anura | DD | Arboreal | 26.464656 | 40.92380 |
Phyllomedusa sauvagii | Anura | LC | Arboreal | 26.710596 | 41.26460 |
Phyllomedusa tarsius | Anura | LC | Arboreal | 27.615999 | 41.15183 |
Phyllomedusa tetraploidea | Anura | LC | Arboreal | 26.701289 | 41.13520 |
Phyllomedusa trinitatis | Anura | LC | Arboreal | 26.766527 | 40.98859 |
Phyllomedusa vaillantii | Anura | LC | Arboreal | 27.856217 | 40.57943 |
Phyllomedusa venusta | Anura | LC | Arboreal | 26.558295 | 40.20363 |
Physalaemus aguirrei | Anura | LC | Ground-dwelling | 25.594199 | 39.82263 |
Physalaemus albifrons | Anura | LC | Semi-aquatic | 25.943222 | 39.92987 |
Physalaemus albonotatus | Anura | LC | Ground-dwelling | 27.398750 | 40.40784 |
Physalaemus angrensis | Anura | DD | Ground-dwelling | 26.714437 | 39.90559 |
Physalaemus atlanticus | Anura | VU | Ground-dwelling | 24.858734 | 40.48286 |
Physalaemus barrioi | Anura | DD | Ground-dwelling | 26.714437 | 39.53487 |
Physalaemus biligonigerus | Anura | LC | Ground-dwelling | 25.942779 | 39.45073 |
Physalaemus bokermanni | Anura | DD | Ground-dwelling | 25.741310 | 39.92918 |
Physalaemus caete | Anura | DD | Ground-dwelling | 25.681934 | 40.06697 |
Physalaemus camacan | Anura | DD | Ground-dwelling | 25.575562 | 39.74689 |
Physalaemus centralis | Anura | LC | Ground-dwelling | 27.491983 | 39.41679 |
Physalaemus cicada | Anura | LC | Ground-dwelling | 25.345585 | 39.09110 |
Physalaemus crombiei | Anura | LC | Ground-dwelling | 25.542560 | 41.20882 |
Physalaemus cuqui | Anura | LC | Semi-aquatic | 23.830197 | 40.00335 |
Physalaemus cuvieri | Anura | LC | Semi-aquatic | 27.229720 | 38.52141 |
Physalaemus deimaticus | Anura | DD | Ground-dwelling | 24.594125 | 39.63226 |
Physalaemus ephippifer | Anura | LC | Ground-dwelling | 27.949731 | 39.27315 |
Physalaemus erikae | Anura | LC | Ground-dwelling | 25.565537 | 40.07594 |
Physalaemus erythros | Anura | DD | Ground-dwelling | 25.847809 | 39.24915 |
Physalaemus evangelistai | Anura | DD | Ground-dwelling | 25.220967 | 39.67855 |
Physalaemus fernandezae | Anura | LC | Ground-dwelling | 21.738313 | 38.55690 |
Physalaemus fischeri | Anura | LC | Ground-dwelling | 26.763485 | 39.84787 |
Physalaemus gracilis | Anura | LC | Ground-dwelling | 24.854672 | 38.67847 |
Physalaemus henselii | Anura | LC | Ground-dwelling | 24.591281 | 37.15578 |
Physalaemus insperatus | Anura | DD | Ground-dwelling | 24.452954 | 39.60984 |
Physalaemus irroratus | Anura | DD | Ground-dwelling | 25.659968 | 39.76277 |
Physalaemus jordanensis | Anura | DD | Ground-dwelling | 25.847842 | 39.57572 |
Physalaemus kroyeri | Anura | LC | Ground-dwelling | 25.419657 | 39.89564 |
Physalaemus lisei | Anura | LC | Ground-dwelling | 24.604965 | 39.56511 |
Physalaemus maculiventris | Anura | LC | Semi-aquatic | 25.750972 | 40.05315 |
Physalaemus marmoratus | Anura | LC | Semi-aquatic | 26.979290 | 41.22957 |
Physalaemus maximus | Anura | DD | Ground-dwelling | 25.616410 | 39.17858 |
Physalaemus moreirae | Anura | DD | Ground-dwelling | 26.100808 | 39.81842 |
Physalaemus nanus | Anura | LC | Ground-dwelling | 24.718925 | 39.60269 |
Physalaemus nattereri | Anura | LC | Fossorial | 27.384431 | 41.40528 |
Physalaemus obtectus | Anura | DD | Ground-dwelling | 25.801465 | 39.76682 |
Physalaemus olfersii | Anura | LC | Ground-dwelling | 25.643718 | 39.70166 |
Physalaemus riograndensis | Anura | LC | Ground-dwelling | 25.427026 | 41.35410 |
Physalaemus rupestris | Anura | DD | Ground-dwelling | 25.986631 | 39.77750 |
Physalaemus santafecinus | Anura | LC | Semi-aquatic | 26.598792 | 40.84880 |
Physalaemus signifer | Anura | LC | Ground-dwelling | 25.637395 | 40.91391 |
Physalaemus soaresi | Anura | EN | Ground-dwelling | 26.222532 | 39.82201 |
Physalaemus spiniger | Anura | LC | Ground-dwelling | 25.726242 | 40.43639 |
Phytotriades auratus | Anura | EN | Arboreal | 26.667627 | 39.90054 |
Phyzelaphryne miriamae | Anura | LC | Ground-dwelling | 28.920309 | 37.43741 |
Pipa arrabali | Anura | LC | Aquatic | 27.852651 | 38.59500 |
Pipa aspera | Anura | LC | Aquatic | 27.577137 | 38.58618 |
Pipa carvalhoi | Anura | LC | Aquatic | 25.698608 | 39.60131 |
Pipa myersi | Anura | EN | Aquatic | 28.084410 | 38.53600 |
Pipa parva | Anura | LC | Aquatic | 26.604995 | 38.37994 |
Pipa pipa | Anura | LC | Aquatic | 27.539248 | 38.54120 |
Pipa snethlageae | Anura | LC | Aquatic | 28.651187 | 38.68249 |
Pithecopus nordestinus | Anura | DD | Arboreal | 25.852918 | 40.44010 |
Pithecopus rohdei | Anura | LC | Arboreal | 25.961716 | 40.35953 |
Platymantis banahao | Anura | NT | Arboreal | 27.438353 | 35.73011 |
Platymantis cagayanensis | Anura | NT | Ground-dwelling | 27.861076 | 36.22692 |
Platymantis cornutus | Anura | LC | Arboreal | 27.991122 | 36.15199 |
Platymantis corrugatus | Anura | LC | Ground-dwelling | 27.726873 | 35.02843 |
Platymantis diesmosi | Anura | EN | Ground-dwelling | 27.839570 | 36.20472 |
Platymantis dorsalis | Anura | LC | Ground-dwelling | 27.659770 | 34.46154 |
Platymantis guentheri | Anura | LC | Arboreal | 27.678638 | 36.01579 |
Platymantis hazelae | Anura | VU | Arboreal | 27.345221 | 35.44776 |
Platymantis indeprensus | Anura | NT | Ground-dwelling | 27.438353 | 36.10372 |
Platymantis insulatus | Anura | CR | Ground-dwelling | 27.387839 | 35.99261 |
Platymantis isarog | Anura | LC | Arboreal | 27.839570 | 36.08450 |
Platymantis lawtoni | Anura | EN | Arboreal | 27.597276 | 36.06313 |
Platymantis levigatus | Anura | EN | Ground-dwelling | 27.597276 | 36.31728 |
Platymantis luzonensis | Anura | NT | Arboreal | 27.780539 | 35.51833 |
Platymantis mimulus | Anura | LC | Ground-dwelling | 27.860270 | 35.02817 |
Platymantis montanus | Anura | VU | Arboreal | 27.783815 | 35.16420 |
Platymantis naomii | Anura | NT | Ground-dwelling | 27.438353 | 34.95446 |
Platymantis negrosensis | Anura | NT | Arboreal | 27.388730 | 36.14741 |
Platymantis paengi | Anura | EN | Ground-dwelling | 27.486589 | 36.10070 |
Platymantis panayensis | Anura | EN | Arboreal | 27.432239 | 35.78295 |
Platymantis polillensis | Anura | LC | Arboreal | 27.892652 | 36.03172 |
Platymantis pseudodorsalis | Anura | NT | Ground-dwelling | 27.438353 | 36.09982 |
Platymantis pygmaeus | Anura | LC | Ground-dwelling | 28.015923 | 35.69924 |
Platymantis rabori | Anura | LC | Arboreal | 27.651515 | 36.03915 |
Platymantis sierramadrensis | Anura | VU | Arboreal | 28.134325 | 36.15086 |
Platymantis spelaeus | Anura | EN | Ground-dwelling | 27.836992 | 36.28161 |
Platymantis subterrestris | Anura | EN | Arboreal | 28.091366 | 36.07627 |
Platymantis taylori | Anura | VU | Ground-dwelling | 27.944422 | 36.15707 |
Platyplectrum ornatum | Anura | LC | Ground-dwelling | 25.831775 | 40.60325 |
Platyplectrum spenceri | Anura | LC | Ground-dwelling | 24.370711 | 37.10011 |
Plectrohyla acanthodes | Anura | EN | Stream-dwelling | 26.443403 | 39.10996 |
Plectrohyla avia | Anura | EN | Arboreal | 26.235202 | 39.65166 |
Plectrohyla chrysopleura | Anura | CR | Stream-dwelling | 26.218855 | 39.21782 |
Plectrohyla dasypus | Anura | CR | Arboreal | 25.474466 | 39.58573 |
Plectrohyla exquisita | Anura | CR | Arboreal | 25.474466 | 39.53251 |
Plectrohyla glandulosa | Anura | CR | Stream-dwelling | 22.662030 | 38.75994 |
Plectrohyla guatemalensis | Anura | NT | Stream-dwelling | 26.060437 | 39.18090 |
Plectrohyla hartwegi | Anura | EN | Stream-dwelling | 26.086690 | 39.06335 |
Plectrohyla ixil | Anura | VU | Stream-dwelling | 26.224531 | 39.14763 |
Plectrohyla lacertosa | Anura | EN | Stream-dwelling | 26.306472 | 39.15203 |
Plectrohyla matudai | Anura | LC | Ground-dwelling | 26.253157 | 39.81854 |
Plectrohyla pokomchi | Anura | EN | Stream-dwelling | 25.349043 | 39.11670 |
Plectrohyla psiloderma | Anura | EN | Stream-dwelling | 26.808944 | 39.28417 |
Plectrohyla quecchi | Anura | EN | Stream-dwelling | 26.075416 | 39.15726 |
Plectrohyla sagorum | Anura | VU | Stream-dwelling | 25.677372 | 39.15144 |
Plectrohyla tecunumani | Anura | CR | Stream-dwelling | 22.662030 | 38.72630 |
Plectrohyla teuchestes | Anura | CR | Stream-dwelling | 26.801790 | 39.26856 |
Plethodon albagula | Caudata | LC | Ground-dwelling | 25.796568 | 35.14904 |
Plethodon amplus | Caudata | EN | Ground-dwelling | 26.612388 | 35.15878 |
Plethodon angusticlavius | Caudata | LC | Semi-aquatic | 25.344871 | 34.85502 |
Plethodon asupak | Caudata | EN | Ground-dwelling | 18.640238 | 33.65518 |
Plethodon aureolus | Caudata | DD | Ground-dwelling | 26.581556 | 35.21123 |
Plethodon caddoensis | Caudata | NT | Ground-dwelling | 26.938406 | 35.78527 |
Plethodon cheoah | Caudata | VU | Ground-dwelling | 26.416263 | 35.19973 |
Plethodon cinereus | Caudata | LC | Ground-dwelling | 20.783469 | 35.24835 |
Plethodon cylindraceus | Caudata | LC | Ground-dwelling | 24.677079 | 34.31154 |
Plethodon dorsalis | Caudata | LC | Ground-dwelling | 26.212147 | 34.37004 |
Plethodon dunni | Caudata | LC | Ground-dwelling | 18.311281 | 33.48614 |
Plethodon electromorphus | Caudata | LC | Ground-dwelling | 23.793345 | 34.94322 |
Plethodon elongatus | Caudata | LC | Ground-dwelling | 18.545405 | 33.75528 |
Plethodon fourchensis | Caudata | NT | Ground-dwelling | 26.938406 | 35.34323 |
Plethodon glutinosus | Caudata | LC | Ground-dwelling | 25.114425 | 35.01925 |
Plethodon hoffmani | Caudata | LC | Ground-dwelling | 22.085123 | 34.68363 |
Plethodon hubrichti | Caudata | VU | Ground-dwelling | 25.226755 | 34.65451 |
Plethodon idahoensis | Caudata | LC | Semi-aquatic | 17.315250 | 33.81902 |
Plethodon jordani | Caudata | NT | Ground-dwelling | 26.591833 | 35.66712 |
Plethodon kentucki | Caudata | LC | Ground-dwelling | 25.432631 | 35.19310 |
Plethodon kiamichi | Caudata | VU | Ground-dwelling | 26.791072 | 35.25523 |
Plethodon kisatchie | Caudata | LC | Ground-dwelling | 27.595386 | 35.38216 |
Plethodon larselli | Caudata | LC | Ground-dwelling | 18.047693 | 33.65660 |
Plethodon meridianus | Caudata | EN | Ground-dwelling | 26.615888 | 35.14765 |
Plethodon metcalfi | Caudata | LC | Ground-dwelling | 26.684875 | 35.07914 |
Plethodon montanus | Caudata | LC | Ground-dwelling | 25.985686 | 34.81377 |
Plethodon neomexicanus | Caudata | EN | Ground-dwelling | 19.361487 | 33.78864 |
Plethodon nettingi | Caudata | NT | Ground-dwelling | 24.445954 | 34.99589 |
Plethodon ouachitae | Caudata | NT | Ground-dwelling | 26.791072 | 35.41325 |
Plethodon petraeus | Caudata | VU | Ground-dwelling | 26.919287 | 35.23050 |
Plethodon punctatus | Caudata | NT | Ground-dwelling | 25.071540 | 34.80259 |
Plethodon richmondi | Caudata | LC | Ground-dwelling | 25.607859 | 35.12922 |
Plethodon sequoyah | Caudata | DD | Ground-dwelling | 26.993791 | 35.30451 |
Plethodon serratus | Caudata | LC | Ground-dwelling | 26.053398 | 35.27488 |
Plethodon shenandoah | Caudata | VU | Ground-dwelling | 24.980275 | 35.26887 |
Plethodon sherando | Caudata | VU | Ground-dwelling | 25.226755 | 35.09454 |
Plethodon shermani | Caudata | NT | Ground-dwelling | 26.704641 | 35.15169 |
Plethodon stormi | Caudata | EN | Ground-dwelling | 18.662596 | 33.76114 |
Plethodon teyahalee | Caudata | LC | Ground-dwelling | 26.711067 | 35.23552 |
Plethodon vandykei | Caudata | LC | Ground-dwelling | 17.283743 | 33.58472 |
Plethodon vehiculum | Caudata | LC | Ground-dwelling | 16.895233 | 32.99858 |
Plethodon ventralis | Caudata | LC | Ground-dwelling | 27.105219 | 34.79397 |
Plethodon virginia | Caudata | NT | Ground-dwelling | 24.858064 | 34.91520 |
Plethodon websteri | Caudata | LC | Ground-dwelling | 27.662289 | 35.27027 |
Plethodon wehrlei | Caudata | LC | Ground-dwelling | 24.094497 | 35.03941 |
Plethodon welleri | Caudata | EN | Ground-dwelling | 25.951141 | 34.93696 |
Plethodon yonahlossee | Caudata | LC | Ground-dwelling | 26.065892 | 35.13347 |
Plethodontohyla bipunctata | Anura | LC | Fossorial | 25.700721 | 38.93514 |
Plethodontohyla brevipes | Anura | VU | Ground-dwelling | 26.044957 | 38.00696 |
Plethodontohyla fonetana | Anura | EN | Ground-dwelling | 27.336782 | 38.12929 |
Plethodontohyla guentheri | Anura | EN | Ground-dwelling | 26.476930 | 38.14047 |
Plethodontohyla inguinalis | Anura | LC | Arboreal | 25.957775 | 37.83042 |
Plethodontohyla mihanika | Anura | LC | Arboreal | 25.536097 | 37.85142 |
Plethodontohyla notosticta | Anura | LC | Arboreal | 26.074998 | 37.88506 |
Plethodontohyla ocellata | Anura | LC | Ground-dwelling | 25.843044 | 37.98985 |
Plethodontohyla tuberata | Anura | NT | Ground-dwelling | 25.578091 | 37.98121 |
Pleurodeles poireti | Caudata | EN | Ground-dwelling | 24.660210 | 36.80325 |
Pleurodeles waltl | Caudata | NT | Semi-aquatic | 21.715524 | 36.52835 |
Pleurodema bibroni | Anura | NT | Ground-dwelling | 24.490001 | 39.13601 |
Pleurodema borellii | Anura | LC | Ground-dwelling | 20.804172 | 39.91047 |
Pleurodema brachyops | Anura | LC | Ground-dwelling | 26.975133 | 42.83507 |
Pleurodema bufoninum | Anura | LC | Ground-dwelling | 14.224131 | 37.49533 |
Pleurodema cinereum | Anura | LC | Ground-dwelling | 16.867150 | 39.41411 |
Pleurodema diplolister | Anura | LC | Fossorial | 26.289187 | 42.24695 |
Pleurodema fuscomaculatum | Anura | DD | Ground-dwelling | 28.382297 | 40.87242 |
Pleurodema guayapae | Anura | LC | Ground-dwelling | 23.701560 | 39.83563 |
Pleurodema kriegi | Anura | NT | Ground-dwelling | 23.325162 | 38.95469 |
Pleurodema marmoratum | Anura | VU | Ground-dwelling | 16.534575 | 36.25950 |
Pleurodema nebulosum | Anura | LC | Ground-dwelling | 20.304007 | 39.77422 |
Pleurodema thaul | Anura | LC | Ground-dwelling | 16.170853 | 38.20385 |
Pleurodema tucumanum | Anura | LC | Ground-dwelling | 23.174897 | 40.28131 |
Polypedates braueri | Anura | LC | Arboreal | 25.299620 | 39.22702 |
Polypedates chlorophthalmus | Anura | DD | Stream-dwelling | 28.108281 | 38.22063 |
Polypedates colletti | Anura | LC | Arboreal | 28.117194 | 38.80158 |
Polypedates cruciger | Anura | LC | Arboreal | 28.208607 | 38.70796 |
Polypedates insularis | Anura | EN | Arboreal | 27.905235 | 38.66359 |
Polypedates leucomystax | Anura | LC | Arboreal | 27.289508 | 39.09722 |
Polypedates macrotis | Anura | LC | Arboreal | 28.221712 | 38.68324 |
Polypedates maculatus | Anura | LC | Arboreal | 27.062007 | 38.61193 |
Polypedates megacephalus | Anura | LC | Arboreal | 27.181825 | 38.68664 |
Polypedates mutus | Anura | LC | Arboreal | 26.845948 | 38.57435 |
Polypedates occidentalis | Anura | DD | Arboreal | 28.605524 | 38.75539 |
Polypedates otilophus | Anura | LC | Arboreal | 27.907256 | 38.67502 |
Polypedates pseudocruciger | Anura | LC | Arboreal | 27.593730 | 38.66748 |
Polypedates taeniatus | Anura | LC | Arboreal | 24.502041 | 38.25199 |
Polypedates zed | Anura | DD | Arboreal | 21.995506 | 37.90795 |
Poyntonia paludicola | Anura | NT | Stream-dwelling | 20.760458 | 36.41674 |
Poyntonophrynus beiranus | Anura | LC | Ground-dwelling | 25.523508 | 38.67936 |
Poyntonophrynus damaranus | Anura | DD | Fossorial | 23.098939 | 39.34673 |
Poyntonophrynus dombensis | Anura | LC | Ground-dwelling | 23.460750 | 38.35168 |
Poyntonophrynus fenoulheti | Anura | LC | Ground-dwelling | 24.084959 | 38.57055 |
Poyntonophrynus grandisonae | Anura | DD | Arboreal | 24.517565 | 38.28849 |
Poyntonophrynus hoeschi | Anura | LC | Ground-dwelling | 22.104579 | 38.21582 |
Poyntonophrynus kavangensis | Anura | LC | Ground-dwelling | 24.223848 | 38.49475 |
Poyntonophrynus lughensis | Anura | LC | Ground-dwelling | 24.496094 | 38.55615 |
Poyntonophrynus parkeri | Anura | LC | Ground-dwelling | 22.300721 | 38.18801 |
Poyntonophrynus vertebralis | Anura | LC | Ground-dwelling | 21.015120 | 38.07231 |
Pristimantis aaptus | Anura | LC | Ground-dwelling | 29.297821 | 35.14651 |
Pristimantis acatallelus | Anura | LC | Arboreal | 24.768618 | 34.49533 |
Pristimantis acerus | Anura | EN | Arboreal | 21.173347 | 33.98907 |
Pristimantis achatinus | Anura | LC | Ground-dwelling | 25.180631 | 38.38838 |
Pristimantis achuar | Anura | LC | Ground-dwelling | 25.933961 | 34.76817 |
Pristimantis actinolaimus | Anura | EN | Arboreal | 23.046042 | 34.28993 |
Pristimantis actites | Anura | VU | Ground-dwelling | 23.082386 | 34.69308 |
Pristimantis acuminatus | Anura | LC | Arboreal | 25.422109 | 34.53400 |
Pristimantis acutirostris | Anura | EN | Arboreal | 22.327385 | 34.08005 |
Pristimantis adiastolus | Anura | LC | Arboreal | 21.293309 | 34.11266 |
Pristimantis aemulatus | Anura | EN | Arboreal | 26.439037 | 34.74906 |
Pristimantis affinis | Anura | EN | Arboreal | 23.224229 | 34.30091 |
Pristimantis alalocophus | Anura | EN | Arboreal | 22.600953 | 34.09306 |
Pristimantis albertus | Anura | VU | Ground-dwelling | 19.166548 | 33.85628 |
Pristimantis altae | Anura | LC | Arboreal | 26.177360 | 34.80149 |
Pristimantis altamazonicus | Anura | LC | Ground-dwelling | 27.274259 | 35.02902 |
Pristimantis altamnis | Anura | LC | Arboreal | 23.910793 | 34.40616 |
Pristimantis amydrotus | Anura | DD | Arboreal | 24.501951 | 34.43040 |
Pristimantis anemerus | Anura | DD | Arboreal | 22.881730 | 34.29513 |
Pristimantis angustilineatus | Anura | EN | Arboreal | 24.394921 | 34.50743 |
Pristimantis aniptopalmatus | Anura | LC | Ground-dwelling | 21.293309 | 34.19543 |
Pristimantis anolirex | Anura | VU | Arboreal | 23.310280 | 34.35938 |
Pristimantis apiculatus | Anura | EN | Ground-dwelling | 22.782399 | 34.29103 |
Pristimantis appendiculatus | Anura | LC | Ground-dwelling | 22.668175 | 34.30420 |
Pristimantis aquilonaris | Anura | LC | Ground-dwelling | 23.447308 | 34.54349 |
Pristimantis ardalonychus | Anura | EN | Arboreal | 22.544786 | 34.25865 |
Pristimantis atrabracus | Anura | DD | Arboreal | 24.252411 | 34.51914 |
Pristimantis atratus | Anura | VU | Arboreal | 23.232843 | 34.24702 |
Pristimantis aurantiguttatus | Anura | EN | Arboreal | 26.169057 | 34.67927 |
Pristimantis aureolineatus | Anura | LC | Arboreal | 26.583239 | 34.70845 |
Pristimantis aureoventris | Anura | EN | Arboreal | 26.671496 | 34.71679 |
Pristimantis avicuporum | Anura | LC | Ground-dwelling | 24.252411 | 34.53341 |
Pristimantis avius | Anura | DD | Arboreal | 27.345187 | 34.82390 |
Pristimantis bacchus | Anura | EN | Arboreal | 22.575003 | 34.27224 |
Pristimantis baiotis | Anura | NT | Arboreal | 26.439037 | 34.77322 |
Pristimantis balionotus | Anura | EN | Arboreal | 22.745113 | 34.05609 |
Pristimantis bambu | Anura | EN | Arboreal | 20.702287 | 33.84711 |
Pristimantis baryecuus | Anura | EN | Arboreal | 23.289544 | 34.28602 |
Pristimantis batrachites | Anura | EN | Arboreal | 22.438970 | 34.20157 |
Pristimantis bearsei | Anura | DD | Stream-dwelling | 24.265362 | 33.97607 |
Pristimantis bellator | Anura | LC | Arboreal | 23.447308 | 34.26112 |
Pristimantis bellona | Anura | EN | Arboreal | 26.439037 | 34.67570 |
Pristimantis bicolor | Anura | VU | Arboreal | 23.919509 | 35.73086 |
Pristimantis bicumulus | Anura | VU | Ground-dwelling | 26.646904 | 34.85640 |
Pristimantis bipunctatus | Anura | LC | Ground-dwelling | 20.168836 | 34.01669 |
Pristimantis bogotensis | Anura | LC | Arboreal | 23.224229 | 35.33947 |
Pristimantis boulengeri | Anura | LC | Arboreal | 23.900691 | 34.38310 |
Pristimantis brevifrons | Anura | LC | Arboreal | 23.919367 | 34.42466 |
Pristimantis bromeliaceus | Anura | LC | Arboreal | 22.973203 | 34.11469 |
Pristimantis buccinator | Anura | LC | Arboreal | 23.069088 | 34.30343 |
Pristimantis buckleyi | Anura | LC | Arboreal | 24.204056 | 32.90353 |
Pristimantis cabrerai | Anura | DD | Arboreal | 24.397288 | 34.43177 |
Pristimantis cacao | Anura | CR | Ground-dwelling | 22.965861 | 34.40529 |
Pristimantis caeruleonotus | Anura | DD | Arboreal | 24.012885 | 34.43110 |
Pristimantis cajamarcensis | Anura | LC | Arboreal | 23.218477 | 34.31290 |
Pristimantis calcaratus | Anura | VU | Ground-dwelling | 24.552956 | 34.71419 |
Pristimantis calcarulatus | Anura | VU | Arboreal | 23.256608 | 34.16186 |
Pristimantis cantitans | Anura | NT | Ground-dwelling | 27.044932 | 34.86601 |
Pristimantis capitonis | Anura | EN | Ground-dwelling | 23.996460 | 34.59926 |
Pristimantis caprifer | Anura | CR | Arboreal | 25.012270 | 34.56143 |
Pristimantis carlossanchezi | Anura | EN | Arboreal | 24.251284 | 34.37327 |
Pristimantis carmelitae | Anura | EN | Ground-dwelling | 28.236147 | 35.14669 |
Pristimantis carranguerorum | Anura | EN | Ground-dwelling | 22.707356 | 34.38964 |
Pristimantis carvalhoi | Anura | LC | Arboreal | 27.217530 | 33.62993 |
Pristimantis caryophyllaceus | Anura | LC | Ground-dwelling | 26.760077 | 34.94533 |
Pristimantis celator | Anura | VU | Arboreal | 23.613523 | 34.23550 |
Pristimantis cerasinus | Anura | LC | Ground-dwelling | 26.892353 | 34.88420 |
Pristimantis ceuthospilus | Anura | VU | Arboreal | 23.691841 | 34.38416 |
Pristimantis chalceus | Anura | LC | Arboreal | 25.236539 | 34.71165 |
Pristimantis charlottevillensis | Anura | VU | Ground-dwelling | 26.692732 | 34.97543 |
Pristimantis chiastonotus | Anura | LC | Ground-dwelling | 27.534829 | 35.02514 |
Pristimantis chimu | Anura | DD | Arboreal | 24.501951 | 34.45618 |
Pristimantis chloronotus | Anura | LC | Arboreal | 22.883613 | 34.24568 |
Pristimantis chrysops | Anura | CR | Arboreal | 24.612963 | 34.42685 |
Pristimantis citriogaster | Anura | EN | Stream-dwelling | 23.790447 | 33.94375 |
Pristimantis colodactylus | Anura | LC | Arboreal | 23.402771 | 34.32451 |
Pristimantis colomai | Anura | VU | Arboreal | 23.531525 | 36.25053 |
Pristimantis colonensis | Anura | VU | Arboreal | 24.181133 | 34.46767 |
Pristimantis colostichos | Anura | EN | Ground-dwelling | 25.673615 | 34.68908 |
Pristimantis condor | Anura | LC | Arboreal | 23.557997 | 34.28460 |
Pristimantis conspicillatus | Anura | LC | Ground-dwelling | 26.731523 | 35.68882 |
Pristimantis cordovae | Anura | EN | Ground-dwelling | 20.831249 | 34.15401 |
Pristimantis corniger | Anura | EN | Ground-dwelling | 25.227561 | 34.63866 |
Pristimantis coronatus | Anura | DD | Ground-dwelling | 23.447308 | 34.37153 |
Pristimantis corrugatus | Anura | LC | Arboreal | 21.549203 | 34.06813 |
Pristimantis cosnipatae | Anura | CR | Arboreal | 14.573980 | 33.00894 |
Pristimantis cremnobates | Anura | EN | Stream-dwelling | 23.837156 | 33.93262 |
Pristimantis crenunguis | Anura | EN | Stream-dwelling | 23.191329 | 34.22648 |
Pristimantis cristinae | Anura | EN | Arboreal | 27.127537 | 34.72058 |
Pristimantis croceoinguinis | Anura | LC | Arboreal | 26.136162 | 34.77441 |
Pristimantis crucifer | Anura | NT | Arboreal | 24.129337 | 34.57786 |
Pristimantis cruciocularis | Anura | LC | Ground-dwelling | 21.332623 | 34.17126 |
Pristimantis cruentus | Anura | LC | Arboreal | 26.917141 | 34.88370 |
Pristimantis cryophilius | Anura | EN | Ground-dwelling | 23.751204 | 34.50399 |
Pristimantis cryptomelas | Anura | NT | Ground-dwelling | 23.174325 | 34.45304 |
Pristimantis cuentasi | Anura | EN | Ground-dwelling | 26.843099 | 34.83839 |
Pristimantis cuneirostris | Anura | DD | Arboreal | 24.252411 | 34.44085 |
Pristimantis curtipes | Anura | LC | Ground-dwelling | 22.501542 | 34.64132 |
Pristimantis danae | Anura | LC | Arboreal | 19.191409 | 31.31458 |
Pristimantis degener | Anura | EN | Arboreal | 23.183886 | 34.22349 |
Pristimantis deinops | Anura | CR | Arboreal | 24.612963 | 34.48137 |
Pristimantis delicatus | Anura | EN | Arboreal | 28.236147 | 34.89806 |
Pristimantis delius | Anura | DD | Ground-dwelling | 27.400077 | 34.98753 |
Pristimantis dendrobatoides | Anura | LC | Arboreal | 27.039707 | 34.86600 |
Pristimantis devillei | Anura | EN | Arboreal | 21.896088 | 34.03939 |
Pristimantis diadematus | Anura | LC | Arboreal | 24.875501 | 34.49575 |
Pristimantis diaphonus | Anura | CR | Arboreal | 25.027059 | 34.58255 |
Pristimantis diogenes | Anura | CR | Stream-dwelling | 24.364732 | 33.97905 |
Pristimantis dissimulatus | Anura | EN | Arboreal | 19.955019 | 33.74255 |
Pristimantis divnae | Anura | LC | Arboreal | 19.200894 | 33.62761 |
Pristimantis dorsopictus | Anura | VU | Arboreal | 21.646674 | 34.06359 |
Pristimantis duellmani | Anura | VU | Arboreal | 23.152905 | 34.31738 |
Pristimantis duende | Anura | VU | Ground-dwelling | 24.198867 | 34.56460 |
Pristimantis dundeei | Anura | DD | Arboreal | 26.542558 | 34.75551 |
Pristimantis elegans | Anura | VU | Arboreal | 23.419792 | 35.39875 |
Pristimantis epacrus | Anura | LC | Ground-dwelling | 25.227561 | 34.74806 |
Pristimantis eremitus | Anura | VU | Arboreal | 22.782399 | 34.21963 |
Pristimantis eriphus | Anura | VU | Arboreal | 22.883613 | 34.16512 |
Pristimantis ernesti | Anura | VU | Arboreal | 23.837156 | 34.36511 |
Pristimantis erythropleura | Anura | LC | Arboreal | 24.303858 | 34.36690 |
Pristimantis esmeraldas | Anura | LC | Arboreal | 24.783598 | 34.50212 |
Pristimantis eugeniae | Anura | EN | Arboreal | 22.402782 | 34.16873 |
Pristimantis euphronides | Anura | CR | Ground-dwelling | 27.926837 | 35.08557 |
Pristimantis eurydactylus | Anura | LC | Arboreal | 28.039464 | 34.85565 |
Pristimantis exoristus | Anura | DD | Arboreal | 25.035132 | 34.60950 |
Pristimantis factiosus | Anura | LC | Arboreal | 23.702532 | 34.38654 |
Pristimantis fallax | Anura | VU | Stream-dwelling | 23.859099 | 35.95740 |
Pristimantis fasciatus | Anura | VU | Arboreal | 27.137334 | 34.95695 |
Pristimantis fenestratus | Anura | LC | Ground-dwelling | 27.978301 | 35.36257 |
Pristimantis festae | Anura | EN | Ground-dwelling | 19.955019 | 33.19379 |
Pristimantis fetosus | Anura | NT | Arboreal | 23.046042 | 34.23929 |
Pristimantis floridus | Anura | DD | Arboreal | 19.955019 | 33.81477 |
Pristimantis frater | Anura | LC | Arboreal | 23.916953 | 33.81273 |
Pristimantis gaigei | Anura | LC | Ground-dwelling | 25.624271 | 34.69766 |
Pristimantis galdi | Anura | LC | Arboreal | 23.636192 | 34.25463 |
Pristimantis ganonotus | Anura | DD | Arboreal | 20.328653 | 33.92309 |
Pristimantis gentryi | Anura | EN | Ground-dwelling | 23.009904 | 34.68067 |
Pristimantis gladiator | Anura | VU | Fossorial | 22.883613 | 35.31342 |
Pristimantis glandulosus | Anura | EN | Ground-dwelling | 21.896088 | 34.26116 |
Pristimantis gracilis | Anura | VU | Arboreal | 23.588316 | 34.25151 |
Pristimantis grandiceps | Anura | EN | Arboreal | 22.575003 | 34.17163 |
Pristimantis gutturalis | Anura | LC | Arboreal | 27.574609 | 34.99163 |
Pristimantis hectus | Anura | VU | Ground-dwelling | 22.819091 | 34.30434 |
Pristimantis helvolus | Anura | EN | Arboreal | 23.702532 | 34.34205 |
Pristimantis hernandezi | Anura | EN | Arboreal | 24.417241 | 34.39885 |
Pristimantis huicundo | Anura | EN | Arboreal | 22.592931 | 34.24445 |
Pristimantis hybotragus | Anura | EN | Arboreal | 25.027059 | 34.49498 |
Pristimantis ignicolor | Anura | EN | Arboreal | 22.001151 | 34.08719 |
Pristimantis illotus | Anura | NT | Arboreal | 22.177162 | 34.14097 |
Pristimantis imitatrix | Anura | LC | Ground-dwelling | 22.527380 | 34.39269 |
Pristimantis incanus | Anura | EN | Arboreal | 22.001151 | 34.24627 |
Pristimantis incomptus | Anura | LC | Arboreal | 23.113821 | 34.78535 |
Pristimantis infraguttatus | Anura | DD | Arboreal | 20.676160 | 33.83649 |
Pristimantis inguinalis | Anura | LC | Arboreal | 27.558617 | 34.91723 |
Pristimantis insignitus | Anura | NT | Ground-dwelling | 27.127537 | 35.02500 |
Pristimantis inusitatus | Anura | EN | Arboreal | 21.896088 | 34.09610 |
Pristimantis ixalus | Anura | DD | Stream-dwelling | 24.655161 | 33.99358 |
Pristimantis jaimei | Anura | CR | Arboreal | 24.364732 | 34.42348 |
Pristimantis jester | Anura | LC | Arboreal | 26.912428 | 34.69433 |
Pristimantis johannesdei | Anura | VU | Arboreal | 25.398934 | 34.59997 |
Pristimantis jorgevelosai | Anura | EN | Stream-dwelling | 23.646500 | 33.79753 |
Pristimantis juanchoi | Anura | VU | Arboreal | 24.552956 | 34.53568 |
Pristimantis jubatus | Anura | NT | Arboreal | 24.364732 | 34.43655 |
Pristimantis kareliae | Anura | CR | Stream-dwelling | 26.956396 | 34.45055 |
Pristimantis katoptroides | Anura | LC | Arboreal | 23.883495 | 34.33574 |
Pristimantis kichwarum | Anura | LC | Ground-dwelling | 24.624746 | 34.70590 |
Pristimantis labiosus | Anura | LC | Arboreal | 24.446127 | 34.65465 |
Pristimantis lacrimosus | Anura | LC | Arboreal | 24.584713 | 34.46815 |
Pristimantis lanthanites | Anura | LC | Ground-dwelling | 27.218518 | 35.00130 |
Pristimantis lasalleorum | Anura | EN | Arboreal | 26.439037 | 34.72496 |
Pristimantis laticlavius | Anura | VU | Arboreal | 22.782399 | 34.94138 |
Pristimantis latidiscus | Anura | LC | Arboreal | 25.469066 | 36.97185 |
Pristimantis lemur | Anura | VU | Arboreal | 24.408861 | 34.42750 |
Pristimantis leoni | Anura | LC | Ground-dwelling | 22.964039 | 34.41388 |
Pristimantis leptolophus | Anura | LC | Arboreal | 24.525740 | 34.46353 |
Pristimantis leucopus | Anura | EN | Arboreal | 23.024217 | 34.22108 |
Pristimantis librarius | Anura | DD | Arboreal | 25.758606 | 33.20757 |
Pristimantis lichenoides | Anura | CR | Stream-dwelling | 23.046042 | 33.82793 |
Pristimantis lindae | Anura | LC | Arboreal | 14.573980 | 29.67622 |
Pristimantis lirellus | Anura | LC | Arboreal | 23.650936 | 34.15126 |
Pristimantis lividus | Anura | EN | Arboreal | 21.896088 | 34.03602 |
Pristimantis llojsintuta | Anura | LC | Arboreal | 19.504106 | 33.78835 |
Pristimantis loustes | Anura | EN | Ground-dwelling | 23.183886 | 34.32723 |
Pristimantis lucasi | Anura | LC | Arboreal | 21.293309 | 33.99874 |
Pristimantis luscombei | Anura | DD | Arboreal | 26.279230 | 34.76011 |
Pristimantis luteolateralis | Anura | NT | Arboreal | 19.955019 | 33.73734 |
Pristimantis lutitus | Anura | EN | Arboreal | 23.547065 | 34.40606 |
Pristimantis lymani | Anura | LC | Arboreal | 23.915481 | 36.86066 |
Pristimantis lynchi | Anura | LC | Ground-dwelling | 22.392691 | 34.30036 |
Pristimantis lythrodes | Anura | LC | Arboreal | 29.288480 | 35.19079 |
Pristimantis maculosus | Anura | VU | Arboreal | 21.646674 | 34.04094 |
Pristimantis malkini | Anura | LC | Ground-dwelling | 27.437917 | 35.11398 |
Pristimantis marahuaka | Anura | NT | Ground-dwelling | 25.966820 | 34.75269 |
Pristimantis marmoratus | Anura | LC | Ground-dwelling | 27.366952 | 35.06710 |
Pristimantis mars | Anura | CR | Ground-dwelling | 23.046042 | 34.38604 |
Pristimantis martiae | Anura | LC | Ground-dwelling | 27.325213 | 35.04426 |
Pristimantis matidiktyo | Anura | LC | Ground-dwelling | 25.150767 | 37.50872 |
Pristimantis medemi | Anura | LC | Arboreal | 24.467317 | 35.06836 |
Pristimantis megalops | Anura | NT | Ground-dwelling | 27.127537 | 35.06630 |
Pristimantis melanogaster | Anura | NT | Ground-dwelling | 21.985724 | 34.21888 |
Pristimantis melanoproctus | Anura | DD | Arboreal | 22.438970 | 34.03959 |
Pristimantis memorans | Anura | DD | Stream-dwelling | 27.345187 | 34.47663 |
Pristimantis mendax | Anura | LC | Arboreal | 20.917258 | 33.90874 |
Pristimantis meridionalis | Anura | DD | Arboreal | 20.626332 | 33.92225 |
Pristimantis merostictus | Anura | VU | Arboreal | 23.016169 | 34.26948 |
Pristimantis metabates | Anura | EN | Stream-dwelling | 25.064606 | 34.05882 |
Pristimantis minutulus | Anura | DD | Arboreal | 22.059310 | 33.99964 |
Pristimantis miyatai | Anura | LC | Arboreal | 23.312174 | 34.30646 |
Pristimantis mnionaetes | Anura | EN | Arboreal | 22.672962 | 34.20342 |
Pristimantis modipeplus | Anura | EN | Arboreal | 22.391675 | 34.12208 |
Pristimantis molybrignus | Anura | CR | Arboreal | 24.490215 | 34.37924 |
Pristimantis mondolfii | Anura | DD | Arboreal | 22.438970 | 34.14904 |
Pristimantis moro | Anura | LC | Arboreal | 27.284171 | 34.86593 |
Pristimantis muricatus | Anura | VU | Arboreal | 23.191329 | 34.28818 |
Pristimantis muscosus | Anura | NT | Stream-dwelling | 23.665187 | 33.77461 |
Pristimantis museosus | Anura | VU | Arboreal | 27.333714 | 34.75276 |
Pristimantis myersi | Anura | LC | Ground-dwelling | 23.957471 | 34.50673 |
Pristimantis myops | Anura | EN | Arboreal | 24.198867 | 34.56493 |
Pristimantis nephophilus | Anura | NT | Arboreal | 23.633987 | 34.32507 |
Pristimantis nervicus | Anura | LC | Ground-dwelling | 23.287490 | 35.73466 |
Pristimantis nicefori | Anura | LC | Arboreal | 23.040733 | 34.22402 |
Pristimantis nigrogriseus | Anura | VU | Stream-dwelling | 22.724160 | 33.75587 |
Pristimantis nyctophylax | Anura | VU | Arboreal | 23.223818 | 34.31491 |
Pristimantis obmutescens | Anura | LC | Arboreal | 23.996460 | 34.36327 |
Pristimantis ocellatus | Anura | EN | Arboreal | 24.234545 | 34.38420 |
Pristimantis ockendeni | Anura | LC | Arboreal | 25.927467 | 32.53848 |
Pristimantis ocreatus | Anura | EN | Fossorial | 22.211278 | 35.31580 |
Pristimantis olivaceus | Anura | LC | Arboreal | 20.244341 | 33.86491 |
Pristimantis orcesi | Anura | LC | Arboreal | 20.952423 | 33.97660 |
Pristimantis orcus | Anura | LC | Arboreal | 26.641638 | 34.76723 |
Pristimantis orestes | Anura | EN | Ground-dwelling | 23.677071 | 34.48539 |
Pristimantis ornatissimus | Anura | EN | Arboreal | 23.191329 | 34.42562 |
Pristimantis ornatus | Anura | EN | Ground-dwelling | 21.293309 | 34.08495 |
Pristimantis orpacobates | Anura | NT | Arboreal | 24.753807 | 34.55235 |
Pristimantis orphnolaimus | Anura | LC | Arboreal | 26.201005 | 34.72765 |
Pristimantis ortizi | Anura | DD | Arboreal | 22.211278 | 34.21403 |
Pristimantis padrecarlosi | Anura | DD | Stream-dwelling | 24.049346 | 33.81144 |
Pristimantis paisa | Anura | LC | Stream-dwelling | 21.646674 | 33.63334 |
Pristimantis palmeri | Anura | LC | Arboreal | 24.080724 | 34.52792 |
Pristimantis paramerus | Anura | EN | Ground-dwelling | 26.494876 | 34.88948 |
Pristimantis pardalinus | Anura | EN | Ground-dwelling | 17.039787 | 33.56352 |
Pristimantis pardalis | Anura | LC | Arboreal | 26.389302 | 34.83837 |
Pristimantis parectatus | Anura | EN | Arboreal | 22.605131 | 34.20255 |
Pristimantis parvillus | Anura | LC | Arboreal | 24.690943 | 34.66404 |
Pristimantis pastazensis | Anura | EN | Arboreal | 22.391675 | 34.21263 |
Pristimantis pataikos | Anura | DD | Arboreal | 21.684497 | 33.99249 |
Pristimantis paulodutrai | Anura | LC | Arboreal | 25.304676 | 34.58724 |
Pristimantis paululus | Anura | LC | Ground-dwelling | 24.705731 | 34.62919 |
Pristimantis pecki | Anura | DD | Arboreal | 24.290693 | 34.31932 |
Pristimantis pedimontanus | Anura | VU | Ground-dwelling | 25.597769 | 34.80337 |
Pristimantis penelopus | Anura | LC | Arboreal | 25.448492 | 34.63441 |
Pristimantis peraticus | Anura | LC | Ground-dwelling | 25.113062 | 34.78557 |
Pristimantis percnopterus | Anura | LC | Arboreal | 23.498246 | 34.27462 |
Pristimantis percultus | Anura | EN | Arboreal | 22.745113 | 34.12678 |
Pristimantis permixtus | Anura | LC | Arboreal | 23.884876 | 34.36063 |
Pristimantis peruvianus | Anura | LC | Ground-dwelling | 27.283167 | 34.93513 |
Pristimantis petersi | Anura | NT | Arboreal | 23.912354 | 34.53820 |
Pristimantis petrobardus | Anura | EN | Arboreal | 22.890282 | 34.25723 |
Pristimantis phalaroinguinis | Anura | DD | Arboreal | 24.501951 | 34.50374 |
Pristimantis phalarus | Anura | EN | Arboreal | 24.198867 | 34.35292 |
Pristimantis pharangobates | Anura | LC | Ground-dwelling | 19.257130 | 29.41116 |
Pristimantis philipi | Anura | DD | Arboreal | 26.948386 | 34.85704 |
Pristimantis phoxocephalus | Anura | CR | Arboreal | 23.223818 | 32.35763 |
Pristimantis piceus | Anura | LC | Ground-dwelling | 23.630555 | 34.44959 |
Pristimantis pinguis | Anura | EN | Ground-dwelling | 22.336373 | 34.29691 |
Pristimantis pirrensis | Anura | NT | Arboreal | 26.419274 | 34.75695 |
Pristimantis platychilus | Anura | VU | Arboreal | 25.048890 | 34.59287 |
Pristimantis platydactylus | Anura | LC | Arboreal | 18.901205 | 31.49084 |
Pristimantis pleurostriatus | Anura | DD | Arboreal | 25.673615 | 34.52966 |
Pristimantis polemistes | Anura | CR | Stream-dwelling | 26.439037 | 34.35301 |
Pristimantis polychrus | Anura | VU | Arboreal | 24.905950 | 34.56393 |
Pristimantis prolatus | Anura | LC | Arboreal | 23.240590 | 34.32487 |
Pristimantis proserpens | Anura | VU | Arboreal | 23.232843 | 34.25936 |
Pristimantis pruinatus | Anura | VU | Arboreal | 27.104316 | 34.88480 |
Pristimantis pseudoacuminatus | Anura | LC | Ground-dwelling | 25.680500 | 34.72476 |
Pristimantis pteridophilus | Anura | EN | Arboreal | 20.357864 | 33.80294 |
Pristimantis ptochus | Anura | EN | Arboreal | 24.394921 | 34.38389 |
Pristimantis pugnax | Anura | CR | Stream-dwelling | 24.164721 | 33.86638 |
Pristimantis pulvinatus | Anura | LC | Arboreal | 26.697950 | 34.75605 |
Pristimantis pycnodermis | Anura | EN | Arboreal | 23.289544 | 34.53633 |
Pristimantis pyrrhomerus | Anura | EN | Ground-dwelling | 23.256608 | 34.49481 |
Pristimantis quantus | Anura | EN | Arboreal | 24.198867 | 34.41892 |
Pristimantis quaquaversus | Anura | LC | Arboreal | 24.985421 | 35.19276 |
Pristimantis quinquagesimus | Anura | VU | Arboreal | 23.524443 | 34.30665 |
Pristimantis racemus | Anura | VU | Arboreal | 23.842044 | 34.44814 |
Pristimantis ramagii | Anura | LC | Ground-dwelling | 25.504589 | 34.71753 |
Pristimantis renjiforum | Anura | EN | Ground-dwelling | 23.448271 | 36.37028 |
Pristimantis repens | Anura | EN | Ground-dwelling | 24.453276 | 34.44969 |
Pristimantis restrepoi | Anura | LC | Ground-dwelling | 24.905950 | 34.62933 |
Pristimantis reticulatus | Anura | DD | Arboreal | 27.121618 | 34.82860 |
Pristimantis rhabdocnemus | Anura | LC | Arboreal | 21.293309 | 33.98200 |
Pristimantis rhabdolaemus | Anura | LC | Arboreal | 17.743213 | 33.46541 |
Pristimantis rhodoplichus | Anura | EN | Ground-dwelling | 23.447308 | 34.43300 |
Pristimantis rhodostichus | Anura | LC | Arboreal | 24.003412 | 34.33639 |
Pristimantis ridens | Anura | LC | Arboreal | 26.774528 | 34.82838 |
Pristimantis rivasi | Anura | VU | Ground-dwelling | 26.826684 | 35.01531 |
Pristimantis riveroi | Anura | DD | Arboreal | 26.940736 | 34.73486 |
Pristimantis riveti | Anura | CR | Ground-dwelling | 22.211278 | 34.91165 |
Pristimantis rosadoi | Anura | VU | Arboreal | 24.064192 | 34.42821 |
Pristimantis roseus | Anura | LC | Stream-dwelling | 26.071482 | 34.27664 |
Pristimantis rozei | Anura | DD | Arboreal | 27.121618 | 34.74104 |
Pristimantis rubicundus | Anura | EN | Arboreal | 22.966949 | 34.17473 |
Pristimantis ruedai | Anura | VU | Stream-dwelling | 24.905950 | 34.05288 |
Pristimantis rufioculis | Anura | VU | Arboreal | 23.518622 | 34.29009 |
Pristimantis ruidus | Anura | DD | Arboreal | 26.948386 | 34.71849 |
Pristimantis ruthveni | Anura | EN | Ground-dwelling | 27.127537 | 35.06294 |
Pristimantis salaputium | Anura | LC | Arboreal | 14.573980 | 30.79906 |
Pristimantis saltissimus | Anura | LC | Arboreal | 26.912428 | 34.66991 |
Pristimantis samaipatae | Anura | LC | Arboreal | 22.321742 | 34.12123 |
Pristimantis sanctaemartae | Anura | NT | Arboreal | 27.127537 | 34.76762 |
Pristimantis sanguineus | Anura | NT | Arboreal | 25.119709 | 34.59009 |
Pristimantis satagius | Anura | EN | Ground-dwelling | 26.439037 | 34.84531 |
Pristimantis savagei | Anura | NT | Arboreal | 24.355607 | 33.64419 |
Pristimantis schultei | Anura | VU | Arboreal | 22.225005 | 34.15087 |
Pristimantis scitulus | Anura | DD | Arboreal | 15.595790 | 33.08992 |
Pristimantis scoloblepharus | Anura | EN | Stream-dwelling | 22.605131 | 33.59880 |
Pristimantis scolodiscus | Anura | VU | Arboreal | 23.724859 | 34.41497 |
Pristimantis scopaeus | Anura | LC | Arboreal | 22.464412 | 34.11030 |
Pristimantis seorsus | Anura | DD | Arboreal | 20.531148 | 33.91157 |
Pristimantis serendipitus | Anura | EN | Ground-dwelling | 22.464285 | 34.29582 |
Pristimantis shrevei | Anura | EN | Arboreal | 27.163565 | 34.81027 |
Pristimantis signifer | Anura | CR | Ground-dwelling | 24.198867 | 34.54126 |
Pristimantis silverstonei | Anura | VU | Arboreal | 25.055260 | 34.61877 |
Pristimantis simonbolivari | Anura | EN | Ground-dwelling | 22.391675 | 34.30359 |
Pristimantis simonsii | Anura | VU | Ground-dwelling | 22.336373 | 34.19525 |
Pristimantis simoteriscus | Anura | EN | Ground-dwelling | 21.387901 | 34.13079 |
Pristimantis simoterus | Anura | NT | Ground-dwelling | 22.658289 | 34.39292 |
Pristimantis siopelus | Anura | VU | Arboreal | 24.806805 | 34.41477 |
Pristimantis skydmainos | Anura | LC | Arboreal | 23.985512 | 34.36397 |
Pristimantis sobetes | Anura | EN | Arboreal | 19.955019 | 33.77990 |
Pristimantis spectabilis | Anura | DD | Arboreal | 21.293309 | 34.05840 |
Pristimantis spilogaster | Anura | CR | Arboreal | 24.655161 | 34.48802 |
Pristimantis spinosus | Anura | EN | Arboreal | 23.289544 | 34.32607 |
Pristimantis stenodiscus | Anura | CR | Ground-dwelling | 27.121618 | 34.93176 |
Pristimantis sternothylax | Anura | LC | Arboreal | 24.227574 | 34.39442 |
Pristimantis stictoboubonus | Anura | DD | Arboreal | 22.692835 | 34.32676 |
Pristimantis stictogaster | Anura | LC | Ground-dwelling | 21.293309 | 34.28182 |
Pristimantis subsigillatus | Anura | LC | Arboreal | 25.086888 | 34.55015 |
Pristimantis suetus | Anura | VU | Arboreal | 23.912703 | 34.36243 |
Pristimantis sulculus | Anura | VU | Arboreal | 24.806805 | 34.56964 |
Pristimantis supernatis | Anura | VU | Stream-dwelling | 23.520923 | 33.72821 |
Pristimantis surdus | Anura | EN | Ground-dwelling | 20.357864 | 33.98093 |
Pristimantis susaguae | Anura | EN | Arboreal | 23.674292 | 34.28946 |
Pristimantis taciturnus | Anura | DD | Stream-dwelling | 22.965861 | 33.71126 |
Pristimantis taeniatus | Anura | LC | Ground-dwelling | 26.318654 | 36.78323 |
Pristimantis tamsitti | Anura | VU | Arboreal | 25.126887 | 34.60641 |
Pristimantis tantanti | Anura | LC | Arboreal | 22.176959 | 34.12855 |
Pristimantis tanyrhynchus | Anura | DD | Arboreal | 20.531148 | 34.01912 |
Pristimantis tayrona | Anura | NT | Arboreal | 27.127537 | 34.91102 |
Pristimantis telefericus | Anura | CR | Ground-dwelling | 25.673615 | 34.83699 |
Pristimantis tenebrionis | Anura | EN | Arboreal | 24.270099 | 34.45483 |
Pristimantis thectopternus | Anura | LC | Arboreal | 23.919367 | 34.28251 |
Pristimantis thymalopsoides | Anura | EN | Arboreal | 19.955019 | 33.83699 |
Pristimantis thymelensis | Anura | LC | Ground-dwelling | 22.366712 | 34.38620 |
Pristimantis toftae | Anura | LC | Ground-dwelling | 22.521425 | 32.68835 |
Pristimantis torrenticola | Anura | CR | Arboreal | 23.046042 | 34.28736 |
Pristimantis trachyblepharis | Anura | LC | Arboreal | 23.878766 | 33.49732 |
Pristimantis tribulosus | Anura | CR | Arboreal | 23.046042 | 34.23436 |
Pristimantis truebae | Anura | EN | Arboreal | 22.499342 | 34.45312 |
Pristimantis tubernasus | Anura | DD | Arboreal | 25.305183 | 34.60548 |
Pristimantis turik | Anura | DD | Arboreal | 27.792904 | 34.97522 |
Pristimantis turpinorum | Anura | DD | Arboreal | 26.692732 | 34.81076 |
Pristimantis turumiquirensis | Anura | CR | Ground-dwelling | 27.160860 | 34.92542 |
Pristimantis uisae | Anura | VU | Arboreal | 23.387139 | 34.22218 |
Pristimantis unistrigatus | Anura | LC | Ground-dwelling | 22.370872 | 35.63373 |
Pristimantis uranobates | Anura | LC | Stream-dwelling | 23.033229 | 33.77218 |
Pristimantis urichi | Anura | LC | Ground-dwelling | 26.513958 | 35.02132 |
Pristimantis variabilis | Anura | LC | Arboreal | 27.008429 | 34.80531 |
Pristimantis veletis | Anura | CR | Arboreal | 23.046042 | 34.26473 |
Pristimantis ventriguttatus | Anura | DD | Arboreal | 24.501951 | 34.53998 |
Pristimantis ventrimarmoratus | Anura | LC | Ground-dwelling | 23.942876 | 34.46872 |
Pristimantis verecundus | Anura | NT | Arboreal | 22.668175 | 34.23451 |
Pristimantis versicolor | Anura | LC | Arboreal | 23.865482 | 34.73636 |
Pristimantis vertebralis | Anura | VU | Stream-dwelling | 22.402782 | 31.72685 |
Pristimantis vicarius | Anura | NT | Ground-dwelling | 24.087174 | 34.50168 |
Pristimantis vidua | Anura | EN | Ground-dwelling | 21.477341 | 34.20051 |
Pristimantis viejas | Anura | LC | Ground-dwelling | 25.334031 | 34.66936 |
Pristimantis vilarsi | Anura | LC | Ground-dwelling | 27.834121 | 35.04485 |
Pristimantis vilcabambae | Anura | DD | Arboreal | 20.531148 | 34.10128 |
Pristimantis vinhai | Anura | LC | Ground-dwelling | 25.296814 | 34.74211 |
Pristimantis viridicans | Anura | EN | Ground-dwelling | 24.585508 | 34.69255 |
Pristimantis viridis | Anura | EN | Arboreal | 26.189446 | 34.60709 |
Pristimantis w-nigrum | Anura | LC | Arboreal | 24.479494 | 36.19209 |
Pristimantis wagteri | Anura | EN | Ground-dwelling | 21.985724 | 34.34014 |
Pristimantis walkeri | Anura | LC | Arboreal | 24.079192 | 34.47278 |
Pristimantis waoranii | Anura | LC | Arboreal | 25.911199 | 34.65825 |
Pristimantis wiensi | Anura | DD | Arboreal | 22.881730 | 34.11472 |
Pristimantis xeniolum | Anura | VU | Arboreal | 24.198867 | 34.44460 |
Pristimantis xestus | Anura | VU | Arboreal | 25.939855 | 34.68444 |
Pristimantis xylochobates | Anura | CR | Arboreal | 24.198867 | 34.45285 |
Pristimantis yaviensis | Anura | NT | Ground-dwelling | 27.044932 | 34.88891 |
Pristimantis yukpa | Anura | LC | Ground-dwelling | 26.455266 | 36.22335 |
Pristimantis yustizi | Anura | VU | Arboreal | 25.486973 | 34.66311 |
Pristimantis zeuctotylus | Anura | LC | Ground-dwelling | 27.636695 | 34.96924 |
Pristimantis zimmermanae | Anura | LC | Ground-dwelling | 28.573372 | 35.27161 |
Pristimantis zoilae | Anura | EN | Arboreal | 24.099747 | 34.47998 |
Pristimantis zophus | Anura | NT | Arboreal | 24.847704 | 34.42236 |
Probreviceps durirostris | Anura | EN | Ground-dwelling | 23.545164 | 38.03600 |
Probreviceps loveridgei | Anura | EN | Ground-dwelling | 23.506191 | 37.96937 |
Probreviceps macrodactylus | Anura | EN | Ground-dwelling | 24.410568 | 38.14283 |
Probreviceps rhodesianus | Anura | EN | Ground-dwelling | 24.369951 | 38.06314 |
Probreviceps rungwensis | Anura | EN | Ground-dwelling | 22.818563 | 37.86619 |
Probreviceps uluguruensis | Anura | EN | Ground-dwelling | 24.359158 | 38.13952 |
Proceratophrys appendiculata | Anura | LC | Ground-dwelling | 25.848651 | 38.18561 |
Proceratophrys avelinoi | Anura | LC | Semi-aquatic | 26.332167 | 38.47940 |
Proceratophrys bigibbosa | Anura | NT | Ground-dwelling | 25.743040 | 38.20418 |
Proceratophrys boiei | Anura | LC | Ground-dwelling | 25.659438 | 38.22532 |
Proceratophrys brauni | Anura | LC | Ground-dwelling | 24.908521 | 38.05401 |
Proceratophrys concavitympanum | Anura | DD | Stream-dwelling | 28.290741 | 37.93040 |
Proceratophrys cristiceps | Anura | LC | Ground-dwelling | 25.833785 | 38.25133 |
Proceratophrys cururu | Anura | DD | Ground-dwelling | 24.594125 | 38.10884 |
Proceratophrys goyana | Anura | LC | Ground-dwelling | 26.928882 | 38.35393 |
Proceratophrys laticeps | Anura | LC | Ground-dwelling | 25.485168 | 38.12000 |
Proceratophrys melanopogon | Anura | LC | Ground-dwelling | 25.926832 | 38.24493 |
Proceratophrys moehringi | Anura | DD | Stream-dwelling | 25.870259 | 37.62980 |
Proceratophrys moratoi | Anura | CR | Semi-aquatic | 26.685256 | 38.50953 |
Proceratophrys palustris | Anura | DD | Ground-dwelling | 26.352253 | 38.28829 |
Proceratophrys paviotii | Anura | DD | Stream-dwelling | 25.780363 | 37.75201 |
Proceratophrys phyllostomus | Anura | DD | Ground-dwelling | 25.804730 | 38.22856 |
Proceratophrys schirchi | Anura | LC | Ground-dwelling | 25.629759 | 38.60904 |
Proceratophrys subguttata | Anura | LC | Ground-dwelling | 24.601247 | 38.01079 |
Proceratophrys vielliardi | Anura | DD | Ground-dwelling | 26.446700 | 38.30000 |
Pseudacris brachyphona | Anura | LC | Ground-dwelling | 25.124069 | 38.56504 |
Pseudacris brimleyi | Anura | LC | Ground-dwelling | 25.394831 | 38.55725 |
Pseudacris cadaverina | Anura | LC | Arboreal | 21.513090 | 35.61669 |
Pseudacris clarkii | Anura | LC | Ground-dwelling | 25.347379 | 38.61194 |
Pseudacris crucifer | Anura | LC | Arboreal | 22.121275 | 37.66469 |
Pseudacris feriarum | Anura | LC | Ground-dwelling | 25.725635 | 38.63591 |
Pseudacris fouquettei | Anura | LC | Ground-dwelling | 27.183090 | 38.87334 |
Pseudacris kalmi | Anura | LC | Ground-dwelling | 23.378568 | 38.31866 |
Pseudacris maculata | Anura | LC | Semi-aquatic | 19.189381 | 38.07156 |
Pseudacris nigrita | Anura | LC | Ground-dwelling | 26.890659 | 38.79070 |
Pseudacris ocularis | Anura | LC | Ground-dwelling | 26.678517 | 38.59748 |
Pseudacris ornata | Anura | LC | Ground-dwelling | 27.177733 | 38.86395 |
Pseudacris regilla | Anura | LC | Arboreal | 16.404867 | 35.50969 |
Pseudacris streckeri | Anura | LC | Ground-dwelling | 26.163147 | 38.72303 |
Pseudacris triseriata | Anura | LC | Ground-dwelling | 22.409970 | 37.86048 |
Pseudhymenochirus merlini | Anura | LC | Aquatic | 27.551217 | 37.40536 |
Pseudis bolbodactyla | Anura | LC | Aquatic | 26.403000 | 40.67930 |
Pseudis cardosoi | Anura | LC | Aquatic | 24.904100 | 39.63347 |
Pseudis fusca | Anura | LC | Aquatic | 25.754893 | 40.58589 |
Pseudis minuta | Anura | LC | Aquatic | 24.681745 | 39.03734 |
Pseudis paradoxa | Anura | LC | Aquatic | 27.722432 | 41.22655 |
Pseudis platensis | Anura | DD | Aquatic | 27.593064 | 41.34513 |
Pseudis tocantins | Anura | LC | Aquatic | 27.917277 | 40.89120 |
Pseudobranchus axanthus | Caudata | LC | Semi-aquatic | 28.013010 | 35.81572 |
Pseudobranchus striatus | Caudata | LC | Aquatic | 27.601905 | 35.63379 |
Pseudobufo subasper | Anura | LC | Aquatic | 28.952989 | 39.02405 |
Pseudoeurycea ahuitzotl | Caudata | CR | Ground-dwelling | 24.338588 | 35.28208 |
Pseudoeurycea altamontana | Caudata | EN | Ground-dwelling | 21.070217 | 34.71342 |
Pseudoeurycea amuzga | Caudata | EN | Ground-dwelling | 25.594119 | 35.26824 |
Pseudoeurycea aquatica | Caudata | CR | Aquatic | 22.681874 | 35.09556 |
Pseudoeurycea aurantia | Caudata | CR | Ground-dwelling | 22.681874 | 35.04757 |
Pseudoeurycea cochranae | Caudata | VU | Ground-dwelling | 25.328536 | 35.32529 |
Pseudoeurycea conanti | Caudata | EN | Ground-dwelling | 24.828071 | 35.13834 |
Pseudoeurycea firscheini | Caudata | EN | Ground-dwelling | 25.021001 | 35.14795 |
Pseudoeurycea gadovii | Caudata | VU | Ground-dwelling | 22.834567 | 34.94087 |
Pseudoeurycea goebeli | Caudata | CR | Ground-dwelling | 27.195014 | 35.54442 |
Pseudoeurycea juarezi | Caudata | EN | Ground-dwelling | 25.036151 | 35.31956 |
Pseudoeurycea leprosa | Caudata | LC | Ground-dwelling | 23.381565 | 35.01580 |
Pseudoeurycea lineola | Caudata | EN | Ground-dwelling | 24.858995 | 35.26022 |
Pseudoeurycea longicauda | Caudata | EN | Ground-dwelling | 23.867272 | 35.11571 |
Pseudoeurycea lynchi | Caudata | EN | Ground-dwelling | 24.522527 | 35.21121 |
Pseudoeurycea melanomolga | Caudata | EN | Ground-dwelling | 21.551792 | 34.81202 |
Pseudoeurycea mixcoatl | Caudata | CR | Ground-dwelling | 25.457526 | 35.28763 |
Pseudoeurycea mixteca | Caudata | VU | Ground-dwelling | 24.545714 | 35.19781 |
Pseudoeurycea mystax | Caudata | EN | Ground-dwelling | 25.160565 | 35.17866 |
Pseudoeurycea nigromaculata | Caudata | EN | Arboreal | 25.961397 | 35.21534 |
Pseudoeurycea obesa | Caudata | CR | Ground-dwelling | 27.073807 | 35.45673 |
Pseudoeurycea orchileucos | Caudata | EN | Ground-dwelling | 22.681874 | 35.03660 |
Pseudoeurycea orchimelas | Caudata | EN | Ground-dwelling | 27.340327 | 35.50977 |
Pseudoeurycea papenfussi | Caudata | EN | Ground-dwelling | 22.681874 | 34.93991 |
Pseudoeurycea rex | Caudata | VU | Ground-dwelling | 25.044144 | 35.24605 |
Pseudoeurycea robertsi | Caudata | CR | Ground-dwelling | 20.209526 | 34.70520 |
Pseudoeurycea ruficauda | Caudata | EN | Arboreal | 24.877841 | 35.04015 |
Pseudoeurycea saltator | Caudata | CR | Arboreal | 22.681874 | 34.89669 |
Pseudoeurycea smithi | Caudata | CR | Ground-dwelling | 22.681874 | 34.89866 |
Pseudoeurycea tenchalli | Caudata | CR | Ground-dwelling | 25.457526 | 35.29632 |
Pseudoeurycea tlahcuiloh | Caudata | CR | Ground-dwelling | 24.338588 | 35.17395 |
Pseudoeurycea tlilicxitl | Caudata | EN | Ground-dwelling | 21.070217 | 34.78688 |
Pseudoeurycea werleri | Caudata | EN | Ground-dwelling | 25.787509 | 35.35924 |
Pseudohynobius flavomaculatus | Caudata | VU | Ground-dwelling | 26.009085 | 34.31531 |
Pseudohynobius kuankuoshuiensis | Caudata | CR | Semi-aquatic | 25.289478 | 34.47932 |
Pseudohynobius puxiongensis | Caudata | CR | Ground-dwelling | 20.834276 | 33.69313 |
Pseudohynobius shuichengensis | Caudata | CR | Ground-dwelling | 23.425313 | 33.93725 |
Pseudopaludicola boliviana | Anura | LC | Ground-dwelling | 27.791008 | 40.10226 |
Pseudopaludicola canga | Anura | DD | Ground-dwelling | 28.078510 | 40.11419 |
Pseudopaludicola falcipes | Anura | LC | Ground-dwelling | 25.637007 | 40.56372 |
Pseudopaludicola llanera | Anura | LC | Ground-dwelling | 26.877630 | 39.92406 |
Pseudopaludicola mineira | Anura | DD | Ground-dwelling | 24.594125 | 39.64166 |
Pseudopaludicola mystacalis | Anura | LC | Semi-aquatic | 26.696503 | 39.98995 |
Pseudopaludicola pusilla | Anura | LC | Ground-dwelling | 26.631146 | 40.02923 |
Pseudopaludicola saltica | Anura | LC | Ground-dwelling | 26.883296 | 40.12602 |
Pseudopaludicola ternetzi | Anura | LC | Ground-dwelling | 26.610569 | 40.18619 |
Pseudophilautus abundus | Anura | EN | Arboreal | 27.674004 | 37.95108 |
Pseudophilautus alto | Anura | EN | Arboreal | 27.674004 | 37.89318 |
Pseudophilautus amboli | Anura | CR | Arboreal | 26.493008 | 37.80630 |
Pseudophilautus asankai | Anura | EN | Arboreal | 27.674004 | 38.04322 |
Pseudophilautus auratus | Anura | EN | Arboreal | 27.547532 | 38.00316 |
Pseudophilautus caeruleus | Anura | EN | Arboreal | 27.547532 | 38.02309 |
Pseudophilautus cavirostris | Anura | VU | Arboreal | 27.674004 | 38.01438 |
Pseudophilautus cuspis | Anura | EN | Ground-dwelling | 27.674004 | 38.15916 |
Pseudophilautus decoris | Anura | CR | Arboreal | 27.547532 | 37.97738 |
Pseudophilautus femoralis | Anura | EN | Arboreal | 27.674004 | 38.10548 |
Pseudophilautus fergusonianus | Anura | LC | Arboreal | 28.092804 | 38.02128 |
Pseudophilautus folicola | Anura | VU | Arboreal | 27.674004 | 37.93479 |
Pseudophilautus frankenbergi | Anura | EN | Arboreal | 27.915921 | 37.90381 |
Pseudophilautus fulvus | Anura | EN | Arboreal | 27.674004 | 37.90043 |
Pseudophilautus kani | Anura | LC | Arboreal | 27.808977 | 37.90902 |
Pseudophilautus limbus | Anura | EN | Arboreal | 27.674004 | 38.02429 |
Pseudophilautus lunatus | Anura | CR | Arboreal | 27.547532 | 37.98205 |
Pseudophilautus macropus | Anura | EN | Stream-dwelling | 27.800476 | 37.49789 |
Pseudophilautus microtympanum | Anura | EN | Arboreal | 27.674004 | 38.06179 |
Pseudophilautus mittermeieri | Anura | VU | Arboreal | 27.674004 | 38.03159 |
Pseudophilautus mooreorum | Anura | CR | Arboreal | 27.800476 | 37.99125 |
Pseudophilautus nemus | Anura | EN | Arboreal | 27.674004 | 38.04175 |
Pseudophilautus ocularis | Anura | CR | Arboreal | 27.547532 | 37.96543 |
Pseudophilautus pleurotaenia | Anura | VU | Arboreal | 27.849500 | 38.00691 |
Pseudophilautus poppiae | Anura | CR | Arboreal | 27.547532 | 38.01636 |
Pseudophilautus popularis | Anura | VU | Arboreal | 28.064890 | 38.05625 |
Pseudophilautus regius | Anura | LC | Arboreal | 28.117410 | 38.04995 |
Pseudophilautus reticulatus | Anura | VU | Arboreal | 27.674004 | 37.96189 |
Pseudophilautus rus | Anura | NT | Arboreal | 27.674004 | 37.92693 |
Pseudophilautus sarasinorum | Anura | EN | Stream-dwelling | 27.933583 | 37.51776 |
Pseudophilautus schmarda | Anura | EN | Arboreal | 27.674004 | 37.99419 |
Pseudophilautus semiruber | Anura | EN | Ground-dwelling | 27.674004 | 38.17962 |
Pseudophilautus simba | Anura | CR | Ground-dwelling | 27.547532 | 38.11092 |
Pseudophilautus singu | Anura | EN | Arboreal | 27.674004 | 38.02084 |
Pseudophilautus sordidus | Anura | VU | Arboreal | 27.674004 | 38.03918 |
Pseudophilautus steineri | Anura | EN | Arboreal | 27.800476 | 37.97800 |
Pseudophilautus stellatus | Anura | CR | Arboreal | 27.547532 | 37.99704 |
Pseudophilautus stictomerus | Anura | VU | Arboreal | 28.064890 | 38.00003 |
Pseudophilautus stuarti | Anura | CR | Arboreal | 27.800476 | 37.99048 |
Pseudophilautus tanu | Anura | EN | Arboreal | 27.547532 | 37.96129 |
Pseudophilautus viridis | Anura | EN | Arboreal | 27.674004 | 38.02113 |
Pseudophilautus wynaadensis | Anura | EN | Arboreal | 27.519155 | 38.03877 |
Pseudophilautus zorro | Anura | VU | Ground-dwelling | 27.674004 | 38.20335 |
Pseudophryne australis | Anura | VU | Ground-dwelling | 21.344230 | 36.78865 |
Pseudophryne bibronii | Anura | LC | Ground-dwelling | 20.938984 | 36.55544 |
Pseudophryne coriacea | Anura | LC | Ground-dwelling | 22.836070 | 35.94104 |
Pseudophryne corroboree | Anura | CR | Stream-dwelling | 19.216734 | 34.10380 |
Pseudophryne covacevichae | Anura | EN | Ground-dwelling | 25.369995 | 36.32727 |
Pseudophryne dendyi | Anura | LC | Ground-dwelling | 19.645859 | 37.19853 |
Pseudophryne douglasi | Anura | LC | Aquatic | 25.497297 | 36.04598 |
Pseudophryne guentheri | Anura | LC | Ground-dwelling | 21.097697 | 34.94781 |
Pseudophryne major | Anura | LC | Ground-dwelling | 24.549873 | 35.23971 |
Pseudophryne occidentalis | Anura | LC | Ground-dwelling | 21.770635 | 36.33750 |
Pseudophryne pengilleyi | Anura | CR | Stream-dwelling | 19.672656 | 34.78839 |
Pseudophryne raveni | Anura | LC | Ground-dwelling | 24.314601 | 36.04508 |
Pseudophryne semimarmorata | Anura | LC | Ground-dwelling | 18.200026 | 34.57193 |
Pseudotriton montanus | Caudata | LC | Fossorial | 25.950755 | 36.49113 |
Pseudotriton ruber | Caudata | LC | Semi-aquatic | 24.894769 | 35.61527 |
Psychrophrynella bagrecito | Anura | CR | Ground-dwelling | 16.124027 | 30.85224 |
Psychrophrynella usurpator | Anura | NT | Ground-dwelling | 14.573980 | 29.57898 |
Pterorana khare | Anura | LC | Aquatic | 25.862088 | 37.13233 |
Ptychadena aequiplicata | Anura | LC | Semi-aquatic | 27.557252 | 38.25356 |
Ptychadena anchietae | Anura | LC | Semi-aquatic | 24.324013 | 37.75305 |
Ptychadena ansorgii | Anura | LC | Semi-aquatic | 24.534568 | 37.91976 |
Ptychadena arnei | Anura | DD | Ground-dwelling | 27.578523 | 38.00279 |
Ptychadena bibroni | Anura | LC | Ground-dwelling | 27.569091 | 37.92649 |
Ptychadena broadleyi | Anura | NT | Ground-dwelling | 25.902836 | 37.65739 |
Ptychadena bunoderma | Anura | LC | Ground-dwelling | 25.075141 | 37.68357 |
Ptychadena christyi | Anura | LC | Ground-dwelling | 24.696396 | 37.49273 |
Ptychadena chrysogaster | Anura | LC | Ground-dwelling | 22.189667 | 37.11973 |
Ptychadena cooperi | Anura | LC | Semi-aquatic | 19.949142 | 37.25009 |
Ptychadena erlangeri | Anura | NT | Ground-dwelling | 21.436388 | 37.20430 |
Ptychadena filwoha | Anura | DD | Semi-aquatic | 20.215510 | 37.14878 |
Ptychadena gansi | Anura | LC | Ground-dwelling | 26.344963 | 37.77909 |
Ptychadena grandisonae | Anura | LC | Ground-dwelling | 24.409033 | 37.50814 |
Ptychadena guibei | Anura | LC | Ground-dwelling | 24.996624 | 37.62291 |
Ptychadena harenna | Anura | DD | Ground-dwelling | 20.234697 | 36.88864 |
Ptychadena ingeri | Anura | DD | Semi-aquatic | 26.635510 | 38.02429 |
Ptychadena keilingi | Anura | LC | Ground-dwelling | 24.928540 | 37.49445 |
Ptychadena longirostris | Anura | LC | Ground-dwelling | 27.787713 | 37.97819 |
Ptychadena mahnerti | Anura | LC | Semi-aquatic | 21.456231 | 37.48225 |
Ptychadena mapacha | Anura | DD | Ground-dwelling | 24.889868 | 37.57549 |
Ptychadena mascareniensis | Anura | LC | Semi-aquatic | 25.907931 | 37.97210 |
Ptychadena mossambica | Anura | LC | Ground-dwelling | 24.313589 | 37.43376 |
Ptychadena nana | Anura | EN | Ground-dwelling | 19.134325 | 36.89268 |
Ptychadena neumanni | Anura | LC | Semi-aquatic | 21.607072 | 37.43540 |
Ptychadena newtoni | Anura | EN | Semi-aquatic | 27.104015 | 38.18931 |
Ptychadena nilotica | Anura | LC | Semi-aquatic | 24.210743 | 37.72519 |
Ptychadena obscura | Anura | LC | Ground-dwelling | 24.036147 | 37.48256 |
Ptychadena oxyrhynchus | Anura | LC | Ground-dwelling | 25.594153 | 37.73421 |
Ptychadena perplicata | Anura | LC | Ground-dwelling | 24.779752 | 37.58658 |
Ptychadena perreti | Anura | LC | Ground-dwelling | 27.594158 | 37.94090 |
Ptychadena porosissima | Anura | LC | Ground-dwelling | 23.872989 | 37.55503 |
Ptychadena pujoli | Anura | DD | Ground-dwelling | 27.760821 | 37.93873 |
Ptychadena pumilio | Anura | LC | Semi-aquatic | 27.371998 | 38.17277 |
Ptychadena retropunctata | Anura | LC | Semi-aquatic | 27.694564 | 38.24216 |
Ptychadena schillukorum | Anura | LC | Ground-dwelling | 25.820087 | 37.70229 |
Ptychadena stenocephala | Anura | LC | Ground-dwelling | 26.043954 | 37.65295 |
Ptychadena straeleni | Anura | LC | Ground-dwelling | 27.122800 | 37.88997 |
Ptychadena submascareniensis | Anura | DD | Ground-dwelling | 27.623983 | 37.94336 |
Ptychadena subpunctata | Anura | LC | Aquatic | 24.614680 | 37.67508 |
Ptychadena superciliaris | Anura | LC | Ground-dwelling | 27.657455 | 37.97306 |
Ptychadena taenioscelis | Anura | LC | Ground-dwelling | 24.838342 | 37.48286 |
Ptychadena tellinii | Anura | LC | Ground-dwelling | 27.276975 | 37.99454 |
Ptychadena tournieri | Anura | LC | Semi-aquatic | 27.803057 | 38.16020 |
Ptychadena trinodis | Anura | LC | Ground-dwelling | 27.601917 | 37.89427 |
Ptychadena upembae | Anura | LC | Semi-aquatic | 24.423596 | 37.88240 |
Ptychadena uzungwensis | Anura | LC | Semi-aquatic | 24.445989 | 37.87599 |
Ptychadena wadei | Anura | DD | Ground-dwelling | 23.505649 | 37.50451 |
Ptychohyla dendrophasma | Anura | CR | Stream-dwelling | 27.036876 | 39.26877 |
Ptychohyla euthysanota | Anura | LC | Stream-dwelling | 26.411656 | 39.21837 |
Ptychohyla hypomykter | Anura | VU | Arboreal | 26.133952 | 39.65707 |
Ptychohyla legleri | Anura | EN | Stream-dwelling | 24.985341 | 39.06030 |
Ptychohyla leonhardschultzei | Anura | LC | Stream-dwelling | 25.756334 | 39.07814 |
Ptychohyla macrotympanum | Anura | VU | Stream-dwelling | 26.691340 | 39.23657 |
Ptychohyla salvadorensis | Anura | NT | Arboreal | 26.360507 | 39.56046 |
Ptychohyla zophodes | Anura | VU | Stream-dwelling | 25.541778 | 39.06476 |
Pyxicephalus adspersus | Anura | LC | Fossorial | 23.132226 | 38.22466 |
Pyxicephalus angusticeps | Anura | LC | Semi-aquatic | 25.898132 | 37.87412 |
Pyxicephalus edulis | Anura | LC | Fossorial | 25.269806 | 38.44315 |
Pyxicephalus obbianus | Anura | LC | Fossorial | 25.495816 | 38.54948 |
Quasipaa boulengeri | Anura | VU | Stream-dwelling | 24.661969 | 42.01554 |
Quasipaa delacouri | Anura | LC | Stream-dwelling | 26.511748 | 41.53546 |
Quasipaa exilispinosa | Anura | LC | Stream-dwelling | 27.730147 | 42.76060 |
Quasipaa fasciculispina | Anura | LC | Stream-dwelling | 29.318622 | 41.93860 |
Quasipaa jiulongensis | Anura | VU | Stream-dwelling | 27.129088 | 42.26784 |
Quasipaa shini | Anura | EN | Stream-dwelling | 26.967073 | 42.30119 |
Quasipaa spinosa | Anura | VU | Stream-dwelling | 26.681111 | 44.72732 |
Quasipaa verrucospinosa | Anura | LC | Stream-dwelling | 26.088900 | 42.15516 |
Quasipaa yei | Anura | VU | Stream-dwelling | 27.813321 | 42.22123 |
Rana amurensis | Anura | LC | Semi-aquatic | 16.620890 | 35.19313 |
Rana arvalis | Anura | LC | Ground-dwelling | 17.289179 | 34.06724 |
Rana asiatica | Anura | LC | Semi-aquatic | 15.861758 | 34.79071 |
Rana aurora | Anura | LC | Semi-aquatic | 16.826522 | 34.60995 |
Rana boylii | Anura | NT | Stream-dwelling | 18.888402 | 34.11505 |
Rana cascadae | Anura | LC | Semi-aquatic | 18.022032 | 34.36360 |
Rana chaochiaoensis | Anura | LC | Ground-dwelling | 21.404976 | 35.82240 |
Rana chensinensis | Anura | LC | Semi-aquatic | 21.096042 | 34.20660 |
Rana coreana | Anura | LC | Semi-aquatic | 23.411105 | 36.15423 |
Rana dalmatina | Anura | LC | Semi-aquatic | 19.996536 | 35.71638 |
Rana draytonii | Anura | NT | Semi-aquatic | 19.682507 | 35.10618 |
Rana dybowskii | Anura | LC | Semi-aquatic | 18.348132 | 29.37354 |
Rana graeca | Anura | LC | Aquatic | 20.857533 | 35.74501 |
Rana hanluica | Anura | LC | Semi-aquatic | 27.058004 | 36.75025 |
Rana huanrensis | Anura | LC | Stream-dwelling | 22.365663 | 32.60943 |
Rana iberica | Anura | VU | Aquatic | 19.969009 | 34.66489 |
Rana italica | Anura | LC | Stream-dwelling | 22.901786 | 34.80588 |
Rana japonica | Anura | LC | Semi-aquatic | 24.938555 | 36.48869 |
Rana johnsi | Anura | LC | Ground-dwelling | 26.007466 | 36.30491 |
Rana kukunoris | Anura | LC | Semi-aquatic | 13.651276 | 32.43416 |
Rana latastei | Anura | VU | Ground-dwelling | 21.230273 | 35.67812 |
Rana longicrus | Anura | VU | Semi-aquatic | 27.474124 | 36.87218 |
Rana luteiventris | Anura | LC | Aquatic | 15.847218 | 35.08861 |
Rana macrocnemis | Anura | LC | Semi-aquatic | 20.319073 | 35.35740 |
Rana muscosa | Anura | EN | Stream-dwelling | 20.232762 | 34.23014 |
Rana omeimontis | Anura | LC | Ground-dwelling | 23.532239 | 36.01943 |
Rana ornativentris | Anura | LC | Semi-aquatic | 24.767125 | 33.38101 |
Rana pirica | Anura | LC | Ground-dwelling | 17.608168 | 31.82944 |
Rana pretiosa | Anura | VU | Aquatic | 17.847452 | 34.82145 |
Rana pseudodalmatina | Anura | LC | Semi-aquatic | 19.971035 | 35.38538 |
Rana pyrenaica | Anura | EN | Stream-dwelling | 20.530102 | 34.55535 |
Rana sakuraii | Anura | LC | Stream-dwelling | 24.763505 | 35.49497 |
Rana sangzhiensis | Anura | LC | Stream-dwelling | 26.595288 | 35.67364 |
Rana sauteri | Anura | VU | Stream-dwelling | 27.568429 | 35.47327 |
Rana shuchinae | Anura | LC | Stream-dwelling | 17.436606 | 34.42773 |
Rana sierrae | Anura | VU | Semi-aquatic | 18.018919 | 34.83918 |
Rana tagoi | Anura | LC | Ground-dwelling | 24.825962 | 36.12762 |
Rana tavasensis | Anura | EN | Stream-dwelling | 21.793226 | 34.74065 |
Rana temporaria | Anura | LC | Semi-aquatic | 17.290511 | 35.53112 |
Rana tsushimensis | Anura | NT | Semi-aquatic | 25.393547 | 36.37813 |
Rana zhenhaiensis | Anura | LC | Semi-aquatic | 27.386211 | 36.82421 |
Ranitomeya amazonica | Anura | DD | Arboreal | 28.018079 | 37.58029 |
Ranitomeya benedicta | Anura | VU | Ground-dwelling | 25.607771 | 37.43970 |
Ranitomeya fantastica | Anura | VU | Arboreal | 24.706468 | 37.10836 |
Ranitomeya flavovittata | Anura | LC | Arboreal | 28.764917 | 37.87756 |
Ranitomeya imitator | Anura | LC | Arboreal | 25.239720 | 37.32548 |
Ranitomeya reticulata | Anura | LC | Ground-dwelling | 27.391802 | 37.61425 |
Ranitomeya sirensis | Anura | LC | Arboreal | 22.150329 | 38.06621 |
Ranitomeya summersi | Anura | EN | Ground-dwelling | 24.265362 | 37.18128 |
Ranitomeya uakarii | Anura | LC | Ground-dwelling | 25.424000 | 37.37742 |
Ranitomeya vanzolinii | Anura | LC | Arboreal | 25.028536 | 37.31068 |
Ranitomeya variabilis | Anura | DD | Arboreal | 24.576112 | 37.01190 |
Ranitomeya ventrimaculata | Anura | LC | Arboreal | 28.116077 | 37.57308 |
Ranodon sibiricus | Caudata | EN | Stream-dwelling | 15.060149 | 32.28295 |
Raorchestes akroparallagi | Anura | LC | Arboreal | 27.419995 | 37.91465 |
Raorchestes anili | Anura | LC | Ground-dwelling | 27.687545 | 38.12028 |
Raorchestes beddomii | Anura | LC | Arboreal | 27.985330 | 38.06535 |
Raorchestes bobingeri | Anura | NT | Arboreal | 27.808977 | 37.90148 |
Raorchestes bombayensis | Anura | VU | Arboreal | 26.988464 | 37.78385 |
Raorchestes charius | Anura | EN | Arboreal | 26.875890 | 37.80489 |
Raorchestes chlorosomma | Anura | EN | Arboreal | 27.763410 | 38.00921 |
Raorchestes chotta | Anura | DD | Arboreal | 27.808977 | 37.95172 |
Raorchestes chromasynchysi | Anura | VU | Arboreal | 27.143558 | 37.81662 |
Raorchestes coonoorensis | Anura | LC | Arboreal | 27.229333 | 37.97192 |
Raorchestes dubois | Anura | VU | Arboreal | 28.044115 | 38.01338 |
Raorchestes glandulosus | Anura | VU | Arboreal | 27.378592 | 37.87487 |
Raorchestes graminirupes | Anura | VU | Ground-dwelling | 27.808977 | 38.20645 |
Raorchestes griet | Anura | CR | Arboreal | 27.989913 | 37.99466 |
Raorchestes gryllus | Anura | VU | Arboreal | 28.200291 | 38.01181 |
Raorchestes kaikatti | Anura | CR | Arboreal | 28.605524 | 38.07893 |
Raorchestes longchuanensis | Anura | LC | Arboreal | 24.544798 | 37.46422 |
Raorchestes luteolus | Anura | LC | Arboreal | 27.245487 | 37.87009 |
Raorchestes marki | Anura | CR | Arboreal | 28.605524 | 38.03025 |
Raorchestes menglaensis | Anura | LC | Stream-dwelling | 24.681442 | 36.96019 |
Raorchestes munnarensis | Anura | EN | Ground-dwelling | 28.044115 | 38.17738 |
Raorchestes nerostagona | Anura | EN | Arboreal | 27.229333 | 37.87620 |
Raorchestes ochlandrae | Anura | LC | Arboreal | 27.535995 | 37.98115 |
Raorchestes parvulus | Anura | LC | Arboreal | 27.428086 | 37.97912 |
Raorchestes ponmudi | Anura | LC | Arboreal | 27.658911 | 37.99157 |
Raorchestes resplendens | Anura | CR | Ground-dwelling | 27.989913 | 38.22390 |
Raorchestes signatus | Anura | EN | Arboreal | 27.648557 | 38.02038 |
Raorchestes sushili | Anura | CR | Arboreal | 28.605524 | 38.08055 |
Raorchestes tinniens | Anura | EN | Ground-dwelling | 27.229333 | 38.06826 |
Raorchestes travancoricus | Anura | EN | Arboreal | 27.536907 | 37.90616 |
Raorchestes tuberohumerus | Anura | LC | Arboreal | 27.247345 | 37.87323 |
Rhacophorus angulirostris | Anura | NT | Arboreal | 26.959611 | 37.84754 |
Rhacophorus annamensis | Anura | LC | Stream-dwelling | 28.506792 | 37.61410 |
Rhacophorus baluensis | Anura | LC | Arboreal | 27.498234 | 37.99569 |
Rhacophorus barisani | Anura | LC | Stream-dwelling | 28.399235 | 37.57318 |
Rhacophorus bifasciatus | Anura | LC | Stream-dwelling | 28.035742 | 37.45059 |
Rhacophorus bimaculatus | Anura | LC | Arboreal | 27.670597 | 37.97159 |
Rhacophorus bipunctatus | Anura | LC | Arboreal | 25.930137 | 37.67651 |
Rhacophorus calcadensis | Anura | EN | Arboreal | 28.134805 | 38.05671 |
Rhacophorus calcaneus | Anura | EN | Arboreal | 27.724865 | 37.83879 |
Rhacophorus catamitus | Anura | LC | Stream-dwelling | 28.327037 | 37.53971 |
Rhacophorus exechopygus | Anura | LC | Arboreal | 28.219226 | 38.01004 |
Rhacophorus fasciatus | Anura | LC | Arboreal | 27.803691 | 37.84653 |
Rhacophorus gadingensis | Anura | LC | Arboreal | 27.992958 | 38.01707 |
Rhacophorus gauni | Anura | LC | Arboreal | 28.105017 | 38.08824 |
Rhacophorus georgii | Anura | LC | Arboreal | 27.118062 | 37.94648 |
Rhacophorus harrissoni | Anura | LC | Arboreal | 28.172938 | 37.97306 |
Rhacophorus helenae | Anura | EN | Arboreal | 29.434619 | 38.22228 |
Rhacophorus hoanglienensis | Anura | LC | Arboreal | 25.682751 | 37.80910 |
Rhacophorus kio | Anura | LC | Arboreal | 26.032866 | 37.73437 |
Rhacophorus lateralis | Anura | VU | Arboreal | 27.198746 | 37.93541 |
Rhacophorus malabaricus | Anura | LC | Arboreal | 27.427408 | 37.94939 |
Rhacophorus margaritifer | Anura | LC | Stream-dwelling | 27.845724 | 37.47695 |
Rhacophorus marmoridorsum | Anura | VU | Arboreal | 27.948482 | 37.89336 |
Rhacophorus modestus | Anura | LC | Stream-dwelling | 28.782390 | 37.62110 |
Rhacophorus monticola | Anura | VU | Stream-dwelling | 26.773829 | 37.39150 |
Rhacophorus nigropalmatus | Anura | LC | Arboreal | 28.356548 | 38.00325 |
Rhacophorus orlovi | Anura | LC | Stream-dwelling | 28.272209 | 37.54256 |
Rhacophorus pardalis | Anura | LC | Arboreal | 27.854337 | 37.93855 |
Rhacophorus poecilonotus | Anura | LC | Arboreal | 27.637815 | 37.97025 |
Rhacophorus pseudomalabaricus | Anura | VU | Arboreal | 28.044115 | 38.04213 |
Rhacophorus reinwardtii | Anura | LC | Arboreal | 27.481917 | 37.92054 |
Rhacophorus rhodopus | Anura | LC | Arboreal | 25.610427 | 37.64522 |
Rhacophorus robertingeri | Anura | LC | Stream-dwelling | 28.210794 | 37.51009 |
Rhacophorus robinsonii | Anura | LC | Arboreal | 28.261105 | 38.04417 |
Rhacophorus rufipes | Anura | LC | Arboreal | 28.322647 | 37.94940 |
Rhacophorus spelaeus | Anura | VU | Arboreal | 28.552715 | 38.04405 |
Rhacophorus translineatus | Anura | NT | Arboreal | 18.270271 | 36.71797 |
Rhacophorus tuberculatus | Anura | DD | Arboreal | 20.425427 | 36.94976 |
Rhacophorus turpes | Anura | DD | Arboreal | 24.156784 | 37.45619 |
Rhacophorus vampyrus | Anura | EN | Arboreal | 28.417762 | 38.10598 |
Rhacophorus verrucopus | Anura | NT | Arboreal | 16.407198 | 36.49474 |
Rhaebo blombergi | Anura | NT | Ground-dwelling | 25.212583 | 38.40981 |
Rhaebo caeruleostictus | Anura | EN | Ground-dwelling | 23.982008 | 38.25701 |
Rhaebo glaberrimus | Anura | LC | Stream-dwelling | 25.336584 | 37.84921 |
Rhaebo guttatus | Anura | LC | Ground-dwelling | 27.740406 | 38.71018 |
Rhaebo haematiticus | Anura | LC | Ground-dwelling | 26.157432 | 38.17096 |
Rhaebo hypomelas | Anura | LC | Ground-dwelling | 24.959110 | 38.38498 |
Rhaebo lynchi | Anura | DD | Ground-dwelling | 26.439037 | 38.55711 |
Rhaebo nasicus | Anura | LC | Stream-dwelling | 26.566325 | 37.99993 |
Rheobates palmatus | Anura | LC | Stream-dwelling | 24.059726 | 36.20466 |
Rheobates pseudopalmatus | Anura | LC | Stream-dwelling | 25.162775 | 36.42886 |
Rheohyla miotympanum | Anura | LC | Arboreal | 24.556155 | 39.52451 |
Rhinella abei | Anura | LC | Ground-dwelling | 24.650402 | 39.82263 |
Rhinella achalensis | Anura | EN | Ground-dwelling | 22.890532 | 39.43516 |
Rhinella achavali | Anura | LC | Stream-dwelling | 24.569890 | 39.42794 |
Rhinella acrolopha | Anura | EN | Ground-dwelling | 27.251842 | 40.07154 |
Rhinella acutirostris | Anura | LC | Ground-dwelling | 27.259218 | 39.97011 |
Rhinella alata | Anura | DD | Ground-dwelling | 26.965602 | 40.01161 |
Rhinella amabilis | Anura | CR | Semi-aquatic | 22.745113 | 39.56376 |
Rhinella amboroensis | Anura | DD | Stream-dwelling | 22.559731 | 38.76727 |
Rhinella arborescandens | Anura | EN | Arboreal | 22.540468 | 39.26962 |
Rhinella arenarum | Anura | LC | Ground-dwelling | 22.254241 | 39.17745 |
Rhinella arunco | Anura | NT | Ground-dwelling | 17.941875 | 38.81728 |
Rhinella atacamensis | Anura | VU | Semi-aquatic | 17.033348 | 38.90825 |
Rhinella bergi | Anura | LC | Ground-dwelling | 27.332934 | 40.03433 |
Rhinella castaneotica | Anura | LC | Ground-dwelling | 28.293123 | 40.10715 |
Rhinella cerradensis | Anura | DD | Ground-dwelling | 27.160045 | 40.41314 |
Rhinella chavin | Anura | EN | Arboreal | 19.679576 | 38.77721 |
Rhinella cristinae | Anura | EN | Ground-dwelling | 24.984184 | 39.68894 |
Rhinella crucifer | Anura | LC | Ground-dwelling | 25.631885 | 40.31260 |
Rhinella dapsilis | Anura | LC | Ground-dwelling | 27.000794 | 39.92802 |
Rhinella diptycha | Anura | DD | Ground-dwelling | 27.801879 | 41.16833 |
Rhinella dorbignyi | Anura | LC | Ground-dwelling | 23.223136 | 39.66347 |
Rhinella fernandezae | Anura | LC | Ground-dwelling | 25.098141 | 39.81962 |
Rhinella festae | Anura | LC | Ground-dwelling | 24.082695 | 39.59194 |
Rhinella fissipes | Anura | DD | Ground-dwelling | 20.595105 | 39.11702 |
Rhinella gallardoi | Anura | EN | Ground-dwelling | 23.101751 | 39.43516 |
Rhinella gnustae | Anura | DD | Stream-dwelling | 15.522314 | 37.85217 |
Rhinella granulosa | Anura | LC | Ground-dwelling | 27.247875 | 41.92773 |
Rhinella henseli | Anura | LC | Ground-dwelling | 25.050892 | 39.66580 |
Rhinella hoogmoedi | Anura | LC | Ground-dwelling | 25.795157 | 39.17612 |
Rhinella icterica | Anura | LC | Ground-dwelling | 26.136684 | 40.63503 |
Rhinella inca | Anura | LC | Ground-dwelling | 18.829383 | 38.95520 |
Rhinella iserni | Anura | DD | Ground-dwelling | 22.173411 | 39.36457 |
Rhinella jimi | Anura | LC | Ground-dwelling | 25.916086 | 40.24007 |
Rhinella justinianoi | Anura | VU | Ground-dwelling | 20.993756 | 39.22008 |
Rhinella lescurei | Anura | LC | Ground-dwelling | 27.738181 | 40.02960 |
Rhinella limensis | Anura | LC | Ground-dwelling | 20.719591 | 39.24639 |
Rhinella lindae | Anura | EN | Ground-dwelling | 26.439037 | 39.84852 |
Rhinella macrorhina | Anura | VU | Ground-dwelling | 22.605131 | 39.39432 |
Rhinella magnussoni | Anura | LC | Ground-dwelling | 27.785396 | 40.08234 |
Rhinella manu | Anura | LC | Arboreal | 17.366171 | 38.56596 |
Rhinella margaritifera | Anura | LC | Ground-dwelling | 27.367018 | 38.91454 |
Rhinella marina | Anura | LC | Ground-dwelling | 27.124898 | 40.88615 |
Rhinella martyi | Anura | LC | Ground-dwelling | 27.508718 | 39.96258 |
Rhinella multiverrucosa | Anura | DD | Ground-dwelling | 20.268134 | 39.18840 |
Rhinella nesiotes | Anura | VU | Arboreal | 22.825311 | 39.26327 |
Rhinella nicefori | Anura | EN | Ground-dwelling | 24.030777 | 39.62268 |
Rhinella ocellata | Anura | LC | Ground-dwelling | 27.343112 | 40.05883 |
Rhinella ornata | Anura | LC | Ground-dwelling | 26.189578 | 39.98292 |
Rhinella poeppigii | Anura | LC | Stream-dwelling | 21.911277 | 38.72319 |
Rhinella pombali | Anura | LC | Ground-dwelling | 25.867549 | 39.98696 |
Rhinella proboscidea | Anura | LC | Ground-dwelling | 28.588179 | 40.17776 |
Rhinella pygmaea | Anura | LC | Fossorial | 25.794625 | 40.85705 |
Rhinella quechua | Anura | VU | Ground-dwelling | 19.704311 | 39.03972 |
Rhinella roqueana | Anura | LC | Ground-dwelling | 26.793333 | 39.97958 |
Rhinella rubescens | Anura | LC | Stream-dwelling | 26.858966 | 39.71367 |
Rhinella rubropunctata | Anura | VU | Ground-dwelling | 16.882411 | 38.60149 |
Rhinella ruizi | Anura | VU | Ground-dwelling | 22.605131 | 39.43162 |
Rhinella rumbolli | Anura | NT | Ground-dwelling | 20.471107 | 39.08087 |
Rhinella scitula | Anura | DD | Stream-dwelling | 28.653412 | 39.59481 |
Rhinella sclerocephala | Anura | VU | Ground-dwelling | 26.864752 | 39.86370 |
Rhinella spinulosa | Anura | LC | Ground-dwelling | 16.381229 | 38.14999 |
Rhinella stanlaii | Anura | LC | Ground-dwelling | 20.135784 | 39.08459 |
Rhinella sternosignata | Anura | LC | Ground-dwelling | 25.672375 | 39.75675 |
Rhinella tacana | Anura | LC | Arboreal | 19.469485 | 38.84601 |
Rhinella tenrec | Anura | EN | Ground-dwelling | 26.439037 | 40.01761 |
Rhinella vellardi | Anura | EN | Ground-dwelling | 20.797911 | 39.23510 |
Rhinella veraguensis | Anura | LC | Arboreal | 19.930050 | 38.86389 |
Rhinella veredas | Anura | LC | Ground-dwelling | 26.497353 | 39.88962 |
Rhinella yanachaga | Anura | EN | Arboreal | 21.293309 | 39.08043 |
Rhinoderma darwinii | Anura | EN | Ground-dwelling | 15.305318 | 36.44050 |
Rhinoderma rufum | Anura | CR | Ground-dwelling | 19.510575 | 36.97076 |
Rhinophrynus dorsalis | Anura | LC | Ground-dwelling | 26.966968 | 37.13713 |
Rhombophryne coronata | Anura | LC | Fossorial | 25.581771 | 38.91565 |
Rhombophryne coudreaui | Anura | NT | Fossorial | 26.517390 | 39.12665 |
Rhombophryne guentherpetersi | Anura | EN | Ground-dwelling | 26.747102 | 38.16421 |
Rhombophryne laevipes | Anura | LC | Fossorial | 26.369665 | 39.11417 |
Rhombophryne mangabensis | Anura | VU | Fossorial | 27.140802 | 39.16477 |
Rhombophryne matavy | Anura | CR | Ground-dwelling | 26.637693 | 38.05589 |
Rhombophryne minuta | Anura | EN | Fossorial | 26.476930 | 39.03307 |
Rhombophryne serratopalpebrosa | Anura | EN | Ground-dwelling | 26.476930 | 38.11814 |
Rhombophryne testudo | Anura | EN | Ground-dwelling | 27.525133 | 38.34265 |
Rhyacotriton cascadae | Caudata | NT | Semi-aquatic | 18.044879 | 30.61957 |
Rhyacotriton kezeri | Caudata | NT | Semi-aquatic | 17.981582 | 30.61008 |
Rhyacotriton olympicus | Caudata | NT | Semi-aquatic | 16.696957 | 29.92953 |
Rhyacotriton variegatus | Caudata | LC | Ground-dwelling | 18.335834 | 29.01987 |
Rulyrana adiazeta | Anura | VU | Stream-dwelling | 24.441176 | 36.78179 |
Rulyrana flavopunctata | Anura | LC | Stream-dwelling | 24.527268 | 36.83462 |
Rulyrana mcdiarmidi | Anura | NT | Stream-dwelling | 23.692973 | 36.72245 |
Rulyrana saxiscandens | Anura | EN | Stream-dwelling | 24.265362 | 36.75224 |
Rulyrana spiculata | Anura | NT | Stream-dwelling | 19.167851 | 36.07614 |
Rulyrana susatamai | Anura | NT | Stream-dwelling | 24.009201 | 36.69015 |
Rupirana cardosoi | Anura | NT | Stream-dwelling | 25.168824 | 38.79310 |
Sachatamia albomaculata | Anura | LC | Stream-dwelling | 26.474128 | 37.07413 |
Sachatamia ilex | Anura | LC | Stream-dwelling | 26.356764 | 37.07048 |
Sachatamia orejuela | Anura | LC | Stream-dwelling | 24.185699 | 36.70396 |
Sachatamia punctulata | Anura | VU | Stream-dwelling | 24.223246 | 36.68061 |
Salamandra algira | Caudata | VU | Semi-aquatic | 22.860491 | 35.56281 |
Salamandra atra | Caudata | LC | Ground-dwelling | 19.750032 | 34.87671 |
Salamandra corsica | Caudata | LC | Ground-dwelling | 23.907151 | 35.49013 |
Salamandra infraimmaculata | Caudata | NT | Ground-dwelling | 21.979791 | 35.22650 |
Salamandra lanzai | Caudata | CR | Ground-dwelling | 20.252671 | 35.00715 |
Salamandra salamandra | Caudata | LC | Ground-dwelling | 20.083985 | 34.55079 |
Salamandrella keyserlingii | Caudata | LC | Ground-dwelling | 15.381214 | 32.95495 |
Salamandrina perspicillata | Caudata | EN | Ground-dwelling | 21.811406 | 36.30306 |
Salamandrina terdigitata | Caudata | LC | Ground-dwelling | 24.487672 | 36.67029 |
Sanguirana everetti | Anura | NT | Stream-dwelling | 27.582992 | 36.38671 |
Sanguirana igorota | Anura | VU | Stream-dwelling | 28.015940 | 36.42676 |
Sanguirana luzonensis | Anura | LC | Stream-dwelling | 27.862632 | 36.21926 |
Sanguirana sanguinea | Anura | LC | Stream-dwelling | 27.872371 | 36.43025 |
Sanguirana tipanan | Anura | VU | Semi-aquatic | 28.134325 | 37.30406 |
Scaphiophryne boribory | Anura | VU | Ground-dwelling | 25.891084 | 37.96683 |
Scaphiophryne brevis | Anura | LC | Ground-dwelling | 26.267109 | 38.02876 |
Scaphiophryne calcarata | Anura | LC | Ground-dwelling | 26.555260 | 38.09398 |
Scaphiophryne gottlebei | Anura | EN | Fossorial | 26.195793 | 38.96414 |
Scaphiophryne madagascariensis | Anura | NT | Fossorial | 25.849954 | 38.92322 |
Scaphiophryne marmorata | Anura | VU | Ground-dwelling | 25.211223 | 37.83749 |
Scaphiophryne menabensis | Anura | LC | Semi-aquatic | 26.841274 | 38.35936 |
Scaphiophryne spinosa | Anura | LC | Ground-dwelling | 25.748555 | 37.91435 |
Scaphiopus couchii | Anura | LC | Fossorial | 23.814194 | 39.03446 |
Scaphiopus holbrookii | Anura | LC | Fossorial | 25.365630 | 35.18634 |
Scaphiopus hurterii | Anura | LC | Fossorial | 26.804432 | 36.52924 |
Scarthyla goinorum | Anura | LC | Semi-aquatic | 28.030089 | 38.67126 |
Scarthyla vigilans | Anura | LC | Ground-dwelling | 26.791188 | 39.00979 |
Schismaderma carens | Anura | LC | Ground-dwelling | 23.842166 | 38.59280 |
Scinax acuminatus | Anura | LC | Semi-aquatic | 27.760809 | 42.34737 |
Scinax altae | Anura | LC | Arboreal | 27.493562 | 40.77726 |
Scinax alter | Anura | LC | Arboreal | 25.387695 | 40.91230 |
Scinax auratus | Anura | LC | Arboreal | 25.484986 | 40.39736 |
Scinax baumgardneri | Anura | DD | Arboreal | 27.070816 | 40.66275 |
Scinax blairi | Anura | LC | Ground-dwelling | 26.489149 | 40.76537 |
Scinax boesemani | Anura | LC | Arboreal | 28.110001 | 40.88553 |
Scinax boulengeri | Anura | LC | Arboreal | 27.040688 | 40.74860 |
Scinax cabralensis | Anura | DD | Arboreal | 25.517655 | 40.40985 |
Scinax caldarum | Anura | LC | Arboreal | 25.932282 | 40.64208 |
Scinax camposseabrai | Anura | DD | Arboreal | 25.316792 | 40.52735 |
Scinax cardosoi | Anura | LC | Arboreal | 25.959546 | 40.56294 |
Scinax castroviejoi | Anura | LC | Arboreal | 21.125255 | 39.22320 |
Scinax chiquitanus | Anura | LC | Arboreal | 25.659504 | 40.42630 |
Scinax constrictus | Anura | LC | Arboreal | 27.403267 | 40.85504 |
Scinax cretatus | Anura | LC | Arboreal | 25.597046 | 40.46776 |
Scinax crospedospilus | Anura | LC | Arboreal | 25.914601 | 40.54516 |
Scinax cruentommus | Anura | LC | Arboreal | 27.762137 | 40.69608 |
Scinax curicica | Anura | DD | Arboreal | 25.220967 | 40.45046 |
Scinax cuspidatus | Anura | LC | Arboreal | 25.633706 | 40.40671 |
Scinax danae | Anura | DD | Arboreal | 25.977285 | 40.56205 |
Scinax duartei | Anura | LC | Ground-dwelling | 25.848824 | 40.62261 |
Scinax elaeochroa | Anura | LC | Arboreal | 26.696934 | 40.29181 |
Scinax eurydice | Anura | LC | Arboreal | 26.087273 | 41.06700 |
Scinax exiguus | Anura | LC | Arboreal | 26.170031 | 40.54720 |
Scinax funereus | Anura | LC | Arboreal | 26.436211 | 40.59359 |
Scinax fuscomarginatus | Anura | LC | Arboreal | 27.145243 | 40.72073 |
Scinax fuscovarius | Anura | LC | Semi-aquatic | 26.882556 | 41.03941 |
Scinax garbei | Anura | LC | Arboreal | 27.596419 | 40.00975 |
Scinax granulatus | Anura | LC | Ground-dwelling | 24.684222 | 40.13926 |
Scinax hayii | Anura | LC | Arboreal | 25.771621 | 40.61050 |
Scinax ictericus | Anura | LC | Arboreal | 23.164216 | 40.14301 |
Scinax iquitorum | Anura | LC | Arboreal | 27.593813 | 40.67328 |
Scinax jolyi | Anura | DD | Arboreal | 27.088674 | 40.15611 |
Scinax karenanneae | Anura | LC | Arboreal | 28.220209 | 40.84522 |
Scinax kennedyi | Anura | LC | Arboreal | 27.796502 | 40.80134 |
Scinax lindsayi | Anura | LC | Arboreal | 28.756800 | 40.91408 |
Scinax manriquei | Anura | NT | Arboreal | 25.357013 | 40.44120 |
Scinax maracaya | Anura | DD | Arboreal | 25.893387 | 40.54992 |
Scinax nasicus | Anura | LC | Arboreal | 26.712094 | 41.37486 |
Scinax nebulosus | Anura | LC | Arboreal | 28.125277 | 41.26977 |
Scinax oreites | Anura | LC | Arboreal | 21.789211 | 39.98645 |
Scinax pachycrus | Anura | LC | Arboreal | 25.438296 | 41.24507 |
Scinax parkeri | Anura | LC | Ground-dwelling | 27.318607 | 40.92963 |
Scinax pedromedinae | Anura | LC | Arboreal | 23.870576 | 40.31508 |
Scinax perereca | Anura | LC | Arboreal | 25.630529 | 40.54761 |
Scinax proboscideus | Anura | LC | Arboreal | 27.607576 | 40.28253 |
Scinax quinquefasciatus | Anura | LC | Arboreal | 24.833318 | 41.23278 |
Scinax rostratus | Anura | LC | Arboreal | 26.860838 | 40.27191 |
Scinax ruber | Anura | LC | Arboreal | 27.713379 | 40.82410 |
Scinax similis | Anura | LC | Arboreal | 25.673076 | 40.55826 |
Scinax squalirostris | Anura | LC | Arboreal | 25.632764 | 41.29233 |
Scinax staufferi | Anura | LC | Arboreal | 26.705517 | 40.71605 |
Scinax sugillatus | Anura | LC | Arboreal | 24.980163 | 40.49649 |
Scinax tigrinus | Anura | LC | Semi-aquatic | 26.885490 | 41.12058 |
Scinax trilineatus | Anura | LC | Arboreal | 26.737269 | 40.66339 |
Scinax uruguayus | Anura | LC | Ground-dwelling | 24.848787 | 39.54304 |
Scinax wandae | Anura | LC | Ground-dwelling | 26.958388 | 40.76502 |
Scinax x-signatus | Anura | LC | Arboreal | 27.461328 | 41.58018 |
Scotobleps gabonicus | Anura | LC | Stream-dwelling | 27.658046 | 38.34264 |
Scutiger adungensis | Anura | DD | Stream-dwelling | 17.369125 | 35.67514 |
Scutiger boulengeri | Anura | LC | Stream-dwelling | 12.605423 | 35.06947 |
Scutiger brevipes | Anura | DD | Stream-dwelling | 15.184491 | 35.37442 |
Scutiger chintingensis | Anura | VU | Stream-dwelling | 21.440032 | 36.21063 |
Scutiger glandulatus | Anura | LC | Ground-dwelling | 15.315638 | 36.03737 |
Scutiger gongshanensis | Anura | LC | Semi-aquatic | 18.663023 | 36.78476 |
Scutiger jiulongensis | Anura | EN | Semi-aquatic | 17.923825 | 36.63094 |
Scutiger liupanensis | Anura | EN | Stream-dwelling | 20.385648 | 36.06909 |
Scutiger mammatus | Anura | LC | Stream-dwelling | 12.281296 | 35.03064 |
Scutiger muliensis | Anura | EN | Stream-dwelling | 17.614027 | 35.72015 |
Scutiger nepalensis | Anura | VU | Stream-dwelling | 16.516261 | 35.64856 |
Scutiger ningshanensis | Anura | LC | Stream-dwelling | 23.621802 | 36.56477 |
Scutiger nyingchiensis | Anura | LC | Stream-dwelling | 14.249952 | 35.32008 |
Scutiger pingwuensis | Anura | EN | Stream-dwelling | 19.768911 | 35.96852 |
Scutiger sikimmensis | Anura | LC | Stream-dwelling | 17.566255 | 35.66413 |
Scutiger tuberculatus | Anura | VU | Stream-dwelling | 20.775404 | 36.17111 |
Scythrophrys sawayae | Anura | LC | Ground-dwelling | 24.594068 | 39.29359 |
Sechellophryne gardineri | Anura | EN | Ground-dwelling | 26.889900 | 37.47412 |
Sechellophryne pipilodryas | Anura | CR | Ground-dwelling | 26.889900 | 37.39721 |
Semnodactylus wealii | Anura | LC | Ground-dwelling | 21.701954 | 39.58804 |
Silverstoneia erasmios | Anura | EN | Ground-dwelling | 25.141645 | 37.83194 |
Silverstoneia flotator | Anura | LC | Ground-dwelling | 26.879129 | 38.00792 |
Silverstoneia nubicola | Anura | VU | Ground-dwelling | 26.554831 | 38.04243 |
Siren intermedia | Caudata | LC | Aquatic | 26.511742 | 35.50796 |
Siren lacertina | Caudata | LC | Semi-aquatic | 26.712798 | 35.71994 |
Smilisca baudinii | Anura | LC | Ground-dwelling | 26.176379 | 40.04569 |
Smilisca cyanosticta | Anura | LC | Arboreal | 26.960239 | 39.95043 |
Smilisca dentata | Anura | EN | Ground-dwelling | 23.626351 | 39.46141 |
Smilisca fodiens | Anura | LC | Fossorial | 24.762744 | 39.59078 |
Smilisca phaeota | Anura | LC | Stream-dwelling | 26.319033 | 40.64093 |
Smilisca puma | Anura | LC | Ground-dwelling | 26.025414 | 40.22208 |
Smilisca sila | Anura | LC | Arboreal | 26.810685 | 39.84660 |
Smilisca sordida | Anura | LC | Stream-dwelling | 26.568307 | 39.29227 |
Sooglossus sechellensis | Anura | EN | Ground-dwelling | 26.889900 | 37.43519 |
Sooglossus thomasseti | Anura | CR | Stream-dwelling | 26.889900 | 36.91248 |
Spea bombifrons | Anura | LC | Aquatic | 21.587969 | 36.67988 |
Spea hammondii | Anura | NT | Fossorial | 19.888949 | 37.48541 |
Spea intermontana | Anura | LC | Aquatic | 17.602077 | 36.14555 |
Spea multiplicata | Anura | LC | Ground-dwelling | 22.261387 | 36.43908 |
Spelaeophryne methneri | Anura | LC | Fossorial | 24.219220 | 39.04543 |
Sphaenorhynchus bromelicola | Anura | DD | Arboreal | 24.959353 | 40.35920 |
Sphaenorhynchus caramaschii | Anura | LC | Semi-aquatic | 25.627277 | 40.72286 |
Sphaenorhynchus carneus | Anura | LC | Semi-aquatic | 27.657690 | 41.01489 |
Sphaenorhynchus dorisae | Anura | LC | Semi-aquatic | 27.822395 | 40.99970 |
Sphaenorhynchus lacteus | Anura | LC | Semi-aquatic | 27.685675 | 41.48385 |
Sphaenorhynchus mirim | Anura | DD | Arboreal | 25.692279 | 40.35013 |
Sphaenorhynchus orophilus | Anura | LC | Arboreal | 25.856211 | 40.45275 |
Sphaenorhynchus palustris | Anura | LC | Aquatic | 25.471289 | 40.56931 |
Sphaenorhynchus planicola | Anura | LC | Aquatic | 25.662105 | 40.90496 |
Sphaenorhynchus prasinus | Anura | LC | Arboreal | 25.527165 | 40.47644 |
Sphaenorhynchus surdus | Anura | LC | Arboreal | 24.976463 | 40.33238 |
Sphaerotheca breviceps | Anura | LC | Ground-dwelling | 27.346148 | 40.08894 |
Sphaerotheca dobsonii | Anura | LC | Fossorial | 27.854297 | 41.17500 |
Sphaerotheca leucorhynchus | Anura | DD | Fossorial | 27.234274 | 41.07523 |
Sphaerotheca maskeyi | Anura | LC | Fossorial | 22.283543 | 40.39302 |
Sphaerotheca rolandae | Anura | LC | Fossorial | 28.460641 | 41.24557 |
Sphaerotheca swani | Anura | DD | Fossorial | 25.953686 | 40.87243 |
Sphenophryne cornuta | Anura | LC | Ground-dwelling | 27.176539 | 35.41464 |
Spicospina flammocaerulea | Anura | VU | Semi-aquatic | 18.726993 | 34.97241 |
Spinomantis aglavei | Anura | LC | Stream-dwelling | 25.973618 | 37.11988 |
Spinomantis bertini | Anura | NT | Stream-dwelling | 25.943531 | 37.21223 |
Spinomantis brunae | Anura | EN | Stream-dwelling | 25.635403 | 37.08724 |
Spinomantis elegans | Anura | NT | Stream-dwelling | 25.985815 | 37.21804 |
Spinomantis fimbriatus | Anura | LC | Arboreal | 26.216758 | 37.61886 |
Spinomantis guibei | Anura | VU | Stream-dwelling | 25.671246 | 37.16643 |
Spinomantis massi | Anura | VU | Arboreal | 26.747102 | 37.78400 |
Spinomantis microtis | Anura | EN | Stream-dwelling | 25.752340 | 37.10970 |
Spinomantis peraccae | Anura | LC | Arboreal | 26.084029 | 37.56576 |
Spinomantis phantasticus | Anura | LC | Stream-dwelling | 26.112827 | 37.24195 |
Spinomantis tavaratra | Anura | VU | Arboreal | 26.882329 | 37.66675 |
Staurois latopalmatus | Anura | LC | Stream-dwelling | 28.039146 | 37.22784 |
Staurois parvus | Anura | VU | Stream-dwelling | 27.361544 | 37.20177 |
Staurois tuberilinguis | Anura | LC | Stream-dwelling | 27.992342 | 37.29940 |
Stefania ackawaio | Anura | VU | Arboreal | 26.912428 | 37.66733 |
Stefania ayangannae | Anura | VU | Arboreal | 26.912428 | 37.57791 |
Stefania breweri | Anura | VU | Arboreal | 28.342027 | 37.95027 |
Stefania coxi | Anura | VU | Arboreal | 26.912428 | 37.69040 |
Stefania evansi | Anura | DD | Stream-dwelling | 27.114808 | 37.23453 |
Stefania ginesi | Anura | NT | Arboreal | 25.619235 | 37.59007 |
Stefania goini | Anura | NT | Ground-dwelling | 25.966820 | 37.82927 |
Stefania marahuaquensis | Anura | NT | Ground-dwelling | 25.966820 | 37.71385 |
Stefania oculosa | Anura | VU | Ground-dwelling | 25.633941 | 37.62541 |
Stefania percristata | Anura | VU | Arboreal | 25.633941 | 37.50006 |
Stefania riae | Anura | NT | Arboreal | 25.743412 | 37.55893 |
Stefania riveroi | Anura | VU | Ground-dwelling | 26.671496 | 37.73142 |
Stefania roraimae | Anura | EN | Ground-dwelling | 26.671496 | 37.79460 |
Stefania satelles | Anura | NT | Ground-dwelling | 25.696434 | 37.66837 |
Stefania scalae | Anura | LC | Stream-dwelling | 26.288956 | 37.09697 |
Stefania schuberti | Anura | NT | Ground-dwelling | 26.143635 | 37.73699 |
Stefania tamacuarina | Anura | DD | Stream-dwelling | 27.345187 | 37.28502 |
Stefania woodleyi | Anura | DD | Stream-dwelling | 27.153360 | 37.27742 |
Stereochilus marginatus | Caudata | LC | Semi-aquatic | 25.561479 | 35.72479 |
Stereocyclops histrio | Anura | DD | Ground-dwelling | 25.433241 | 39.68219 |
Stereocyclops incrassatus | Anura | LC | Ground-dwelling | 25.551804 | 40.05586 |
Stereocyclops parkeri | Anura | LC | Ground-dwelling | 26.039029 | 39.92367 |
Strabomantis anatipes | Anura | VU | Stream-dwelling | 24.460522 | 32.72774 |
Strabomantis anomalus | Anura | LC | Stream-dwelling | 25.369238 | 32.84521 |
Strabomantis biporcatus | Anura | LC | Ground-dwelling | 26.964087 | 33.84147 |
Strabomantis bufoniformis | Anura | EN | Stream-dwelling | 26.233818 | 33.03286 |
Strabomantis cadenai | Anura | CR | Ground-dwelling | 26.439037 | 33.72516 |
Strabomantis cerastes | Anura | LC | Ground-dwelling | 24.555625 | 33.43570 |
Strabomantis cheiroplethus | Anura | EN | Stream-dwelling | 25.618773 | 32.96687 |
Strabomantis cornutus | Anura | VU | Ground-dwelling | 24.016147 | 33.35824 |
Strabomantis helonotus | Anura | CR | Ground-dwelling | 22.090899 | 33.16316 |
Strabomantis ingeri | Anura | VU | Ground-dwelling | 23.581962 | 33.25190 |
Strabomantis laticorpus | Anura | DD | Ground-dwelling | 28.084410 | 33.97224 |
Strabomantis necopinus | Anura | VU | Ground-dwelling | 22.866967 | 33.15510 |
Strabomantis ruizi | Anura | EN | Ground-dwelling | 24.612963 | 33.42205 |
Strabomantis sulcatus | Anura | LC | Ground-dwelling | 26.922328 | 33.80412 |
Strabomantis zygodactylus | Anura | LC | Stream-dwelling | 25.655660 | 33.05958 |
Strauchbufo raddei | Anura | LC | Ground-dwelling | 18.755172 | 37.78527 |
Strongylopus bonaespei | Anura | LC | Semi-aquatic | 20.764129 | 37.18526 |
Strongylopus fasciatus | Anura | LC | Semi-aquatic | 22.881627 | 37.44112 |
Strongylopus fuelleborni | Anura | LC | Semi-aquatic | 23.141740 | 37.58066 |
Strongylopus grayii | Anura | LC | Semi-aquatic | 21.678845 | 37.28273 |
Strongylopus kilimanjaro | Anura | DD | Stream-dwelling | 22.670118 | 36.47109 |
Strongylopus kitumbeine | Anura | VU | Semi-aquatic | 21.152086 | 37.22393 |
Strongylopus merumontanus | Anura | LC | Stream-dwelling | 21.936803 | 36.47286 |
Strongylopus rhodesianus | Anura | VU | Stream-dwelling | 24.846367 | 36.84188 |
Strongylopus springbokensis | Anura | LC | Semi-aquatic | 20.466731 | 37.10454 |
Strongylopus wageri | Anura | LC | Semi-aquatic | 22.251252 | 37.41178 |
Stumpffia analamaina | Anura | CR | Ground-dwelling | 27.256065 | 38.16694 |
Stumpffia be | Anura | EN | Ground-dwelling | 26.962711 | 38.11277 |
Stumpffia gimmeli | Anura | LC | Ground-dwelling | 26.871170 | 38.05352 |
Stumpffia grandis | Anura | LC | Ground-dwelling | 26.039383 | 38.00835 |
Stumpffia hara | Anura | CR | Ground-dwelling | 26.637693 | 38.12678 |
Stumpffia madagascariensis | Anura | EN | Ground-dwelling | 26.637693 | 38.06270 |
Stumpffia megsoni | Anura | DD | Ground-dwelling | 26.637693 | 38.07455 |
Stumpffia miery | Anura | EN | Ground-dwelling | 25.878849 | 38.04178 |
Stumpffia psologlossa | Anura | EN | Ground-dwelling | 26.611874 | 37.95844 |
Stumpffia pygmaea | Anura | EN | Ground-dwelling | 27.525133 | 38.20708 |
Stumpffia roseifemoralis | Anura | EN | Ground-dwelling | 26.476930 | 38.14284 |
Stumpffia staffordi | Anura | VU | Ground-dwelling | 26.637693 | 38.05826 |
Stumpffia tetradactyla | Anura | DD | Ground-dwelling | 26.258355 | 38.05334 |
Stumpffia tridactyla | Anura | DD | Ground-dwelling | 25.544571 | 37.94392 |
Synapturanus mirandaribeiroi | Anura | LC | Ground-dwelling | 27.946172 | 37.64494 |
Synapturanus rabus | Anura | LC | Fossorial | 27.718009 | 38.64282 |
Synapturanus salseri | Anura | LC | Ground-dwelling | 28.534119 | 37.78494 |
Tachycnemis seychellensis | Anura | LC | Arboreal | 26.889900 | 40.43525 |
Taricha granulosa | Caudata | LC | Ground-dwelling | 15.431020 | 35.59822 |
Taricha rivularis | Caudata | VU | Ground-dwelling | 18.074106 | 36.14145 |
Taricha torosa | Caudata | NT | Ground-dwelling | 19.711454 | 36.31538 |
Taruga eques | Anura | EN | Arboreal | 27.674004 | 38.58066 |
Taruga fastigo | Anura | EN | Arboreal | 27.547532 | 38.56138 |
Taruga longinasus | Anura | EN | Arboreal | 27.674004 | 38.56347 |
Taudactylus eungellensis | Anura | EN | Stream-dwelling | 25.641198 | 35.07283 |
Taudactylus liemi | Anura | LC | Semi-aquatic | 25.641198 | 35.85187 |
Taudactylus pleione | Anura | CR | Ground-dwelling | 24.400069 | 35.59456 |
Telmatobius arequipensis | Anura | NT | Aquatic | 15.566642 | 36.73193 |
Telmatobius atacamensis | Anura | CR | Aquatic | 14.396671 | 36.45287 |
Telmatobius atahualpai | Anura | VU | Semi-aquatic | 20.278053 | 37.38000 |
Telmatobius brevipes | Anura | VU | Semi-aquatic | 20.127014 | 37.31975 |
Telmatobius brevirostris | Anura | EN | Semi-aquatic | 19.973855 | 37.37857 |
Telmatobius carrillae | Anura | VU | Semi-aquatic | 16.160113 | 36.79257 |
Telmatobius chusmisensis | Anura | EN | Stream-dwelling | 15.695928 | 35.92533 |
Telmatobius colanensis | Anura | DD | Stream-dwelling | 24.252411 | 36.99769 |
Telmatobius contrerasi | Anura | EN | Stream-dwelling | 20.977490 | 36.66035 |
Telmatobius culeus | Anura | EN | Aquatic | 16.214995 | 36.68361 |
Telmatobius dankoi | Anura | CR | Aquatic | 14.633854 | 36.52742 |
Telmatobius degener | Anura | DD | Semi-aquatic | 22.537771 | 37.58083 |
Telmatobius fronteriensis | Anura | CR | Stream-dwelling | 11.930120 | 35.34653 |
Telmatobius gigas | Anura | EN | Stream-dwelling | 15.702740 | 35.89314 |
Telmatobius halli | Anura | DD | Semi-aquatic | 9.975574 | 36.04757 |
Telmatobius hauthali | Anura | EN | Aquatic | 12.432014 | 36.32171 |
Telmatobius hintoni | Anura | VU | Aquatic | 18.285864 | 37.02107 |
Telmatobius hockingi | Anura | DD | Stream-dwelling | 17.418204 | 36.11305 |
Telmatobius huayra | Anura | VU | Aquatic | 14.743225 | 36.53605 |
Telmatobius hypselocephalus | Anura | EN | Aquatic | 14.440140 | 36.51795 |
Telmatobius ignavus | Anura | EN | Semi-aquatic | 22.881730 | 37.64523 |
Telmatobius intermedius | Anura | EN | Semi-aquatic | 15.218556 | 36.70095 |
Telmatobius jelskii | Anura | NT | Semi-aquatic | 16.598978 | 36.85789 |
Telmatobius latirostris | Anura | EN | Semi-aquatic | 22.890282 | 37.66193 |
Telmatobius marmoratus | Anura | EN | Semi-aquatic | 15.816895 | 36.75702 |
Telmatobius mayoloi | Anura | EN | Aquatic | 21.963628 | 37.55623 |
Telmatobius necopinus | Anura | DD | Stream-dwelling | 20.676160 | 36.63790 |
Telmatobius niger | Anura | CR | Semi-aquatic | 23.479298 | 37.78277 |
Telmatobius oxycephalus | Anura | EN | Aquatic | 18.048793 | 37.05953 |
Telmatobius pefauri | Anura | CR | Stream-dwelling | 16.677387 | 35.90660 |
Telmatobius peruvianus | Anura | VU | Semi-aquatic | 14.549685 | 36.58858 |
Telmatobius philippii | Anura | CR | Aquatic | 9.975574 | 35.99691 |
Telmatobius pinguiculus | Anura | EN | Aquatic | 19.540248 | 37.13466 |
Telmatobius pisanoi | Anura | EN | Aquatic | 14.490261 | 36.46361 |
Telmatobius platycephalus | Anura | EN | Aquatic | 15.530940 | 36.56799 |
Telmatobius punctatus | Anura | EN | Semi-aquatic | 19.534037 | 37.18691 |
Telmatobius rimac | Anura | VU | Semi-aquatic | 19.002640 | 37.19628 |
Telmatobius sanborni | Anura | CR | Semi-aquatic | 16.318090 | 36.90879 |
Telmatobius schreiteri | Anura | EN | Aquatic | 20.341275 | 37.24131 |
Telmatobius scrocchii | Anura | CR | Aquatic | 20.910470 | 37.40280 |
Telmatobius simonsi | Anura | CR | Aquatic | 20.049444 | 37.26404 |
Telmatobius stephani | Anura | EN | Aquatic | 21.000696 | 37.34184 |
Telmatobius thompsoni | Anura | DD | Semi-aquatic | 22.537771 | 37.67926 |
Telmatobius timens | Anura | CR | Semi-aquatic | 16.459088 | 36.82327 |
Telmatobius truebae | Anura | VU | Semi-aquatic | 21.733334 | 37.53084 |
Telmatobius verrucosus | Anura | CR | Aquatic | 18.664739 | 37.13511 |
Telmatobius vilamensis | Anura | CR | Semi-aquatic | 14.633854 | 36.63703 |
Telmatobius yuracare | Anura | CR | Aquatic | 22.559731 | 37.62398 |
Telmatobius zapahuirensis | Anura | EN | Semi-aquatic | 16.677387 | 36.84473 |
Telmatobufo australis | Anura | LC | Stream-dwelling | 16.551337 | 34.35905 |
Telmatobufo bullocki | Anura | EN | Stream-dwelling | 18.338116 | 34.64808 |
Telmatobufo venustus | Anura | EN | Stream-dwelling | 16.584952 | 34.38144 |
Tepuihyla aecii | Anura | NT | Arboreal | 25.966820 | 39.71481 |
Tepuihyla edelcae | Anura | LC | Arboreal | 25.696434 | 39.60354 |
Tepuihyla exophthalma | Anura | LC | Arboreal | 26.362100 | 39.72034 |
Tepuihyla luteolabris | Anura | VU | Arboreal | 25.966820 | 39.68912 |
Tepuihyla rodriguezi | Anura | NT | Arboreal | 26.459117 | 39.70706 |
Teratohyla adenocheira | Anura | LC | Stream-dwelling | 28.463470 | 37.28301 |
Teratohyla amelie | Anura | LC | Arboreal | 22.622266 | 36.98870 |
Teratohyla midas | Anura | LC | Arboreal | 27.900763 | 37.67721 |
Teratohyla pulverata | Anura | LC | Arboreal | 26.462609 | 37.52580 |
Teratohyla spinosa | Anura | LC | Stream-dwelling | 26.068215 | 36.92157 |
Theloderma asperum | Anura | LC | Ground-dwelling | 28.119713 | 38.20267 |
Theloderma bicolor | Anura | LC | Ground-dwelling | 23.894363 | 37.73759 |
Theloderma corticale | Anura | LC | Ground-dwelling | 27.546631 | 38.06366 |
Theloderma gordoni | Anura | LC | Ground-dwelling | 26.987687 | 38.05325 |
Theloderma horridum | Anura | LC | Arboreal | 28.078368 | 38.05342 |
Theloderma laeve | Anura | LC | Arboreal | 28.357886 | 38.03524 |
Theloderma lateriticum | Anura | LC | Arboreal | 26.770626 | 37.79985 |
Theloderma leporosum | Anura | LC | Arboreal | 28.464832 | 38.10112 |
Theloderma licin | Anura | LC | Arboreal | 28.181849 | 38.04964 |
Theloderma moloch | Anura | LC | Arboreal | 18.334918 | 36.76135 |
Theloderma nagalandense | Anura | DD | Arboreal | 25.414438 | 37.58787 |
Theloderma nebulosum | Anura | EN | Arboreal | 28.131262 | 37.83410 |
Theloderma phrynoderma | Anura | LC | Arboreal | 27.963266 | 38.02539 |
Theloderma rhododiscus | Anura | LC | Arboreal | 26.725301 | 37.86599 |
Theloderma ryabovi | Anura | EN | Arboreal | 27.627978 | 38.03548 |
Theloderma stellatum | Anura | LC | Arboreal | 28.844143 | 38.01283 |
Theloderma truongsonense | Anura | LC | Stream-dwelling | 28.255805 | 37.49799 |
Thorius adelos | Caudata | NT | Arboreal | 22.681874 | 34.64568 |
Thorius arboreus | Caudata | CR | Arboreal | 22.681874 | 34.66958 |
Thorius aureus | Caudata | CR | Ground-dwelling | 22.681874 | 34.88934 |
Thorius boreas | Caudata | EN | Ground-dwelling | 22.681874 | 34.85905 |
Thorius dubitus | Caudata | CR | Ground-dwelling | 25.021001 | 35.15517 |
Thorius grandis | Caudata | CR | Ground-dwelling | 24.338588 | 35.03331 |
Thorius infernalis | Caudata | CR | Semi-aquatic | 24.338588 | 35.27791 |
Thorius insperatus | Caudata | CR | Ground-dwelling | 22.681874 | 34.93441 |
Thorius lunaris | Caudata | CR | Ground-dwelling | 25.021001 | 35.16527 |
Thorius macdougalli | Caudata | EN | Ground-dwelling | 22.681874 | 34.76346 |
Thorius magnipes | Caudata | CR | Arboreal | 25.021001 | 34.97445 |
Thorius minutissimus | Caudata | CR | Ground-dwelling | 27.639256 | 35.41765 |
Thorius minydemus | Caudata | EN | Ground-dwelling | 23.670587 | 34.99227 |
Thorius munificus | Caudata | CR | Ground-dwelling | 21.551792 | 34.64371 |
Thorius narismagnus | Caudata | CR | Fossorial | 27.246796 | 36.36909 |
Thorius narisovalis | Caudata | EN | Ground-dwelling | 24.112672 | 34.98745 |
Thorius omiltemi | Caudata | EN | Ground-dwelling | 25.457526 | 35.21429 |
Thorius papaloae | Caudata | CR | Ground-dwelling | 22.681874 | 34.92242 |
Thorius pennatulus | Caudata | EN | Ground-dwelling | 24.858995 | 35.14508 |
Thorius pulmonaris | Caudata | CR | Ground-dwelling | 22.681874 | 34.84102 |
Thorius schmidti | Caudata | CR | Ground-dwelling | 25.021001 | 35.08772 |
Thorius smithi | Caudata | CR | Ground-dwelling | 22.681874 | 34.85907 |
Thorius spilogaster | Caudata | CR | Fossorial | 25.021001 | 36.05898 |
Thorius troglodytes | Caudata | EN | Fossorial | 23.286396 | 35.88239 |
Thoropa lutzi | Anura | EN | Stream-dwelling | 26.017373 | 37.09969 |
Thoropa megatympanum | Anura | LC | Stream-dwelling | 25.416083 | 36.96599 |
Thoropa miliaris | Anura | LC | Stream-dwelling | 25.620218 | 37.01206 |
Thoropa petropolitana | Anura | VU | Stream-dwelling | 25.776702 | 37.08656 |
Thoropa saxatilis | Anura | NT | Stream-dwelling | 24.832390 | 36.90261 |
Tlalocohyla godmani | Anura | VU | Stream-dwelling | 25.160347 | 39.39580 |
Tlalocohyla loquax | Anura | LC | Aquatic | 27.081078 | 40.45847 |
Tlalocohyla picta | Anura | LC | Arboreal | 26.553809 | 40.16822 |
Tlalocohyla smithii | Anura | LC | Stream-dwelling | 25.411445 | 41.06344 |
Tomopterna cryptotis | Anura | LC | Ground-dwelling | 25.405140 | 37.46292 |
Tomopterna damarensis | Anura | DD | Fossorial | 23.510280 | 38.21346 |
Tomopterna delalandii | Anura | LC | Semi-aquatic | 20.709477 | 37.13596 |
Tomopterna elegans | Anura | LC | Ground-dwelling | 25.956765 | 37.56791 |
Tomopterna gallmanni | Anura | LC | Ground-dwelling | 22.032623 | 37.06908 |
Tomopterna kachowskii | Anura | LC | Ground-dwelling | 21.775728 | 37.07166 |
Tomopterna krugerensis | Anura | LC | Ground-dwelling | 23.725020 | 37.26970 |
Tomopterna luganga | Anura | LC | Semi-aquatic | 22.314268 | 37.28106 |
Tomopterna marmorata | Anura | LC | Ground-dwelling | 24.083510 | 37.31217 |
Tomopterna milletihorsini | Anura | DD | Ground-dwelling | 27.825689 | 37.78082 |
Tomopterna natalensis | Anura | LC | Ground-dwelling | 22.453559 | 37.14412 |
Tomopterna tandyi | Anura | LC | Ground-dwelling | 22.364635 | 37.00615 |
Tomopterna tuberculosa | Anura | LC | Semi-aquatic | 23.828103 | 37.53717 |
Tomopterna wambensis | Anura | LC | Semi-aquatic | 22.636551 | 37.33151 |
Trachycephalus atlas | Anura | LC | Arboreal | 25.209799 | 40.99881 |
Trachycephalus coriaceus | Anura | LC | Arboreal | 27.768714 | 40.55415 |
Trachycephalus dibernardoi | Anura | LC | Arboreal | 25.632648 | 40.34671 |
Trachycephalus hadroceps | Anura | LC | Arboreal | 27.597336 | 40.50595 |
Trachycephalus imitatrix | Anura | LC | Arboreal | 25.721911 | 40.29435 |
Trachycephalus jordani | Anura | LC | Arboreal | 24.854936 | 40.09106 |
Trachycephalus lepidus | Anura | DD | Arboreal | 26.712618 | 40.46915 |
Trachycephalus mesophaeus | Anura | LC | Arboreal | 25.501898 | 40.26526 |
Trachycephalus nigromaculatus | Anura | LC | Arboreal | 25.944122 | 40.32579 |
Trachycephalus resinifictrix | Anura | LC | Arboreal | 27.877906 | 40.54227 |
Trichobatrachus robustus | Anura | LC | Stream-dwelling | 27.437749 | 38.45911 |
Triprion petasatus | Anura | LC | Arboreal | 27.644050 | 39.87705 |
Triturus carnifex | Caudata | LC | Semi-aquatic | 20.761969 | 36.95047 |
Triturus cristatus | Caudata | LC | Ground-dwelling | 18.360240 | 36.32447 |
Triturus dobrogicus | Caudata | LC | Ground-dwelling | 19.951363 | 36.75942 |
Triturus karelinii | Caudata | LC | Semi-aquatic | 20.095303 | 36.88678 |
Triturus marmoratus | Caudata | LC | Semi-aquatic | 19.808909 | 36.71313 |
Triturus pygmaeus | Caudata | NT | Semi-aquatic | 21.620798 | 36.74258 |
Truebella skoptes | Anura | DD | Arboreal | 17.039787 | 37.41511 |
Truebella tothastes | Anura | EN | Ground-dwelling | 17.117738 | 37.52472 |
Tsingymantis antitra | Anura | EN | Ground-dwelling | 26.962711 | 37.96395 |
Tylototriton asperrimus | Caudata | NT | Ground-dwelling | 26.773854 | 37.06498 |
Tylototriton hainanensis | Caudata | EN | Ground-dwelling | 27.965646 | 37.21651 |
Tylototriton kweichowensis | Caudata | VU | Semi-aquatic | 23.495055 | 36.90510 |
Tylototriton notialis | Caudata | VU | Ground-dwelling | 27.992413 | 37.22325 |
Tylototriton shanjing | Caudata | VU | Ground-dwelling | 22.195424 | 36.47447 |
Tylototriton verrucosus | Caudata | NT | Semi-aquatic | 23.127635 | 36.84354 |
Tylototriton vietnamensis | Caudata | VU | Semi-aquatic | 27.652937 | 37.45968 |
Tylototriton wenxianensis | Caudata | VU | Ground-dwelling | 23.598202 | 36.65414 |
Uperodon globulosus | Anura | LC | Fossorial | 27.366568 | 39.27542 |
Uperodon systoma | Anura | LC | Fossorial | 26.874124 | 39.12038 |
Uperoleia altissima | Anura | LC | Ground-dwelling | 26.227656 | 35.77344 |
Uperoleia arenicola | Anura | LC | Ground-dwelling | 28.579204 | 36.16157 |
Uperoleia aspera | Anura | LC | Ground-dwelling | 28.062909 | 36.08974 |
Uperoleia borealis | Anura | LC | Ground-dwelling | 27.759634 | 35.95806 |
Uperoleia crassa | Anura | LC | Semi-aquatic | 28.105154 | 36.32963 |
Uperoleia daviesae | Anura | EN | Ground-dwelling | 28.261603 | 36.11231 |
Uperoleia fusca | Anura | LC | Ground-dwelling | 23.559250 | 34.92711 |
Uperoleia glandulosa | Anura | LC | Ground-dwelling | 26.490424 | 35.80550 |
Uperoleia inundata | Anura | LC | Ground-dwelling | 28.132525 | 36.04338 |
Uperoleia laevigata | Anura | LC | Ground-dwelling | 22.612007 | 34.47361 |
Uperoleia lithomoda | Anura | LC | Ground-dwelling | 27.641203 | 35.91848 |
Uperoleia littlejohni | Anura | LC | Ground-dwelling | 25.839762 | 35.74209 |
Uperoleia martini | Anura | DD | Ground-dwelling | 19.239381 | 34.69932 |
Uperoleia micromeles | Anura | LC | Ground-dwelling | 25.329711 | 35.60523 |
Uperoleia mimula | Anura | LC | Ground-dwelling | 26.823310 | 35.77866 |
Uperoleia minima | Anura | LC | Ground-dwelling | 28.089361 | 36.05592 |
Uperoleia mjobergii | Anura | LC | Ground-dwelling | 28.033660 | 35.96325 |
Uperoleia orientalis | Anura | DD | Ground-dwelling | 27.907294 | 36.04024 |
Uperoleia rugosa | Anura | LC | Ground-dwelling | 23.334600 | 35.54103 |
Uperoleia russelli | Anura | LC | Ground-dwelling | 24.776773 | 35.58304 |
Uperoleia talpa | Anura | LC | Ground-dwelling | 27.771193 | 36.08142 |
Uperoleia trachyderma | Anura | LC | Ground-dwelling | 27.046260 | 35.90363 |
Uperoleia tyleri | Anura | DD | Ground-dwelling | 20.430555 | 34.51880 |
Urspelerpes brucei | Caudata | LC | Fossorial | 26.950810 | 37.39077 |
Vandijkophrynus amatolicus | Anura | CR | Ground-dwelling | 20.611452 | 37.87503 |
Vandijkophrynus angusticeps | Anura | LC | Ground-dwelling | 21.029625 | 38.02499 |
Vandijkophrynus gariepensis | Anura | LC | Ground-dwelling | 21.030582 | 37.98720 |
Vandijkophrynus inyangae | Anura | VU | Ground-dwelling | 23.836789 | 38.32970 |
Vandijkophrynus robinsoni | Anura | LC | Ground-dwelling | 20.388532 | 37.89806 |
Vitreorana antisthenesi | Anura | VU | Arboreal | 27.224334 | 37.56870 |
Vitreorana castroviejoi | Anura | EN | Arboreal | 26.667627 | 37.53030 |
Vitreorana eurygnatha | Anura | LC | Arboreal | 25.709906 | 37.43393 |
Vitreorana gorzulae | Anura | LC | Arboreal | 26.288956 | 37.38521 |
Vitreorana helenae | Anura | VU | Arboreal | 26.073805 | 37.38745 |
Vitreorana parvula | Anura | VU | Stream-dwelling | 24.718914 | 36.81400 |
Vitreorana uranoscopa | Anura | LC | Arboreal | 25.763201 | 37.36727 |
Wakea madinika | Anura | DD | Ground-dwelling | 27.525133 | 37.94841 |
Werneria bambutensis | Anura | CR | Stream-dwelling | 26.186967 | 38.21887 |
Werneria iboundji | Anura | CR | Stream-dwelling | 28.009525 | 38.41826 |
Werneria mertensiana | Anura | CR | Stream-dwelling | 26.852636 | 38.25971 |
Werneria preussi | Anura | EN | Stream-dwelling | 27.191396 | 38.37549 |
Werneria submontana | Anura | EN | Stream-dwelling | 27.125406 | 38.19761 |
Werneria tandyi | Anura | CR | Stream-dwelling | 27.125406 | 38.23027 |
Wolterstorffina chirioi | Anura | CR | Ground-dwelling | 25.817681 | 38.77103 |
Wolterstorffina mirei | Anura | EN | Ground-dwelling | 25.750743 | 38.74170 |
Wolterstorffina parvipalmata | Anura | CR | Stream-dwelling | 26.837496 | 38.17882 |
Xanthophryne koynayensis | Anura | EN | Ground-dwelling | 27.042391 | 38.95304 |
Xanthophryne tigerina | Anura | CR | Ground-dwelling | 27.105274 | 39.03572 |
Xenohyla eugenioi | Anura | DD | Arboreal | 25.366870 | 39.19976 |
Xenohyla truncata | Anura | NT | Arboreal | 25.773498 | 39.35640 |
Xenopus amieti | Anura | VU | Aquatic | 26.438074 | 36.80296 |
Xenopus andrei | Anura | LC | Aquatic | 27.243486 | 36.93356 |
Xenopus borealis | Anura | LC | Aquatic | 21.719078 | 36.25441 |
Xenopus boumbaensis | Anura | NT | Stream-dwelling | 27.271002 | 36.18929 |
Xenopus clivii | Anura | LC | Aquatic | 22.582031 | 36.23554 |
Xenopus epitropicalis | Anura | LC | Aquatic | 27.565308 | 37.22981 |
Xenopus fraseri | Anura | DD | Aquatic | 28.391255 | 37.06166 |
Xenopus gilli | Anura | EN | Ground-dwelling | 20.817692 | 35.79351 |
Xenopus itombwensis | Anura | EN | Aquatic | 24.550522 | 36.54970 |
Xenopus laevis | Anura | LC | Aquatic | 22.664902 | 36.08129 |
Xenopus largeni | Anura | EN | Aquatic | 20.982090 | 36.07785 |
Xenopus lenduensis | Anura | CR | Aquatic | 25.691672 | 36.65412 |
Xenopus longipes | Anura | CR | Aquatic | 25.817681 | 36.71879 |
Xenopus muelleri | Anura | LC | Aquatic | 24.331849 | 36.48612 |
Xenopus petersii | Anura | LC | Aquatic | 25.481007 | 36.64394 |
Xenopus pygmaeus | Anura | LC | Aquatic | 27.643730 | 36.90465 |
Xenopus ruwenzoriensis | Anura | DD | Aquatic | 24.375681 | 36.61515 |
Xenopus tropicalis | Anura | LC | Aquatic | 27.706784 | 37.23102 |
Xenopus vestitus | Anura | LC | Aquatic | 23.239962 | 36.30991 |
Xenopus victorianus | Anura | LC | Aquatic | 23.577763 | 36.38335 |
Xenopus wittei | Anura | LC | Aquatic | 23.522868 | 36.31207 |
Xenorhina adisca | Anura | DD | Ground-dwelling | 27.228017 | 35.40229 |
Xenorhina anorbis | Anura | DD | Ground-dwelling | 26.332044 | 35.25985 |
Xenorhina arboricola | Anura | LC | Arboreal | 27.000482 | 35.22456 |
Xenorhina arfakiana | Anura | LC | Ground-dwelling | 27.785597 | 35.65204 |
Xenorhina bidens | Anura | LC | Ground-dwelling | 27.830272 | 35.55610 |
Xenorhina bouwensi | Anura | LC | Ground-dwelling | 27.111356 | 35.38636 |
Xenorhina eiponis | Anura | DD | Ground-dwelling | 25.609209 | 35.14290 |
Xenorhina fuscigula | Anura | LC | Fossorial | 26.165987 | 36.23021 |
Xenorhina gigantea | Anura | DD | Ground-dwelling | 26.232798 | 35.23064 |
Xenorhina huon | Anura | DD | Ground-dwelling | 26.251026 | 35.19192 |
Xenorhina lanthanites | Anura | DD | Ground-dwelling | 26.372759 | 35.18595 |
Xenorhina macrodisca | Anura | DD | Ground-dwelling | 24.020029 | 34.99610 |
Xenorhina macrops | Anura | LC | Ground-dwelling | 26.541684 | 35.30641 |
Xenorhina mehelyi | Anura | LC | Ground-dwelling | 26.756386 | 35.39711 |
Xenorhina minima | Anura | LC | Ground-dwelling | 26.481603 | 35.26998 |
Xenorhina multisica | Anura | LC | Ground-dwelling | 24.843060 | 35.01946 |
Xenorhina obesa | Anura | LC | Ground-dwelling | 26.894098 | 35.38488 |
Xenorhina ocellata | Anura | LC | Ground-dwelling | 26.431858 | 35.36904 |
Xenorhina ophiodon | Anura | DD | Ground-dwelling | 27.860409 | 35.48622 |
Xenorhina oxycephala | Anura | LC | Ground-dwelling | 27.099169 | 35.43762 |
Xenorhina parkerorum | Anura | LC | Ground-dwelling | 26.638466 | 35.30956 |
Xenorhina rostrata | Anura | LC | Ground-dwelling | 26.812031 | 35.33615 |
Xenorhina scheepstrai | Anura | DD | Ground-dwelling | 26.375358 | 35.29733 |
Xenorhina schiefenhoeveli | Anura | LC | Ground-dwelling | 25.609209 | 35.26789 |
Xenorhina similis | Anura | LC | Ground-dwelling | 27.210276 | 35.45063 |
Xenorhina subcrocea | Anura | DD | Ground-dwelling | 26.827638 | 35.21565 |
Xenorhina tumulus | Anura | LC | Fossorial | 26.761957 | 36.37137 |
Xenorhina varia | Anura | DD | Ground-dwelling | 26.372759 | 35.35645 |
Xenorhina zweifeli | Anura | LC | Ground-dwelling | 27.537612 | 35.44491 |
Zachaenus carvalhoi | Anura | DD | Ground-dwelling | 25.780363 | 37.64286 |
Zachaenus parvulus | Anura | LC | Ground-dwelling | 25.762956 | 37.54486 |
Predicted plasticity of each species
# Load estimated intercepts and acclimation response ratios
species_ARR <- readRDS("RData/Climate_vulnerability/Pond/current/species_ARR_pond_current.rds")
# Display data
kable(species_ARR, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
tip.label | intercept | intercept_se | slope | slope_se |
---|---|---|---|---|
Pleurodema thaul | 35.90767 | 1.4968582 | 0.1419952 | 0.0917530 |
Anaxyrus americanus | 37.17172 | 0.9556022 | 0.0914746 | 0.0490691 |
Dryophytes versicolor | 37.37297 | 3.0542887 | 0.1254332 | 0.1366829 |
Pseudacris crucifer | 34.91936 | 3.2099507 | 0.1241034 | 0.1449068 |
Rana cascadae | 32.07766 | 2.8450193 | 0.1268415 | 0.1560132 |
Rana luteiventris | 32.83118 | 2.8260619 | 0.1424495 | 0.1724273 |
Lithobates sphenocephalus | 35.78824 | 5.6650724 | 0.1288926 | 0.2199606 |
Hylomantis aspera | 35.23926 | 18.3796928 | 0.1341506 | 0.7236338 |
Alytes cisternasii | 32.92891 | 3.0861756 | 0.1669401 | 0.1446988 |
Alytes dickhilleni | 34.61466 | 4.6161589 | 0.1216522 | 0.2061491 |
Alytes obstetricans | 33.14787 | 3.0136465 | 0.1517981 | 0.1554486 |
Bufotes boulengeri | 36.30905 | 8.6350966 | 0.1379723 | 0.3649727 |
Barbarophryne brongersmai | 35.97622 | 4.1091377 | 0.1131505 | 0.1828543 |
Bufo bufo | 34.61728 | 1.4318987 | 0.1075313 | 0.0770052 |
Epidalea calamita | 34.97773 | 1.8687862 | 0.1512542 | 0.0998857 |
Ceratophrys aurita | 36.84152 | 13.6556746 | 0.1307139 | 0.5331869 |
Dendropsophus branneri | 36.33712 | 8.0488758 | 0.1098838 | 0.3085076 |
Dendropsophus elegans | 35.91089 | 8.3460092 | 0.1185909 | 0.3258930 |
Dendropsophus haddadi | 34.78968 | 13.9032440 | 0.1064546 | 0.5473902 |
Dendropsophus novaisi | 37.59220 | 7.4331543 | 0.1240432 | 0.2940948 |
Discoglossus galganoi | 32.71215 | 4.8703373 | 0.1739762 | 0.2327465 |
Discoglossus pictus | 34.11433 | 8.4205481 | 0.1508807 | 0.3563427 |
Discoglossus scovazzi | 33.81670 | 7.8268129 | 0.1495117 | 0.3518580 |
Hyla arborea | 35.46782 | 2.4402588 | 0.1429389 | 0.1263647 |
Hyla meridionalis | 35.00066 | 2.4975613 | 0.1225487 | 0.1153174 |
Boana albomarginata | 37.05342 | 9.8182168 | 0.1319985 | 0.3822931 |
Boana faber | 37.74968 | 4.0566618 | 0.1220565 | 0.1558899 |
Leptodactylus fuscus | 38.64980 | 15.5496516 | 0.1353399 | 0.5705433 |
Leptodactylus latrans | 37.49833 | 5.9607367 | 0.1211408 | 0.2236524 |
Pelobates cultripes | 35.05683 | 3.0873347 | 0.1446740 | 0.1473795 |
Pelodytes ibericus | 33.60718 | 2.2699440 | 0.0913140 | 0.1033273 |
Pelodytes punctatus | 33.57987 | 2.7660345 | 0.1154146 | 0.1360515 |
Phasmahyla spectabilis | 34.85572 | 10.4742114 | 0.1276487 | 0.4072916 |
Phyllodytes luteolus | 36.47355 | 12.7425672 | 0.1279742 | 0.5008105 |
Phyllodytes melanomystax | 37.24333 | 16.7241585 | 0.1330341 | 0.6591738 |
Pithecopus rohdei | 36.82828 | 11.2799193 | 0.1360178 | 0.4346870 |
Physalaemus camacan | 36.32224 | 20.4784728 | 0.1339034 | 0.8018721 |
Physalaemus erikae | 36.63712 | 19.8677707 | 0.1345101 | 0.7786767 |
Pipa carvalhoi | 36.01514 | 17.8179208 | 0.1395476 | 0.6933710 |
Pleurodeles waltl | 33.56475 | 4.6485278 | 0.1364741 | 0.2145150 |
Pelophylax perezi | 35.45840 | 4.7071927 | 0.1399468 | 0.2227183 |
Rana temporaria | 33.25867 | 0.7437576 | 0.1314276 | 0.0418929 |
Rhinella crucifer | 36.91400 | 13.5789891 | 0.1325925 | 0.5298529 |
Rhinella hoogmoedi | 36.01245 | 15.7363110 | 0.1226459 | 0.6116361 |
Rhinella diptycha | 37.67846 | 7.1037589 | 0.1255264 | 0.2574013 |
Salamandra salamandra | 31.92020 | 3.0745371 | 0.1309795 | 0.1508895 |
Ololygon agilis | 38.07360 | 19.4875879 | 0.1284396 | 0.7608263 |
Scinax eurydice | 37.70814 | 11.8918001 | 0.1287549 | 0.4578202 |
Sphaenorhynchus prasinus | 37.22559 | 14.0899427 | 0.1273486 | 0.5514213 |
Trachycephalus mesophaeus | 37.07261 | 12.3070037 | 0.1251925 | 0.4848371 |
Triturus pygmaeus | 33.90250 | 5.6450539 | 0.1313584 | 0.2636277 |
Desmognathus carolinensis | 31.90158 | 7.5792690 | 0.1233274 | 0.2895605 |
Desmognathus fuscus | 32.21470 | 1.7904952 | 0.1418146 | 0.0775668 |
Desmognathus monticola | 32.07484 | 5.1014552 | 0.1263172 | 0.2019459 |
Desmognathus ochrophaeus | 31.27907 | 2.4019815 | 0.1265893 | 0.1082744 |
Desmognathus ocoee | 31.91811 | 9.0663088 | 0.1252681 | 0.3374157 |
Desmognathus orestes | 31.99354 | 8.5763637 | 0.1252990 | 0.3331097 |
Plethodon cinereus | 32.90209 | 1.8679561 | 0.1128909 | 0.0918481 |
Plethodon hubrichti | 31.66814 | 5.1070949 | 0.1183808 | 0.2044553 |
Plethodon richmondi | 31.96018 | 5.7113536 | 0.1237528 | 0.2253615 |
Plethodon virginia | 31.86418 | 6.3878034 | 0.1227377 | 0.2561231 |
Plethodon cylindraceus | 31.55514 | 2.6132503 | 0.1116987 | 0.1090486 |
Plethodon glutinosus | 32.11147 | 2.6036651 | 0.1157815 | 0.1057241 |
Plethodon montanus | 31.63822 | 7.2028220 | 0.1222038 | 0.2800241 |
Plethodon teyahalee | 31.93891 | 7.6708146 | 0.1234175 | 0.2882602 |
Plethodon punctatus | 31.69873 | 5.9842884 | 0.1237999 | 0.2428210 |
Plethodon wehrlei | 31.97423 | 4.9338506 | 0.1272147 | 0.2047725 |
Rhinella spinulosa | 36.77510 | 1.6792336 | 0.0839307 | 0.1031322 |
Bryophryne cophites | 26.70259 | 3.0079874 | 0.1497181 | 0.2011119 |
Bryophryne hanssaueri | 24.73739 | 3.2455593 | 0.1445457 | 0.2145290 |
Bryophryne nubilosus | 25.65551 | 2.8955671 | 0.1468640 | 0.1937736 |
Noblella myrmecoides | 29.17549 | 13.8297552 | 0.1445667 | 0.5297371 |
Noblella pygmaea | 26.23381 | 3.0214653 | 0.1404028 | 0.2005598 |
Oreobates cruralis | 32.63153 | 11.5208401 | 0.1485885 | 0.5415513 |
Pristimantis buccinator | 31.23264 | 12.4973642 | 0.1331129 | 0.5412214 |
Pristimantis carvalhoi | 29.91050 | 16.2550269 | 0.1366556 | 0.5975981 |
Pristimantis danae | 28.63742 | 9.1868209 | 0.1394979 | 0.4784075 |
Pristimantis lindae | 27.67285 | 4.2325748 | 0.1374622 | 0.2859249 |
Pristimantis ockendeni | 29.07599 | 14.0152912 | 0.1335453 | 0.5412334 |
Pristimantis platydactylus | 28.88496 | 12.0374648 | 0.1378684 | 0.6353338 |
Pristimantis salaputium | 28.72880 | 3.1989424 | 0.1420520 | 0.2115826 |
Pristimantis toftae | 29.47045 | 12.5175212 | 0.1428816 | 0.5548656 |
Psychrophrynella usurpator | 27.47295 | 3.1758567 | 0.1445062 | 0.2132946 |
Eurycea nana | 34.62224 | 10.8515253 | 0.1231991 | 0.4040657 |
Aneides ferreus | 31.15977 | 5.7447453 | 0.1267984 | 0.3131427 |
Ensatina eschscholtzii | 30.54211 | 6.8673734 | 0.1259896 | 0.3625886 |
Plethodon dunni | 31.18135 | 5.7547071 | 0.1258671 | 0.3171349 |
Plethodon vehiculum | 30.87583 | 4.7451189 | 0.1256419 | 0.2777759 |
Rhyacotriton olympicus | 27.63918 | 4.4272095 | 0.1371720 | 0.2669584 |
Agalychnis dacnicolor | 32.21004 | 13.4220497 | 0.1668800 | 0.5269765 |
Anaxyrus boreas | 35.37909 | 1.3685809 | 0.1060820 | 0.0839189 |
Anaxyrus canorus | 35.12555 | 4.1644123 | 0.1332097 | 0.2284401 |
Anaxyrus cognatus | 37.74822 | 2.7076482 | 0.1351643 | 0.1264390 |
Anaxyrus compactilis | 35.50241 | 8.0925766 | 0.1204651 | 0.3482736 |
Anaxyrus retiformis | 37.51842 | 5.5736821 | 0.1319652 | 0.2316246 |
Anaxyrus exsul | 35.33852 | 4.1627347 | 0.1113743 | 0.2074005 |
Anaxyrus fowleri | 35.24840 | 3.3335841 | 0.1393498 | 0.1370017 |
Anaxyrus nelsoni | 35.47392 | 4.1072399 | 0.0997265 | 0.2087943 |
Dendrobates auratus | 32.37270 | 21.7199292 | 0.1397169 | 0.8078943 |
Incilius alvarius | 36.49633 | 4.6698208 | 0.1392618 | 0.1993624 |
Incilius canaliferus | 36.22440 | 13.4962497 | 0.1177060 | 0.4974011 |
Incilius marmoreus | 36.72723 | 9.9300228 | 0.1423793 | 0.3747158 |
Incilius mazatlanensis | 36.72131 | 7.5022253 | 0.1317468 | 0.2936653 |
Leptodactylus melanonotus | 35.79088 | 12.3049591 | 0.1354684 | 0.4624952 |
Lithobates catesbeianus | 34.98783 | 2.3630041 | 0.0779649 | 0.1044071 |
Lithobates palmipes | 33.89274 | 13.6682895 | 0.1299539 | 0.4977325 |
Lithobates palustris | 30.89755 | 2.7310802 | 0.1267352 | 0.1182065 |
Lithobates pipiens | 32.58702 | 0.7462146 | 0.1773336 | 0.0384003 |
Lithobates sylvaticus | 32.03755 | 0.5918826 | 0.1483915 | 0.0349865 |
Lithobates warszewitschii | 31.31035 | 19.0644512 | 0.1262679 | 0.7048592 |
Pseudacris cadaverina | 31.92663 | 6.0174258 | 0.1715263 | 0.2799594 |
Pseudacris regilla | 33.61363 | 1.5293991 | 0.1155792 | 0.0919788 |
Rana boylii | 31.63922 | 4.3222790 | 0.1310769 | 0.2281221 |
Lithobates clamitans | 33.41402 | 1.8323922 | 0.1509304 | 0.0821521 |
Rana pretiosa | 32.53709 | 3.1877356 | 0.1279934 | 0.1757095 |
Rhaebo haematiticus | 34.76432 | 13.9456366 | 0.1302363 | 0.5329895 |
Rhinella marina | 36.84045 | 2.9077570 | 0.1491506 | 0.1070747 |
Scaphiopus holbrookii | 30.26072 | 4.1736591 | 0.1941850 | 0.1661914 |
Smilisca fodiens | 35.24641 | 6.1814436 | 0.1754397 | 0.2498349 |
Smilisca baudinii | 36.15278 | 11.7692333 | 0.1487184 | 0.4502001 |
Spea hammondii | 34.64317 | 3.1144172 | 0.1429053 | 0.1554243 |
Tlalocohyla smithii | 36.64299 | 11.2312276 | 0.1739553 | 0.4420024 |
Adelotus brevis | 31.91534 | 10.0038436 | 0.1465029 | 0.4296026 |
Assa darlingtoni | 31.10420 | 12.1461689 | 0.1562575 | 0.5207402 |
Cophixalus ornatus | 30.95022 | 8.6003614 | 0.1381921 | 0.3325436 |
Crinia parinsignifera | 32.98110 | 6.2121160 | 0.1548452 | 0.2840692 |
Crinia signifera | 32.98573 | 2.0934469 | 0.1332107 | 0.1019387 |
Geocrinia laevis | 31.03966 | 4.1411135 | 0.1719357 | 0.2412690 |
Geocrinia victoriana | 31.59138 | 2.8832335 | 0.1781639 | 0.1539253 |
Limnodynastes dorsalis | 32.86558 | 2.9247113 | 0.1491678 | 0.1412983 |
Limnodynastes fletcheri | 29.63963 | 7.5362132 | 0.1745970 | 0.3318408 |
Limnodynastes peronii | 32.21026 | 2.5415572 | 0.1845834 | 0.1155415 |
Limnodynastes salmini | 32.76633 | 7.1728659 | 0.1469080 | 0.3054585 |
Limnodynastes tasmaniensis | 32.58545 | 3.5149936 | 0.1648466 | 0.1549739 |
Litoria aurea | 33.46141 | 3.4581957 | 0.1327104 | 0.1680405 |
Litoria bicolor | 35.98738 | 10.4689601 | 0.1766691 | 0.3799321 |
Cyclorana brevipes | 36.58744 | 7.3740156 | 0.1411053 | 0.2957682 |
Litoria caerulea | 35.09641 | 3.1440472 | 0.1659396 | 0.1243468 |
Litoria chloris | 36.36788 | 4.4903733 | 0.1207016 | 0.1927979 |
Litoria citropa | 31.39531 | 4.2940795 | 0.1247556 | 0.2111795 |
Litoria ewingii | 33.00333 | 2.0509106 | 0.0968506 | 0.1146215 |
Litoria fallax | 36.51312 | 3.4798735 | 0.1267154 | 0.1477013 |
Litoria freycineti | 33.04389 | 8.7525171 | 0.1629739 | 0.3863970 |
Litoria gracilenta | 35.95938 | 2.9342908 | 0.1066263 | 0.1204283 |
Litoria lesueurii | 31.99473 | 2.5686918 | 0.1387758 | 0.1266606 |
Litoria peronii | 34.15075 | 3.2466334 | 0.1407803 | 0.1475272 |
Litoria phyllochroa | 31.19378 | 5.6810297 | 0.1402817 | 0.2558809 |
Litoria rothii | 34.31159 | 6.4267948 | 0.1798600 | 0.2368473 |
Litoria rubella | 35.78480 | 3.4554432 | 0.1599977 | 0.1373021 |
Litoria verreauxii | 31.00342 | 2.9865697 | 0.1469790 | 0.1443763 |
Mixophyes fasciolatus | 29.39715 | 6.0470434 | 0.1308217 | 0.2615626 |
Neobatrachus pictus | 30.60911 | 4.7448920 | 0.1505485 | 0.2301309 |
Philoria frosti | 27.45344 | 2.6593773 | 0.1288291 | 0.1355863 |
Philoria loveridgei | 29.83052 | 9.1528030 | 0.1535991 | 0.3919913 |
Philoria sphagnicolus | 28.21748 | 10.1398282 | 0.1704582 | 0.4433988 |
Pseudophryne bibronii | 33.39529 | 2.8232694 | 0.1509215 | 0.1369985 |
Pseudophryne corroboree | 29.95901 | 3.2041108 | 0.2156861 | 0.1677196 |
Pseudophryne dendyi | 34.48447 | 6.0859968 | 0.1381492 | 0.3118419 |
Dicamptodon tenebrosus | 28.17619 | 6.6784953 | 0.1360270 | 0.3653086 |
Rhyacotriton variegatus | 26.38422 | 5.8523707 | 0.1437428 | 0.3225512 |
Buergeria japonica | 38.20828 | 9.3704908 | 0.1541821 | 0.3416879 |
Eleutherodactylus coqui | 36.31050 | 11.8820506 | 0.1762884 | 0.4562115 |
Eleutherodactylus portoricensis | 34.73325 | 21.4735869 | 0.1217940 | 0.7970227 |
Ascaphus truei | 28.60808 | 2.9974450 | 0.1473752 | 0.1840779 |
Ambystoma jeffersonianum | 33.92129 | 1.1796412 | 0.1184082 | 0.0528307 |
Ambystoma tigrinum | 34.39242 | 1.4877056 | 0.1285672 | 0.0687734 |
Pseudacris triseriata | 36.02640 | 0.8914264 | 0.0818421 | 0.0403610 |
Anaxyrus woodhousii | 37.66817 | 1.6114378 | 0.0952896 | 0.0732470 |
Gastrophryne carolinensis | 37.11722 | 2.2654925 | 0.1325774 | 0.0866698 |
Fejervarya cancrivora | 37.32253 | 20.4261160 | 0.1313539 | 0.7337612 |
Ceratophrys cranwelli | 37.81002 | 10.0227642 | 0.1312649 | 0.3784074 |
Dermatonotus muelleri | 38.54105 | 14.0967514 | 0.1394330 | 0.5211526 |
Elachistocleis bicolor | 36.84878 | 6.1546992 | 0.1353074 | 0.2423385 |
Boana raniceps | 38.06152 | 10.4971606 | 0.1384480 | 0.3801402 |
Lepidobatrachus llanensis | 39.34535 | 9.5149285 | 0.1379822 | 0.3750165 |
Leptodactylus bufonius | 38.77449 | 8.3672087 | 0.1341124 | 0.3152022 |
Leptodactylus latinasus | 38.27009 | 5.8183790 | 0.1320783 | 0.2302662 |
Leptodactylus podicipinus | 37.87559 | 14.4799374 | 0.1402565 | 0.5219127 |
Phyllomedusa sauvagii | 37.67543 | 9.6019536 | 0.1343727 | 0.3604422 |
Physalaemus albonotatus | 36.59699 | 9.9170749 | 0.1390884 | 0.3632352 |
Lysapsus limellum | 37.64544 | 9.1483241 | 0.1280850 | 0.3382767 |
Pseudis platensis | 37.75647 | 11.2255465 | 0.1300566 | 0.4085919 |
Scinax acuminatus | 38.75717 | 10.3115539 | 0.1293263 | 0.3744487 |
Scinax nasicus | 37.95959 | 8.0911223 | 0.1278548 | 0.3059548 |
Crossodactylus schmidti | 32.77616 | 10.5435216 | 0.1341895 | 0.3912888 |
Dendropsophus minutus | 34.72222 | 7.4978651 | 0.0722797 | 0.2777232 |
Boana curupi | 34.73464 | 11.2013633 | 0.1223155 | 0.4111194 |
Limnomedusa macroglossa | 35.88779 | 6.7262789 | 0.1385921 | 0.2725921 |
Melanophryniscus devincenzii | 34.86807 | 8.2427217 | 0.1346833 | 0.3338350 |
Melanophryniscus krauczuki | 35.35608 | 10.3083216 | 0.1335857 | 0.3820430 |
Phyllomedusa tetraploidea | 37.56040 | 9.3741969 | 0.1338808 | 0.3508478 |
Rhinella ornata | 36.49696 | 6.2650174 | 0.1331049 | 0.2407876 |
Scinax fuscovarius | 37.61067 | 10.2358998 | 0.1275453 | 0.3815967 |
Alytes muletensis | 34.21688 | 7.9365090 | 0.1373381 | 0.3400058 |
Lissotriton boscai | 34.10608 | 6.3592929 | 0.1354845 | 0.3060497 |
Pelophylax lessonae | 34.60030 | 3.6109739 | 0.1325715 | 0.1869427 |
Rana arvalis | 31.88324 | 1.3440480 | 0.1263218 | 0.0762326 |
Rana iberica | 32.45930 | 3.2263097 | 0.1104507 | 0.1632883 |
Triturus cristatus | 33.81386 | 3.4883609 | 0.1367414 | 0.1882583 |
Acris crepitans | 40.09492 | 1.8287392 | 0.0485946 | 0.0720471 |
Necturus maculosus | 31.75270 | 1.3357826 | 0.1259081 | 0.0605515 |
Ambystoma maculatum | 34.91646 | 2.9041412 | 0.1089694 | 0.1323105 |
Hyperolius tuberilinguis | 36.07376 | 14.8917055 | 0.1212065 | 0.5890562 |
Hyperolius viridiflavus | 39.06977 | 9.2697090 | 0.0749002 | 0.3723930 |
Triturus dobrogicus | 34.00271 | 3.2914769 | 0.1381718 | 0.1646092 |
Eleutherodactylus richmondi | 32.57754 | 39.3787565 | 0.1291711 | 1.4599971 |
Lithobates virgatipes | 34.79505 | 3.8395145 | 0.1292643 | 0.1534824 |
Ambystoma macrodactylum | 32.60164 | 1.8390732 | 0.1175102 | 0.1147252 |
Aneides aeneus | 30.95585 | 8.1932833 | 0.1251327 | 0.3229445 |
Eurycea longicauda | 35.02888 | 3.7933869 | 0.0626395 | 0.1574310 |
Eurycea lucifuga | 34.63830 | 3.6741607 | 0.0689443 | 0.1469518 |
Notophthalmus viridescens | 34.89463 | 0.7531419 | 0.1814518 | 0.0334014 |
Ambystoma opacum | 34.85929 | 2.9830361 | 0.1145548 | 0.1183904 |
Ambystoma mabeei | 34.43831 | 4.9438114 | 0.1291223 | 0.1963845 |
Ambystoma talpoideum | 34.47394 | 8.4275926 | 0.1293395 | 0.3122923 |
Ambystoma laterale | 33.86765 | 2.7412634 | 0.1228391 | 0.1458573 |
Taricha granulosa | 33.49126 | 3.9048929 | 0.1365402 | 0.2511301 |
Amphiuma tridactylum | 33.90365 | 10.9727406 | 0.1261646 | 0.4006385 |
Desmognathus quadramaculatus | 30.18392 | 5.0116277 | 0.1347364 | 0.1947823 |
Plethodon jordani | 32.25698 | 4.2062091 | 0.1282402 | 0.1604490 |
Hemidactylium scutatum | 33.38379 | 5.6270616 | 0.1233687 | 0.2444489 |
Gyrinophilus porphyriticus | 32.03470 | 5.4674750 | 0.1108568 | 0.2321687 |
Pseudotriton montanus | 33.49504 | 6.9134445 | 0.1154531 | 0.2684086 |
Eurycea quadridigitata | 34.69269 | 8.7711484 | 0.1152250 | 0.3240464 |
Cryptobranchus alleganiensis | 32.70015 | 2.4149966 | 0.1205661 | 0.0995114 |
Dryophytes andersonii | 37.59761 | 4.6404496 | 0.1403212 | 0.1830401 |
Osteopilus septentrionalis | 35.67680 | 11.4377573 | 0.1278421 | 0.4153134 |
Acris gryllus | 37.31159 | 8.0327112 | 0.1151088 | 0.2972578 |
Dryophytes cinereus | 36.81852 | 6.5173686 | 0.1385377 | 0.2461396 |
Dryophytes squirellus | 35.77479 | 9.2334835 | 0.1249346 | 0.3424816 |
Cyclorana alboguttata | 36.65889 | 10.1018142 | 0.1418270 | 0.3996545 |
Cyclorana australis | 36.72582 | 11.6545415 | 0.1405814 | 0.4283080 |
Litoria eucnemis | 32.58559 | 19.7648495 | 0.1312137 | 0.7297794 |
Litoria nasuta | 33.18227 | 12.8569767 | 0.1316665 | 0.4770837 |
Litoria nigrofrenata | 34.83169 | 16.6318799 | 0.1393916 | 0.5999016 |
Litoria pearsoniana | 31.36166 | 8.4588587 | 0.1392071 | 0.3706182 |
Neobatrachus sudelli | 30.33585 | 6.3276999 | 0.1610945 | 0.2770086 |
Pseudophryne major | 31.49809 | 10.8357712 | 0.1524089 | 0.4417851 |
Pseudophryne semimarmorata | 31.80583 | 5.9154740 | 0.1519834 | 0.3253112 |
Uperoleia laevigata | 31.22234 | 8.3358806 | 0.1437851 | 0.3647188 |
Uperoleia rugosa | 31.97367 | 8.9650806 | 0.1528784 | 0.3833756 |
Platyplectrum ornatum | 35.98971 | 6.2551289 | 0.1785995 | 0.2427903 |
Eurycea bislineata | 33.87822 | 1.2697053 | 0.1027152 | 0.0621476 |
Plethodon ouachitae | 32.10273 | 5.8705926 | 0.1235682 | 0.2209510 |
Lithobates berlandieri | 36.79609 | 7.4917476 | 0.1267671 | 0.3119510 |
Dryophytes chrysoscelis | 38.00793 | 4.0087859 | 0.1152905 | 0.1735754 |
Rhinella granulosa | 37.82245 | 7.2093286 | 0.1506642 | 0.2657099 |
Pleurodema bufoninum | 35.79825 | 2.2795403 | 0.1193099 | 0.1544833 |
Alsodes gargola | 31.46361 | 2.8668143 | 0.1217670 | 0.1807451 |
Anaxyrus terrestris | 36.15789 | 2.9195681 | 0.1138981 | 0.1072395 |
Xenopus laevis | 32.94557 | 2.6576173 | 0.1383514 | 0.1178029 |
Eleutherodactylus cundalli | 33.03194 | 36.0029414 | 0.1329940 | 1.3062070 |
Eleutherodactylus gossei | 32.77041 | 34.7071136 | 0.1170241 | 1.2600756 |
Eleutherodactylus johnstonei | 35.34416 | 16.7535730 | 0.1320435 | 0.6364972 |
Eleutherodactylus planirostris | 35.50404 | 15.6554686 | 0.1479865 | 0.5697575 |
Odontophrynus occidentalis | 32.01959 | 3.0741075 | 0.1509751 | 0.1501935 |
Rhinella arenarum | 36.83196 | 3.2410565 | 0.1053951 | 0.1458827 |
Melanophryniscus rubriventris | 33.41002 | 7.7579801 | 0.1201093 | 0.3981939 |
Kaloula kalingensis | 33.27966 | 24.8123773 | 0.1317459 | 0.8906992 |
Occidozyga laevis | 33.33221 | 28.0718552 | 0.1279565 | 1.0113107 |
Philautus surdus | 32.03380 | 29.3905791 | 0.1263874 | 1.0590492 |
Platymantis banahao | 31.92813 | 23.9522192 | 0.1385645 | 0.8733605 |
Platymantis corrugatus | 31.29564 | 29.5635217 | 0.1346269 | 1.0660484 |
Platymantis dorsalis | 30.81432 | 34.2458209 | 0.1318600 | 1.2381518 |
Platymantis luzonensis | 31.66845 | 34.5725059 | 0.1385819 | 1.2448622 |
Sanguirana luzonensis | 32.51587 | 25.2378911 | 0.1329160 | 0.9050631 |
Hylarana erythraea | 32.49387 | 19.2677775 | 0.1315926 | 0.6872791 |
Limnonectes woodworthi | 34.11164 | 31.3681914 | 0.1240071 | 1.1261051 |
Platymantis montanus | 31.39919 | 22.4055001 | 0.1355109 | 0.8064588 |
Kaloula walteri | 33.77540 | 27.9842009 | 0.1428703 | 1.0085508 |
Physalaemus cuvieri | 34.91222 | 6.1098230 | 0.1325461 | 0.2242250 |
Pleurodema diplolister | 38.63260 | 5.5369857 | 0.1374842 | 0.2113209 |
Rhinella icterica | 37.15915 | 3.6409673 | 0.1329886 | 0.1394009 |
Rana chensinensis | 31.11038 | 1.8506335 | 0.1467677 | 0.0893644 |
Batrachuperus tibetanus | 31.83790 | 4.9414162 | 0.1317089 | 0.2784241 |
Batrachuperus yenyuanensis | 31.25527 | 9.9207581 | 0.1319309 | 0.4888598 |
Paramesotriton chinensis | 33.83186 | 9.1517601 | 0.1357275 | 0.3409739 |
Tylototriton kweichowensis | 33.75427 | 11.7534203 | 0.1341059 | 0.5013229 |
Quasipaa spinosa | 40.90802 | 7.0160903 | 0.1431462 | 0.2632096 |
Pseudotriton ruber | 32.77218 | 5.4165694 | 0.1142044 | 0.2203067 |
Scaphiopus couchii | 35.37886 | 4.1171028 | 0.1535052 | 0.1725881 |
Leptodactylus mystacinus | 38.34201 | 9.6993963 | 0.1311239 | 0.3791203 |
Pelophylax saharicus | 35.23388 | 9.1849030 | 0.1360483 | 0.3959768 |
Bufotes viridis | 35.91465 | 3.9201107 | 0.1320976 | 0.1959403 |
Leptodactylus albilabris | 34.86532 | 20.5068737 | 0.1196700 | 0.7559496 |
Aplastodiscus ibirapitanga | 36.24157 | 17.8375037 | 0.1315123 | 0.7022669 |
Aplastodiscus sibilatus | 34.59024 | 15.3764665 | 0.1277686 | 0.6133786 |
Aplastodiscus weygoldti | 35.01054 | 12.5387152 | 0.1243410 | 0.4894652 |
Ceratophrys joazeirensis | 37.66166 | 13.3339207 | 0.1281378 | 0.5202602 |
Phyllomedusa burmeisteri | 38.02514 | 11.4839922 | 0.1423121 | 0.4464460 |
Physalaemus cicada | 35.61035 | 11.8180707 | 0.1373315 | 0.4657086 |
Proceratophrys schirchi | 35.07616 | 17.1223913 | 0.1378430 | 0.6686164 |
Physalaemus signifer | 37.51504 | 15.3120342 | 0.1325745 | 0.5979565 |
Scinax alter | 37.73443 | 13.1673778 | 0.1251735 | 0.5202877 |
Stereocyclops incrassatus | 36.53194 | 16.9488922 | 0.1379128 | 0.6639400 |
Scinax pachycrus | 37.99501 | 14.1499495 | 0.1277623 | 0.5567946 |
Gabohyla pauloalvini | 37.22576 | 18.6530002 | 0.1251870 | 0.7300249 |
Dendropsophus sanborni | 35.53476 | 9.3517677 | 0.1231605 | 0.3676516 |
Boana albopunctata | 35.65948 | 12.9959503 | 0.1173953 | 0.4790018 |
Boana pulchella | 34.51224 | 4.5011381 | 0.1203295 | 0.1850671 |
Scinax uruguayus | 36.70591 | 4.9293859 | 0.1141760 | 0.1972055 |
Leptodactylus gracilis | 37.24712 | 8.1966646 | 0.1328845 | 0.3303090 |
Odontophrynus americanus | 35.32737 | 5.8540691 | 0.1464466 | 0.2346533 |
Ololygon aromothyella | 37.70005 | 12.1984375 | 0.1290977 | 0.4522051 |
Phyllomedusa iheringii | 37.36712 | 3.8151065 | 0.1240612 | 0.1628297 |
Physalaemus gracilis | 35.63592 | 4.7443052 | 0.1224137 | 0.1908778 |
Physalaemus henselii | 34.49212 | 4.0667762 | 0.1083173 | 0.1670750 |
Physalaemus riograndensis | 37.90734 | 9.0585595 | 0.1355549 | 0.3610913 |
Pseudis minuta | 36.31666 | 4.4533447 | 0.1102303 | 0.1808001 |
Pseudopaludicola falcipes | 37.09572 | 11.0082315 | 0.1352730 | 0.4312673 |
Rhinella dorbignyi | 36.69807 | 6.7803217 | 0.1276916 | 0.2909403 |
Scinax granulatus | 37.05197 | 8.5475004 | 0.1250713 | 0.3454127 |
Scinax squalirostris | 37.99786 | 10.7132064 | 0.1285257 | 0.4159500 |
Gastrotheca pseustes | 34.79926 | 3.3373357 | 0.1007766 | 0.1415829 |
Gastrotheca riobambae | 35.44378 | 2.6660986 | 0.1175301 | 0.1261569 |
Agalychnis spurrelli | 36.94061 | 6.7432450 | 0.1527273 | 0.2579657 |
Boana geographica | 36.91832 | 6.2669011 | 0.1430783 | 0.2311900 |
Smilisca phaeota | 36.76117 | 6.3919994 | 0.1474125 | 0.2424009 |
Boana crepitans | 36.87646 | 8.6838146 | 0.1090146 | 0.3282811 |
Boana semilineata | 36.71193 | 9.8058724 | 0.1214357 | 0.3815155 |
Leptodactylus troglodytes | 37.70078 | 12.2790740 | 0.1349928 | 0.4635892 |
Physalaemus crombiei | 37.74129 | 15.8438124 | 0.1357552 | 0.6205202 |
Pithecopus nordestinus | 36.93523 | 10.4592646 | 0.1355698 | 0.4053558 |
Scinax x-signatus | 38.02416 | 12.4752840 | 0.1294922 | 0.4537159 |
Trachycephalus atlas | 37.63317 | 8.8551553 | 0.1335052 | 0.3519818 |
Agalychnis hulli | 35.84437 | 17.5575752 | 0.1421333 | 0.6771627 |
Allobates insperatus | 33.94459 | 16.4381344 | 0.1404480 | 0.6346450 |
Allobates zaparo | 34.58866 | 15.9720322 | 0.1341842 | 0.6196941 |
Atelopus elegans | 33.07710 | 9.9784587 | 0.1288160 | 0.4195556 |
Atelopus spumarius | 33.36409 | 22.0896181 | 0.1299274 | 0.7954695 |
Boana boans | 36.86326 | 16.7159480 | 0.1307887 | 0.6088735 |
Boana cinerascens | 36.37692 | 15.5506307 | 0.1313267 | 0.5607729 |
Boana fasciata | 36.44485 | 20.8703240 | 0.1261314 | 0.7561467 |
Boana lanciformis | 37.31167 | 13.6271577 | 0.1484445 | 0.4961304 |
Boana pellucens | 37.11919 | 11.5558499 | 0.1300659 | 0.4734882 |
Chiasmocleis ventrimaculata | 35.54454 | 19.7000582 | 0.1388993 | 0.7793272 |
Chimerella mariaelenae | 34.15983 | 8.7615844 | 0.1321940 | 0.3662215 |
Cruziohyla calcarifer | 36.16971 | 19.0738848 | 0.1424958 | 0.7628452 |
Dendropsophus bifurcus | 37.26774 | 17.0447853 | 0.1259601 | 0.6401093 |
Dendropsophus bokermanni | 35.97660 | 22.1389189 | 0.1215854 | 0.8185853 |
Dendropsophus brevifrons | 35.74029 | 15.9966236 | 0.1210312 | 0.5863426 |
Dendropsophus carnifex | 36.44208 | 5.0670802 | 0.1288830 | 0.2493030 |
Dendropsophus ebraccatus | 37.72514 | 13.0925151 | 0.1305459 | 0.4986442 |
Dendropsophus marmoratus | 37.63966 | 20.2879131 | 0.1287028 | 0.7311458 |
Dendropsophus parviceps | 35.86126 | 20.2233579 | 0.1221267 | 0.7327706 |
Dendropsophus sarayacuensis | 36.77383 | 13.5668930 | 0.1214954 | 0.4939026 |
Dendropsophus triangulum | 37.13498 | 15.6460837 | 0.1184125 | 0.5666817 |
Engystomops coloradorum | 36.58316 | 7.7815661 | 0.1294375 | 0.3377967 |
Engystomops guayaco | 36.48918 | 9.7452974 | 0.1302980 | 0.3837839 |
Engystomops petersi | 35.67082 | 13.0254991 | 0.1322863 | 0.4954118 |
Engystomops randi | 37.07417 | 10.8775615 | 0.1362801 | 0.4520530 |
Epipedobates anthonyi | 34.56060 | 4.2020361 | 0.1451780 | 0.1740421 |
Epipedobates boulengeri | 35.05421 | 11.1267512 | 0.1382626 | 0.4530946 |
Epipedobates espinosai | 34.78491 | 13.4642250 | 0.1327288 | 0.5053362 |
Epipedobates machalilla | 35.04932 | 9.0768196 | 0.1393055 | 0.3751468 |
Epipedobates tricolor | 34.89604 | 7.3379972 | 0.1343050 | 0.3011955 |
Espadarana callistomma | 33.20965 | 13.4907341 | 0.1388461 | 0.5403309 |
Espadarana prosoblepon | 32.50357 | 9.9643329 | 0.0826525 | 0.3845727 |
Gastrotheca lateonota | 34.57027 | 9.4886554 | 0.1299536 | 0.4154239 |
Gastrotheca litonedis | 34.77106 | 7.6610457 | 0.1304998 | 0.3555916 |
Hyloscirtus alytolylax | 33.74647 | 10.3133698 | 0.1284278 | 0.4209250 |
Hyloscirtus lindae | 33.32656 | 9.0817821 | 0.1262004 | 0.3771023 |
Hyloscirtus phyllognathus | 34.25477 | 9.4258254 | 0.1313580 | 0.4206969 |
Hyloxalus bocagei | 34.09311 | 11.7800157 | 0.1412941 | 0.4806715 |
Hyloxalus elachyhistus | 32.98280 | 15.6663978 | 0.1361408 | 0.6642536 |
Colostethus jacobuspetersi | 30.53724 | 5.5654316 | 0.1256346 | 0.2769279 |
Hyloxalus maculosus | 33.48969 | 10.8054622 | 0.1356817 | 0.4509721 |
Hyloxalus nexipus | 33.53705 | 12.8977856 | 0.1411288 | 0.5398966 |
Hyloxalus pulchellus | 31.53619 | 12.8924363 | 0.1316912 | 0.5516327 |
Hyloxalus toachi | 33.70892 | 10.4435403 | 0.1370672 | 0.4469094 |
Hyloxalus vertebralis | 32.03762 | 10.0082614 | 0.1352692 | 0.4196539 |
Leptodactylus labrosus | 36.25969 | 13.3714264 | 0.1298902 | 0.5481166 |
Leptodactylus rhodomystax | 35.80443 | 19.6099393 | 0.1266547 | 0.7035120 |
Leptodactylus ventrimaculatus | 35.97225 | 10.6855210 | 0.1293890 | 0.4238892 |
Leptodactylus wagneri | 36.14684 | 16.8663898 | 0.1243738 | 0.6436862 |
Osteocephalus mutabor | 35.84502 | 11.2507568 | 0.1221176 | 0.4530401 |
Phyllomedusa coelestis | 37.14370 | 16.9645000 | 0.1379726 | 0.6698584 |
Phyllomedusa vaillantii | 36.70918 | 15.4689647 | 0.1389365 | 0.5557441 |
Lithobates bwana | 34.37513 | 11.6957552 | 0.1389692 | 0.4704499 |
Lithobates vaillanti | 34.88632 | 17.2976428 | 0.1401843 | 0.6600671 |
Rhinella margaritifera | 35.72005 | 12.6552292 | 0.1167276 | 0.4622606 |
Scinax elaeochroa | 36.90757 | 21.6644918 | 0.1267652 | 0.8109837 |
Scinax garbei | 36.57811 | 19.2984564 | 0.1243511 | 0.6990507 |
Scinax quinquefasciatus | 38.10032 | 12.7426519 | 0.1261394 | 0.5136522 |
Scinax ruber | 37.38576 | 11.9797490 | 0.1240679 | 0.4325272 |
Eleutherodactylus antillensis | 39.84469 | 31.1562860 | 0.2074894 | 1.1465045 |
Eleutherodactylus brittoni | 33.97998 | 36.4281384 | 0.0936755 | 1.3493097 |
Eleutherodactylus wightmanae | 35.08720 | 30.6327505 | 0.1246027 | 1.1362676 |
Plethodon yonahlossee | 31.99571 | 5.5356724 | 0.1203781 | 0.2158428 |
Plethodon caddoensis | 32.52509 | 6.0048499 | 0.1210234 | 0.2237491 |
Plethodon dorsalis | 31.14106 | 7.0939645 | 0.1231865 | 0.2754046 |
Eurycea multiplicata | 35.29046 | 5.5789261 | 0.0923948 | 0.2182359 |
Plethodon serratus | 32.08807 | 6.9692184 | 0.1223185 | 0.2701675 |
Adenomera andreae | 34.65016 | 19.8495923 | 0.1207805 | 0.7176132 |
Allobates conspicuus | 33.05201 | 20.2153465 | 0.1298142 | 0.7545555 |
Allobates femoralis | 35.76609 | 19.0531374 | 0.1532516 | 0.6874322 |
Allobates trilineatus | 32.38898 | 19.4758602 | 0.1241443 | 0.7695610 |
Ameerega hahneli | 34.87428 | 19.2989992 | 0.1392685 | 0.6919355 |
Ameerega trivittata | 35.08190 | 20.2279073 | 0.1467246 | 0.7268737 |
Chiasmocleis bassleri | 35.73983 | 19.9829625 | 0.1339145 | 0.7132882 |
Ctenophryne geayi | 36.28575 | 19.5443420 | 0.1410027 | 0.7112951 |
Dendropsophus koechlini | 36.36041 | 17.7516225 | 0.1329053 | 0.6691826 |
Dendropsophus leucophyllatus | 37.27329 | 18.5071389 | 0.1312714 | 0.6666759 |
Dendropsophus schubarti | 35.16455 | 18.9547886 | 0.1190446 | 0.6973872 |
Edalorhina perezi | 36.28423 | 18.2449638 | 0.1308065 | 0.6647651 |
Engystomops freibergi | 35.53396 | 17.3524756 | 0.1219516 | 0.6371524 |
Hamptophryne boliviana | 36.30525 | 20.7335299 | 0.1351112 | 0.7493332 |
Boana punctata | 36.93842 | 15.2330094 | 0.1377188 | 0.5572430 |
Leptodactylus bolivianus | 35.71466 | 20.5149165 | 0.1237567 | 0.7456278 |
Leptodactylus didymus | 35.41066 | 16.4395312 | 0.1213713 | 0.7372448 |
Leptodactylus leptodactyloides | 36.14050 | 18.3938871 | 0.1281492 | 0.6629116 |
Leptodactylus petersii | 36.35015 | 17.5258808 | 0.1263186 | 0.6268164 |
Lithodytes lineatus | 36.20001 | 19.0647513 | 0.1325848 | 0.6947641 |
Oreobates quixensis | 33.10891 | 17.6188957 | 0.1664060 | 0.6438333 |
Osteocephalus buckleyi | 36.08096 | 20.2336657 | 0.1349008 | 0.7370392 |
Phyllomedusa camba | 37.63045 | 15.1538985 | 0.1428968 | 0.5648873 |
Pristimantis fenestratus | 31.35547 | 17.8433763 | 0.1432215 | 0.6375118 |
Ranitomeya sirensis | 34.72916 | 16.3712952 | 0.1506547 | 0.7397430 |
Scarthyla goinorum | 35.46039 | 18.1555330 | 0.1145509 | 0.6457283 |
Scinax ictericus | 37.21921 | 21.4807690 | 0.1262205 | 0.9269441 |
Sphaenorhynchus lacteus | 37.85198 | 19.9921156 | 0.1311824 | 0.7227151 |
Leptodactylus lithonaetes | 36.98472 | 15.4510149 | 0.1514773 | 0.5525890 |
Chiropterotriton multidentatus | 31.26475 | 6.0028860 | 0.1222220 | 0.2586117 |
Bufo bankorensis | 35.56948 | 5.7767231 | 0.1566579 | 0.2091798 |
Odorrana swinhoana | 32.45261 | 19.1247487 | 0.1364150 | 0.6953413 |
Kurixalus eiffingeri | 32.69997 | 12.2894191 | 0.1028447 | 0.4447803 |
Fejervarya limnocharis | 36.80688 | 5.7534787 | 0.1254149 | 0.2158818 |
Hylarana latouchii | 34.73251 | 9.3596051 | 0.1345240 | 0.3410991 |
Rana longicrus | 33.23651 | 16.5423759 | 0.1323306 | 0.6035160 |
Rana sauteri | 31.83992 | 19.1654726 | 0.1317941 | 0.6961106 |
Kaloula pulchra | 36.29268 | 6.5902624 | 0.1731697 | 0.2383341 |
Batrachyla taeniata | 34.00455 | 1.6683514 | 0.1091738 | 0.1126937 |
Atelopus limosus | 34.06267 | 23.8008976 | 0.1356618 | 0.8722778 |
Physalaemus nattereri | 37.71244 | 6.5977471 | 0.1348520 | 0.2419743 |
Boana pardalis | 38.07937 | 8.0850765 | 0.1364192 | 0.3140255 |
Hylorina sylvatica | 32.95919 | 3.3644839 | 0.1328401 | 0.2369259 |
Craugastor crassidigitus | 33.88668 | 23.1609538 | 0.1358378 | 0.8597226 |
Craugastor fitzingeri | 34.59417 | 19.1867051 | 0.1442309 | 0.7157156 |
Dendropsophus anceps | 35.37279 | 10.3874111 | 0.1205514 | 0.4034062 |
Dendropsophus decipiens | 34.67701 | 12.1544764 | 0.1114419 | 0.4664445 |
Alytes maurus | 34.22058 | 8.5504907 | 0.1419431 | 0.3846693 |
Bufo gargarizans | 34.40812 | 1.9213489 | 0.1411800 | 0.0908227 |
Pseudacris feriarum | 35.41802 | 5.7263248 | 0.1250849 | 0.2231041 |
Cophixalus aenigma | 28.12543 | 13.5322046 | 0.1423999 | 0.5063692 |
Cophixalus bombiens | 31.14672 | 15.6303478 | 0.1439942 | 0.5811071 |
Cophixalus concinnus | 28.77287 | 12.8486771 | 0.1409551 | 0.4802522 |
Cophixalus exiguus | 32.91085 | 14.6947925 | 0.1487390 | 0.5337749 |
Cophixalus hosmeri | 30.61092 | 14.1419269 | 0.1471042 | 0.5281092 |
Cophixalus infacetus | 32.43335 | 17.7911809 | 0.1463361 | 0.6837361 |
Cophixalus mcdonaldi | 31.14597 | 11.2581993 | 0.1429628 | 0.4455380 |
Cophixalus monticola | 30.15332 | 14.3794489 | 0.1418168 | 0.5376343 |
Cophixalus neglectus | 30.15729 | 18.6832545 | 0.1448550 | 0.7472612 |
Cophixalus saxatilis | 32.19438 | 13.9897850 | 0.1487174 | 0.5078909 |
Craugastor rhodopis | 31.62385 | 12.1089501 | 0.1336858 | 0.4902416 |
Rheohyla miotympanum | 36.31561 | 12.9831485 | 0.1306760 | 0.5320724 |
Engystomops pustulosus | 36.30104 | 6.1937275 | 0.1468198 | 0.2320241 |
Craugastor loki | 32.42587 | 8.8905521 | 0.1320943 | 0.3328506 |
Pleurodema brachyops | 38.59158 | 12.0302096 | 0.1573112 | 0.4459004 |
Pristimantis frater | 30.73729 | 12.8370273 | 0.1285885 | 0.5375634 |
Pristimantis medemi | 31.50748 | 17.8107510 | 0.1455362 | 0.7287983 |
Pristimantis taeniatus | 32.86541 | 15.1973238 | 0.1488610 | 0.5771638 |
Pristimantis fallax | 32.36195 | 16.8607977 | 0.1506951 | 0.7085255 |
Pristimantis w-nigrum | 32.26499 | 13.2799844 | 0.1604242 | 0.5433993 |
Pristimantis bicolor | 32.25870 | 18.3232803 | 0.1451603 | 0.7667730 |
Pristimantis bogotensis | 32.08614 | 10.4578354 | 0.1400834 | 0.4510933 |
Pristimantis savagei | 30.24743 | 18.4527802 | 0.1394652 | 0.7588160 |
Pristimantis renjiforum | 33.12582 | 18.7757760 | 0.1383669 | 0.7998374 |
Pristimantis conspicillatus | 31.93100 | 19.3279089 | 0.1405764 | 0.7242452 |
Pristimantis elegans | 32.13891 | 10.2760100 | 0.1391916 | 0.4402823 |
Pristimantis nervicus | 32.49752 | 15.4326814 | 0.1390076 | 0.6639109 |
Eurycea sosorum | 33.82483 | 9.6247304 | 0.0969221 | 0.3576186 |
Duttaphrynus melanostictus | 35.37124 | 9.3047391 | 0.1344155 | 0.3411658 |
Limnonectes blythii | 33.52474 | 20.2279058 | 0.1279579 | 0.7134996 |
Limnonectes malesianus | 33.87734 | 21.4122666 | 0.1279963 | 0.7533289 |
Nyctixalus pictus | 33.62010 | 24.0844152 | 0.1322157 | 0.8607765 |
Polypedates leucomystax | 35.40683 | 19.4718675 | 0.1352311 | 0.7125531 |
Microhyla butleri | 34.71235 | 15.1200224 | 0.1402786 | 0.5571824 |
Microhyla heymonsi | 36.59422 | 15.5112200 | 0.1447279 | 0.5646290 |
Microhyla mantheyi | 33.55581 | 21.6092877 | 0.1360796 | 0.7575153 |
Pseudis paradoxa | 37.77251 | 14.5719362 | 0.1245937 | 0.5275504 |
Anaxyrus punctatus | 37.28466 | 4.9168091 | 0.1293904 | 0.2156454 |
Craugastor longirostris | 36.31172 | 18.1619050 | 0.1441543 | 0.7020346 |
Pristimantis achatinus | 34.61531 | 13.1697466 | 0.1498401 | 0.5238302 |
Pristimantis latidiscus | 33.27723 | 19.5615145 | 0.1450631 | 0.7676233 |
Pristimantis laticlavius | 31.67845 | 9.8006337 | 0.1432213 | 0.4272497 |
Pristimantis incomptus | 31.49632 | 10.2265411 | 0.1422970 | 0.4421868 |
Pristimantis quaquaversus | 31.56357 | 14.7593372 | 0.1452524 | 0.5910952 |
Pristimantis crenunguis | 30.87098 | 9.9561726 | 0.1446881 | 0.4317986 |
Pristimantis trachyblepharis | 30.21793 | 12.5085250 | 0.1373349 | 0.5209421 |
Pristimantis actites | 31.48284 | 9.0749079 | 0.1390777 | 0.3918722 |
Pristimantis unistrigatus | 32.42753 | 7.2587580 | 0.1433203 | 0.3242432 |
Pristimantis vertebralis | 28.61296 | 8.5455981 | 0.1389958 | 0.3798749 |
Pristimantis riveti | 31.71116 | 12.5755184 | 0.1440930 | 0.5668911 |
Pristimantis phoxocephalus | 29.11756 | 8.8250174 | 0.1395150 | 0.3804169 |
Pristimantis pycnodermis | 31.21826 | 9.5217024 | 0.1424704 | 0.4095413 |
Pristimantis curtipes | 31.48554 | 9.9298012 | 0.1402477 | 0.4422142 |
Pleurodema marmoratum | 34.11738 | 6.2184942 | 0.1295535 | 0.3762044 |
Microhyla fissipes | 35.74556 | 7.6932754 | 0.1365291 | 0.2899093 |
Hoplobatrachus rugulosus | 38.70076 | 14.3792039 | 0.1419918 | 0.5278267 |
Microhyla ornata | 36.15122 | 8.9141705 | 0.1471349 | 0.3318942 |
Rana dybowskii | 27.48359 | 1.6451739 | 0.1030049 | 0.0871131 |
Hyperolius marmoratus | 41.01820 | 4.3041378 | 0.2079399 | 0.1765936 |
Oophaga pumilio | 29.81233 | 16.0856858 | 0.1151173 | 0.6012899 |
Odontophrynus barrioi | 34.62070 | 4.1065931 | 0.1479946 | 0.2018624 |
Pleurodema nebulosum | 36.98184 | 5.7986323 | 0.1375285 | 0.2852390 |
Pleurodema tucumanum | 37.21321 | 6.2037682 | 0.1323888 | 0.2681083 |
Desmognathus brimleyorum | 32.40243 | 8.0125689 | 0.1270742 | 0.2986658 |
Ambystoma californiense | 34.08800 | 7.8010906 | 0.1223616 | 0.3915001 |
Ambystoma mavortium | 33.89635 | 5.4109834 | 0.1232949 | 0.2650791 |
Batrachuperus karlschmidti | 30.64659 | 7.4796180 | 0.1341000 | 0.4479413 |
Batrachuperus londongensis | 30.50442 | 11.2102842 | 0.1341546 | 0.5383008 |
Batrachuperus pinchonii | 31.44109 | 8.8260055 | 0.1307414 | 0.4756909 |
Liua shihi | 31.10349 | 12.5303648 | 0.1341216 | 0.4989493 |
Liua tsinpaensis | 31.06816 | 10.4086499 | 0.1355559 | 0.4592655 |
Pseudohynobius flavomaculatus | 30.75546 | 15.4703492 | 0.1368695 | 0.5927038 |
Pseudohynobius kuankuoshuiensis | 31.04559 | 20.3094689 | 0.1357769 | 0.8024141 |
Pseudohynobius shuichengensis | 30.79754 | 18.0792175 | 0.1340304 | 0.7712110 |
Pseudohynobius puxiongensis | 30.82670 | 16.4183418 | 0.1375821 | 0.7854088 |
Hynobius abei | 30.49769 | 12.2965933 | 0.1356243 | 0.4973077 |
Hynobius lichenatus | 30.73622 | 10.1917846 | 0.1369758 | 0.4323137 |
Hynobius tokyoensis | 30.67489 | 11.7382560 | 0.1367335 | 0.4706414 |
Hynobius nigrescens | 30.53368 | 10.0761629 | 0.1349505 | 0.4202248 |
Hynobius takedai | 30.70928 | 9.8104647 | 0.1365622 | 0.4239986 |
Hynobius stejnegeri | 30.74945 | 14.8590176 | 0.1367228 | 0.5709296 |
Hynobius amjiensis | 30.71464 | 11.9913934 | 0.1353108 | 0.4428365 |
Hynobius chinensis | 30.71969 | 11.0398376 | 0.1360455 | 0.4505146 |
Hynobius guabangshanensis | 30.66685 | 23.5276583 | 0.1350072 | 0.8489041 |
Hynobius maoershanensis | 30.64347 | 19.1462931 | 0.1357441 | 0.7154024 |
Hynobius yiwuensis | 30.76008 | 14.6375133 | 0.1340303 | 0.5469888 |
Hynobius hidamontanus | 30.60222 | 9.3149957 | 0.1353178 | 0.4074523 |
Hynobius katoi | 30.77728 | 13.9288430 | 0.1337531 | 0.5473697 |
Hynobius naevius | 30.44969 | 15.1297963 | 0.1345739 | 0.5913775 |
Hynobius dunni | 30.65102 | 16.3707111 | 0.1366338 | 0.6265392 |
Hynobius nebulosus | 30.67083 | 13.5177025 | 0.1386055 | 0.5307393 |
Hynobius tsuensis | 30.65512 | 13.0685721 | 0.1362849 | 0.5133373 |
Hynobius okiensis | 30.46744 | 11.7772649 | 0.1335379 | 0.4707558 |
Hynobius leechii | 30.38638 | 7.7408997 | 0.1374037 | 0.3518578 |
Hynobius yangi | 30.74625 | 11.2052490 | 0.1337609 | 0.4682474 |
Hynobius quelpaertensis | 30.72215 | 10.2389272 | 0.1369450 | 0.4228601 |
Hynobius turkestanicus | 30.67778 | 7.5769380 | 0.1353492 | 0.4931962 |
Hynobius arisanensis | 30.37658 | 37.9728790 | 0.1367191 | 1.3736466 |
Hynobius sonani | 30.44121 | 34.6841917 | 0.1375569 | 1.2576967 |
Hynobius formosanus | 30.44837 | 29.9607650 | 0.1357983 | 1.1080957 |
Hynobius boulengeri | 30.73057 | 14.5496067 | 0.1364301 | 0.5649662 |
Hynobius kimurae | 31.49229 | 11.2396658 | 0.1358163 | 0.4571324 |
Hynobius retardatus | 30.71250 | 8.4984148 | 0.1356605 | 0.4327785 |
Pachyhynobius shangchengensis | 30.97503 | 14.8734032 | 0.1363908 | 0.5333558 |
Salamandrella keyserlingii | 30.88068 | 5.0286169 | 0.1348573 | 0.3196623 |
Ranodon sibiricus | 30.25731 | 8.3046883 | 0.1345034 | 0.5508509 |
Onychodactylus fischeri | 31.70963 | 11.4501276 | 0.1328235 | 0.5338727 |
Onychodactylus japonicus | 31.72963 | 17.4393062 | 0.1328329 | 0.6996913 |
Andrias japonicus | 32.06936 | 15.0367928 | 0.1284768 | 0.5949036 |
Andrias davidianus | 32.90436 | 16.2650047 | 0.1279828 | 0.6352520 |
Siren intermedia | 32.03656 | 23.8382565 | 0.1309385 | 0.8943095 |
Siren lacertina | 32.17471 | 23.0164659 | 0.1327166 | 0.8598806 |
Pseudobranchus striatus | 32.01936 | 34.3477732 | 0.1309484 | 1.2442807 |
Pseudobranchus axanthus | 32.15028 | 42.3464181 | 0.1308479 | 1.5104747 |
Chioglossa lusitanica | 33.29848 | 15.2518502 | 0.1343753 | 0.7848602 |
Mertensiella caucasica | 33.21515 | 10.7109947 | 0.1354821 | 0.5459939 |
Lyciasalamandra antalyana | 32.40243 | 13.9500558 | 0.1366049 | 0.5824283 |
Lyciasalamandra helverseni | 32.36080 | 20.8720863 | 0.1360216 | 0.8607517 |
Lyciasalamandra fazilae | 32.40875 | 13.1815002 | 0.1339058 | 0.5786232 |
Lyciasalamandra flavimembris | 32.27943 | 14.2721930 | 0.1389711 | 0.5970138 |
Lyciasalamandra atifi | 32.24300 | 12.3149642 | 0.1382568 | 0.5340517 |
Lyciasalamandra luschani | 32.28495 | 11.9957010 | 0.1372193 | 0.5277007 |
Salamandra algira | 32.38302 | 11.6133978 | 0.1390955 | 0.5040257 |
Salamandra infraimmaculata | 32.16805 | 10.1478279 | 0.1391480 | 0.4582350 |
Salamandra corsica | 32.21785 | 10.4380956 | 0.1368745 | 0.4375236 |
Salamandra lanzai | 32.26716 | 7.0780020 | 0.1352901 | 0.3497992 |
Salamandra atra | 32.22615 | 5.8391256 | 0.1342051 | 0.2955551 |
Calotriton arnoldi | 33.12200 | 13.1391374 | 0.1354935 | 0.5777992 |
Calotriton asper | 33.91979 | 8.7213724 | 0.1364886 | 0.4238993 |
Triturus carnifex | 34.16912 | 6.6064247 | 0.1339638 | 0.3204145 |
Triturus karelinii | 34.13699 | 6.7697749 | 0.1368373 | 0.3401071 |
Triturus marmoratus | 34.08574 | 7.5241507 | 0.1326368 | 0.3783076 |
Neurergus crocatus | 33.90220 | 12.6362573 | 0.1380420 | 0.5938622 |
Neurergus kaiseri | 33.89288 | 14.0894598 | 0.1381165 | 0.6037200 |
Neurergus strauchii | 33.97061 | 11.0474380 | 0.1369343 | 0.5450603 |
Ommatotriton ophryticus | 33.73633 | 8.8641315 | 0.1367067 | 0.4469247 |
Ommatotriton vittatus | 33.88021 | 16.6955088 | 0.1374960 | 0.7026157 |
Lissotriton helveticus | 34.02893 | 7.7273086 | 0.1350480 | 0.4190697 |
Lissotriton italicus | 33.98332 | 10.0159541 | 0.1357079 | 0.4214111 |
Lissotriton montandoni | 33.76779 | 4.8004968 | 0.1320433 | 0.2478373 |
Lissotriton vulgaris | 33.96899 | 6.1081251 | 0.1359628 | 0.4067436 |
Ichthyosaura alpestris | 33.73193 | 7.5236742 | 0.1366478 | 0.3839833 |
Cynops ensicauda | 34.02365 | 35.1669684 | 0.1363645 | 1.2809177 |
Cynops pyrrhogaster | 34.01787 | 11.1667146 | 0.1349227 | 0.4503527 |
Laotriton laoensis | 33.92406 | 22.4795548 | 0.1340717 | 0.8290478 |
Pachytriton brevipes | 33.96047 | 16.9733560 | 0.1330793 | 0.6357693 |
Paramesotriton caudopunctatus | 33.79567 | 16.6808203 | 0.1352111 | 0.6200444 |
Paramesotriton deloustali | 33.78610 | 18.3931040 | 0.1346938 | 0.7025355 |
Paramesotriton fuzhongensis | 33.88422 | 16.3394845 | 0.1359692 | 0.5906686 |
Paramesotriton hongkongensis | 33.62524 | 23.1678069 | 0.1354974 | 0.8293314 |
Euproctus montanus | 33.63953 | 12.5071033 | 0.1366891 | 0.5222454 |
Euproctus platycephalus | 33.77891 | 13.6732766 | 0.1351713 | 0.5629785 |
Notophthalmus meridionalis | 34.89036 | 23.3841998 | 0.1354032 | 0.9185094 |
Notophthalmus perstriatus | 34.93538 | 18.6426789 | 0.1376509 | 0.6758152 |
Taricha torosa | 33.61512 | 11.5851173 | 0.1369894 | 0.5845840 |
Taricha rivularis | 33.66739 | 12.2376307 | 0.1368843 | 0.6755586 |
Echinotriton andersoni | 33.51272 | 36.7955820 | 0.1355455 | 1.3415668 |
Echinotriton chinhaiensis | 33.71924 | 15.7627107 | 0.1352863 | 0.5973383 |
Tylototriton asperrimus | 33.45637 | 22.0400314 | 0.1347812 | 0.8219103 |
Tylototriton notialis | 33.46644 | 26.5141027 | 0.1342082 | 0.9462252 |
Tylototriton hainanensis | 33.49042 | 39.0489347 | 0.1332379 | 1.3976060 |
Tylototriton wenxianensis | 33.54965 | 12.0100599 | 0.1315564 | 0.5077694 |
Tylototriton vietnamensis | 33.77347 | 21.1549088 | 0.1333026 | 0.7665829 |
Tylototriton shanjing | 33.50214 | 16.3893963 | 0.1339166 | 0.7367820 |
Tylototriton verrucosus | 33.78934 | 19.1530569 | 0.1320581 | 0.8295233 |
Pleurodeles poireti | 33.45716 | 11.8889289 | 0.1356879 | 0.4807881 |
Salamandrina perspicillata | 33.33051 | 9.0770399 | 0.1362843 | 0.4137340 |
Salamandrina terdigitata | 33.30186 | 14.1885303 | 0.1375561 | 0.5781181 |
Ambystoma altamirani | 33.29857 | 9.4064529 | 0.1227514 | 0.4632531 |
Ambystoma amblycephalum | 34.24511 | 15.7578915 | 0.1247365 | 0.7042737 |
Ambystoma lermaense | 34.11683 | 13.6782378 | 0.1236195 | 0.6131111 |
Ambystoma andersoni | 33.51877 | 12.8721003 | 0.1281269 | 0.5727922 |
Ambystoma mexicanum | 34.31735 | 9.6521504 | 0.1266998 | 0.4552944 |
Ambystoma rosaceum | 34.38571 | 10.7498222 | 0.1270151 | 0.4495329 |
Ambystoma dumerilii | 34.34006 | 14.2255388 | 0.1243099 | 0.6354994 |
Ambystoma ordinarium | 34.16735 | 14.6440150 | 0.1239705 | 0.6326163 |
Ambystoma annulatum | 35.02609 | 6.9568376 | 0.1240880 | 0.2784965 |
Ambystoma bishopi | 34.04761 | 14.5940933 | 0.1245842 | 0.5196798 |
Ambystoma cingulatum | 35.02077 | 14.8094644 | 0.1233339 | 0.5424819 |
Ambystoma barbouri | 34.23880 | 9.9449650 | 0.1232005 | 0.3874320 |
Ambystoma texanum | 34.40005 | 10.3894775 | 0.1242690 | 0.4059289 |
Ambystoma flavipiperatum | 34.08040 | 18.2288193 | 0.1232737 | 0.7462354 |
Ambystoma gracile | 33.87794 | 5.1667211 | 0.1250665 | 0.3171579 |
Ambystoma granulosum | 34.15190 | 15.8633091 | 0.1261140 | 0.7024886 |
Ambystoma leorae | 34.11775 | 12.5441792 | 0.1247283 | 0.5680981 |
Ambystoma taylori | 34.15021 | 10.2612810 | 0.1238336 | 0.4766545 |
Ambystoma silvense | 33.31849 | 9.9843353 | 0.1255840 | 0.4313137 |
Ambystoma rivulare | 34.52187 | 12.1561504 | 0.1214480 | 0.5533229 |
Ambystoma velasci | 33.92154 | 14.7073979 | 0.1257905 | 0.6238437 |
Dicamptodon ensatus | 29.06861 | 13.1798740 | 0.1374339 | 0.7048267 |
Dicamptodon aterrimus | 29.01722 | 6.6164380 | 0.1378488 | 0.3780612 |
Dicamptodon copei | 29.05049 | 8.0640322 | 0.1371717 | 0.4667919 |
Necturus punctatus | 31.80630 | 10.3280932 | 0.1287307 | 0.4026699 |
Necturus lewisi | 31.79039 | 7.0604238 | 0.1310469 | 0.2819973 |
Necturus beyeri | 31.71140 | 14.4898356 | 0.1318239 | 0.5222395 |
Necturus alabamensis | 31.73837 | 12.1573003 | 0.1301301 | 0.4393504 |
Rhyacotriton kezeri | 28.14413 | 8.8862142 | 0.1371375 | 0.4883957 |
Rhyacotriton cascadae | 28.16118 | 8.8889235 | 0.1362376 | 0.4915142 |
Amphiuma pholeter | 33.47551 | 20.5749743 | 0.1246467 | 0.7328381 |
Amphiuma means | 33.44040 | 16.1567605 | 0.1213527 | 0.5965102 |
Aneides vagrans | 31.25734 | 9.3746835 | 0.1273085 | 0.5775994 |
Aneides flavipunctatus | 31.27246 | 12.0253628 | 0.1245383 | 0.6747683 |
Aneides lugubris | 31.20745 | 14.4762805 | 0.1224873 | 0.7326539 |
Aneides hardii | 31.27918 | 10.5610748 | 0.1243078 | 0.4909234 |
Desmognathus abditus | 31.96916 | 11.3543141 | 0.1257547 | 0.4326139 |
Desmognathus welteri | 31.96433 | 10.0761131 | 0.1283603 | 0.3897247 |
Desmognathus apalachicolae | 31.96778 | 13.0842953 | 0.1263009 | 0.4683053 |
Desmognathus auriculatus | 31.87974 | 7.3118586 | 0.1279551 | 0.2899367 |
Desmognathus santeetlah | 31.89972 | 11.2025906 | 0.1259068 | 0.4192348 |
Desmognathus imitator | 31.92766 | 11.4988529 | 0.1267315 | 0.4338333 |
Desmognathus aeneus | 31.70610 | 13.7405510 | 0.1260155 | 0.4983610 |
Desmognathus folkertsi | 31.27510 | 12.3268813 | 0.1263018 | 0.4584972 |
Desmognathus marmoratus | 31.29829 | 12.6480799 | 0.1277179 | 0.4779198 |
Desmognathus wrighti | 31.41782 | 13.1624103 | 0.1276158 | 0.5011380 |
Phaeognathus hubrichti | 31.47247 | 20.3380877 | 0.1247251 | 0.7195900 |
Plethodon albagula | 31.91582 | 9.4256764 | 0.1253351 | 0.3678227 |
Plethodon sequoyah | 32.00763 | 10.3683913 | 0.1221347 | 0.3831725 |
Plethodon kisatchie | 31.99676 | 11.1414980 | 0.1226802 | 0.4058635 |
Plethodon kiamichi | 31.92430 | 10.5342040 | 0.1243300 | 0.3930793 |
Plethodon amplus | 31.82088 | 10.0599037 | 0.1254268 | 0.3792102 |
Plethodon meridianus | 31.81754 | 9.7561320 | 0.1251175 | 0.3659866 |
Plethodon metcalfi | 31.81681 | 10.5549013 | 0.1222540 | 0.3985473 |
Plethodon aureolus | 31.90622 | 9.2987283 | 0.1243347 | 0.3508432 |
Plethodon cheoah | 31.88507 | 10.3550302 | 0.1254781 | 0.3938599 |
Plethodon shermani | 31.91953 | 9.6651010 | 0.1210337 | 0.3661640 |
Plethodon fourchensis | 32.00837 | 10.5998594 | 0.1237957 | 0.3968356 |
Plethodon kentucki | 32.00257 | 9.0602869 | 0.1254503 | 0.3594969 |
Plethodon petraeus | 31.92171 | 11.3588955 | 0.1229151 | 0.4248010 |
Plethodon angusticlavius | 31.71449 | 7.6902063 | 0.1239121 | 0.3028233 |
Plethodon ventralis | 31.45361 | 11.4416768 | 0.1232368 | 0.4270030 |
Plethodon welleri | 31.67048 | 10.8767313 | 0.1258705 | 0.4182339 |
Plethodon websteri | 31.88089 | 14.5720385 | 0.1225273 | 0.5241342 |
Plethodon shenandoah | 32.19997 | 8.1460089 | 0.1228530 | 0.3259209 |
Plethodon electromorphus | 31.95433 | 6.0770520 | 0.1256187 | 0.2537725 |
Plethodon nettingi | 31.97708 | 8.0504155 | 0.1234894 | 0.3307486 |
Plethodon hoffmani | 31.96429 | 6.4041573 | 0.1231300 | 0.2886482 |
Plethodon sherando | 31.97704 | 9.3640482 | 0.1235793 | 0.3681270 |
Plethodon asupak | 31.30883 | 12.4190758 | 0.1258753 | 0.6623358 |
Plethodon elongatus | 31.44887 | 11.5034696 | 0.1243653 | 0.6159507 |
Plethodon stormi | 31.40626 | 10.8463366 | 0.1261817 | 0.5753655 |
Plethodon idahoensis | 31.68302 | 6.7819629 | 0.1233595 | 0.3877092 |
Plethodon vandykei | 31.47947 | 8.6927006 | 0.1218053 | 0.5002256 |
Plethodon larselli | 31.40337 | 8.3140893 | 0.1248482 | 0.4573971 |
Plethodon neomexicanus | 31.35090 | 8.4460723 | 0.1259067 | 0.4351228 |
Hydromantes brunus | 31.57055 | 14.5507030 | 0.1256025 | 0.7924925 |
Hydromantes platycephalus | 31.58842 | 12.6687133 | 0.1248078 | 0.6615079 |
Hydromantes shastae | 31.58728 | 13.2171173 | 0.1239961 | 0.7037080 |
Karsenia koreana | 31.61242 | 14.3843820 | 0.1261234 | 0.5960138 |
Eurycea junaluska | 34.04846 | 10.9144264 | 0.1123841 | 0.4115936 |
Eurycea cirrigera | 34.09875 | 7.6567257 | 0.1077117 | 0.2955207 |
Eurycea wilderae | 34.10814 | 10.8771303 | 0.1087171 | 0.4102182 |
Eurycea guttolineata | 34.33334 | 9.3321633 | 0.1076537 | 0.3563235 |
Eurycea chisholmensis | 34.09367 | 15.8785487 | 0.1116993 | 0.5915914 |
Eurycea tonkawae | 34.17668 | 13.9877040 | 0.1095350 | 0.5206468 |
Eurycea naufragia | 34.18901 | 13.4357519 | 0.1114468 | 0.4975072 |
Eurycea tridentifera | 34.13831 | 17.6916812 | 0.1102591 | 0.6694034 |
Eurycea pterophila | 34.17322 | 16.0785147 | 0.1109265 | 0.6033881 |
Eurycea troglodytes | 34.19313 | 18.3461068 | 0.1095041 | 0.6973339 |
Eurycea waterlooensis | 34.09651 | 13.2438909 | 0.1122203 | 0.4888025 |
Eurycea tynerensis | 34.20947 | 7.2095250 | 0.1078525 | 0.2931531 |
Urspelerpes brucei | 34.31257 | 11.8189921 | 0.1142154 | 0.4392921 |
Stereochilus marginatus | 32.72033 | 7.9875206 | 0.1175385 | 0.3140362 |
Batrachoseps gregarius | 32.21430 | 14.2126056 | 0.1194103 | 0.7345412 |
Batrachoseps nigriventris | 32.23854 | 16.0045519 | 0.1205506 | 0.7705137 |
Batrachoseps stebbinsi | 32.24159 | 13.5616499 | 0.1198362 | 0.6935682 |
Batrachoseps simatus | 32.20864 | 12.3195142 | 0.1190511 | 0.6854904 |
Batrachoseps kawia | 32.19962 | 10.2450831 | 0.1208971 | 0.6412445 |
Batrachoseps relictus | 32.18946 | 13.5694973 | 0.1175611 | 0.7500328 |
Batrachoseps diabolicus | 32.26996 | 17.6362582 | 0.1192425 | 0.8620515 |
Batrachoseps regius | 32.23450 | 18.6690939 | 0.1194778 | 0.8630113 |
Batrachoseps gabrieli | 32.31850 | 13.3529022 | 0.1159342 | 0.6562995 |
Batrachoseps gavilanensis | 32.24050 | 16.3545323 | 0.1191635 | 0.8187124 |
Batrachoseps incognitus | 32.28068 | 18.8633563 | 0.1198935 | 0.9639366 |
Batrachoseps minor | 32.20986 | 17.8521138 | 0.1195006 | 0.8859637 |
Batrachoseps major | 32.30070 | 16.8578065 | 0.1179415 | 0.7865252 |
Batrachoseps pacificus | 32.26916 | 15.7598789 | 0.1181209 | 0.8050158 |
Batrachoseps luciae | 32.22508 | 18.1402511 | 0.1192654 | 0.9267602 |
Batrachoseps robustus | 32.21937 | 14.2937106 | 0.1215410 | 0.7339153 |
Batrachoseps attenuatus | 32.27125 | 15.7764698 | 0.1191629 | 0.8226890 |
Batrachoseps campi | 32.34415 | 13.7234994 | 0.1205916 | 0.7512857 |
Batrachoseps wrighti | 32.34658 | 10.7947584 | 0.1198992 | 0.5883531 |
Bolitoglossa adspersa | 32.18719 | 28.0596380 | 0.1210211 | 1.1990370 |
Bolitoglossa medemi | 31.97705 | 41.4229793 | 0.1225699 | 1.5563853 |
Bolitoglossa alberchi | 32.12215 | 27.4980530 | 0.1194473 | 0.9964234 |
Bolitoglossa altamazonica | 32.02497 | 36.5131741 | 0.1222613 | 1.3548147 |
Bolitoglossa peruviana | 32.10381 | 39.5578055 | 0.1194531 | 1.6311321 |
Bolitoglossa palmata | 32.09099 | 17.7224290 | 0.1188099 | 0.7692825 |
Bolitoglossa alvaradoi | 32.08612 | 33.3598837 | 0.1212691 | 1.3265743 |
Bolitoglossa dofleini | 32.28265 | 31.5361419 | 0.1202047 | 1.1910497 |
Bolitoglossa anthracina | 32.20218 | 49.0897900 | 0.1221572 | 1.7509235 |
Bolitoglossa biseriata | 32.06921 | 38.0033664 | 0.1207242 | 1.4627860 |
Bolitoglossa sima | 32.11936 | 24.9241747 | 0.1180578 | 1.0295916 |
Bolitoglossa borburata | 32.25033 | 36.2329316 | 0.1213557 | 1.3504699 |
Bolitoglossa bramei | 32.31616 | 37.5044916 | 0.1197011 | 1.5396740 |
Bolitoglossa pesrubra | 32.34402 | 22.1406488 | 0.1175052 | 1.2894709 |
Bolitoglossa capitana | 32.29017 | 38.3691243 | 0.1171797 | 1.5307424 |
Bolitoglossa carri | 32.08081 | 20.7163326 | 0.1209707 | 0.8537026 |
Bolitoglossa oresbia | 32.06759 | 20.8578521 | 0.1199959 | 0.8593628 |
Bolitoglossa celaque | 32.26051 | 26.6047599 | 0.1197832 | 1.0154184 |
Bolitoglossa synoria | 32.10817 | 34.6589874 | 0.1193040 | 1.2633894 |
Bolitoglossa heiroreias | 32.19718 | 29.8250312 | 0.1207319 | 1.0879368 |
Bolitoglossa cerroensis | 32.11797 | 22.6333843 | 0.1220499 | 1.3173677 |
Bolitoglossa epimela | 32.03562 | 28.8830461 | 0.1205277 | 1.2838210 |
Bolitoglossa marmorea | 32.04044 | 53.7135231 | 0.1217735 | 1.9145034 |
Bolitoglossa chica | 32.03550 | 30.8582243 | 0.1221039 | 1.2524587 |
Bolitoglossa colonnea | 32.07314 | 47.3603206 | 0.1215314 | 1.7994711 |
Bolitoglossa nigrescens | 32.28014 | 29.3189428 | 0.1210323 | 1.2989163 |
Bolitoglossa compacta | 32.13067 | 50.3297674 | 0.1188913 | 1.7980182 |
Bolitoglossa robusta | 32.30729 | 39.9700194 | 0.1218887 | 1.5260614 |
Bolitoglossa schizodactyla | 32.08365 | 42.0565854 | 0.1212779 | 1.5867561 |
Bolitoglossa conanti | 32.01187 | 29.4537065 | 0.1227822 | 1.1140799 |
Bolitoglossa diaphora | 32.09277 | 44.7197598 | 0.1200772 | 1.7551524 |
Bolitoglossa dunni | 32.09046 | 39.6796094 | 0.1201151 | 1.5533024 |
Bolitoglossa copia | 32.24707 | 48.3223050 | 0.1206438 | 1.7346439 |
Bolitoglossa cuchumatana | 32.24843 | 20.8044937 | 0.1207591 | 0.8296313 |
Bolitoglossa helmrichi | 32.11767 | 26.2960455 | 0.1185172 | 0.9977071 |
Bolitoglossa cuna | 32.07445 | 46.7587828 | 0.1226559 | 1.6791644 |
Bolitoglossa suchitanensis | 32.03939 | 29.3970836 | 0.1198968 | 1.0697957 |
Bolitoglossa morio | 32.07360 | 26.4561254 | 0.1196983 | 1.0500478 |
Bolitoglossa flavimembris | 32.15005 | 24.8635025 | 0.1208872 | 0.9698189 |
Bolitoglossa decora | 32.06122 | 51.4824875 | 0.1193583 | 1.9418622 |
Bolitoglossa digitigrada | 32.25227 | 21.2915627 | 0.1197652 | 1.3646765 |
Bolitoglossa diminuta | 32.12972 | 20.6457498 | 0.1228287 | 1.2019858 |
Bolitoglossa engelhardti | 32.04964 | 23.8033281 | 0.1185010 | 0.9485045 |
Bolitoglossa equatoriana | 32.00645 | 36.7137714 | 0.1202591 | 1.4310499 |
Bolitoglossa paraensis | 32.07397 | 43.8861597 | 0.1193228 | 1.5722553 |
Bolitoglossa flaviventris | 32.17310 | 27.5158342 | 0.1193095 | 1.0724778 |
Bolitoglossa franklini | 32.05006 | 24.5087423 | 0.1237187 | 0.9557349 |
Bolitoglossa lincolni | 32.06610 | 24.7988358 | 0.1220006 | 0.9567480 |
Bolitoglossa gomezi | 32.05383 | 35.0451598 | 0.1197175 | 1.5464692 |
Bolitoglossa gracilis | 32.06118 | 33.1718126 | 0.1175089 | 1.4723288 |
Bolitoglossa subpalmata | 32.01808 | 30.7898387 | 0.1189756 | 1.2715565 |
Bolitoglossa tica | 32.01405 | 28.2057049 | 0.1171088 | 1.2482575 |
Bolitoglossa guaramacalensis | 32.33234 | 32.4600877 | 0.1192014 | 1.2072452 |
Bolitoglossa hartwegi | 32.25959 | 31.4533683 | 0.1199560 | 1.1421811 |
Bolitoglossa hermosa | 32.15223 | 26.5502049 | 0.1175057 | 1.0875213 |
Bolitoglossa riletti | 32.12881 | 24.9297818 | 0.1202011 | 0.9788674 |
Bolitoglossa zapoteca | 32.27882 | 27.3254564 | 0.1176921 | 0.9881319 |
Bolitoglossa hiemalis | 32.11126 | 36.2328515 | 0.1217018 | 1.4968595 |
Bolitoglossa hypacra | 32.22127 | 38.3544766 | 0.1196198 | 1.4640130 |
Bolitoglossa indio | 32.27507 | 40.0059101 | 0.1229459 | 1.4290655 |
Bolitoglossa insularis | 32.09380 | 28.8580133 | 0.1181863 | 1.0477474 |
Bolitoglossa jacksoni | 32.13891 | 17.6834644 | 0.1211707 | 0.7809337 |
Bolitoglossa nicefori | 32.01067 | 29.3896748 | 0.1200502 | 1.2414103 |
Bolitoglossa lignicolor | 32.04933 | 39.2139048 | 0.1213365 | 1.5291089 |
Bolitoglossa longissima | 32.06494 | 34.1915513 | 0.1223273 | 1.2845589 |
Bolitoglossa porrasorum | 32.09871 | 42.6741557 | 0.1184677 | 1.6174647 |
Bolitoglossa lozanoi | 32.11469 | 29.5211766 | 0.1199866 | 1.2144233 |
Bolitoglossa macrinii | 32.22414 | 28.2449345 | 0.1211942 | 1.0438047 |
Bolitoglossa oaxacensis | 32.20104 | 25.1854896 | 0.1200354 | 0.9587351 |
Bolitoglossa magnifica | 32.28515 | 51.5786483 | 0.1205163 | 1.8367623 |
Bolitoglossa meliana | 32.25600 | 24.5650980 | 0.1214352 | 0.9838953 |
Bolitoglossa mexicana | 32.08156 | 30.6872882 | 0.1213421 | 1.1444185 |
Bolitoglossa odonnelli | 32.11516 | 32.0449084 | 0.1191938 | 1.2217660 |
Bolitoglossa minutula | 32.11225 | 42.2578105 | 0.1196592 | 1.7340058 |
Bolitoglossa sooyorum | 32.05662 | 22.3985503 | 0.1215570 | 1.3035425 |
Bolitoglossa mombachoensis | 32.14530 | 30.1424558 | 0.1187399 | 1.0967248 |
Bolitoglossa striatula | 32.06719 | 33.2774514 | 0.1215557 | 1.2453111 |
Bolitoglossa mulleri | 32.18465 | 20.7488399 | 0.1216089 | 0.8059430 |
Bolitoglossa yucatana | 32.25888 | 37.5207754 | 0.1219498 | 1.3504317 |
Bolitoglossa orestes | 32.27513 | 30.6428711 | 0.1194931 | 1.1569954 |
Bolitoglossa rufescens | 32.02233 | 24.6468961 | 0.1219158 | 0.9300370 |
Bolitoglossa obscura | 32.23925 | 20.3187523 | 0.1192775 | 1.1817765 |
Bolitoglossa occidentalis | 32.13011 | 28.0831942 | 0.1191711 | 1.0449692 |
Bolitoglossa pandi | 32.20819 | 38.3011852 | 0.1215807 | 1.5163903 |
Bolitoglossa phalarosoma | 32.17938 | 29.6604567 | 0.1220973 | 1.2563033 |
Bolitoglossa platydactyla | 32.15362 | 26.0694345 | 0.1198346 | 1.0245041 |
Bolitoglossa ramosi | 32.10174 | 34.5785689 | 0.1198468 | 1.4324049 |
Bolitoglossa rostrata | 32.07739 | 25.7781144 | 0.1204008 | 0.9884973 |
Bolitoglossa salvinii | 32.10399 | 29.7202505 | 0.1208936 | 1.1081603 |
Bolitoglossa savagei | 32.06037 | 31.4735478 | 0.1197169 | 1.1585241 |
Bolitoglossa silverstonei | 32.03907 | 38.7627477 | 0.1214802 | 1.4987863 |
Bolitoglossa sombra | 32.15994 | 58.6425369 | 0.1200045 | 2.0959836 |
Bolitoglossa stuarti | 32.02463 | 26.7085771 | 0.1198559 | 1.0228628 |
Bolitoglossa tatamae | 32.06958 | 37.9892962 | 0.1226775 | 1.5126924 |
Bolitoglossa taylori | 32.06566 | 41.9931609 | 0.1203129 | 1.5368640 |
Bolitoglossa vallecula | 32.16599 | 28.2975150 | 0.1204742 | 1.2182565 |
Bolitoglossa veracrucis | 32.02455 | 29.0567255 | 0.1211374 | 1.0528685 |
Bolitoglossa walkeri | 32.03411 | 30.1980379 | 0.1218796 | 1.2730322 |
Ixalotriton niger | 32.17896 | 31.3721581 | 0.1228503 | 1.1319377 |
Ixalotriton parvus | 32.11128 | 30.1943565 | 0.1175581 | 1.0738695 |
Parvimolge townsendi | 32.23410 | 23.1314123 | 0.1188530 | 0.9190280 |
Pseudoeurycea ahuitzotl | 32.33058 | 27.9624132 | 0.1212682 | 1.1526411 |
Pseudoeurycea altamontana | 32.22911 | 16.3666529 | 0.1179063 | 0.7737358 |
Pseudoeurycea robertsi | 32.26202 | 14.7091792 | 0.1208924 | 0.7241191 |
Pseudoeurycea longicauda | 32.25696 | 23.7548421 | 0.1197769 | 0.9932661 |
Pseudoeurycea tenchalli | 32.26774 | 23.7369033 | 0.1189658 | 0.9298722 |
Pseudoeurycea cochranae | 32.26417 | 23.0405971 | 0.1208565 | 0.9137941 |
Pseudoeurycea gadovii | 32.23552 | 19.9007019 | 0.1184760 | 0.8716138 |
Pseudoeurycea melanomolga | 32.20647 | 14.1664115 | 0.1208971 | 0.6502887 |
Pseudoeurycea amuzga | 32.15132 | 30.7129064 | 0.1217824 | 1.1971375 |
Pseudoeurycea aquatica | 32.38218 | 16.6735178 | 0.1196276 | 0.7330113 |
Pseudoeurycea aurantia | 32.35488 | 15.9792545 | 0.1187154 | 0.7089815 |
Pseudoeurycea juarezi | 32.33810 | 22.1045205 | 0.1190861 | 0.8816108 |
Pseudoeurycea saltator | 32.14108 | 14.9291224 | 0.1214892 | 0.6582604 |
Pseudoeurycea ruficauda | 32.10977 | 19.9339607 | 0.1177907 | 0.8010113 |
Pseudoeurycea goebeli | 32.26153 | 32.4543346 | 0.1207166 | 1.1910862 |
Pseudoeurycea rex | 32.23915 | 24.1375061 | 0.1200639 | 0.9632042 |
Pseudoeurycea conanti | 32.15877 | 20.9029150 | 0.1200081 | 0.8406253 |
Pseudoeurycea mystax | 32.19002 | 20.7040279 | 0.1187828 | 0.8241514 |
Pseudoeurycea obesa | 32.15197 | 27.1457013 | 0.1220649 | 0.9990911 |
Pseudoeurycea werleri | 32.24825 | 22.9975694 | 0.1206395 | 0.8914851 |
Pseudoeurycea firscheini | 32.16178 | 23.4703680 | 0.1193466 | 0.9381259 |
Pseudoeurycea leprosa | 32.23799 | 21.3951429 | 0.1188030 | 0.9100352 |
Pseudoeurycea nigromaculata | 32.08913 | 26.2747466 | 0.1204180 | 1.0113152 |
Pseudoeurycea lynchi | 32.20588 | 21.9467713 | 0.1225541 | 0.8944504 |
Pseudoeurycea lineola | 32.29658 | 24.5731974 | 0.1192179 | 0.9862732 |
Pseudoeurycea mixcoatl | 32.22888 | 24.9228820 | 0.1201512 | 0.9768483 |
Pseudoeurycea mixteca | 32.29283 | 22.8084263 | 0.1183499 | 0.9270970 |
Pseudoeurycea orchileucos | 32.25731 | 15.4807795 | 0.1225337 | 0.6807336 |
Pseudoeurycea orchimelas | 32.23785 | 26.8429735 | 0.1196739 | 0.9824744 |
Pseudoeurycea papenfussi | 32.17175 | 15.1525992 | 0.1220428 | 0.6644830 |
Pseudoeurycea smithi | 32.18657 | 15.8973615 | 0.1195709 | 0.7005734 |
Pseudoeurycea tlahcuiloh | 32.25143 | 26.9053122 | 0.1200774 | 1.1074839 |
Pseudoeurycea tlilicxitl | 32.19692 | 14.6748636 | 0.1229203 | 0.6952976 |
Bradytriton silus | 32.13376 | 23.1177267 | 0.1225246 | 0.9059689 |
Oedipina alfaroi | 32.06490 | 34.7403160 | 0.1226273 | 1.4286744 |
Oedipina alleni | 32.16922 | 35.8299814 | 0.1187775 | 1.4333614 |
Oedipina savagei | 32.12815 | 41.9789297 | 0.1201521 | 1.6407034 |
Oedipina altura | 32.17136 | 21.4054865 | 0.1186488 | 1.2448455 |
Oedipina carablanca | 32.17761 | 36.8173638 | 0.1215222 | 1.3227629 |
Oedipina elongata | 32.11877 | 34.7620752 | 0.1199328 | 1.2879308 |
Oedipina collaris | 32.12827 | 36.1893399 | 0.1186419 | 1.4399414 |
Oedipina complex | 32.11815 | 37.5925731 | 0.1216175 | 1.4572881 |
Oedipina maritima | 32.21167 | 52.1263495 | 0.1194556 | 1.8463005 |
Oedipina parvipes | 32.23822 | 49.8546970 | 0.1169975 | 1.8447339 |
Oedipina cyclocauda | 32.18479 | 35.4288900 | 0.1202245 | 1.3757565 |
Oedipina pseudouniformis | 32.17680 | 28.0652177 | 0.1218156 | 1.2472963 |
Oedipina gephyra | 32.19680 | 37.4435661 | 0.1188809 | 1.4272320 |
Oedipina tomasi | 32.12371 | 40.2652999 | 0.1201142 | 1.5804075 |
Oedipina gracilis | 32.15794 | 32.7022285 | 0.1202246 | 1.3008780 |
Oedipina pacificensis | 32.99953 | 40.0498979 | 0.1225503 | 1.6029702 |
Oedipina uniformis | 32.12445 | 36.4271772 | 0.1178328 | 1.3851516 |
Oedipina grandis | 33.14425 | 55.3085298 | 0.1213902 | 1.9711834 |
Oedipina poelzi | 32.21552 | 33.7645942 | 0.1202159 | 1.3379858 |
Oedipina ignea | 32.14436 | 26.3727795 | 0.1220259 | 1.0178613 |
Oedipina paucidentata | 32.21549 | 19.8524849 | 0.1198818 | 1.1551481 |
Oedipina stenopodia | 32.09441 | 32.3804448 | 0.1238241 | 1.1865906 |
Oedipina taylori | 32.13964 | 33.9089531 | 0.1192412 | 1.2200683 |
Nototriton abscondens | 32.21858 | 30.3815282 | 0.1202375 | 1.2066824 |
Nototriton gamezi | 32.22033 | 34.2513890 | 0.1196567 | 1.2344479 |
Nototriton picadoi | 32.18345 | 32.6869490 | 0.1207742 | 1.3466141 |
Nototriton guanacaste | 32.23518 | 42.0124640 | 0.1178152 | 1.5709391 |
Nototriton saslaya | 32.22262 | 28.7225459 | 0.1190831 | 1.0633557 |
Nototriton barbouri | 32.24496 | 33.3310102 | 0.1217336 | 1.2722996 |
Nototriton brodiei | 32.25514 | 37.7102997 | 0.1192471 | 1.4787764 |
Nototriton stuarti | 32.28868 | 44.3393274 | 0.1206057 | 1.7421364 |
Nototriton limnospectator | 32.21970 | 22.7614054 | 0.1193087 | 0.8993029 |
Nototriton lignicola | 32.21842 | 31.4280893 | 0.1198924 | 1.2218606 |
Nototriton major | 32.19916 | 21.2198548 | 0.1208539 | 1.2324558 |
Nototriton richardi | 32.23270 | 35.8756833 | 0.1181778 | 1.2866855 |
Nototriton tapanti | 32.18646 | 31.7894386 | 0.1195529 | 1.4120174 |
Dendrotriton bromeliacius | 32.03331 | 24.5174100 | 0.1205123 | 0.9835584 |
Dendrotriton megarhinus | 32.03547 | 27.1413800 | 0.1214589 | 0.9920824 |
Dendrotriton xolocalcae | 31.96444 | 20.7869530 | 0.1231301 | 0.8234371 |
Dendrotriton sanctibarbarus | 32.06036 | 26.0288128 | 0.1206092 | 0.9981740 |
Dendrotriton chujorum | 32.01262 | 18.7078993 | 0.1226609 | 0.8253737 |
Dendrotriton cuchumatanus | 31.98094 | 19.2174818 | 0.1217220 | 0.8462579 |
Dendrotriton kekchiorum | 32.03719 | 21.8912824 | 0.1204577 | 0.8658252 |
Dendrotriton rabbi | 32.02662 | 19.3051620 | 0.1212368 | 0.8502090 |
Nyctanolis pernix | 32.11120 | 20.3139736 | 0.1219835 | 0.8111905 |
Chiropterotriton arboreus | 31.52653 | 15.7912704 | 0.1212906 | 0.7044128 |
Chiropterotriton cracens | 31.38139 | 18.3142630 | 0.1239478 | 0.7653606 |
Chiropterotriton terrestris | 31.73957 | 14.8903560 | 0.1234633 | 0.6630485 |
Chiropterotriton priscus | 31.84987 | 18.1849997 | 0.1234352 | 0.7693180 |
Chiropterotriton chiropterus | 31.62023 | 18.5156856 | 0.1240128 | 0.7775073 |
Chiropterotriton chondrostega | 31.84039 | 17.1307361 | 0.1211983 | 0.7458602 |
Chiropterotriton magnipes | 31.81319 | 22.6404830 | 0.1206349 | 0.9133477 |
Chiropterotriton dimidiatus | 31.98974 | 18.6656573 | 0.1207247 | 0.8283702 |
Chiropterotriton orculus | 31.93671 | 17.2116296 | 0.1188469 | 0.7591900 |
Chiropterotriton lavae | 31.82193 | 17.5010959 | 0.1193627 | 0.7442123 |
Cryptotriton alvarezdeltoroi | 32.04704 | 29.0511496 | 0.1209782 | 1.0400850 |
Cryptotriton monzoni | 31.87460 | 28.1470746 | 0.1202308 | 1.0235805 |
Cryptotriton nasalis | 31.78894 | 38.0243940 | 0.1218449 | 1.4935927 |
Cryptotriton sierraminensis | 31.95525 | 29.1298616 | 0.1203670 | 1.0871431 |
Cryptotriton veraepacis | 31.86400 | 20.1882498 | 0.1212077 | 0.7954811 |
Thorius adelos | 31.96366 | 16.3894126 | 0.1182449 | 0.7201184 |
Thorius arboreus | 31.87441 | 15.3008078 | 0.1232337 | 0.6744795 |
Thorius macdougalli | 31.97976 | 15.4567409 | 0.1227282 | 0.6819096 |
Thorius aureus | 32.12893 | 14.9295990 | 0.1217012 | 0.6618887 |
Thorius boreas | 32.08869 | 14.7908309 | 0.1221399 | 0.6509431 |
Thorius grandis | 32.13409 | 24.5933653 | 0.1191207 | 1.0097971 |
Thorius omiltemi | 32.15970 | 23.1138708 | 0.1199876 | 0.9056809 |
Thorius pulmonaris | 32.10635 | 14.7059923 | 0.1205667 | 0.6463042 |
Thorius minutissimus | 32.07844 | 27.2332227 | 0.1208142 | 0.9831097 |
Thorius narisovalis | 32.11297 | 18.4535988 | 0.1192105 | 0.7640313 |
Thorius papaloae | 32.19182 | 14.4002483 | 0.1203869 | 0.6291798 |
Thorius dubitus | 32.13946 | 21.8206642 | 0.1205270 | 0.8703762 |
Thorius troglodytes | 33.09991 | 17.2026285 | 0.1194897 | 0.7397272 |
Thorius insperatus | 32.13739 | 14.8757347 | 0.1233152 | 0.6520869 |
Thorius minydemus | 32.05115 | 19.5722142 | 0.1242522 | 0.8257276 |
Thorius spilogaster | 33.03959 | 24.1565462 | 0.1206739 | 0.9654236 |
Thorius pennatulus | 32.09369 | 23.2159201 | 0.1227480 | 0.9300935 |
Thorius smithi | 32.10360 | 16.4850762 | 0.1214831 | 0.7239705 |
Thorius infernalis | 32.34051 | 25.0047348 | 0.1206891 | 1.0295876 |
Thorius magnipes | 31.95877 | 23.0255757 | 0.1205263 | 0.9148655 |
Thorius schmidti | 32.10991 | 22.8545983 | 0.1190127 | 0.9107680 |
Thorius narismagnus | 33.05132 | 26.9129477 | 0.1217673 | 0.9859692 |
Thorius lunaris | 32.12597 | 22.5397567 | 0.1214699 | 0.8920372 |
Thorius munificus | 32.09601 | 13.8552563 | 0.1182131 | 0.6384118 |
Ascaphus montanus | 28.97264 | 6.2564332 | 0.1460927 | 0.3595713 |
Leiopelma hochstetteri | 32.08346 | 26.1102547 | 0.1426869 | 1.3468694 |
Leiopelma archeyi | 31.76564 | 27.7784050 | 0.1439268 | 1.4337262 |
Leiopelma pakeka | 31.85256 | 22.9457122 | 0.1404519 | 1.3437171 |
Leiopelma hamiltoni | 31.80769 | 24.3830378 | 0.1426587 | 1.3063055 |
Barbourula kalimantanensis | 33.49586 | 66.4005260 | 0.1385489 | 2.2629339 |
Barbourula busuangensis | 33.59937 | 93.7756207 | 0.1404869 | 3.3730500 |
Bombina orientalis | 33.68084 | 15.6811575 | 0.1421954 | 0.7248239 |
Bombina bombina | 33.58513 | 12.9608479 | 0.1392382 | 0.6521283 |
Bombina variegata | 33.58455 | 14.0301664 | 0.1417764 | 0.6876636 |
Bombina lichuanensis | 33.57097 | 24.3874252 | 0.1410157 | 1.0201520 |
Latonia nigriventer | 33.75781 | 26.2373110 | 0.1479887 | 1.1111786 |
Discoglossus montalentii | 32.95831 | 12.5746486 | 0.1471813 | 0.5233624 |
Discoglossus sardus | 34.16632 | 9.8126711 | 0.1469425 | 0.4076984 |
Rhinophrynus dorsalis | 33.41399 | 50.8728189 | 0.1380629 | 1.8934289 |
Hymenochirus boettgeri | 33.54604 | 50.6853709 | 0.1377751 | 1.8354695 |
Hymenochirus feae | 33.48970 | 51.4216826 | 0.1411129 | 1.8280620 |
Hymenochirus boulengeri | 33.52438 | 53.6553041 | 0.1428822 | 1.9587949 |
Hymenochirus curtipes | 33.61323 | 51.2116920 | 0.1384247 | 1.8149355 |
Pseudhymenochirus merlini | 33.54442 | 43.9332435 | 0.1401369 | 1.5941640 |
Xenopus amieti | 33.11071 | 35.6160357 | 0.1396567 | 1.3464257 |
Xenopus longipes | 33.09789 | 28.3484523 | 0.1402487 | 1.0928026 |
Xenopus boumbaensis | 32.28491 | 38.6090371 | 0.1431696 | 1.4161173 |
Xenopus itombwensis | 33.05725 | 27.5403770 | 0.1422555 | 1.1215259 |
Xenopus wittei | 33.02530 | 27.7761344 | 0.1397267 | 1.1808249 |
Xenopus andrei | 33.05702 | 34.7038358 | 0.1422925 | 1.2741324 |
Xenopus fraseri | 33.08040 | 38.6261580 | 0.1402284 | 1.3603352 |
Xenopus pygmaeus | 33.13474 | 31.2085418 | 0.1363748 | 1.1285949 |
Xenopus gilli | 32.86208 | 13.0502287 | 0.1408143 | 0.6256691 |
Xenopus petersii | 33.06516 | 20.4539630 | 0.1404488 | 0.8034244 |
Xenopus victorianus | 33.05835 | 19.5249848 | 0.1410226 | 0.8271642 |
Xenopus lenduensis | 33.03203 | 28.6326973 | 0.1409832 | 1.1136297 |
Xenopus vestitus | 33.04799 | 31.6223228 | 0.1403583 | 1.3590130 |
Xenopus borealis | 33.24072 | 23.1998378 | 0.1387575 | 1.0676909 |
Xenopus clivii | 33.06502 | 23.4948597 | 0.1404004 | 1.0384355 |
Xenopus largeni | 33.11440 | 22.7224884 | 0.1412370 | 1.0829291 |
Xenopus ruwenzoriensis | 33.17345 | 28.9638934 | 0.1411940 | 1.1896956 |
Xenopus muelleri | 33.12956 | 24.8226433 | 0.1379490 | 1.0200748 |
Xenopus epitropicalis | 33.35656 | 41.6856479 | 0.1405116 | 1.5113939 |
Xenopus tropicalis | 33.30357 | 39.3259342 | 0.1417505 | 1.4167156 |
Pipa arrabali | 34.77597 | 48.7717531 | 0.1371156 | 1.7515180 |
Pipa myersi | 34.72659 | 49.2161348 | 0.1356413 | 1.7499478 |
Pipa parva | 34.78109 | 48.6341878 | 0.1352697 | 1.8275400 |
Pipa pipa | 34.81802 | 46.2821603 | 0.1351955 | 1.6753763 |
Pipa aspera | 34.78740 | 49.8174892 | 0.1377512 | 1.8065842 |
Pipa snethlageae | 34.69430 | 48.4567839 | 0.1391983 | 1.6903805 |
Scaphiopus hurterii | 32.43079 | 15.8333172 | 0.1529022 | 0.5891593 |
Spea multiplicata | 33.28488 | 14.3466669 | 0.1416889 | 0.6390097 |
Spea bombifrons | 33.57123 | 8.0095698 | 0.1439993 | 0.3692159 |
Spea intermontana | 33.60420 | 7.3340454 | 0.1443775 | 0.4111268 |
Pelodytes caucasicus | 33.49831 | 10.0920373 | 0.1311749 | 0.5021195 |
Oreolalax chuanbeiensis | 33.94855 | 13.0426378 | 0.1367425 | 0.6914585 |
Oreolalax nanjiangensis | 33.35744 | 14.7703085 | 0.1365208 | 0.7272513 |
Oreolalax omeimontis | 33.88773 | 21.3312132 | 0.1375552 | 0.9895310 |
Oreolalax popei | 33.91594 | 15.0720821 | 0.1390546 | 0.7630783 |
Oreolalax multipunctatus | 33.90356 | 15.5381068 | 0.1383045 | 0.7949623 |
Oreolalax granulosus | 33.30563 | 27.9020661 | 0.1358122 | 1.2159365 |
Oreolalax jingdongensis | 33.38461 | 26.1892270 | 0.1367777 | 1.1700194 |
Oreolalax liangbeiensis | 33.99005 | 21.1997570 | 0.1374390 | 1.0128936 |
Oreolalax major | 34.00884 | 16.4492895 | 0.1370385 | 0.8259878 |
Oreolalax rugosus | 34.19637 | 23.9715849 | 0.1371522 | 1.1583151 |
Oreolalax xiangchengensis | 33.37722 | 17.6510953 | 0.1354391 | 1.0623875 |
Oreolalax puxiongensis | 34.20569 | 21.5708010 | 0.1360825 | 1.0309979 |
Oreolalax lichuanensis | 33.91195 | 23.0225177 | 0.1383892 | 0.9060612 |
Oreolalax pingii | 33.91427 | 21.4805865 | 0.1393552 | 1.0202669 |
Oreolalax schmidti | 33.98458 | 15.6186481 | 0.1343791 | 0.7875141 |
Oreolalax rhodostigmatus | 33.96600 | 22.4934829 | 0.1360428 | 0.8961386 |
Scutiger adungensis | 33.25994 | 19.5829776 | 0.1390513 | 1.1237059 |
Scutiger boulengeri | 33.35358 | 9.8397146 | 0.1361228 | 0.7644444 |
Scutiger muliensis | 33.32935 | 19.6357731 | 0.1357327 | 1.1077072 |
Scutiger tuberculatus | 33.32917 | 22.7992951 | 0.1367932 | 1.0927070 |
Scutiger mammatus | 33.34114 | 9.6559984 | 0.1375671 | 0.7708011 |
Scutiger brevipes | 33.25058 | 14.1677753 | 0.1398694 | 0.9235677 |
Scutiger chintingensis | 33.23115 | 21.8313880 | 0.1389682 | 1.0156155 |
Scutiger glandulatus | 33.91028 | 12.7952589 | 0.1388831 | 0.8272539 |
Scutiger gongshanensis | 34.24497 | 23.5102568 | 0.1360869 | 1.2569825 |
Scutiger jiulongensis | 34.20205 | 16.0431822 | 0.1355115 | 0.8910164 |
Scutiger liupanensis | 33.30062 | 13.2811955 | 0.1358048 | 0.6490044 |
Scutiger nepalensis | 33.36433 | 12.3316624 | 0.1383020 | 0.7352340 |
Scutiger ningshanensis | 33.27653 | 14.5802683 | 0.1392034 | 0.6150369 |
Scutiger nyingchiensis | 33.36554 | 10.9877754 | 0.1371612 | 0.7527914 |
Scutiger pingwuensis | 33.28986 | 14.2987653 | 0.1354988 | 0.7179078 |
Scutiger sikimmensis | 33.20323 | 15.8170708 | 0.1400927 | 0.8938121 |
Leptobrachella baluensis | 33.83633 | 49.6147950 | 0.1353487 | 1.8273484 |
Leptobrachella brevicrus | 33.25644 | 59.9584053 | 0.1388087 | 2.1923704 |
Leptobrachella mjobergi | 33.91896 | 95.9380056 | 0.1336444 | 3.5109824 |
Leptobrachella natunae | 33.27625 | 93.7483212 | 0.1360340 | 3.4025075 |
Leptobrachella palmata | 33.21769 | 61.2476085 | 0.1354528 | 2.1467843 |
Leptobrachella parva | 33.91179 | 58.2006895 | 0.1368474 | 2.1012509 |
Leptobrachella serasanae | 33.93907 | 55.1736475 | 0.1336577 | 1.9737635 |
Leptobrachium abbotti | 33.78129 | 57.9978801 | 0.1347966 | 2.0757830 |
Leptobrachium gunungense | 33.86752 | 73.9581849 | 0.1350533 | 2.7193410 |
Leptobrachium montanum | 33.80983 | 51.8198461 | 0.1370109 | 1.8626866 |
Leptobrachium hasseltii | 33.83185 | 57.6548166 | 0.1368392 | 2.0738559 |
Leptobrachium smithi | 33.83040 | 39.5128594 | 0.1385490 | 1.4130211 |
Leptobrachium hendricksoni | 33.88849 | 56.7578852 | 0.1355499 | 2.0009487 |
Leptobrachium nigrops | 33.89288 | 59.8788161 | 0.1349185 | 2.0913821 |
Leptobrachium ailaonicum | 34.04050 | 30.5156570 | 0.1356162 | 1.2871235 |
Leptobrachium boringii | 33.95529 | 20.4425183 | 0.1364726 | 0.8876903 |
Leptobrachium leishanense | 33.92404 | 28.8519606 | 0.1362061 | 1.1047185 |
Leptobrachium liui | 33.99744 | 29.9871710 | 0.1350492 | 1.0877219 |
Leptobrachium chapaense | 33.96191 | 31.7628977 | 0.1361050 | 1.2834975 |
Leptobrachium huashen | 33.98643 | 30.5961920 | 0.1359169 | 1.3068972 |
Leptobrachium promustache | 33.27716 | 32.7290309 | 0.1362921 | 1.2678175 |
Leptobrachium banae | 33.86302 | 41.3876218 | 0.1374291 | 1.4702561 |
Leptobrachium buchardi | 33.90162 | 41.5280173 | 0.1365952 | 1.4434675 |
Leptobrachium ngoclinhense | 33.87113 | 38.5447733 | 0.1362279 | 1.3799092 |
Leptobrachium hainanense | 33.93797 | 58.7938190 | 0.1351618 | 2.0876170 |
Leptobrachium mouhoti | 33.93905 | 38.8085882 | 0.1369114 | 1.3677652 |
Leptobrachium pullum | 33.91717 | 40.0130302 | 0.1354882 | 1.4137438 |
Leptobrachium xanthops | 33.28147 | 37.3117368 | 0.1366901 | 1.3467077 |
Leptobrachium xanthospilum | 33.37486 | 38.3564833 | 0.1352235 | 1.4056925 |
Leptobrachium leucops | 33.94387 | 41.1529014 | 0.1366820 | 1.4424530 |
Megophrys kobayashii | 33.83937 | 63.8928434 | 0.1374753 | 2.3197847 |
Megophrys ligayae | 33.78802 | 74.3024761 | 0.1399633 | 2.6690659 |
Megophrys montana | 33.74090 | 58.0902578 | 0.1384977 | 2.1127014 |
Megophrys nasuta | 33.72021 | 51.5741343 | 0.1387367 | 1.8204753 |
Megophrys stejnegeri | 33.79993 | 65.8216805 | 0.1379905 | 2.3849119 |
Pelobates fuscus | 34.78530 | 6.2183795 | 0.1325109 | 0.3207071 |
Pelobates syriacus | 35.79125 | 10.2054024 | 0.1348433 | 0.4936942 |
Pelobates varaldii | 35.93296 | 12.4653301 | 0.1353471 | 0.5430791 |
Hadromophryne natalensis | 32.72321 | 28.9313748 | 0.1404905 | 1.2824623 |
Heleophryne hewitti | 33.22472 | 26.3944353 | 0.1402630 | 1.2319351 |
Heleophryne orientalis | 32.67351 | 22.4039345 | 0.1384791 | 1.0332410 |
Heleophryne purcelli | 32.62157 | 22.6918365 | 0.1401641 | 1.0772449 |
Heleophryne regis | 32.59569 | 24.4249365 | 0.1391650 | 1.1401547 |
Heleophryne rosei | 32.60900 | 21.4461660 | 0.1375451 | 1.0311061 |
Philoria pughi | 27.69165 | 11.9671506 | 0.1604626 | 0.5130614 |
Philoria kundagungan | 29.63839 | 14.6197818 | 0.1535130 | 0.6245505 |
Philoria richmondensis | 29.64601 | 13.3377824 | 0.1558264 | 0.5685179 |
Limnodynastes convexiusculus | 32.35353 | 23.8686671 | 0.1488531 | 0.8661003 |
Limnodynastes lignarius | 32.26443 | 24.4480834 | 0.1501117 | 0.8628967 |
Limnodynastes depressus | 31.19459 | 21.9130147 | 0.1538065 | 0.7749052 |
Limnodynastes terraereginae | 32.54637 | 11.4206330 | 0.1500380 | 0.4631590 |
Limnodynastes dumerilii | 32.18741 | 8.4670315 | 0.1509716 | 0.4116415 |
Limnodynastes interioris | 32.42892 | 8.2324402 | 0.1524721 | 0.3791103 |
Lechriodus aganoposis | 34.35927 | 29.1700112 | 0.1475754 | 1.0901542 |
Lechriodus melanopyga | 34.45023 | 28.8661310 | 0.1467782 | 1.0590147 |
Lechriodus fletcheri | 34.04257 | 15.6393674 | 0.1473670 | 0.6932693 |
Lechriodus platyceps | 33.96509 | 34.0754468 | 0.1480239 | 1.2607898 |
Platyplectrum spenceri | 33.40746 | 14.2093749 | 0.1515199 | 0.5807311 |
Heleioporus albopunctatus | 32.37199 | 12.0040163 | 0.1493112 | 0.5661891 |
Heleioporus barycragus | 32.33806 | 11.9844081 | 0.1516104 | 0.5784232 |
Heleioporus australiacus | 32.34015 | 12.8205797 | 0.1513701 | 0.6314620 |
Heleioporus eyrei | 32.25051 | 12.4352725 | 0.1527813 | 0.6025632 |
Heleioporus inornatus | 32.32602 | 13.8095495 | 0.1505766 | 0.6915094 |
Heleioporus psammophilus | 32.26480 | 12.4259655 | 0.1516708 | 0.5972637 |
Neobatrachus albipes | 31.10019 | 11.2896394 | 0.1504678 | 0.5452931 |
Neobatrachus kunapalari | 31.01728 | 11.7351232 | 0.1547836 | 0.5517201 |
Neobatrachus aquilonius | 30.62775 | 18.5798687 | 0.1533687 | 0.6889143 |
Neobatrachus wilsmorei | 30.65494 | 12.2406336 | 0.1559234 | 0.5295943 |
Neobatrachus sutor | 30.53298 | 11.6495753 | 0.1538431 | 0.5098417 |
Neobatrachus fulvus | 30.44474 | 14.4124799 | 0.1547219 | 0.5661810 |
Neobatrachus pelobatoides | 30.52877 | 10.3205250 | 0.1535438 | 0.4951488 |
Notaden bennettii | 31.73549 | 17.8219837 | 0.1491792 | 0.7517379 |
Notaden melanoscaphus | 31.61382 | 29.0421425 | 0.1522987 | 1.0457771 |
Notaden weigeli | 32.60758 | 40.6288688 | 0.1535004 | 1.4444641 |
Notaden nichollsi | 32.63629 | 18.6008861 | 0.1505233 | 0.7427969 |
Arenophryne rotunda | 33.31622 | 15.5554428 | 0.1540311 | 0.6380568 |
Metacrinia nichollsi | 32.29471 | 14.5255951 | 0.1517190 | 0.7565627 |
Myobatrachus gouldii | 33.19628 | 11.0000518 | 0.1543084 | 0.5298496 |
Pseudophryne australis | 33.60166 | 10.9525805 | 0.1493136 | 0.5130128 |
Pseudophryne occidentalis | 33.10970 | 7.7439600 | 0.1482636 | 0.3553619 |
Pseudophryne coriacea | 32.41650 | 15.0642645 | 0.1543406 | 0.6593069 |
Pseudophryne covacevichae | 32.46796 | 21.6110235 | 0.1521211 | 0.8537488 |
Pseudophryne guentheri | 31.69878 | 8.5264247 | 0.1539993 | 0.4036654 |
Pseudophryne douglasi | 32.14984 | 13.9390251 | 0.1528061 | 0.5467278 |
Pseudophryne pengilleyi | 31.85647 | 8.7296227 | 0.1490354 | 0.4459444 |
Pseudophryne raveni | 32.40062 | 18.1347742 | 0.1498878 | 0.7455906 |
Spicospina flammocaerulea | 32.15297 | 15.1190904 | 0.1505548 | 0.8037124 |
Uperoleia altissima | 31.78200 | 23.1376042 | 0.1521842 | 0.8820915 |
Uperoleia littlejohni | 31.79939 | 16.6765346 | 0.1525828 | 0.6450852 |
Uperoleia orientalis | 31.83026 | 20.8751943 | 0.1508560 | 0.7474626 |
Uperoleia arenicola | 31.84630 | 29.0884952 | 0.1509933 | 1.0189409 |
Uperoleia borealis | 31.82772 | 23.9350211 | 0.1487893 | 0.8599475 |
Uperoleia crassa | 32.03650 | 31.0180905 | 0.1527525 | 1.1034444 |
Uperoleia inundata | 31.83355 | 24.0381417 | 0.1496428 | 0.8542408 |
Uperoleia russelli | 31.81683 | 14.5465654 | 0.1520055 | 0.5872373 |
Uperoleia talpa | 31.81097 | 26.7083696 | 0.1537724 | 0.9618824 |
Uperoleia aspera | 31.77498 | 30.3771610 | 0.1537533 | 1.0811835 |
Uperoleia lithomoda | 31.67564 | 26.2819277 | 0.1534966 | 0.9522545 |
Uperoleia trachyderma | 31.74591 | 19.7776263 | 0.1537263 | 0.7329469 |
Uperoleia minima | 31.79944 | 33.0782808 | 0.1515336 | 1.1758473 |
Uperoleia glandulosa | 31.83369 | 21.6325614 | 0.1499340 | 0.8161732 |
Uperoleia martini | 31.77113 | 10.6982442 | 0.1521979 | 0.5549978 |
Uperoleia daviesae | 31.82712 | 38.9437971 | 0.1516260 | 1.3776027 |
Uperoleia micromeles | 31.74953 | 17.1681738 | 0.1522202 | 0.6763622 |
Uperoleia mjobergii | 31.70919 | 27.0721921 | 0.1517483 | 0.9694165 |
Uperoleia mimula | 31.68008 | 24.2400014 | 0.1527992 | 0.9022532 |
Uperoleia fusca | 31.35173 | 13.4350025 | 0.1517611 | 0.5690566 |
Uperoleia tyleri | 31.42461 | 9.7066516 | 0.1514492 | 0.4746902 |
Geocrinia alba | 31.51761 | 10.8359944 | 0.1537951 | 0.5367814 |
Geocrinia vitellina | 31.43975 | 10.5463470 | 0.1567875 | 0.5240363 |
Geocrinia lutea | 31.51082 | 10.8827361 | 0.1544337 | 0.5771489 |
Geocrinia rosea | 31.52655 | 10.9526634 | 0.1540623 | 0.5669283 |
Geocrinia leai | 31.37690 | 9.4163385 | 0.1569533 | 0.4752380 |
Paracrinia haswelli | 31.24775 | 12.8055676 | 0.1522302 | 0.6273890 |
Crinia bilingua | 32.77953 | 29.6140534 | 0.1489521 | 1.0560059 |
Crinia remota | 32.43576 | 24.1533024 | 0.1497294 | 0.8715714 |
Crinia deserticola | 32.56661 | 17.0087610 | 0.1488748 | 0.6567377 |
Crinia riparia | 32.02333 | 8.3494856 | 0.1497101 | 0.3841423 |
Crinia georgiana | 32.58088 | 9.7204239 | 0.1497837 | 0.4788702 |
Crinia glauerti | 32.53605 | 10.3260107 | 0.1504754 | 0.5196363 |
Crinia insignifera | 32.63942 | 9.8334136 | 0.1485666 | 0.4698144 |
Crinia pseudinsignifera | 32.61145 | 10.5620456 | 0.1502801 | 0.5131670 |
Crinia subinsignifera | 32.66954 | 10.8630909 | 0.1483391 | 0.5478036 |
Crinia sloanei | 32.60560 | 8.9569274 | 0.1495604 | 0.4088892 |
Crinia tinnula | 32.71089 | 15.7561273 | 0.1493139 | 0.6805636 |
Crinia nimbus | 32.26508 | 12.4373688 | 0.1506357 | 0.7599121 |
Crinia tasmaniensis | 32.41664 | 12.2366758 | 0.1518395 | 0.7322987 |
Taudactylus eungellensis | 31.19975 | 23.4810043 | 0.1510491 | 0.9144386 |
Taudactylus liemi | 32.00694 | 25.7240806 | 0.1499512 | 1.0011667 |
Taudactylus pleione | 31.86168 | 26.7184909 | 0.1529868 | 1.0910354 |
Mixophyes balbus | 29.35625 | 13.8348850 | 0.1518678 | 0.6444908 |
Mixophyes carbinensis | 29.36536 | 21.0044950 | 0.1509324 | 0.7784203 |
Mixophyes coggeri | 30.04161 | 22.8207545 | 0.1488278 | 0.8786322 |
Mixophyes schevilli | 29.40297 | 23.4680501 | 0.1507254 | 0.8923012 |
Mixophyes fleayi | 30.29478 | 15.9432889 | 0.1494814 | 0.6706036 |
Mixophyes iteratus | 29.10621 | 12.4540379 | 0.1497982 | 0.5493268 |
Mixophyes hihihorlo | 30.17006 | 28.6242781 | 0.1491986 | 1.0335515 |
Calyptocephalella gayi | 32.76931 | 14.7221429 | 0.1462785 | 0.7967895 |
Telmatobufo bullocki | 31.98411 | 14.1526123 | 0.1452695 | 0.7674661 |
Telmatobufo venustus | 31.99194 | 9.1192573 | 0.1440762 | 0.5333209 |
Telmatobufo australis | 31.96365 | 12.1565166 | 0.1447255 | 0.7215533 |
Adelphobates castaneoticus | 32.52613 | 36.1813040 | 0.1402239 | 1.2919694 |
Adelphobates galactonotus | 32.47708 | 33.7224730 | 0.1368818 | 1.1963524 |
Adelphobates quinquevittatus | 32.58536 | 28.4517348 | 0.1393846 | 0.9894034 |
Dendrobates truncatus | 32.42408 | 26.4903727 | 0.1378890 | 1.0142341 |
Dendrobates leucomelas | 32.48789 | 29.2550526 | 0.1392458 | 1.0812849 |
Dendrobates tinctorius | 32.46923 | 37.2939006 | 0.1376621 | 1.3486844 |
Dendrobates nubeculosus | 32.50448 | 32.9262360 | 0.1377873 | 1.2068040 |
Oophaga vicentei | 30.26714 | 30.6700789 | 0.1383846 | 1.1237145 |
Oophaga sylvatica | 30.54779 | 19.0218053 | 0.1438852 | 0.7778117 |
Oophaga occultator | 30.53470 | 31.9804239 | 0.1408268 | 1.2398687 |
Oophaga granulifera | 31.12353 | 31.8299402 | 0.1378314 | 1.2442999 |
Minyobates steyermarki | 32.61545 | 39.2672480 | 0.1390488 | 1.4237931 |
Andinobates altobueyensis | 33.72299 | 37.4918290 | 0.1351327 | 1.3996815 |
Andinobates bombetes | 33.74252 | 28.5473072 | 0.1355131 | 1.2089969 |
Andinobates tolimensis | 33.74935 | 27.9742724 | 0.1359374 | 1.2006972 |
Andinobates virolinensis | 33.77799 | 27.7756904 | 0.1338104 | 1.1522526 |
Andinobates opisthomelas | 33.76416 | 29.0123210 | 0.1357596 | 1.1677202 |
Andinobates claudiae | 33.68838 | 47.2376309 | 0.1350841 | 1.6904020 |
Andinobates minutus | 33.69177 | 36.7844063 | 0.1344143 | 1.3805425 |
Andinobates daleswansoni | 33.62908 | 31.5632974 | 0.1353506 | 1.2999933 |
Andinobates dorisswansonae | 33.66541 | 26.6303296 | 0.1378532 | 1.1379820 |
Andinobates fulguritus | 33.78161 | 34.7686361 | 0.1348176 | 1.3191034 |
Ranitomeya amazonica | 33.78390 | 39.7270745 | 0.1354979 | 1.4153124 |
Ranitomeya benedicta | 33.89813 | 34.0788905 | 0.1383006 | 1.3319340 |
Ranitomeya fantastica | 33.73414 | 31.0857315 | 0.1365724 | 1.2575145 |
Ranitomeya summersi | 33.90463 | 31.0333776 | 0.1350343 | 1.2801409 |
Ranitomeya reticulata | 33.84225 | 33.0822752 | 0.1377052 | 1.2054635 |
Ranitomeya uakarii | 33.87888 | 34.9870390 | 0.1376079 | 1.3755078 |
Ranitomeya ventrimaculata | 33.77968 | 33.5256195 | 0.1349195 | 1.1922524 |
Ranitomeya variabilis | 33.71469 | 33.1081470 | 0.1341630 | 1.3488828 |
Ranitomeya flavovittata | 33.91502 | 35.8995826 | 0.1377562 | 1.2476003 |
Ranitomeya vanzolinii | 33.93441 | 36.8734658 | 0.1348969 | 1.4701167 |
Ranitomeya imitator | 33.89377 | 31.6275362 | 0.1359649 | 1.2526171 |
Excidobates captivus | 32.85541 | 26.0343979 | 0.1361899 | 1.0413917 |
Excidobates mysteriosus | 33.27632 | 23.9906007 | 0.1367837 | 1.0664900 |
Phyllobates aurotaenia | 33.29188 | 35.3212504 | 0.1359551 | 1.3679706 |
Phyllobates terribilis | 33.22713 | 45.3210922 | 0.1405636 | 1.7391777 |
Phyllobates bicolor | 33.24539 | 34.8568964 | 0.1362698 | 1.3891290 |
Phyllobates lugubris | 33.28640 | 38.5869785 | 0.1380274 | 1.4534538 |
Phyllobates vittatus | 32.67858 | 35.1176553 | 0.1373579 | 1.4651826 |
Hyloxalus aeruginosus | 32.88447 | 17.3208947 | 0.1355863 | 0.8341770 |
Hyloxalus anthracinus | 33.44920 | 13.7972765 | 0.1344972 | 0.6632808 |
Hyloxalus awa | 33.73935 | 18.4578842 | 0.1348008 | 0.7657477 |
Hyloxalus azureiventris | 33.51428 | 39.1737496 | 0.1368601 | 1.5926116 |
Hyloxalus chlorocraspedus | 33.36944 | 45.4999126 | 0.1347488 | 1.7416094 |
Hyloxalus betancuri | 32.92791 | 33.5409047 | 0.1336273 | 1.2950190 |
Hyloxalus sauli | 34.26132 | 27.2638700 | 0.1346090 | 1.0921539 |
Hyloxalus borjai | 32.87161 | 20.7785305 | 0.1369718 | 0.9345060 |
Hyloxalus breviquartus | 33.44001 | 27.0239026 | 0.1381076 | 1.1258202 |
Hyloxalus cevallosi | 33.45757 | 31.3635620 | 0.1352806 | 1.2250502 |
Hyloxalus chocoensis | 33.51592 | 35.7929579 | 0.1386592 | 1.3943264 |
Hyloxalus craspedoceps | 32.78090 | 38.4549169 | 0.1390802 | 1.5853893 |
Hyloxalus delatorreae | 32.79924 | 15.5075229 | 0.1379498 | 0.7448741 |
Hyloxalus eleutherodactylus | 32.91183 | 32.7878873 | 0.1361076 | 1.3503679 |
Hyloxalus exasperatus | 33.56451 | 17.1734054 | 0.1398111 | 0.7385697 |
Hyloxalus excisus | 33.72016 | 19.2168759 | 0.1394473 | 0.8651671 |
Hyloxalus faciopunctulatus | 33.58320 | 32.6792442 | 0.1354138 | 1.1135162 |
Hyloxalus fallax | 33.55962 | 21.1488936 | 0.1362522 | 0.8370777 |
Hyloxalus fascianigrus | 33.54709 | 37.1862424 | 0.1375833 | 1.4875269 |
Hyloxalus fuliginosus | 32.92748 | 26.2851398 | 0.1361410 | 1.0989847 |
Hyloxalus idiomelus | 32.97973 | 22.6459608 | 0.1353557 | 1.0449470 |
Hyloxalus infraguttatus | 33.56885 | 22.1264116 | 0.1386883 | 0.8974516 |
Hyloxalus insulatus | 32.86588 | 28.2024622 | 0.1391123 | 1.2586345 |
Hyloxalus lehmanni | 33.50826 | 24.2647789 | 0.1358353 | 1.0137610 |
Hyloxalus leucophaeus | 32.88466 | 34.9192710 | 0.1359714 | 1.5380019 |
Hyloxalus sordidatus | 32.85322 | 26.8518080 | 0.1364656 | 1.1706166 |
Hyloxalus littoralis | 33.69823 | 22.7715883 | 0.1341245 | 1.0674036 |
Hyloxalus mittermeieri | 32.86751 | 18.3390159 | 0.1356726 | 0.8838066 |
Hyloxalus mystax | 32.94556 | 22.5022294 | 0.1345663 | 0.8691843 |
Hyloxalus parcus | 32.94214 | 25.8092178 | 0.1362618 | 1.0306515 |
Hyloxalus patitae | 32.97769 | 34.7551374 | 0.1351327 | 1.5220865 |
Hyloxalus pinguis | 33.49766 | 19.1406890 | 0.1368205 | 0.8330088 |
Hyloxalus pulcherrimus | 32.80928 | 29.7700687 | 0.1353310 | 1.3987920 |
Hyloxalus pumilus | 32.89017 | 24.0094358 | 0.1365543 | 0.9245605 |
Hyloxalus ramosi | 33.57896 | 26.9553099 | 0.1353423 | 1.1245699 |
Hyloxalus ruizi | 33.51852 | 34.8803119 | 0.1358944 | 1.3940887 |
Hyloxalus saltuarius | 33.64360 | 35.8122904 | 0.1363967 | 1.4025206 |
Hyloxalus shuar | 33.54267 | 21.5212515 | 0.1374808 | 0.8951507 |
Hyloxalus spilotogaster | 33.46263 | 33.3934108 | 0.1368163 | 1.3767363 |
Hyloxalus subpunctatus | 33.53203 | 23.1102447 | 0.1354184 | 0.9907767 |
Hyloxalus sylvaticus | 32.90927 | 26.4503827 | 0.1349136 | 1.1546945 |
Hyloxalus utcubambensis | 33.47217 | 29.4980305 | 0.1362998 | 1.3405240 |
Hyloxalus vergeli | 33.72176 | 25.1586088 | 0.1341527 | 1.0928979 |
Ameerega rubriventris | 34.59820 | 26.3664665 | 0.1370407 | 1.1074835 |
Ameerega macero | 34.61553 | 29.1808011 | 0.1368733 | 1.2527233 |
Ameerega bassleri | 34.57498 | 25.8930758 | 0.1361887 | 1.0867761 |
Ameerega berohoka | 34.65675 | 20.5629344 | 0.1363197 | 0.7345843 |
Ameerega bilinguis | 34.53437 | 27.5580583 | 0.1399388 | 1.0307112 |
Ameerega boliviana | 34.65901 | 24.6615822 | 0.1356918 | 1.2201354 |
Ameerega braccata | 34.64154 | 20.0774675 | 0.1363617 | 0.7097286 |
Ameerega flavopicta | 33.96110 | 20.0249381 | 0.1394184 | 0.7398230 |
Ameerega cainarachi | 34.03474 | 35.0258522 | 0.1383833 | 1.4261403 |
Ameerega smaragdina | 34.65465 | 19.1996550 | 0.1368532 | 0.9009666 |
Ameerega petersi | 34.66901 | 29.7345429 | 0.1368408 | 1.2081427 |
Ameerega picta | 34.73957 | 26.1353157 | 0.1366663 | 0.9427087 |
Ameerega parvula | 34.57977 | 23.4424896 | 0.1372731 | 0.8822664 |
Ameerega pongoensis | 33.97379 | 31.6360501 | 0.1370110 | 1.2628236 |
Ameerega planipaleae | 34.00338 | 21.5670122 | 0.1380433 | 1.0112024 |
Ameerega pulchripecta | 34.72921 | 33.4704257 | 0.1356517 | 1.2176432 |
Ameerega simulans | 34.62826 | 22.1349629 | 0.1373729 | 1.0706564 |
Ameerega yungicola | 34.62929 | 21.6211909 | 0.1359788 | 1.0653661 |
Ameerega silverstonei | 34.57702 | 25.8740114 | 0.1339299 | 1.0744732 |
Colostethus agilis | 32.98323 | 32.2956214 | 0.1403433 | 1.3189626 |
Colostethus furviventris | 33.75576 | 34.5217784 | 0.1377337 | 1.3334067 |
Colostethus imbricolus | 33.20036 | 35.3457327 | 0.1334167 | 1.3448445 |
Colostethus inguinalis | 33.09863 | 40.2171572 | 0.1358856 | 1.5337214 |
Colostethus panamansis | 33.14070 | 42.8937930 | 0.1372789 | 1.5726646 |
Colostethus latinasus | 32.96207 | 36.2261494 | 0.1391362 | 1.3725631 |
Colostethus pratti | 33.67024 | 38.9514393 | 0.1375539 | 1.4333078 |
Colostethus lynchi | 33.08869 | 35.9663968 | 0.1380635 | 1.3776673 |
Colostethus mertensi | 33.06853 | 26.7698547 | 0.1367887 | 1.1678677 |
Colostethus poecilonotus | 33.03304 | 16.4232350 | 0.1371164 | 0.7916649 |
Colostethus ruthveni | 33.70730 | 34.3601505 | 0.1358534 | 1.2725743 |
Colostethus thorntoni | 33.02103 | 24.7185552 | 0.1402223 | 1.0408692 |
Colostethus ucumari | 33.00472 | 24.8346556 | 0.1379107 | 1.1622410 |
Epipedobates narinensis | 34.84432 | 22.4734439 | 0.1366026 | 0.8757235 |
Silverstoneia erasmios | 34.38519 | 29.1215527 | 0.1370932 | 1.1585587 |
Silverstoneia flotator | 34.41038 | 36.1465423 | 0.1338417 | 1.3458640 |
Silverstoneia nubicola | 34.39444 | 34.3638034 | 0.1373756 | 1.2938899 |
Allobates algorei | 33.65820 | 28.7828507 | 0.1365996 | 1.1613770 |
Allobates bromelicola | 33.70228 | 36.2212973 | 0.1373332 | 1.3377345 |
Allobates brunneus | 33.67760 | 37.9391900 | 0.1382943 | 1.3368926 |
Allobates crombiei | 33.60929 | 33.6139521 | 0.1359963 | 1.1902323 |
Allobates caeruleodactylus | 33.65102 | 34.2627246 | 0.1392536 | 1.1870453 |
Allobates caribe | 33.67935 | 36.0741967 | 0.1371425 | 1.3275728 |
Allobates chalcopis | 33.74600 | 61.7018424 | 0.1387882 | 2.2585003 |
Allobates subfolionidificans | 33.19891 | 25.0578808 | 0.1395969 | 0.8440346 |
Allobates fratisenescus | 33.59855 | 25.4231596 | 0.1381588 | 1.0366765 |
Allobates fuscellus | 33.70404 | 39.6486664 | 0.1372967 | 1.3617814 |
Allobates gasconi | 33.59142 | 38.3169771 | 0.1385248 | 1.3320341 |
Allobates marchesianus | 33.71287 | 35.1901202 | 0.1381992 | 1.2393532 |
Allobates goianus | 33.68852 | 22.8414266 | 0.1367623 | 0.8592085 |
Allobates granti | 33.72422 | 32.5636250 | 0.1348581 | 1.1788464 |
Allobates ornatus | 33.71208 | 32.4187514 | 0.1376664 | 1.3350540 |
Allobates humilis | 33.62512 | 30.6596059 | 0.1359526 | 1.1387514 |
Allobates pittieri | 33.58396 | 33.9030047 | 0.1379413 | 1.2764535 |
Allobates juanii | 33.66919 | 23.2146337 | 0.1363787 | 0.9895292 |
Allobates kingsburyi | 33.69581 | 17.3527637 | 0.1374319 | 0.7566010 |
Allobates mandelorum | 33.73795 | 33.5503278 | 0.1373906 | 1.2300933 |
Allobates masniger | 33.69967 | 34.8191948 | 0.1386886 | 1.2396106 |
Allobates nidicola | 33.64438 | 36.6173366 | 0.1378529 | 1.2698077 |
Allobates melanolaemus | 33.70482 | 36.4543937 | 0.1351298 | 1.2485196 |
Allobates myersi | 33.70175 | 34.6849773 | 0.1383265 | 1.2183960 |
Allobates niputidea | 33.74472 | 35.1443041 | 0.1366388 | 1.3282701 |
Allobates olfersioides | 33.58313 | 28.3215737 | 0.1339898 | 1.1080785 |
Allobates paleovarzensis | 33.73724 | 36.8205823 | 0.1370984 | 1.2819757 |
Allobates sumtuosus | 33.66843 | 40.3322501 | 0.1381805 | 1.4550645 |
Allobates sanmartini | 33.80081 | 32.1083281 | 0.1378941 | 1.1978523 |
Allobates talamancae | 33.72983 | 36.9136044 | 0.1346086 | 1.4030861 |
Allobates vanzolinius | 33.68322 | 36.4672444 | 0.1386580 | 1.2462144 |
Allobates wayuu | 33.64701 | 56.1377579 | 0.1371744 | 2.0825195 |
Allobates undulatus | 33.62688 | 46.4785206 | 0.1364640 | 1.7226095 |
Anomaloglossus ayarzaguenai | 32.96299 | 34.9645722 | 0.1384420 | 1.3644080 |
Anomaloglossus baeobatrachus | 33.58032 | 41.9630904 | 0.1408243 | 1.5106107 |
Anomaloglossus beebei | 33.45546 | 36.7356277 | 0.1379128 | 1.3650473 |
Anomaloglossus roraima | 33.64667 | 38.8849901 | 0.1384749 | 1.4583680 |
Anomaloglossus breweri | 33.90377 | 33.2930336 | 0.1376062 | 1.2805951 |
Anomaloglossus degranvillei | 33.03986 | 38.8496724 | 0.1397113 | 1.3906826 |
Anomaloglossus kaiei | 33.72206 | 41.0197805 | 0.1373245 | 1.5229920 |
Anomaloglossus guanayensis | 33.07008 | 47.6581294 | 0.1378408 | 1.7654450 |
Anomaloglossus murisipanensis | 33.61705 | 34.9814360 | 0.1390968 | 1.3452970 |
Anomaloglossus parimae | 33.04270 | 44.3158123 | 0.1393886 | 1.6893535 |
Anomaloglossus parkerae | 33.61086 | 30.1454516 | 0.1379784 | 1.1675979 |
Anomaloglossus praderioi | 33.69341 | 37.9515900 | 0.1391931 | 1.4230273 |
Anomaloglossus rufulus | 33.65602 | 31.1114246 | 0.1378569 | 1.2130326 |
Anomaloglossus shrevei | 33.00643 | 40.6024836 | 0.1394350 | 1.5653484 |
Anomaloglossus stepheni | 33.76292 | 38.4621572 | 0.1367262 | 1.3412255 |
Anomaloglossus tamacuarensis | 33.06206 | 40.3179431 | 0.1374799 | 1.4782996 |
Anomaloglossus tepuyensis | 33.05474 | 34.1356820 | 0.1372437 | 1.3012949 |
Anomaloglossus triunfo | 33.04239 | 32.9709488 | 0.1369343 | 1.2517303 |
Anomaloglossus wothuja | 33.06022 | 48.6278002 | 0.1365632 | 1.7418673 |
Rheobates palmatus | 32.93729 | 31.5921645 | 0.1358024 | 1.3116345 |
Rheobates pseudopalmatus | 32.94280 | 36.6635765 | 0.1385402 | 1.4556184 |
Aromobates saltuensis | 33.01299 | 28.4500143 | 0.1371021 | 1.1459923 |
Aromobates capurinensis | 33.07791 | 38.0171955 | 0.1400838 | 1.4809026 |
Aromobates duranti | 33.07278 | 33.5953860 | 0.1373818 | 1.3073589 |
Aromobates mayorgai | 33.05274 | 33.1650909 | 0.1374297 | 1.2568228 |
Aromobates meridensis | 33.11573 | 32.7026662 | 0.1379369 | 1.2735632 |
Aromobates molinarii | 33.00182 | 35.3778619 | 0.1385730 | 1.3746095 |
Aromobates orostoma | 33.09727 | 33.0470968 | 0.1372046 | 1.2845250 |
Mannophryne caquetio | 32.99925 | 39.0799171 | 0.1380198 | 1.4658980 |
Mannophryne collaris | 33.08048 | 35.9486989 | 0.1358510 | 1.3968582 |
Mannophryne herminae | 32.96209 | 36.8119392 | 0.1366669 | 1.3643826 |
Mannophryne larandina | 33.67018 | 37.3420901 | 0.1361121 | 1.3906161 |
Mannophryne yustizi | 32.94941 | 33.5949455 | 0.1363210 | 1.3191484 |
Mannophryne lamarcai | 33.01195 | 36.1367653 | 0.1389959 | 1.3577055 |
Mannophryne cordilleriana | 33.00906 | 38.4963817 | 0.1376541 | 1.4268097 |
Mannophryne leonardoi | 32.98762 | 34.4632631 | 0.1357195 | 1.2724384 |
Mannophryne trinitatis | 33.10309 | 68.5730452 | 0.1368626 | 2.5951802 |
Mannophryne venezuelensis | 33.05261 | 44.9465678 | 0.1366131 | 1.6737233 |
Mannophryne neblina | 32.96258 | 42.6625980 | 0.1382336 | 1.5722287 |
Mannophryne oblitterata | 33.03643 | 34.5609619 | 0.1380946 | 1.3008446 |
Mannophryne olmonae | 33.08333 | 94.1369510 | 0.1353728 | 3.5264366 |
Mannophryne riveroi | 33.10264 | 47.0149977 | 0.1365858 | 1.7623233 |
Mannophryne speeri | 32.97910 | 30.2461490 | 0.1387428 | 1.1852763 |
Mannophryne trujillensis | 32.98150 | 35.9921985 | 0.1371511 | 1.3368640 |
Cryptobatrachus boulengeri | 33.66676 | 35.1850233 | 0.1366205 | 1.2939343 |
Cryptobatrachus fuhrmanni | 33.74201 | 33.0727893 | 0.1333313 | 1.3580929 |
Hemiphractus bubalus | 34.22827 | 31.9441306 | 0.1314969 | 1.3087934 |
Hemiphractus proboscideus | 34.17918 | 39.4040026 | 0.1324877 | 1.4392726 |
Hemiphractus fasciatus | 34.28512 | 32.9351096 | 0.1334216 | 1.3221244 |
Hemiphractus johnsoni | 34.21444 | 27.1404067 | 0.1317994 | 1.1973924 |
Hemiphractus scutatus | 34.16400 | 38.7997576 | 0.1318557 | 1.4503625 |
Hemiphractus helioi | 34.26844 | 36.2863111 | 0.1330162 | 1.6028138 |
Flectonotus fitzgeraldi | 34.10088 | 57.3206503 | 0.1306492 | 2.1409662 |
Flectonotus pygmaeus | 34.08095 | 40.4822672 | 0.1339550 | 1.5550654 |
Stefania ackawaio | 34.08386 | 41.6758147 | 0.1331532 | 1.5532746 |
Stefania marahuaquensis | 34.23736 | 35.6804466 | 0.1338820 | 1.3764149 |
Stefania ayangannae | 34.03543 | 37.6539858 | 0.1316300 | 1.3993803 |
Stefania coxi | 34.12350 | 39.1022307 | 0.1325371 | 1.4546663 |
Stefania riveroi | 34.23898 | 40.8558366 | 0.1309428 | 1.5358726 |
Stefania riae | 34.13665 | 35.0839663 | 0.1329381 | 1.3608106 |
Stefania oculosa | 34.19814 | 33.4799752 | 0.1337005 | 1.3082664 |
Stefania breweri | 34.21609 | 45.3449456 | 0.1317543 | 1.5980490 |
Stefania goini | 34.32170 | 37.2852913 | 0.1350790 | 1.4336905 |
Stefania evansi | 33.61997 | 40.6906276 | 0.1333057 | 1.5000317 |
Stefania scalae | 33.63136 | 36.1344093 | 0.1318275 | 1.3766776 |
Stefania tamacuarina | 33.67274 | 44.9054728 | 0.1320995 | 1.6405485 |
Stefania roraimae | 34.18611 | 40.0808836 | 0.1352937 | 1.5034286 |
Stefania woodleyi | 33.62505 | 44.1753280 | 0.1345090 | 1.6278114 |
Stefania percristata | 34.06346 | 35.2645697 | 0.1340645 | 1.3731597 |
Stefania schuberti | 34.21739 | 31.8872184 | 0.1346255 | 1.2227231 |
Stefania ginesi | 34.17710 | 32.4808825 | 0.1332191 | 1.2676907 |
Stefania satelles | 34.25686 | 30.7628802 | 0.1327621 | 1.1941754 |
Fritziana fissilis | 34.16099 | 25.4290431 | 0.1313816 | 0.9789718 |
Fritziana ohausi | 34.28470 | 26.4650978 | 0.1291585 | 1.0219132 |
Fritziana goeldii | 34.14857 | 24.7268690 | 0.1342002 | 0.9517192 |
Gastrotheca abdita | 34.51552 | 34.6545764 | 0.1299871 | 1.4288581 |
Gastrotheca andaquiensis | 34.56584 | 23.5809943 | 0.1281272 | 0.9898232 |
Gastrotheca albolineata | 34.57962 | 25.6352730 | 0.1298539 | 0.9873758 |
Gastrotheca ernestoi | 34.66122 | 24.3174161 | 0.1312579 | 0.9276907 |
Gastrotheca fulvorufa | 34.49178 | 29.4431550 | 0.1312102 | 1.1429041 |
Gastrotheca microdiscus | 34.60941 | 25.5402561 | 0.1309193 | 0.9953408 |
Gastrotheca bufona | 34.67515 | 27.0417716 | 0.1291942 | 1.1087082 |
Gastrotheca orophylax | 34.67111 | 17.0220437 | 0.1321581 | 0.7419172 |
Gastrotheca plumbea | 34.74530 | 13.4528106 | 0.1307451 | 0.5776861 |
Gastrotheca monticola | 34.61704 | 21.1744789 | 0.1300415 | 0.9649301 |
Gastrotheca antoniiochoai | 34.09274 | 5.7276409 | 0.1287888 | 0.3883122 |
Gastrotheca excubitor | 34.52338 | 8.7065442 | 0.1293675 | 0.4998297 |
Gastrotheca ochoai | 34.55610 | 6.7128728 | 0.1276579 | 0.4095321 |
Gastrotheca rebeccae | 34.57305 | 10.5338478 | 0.1300334 | 0.6137367 |
Gastrotheca christiani | 34.47775 | 11.6920974 | 0.1300104 | 0.5061076 |
Gastrotheca lauzuricae | 34.52446 | 10.5371604 | 0.1276594 | 0.7249293 |
Gastrotheca chrysosticta | 34.50692 | 13.7222597 | 0.1285002 | 0.6038999 |
Gastrotheca gracilis | 34.56504 | 10.8165197 | 0.1283245 | 0.5145499 |
Gastrotheca griswoldi | 34.64950 | 15.2889359 | 0.1289115 | 0.8658442 |
Gastrotheca marsupiata | 34.62355 | 11.2556627 | 0.1252733 | 0.6542410 |
Gastrotheca peruana | 34.65060 | 12.9704776 | 0.1309823 | 0.6725602 |
Gastrotheca zeugocystis | 34.71925 | 7.7139149 | 0.1295110 | 0.4890067 |
Gastrotheca argenteovirens | 34.50982 | 23.3043458 | 0.1310027 | 0.9621841 |
Gastrotheca trachyceps | 35.03534 | 15.1678023 | 0.1278924 | 0.6588496 |
Gastrotheca aureomaculata | 35.03696 | 20.8021639 | 0.1300020 | 0.8638971 |
Gastrotheca ruizi | 34.94694 | 23.1779787 | 0.1307120 | 0.9464769 |
Gastrotheca dunni | 34.97256 | 15.2805881 | 0.1294114 | 0.6839024 |
Gastrotheca nicefori | 34.97905 | 23.6373251 | 0.1286049 | 0.9487338 |
Gastrotheca ovifera | 34.85726 | 32.2830048 | 0.1299070 | 1.2048624 |
Gastrotheca phalarosa | 34.95434 | 25.6549950 | 0.1275888 | 1.1265608 |
Gastrotheca atympana | 34.73194 | 20.7954446 | 0.1316460 | 1.0842008 |
Gastrotheca testudinea | 34.69487 | 22.7867574 | 0.1341781 | 1.0865989 |
Gastrotheca pacchamama | 34.82379 | 16.1404324 | 0.1332817 | 0.9029973 |
Gastrotheca carinaceps | 34.55792 | 23.9112349 | 0.1318031 | 1.1215633 |
Gastrotheca cornuta | 34.58276 | 29.4483830 | 0.1319376 | 1.1470594 |
Gastrotheca dendronastes | 34.60016 | 32.7404202 | 0.1303671 | 1.3235572 |
Gastrotheca helenae | 34.72906 | 20.7255119 | 0.1305414 | 0.9227873 |
Gastrotheca longipes | 34.72895 | 27.3742739 | 0.1304180 | 1.1128383 |
Gastrotheca guentheri | 34.66014 | 30.7428117 | 0.1284365 | 1.2183656 |
Gastrotheca weinlandii | 34.61154 | 24.2510485 | 0.1304663 | 0.9991158 |
Gastrotheca flamma | 34.59701 | 26.6631112 | 0.1297532 | 1.0583976 |
Gastrotheca walkeri | 34.52942 | 32.5493440 | 0.1318676 | 1.2174994 |
Gastrotheca espeletia | 34.62116 | 28.3031275 | 0.1294402 | 1.1932873 |
Gastrotheca galeata | 34.78753 | 28.2192200 | 0.1298139 | 1.2341526 |
Gastrotheca ossilaginis | 34.60371 | 35.4511880 | 0.1289539 | 1.5601059 |
Gastrotheca piperata | 34.62996 | 22.7151537 | 0.1314472 | 1.2239941 |
Gastrotheca psychrophila | 34.76084 | 20.4800341 | 0.1296127 | 0.9040243 |
Gastrotheca stictopleura | 34.55268 | 20.3249337 | 0.1314575 | 1.0048639 |
Gastrotheca splendens | 34.49187 | 29.5261524 | 0.1327770 | 1.3090819 |
Gastrotheca williamsoni | 34.22110 | 37.1849974 | 0.1267121 | 1.3805588 |
Gastrotheca fissipes | 34.59296 | 30.2933894 | 0.1305928 | 1.1902523 |
Ceuthomantis aracamuni | 32.97257 | 43.1753157 | 0.1336323 | 1.5898698 |
Ceuthomantis cavernibardus | 33.38327 | 45.3885499 | 0.1373008 | 1.6606742 |
Ceuthomantis duellmani | 33.40053 | 38.8911786 | 0.1381000 | 1.5143239 |
Brachycephalus alipioi | 33.30038 | 35.6460847 | 0.1378796 | 1.3754189 |
Brachycephalus hermogenesi | 33.33264 | 21.9299348 | 0.1369150 | 0.8396983 |
Brachycephalus nodoterga | 33.32197 | 21.9903606 | 0.1366643 | 0.8398567 |
Brachycephalus vertebralis | 33.30704 | 26.6640836 | 0.1382490 | 1.0291822 |
Brachycephalus ephippium | 33.28044 | 33.5853700 | 0.1354015 | 1.3091142 |
Brachycephalus brunneus | 33.29685 | 17.9410911 | 0.1379066 | 0.7441361 |
Brachycephalus izecksohni | 33.28797 | 19.0624504 | 0.1368802 | 0.7746389 |
Brachycephalus ferruginus | 33.34646 | 19.0020529 | 0.1348666 | 0.7849402 |
Brachycephalus pernix | 33.33639 | 17.6287230 | 0.1364256 | 0.7307519 |
Brachycephalus pombali | 33.35256 | 18.4599459 | 0.1364535 | 0.7654852 |
Brachycephalus didactylus | 33.30648 | 29.5435096 | 0.1368015 | 1.1383836 |
Ischnocnema bolbodactyla | 33.30903 | 24.1973731 | 0.1373578 | 0.9335292 |
Ischnocnema octavioi | 33.29301 | 28.3181084 | 0.1358354 | 1.0834051 |
Ischnocnema verrucosa | 33.21203 | 29.0420044 | 0.1385755 | 1.1257596 |
Ischnocnema juipoca | 33.23612 | 25.4961078 | 0.1357755 | 0.9767278 |
Ischnocnema spanios | 33.26558 | 23.4379964 | 0.1386399 | 0.9334098 |
Ischnocnema holti | 33.25279 | 25.8471110 | 0.1378891 | 0.9674667 |
Ischnocnema lactea | 33.22066 | 23.7263086 | 0.1389881 | 0.9122168 |
Ischnocnema epipeda | 33.26854 | 38.6397859 | 0.1369340 | 1.4982539 |
Ischnocnema erythromera | 33.36710 | 27.7880672 | 0.1369651 | 1.0448100 |
Ischnocnema guentheri | 33.40207 | 23.3775271 | 0.1363155 | 0.9032156 |
Ischnocnema henselii | 33.39599 | 20.3412054 | 0.1359400 | 0.7974926 |
Ischnocnema izecksohni | 33.31401 | 21.9277052 | 0.1363505 | 0.8676826 |
Ischnocnema nasuta | 33.14609 | 27.7318004 | 0.1349741 | 1.0733742 |
Ischnocnema oea | 33.38717 | 33.7076064 | 0.1370350 | 1.3066510 |
Ischnocnema gehrti | 33.33749 | 19.4576635 | 0.1361501 | 0.7551562 |
Ischnocnema gualteri | 33.35102 | 29.8814599 | 0.1379621 | 1.1247292 |
Ischnocnema hoehnei | 33.22889 | 25.0216474 | 0.1382141 | 0.9681161 |
Ischnocnema venancioi | 33.30172 | 28.7115378 | 0.1376060 | 1.0880819 |
Ischnocnema parva | 33.13100 | 30.8469202 | 0.1387158 | 1.1806635 |
Ischnocnema sambaqui | 33.32814 | 18.4136921 | 0.1379980 | 0.7632770 |
Ischnocnema manezinho | 33.32807 | 18.4417656 | 0.1380127 | 0.7467580 |
Ischnocnema nigriventris | 33.23786 | 19.7955615 | 0.1384111 | 0.7674988 |
Ischnocnema paranaensis | 33.24821 | 17.9959975 | 0.1353770 | 0.7476307 |
Ischnocnema penaxavantinho | 33.22492 | 23.5917040 | 0.1380943 | 0.9004356 |
Ischnocnema pusilla | 33.29682 | 26.1145356 | 0.1364954 | 1.0072161 |
Ischnocnema randorum | 33.34734 | 27.3671130 | 0.1390678 | 1.1145228 |
Adelophryne adiastola | 33.51711 | 41.0170086 | 0.1394791 | 1.4183359 |
Adelophryne gutturosa | 33.40044 | 47.6839116 | 0.1373160 | 1.7410893 |
Adelophryne patamona | 33.53229 | 40.6185118 | 0.1376247 | 1.5080327 |
Adelophryne baturitensis | 33.65920 | 38.6176856 | 0.1369892 | 1.4646804 |
Adelophryne maranguapensis | 33.69841 | 36.8580353 | 0.1366468 | 1.3810891 |
Adelophryne pachydactyla | 33.50738 | 31.1655777 | 0.1386930 | 1.2392251 |
Phyzelaphryne miriamae | 33.55165 | 41.0660959 | 0.1343612 | 1.4202560 |
Diasporus anthrax | 33.67504 | 33.7682123 | 0.1396770 | 1.3826545 |
Diasporus diastema | 33.70274 | 41.6231071 | 0.1383534 | 1.5414118 |
Diasporus hylaeformis | 33.74170 | 36.9207273 | 0.1370314 | 1.4151089 |
Diasporus quidditus | 33.72092 | 45.0857364 | 0.1390029 | 1.6991083 |
Diasporus gularis | 33.77150 | 30.8193147 | 0.1377158 | 1.2143280 |
Diasporus tigrillo | 33.77030 | 22.6838548 | 0.1375616 | 1.3273238 |
Diasporus tinker | 33.71304 | 37.5128454 | 0.1380057 | 1.4460792 |
Diasporus ventrimaculatus | 33.78389 | 32.4957492 | 0.1372176 | 1.4420366 |
Diasporus vocator | 33.93977 | 46.1882315 | 0.1356614 | 1.7785940 |
Eleutherodactylus abbotti | 34.19560 | 76.6903959 | 0.1365821 | 2.7889798 |
Eleutherodactylus audanti | 34.16644 | 77.1753849 | 0.1375711 | 2.7867941 |
Eleutherodactylus parabates | 34.09474 | 88.5348797 | 0.1393630 | 3.2397076 |
Eleutherodactylus haitianus | 34.13218 | 70.9711829 | 0.1395964 | 2.6212815 |
Eleutherodactylus pituinus | 34.11873 | 58.7716689 | 0.1396248 | 2.1396545 |
Eleutherodactylus acmonis | 34.19226 | 68.8355138 | 0.1374399 | 2.4966305 |
Eleutherodactylus bresslerae | 34.19291 | 73.3345262 | 0.1376827 | 2.6645703 |
Eleutherodactylus ricordii | 34.20682 | 84.8754567 | 0.1375104 | 3.0639713 |
Eleutherodactylus grahami | 34.17072 | 65.9577534 | 0.1337917 | 2.3367003 |
Eleutherodactylus rhodesi | 34.15481 | 72.2981788 | 0.1365707 | 2.6189534 |
Eleutherodactylus weinlandi | 34.08702 | 69.0443312 | 0.1363177 | 2.5263881 |
Eleutherodactylus pictissimus | 34.14206 | 79.2793811 | 0.1376412 | 2.8696176 |
Eleutherodactylus lentus | 34.05680 | 53.2739932 | 0.1401181 | 1.9690445 |
Eleutherodactylus monensis | 34.04805 | 66.0321282 | 0.1378764 | 2.4457745 |
Eleutherodactylus probolaeus | 34.15993 | 67.8098791 | 0.1360203 | 2.4805456 |
Eleutherodactylus adelus | 35.00125 | 50.7105258 | 0.1347276 | 1.8521599 |
Eleutherodactylus pezopetrus | 35.02178 | 60.2130758 | 0.1354191 | 2.1768813 |
Eleutherodactylus blairhedgesi | 35.12605 | 45.5610486 | 0.1332077 | 1.6694588 |
Eleutherodactylus thomasi | 35.06192 | 46.3695412 | 0.1373782 | 1.6894973 |
Eleutherodactylus pinarensis | 35.05453 | 46.2616557 | 0.1378305 | 1.6854971 |
Eleutherodactylus casparii | 35.25627 | 42.6612580 | 0.1365266 | 1.5426426 |
Eleutherodactylus guanahacabibes | 35.20926 | 49.3305295 | 0.1338452 | 1.7957194 |
Eleutherodactylus simulans | 34.53639 | 59.9065679 | 0.1373206 | 2.1782425 |
Eleutherodactylus tonyi | 35.13255 | 65.9300254 | 0.1352619 | 2.4035457 |
Eleutherodactylus rogersi | 35.17356 | 41.2410770 | 0.1365616 | 1.4960274 |
Eleutherodactylus goini | 35.05567 | 50.0245958 | 0.1372652 | 1.8235221 |
Eleutherodactylus albipes | 34.25515 | 89.0547297 | 0.1361641 | 3.2248712 |
Eleutherodactylus maestrensis | 34.31022 | 82.0000166 | 0.1383002 | 2.9733476 |
Eleutherodactylus dimidiatus | 34.39340 | 67.7981098 | 0.1358391 | 2.4629411 |
Eleutherodactylus emiliae | 34.37713 | 60.0904067 | 0.1371572 | 2.1681272 |
Eleutherodactylus albolabris | 33.97423 | 26.3211598 | 0.1388343 | 1.0210543 |
Eleutherodactylus alcoae | 34.31604 | 76.2243584 | 0.1380236 | 2.7662471 |
Eleutherodactylus armstrongi | 34.09719 | 82.4847890 | 0.1384037 | 2.9951535 |
Eleutherodactylus leoncei | 34.26328 | 75.4079093 | 0.1367890 | 2.7339106 |
Eleutherodactylus alticola | 33.01581 | 64.1673574 | 0.1364158 | 2.3134977 |
Eleutherodactylus nubicola | 32.91943 | 60.5942750 | 0.1388863 | 2.1852605 |
Eleutherodactylus fuscus | 32.93249 | 65.7719544 | 0.1369169 | 2.3927812 |
Eleutherodactylus junori | 32.91370 | 66.9993406 | 0.1377689 | 2.4397747 |
Eleutherodactylus andrewsi | 32.34757 | 62.3412039 | 0.1365716 | 2.2471612 |
Eleutherodactylus griphus | 33.01608 | 64.4844062 | 0.1379762 | 2.3493329 |
Eleutherodactylus glaucoreius | 33.00645 | 58.0348725 | 0.1358199 | 2.1056670 |
Eleutherodactylus pantoni | 33.02377 | 60.0508929 | 0.1379543 | 2.1778367 |
Eleutherodactylus pentasyringos | 32.94606 | 62.2621595 | 0.1366010 | 2.2559140 |
Eleutherodactylus jamaicensis | 32.91497 | 60.6383508 | 0.1348369 | 2.2015530 |
Eleutherodactylus luteolus | 33.05118 | 71.6617032 | 0.1362047 | 2.6061372 |
Eleutherodactylus cavernicola | 33.06467 | 62.9254586 | 0.1390614 | 2.2906738 |
Eleutherodactylus grabhami | 33.11560 | 71.0286030 | 0.1396835 | 2.5823776 |
Eleutherodactylus sisyphodemus | 33.09827 | 72.8593840 | 0.1325106 | 2.6547135 |
Eleutherodactylus gundlachi | 33.17635 | 62.9231090 | 0.1375119 | 2.2795873 |
Eleutherodactylus amadeus | 34.17544 | 78.7505189 | 0.1366999 | 2.8301177 |
Eleutherodactylus caribe | 34.25552 | 79.9929763 | 0.1363638 | 2.9063685 |
Eleutherodactylus eunaster | 34.04570 | 82.2038964 | 0.1370432 | 2.9543053 |
Eleutherodactylus corona | 34.08537 | 86.1442198 | 0.1358549 | 3.1295750 |
Eleutherodactylus heminota | 34.09124 | 81.7574523 | 0.1369530 | 2.9516617 |
Eleutherodactylus bakeri | 34.06073 | 90.9191653 | 0.1395704 | 3.2685873 |
Eleutherodactylus dolomedes | 34.11448 | 80.9629672 | 0.1365374 | 2.9427826 |
Eleutherodactylus glaphycompus | 34.25005 | 73.1409879 | 0.1373582 | 2.6278011 |
Eleutherodactylus thorectes | 34.25213 | 79.5321115 | 0.1389329 | 2.8581871 |
Eleutherodactylus jugans | 34.22544 | 78.6783529 | 0.1380853 | 2.8524280 |
Eleutherodactylus apostates | 34.30705 | 74.6156796 | 0.1375506 | 2.6810590 |
Eleutherodactylus oxyrhyncus | 34.25715 | 76.5579788 | 0.1368193 | 2.7510020 |
Eleutherodactylus furcyensis | 34.23949 | 72.5807486 | 0.1358931 | 2.6338532 |
Eleutherodactylus rufifemoralis | 34.32642 | 85.1537818 | 0.1346393 | 3.1166851 |
Eleutherodactylus amplinympha | 34.76564 | 52.1956501 | 0.1338745 | 1.9738637 |
Eleutherodactylus martinicensis | 34.85868 | 51.4943363 | 0.1353800 | 1.9032658 |
Eleutherodactylus barlagnei | 34.27277 | 57.0767847 | 0.1342250 | 2.1318203 |
Eleutherodactylus pinchoni | 34.79571 | 53.5232982 | 0.1369495 | 1.9968022 |
Eleutherodactylus angustidigitorum | 34.14822 | 27.0714068 | 0.1371818 | 1.1124768 |
Eleutherodactylus cochranae | 35.68667 | 49.5503530 | 0.1363806 | 1.8255627 |
Eleutherodactylus hedricki | 35.66892 | 51.2594000 | 0.1364973 | 1.9062659 |
Eleutherodactylus schwartzi | 35.88839 | 37.4983447 | 0.1359282 | 1.3721762 |
Eleutherodactylus gryllus | 35.80298 | 45.4362578 | 0.1353052 | 1.6898124 |
Eleutherodactylus cooki | 35.66715 | 50.1059489 | 0.1383177 | 1.8607483 |
Eleutherodactylus locustus | 35.72672 | 48.7952098 | 0.1369479 | 1.8107139 |
Eleutherodactylus atkinsi | 34.20496 | 61.3529731 | 0.1396300 | 2.2282589 |
Eleutherodactylus intermedius | 34.14569 | 76.7429418 | 0.1364265 | 2.7683350 |
Eleutherodactylus varleyi | 33.97955 | 60.5291451 | 0.1381717 | 2.1979228 |
Eleutherodactylus cubanus | 34.25196 | 83.8538130 | 0.1376569 | 3.0369511 |
Eleutherodactylus iberia | 34.23556 | 70.6299507 | 0.1356487 | 2.5659451 |
Eleutherodactylus jaumei | 34.23933 | 81.4395315 | 0.1372243 | 2.9454155 |
Eleutherodactylus limbatus | 34.21400 | 63.5897961 | 0.1360122 | 2.3146804 |
Eleutherodactylus orientalis | 34.24879 | 71.0477500 | 0.1354361 | 2.5834101 |
Eleutherodactylus etheridgei | 34.24604 | 76.1399093 | 0.1350517 | 2.7300512 |
Eleutherodactylus auriculatoides | 34.03494 | 74.2596300 | 0.1378354 | 2.7512876 |
Eleutherodactylus montanus | 34.05452 | 68.5798744 | 0.1377232 | 2.5420409 |
Eleutherodactylus patriciae | 34.28123 | 78.8339374 | 0.1372248 | 2.9123482 |
Eleutherodactylus fowleri | 33.99833 | 73.8635469 | 0.1384583 | 2.6766726 |
Eleutherodactylus lamprotes | 33.95746 | 82.6089315 | 0.1405603 | 2.9690275 |
Eleutherodactylus guantanamera | 34.03666 | 73.1280078 | 0.1373866 | 2.6343551 |
Eleutherodactylus ionthus | 34.01713 | 75.8185078 | 0.1362259 | 2.7385903 |
Eleutherodactylus varians | 34.03409 | 62.2930736 | 0.1377147 | 2.2630922 |
Eleutherodactylus leberi | 34.21908 | 79.1819752 | 0.1348272 | 2.8712580 |
Eleutherodactylus melacara | 34.16367 | 78.4648292 | 0.1353888 | 2.8444056 |
Eleutherodactylus sommeri | 34.10231 | 85.2992348 | 0.1363152 | 3.1151709 |
Eleutherodactylus wetmorei | 34.07305 | 78.0828198 | 0.1377044 | 2.8192740 |
Eleutherodactylus auriculatus | 34.05710 | 60.2108549 | 0.1356870 | 2.1878314 |
Eleutherodactylus principalis | 34.04368 | 73.6854526 | 0.1355340 | 2.6718759 |
Eleutherodactylus glamyrus | 34.05442 | 78.0962873 | 0.1387500 | 2.8216037 |
Eleutherodactylus bartonsmithi | 34.07341 | 66.6496879 | 0.1384803 | 2.4157121 |
Eleutherodactylus mariposa | 34.13386 | 73.2025927 | 0.1361783 | 2.6461370 |
Eleutherodactylus ronaldi | 34.07737 | 84.6018135 | 0.1362627 | 3.0618915 |
Eleutherodactylus eileenae | 34.09105 | 61.9684009 | 0.1381573 | 2.2532410 |
Eleutherodactylus ruthae | 34.15409 | 75.9627480 | 0.1337257 | 2.7851547 |
Eleutherodactylus hypostenor | 35.14163 | 86.7553606 | 0.1348429 | 3.1671040 |
Eleutherodactylus parapelates | 35.14228 | 78.7809204 | 0.1370150 | 2.8307548 |
Eleutherodactylus chlorophenax | 34.16898 | 78.7717883 | 0.1394919 | 2.8314935 |
Eleutherodactylus nortoni | 34.06726 | 93.0397171 | 0.1356821 | 3.3592794 |
Eleutherodactylus inoptatus | 34.13071 | 70.9958686 | 0.1386482 | 2.5929060 |
Eleutherodactylus brevirostris | 34.22747 | 86.9732385 | 0.1380891 | 3.1257339 |
Eleutherodactylus ventrilineatus | 34.21584 | 82.3612534 | 0.1356437 | 2.9601442 |
Eleutherodactylus glandulifer | 33.50925 | 81.6321217 | 0.1353736 | 2.9325431 |
Eleutherodactylus sciagraphus | 34.18256 | 80.6766765 | 0.1351904 | 2.9297432 |
Eleutherodactylus counouspeus | 34.23031 | 79.5408552 | 0.1358981 | 2.8583363 |
Eleutherodactylus cuneatus | 34.13848 | 80.7052337 | 0.1377659 | 2.9215853 |
Eleutherodactylus turquinensis | 33.47824 | 75.3679691 | 0.1351991 | 2.7338769 |
Eleutherodactylus cystignathoides | 34.11010 | 26.2224468 | 0.1374746 | 1.0701787 |
Eleutherodactylus nitidus | 34.26001 | 24.0342524 | 0.1366349 | 0.9814810 |
Eleutherodactylus pipilans | 34.16562 | 28.3393238 | 0.1373181 | 1.0603717 |
Eleutherodactylus marnockii | 34.22803 | 19.7703772 | 0.1408141 | 0.7985254 |
Eleutherodactylus symingtoni | 34.14253 | 56.1196473 | 0.1379990 | 2.0450244 |
Eleutherodactylus zeus | 34.11312 | 58.2242646 | 0.1357702 | 2.1230366 |
Eleutherodactylus dennisi | 34.14548 | 25.7218422 | 0.1380123 | 1.0678177 |
Eleutherodactylus dilatus | 34.16681 | 23.9285533 | 0.1373832 | 0.9388503 |
Eleutherodactylus diplasius | 33.87868 | 78.6098878 | 0.1391345 | 2.8252608 |
Eleutherodactylus flavescens | 34.16800 | 70.6613606 | 0.1376350 | 2.6038762 |
Eleutherodactylus grandis | 34.09815 | 14.3228542 | 0.1366509 | 0.7057085 |
Eleutherodactylus greyi | 34.10643 | 60.6691924 | 0.1379047 | 2.2004891 |
Eleutherodactylus guttilatus | 34.27201 | 20.9816579 | 0.1358491 | 0.9137672 |
Eleutherodactylus interorbitalis | 34.25566 | 17.1918329 | 0.1376943 | 0.6891302 |
Eleutherodactylus juanariveroi | 34.04331 | 71.6911179 | 0.1373299 | 2.6545609 |
Eleutherodactylus klinikowskii | 34.04589 | 63.9685225 | 0.1364940 | 2.3323114 |
Eleutherodactylus zugi | 34.18544 | 55.0671308 | 0.1377547 | 2.0071290 |
Eleutherodactylus paralius | 34.25252 | 73.6385599 | 0.1374949 | 2.7080984 |
Eleutherodactylus leprus | 34.13239 | 25.1702035 | 0.1351682 | 0.9452428 |
Eleutherodactylus longipes | 34.24932 | 20.7187645 | 0.1351860 | 0.8674530 |
Eleutherodactylus maurus | 34.06991 | 20.1831657 | 0.1388656 | 0.8498321 |
Eleutherodactylus michaelschmidi | 34.16529 | 77.8572012 | 0.1355058 | 2.8211181 |
Eleutherodactylus minutus | 34.26385 | 70.3165984 | 0.1339219 | 2.6066321 |
Eleutherodactylus poolei | 34.14585 | 72.8558017 | 0.1362629 | 2.6413594 |
Eleutherodactylus modestus | 34.12113 | 28.6223621 | 0.1410178 | 1.0855799 |
Eleutherodactylus notidodes | 34.24065 | 89.3138355 | 0.1376222 | 3.2704390 |
Eleutherodactylus pallidus | 34.28849 | 24.7443954 | 0.1357858 | 0.9686514 |
Eleutherodactylus paulsoni | 34.16458 | 75.6123631 | 0.1370396 | 2.7193591 |
Eleutherodactylus unicolor | 33.45074 | 57.1274136 | 0.1383278 | 2.1231752 |
Eleutherodactylus verruculatus | 33.43880 | 33.4774865 | 0.1390113 | 1.2981615 |
Eleutherodactylus riparius | 34.19333 | 64.6715284 | 0.1356640 | 2.3528637 |
Eleutherodactylus rivularis | 33.49852 | 82.6897142 | 0.1392230 | 2.9968552 |
Eleutherodactylus rubrimaculatus | 34.06339 | 25.4110221 | 0.1372637 | 0.9615723 |
Eleutherodactylus rufescens | 34.19602 | 31.9847543 | 0.1367656 | 1.2834953 |
Eleutherodactylus saxatilis | 34.14346 | 17.2655143 | 0.1376637 | 0.7117833 |
Eleutherodactylus semipalmatus | 33.59104 | 77.4961810 | 0.1375850 | 2.8152207 |
Eleutherodactylus syristes | 34.19424 | 23.5073865 | 0.1326690 | 0.9140743 |
Eleutherodactylus teretistes | 34.29862 | 27.0413894 | 0.1337991 | 1.0350234 |
Eleutherodactylus tetajulia | 34.16412 | 71.8157804 | 0.1346562 | 2.6102357 |
Eleutherodactylus toa | 33.61037 | 78.4808731 | 0.1374701 | 2.8445490 |
Eleutherodactylus verrucipes | 34.19577 | 22.5662590 | 0.1385539 | 0.9647845 |
Eleutherodactylus warreni | 34.26238 | 72.3930523 | 0.1374461 | 2.6281541 |
Craugastor stadelmani | 32.54460 | 44.8317663 | 0.1379641 | 1.7006892 |
Craugastor alfredi | 32.85835 | 31.3930176 | 0.1391476 | 1.1571501 |
Craugastor amniscola | 32.36895 | 23.5775582 | 0.1380888 | 0.9138948 |
Craugastor batrachylus | 33.03946 | 28.7285461 | 0.1377177 | 1.2026252 |
Craugastor cuaquero | 33.04162 | 37.0803480 | 0.1385456 | 1.3381668 |
Craugastor melanostictus | 33.02351 | 39.4236727 | 0.1398068 | 1.4886887 |
Craugastor emcelae | 32.97345 | 56.6851125 | 0.1404182 | 2.0235056 |
Craugastor angelicus | 32.52642 | 38.2053963 | 0.1370338 | 1.3775607 |
Craugastor rugulosus | 32.31670 | 28.5446470 | 0.1383769 | 1.0793734 |
Craugastor ranoides | 32.39132 | 40.5159959 | 0.1350330 | 1.4782330 |
Craugastor fleischmanni | 32.37784 | 35.9455317 | 0.1398375 | 1.2965041 |
Craugastor rupinius | 32.93959 | 29.2822312 | 0.1376742 | 1.0977649 |
Craugastor obesus | 32.44713 | 52.9833879 | 0.1377967 | 1.8905620 |
Craugastor megacephalus | 32.93500 | 39.5198393 | 0.1373078 | 1.4683340 |
Craugastor aphanus | 33.13679 | 38.6882175 | 0.1388923 | 1.5178784 |
Craugastor augusti | 33.04495 | 20.8096166 | 0.1350989 | 0.8618718 |
Craugastor tarahumaraensis | 33.01960 | 16.3792391 | 0.1383896 | 0.6748367 |
Craugastor polymniae | 32.89774 | 15.7222882 | 0.1394241 | 0.6929358 |
Craugastor aurilegulus | 32.40371 | 48.7612518 | 0.1370779 | 1.8535727 |
Craugastor azueroensis | 32.52390 | 61.4918045 | 0.1372537 | 2.3356449 |
Craugastor vocalis | 32.98812 | 20.9623035 | 0.1385180 | 0.8382171 |
Craugastor berkenbuschii | 32.43783 | 25.6806058 | 0.1389558 | 1.0130943 |
Craugastor vulcani | 32.39074 | 28.4365141 | 0.1380027 | 1.0396822 |
Craugastor bocourti | 32.92133 | 25.3243751 | 0.1372032 | 0.9699198 |
Craugastor spatulatus | 33.04887 | 22.9400257 | 0.1380450 | 0.9137511 |
Craugastor stuarti | 32.34121 | 27.1460077 | 0.1387208 | 1.0443087 |
Craugastor uno | 33.02721 | 29.1827040 | 0.1395668 | 1.1249821 |
Craugastor xucanebi | 33.03407 | 24.4639064 | 0.1385753 | 0.9570893 |
Craugastor bransfordii | 33.09500 | 34.9150158 | 0.1363967 | 1.3044643 |
Craugastor polyptychus | 33.09647 | 34.5327202 | 0.1370455 | 1.4202570 |
Craugastor underwoodi | 33.07727 | 37.6030536 | 0.1363851 | 1.4603536 |
Craugastor lauraster | 32.98463 | 32.4477726 | 0.1405734 | 1.2090412 |
Craugastor stejnegerianus | 33.01010 | 41.5224498 | 0.1388932 | 1.7338913 |
Craugastor persimilis | 33.13160 | 34.0726449 | 0.1378908 | 1.3984726 |
Craugastor brocchi | 32.47756 | 26.1601030 | 0.1379676 | 1.0268556 |
Craugastor gollmeri | 33.04251 | 43.4232567 | 0.1388766 | 1.6201393 |
Craugastor chac | 33.00962 | 33.7352821 | 0.1382157 | 1.2739807 |
Craugastor lineatus | 32.97425 | 25.1022669 | 0.1423376 | 0.9548249 |
Craugastor laticeps | 33.01585 | 32.0847510 | 0.1387118 | 1.1922721 |
Craugastor mimus | 33.02388 | 35.2997130 | 0.1391593 | 1.3264720 |
Craugastor noblei | 33.06979 | 36.4392593 | 0.1402555 | 1.3586909 |
Craugastor campbelli | 32.90334 | 38.7923000 | 0.1397026 | 1.5224498 |
Craugastor decoratus | 32.88711 | 23.5181324 | 0.1393569 | 0.9584475 |
Craugastor charadra | 32.43189 | 29.9327514 | 0.1360710 | 1.1348674 |
Craugastor opimus | 32.98083 | 43.9830088 | 0.1381550 | 1.6604917 |
Craugastor chingopetaca | 33.09325 | 34.9026178 | 0.1385504 | 1.2594097 |
Craugastor hobartsmithi | 33.09049 | 25.1657294 | 0.1356426 | 0.9948942 |
Craugastor pelorus | 32.43279 | 34.3136805 | 0.1405464 | 1.2262817 |
Craugastor coffeus | 32.99070 | 36.8212510 | 0.1355017 | 1.4089640 |
Craugastor pozo | 33.01953 | 26.3277944 | 0.1374691 | 0.9618698 |
Craugastor talamancae | 33.68696 | 33.0203920 | 0.1373429 | 1.2264611 |
Craugastor raniformis | 33.86502 | 27.9913133 | 0.1374773 | 1.0694514 |
Craugastor taurus | 32.22367 | 53.9575559 | 0.1377025 | 1.9683146 |
Craugastor cyanochthebius | 32.92284 | 44.4367521 | 0.1374627 | 1.7441489 |
Craugastor silvicola | 33.14492 | 29.1285717 | 0.1346024 | 1.0352862 |
Craugastor escoces | 32.44561 | 43.4481788 | 0.1359770 | 1.5670803 |
Craugastor nefrens | 33.04722 | 42.3447755 | 0.1360166 | 1.6630943 |
Craugastor podiciferus | 33.01987 | 33.9969288 | 0.1380213 | 1.3200426 |
Craugastor glaucus | 33.12726 | 34.4469264 | 0.1371570 | 1.2684859 |
Craugastor monnichorum | 33.05331 | 50.9654457 | 0.1393656 | 1.8818193 |
Craugastor greggi | 32.52343 | 19.4123964 | 0.1371735 | 0.8095799 |
Craugastor guerreroensis | 33.11791 | 21.8409880 | 0.1338076 | 0.8566576 |
Craugastor montanus | 33.03742 | 24.9624916 | 0.1363767 | 0.9282526 |
Craugastor gulosus | 33.01284 | 37.7253758 | 0.1405307 | 1.5472147 |
Craugastor laevissimus | 32.45304 | 34.6010495 | 0.1393995 | 1.2984763 |
Craugastor inachus | 32.48136 | 32.1334212 | 0.1383839 | 1.1813018 |
Craugastor mexicanus | 32.40634 | 23.3418758 | 0.1408477 | 0.9369822 |
Craugastor omiltemanus | 32.48007 | 25.4847283 | 0.1392213 | 0.9967778 |
Craugastor rugosus | 32.55895 | 34.4811323 | 0.1385017 | 1.3788806 |
Craugastor tabasarae | 34.91731 | 40.4133754 | 0.1351445 | 1.5147262 |
Craugastor rayo | 34.46486 | 18.2233854 | 0.1362573 | 1.0584899 |
Craugastor matudai | 33.04772 | 24.1811164 | 0.1350177 | 0.9222646 |
Craugastor yucatanensis | 33.07091 | 48.7303341 | 0.1356898 | 1.7572805 |
Craugastor megalotympanum | 33.08394 | 27.5424818 | 0.1401974 | 1.0085666 |
Craugastor rivulus | 32.57216 | 24.5437395 | 0.1348465 | 0.9834539 |
Craugastor milesi | 32.42644 | 36.4114977 | 0.1381337 | 1.4278034 |
Craugastor sandersoni | 32.45310 | 41.9619112 | 0.1363635 | 1.5846957 |
Craugastor occidentalis | 33.00712 | 23.2594663 | 0.1378412 | 0.9228384 |
Craugastor palenque | 32.45036 | 25.4639851 | 0.1383190 | 0.9617506 |
Craugastor pygmaeus | 33.08485 | 26.7490052 | 0.1367078 | 1.0271019 |
Craugastor pechorum | 32.49705 | 51.0783966 | 0.1393804 | 1.9324618 |
Craugastor rostralis | 33.06383 | 30.6416837 | 0.1377206 | 1.1567857 |
Craugastor sabrinus | 33.04590 | 38.5898198 | 0.1375365 | 1.4434965 |
Craugastor psephosypharus | 32.99635 | 32.9182797 | 0.1395676 | 1.2408720 |
Craugastor taylori | 33.01306 | 33.1837623 | 0.1396888 | 1.1747134 |
Craugastor emleni | 33.06084 | 24.9537659 | 0.1377288 | 0.9757055 |
Craugastor daryi | 32.11286 | 23.8949959 | 0.1364409 | 0.9380682 |
Haddadus aramunha | 32.14352 | 20.5280869 | 0.1419641 | 0.8286955 |
Haddadus plicifer | 32.23821 | 37.1005038 | 0.1365546 | 1.4350708 |
Haddadus binotatus | 32.19703 | 25.2466605 | 0.1412767 | 0.9762676 |
Atopophrynus syntomopus | 30.40407 | 26.2409352 | 0.1435007 | 1.1374410 |
Lynchius flavomaculatus | 31.05335 | 20.3001025 | 0.1410373 | 0.8840710 |
Lynchius parkeri | 31.06531 | 29.5991143 | 0.1422289 | 1.2930717 |
Lynchius nebulanastes | 31.00911 | 30.5155513 | 0.1420281 | 1.3317674 |
Lynchius simmonsi | 31.00131 | 23.6212170 | 0.1416692 | 0.9130420 |
Oreobates choristolemma | 30.63426 | 20.4929917 | 0.1435685 | 1.0252949 |
Oreobates sanderi | 30.49013 | 18.4007066 | 0.1445349 | 0.9651658 |
Oreobates sanctaecrucis | 30.72970 | 26.0937158 | 0.1443957 | 1.1676830 |
Oreobates discoidalis | 31.26671 | 12.2145187 | 0.1426223 | 0.6057706 |
Oreobates ibischi | 31.20331 | 21.8903035 | 0.1432378 | 1.0031578 |
Oreobates madidi | 31.57724 | 26.0250394 | 0.1397522 | 1.2381649 |
Oreobates crepitans | 31.02233 | 24.3533452 | 0.1439698 | 0.8633323 |
Oreobates heterodactylus | 31.00478 | 24.5159946 | 0.1419569 | 0.8648747 |
Oreobates zongoensis | 30.98797 | 18.1487598 | 0.1414221 | 1.0068208 |
Oreobates ayacucho | 30.05873 | 8.6003057 | 0.1442044 | 0.4629368 |
Oreobates pereger | 30.11452 | 15.9480006 | 0.1448353 | 0.9484073 |
Oreobates lehri | 28.86025 | 12.1998367 | 0.1480912 | 0.6823610 |
Oreobates saxatilis | 32.58474 | 20.7626925 | 0.1421630 | 0.9864399 |
Oreobates lundbergi | 30.96600 | 23.9341056 | 0.1403660 | 1.1244708 |
Phrynopus auriculatus | 30.94564 | 21.7371775 | 0.1458508 | 1.0165771 |
Phrynopus barthlenae | 31.02695 | 20.5312930 | 0.1417058 | 1.0664669 |
Phrynopus horstpauli | 30.83386 | 18.8120775 | 0.1448950 | 0.9603277 |
Phrynopus bracki | 30.99864 | 24.8311009 | 0.1434229 | 1.1669239 |
Phrynopus bufoides | 31.00962 | 27.2046414 | 0.1430047 | 1.2775163 |
Phrynopus dagmarae | 31.09069 | 21.1616454 | 0.1428701 | 1.0570421 |
Phrynopus heimorum | 31.11492 | 13.7647467 | 0.1435079 | 0.7864765 |
Phrynopus juninensis | 31.10100 | 21.1436886 | 0.1404008 | 1.2392884 |
Phrynopus kauneorum | 31.12668 | 17.3581274 | 0.1425808 | 0.8806904 |
Phrynopus kotosh | 31.10345 | 10.1806788 | 0.1409672 | 0.6415663 |
Phrynopus miroslawae | 31.08431 | 24.3708998 | 0.1438048 | 1.1481364 |
Phrynopus montium | 31.08734 | 24.3510930 | 0.1449391 | 1.4289828 |
Phrynopus nicoleae | 31.04121 | 24.2113104 | 0.1425874 | 1.1371319 |
Phrynopus oblivius | 31.07902 | 22.3814578 | 0.1440299 | 1.3120083 |
Phrynopus paucari | 30.94626 | 26.5086479 | 0.1435683 | 1.2423607 |
Phrynopus peruanus | 31.05001 | 24.2558208 | 0.1410505 | 1.4208783 |
Phrynopus pesantesi | 30.98881 | 24.6460823 | 0.1429989 | 1.1554234 |
Phrynopus tautzorum | 31.09016 | 19.6199269 | 0.1432684 | 1.0166757 |
Phrynopus thompsoni | 31.05169 | 26.7655932 | 0.1422638 | 1.1888917 |
Phrynopus tribulosus | 30.99638 | 25.0626384 | 0.1419077 | 1.1764501 |
Pristimantis aaptus | 30.95994 | 37.2030331 | 0.1428969 | 1.2672434 |
Pristimantis acatallelus | 31.02705 | 32.1152779 | 0.1400274 | 1.2964490 |
Pristimantis acerus | 31.02550 | 12.3832311 | 0.1399670 | 0.5831368 |
Pristimantis lymani | 33.58544 | 23.3295034 | 0.1369500 | 0.9756402 |
Pristimantis achuar | 31.05306 | 33.6155247 | 0.1432525 | 1.2956451 |
Pristimantis actinolaimus | 30.96865 | 31.3553826 | 0.1441149 | 1.3595317 |
Pristimantis acuminatus | 30.95901 | 29.5025306 | 0.1406255 | 1.1589599 |
Pristimantis acutirostris | 30.93173 | 24.5787460 | 0.1410068 | 1.1036814 |
Pristimantis adiastolus | 31.11892 | 25.1628478 | 0.1405954 | 1.1866906 |
Pristimantis aemulatus | 30.97097 | 39.9816661 | 0.1428983 | 1.5111978 |
Pristimantis affinis | 30.97316 | 26.7545320 | 0.1432875 | 1.1499077 |
Pristimantis alalocophus | 30.87875 | 24.8399306 | 0.1422200 | 1.0967516 |
Pristimantis albertus | 31.10975 | 21.0345578 | 0.1432981 | 1.0955798 |
Pristimantis altae | 31.10450 | 36.9209426 | 0.1412287 | 1.4076376 |
Pristimantis pardalis | 31.11355 | 49.3030010 | 0.1411488 | 1.8671264 |
Pristimantis altamazonicus | 31.16287 | 35.3392159 | 0.1417507 | 1.3012572 |
Pristimantis altamnis | 31.03799 | 26.2958542 | 0.1408640 | 1.0981102 |
Pristimantis kichwarum | 31.19753 | 24.2103057 | 0.1424735 | 0.9810199 |
Pristimantis amydrotus | 31.02993 | 40.4142411 | 0.1387836 | 1.6497648 |
Pristimantis anemerus | 31.03599 | 28.2176326 | 0.1424342 | 1.2369122 |
Pristimantis angustilineatus | 31.05913 | 35.1433965 | 0.1413532 | 1.4390497 |
Pristimantis brevifrons | 31.01253 | 27.6516291 | 0.1426514 | 1.1544845 |
Pristimantis aniptopalmatus | 31.15142 | 23.7081778 | 0.1429563 | 1.1116588 |
Pristimantis anolirex | 31.07175 | 27.3743792 | 0.1410377 | 1.1675032 |
Pristimantis lutitus | 31.09801 | 28.2869077 | 0.1404867 | 1.1990568 |
Pristimantis merostictus | 30.99038 | 29.5944726 | 0.1424692 | 1.2853439 |
Pristimantis apiculatus | 31.04317 | 19.9597526 | 0.1425599 | 0.8760373 |
Pristimantis appendiculatus | 31.06541 | 19.0155735 | 0.1428780 | 0.8409400 |
Pristimantis aquilonaris | 31.17808 | 30.9646073 | 0.1435307 | 1.3229092 |
Pristimantis ardalonychus | 31.06247 | 24.7398071 | 0.1417702 | 1.1003935 |
Pristimantis atrabracus | 31.10902 | 33.1005603 | 0.1406093 | 1.3656788 |
Pristimantis atratus | 31.00365 | 20.2336312 | 0.1396026 | 0.8712450 |
Pristimantis aurantiguttatus | 30.99009 | 41.5982567 | 0.1409746 | 1.5897359 |
Pristimantis aureolineatus | 30.92176 | 32.7261235 | 0.1424466 | 1.2300623 |
Pristimantis aureoventris | 30.87043 | 32.3252216 | 0.1442124 | 1.2086975 |
Pristimantis jester | 30.94281 | 34.6005518 | 0.1393975 | 1.2835393 |
Pristimantis avicuporum | 31.07202 | 30.6938180 | 0.1427237 | 1.2625471 |
Pristimantis avius | 31.02279 | 36.0548125 | 0.1390048 | 1.3170407 |
Pristimantis bacchus | 31.03811 | 24.9611577 | 0.1432617 | 1.1041283 |
Pristimantis baiotis | 31.03474 | 39.4088515 | 0.1413999 | 1.4918856 |
Pristimantis balionotus | 30.81574 | 21.0365375 | 0.1424633 | 0.9274955 |
Pristimantis bambu | 30.92799 | 13.8593682 | 0.1410047 | 0.6659163 |
Pristimantis simonbolivari | 31.14823 | 15.5351711 | 0.1409164 | 0.6925558 |
Pristimantis baryecuus | 30.96588 | 17.9520077 | 0.1425589 | 0.7708194 |
Pristimantis batrachites | 31.03453 | 24.3496435 | 0.1411403 | 1.0884552 |
Pristimantis bearsei | 30.57383 | 37.5718450 | 0.1402095 | 1.5500493 |
Pristimantis bellator | 30.92736 | 28.4994290 | 0.1421808 | 1.2129472 |
Pristimantis bellona | 30.91696 | 40.2918659 | 0.1421661 | 1.5200168 |
Pristimantis bicumulus | 31.10025 | 37.4609995 | 0.1409600 | 1.4060560 |
Pristimantis bipunctatus | 31.19477 | 29.7655853 | 0.1399146 | 1.4733341 |
Pristimantis boulengeri | 30.95917 | 30.9816412 | 0.1432564 | 1.2956178 |
Pristimantis simoterus | 31.18782 | 26.8643573 | 0.1414538 | 1.1897259 |
Pristimantis chloronotus | 30.99825 | 21.0683397 | 0.1419105 | 0.9168338 |
Pristimantis bromeliaceus | 30.86549 | 23.0566865 | 0.1414344 | 1.0024918 |
Pristimantis buckleyi | 29.41748 | 21.5701118 | 0.1440273 | 0.8922839 |
Pristimantis cabrerai | 30.94467 | 26.6444778 | 0.1429298 | 1.0920688 |
Pristimantis cacao | 31.16323 | 19.5951888 | 0.1411689 | 0.8499632 |
Pristimantis caeruleonotus | 31.03145 | 29.6069015 | 0.1415763 | 1.2329962 |
Pristimantis cajamarcensis | 31.00148 | 28.4707168 | 0.1426197 | 1.2252203 |
Pristimantis calcaratus | 31.19696 | 34.6535559 | 0.1432507 | 1.4097169 |
Pristimantis calcarulatus | 30.87311 | 16.7416286 | 0.1414114 | 0.7196606 |
Pristimantis cantitans | 31.08417 | 37.2044163 | 0.1398356 | 1.3770015 |
Pristimantis capitonis | 31.20890 | 25.3271254 | 0.1412860 | 1.0547215 |
Pristimantis caprifer | 31.03352 | 35.0222419 | 0.1410470 | 1.3993003 |
Pristimantis carlossanchezi | 30.98460 | 30.9783634 | 0.1397317 | 1.2808453 |
Pristimantis carmelitae | 31.15569 | 30.4831321 | 0.1413436 | 1.0786346 |
Pristimantis carranguerorum | 31.25381 | 21.8134727 | 0.1380979 | 0.9600976 |
Pristimantis lynchi | 31.15393 | 25.0259858 | 0.1405114 | 1.1141361 |
Pristimantis caryophyllaceus | 31.24009 | 36.9405566 | 0.1384617 | 1.3786685 |
Pristimantis celator | 30.89284 | 20.6153495 | 0.1415571 | 0.8718425 |
Pristimantis cerasinus | 31.06272 | 38.3138345 | 0.1421030 | 1.4245649 |
Pristimantis ceuthospilus | 30.99335 | 34.5828807 | 0.1431215 | 1.4589830 |
Pristimantis chalceus | 31.09815 | 30.7954614 | 0.1431853 | 1.2228797 |
Pristimantis charlottevillensis | 31.15658 | 79.0619032 | 0.1430672 | 2.9625604 |
Pristimantis chiastonotus | 31.11341 | 40.7042320 | 0.1420649 | 1.4782386 |
Pristimantis chimu | 30.93309 | 45.6842114 | 0.1437884 | 1.8647202 |
Pristimantis chrysops | 30.95494 | 34.9657504 | 0.1410602 | 1.4219056 |
Pristimantis citriogaster | 30.62897 | 25.6361752 | 0.1393321 | 1.0759542 |
Pristimantis malkini | 31.22066 | 34.0979980 | 0.1418956 | 1.2427784 |
Pristimantis colodactylus | 31.02357 | 22.5702050 | 0.1410491 | 0.9621669 |
Pristimantis colomai | 32.93913 | 18.6425875 | 0.1407217 | 0.7931583 |
Pristimantis colonensis | 31.00632 | 28.8610059 | 0.1431424 | 1.1933034 |
Pristimantis colostichos | 31.04084 | 33.5923418 | 0.1421005 | 1.3069882 |
Pristimantis condor | 31.01457 | 21.1184165 | 0.1388079 | 0.8965223 |
Pristimantis paramerus | 31.15880 | 35.0137152 | 0.1408077 | 1.3229796 |
Pristimantis cordovae | 31.16194 | 20.0028159 | 0.1436338 | 0.9589794 |
Pristimantis corniger | 31.02328 | 36.3688192 | 0.1433105 | 1.4424695 |
Pristimantis coronatus | 31.03566 | 31.6592002 | 0.1422709 | 1.3499494 |
Pristimantis corrugatus | 30.97727 | 24.3656389 | 0.1434329 | 1.1305623 |
Pristimantis cosnipatae | 30.95193 | 7.6168291 | 0.1411423 | 0.5180947 |
Pristimantis cremnobates | 30.44370 | 26.7569728 | 0.1463648 | 1.1228828 |
Pristimantis labiosus | 31.17826 | 21.9126590 | 0.1422062 | 0.8931156 |
Pristimantis cristinae | 30.88459 | 29.2485436 | 0.1414059 | 1.0757136 |
Pristimantis croceoinguinis | 31.06083 | 30.8948159 | 0.1420859 | 1.1830624 |
Pristimantis crucifer | 31.14937 | 27.8871191 | 0.1420879 | 1.1570619 |
Pristimantis cruciocularis | 31.10232 | 32.6326170 | 0.1438612 | 1.5287425 |
Pristimantis cruentus | 31.08236 | 43.2159564 | 0.1412237 | 1.6058982 |
Pristimantis cryophilius | 31.15515 | 17.0449637 | 0.1409967 | 0.7169602 |
Pristimantis cryptomelas | 31.16007 | 21.7266719 | 0.1420954 | 0.9377878 |
Pristimantis cuentasi | 31.01403 | 25.8834269 | 0.1424709 | 0.9643038 |
Pristimantis cuneirostris | 30.96409 | 29.8044873 | 0.1433572 | 1.2272826 |
Pristimantis gentryi | 31.40691 | 11.8101416 | 0.1422761 | 0.5176634 |
Pristimantis truebae | 31.23313 | 11.3262511 | 0.1431146 | 0.5034856 |
Pristimantis degener | 30.89072 | 23.0006242 | 0.1437536 | 0.9928935 |
Pristimantis deinops | 31.01503 | 31.8307929 | 0.1408342 | 1.2933234 |
Pristimantis delicatus | 30.97379 | 33.6232031 | 0.1389803 | 1.1903973 |
Pristimantis delius | 31.12685 | 31.7619861 | 0.1409002 | 1.1603182 |
Pristimantis dendrobatoides | 30.95337 | 38.8781100 | 0.1446995 | 1.4416745 |
Pristimantis devillei | 30.93010 | 15.2608702 | 0.1420018 | 0.6951410 |
Pristimantis surdus | 31.10737 | 13.1757987 | 0.1411520 | 0.6420217 |
Pristimantis diadematus | 30.87864 | 33.9074858 | 0.1454086 | 1.3609584 |
Pristimantis diaphonus | 30.95767 | 35.2797427 | 0.1448384 | 1.4094873 |
Pristimantis diogenes | 30.59947 | 31.6922415 | 0.1387077 | 1.3001261 |
Pristimantis dissimulatus | 30.96219 | 10.6822216 | 0.1393313 | 0.5288955 |
Pristimantis divnae | 30.89074 | 21.7218139 | 0.1425388 | 1.1306351 |
Pristimantis dorsopictus | 31.01974 | 22.1717376 | 0.1406153 | 1.0261234 |
Pristimantis duellmani | 31.03791 | 24.0969444 | 0.1416439 | 1.0391486 |
Pristimantis quinquagesimus | 31.02702 | 20.1027963 | 0.1394137 | 0.8516707 |
Pristimantis duende | 31.12746 | 38.2836313 | 0.1420369 | 1.5812650 |
Pristimantis dundeei | 30.98373 | 32.0687946 | 0.1421031 | 1.2073473 |
Pristimantis epacrus | 31.13871 | 34.4603154 | 0.1430720 | 1.3692084 |
Pristimantis eremitus | 31.05696 | 19.8995859 | 0.1388207 | 0.8727069 |
Pristimantis eriphus | 30.88579 | 18.0022558 | 0.1433050 | 0.7859408 |
Pristimantis ernesti | 30.96070 | 27.8789449 | 0.1428195 | 1.1666442 |
Pristimantis erythropleura | 30.95855 | 33.2708610 | 0.1402391 | 1.3678111 |
Pristimantis esmeraldas | 31.00188 | 31.1101486 | 0.1412322 | 1.2529121 |
Pristimantis eugeniae | 31.01564 | 17.3497239 | 0.1407453 | 0.7705952 |
Pristimantis euphronides | 31.10420 | 55.4705066 | 0.1425644 | 1.9878044 |
Pristimantis shrevei | 31.03947 | 62.6456620 | 0.1388183 | 2.3031677 |
Pristimantis eurydactylus | 30.89513 | 37.3792488 | 0.1412482 | 1.3321057 |
Pristimantis exoristus | 31.11290 | 32.5521196 | 0.1396677 | 1.3071759 |
Pristimantis factiosus | 31.02638 | 29.0847804 | 0.1417635 | 1.2248051 |
Pristimantis fasciatus | 31.11034 | 30.9478806 | 0.1417463 | 1.1414593 |
Pristimantis fetosus | 30.98010 | 28.0848159 | 0.1414207 | 1.2142406 |
Pristimantis floridus | 30.97654 | 10.7545091 | 0.1422311 | 0.5384819 |
Pristimantis gaigei | 31.11979 | 39.2503184 | 0.1396281 | 1.5303223 |
Pristimantis galdi | 30.89531 | 23.7534747 | 0.1421262 | 1.0024282 |
Pristimantis ganonotus | 31.04577 | 11.4329810 | 0.1415401 | 0.5615751 |
Pristimantis gladiator | 32.09258 | 19.8547177 | 0.1407485 | 0.8669631 |
Pristimantis glandulosus | 31.12857 | 16.1265285 | 0.1430663 | 0.7313217 |
Pristimantis inusitatus | 30.97910 | 15.8326305 | 0.1423543 | 0.7186755 |
Pristimantis gracilis | 31.03441 | 33.0100886 | 0.1363854 | 1.3977053 |
Pristimantis grandiceps | 30.98616 | 25.0017438 | 0.1411065 | 1.1079352 |
Pristimantis gutturalis | 31.03603 | 43.8059575 | 0.1434507 | 1.5865285 |
Pristimantis hectus | 31.03819 | 19.2007100 | 0.1431320 | 0.8401856 |
Pristimantis helvolus | 30.94958 | 26.9358098 | 0.1431268 | 1.1387968 |
Pristimantis hernandezi | 30.90182 | 25.2623794 | 0.1432197 | 1.0338119 |
Pristimantis huicundo | 31.01221 | 22.8578875 | 0.1430645 | 1.0129607 |
Pristimantis hybotragus | 30.96826 | 35.5914915 | 0.1409165 | 1.4197549 |
Pristimantis ignicolor | 30.95864 | 15.8921168 | 0.1421994 | 0.7204050 |
Pristimantis illotus | 31.00542 | 18.1408776 | 0.1413864 | 0.8149204 |
Pristimantis imitatrix | 31.17198 | 35.8426560 | 0.1429683 | 1.5922203 |
Pristimantis incanus | 31.10567 | 17.7980146 | 0.1427471 | 0.8087484 |
Pristimantis infraguttatus | 30.87681 | 16.8190598 | 0.1431446 | 0.8131664 |
Pristimantis inguinalis | 30.97935 | 33.9561596 | 0.1428909 | 1.2313619 |
Pristimantis insignitus | 31.12924 | 29.2764024 | 0.1436091 | 1.0798418 |
Pristimantis ixalus | 30.49587 | 35.3385936 | 0.1418652 | 1.4322975 |
Pristimantis jaimei | 31.00442 | 27.9871144 | 0.1403284 | 1.1458831 |
Pristimantis johannesdei | 31.03024 | 36.1278311 | 0.1405464 | 1.4223960 |
Pristimantis jorgevelosai | 30.41636 | 27.7473935 | 0.1429881 | 1.1724203 |
Pristimantis juanchoi | 31.08469 | 33.9087260 | 0.1405530 | 1.3806122 |
Pristimantis palmeri | 31.08964 | 29.6292785 | 0.1427813 | 1.2298588 |
Pristimantis jubatus | 31.01363 | 28.4354079 | 0.1404870 | 1.1682270 |
Pristimantis kareliae | 30.62263 | 31.4207196 | 0.1420042 | 1.1652421 |
Pristimantis katoptroides | 30.98854 | 20.6591759 | 0.1401472 | 0.8655198 |
Pristimantis lacrimosus | 31.02499 | 35.2857229 | 0.1400527 | 1.4349018 |
Pristimantis lanthanites | 31.15526 | 36.2419637 | 0.1413025 | 1.3310129 |
Pristimantis thectopternus | 30.96342 | 27.5176553 | 0.1387615 | 1.1506663 |
Pristimantis lasalleorum | 30.99091 | 38.1523427 | 0.1412322 | 1.4455790 |
Pristimantis lemur | 30.94577 | 29.5296102 | 0.1426418 | 1.2089632 |
Pristimantis leoni | 31.17578 | 20.4060313 | 0.1410074 | 0.8917304 |
Pristimantis leptolophus | 30.99297 | 32.8452337 | 0.1415071 | 1.3396492 |
Pristimantis leucopus | 30.94169 | 22.3285497 | 0.1424323 | 0.9692936 |
Pristimantis librarius | 29.52542 | 24.7320189 | 0.1429483 | 0.9607851 |
Pristimantis lichenoides | 30.56387 | 27.7422474 | 0.1416321 | 1.2033160 |
Pristimantis lirellus | 30.85436 | 25.3456675 | 0.1393980 | 1.0699250 |
Pristimantis lividus | 30.92449 | 16.0975712 | 0.1421044 | 0.7362307 |
Pristimantis llojsintuta | 31.06710 | 24.8913510 | 0.1395217 | 1.2775557 |
Pristimantis loustes | 31.03870 | 22.8780460 | 0.1418456 | 0.9787711 |
Pristimantis lucasi | 30.95016 | 22.3386536 | 0.1431706 | 1.0447456 |
Pristimantis luscombei | 30.99602 | 31.9487270 | 0.1432344 | 1.2146376 |
Pristimantis luteolateralis | 30.94180 | 10.9410833 | 0.1400919 | 0.5452063 |
Pristimantis walkeri | 31.05436 | 20.7722034 | 0.1419659 | 0.8629004 |
Pristimantis lythrodes | 31.06595 | 41.5520988 | 0.1408350 | 1.4174492 |
Pristimantis maculosus | 30.88284 | 22.1050325 | 0.1458932 | 1.0201969 |
Pristimantis marahuaka | 31.09973 | 36.0792122 | 0.1406780 | 1.3917722 |
Pristimantis marmoratus | 31.15084 | 37.1581950 | 0.1431021 | 1.3582951 |
Pristimantis pulvinatus | 30.99623 | 32.0297065 | 0.1408281 | 1.1998580 |
Pristimantis mars | 31.13492 | 29.9757437 | 0.1410705 | 1.2998724 |
Pristimantis martiae | 31.14181 | 33.9794823 | 0.1428153 | 1.2430232 |
Pristimantis megalops | 31.28653 | 28.5724611 | 0.1393332 | 1.0535391 |
Pristimantis melanogaster | 31.11472 | 29.9788783 | 0.1411899 | 1.3623086 |
Pristimantis melanoproctus | 30.89197 | 24.7123419 | 0.1402746 | 1.0987402 |
Pristimantis memorans | 30.57459 | 38.7427324 | 0.1426958 | 1.4201082 |
Pristimantis mendax | 30.97976 | 25.3237794 | 0.1400269 | 1.2093054 |
Pristimantis meridionalis | 30.97244 | 15.3689050 | 0.1430115 | 0.7427748 |
Pristimantis metabates | 30.50830 | 27.8598748 | 0.1416548 | 1.1114250 |
Pristimantis minutulus | 30.92100 | 30.5944178 | 0.1395620 | 1.3868822 |
Pristimantis miyatai | 30.98044 | 24.7035167 | 0.1426732 | 1.0581394 |
Pristimantis mnionaetes | 30.99009 | 23.2522444 | 0.1417250 | 1.0267805 |
Pristimantis modipeplus | 31.00112 | 14.5615419 | 0.1393807 | 0.6449877 |
Pristimantis molybrignus | 30.92677 | 31.0381219 | 0.1409734 | 1.2670585 |
Pristimantis mondolfii | 30.98396 | 24.5716902 | 0.1410532 | 1.0927788 |
Pristimantis moro | 31.04167 | 40.6527797 | 0.1401642 | 1.4894951 |
Pristimantis muricatus | 30.99879 | 19.3788663 | 0.1418374 | 0.8340209 |
Pristimantis muscosus | 30.47629 | 27.5694699 | 0.1393743 | 1.1638503 |
Pristimantis museosus | 30.85969 | 47.6611803 | 0.1424272 | 1.7378639 |
Pristimantis myersi | 31.10556 | 26.0797398 | 0.1419671 | 1.0869093 |
Pristimantis myops | 31.09031 | 38.7731987 | 0.1435862 | 1.5991370 |
Pristimantis nephophilus | 31.00351 | 27.5857737 | 0.1405419 | 1.1682081 |
Pristimantis nicefori | 30.95316 | 24.4018390 | 0.1419596 | 1.0582320 |
Pristimantis nigrogriseus | 30.56277 | 18.0240662 | 0.1405156 | 0.7865081 |
Pristimantis nyctophylax | 30.99949 | 15.6362817 | 0.1427595 | 0.6716046 |
Pristimantis subsigillatus | 31.04304 | 28.9475421 | 0.1397987 | 1.1571046 |
Pristimantis obmutescens | 30.94886 | 27.4318754 | 0.1422884 | 1.1432767 |
Pristimantis ocellatus | 30.94326 | 29.2316722 | 0.1419846 | 1.2047933 |
Pristimantis ocreatus | 32.16620 | 24.6420530 | 0.1418018 | 1.1112376 |
Pristimantis thymelensis | 31.21232 | 20.4512962 | 0.1419016 | 0.9122795 |
Pristimantis pyrrhomerus | 31.22721 | 19.9091226 | 0.1405021 | 0.8555781 |
Pristimantis olivaceus | 31.03730 | 26.1817107 | 0.1396743 | 1.2909148 |
Pristimantis orcesi | 30.95721 | 13.1145989 | 0.1441066 | 0.6231991 |
Pristimantis orcus | 31.01646 | 35.0385029 | 0.1407863 | 1.3142737 |
Pristimantis orestes | 31.09210 | 18.4353512 | 0.1433152 | 0.7741260 |
Pristimantis ornatissimus | 31.12050 | 20.0956209 | 0.1425152 | 0.8658250 |
Pristimantis ornatus | 31.09393 | 24.0478056 | 0.1404676 | 1.1306961 |
Pristimantis orpacobates | 31.02967 | 33.3363512 | 0.1423085 | 1.3467948 |
Pristimantis orphnolaimus | 30.98756 | 33.0610276 | 0.1427460 | 1.2607054 |
Pristimantis ortizi | 31.05697 | 21.6701433 | 0.1421378 | 0.9749166 |
Pristimantis padrecarlosi | 30.48498 | 30.8618487 | 0.1383178 | 1.2806937 |
Pristimantis paisa | 30.54892 | 23.5428405 | 0.1424895 | 1.0840128 |
Pristimantis pardalinus | 31.13152 | 24.5383503 | 0.1427251 | 1.4377926 |
Pristimantis parectatus | 30.96102 | 25.7633283 | 0.1433979 | 1.1350445 |
Pristimantis parvillus | 31.17982 | 23.2446669 | 0.1411135 | 0.9405880 |
Pristimantis pastazensis | 31.08526 | 15.0864337 | 0.1396667 | 0.6723420 |
Pristimantis pataikos | 30.96814 | 24.4920676 | 0.1394702 | 1.1278775 |
Pristimantis paulodutrai | 31.04842 | 24.7864975 | 0.1398485 | 0.9781370 |
Pristimantis paululus | 31.14335 | 25.8415530 | 0.1410945 | 1.0429326 |
Pristimantis pecki | 30.86925 | 23.6925658 | 0.1420322 | 0.9757362 |
Pristimantis pedimontanus | 31.17358 | 30.0254388 | 0.1418013 | 1.1746082 |
Pristimantis penelopus | 30.98589 | 31.4197683 | 0.1433690 | 1.2376760 |
Pristimantis peraticus | 31.20949 | 35.4678967 | 0.1423991 | 1.4100212 |
Pristimantis percnopterus | 30.95001 | 29.5502153 | 0.1414836 | 1.2552033 |
Pristimantis percultus | 30.94087 | 21.9192782 | 0.1400704 | 0.9623358 |
Pristimantis permixtus | 30.96150 | 29.9036583 | 0.1423132 | 1.2551718 |
Pristimantis uranobates | 30.54872 | 25.7850434 | 0.1399484 | 1.1182820 |
Pristimantis peruvianus | 31.16337 | 35.1613759 | 0.1382450 | 1.2881087 |
Pristimantis petersi | 31.11697 | 24.7322169 | 0.1430740 | 1.0363554 |
Pristimantis petrobardus | 30.99813 | 34.8430202 | 0.1423793 | 1.5259349 |
Pristimantis phalaroinguinis | 31.02674 | 39.8946293 | 0.1419069 | 1.6276096 |
Pristimantis phalarus | 30.93226 | 40.9695158 | 0.1413561 | 1.6929737 |
Pristimantis philipi | 31.03378 | 27.3652477 | 0.1418737 | 1.0141438 |
Pristimantis piceus | 31.07969 | 27.4780217 | 0.1426077 | 1.1613276 |
Pristimantis pinguis | 31.10027 | 34.6462867 | 0.1431135 | 1.5509297 |
Pristimantis pirrensis | 31.02866 | 36.4143273 | 0.1411202 | 1.3784711 |
Pristimantis platychilus | 30.97487 | 31.3591842 | 0.1444373 | 1.2511241 |
Pristimantis pleurostriatus | 30.91447 | 29.8297626 | 0.1408134 | 1.1603466 |
Pristimantis polemistes | 30.61866 | 40.3445245 | 0.1412440 | 1.5262871 |
Pristimantis polychrus | 31.02767 | 30.0960965 | 0.1419844 | 1.2054404 |
Pristimantis prolatus | 31.01668 | 20.5522148 | 0.1423454 | 0.8786745 |
Pristimantis proserpens | 31.03421 | 20.9047080 | 0.1388187 | 0.9012766 |
Pristimantis pruinatus | 31.05500 | 42.0822268 | 0.1412989 | 1.5544402 |
Pristimantis pseudoacuminatus | 31.12590 | 34.8864740 | 0.1401397 | 1.3565517 |
Pristimantis pteridophilus | 30.86879 | 12.4784324 | 0.1441286 | 0.6109418 |
Pristimantis ptochus | 30.99640 | 34.0689748 | 0.1388606 | 1.3936774 |
Pristimantis zophus | 30.94868 | 27.5019361 | 0.1397991 | 1.1073337 |
Pristimantis pugnax | 30.47241 | 29.9969420 | 0.1404515 | 1.2399931 |
Pristimantis quantus | 30.98312 | 36.2395981 | 0.1419822 | 1.5027146 |
Pristimantis racemus | 31.04980 | 30.0880680 | 0.1425358 | 1.2590947 |
Pristimantis ramagii | 31.05375 | 28.6680858 | 0.1436519 | 1.1204309 |
Pristimantis repens | 31.02180 | 30.2625146 | 0.1401814 | 1.2364915 |
Pristimantis restrepoi | 31.14422 | 33.5623603 | 0.1399311 | 1.3463781 |
Pristimantis reticulatus | 30.99040 | 35.0464910 | 0.1415182 | 1.2914588 |
Pristimantis rhabdocnemus | 31.03103 | 24.7378210 | 0.1385865 | 1.1587276 |
Pristimantis rhabdolaemus | 30.92747 | 18.4053309 | 0.1430371 | 1.0340326 |
Pristimantis rhodoplichus | 31.16764 | 30.5367960 | 0.1392635 | 1.3016393 |
Pristimantis rhodostichus | 30.96886 | 26.3299548 | 0.1402941 | 1.0948365 |
Pristimantis ridens | 30.99763 | 41.5837228 | 0.1430745 | 1.5524930 |
Pristimantis rivasi | 31.21831 | 33.9846475 | 0.1415384 | 1.2667887 |
Pristimantis riveroi | 30.92312 | 34.4652495 | 0.1414861 | 1.2781512 |
Pristimantis versicolor | 31.42295 | 19.5516500 | 0.1388369 | 0.8198424 |
Pristimantis rosadoi | 30.99328 | 22.0879682 | 0.1427403 | 0.9157437 |
Pristimantis roseus | 30.52836 | 36.2713502 | 0.1437693 | 1.3911811 |
Pristimantis rozei | 31.01680 | 39.7664240 | 0.1373163 | 1.4634694 |
Pristimantis rubicundus | 30.90412 | 16.8638550 | 0.1424053 | 0.7343336 |
Pristimantis ruedai | 30.54214 | 33.2981122 | 0.1409599 | 1.3368777 |
Pristimantis rufioculis | 30.99144 | 29.8754013 | 0.1402570 | 1.2689262 |
Pristimantis ruidus | 30.87723 | 28.8857227 | 0.1425415 | 1.0710738 |
Pristimantis ruthveni | 31.19762 | 27.6191251 | 0.1424867 | 1.0178320 |
Pristimantis saltissimus | 30.96813 | 35.7762609 | 0.1375490 | 1.3274306 |
Pristimantis samaipatae | 30.97920 | 31.1765705 | 0.1407612 | 1.3964413 |
Pristimantis sanctaemartae | 30.85661 | 28.2367332 | 0.1441712 | 1.0418106 |
Pristimantis sanguineus | 30.98081 | 33.5913789 | 0.1436832 | 1.3372392 |
Pristimantis satagius | 31.08973 | 39.6979813 | 0.1420466 | 1.5012303 |
Pristimantis schultei | 31.04123 | 26.2972190 | 0.1399164 | 1.1798861 |
Pristimantis scitulus | 30.89022 | 18.5430376 | 0.1410441 | 1.1873176 |
Pristimantis scoloblepharus | 30.37945 | 25.5260604 | 0.1424168 | 1.1274270 |
Pristimantis scolodiscus | 31.02411 | 26.1583929 | 0.1429243 | 1.1030193 |
Pristimantis scopaeus | 30.91041 | 25.7972223 | 0.1424425 | 1.1472714 |
Pristimantis seorsus | 30.98178 | 47.3745814 | 0.1427000 | 2.3061583 |
Pristimantis serendipitus | 31.06410 | 23.2633857 | 0.1438600 | 1.0354008 |
Pristimantis signifer | 31.08860 | 39.0486327 | 0.1426785 | 1.6137226 |
Pristimantis silverstonei | 31.06195 | 36.4513936 | 0.1419594 | 1.4542824 |
Pristimantis simonsii | 31.04819 | 32.0209609 | 0.1408939 | 1.4323920 |
Pristimantis simoteriscus | 31.13892 | 25.4689256 | 0.1398859 | 1.1893082 |
Pristimantis siopelus | 30.85026 | 38.7212530 | 0.1436912 | 1.5601065 |
Pristimantis skydmainos | 30.98755 | 34.4289783 | 0.1407689 | 1.4345369 |
Pristimantis sobetes | 30.89730 | 10.8251927 | 0.1444545 | 0.5424297 |
Pristimantis spectabilis | 31.04663 | 25.1600341 | 0.1414419 | 1.1859598 |
Pristimantis spilogaster | 30.94591 | 32.9770680 | 0.1436661 | 1.3381266 |
Pristimantis spinosus | 30.99944 | 16.2417290 | 0.1428378 | 0.6972266 |
Pristimantis stenodiscus | 31.07251 | 35.2668011 | 0.1422943 | 1.2952023 |
Pristimantis sternothylax | 30.95866 | 32.7328081 | 0.1418117 | 1.3534177 |
Pristimantis stictoboubonus | 31.08280 | 32.4137441 | 0.1429509 | 1.4256550 |
Pristimantis stictogaster | 31.26460 | 24.9480628 | 0.1416979 | 1.1703742 |
Pristimantis suetus | 30.97820 | 25.1537636 | 0.1415244 | 1.0492079 |
Pristimantis sulculus | 31.03502 | 41.2071863 | 0.1424858 | 1.6599008 |
Pristimantis supernatis | 30.38250 | 27.4479094 | 0.1422440 | 1.1640589 |
Pristimantis susaguae | 30.88780 | 30.4476306 | 0.1436859 | 1.2856409 |
Pristimantis taciturnus | 30.40151 | 22.5335381 | 0.1441158 | 0.9785597 |
Pristimantis yukpa | 32.55746 | 24.1231741 | 0.1385697 | 0.9112438 |
Pristimantis tamsitti | 31.10146 | 32.5721074 | 0.1394898 | 1.2956865 |
Pristimantis tantanti | 30.94483 | 42.3491186 | 0.1435596 | 1.9075121 |
Pristimantis tanyrhynchus | 31.02337 | 41.6188034 | 0.1459125 | 2.0253399 |
Pristimantis tayrona | 31.06285 | 31.2994848 | 0.1418545 | 1.1549187 |
Pristimantis telefericus | 31.19927 | 27.9885284 | 0.1416909 | 1.0903882 |
Pristimantis tenebrionis | 30.99324 | 22.7475794 | 0.1426276 | 0.9372821 |
Pristimantis thymalopsoides | 30.97237 | 10.3808888 | 0.1435540 | 0.5188797 |
Pristimantis torrenticola | 31.01695 | 28.8436363 | 0.1419078 | 1.2521610 |
Pristimantis tribulosus | 30.97391 | 31.9106293 | 0.1414754 | 1.3833169 |
Pristimantis tubernasus | 31.00483 | 29.4958275 | 0.1422894 | 1.1656341 |
Pristimantis turik | 30.97903 | 31.0461470 | 0.1437846 | 1.1183692 |
Pristimantis turpinorum | 31.05377 | 91.3204466 | 0.1407496 | 3.4215602 |
Pristimantis turumiquirensis | 31.07634 | 38.6896189 | 0.1417143 | 1.4255265 |
Pristimantis uisae | 30.93802 | 26.3068015 | 0.1404259 | 1.1239710 |
Pristimantis urichi | 31.20113 | 61.4565628 | 0.1440819 | 2.3181679 |
Pristimantis variabilis | 30.95869 | 35.6481018 | 0.1424229 | 1.3216277 |
Pristimantis veletis | 30.96942 | 29.3768716 | 0.1429881 | 1.2721732 |
Pristimantis ventriguttatus | 31.05523 | 44.6782600 | 0.1422234 | 1.8216824 |
Pristimantis ventrimarmoratus | 31.03863 | 29.1816350 | 0.1432615 | 1.2175494 |
Pristimantis verecundus | 31.01718 | 22.7997633 | 0.1419316 | 1.0007582 |
Pristimantis vicarius | 31.16592 | 31.7754836 | 0.1384869 | 1.3167770 |
Pristimantis vidua | 31.17648 | 14.2408757 | 0.1408012 | 0.6604716 |
Pristimantis viejas | 31.10940 | 35.1952321 | 0.1405209 | 1.3858712 |
Pristimantis vilarsi | 31.12640 | 37.2334883 | 0.1407786 | 1.3339770 |
Pristimantis vilcabambae | 31.19602 | 41.4015047 | 0.1415052 | 2.0130128 |
Pristimantis vinhai | 31.12242 | 25.8692048 | 0.1430886 | 1.0241214 |
Pristimantis viridicans | 31.17356 | 28.0927504 | 0.1431327 | 1.1428555 |
Pristimantis viridis | 30.88892 | 38.9709360 | 0.1419723 | 1.4875418 |
Pristimantis wagteri | 31.22214 | 29.5078329 | 0.1418191 | 1.3394063 |
Pristimantis waoranii | 30.95652 | 38.0958077 | 0.1428619 | 1.4690242 |
Pristimantis wiensi | 30.88954 | 28.3655121 | 0.1409499 | 1.2401467 |
Pristimantis xeniolum | 31.02246 | 33.6941104 | 0.1414176 | 1.3907970 |
Pristimantis xestus | 31.04127 | 39.3914174 | 0.1404471 | 1.5157500 |
Pristimantis xylochobates | 30.97269 | 34.6848787 | 0.1438149 | 1.4329821 |
Pristimantis yaviensis | 31.13343 | 33.9921211 | 0.1388608 | 1.2550159 |
Pristimantis yustizi | 31.00409 | 28.0476600 | 0.1435642 | 1.1013728 |
Pristimantis zeuctotylus | 31.06773 | 38.6334764 | 0.1411715 | 1.3971515 |
Pristimantis zimmermanae | 31.20215 | 34.2278168 | 0.1424212 | 1.1976894 |
Pristimantis zoilae | 31.07241 | 25.8954192 | 0.1413943 | 1.0743381 |
Dischidodactylus colonnelloi | 29.74155 | 30.8703075 | 0.1448719 | 1.1878822 |
Dischidodactylus duidensis | 29.90281 | 35.4053376 | 0.1435711 | 1.3635790 |
Geobatrachus walkeri | 29.84019 | 30.3138705 | 0.1427746 | 1.1181233 |
Niceforonia adenobrachia | 29.87077 | 24.9120149 | 0.1430067 | 1.1695673 |
Niceforonia nana | 29.93929 | 27.0819074 | 0.1445564 | 1.1521140 |
Strabomantis anatipes | 29.23740 | 28.9460745 | 0.1426928 | 1.1812103 |
Strabomantis ingeri | 29.84504 | 30.0653342 | 0.1444690 | 1.2733725 |
Strabomantis cheiroplethus | 29.23801 | 40.6758501 | 0.1455520 | 1.5894479 |
Strabomantis anomalus | 29.24815 | 35.9188515 | 0.1417881 | 1.4136362 |
Strabomantis bufoniformis | 29.21992 | 39.8614863 | 0.1453446 | 1.5188789 |
Strabomantis cadenai | 29.90465 | 38.5093787 | 0.1445026 | 1.4583771 |
Strabomantis ruizi | 29.89065 | 37.5370451 | 0.1434772 | 1.5286478 |
Strabomantis helonotus | 29.99954 | 16.0279693 | 0.1432090 | 0.7229732 |
Strabomantis zygodactylus | 29.41606 | 38.2636596 | 0.1420161 | 1.4927472 |
Strabomantis cornutus | 29.90696 | 25.0424044 | 0.1437065 | 1.0411542 |
Strabomantis laticorpus | 29.94447 | 38.7313240 | 0.1434167 | 1.3764923 |
Strabomantis biporcatus | 29.96997 | 37.5653163 | 0.1435798 | 1.3910374 |
Strabomantis cerastes | 29.93989 | 37.0092946 | 0.1423630 | 1.5048930 |
Strabomantis necopinus | 29.88907 | 24.1951147 | 0.1428273 | 1.0604300 |
Strabomantis sulcatus | 29.91077 | 35.3412344 | 0.1446140 | 1.3158555 |
Barycholos pulcher | 28.79422 | 22.8095685 | 0.1470936 | 0.9044686 |
Barycholos ternetzi | 28.68012 | 25.5851096 | 0.1480911 | 0.9386009 |
Noblella heyeri | 29.01416 | 23.5237046 | 0.1439845 | 1.0127522 |
Noblella lochites | 28.96411 | 27.0173966 | 0.1459307 | 1.0833723 |
Noblella lynchi | 28.74718 | 32.1515731 | 0.1459776 | 1.3722798 |
Noblella ritarasquinae | 28.82412 | 20.4614312 | 0.1450143 | 1.1038921 |
Noblella carrascoicola | 28.78725 | 21.0469598 | 0.1441390 | 1.1326133 |
Noblella coloma | 28.77911 | 9.9057673 | 0.1456369 | 0.4926721 |
Noblella duellmani | 28.71363 | 23.4573231 | 0.1456906 | 1.0983695 |
Bryophryne bustamantei | 26.60975 | 13.0464913 | 0.1521829 | 0.7013680 |
Bryophryne zonalis | 26.66583 | 6.5073402 | 0.1489830 | 0.4048702 |
Euparkerella brasiliensis | 28.76907 | 25.4585616 | 0.1443181 | 0.9588340 |
Euparkerella cochranae | 28.81875 | 27.3426448 | 0.1417638 | 1.0475478 |
Euparkerella tridactyla | 28.76712 | 31.9229835 | 0.1460796 | 1.2388806 |
Euparkerella robusta | 28.79471 | 35.5500151 | 0.1426558 | 1.4203507 |
Holoaden bradei | 28.75090 | 23.0015136 | 0.1459631 | 0.8644424 |
Holoaden pholeter | 28.73927 | 23.9808557 | 0.1449454 | 0.8919926 |
Holoaden luederwaldti | 28.79675 | 22.2710348 | 0.1453019 | 0.8635545 |
Psychrophrynella bagrecito | 28.47030 | 7.6683419 | 0.1477262 | 0.4710627 |
Ceratophrys testudo | 36.79448 | 12.5892948 | 0.1294958 | 0.5625136 |
Ceratophrys calcarata | 37.71563 | 29.9213878 | 0.1306390 | 1.0997181 |
Ceratophrys cornuta | 36.71653 | 33.4218218 | 0.1331219 | 1.2116541 |
Ceratophrys stolzmanni | 37.70877 | 20.5614047 | 0.1301364 | 0.8397476 |
Ceratophrys ornata | 37.77087 | 8.0353426 | 0.1267859 | 0.3511068 |
Chacophrys pierottii | 38.07281 | 16.9679853 | 0.1280263 | 0.6721132 |
Lepidobatrachus asper | 37.47809 | 15.0414316 | 0.1289875 | 0.5634447 |
Lepidobatrachus laevis | 37.51986 | 16.1196060 | 0.1289666 | 0.5973382 |
Insuetophrynus acarpicus | 33.83549 | 10.1114811 | 0.1320892 | 0.5647997 |
Rhinoderma darwinii | 34.42020 | 8.4885805 | 0.1319995 | 0.5506988 |
Rhinoderma rufum | 34.41090 | 14.1063158 | 0.1312037 | 0.7221340 |
Telmatobius arequipensis | 34.66308 | 11.7285360 | 0.1329023 | 0.7477356 |
Telmatobius oxycephalus | 34.63942 | 16.3229382 | 0.1340871 | 0.8980337 |
Telmatobius sanborni | 34.73773 | 21.2165792 | 0.1330462 | 1.2988733 |
Telmatobius verrucosus | 34.65678 | 25.9555200 | 0.1327813 | 1.3855662 |
Telmatobius atacamensis | 34.55270 | 10.8900981 | 0.1319866 | 0.7496478 |
Telmatobius ignavus | 34.59028 | 35.0948030 | 0.1335104 | 1.5369616 |
Telmatobius atahualpai | 34.70419 | 26.8943991 | 0.1319562 | 1.3173212 |
Telmatobius rimac | 34.75774 | 24.1389553 | 0.1283266 | 1.2681115 |
Telmatobius yuracare | 34.56443 | 39.0527171 | 0.1356199 | 1.7297011 |
Telmatobius simonsi | 34.61906 | 27.2821549 | 0.1319229 | 1.3566826 |
Telmatobius brevipes | 34.71546 | 22.1351107 | 0.1293928 | 1.0999859 |
Telmatobius colanensis | 33.70486 | 35.1712204 | 0.1357734 | 1.4529040 |
Telmatobius brevirostris | 34.70112 | 23.4735871 | 0.1340476 | 1.1730307 |
Telmatobius carrillae | 34.67065 | 14.1355751 | 0.1313056 | 0.8690727 |
Telmatobius peruvianus | 34.64273 | 10.8204129 | 0.1337382 | 0.7361577 |
Telmatobius hockingi | 33.80141 | 13.3636187 | 0.1327139 | 0.7644904 |
Telmatobius chusmisensis | 33.85149 | 11.7761023 | 0.1321257 | 0.7416641 |
Telmatobius intermedius | 34.69791 | 19.7768738 | 0.1316179 | 1.2962607 |
Telmatobius scrocchii | 34.62945 | 15.6321810 | 0.1326299 | 0.7424888 |
Telmatobius contrerasi | 33.89042 | 10.8989015 | 0.1320430 | 0.5140180 |
Telmatobius philippii | 34.69283 | 6.0106151 | 0.1307274 | 0.5767083 |
Telmatobius culeus | 34.54217 | 16.2800182 | 0.1320651 | 0.9988798 |
Telmatobius gigas | 33.79863 | 13.9437135 | 0.1333855 | 0.8863709 |
Telmatobius hintoni | 34.57949 | 22.9998124 | 0.1335229 | 1.2532377 |
Telmatobius huayra | 34.58479 | 10.4513398 | 0.1323496 | 0.7052357 |
Telmatobius zapahuirensis | 34.64117 | 8.9078332 | 0.1321290 | 0.5250326 |
Telmatobius dankoi | 34.58644 | 13.6696395 | 0.1326362 | 0.9306192 |
Telmatobius vilamensis | 34.69893 | 13.1325514 | 0.1324396 | 0.8934568 |
Telmatobius degener | 34.56807 | 28.8520380 | 0.1336764 | 1.2803406 |
Telmatobius fronteriensis | 33.77814 | 8.1448506 | 0.1314647 | 0.6754697 |
Telmatobius schreiteri | 34.51829 | 13.4149906 | 0.1338666 | 0.6573820 |
Telmatobius halli | 34.74289 | 5.7731376 | 0.1307878 | 0.5621666 |
Telmatobius jelskii | 34.66788 | 13.1387238 | 0.1319360 | 0.7879927 |
Telmatobius hauthali | 34.65375 | 5.9141444 | 0.1341665 | 0.4672283 |
Telmatobius necopinus | 33.90055 | 19.0730176 | 0.1323916 | 0.9179413 |
Telmatobius hypselocephalus | 34.62748 | 11.4581677 | 0.1309177 | 0.7895836 |
Telmatobius mayoloi | 34.57327 | 21.4243544 | 0.1358135 | 0.9740227 |
Telmatobius platycephalus | 34.49522 | 14.1934119 | 0.1334609 | 0.9052351 |
Telmatobius latirostris | 34.66668 | 39.4240321 | 0.1308527 | 1.7212200 |
Telmatobius timens | 34.66383 | 16.0434680 | 0.1312002 | 0.9738447 |
Telmatobius marmoratus | 34.65960 | 12.1862336 | 0.1326062 | 0.7712763 |
Telmatobius stephani | 34.59154 | 16.4196090 | 0.1309627 | 0.7813183 |
Telmatobius niger | 34.58312 | 19.7923450 | 0.1362756 | 0.8428839 |
Telmatobius pefauri | 33.67388 | 8.7938029 | 0.1338766 | 0.5259015 |
Telmatobius punctatus | 34.54418 | 21.0255468 | 0.1352885 | 1.0776961 |
Telmatobius pinguiculus | 34.54978 | 12.2220735 | 0.1322846 | 0.6231694 |
Telmatobius pisanoi | 34.56154 | 6.2354584 | 0.1312654 | 0.4216268 |
Telmatobius thompsoni | 34.66865 | 31.0705354 | 0.1335804 | 1.3737733 |
Telmatobius truebae | 34.64204 | 35.8516899 | 0.1329205 | 1.6489196 |
Cycloramphus acangatan | 34.12301 | 21.6349533 | 0.1335735 | 0.8209827 |
Cycloramphus valae | 33.50463 | 16.9667079 | 0.1317982 | 0.6851981 |
Cycloramphus eleutherodactylus | 34.03766 | 21.2664114 | 0.1341898 | 0.8142754 |
Cycloramphus juimirim | 33.46189 | 21.2050638 | 0.1339627 | 0.8002706 |
Cycloramphus asper | 33.57773 | 17.8178319 | 0.1349373 | 0.7245525 |
Cycloramphus izecksohni | 33.53925 | 18.5282720 | 0.1354966 | 0.7473979 |
Cycloramphus bolitoglossus | 34.13196 | 18.2337843 | 0.1358806 | 0.7253940 |
Cycloramphus granulosus | 33.50223 | 24.3637207 | 0.1344150 | 0.9497888 |
Cycloramphus boraceiensis | 33.56138 | 27.5805190 | 0.1348102 | 1.0631708 |
Cycloramphus brasiliensis | 33.56526 | 27.2649647 | 0.1347321 | 1.0266068 |
Cycloramphus diringshofeni | 34.20279 | 18.7078672 | 0.1352356 | 0.7476095 |
Cycloramphus organensis | 34.14389 | 25.6001728 | 0.1332857 | 0.9743229 |
Zachaenus carvalhoi | 34.13853 | 36.2444704 | 0.1359304 | 1.4046595 |
Zachaenus parvulus | 34.09740 | 31.0236825 | 0.1338144 | 1.2019479 |
Cycloramphus carvalhoi | 34.15596 | 25.3284932 | 0.1344062 | 0.9466716 |
Cycloramphus stejnegeri | 34.20689 | 25.0442978 | 0.1319044 | 0.9416714 |
Cycloramphus catarinensis | 34.11660 | 19.3080578 | 0.1334979 | 0.7765676 |
Cycloramphus faustoi | 33.51151 | 24.6110986 | 0.1346158 | 1.0035638 |
Cycloramphus cedrensis | 33.55917 | 18.4372829 | 0.1345789 | 0.7373661 |
Cycloramphus lutzorum | 33.52594 | 19.4661935 | 0.1333052 | 0.7568050 |
Cycloramphus semipalmatus | 33.51292 | 20.7729623 | 0.1345247 | 0.8052103 |
Cycloramphus dubius | 33.48138 | 19.2039047 | 0.1342796 | 0.7366764 |
Cycloramphus duseni | 33.54028 | 17.2132126 | 0.1337542 | 0.7063795 |
Cycloramphus migueli | 34.15050 | 33.8958246 | 0.1331605 | 1.3338345 |
Cycloramphus rhyakonastes | 33.45096 | 17.0250230 | 0.1337780 | 0.6949129 |
Cycloramphus mirandaribeiroi | 33.54921 | 17.1865192 | 0.1335203 | 0.7137500 |
Cycloramphus ohausi | 33.54305 | 25.0778105 | 0.1351217 | 0.9435750 |
Cycloramphus bandeirensis | 33.64941 | 30.9880660 | 0.1316952 | 1.2000347 |
Cycloramphus fuliginosus | 33.55294 | 34.2914633 | 0.1307345 | 1.3343813 |
Thoropa lutzi | 33.65193 | 33.8151049 | 0.1325176 | 1.2990627 |
Thoropa megatympanum | 33.62663 | 21.4759799 | 0.1313875 | 0.8452134 |
Thoropa miliaris | 33.61804 | 26.8397553 | 0.1324745 | 1.0469858 |
Thoropa petropolitana | 33.62222 | 28.5760550 | 0.1343982 | 1.1072662 |
Thoropa saxatilis | 33.66718 | 17.0913060 | 0.1302905 | 0.6842781 |
Atelognathus ceii | 33.79099 | 4.2604501 | 0.1324595 | 0.3419694 |
Atelognathus solitarius | 33.60786 | 5.4256441 | 0.1348514 | 0.3492398 |
Atelognathus patagonicus | 33.90485 | 6.3085395 | 0.1325440 | 0.3564903 |
Atelognathus nitoi | 33.93817 | 6.2375667 | 0.1318028 | 0.3863246 |
Atelognathus praebasalticus | 33.66939 | 7.0367074 | 0.1354662 | 0.3954727 |
Atelognathus salai | 33.90844 | 4.1258330 | 0.1331864 | 0.3237586 |
Atelognathus reverberii | 33.95265 | 7.2730845 | 0.1336527 | 0.4377798 |
Batrachyla antartandica | 33.59883 | 4.0081742 | 0.1329361 | 0.2879331 |
Batrachyla nibaldoi | 33.54891 | 2.7578507 | 0.1327929 | 0.2678902 |
Batrachyla fitzroya | 33.56875 | 4.6930384 | 0.1349649 | 0.2961448 |
Batrachyla leptopus | 33.49616 | 5.9522479 | 0.1370922 | 0.4019248 |
Chaltenobatrachus grandisonae | 33.08801 | 3.2564232 | 0.1334558 | 0.3311840 |
Crossodactylus aeneus | 33.03931 | 19.3980863 | 0.1325571 | 0.7471191 |
Crossodactylus dantei | 33.07561 | 36.5151546 | 0.1312715 | 1.4185454 |
Crossodactylus gaudichaudii | 33.00234 | 21.2012612 | 0.1345407 | 0.8187714 |
Crossodactylus grandis | 32.99339 | 21.1473391 | 0.1344911 | 0.7887769 |
Crossodactylus bokermanni | 32.99551 | 16.1472118 | 0.1328247 | 0.6539075 |
Crossodactylus lutzorum | 33.00105 | 25.1715950 | 0.1326672 | 1.0119094 |
Crossodactylus caramaschii | 32.96558 | 16.2066705 | 0.1327531 | 0.6169999 |
Crossodactylus cyclospinus | 33.63075 | 23.5619804 | 0.1344478 | 0.9239673 |
Crossodactylus trachystomus | 32.99812 | 17.1069889 | 0.1355959 | 0.6795105 |
Crossodactylus dispar | 33.07296 | 19.8449613 | 0.1348048 | 0.7693472 |
Hylodes amnicola | 33.26054 | 25.1951568 | 0.1329818 | 0.9596823 |
Hylodes mertensi | 33.13434 | 20.8070055 | 0.1341468 | 0.8060029 |
Hylodes asper | 33.18229 | 21.3591567 | 0.1353130 | 0.8292778 |
Hylodes meridionalis | 33.21663 | 16.1572754 | 0.1341140 | 0.6618359 |
Hylodes babax | 33.23440 | 31.5711243 | 0.1379123 | 1.2213458 |
Hylodes vanzolinii | 33.25446 | 32.0644809 | 0.1332977 | 1.2414066 |
Hylodes cardosoi | 33.22776 | 17.8819083 | 0.1346555 | 0.6991830 |
Hylodes charadranaetes | 33.24967 | 26.4071192 | 0.1346674 | 0.9903258 |
Hylodes dactylocinus | 33.12486 | 19.8216317 | 0.1332626 | 0.7406102 |
Hylodes perplicatus | 33.15274 | 17.6525428 | 0.1322037 | 0.7161140 |
Hylodes fredi | 33.30878 | 24.5281065 | 0.1304366 | 0.9774280 |
Hylodes pipilans | 33.25016 | 26.5077883 | 0.1345352 | 0.9893390 |
Hylodes glaber | 33.17275 | 24.2238513 | 0.1341457 | 0.9065383 |
Hylodes lateristrigatus | 33.19856 | 26.0610939 | 0.1360003 | 1.0116100 |
Hylodes heyeri | 33.15231 | 18.5530664 | 0.1356004 | 0.7223787 |
Hylodes regius | 33.13088 | 20.9581048 | 0.1356388 | 0.7912548 |
Hylodes magalhaesi | 33.20012 | 21.2253273 | 0.1362685 | 0.8110364 |
Hylodes ornatus | 33.16573 | 22.4364833 | 0.1342891 | 0.8663419 |
Hylodes sazimai | 33.16375 | 23.0436813 | 0.1325119 | 0.8863607 |
Hylodes uai | 33.10539 | 18.5518362 | 0.1346628 | 0.7322748 |
Hylodes otavioi | 33.25009 | 19.0276260 | 0.1362875 | 0.7758962 |
Hylodes phyllodes | 33.23579 | 22.4995719 | 0.1339317 | 0.8661196 |
Hylodes nasus | 33.30200 | 24.3117269 | 0.1332004 | 0.9420113 |
Megaelosia apuana | 33.23314 | 35.5487469 | 0.1325719 | 1.3726256 |
Megaelosia boticariana | 33.19707 | 18.5348761 | 0.1356496 | 0.7200281 |
Megaelosia bocainensis | 33.21438 | 25.0557720 | 0.1343462 | 0.9370434 |
Megaelosia lutzae | 33.25773 | 23.5638712 | 0.1327781 | 0.8818992 |
Megaelosia goeldii | 33.18083 | 27.4775029 | 0.1338668 | 1.0539028 |
Megaelosia jordanensis | 33.79370 | 21.5187628 | 0.1332010 | 0.8224678 |
Megaelosia massarti | 33.22356 | 21.5867717 | 0.1350110 | 0.8568488 |
Alsodes australis | 31.39514 | 4.2016182 | 0.1355631 | 0.3762410 |
Alsodes verrucosus | 32.19784 | 5.6692131 | 0.1358589 | 0.3426585 |
Alsodes monticola | 31.36293 | 5.8989446 | 0.1357136 | 0.5092634 |
Alsodes valdiviensis | 32.19046 | 6.8029304 | 0.1378034 | 0.3905143 |
Alsodes barrioi | 31.10564 | 6.1060052 | 0.1353818 | 0.3382625 |
Alsodes norae | 31.92911 | 5.9453398 | 0.1371442 | 0.3293470 |
Alsodes kaweshkari | 31.97485 | 2.6963586 | 0.1369013 | 0.3407571 |
Alsodes igneus | 31.12352 | 5.5897085 | 0.1366191 | 0.3182264 |
Alsodes pehuenche | 31.07655 | 2.8902746 | 0.1343183 | 0.2114210 |
Alsodes hugoi | 31.23788 | 3.3154068 | 0.1369974 | 0.2188243 |
Alsodes tumultuosus | 31.24015 | 7.1153953 | 0.1367095 | 0.3769423 |
Alsodes montanus | 31.23196 | 6.1115248 | 0.1379114 | 0.3516474 |
Alsodes vittatus | 31.35911 | 4.8671479 | 0.1365626 | 0.2900594 |
Alsodes nodosus | 31.76241 | 8.5791622 | 0.1329496 | 0.4468066 |
Alsodes vanzolinii | 31.74138 | 9.9543427 | 0.1360826 | 0.5550421 |
Eupsophus insularis | 32.79304 | 7.7904031 | 0.1360533 | 0.4376135 |
Eupsophus roseus | 32.71224 | 7.6123335 | 0.1348966 | 0.4286785 |
Eupsophus calcaratus | 32.74084 | 5.4939991 | 0.1328178 | 0.4247834 |
Eupsophus emiliopugini | 32.13768 | 5.9912373 | 0.1325728 | 0.4194907 |
Eupsophus vertebralis | 32.11695 | 7.0178534 | 0.1360022 | 0.4072087 |
Agalychnis annae | 35.47595 | 21.7307647 | 0.1377952 | 0.8552259 |
Agalychnis moreletii | 35.49295 | 18.6119169 | 0.1390192 | 0.7043014 |
Agalychnis callidryas | 35.46635 | 24.6658990 | 0.1378682 | 0.9136052 |
Agalychnis saltator | 35.53590 | 24.9487564 | 0.1392233 | 0.9612892 |
Agalychnis lemur | 35.42286 | 36.0530176 | 0.1381264 | 1.3621485 |
Hylomantis granulosa | 35.51649 | 21.7888801 | 0.1338314 | 0.8543579 |
Phasmahyla cochranae | 35.26789 | 16.2494800 | 0.1400592 | 0.6240021 |
Phasmahyla exilis | 35.25150 | 25.6349160 | 0.1376125 | 0.9991345 |
Phasmahyla timbo | 34.85490 | 20.4312450 | 0.1387339 | 0.8216759 |
Phasmahyla guttata | 35.24952 | 16.8384604 | 0.1378225 | 0.6523626 |
Phasmahyla jandaia | 34.79290 | 15.1642315 | 0.1348960 | 0.5942568 |
Phyllomedusa araguari | 36.78356 | 16.3478947 | 0.1345944 | 0.6264157 |
Phyllomedusa venusta | 36.67512 | 24.0391666 | 0.1328591 | 0.9051186 |
Phyllomedusa bahiana | 37.46621 | 15.6093130 | 0.1323714 | 0.6202348 |
Phyllomedusa distincta | 37.45942 | 11.0313647 | 0.1351765 | 0.4342228 |
Phyllomedusa boliviana | 37.24130 | 21.3919988 | 0.1351453 | 0.7998789 |
Phyllomedusa neildi | 37.33844 | 36.9711490 | 0.1354774 | 1.3970832 |
Phyllomedusa trinitatis | 37.39728 | 23.1154661 | 0.1341718 | 0.8651376 |
Phyllomedusa tarsius | 37.37684 | 25.3369124 | 0.1366957 | 0.9159539 |
Phyllomedusa bicolor | 36.79756 | 27.4327153 | 0.1360620 | 0.9839575 |
Cruziohyla craspedopus | 36.04068 | 26.1267109 | 0.1331726 | 0.9381570 |
Phrynomedusa appendiculata | 35.77274 | 15.0669657 | 0.1374314 | 0.6082185 |
Phrynomedusa bokermanni | 35.23619 | 16.6763554 | 0.1349133 | 0.6405881 |
Phrynomedusa marginata | 35.81030 | 26.7517034 | 0.1331679 | 1.0349627 |
Phrynomedusa vanzolinii | 35.25220 | 21.6983404 | 0.1371892 | 0.8355787 |
Cyclorana novaehollandiae | 36.62636 | 11.6760214 | 0.1363513 | 0.4630402 |
Cyclorana cryptotis | 36.40147 | 18.0697052 | 0.1375290 | 0.6527935 |
Cyclorana cultripes | 36.51184 | 12.2815609 | 0.1374808 | 0.4870637 |
Cyclorana vagitus | 35.52266 | 20.4505835 | 0.1373674 | 0.7350059 |
Cyclorana longipes | 36.36642 | 19.5243469 | 0.1387786 | 0.7044470 |
Cyclorana maculosa | 36.46326 | 16.0148025 | 0.1350608 | 0.5934515 |
Cyclorana maini | 36.46833 | 11.5163360 | 0.1346441 | 0.4785642 |
Cyclorana manya | 35.50570 | 19.8376449 | 0.1368140 | 0.7206911 |
Cyclorana verrucosa | 35.50926 | 12.3910915 | 0.1333482 | 0.5159383 |
Cyclorana platycephala | 36.45699 | 11.7447001 | 0.1328896 | 0.4871091 |
Litoria dahlii | 35.63756 | 21.9273141 | 0.1372429 | 0.7838874 |
Litoria adelaidensis | 34.56871 | 12.9613984 | 0.1341716 | 0.6278135 |
Litoria chloronota | 34.88285 | 46.0113504 | 0.1382960 | 1.6553817 |
Litoria albolabris | 35.87275 | 30.7547785 | 0.1382209 | 1.1857489 |
Litoria amboinensis | 34.28117 | 25.3710899 | 0.1396543 | 0.9324738 |
Litoria darlingtoni | 34.33866 | 19.0481028 | 0.1397804 | 0.7324970 |
Litoria tyleri | 34.44840 | 11.5604450 | 0.1397056 | 0.5225625 |
Litoria andiirrmalin | 33.06679 | 24.1191675 | 0.1414683 | 0.8771848 |
Litoria booroolongensis | 32.54526 | 9.5025834 | 0.1413699 | 0.4348241 |
Litoria jungguy | 32.52507 | 17.2176598 | 0.1389910 | 0.6530966 |
Litoria wilcoxii | 32.41874 | 12.4185176 | 0.1408122 | 0.5177384 |
Litoria angiana | 33.89547 | 30.7483950 | 0.1354555 | 1.1516082 |
Litoria modica | 33.91796 | 32.2630302 | 0.1386312 | 1.2003862 |
Litoria micromembrana | 33.92882 | 32.9276142 | 0.1355646 | 1.2331947 |
Litoria arfakiana | 34.33398 | 33.5531152 | 0.1384407 | 1.2463831 |
Litoria wollastoni | 34.41827 | 32.2387701 | 0.1364934 | 1.2080966 |
Litoria aruensis | 34.41840 | 53.0065734 | 0.1374050 | 1.9761438 |
Litoria auae | 34.42847 | 28.5941703 | 0.1390678 | 1.0456826 |
Litoria cyclorhyncha | 33.92190 | 8.7270222 | 0.1359640 | 0.4328572 |
Litoria moorei | 33.90328 | 9.7643759 | 0.1386557 | 0.4737825 |
Litoria raniformis | 33.97392 | 8.2958497 | 0.1363918 | 0.4483297 |
Litoria nudidigita | 31.94183 | 7.7004185 | 0.1429406 | 0.3930123 |
Litoria daviesae | 31.91986 | 10.8165756 | 0.1398442 | 0.4879416 |
Litoria subglandulosa | 31.80385 | 11.4648456 | 0.1407635 | 0.5002891 |
Litoria spenceri | 31.70601 | 6.4917917 | 0.1402190 | 0.3314426 |
Litoria becki | 33.78152 | 36.0183304 | 0.1369968 | 1.3585991 |
Litoria biakensis | 34.31695 | 36.5353790 | 0.1358574 | 1.3348660 |
Litoria bibonius | 34.27108 | 50.1959080 | 0.1387285 | 1.8328126 |
Litoria brevipalmata | 34.57752 | 18.4237001 | 0.1343379 | 0.8018960 |
Nyctimystes avocalis | 33.85325 | 45.9892241 | 0.1379688 | 1.6800082 |
Nyctimystes montanus | 33.88460 | 41.4931738 | 0.1356912 | 1.4894596 |
Nyctimystes granti | 33.98304 | 38.7761886 | 0.1361292 | 1.4339137 |
Nyctimystes oktediensis | 34.35186 | 32.2549028 | 0.1366004 | 1.1786519 |
Nyctimystes cheesmani | 33.91736 | 29.8069769 | 0.1356161 | 1.1343102 |
Nyctimystes disruptus | 33.88131 | 32.1929471 | 0.1386057 | 1.2366929 |
Nyctimystes daymani | 33.80714 | 37.5985390 | 0.1393249 | 1.3568406 |
Nyctimystes obsoletus | 33.79340 | 34.1908306 | 0.1380862 | 1.3017244 |
Nyctimystes gularis | 33.89493 | 29.1709682 | 0.1351875 | 1.0584922 |
Nyctimystes fluviatilis | 33.90823 | 37.9991063 | 0.1365274 | 1.4148124 |
Nyctimystes foricula | 33.86420 | 29.9356382 | 0.1389367 | 1.1272608 |
Nyctimystes semipalmatus | 33.89322 | 31.1146108 | 0.1376987 | 1.1678932 |
Nyctimystes kuduki | 33.91309 | 27.3844895 | 0.1357435 | 1.0262793 |
Nyctimystes humeralis | 33.94722 | 31.5532902 | 0.1344753 | 1.1829709 |
Nyctimystes zweifeli | 33.89966 | 33.4669902 | 0.1375929 | 1.2448100 |
Nyctimystes trachydermis | 33.96424 | 32.9371019 | 0.1349677 | 1.2117463 |
Nyctimystes kubori | 33.85603 | 33.0439511 | 0.1362131 | 1.2392769 |
Nyctimystes narinosus | 33.82928 | 28.3817989 | 0.1394475 | 1.0955891 |
Nyctimystes papua | 33.91715 | 33.8437386 | 0.1380027 | 1.2427070 |
Nyctimystes pulcher | 33.96124 | 31.7299571 | 0.1370853 | 1.1897238 |
Nyctimystes perimetri | 33.88310 | 51.1329156 | 0.1376957 | 1.8650627 |
Nyctimystes persimilis | 33.86861 | 40.2270704 | 0.1387029 | 1.4556658 |
Litoria vocivincens | 34.54076 | 30.4691024 | 0.1373203 | 1.1116980 |
Litoria brongersmai | 33.91654 | 34.7519021 | 0.1370514 | 1.3485671 |
Litoria bulmeri | 33.97262 | 31.9206708 | 0.1364831 | 1.1716787 |
Litoria burrowsi | 34.40313 | 10.4576515 | 0.1371166 | 0.6423641 |
Litoria rivicola | 33.99323 | 40.7957838 | 0.1363307 | 1.4920107 |
Litoria gilleni | 35.29913 | 8.2436143 | 0.1375664 | 0.3463059 |
Litoria splendida | 35.32556 | 18.3940177 | 0.1363003 | 0.6570168 |
Litoria cavernicola | 35.33586 | 19.3313320 | 0.1344013 | 0.6989115 |
Litoria xanthomera | 35.74034 | 14.3805445 | 0.1339717 | 0.5513774 |
Litoria kumae | 35.50268 | 22.2849718 | 0.1335262 | 0.8605660 |
Litoria capitula | 34.38833 | 49.4674988 | 0.1374311 | 1.7997341 |
Litoria chrisdahli | 34.40004 | 53.5842201 | 0.1381011 | 2.0561371 |
Litoria christianbergmanni | 34.46719 | 43.1693380 | 0.1384740 | 1.5769720 |
Litoria congenita | 35.40031 | 27.6691851 | 0.1372389 | 1.0126055 |
Litoria dentata | 35.40423 | 13.9174755 | 0.1393712 | 0.6176792 |
Litoria electrica | 35.61147 | 13.7327723 | 0.1373122 | 0.5291707 |
Litoria contrastens | 34.64045 | 31.0332057 | 0.1380672 | 1.1656807 |
Litoria cooloolensis | 34.43370 | 20.0091681 | 0.1376102 | 0.8358511 |
Litoria coplandi | 34.49964 | 21.4511751 | 0.1405612 | 0.7759248 |
Litoria watjulumensis | 34.66101 | 23.0631251 | 0.1376811 | 0.8318037 |
Litoria dayi | 33.95445 | 23.5317299 | 0.1387405 | 0.8995317 |
Litoria nannotis | 34.01955 | 23.8994366 | 0.1358748 | 0.9123804 |
Litoria rheocola | 34.46527 | 25.2886636 | 0.1367399 | 0.9594076 |
Litoria dorsalis | 34.43132 | 29.3182761 | 0.1350157 | 1.0724705 |
Litoria microbelos | 34.60495 | 27.2932412 | 0.1375245 | 0.9788371 |
Litoria longirostris | 34.38518 | 26.6484283 | 0.1361397 | 0.9603987 |
Litoria meiriana | 34.80546 | 27.9504552 | 0.1367451 | 0.9925733 |
Litoria dorsivena | 33.96933 | 37.2269162 | 0.1354863 | 1.3989288 |
Litoria dux | 34.34950 | 34.0099804 | 0.1383026 | 1.3207053 |
Litoria infrafrenata | 34.25473 | 38.2743269 | 0.1408580 | 1.3995550 |
Litoria elkeae | 34.28429 | 40.0043951 | 0.1372282 | 1.4923684 |
Litoria exophthalmia | 33.83282 | 31.2394706 | 0.1358261 | 1.1810704 |
Litoria genimaculata | 33.69161 | 36.5967994 | 0.1400485 | 1.3574537 |
Litoria everetti | 34.42237 | 43.0347525 | 0.1355075 | 1.5634242 |
Litoria littlejohni | 32.03423 | 9.9147732 | 0.1366586 | 0.4714633 |
Litoria paraewingi | 31.80644 | 6.8696885 | 0.1392745 | 0.3419022 |
Litoria revelata | 31.95735 | 10.9141180 | 0.1378464 | 0.4779377 |
Litoria jervisiensis | 32.24358 | 9.7053279 | 0.1408213 | 0.4707773 |
Litoria olongburensis | 35.64970 | 15.0922804 | 0.1314272 | 0.6405639 |
Litoria flavescens | 34.27629 | 46.5780852 | 0.1371099 | 1.6807672 |
Litoria latopalmata | 33.32841 | 11.9282491 | 0.1430788 | 0.4899689 |
Litoria tornieri | 33.42798 | 20.9821733 | 0.1421217 | 0.7456327 |
Litoria inermis | 33.45651 | 18.7539399 | 0.1401776 | 0.6989206 |
Litoria pallida | 33.44624 | 19.4673420 | 0.1390279 | 0.7134374 |
Litoria fuscula | 33.93755 | 25.7570502 | 0.1400799 | 1.0725603 |
Litoria graminea | 34.37358 | 28.8906251 | 0.1352862 | 1.0641404 |
Litoria havina | 34.28958 | 37.9247290 | 0.1376408 | 1.3697513 |
Litoria multiplica | 33.90346 | 30.1344680 | 0.1383382 | 1.1580794 |
Litoria hilli | 34.50591 | 52.3961127 | 0.1373465 | 1.9118585 |
Litoria humboldtorum | 34.43073 | 55.0213647 | 0.1369179 | 2.0487354 |
Litoria hunti | 34.26085 | 42.8781883 | 0.1379234 | 1.5902385 |
Litoria impura | 34.36548 | 36.0175244 | 0.1386799 | 1.3170243 |
Litoria thesaurensis | 34.35765 | 40.0562098 | 0.1374701 | 1.4641767 |
Litoria iris | 34.39136 | 30.8227994 | 0.1366960 | 1.1630343 |
Litoria majikthise | 34.35603 | 36.1587230 | 0.1359901 | 1.3002362 |
Litoria pronimia | 34.46236 | 28.7833054 | 0.1355963 | 1.1003130 |
Litoria spartacus | 34.50042 | 28.2560440 | 0.1351854 | 1.0379625 |
Litoria leucova | 33.95164 | 32.7222252 | 0.1351515 | 1.1786638 |
Litoria longicrus | 34.33817 | 49.4808081 | 0.1363212 | 1.7972594 |
Litoria lorica | 33.76113 | 21.0218235 | 0.1411879 | 0.7870691 |
Litoria louisiadensis | 33.86261 | 59.2685304 | 0.1370633 | 2.1519637 |
Litoria lutea | 34.38152 | 53.7744025 | 0.1378593 | 1.9329296 |
Litoria macki | 33.98095 | 25.4410098 | 0.1368840 | 1.0597930 |
Litoria mareku | 34.33430 | 41.2857838 | 0.1386902 | 1.4727284 |
Litoria megalops | 33.95849 | 25.8038685 | 0.1380934 | 1.0730146 |
Litoria mucro | 34.38009 | 40.5241305 | 0.1369829 | 1.4999837 |
Litoria multicolor | 34.43905 | 42.9149028 | 0.1360904 | 1.5351112 |
Litoria myola | 33.84474 | 20.7563156 | 0.1356030 | 0.7774444 |
Litoria mystax | 34.47550 | 33.1045349 | 0.1377497 | 1.3110890 |
Litoria napaea | 33.99120 | 31.6134145 | 0.1368258 | 1.2230782 |
Litoria nigropunctata | 34.47245 | 35.9168761 | 0.1367859 | 1.3344141 |
Litoria prora | 34.43259 | 32.5798781 | 0.1370245 | 1.1720574 |
Litoria obtusirostris | 34.35535 | 56.9416670 | 0.1389100 | 2.1172412 |
Litoria oenicolen | 33.90378 | 31.6607464 | 0.1354217 | 1.1883628 |
Litoria ollauro | 34.48269 | 39.1036916 | 0.1352771 | 1.4128959 |
Litoria personata | 34.52800 | 23.9717226 | 0.1389277 | 0.8381001 |
Litoria pratti | 34.02126 | 40.8346460 | 0.1370433 | 1.4656320 |
Litoria purpureolata | 34.48590 | 36.5252845 | 0.1345970 | 1.3943708 |
Litoria pygmaea | 34.37449 | 34.7643120 | 0.1356451 | 1.2791899 |
Litoria quadrilineata | 34.46674 | 41.2564129 | 0.1379536 | 1.5031164 |
Litoria rara | 34.42414 | 47.3062222 | 0.1383436 | 1.7785869 |
Litoria richardsi | 34.40021 | 29.0652929 | 0.1340893 | 1.1095474 |
Litoria rubrops | 34.47745 | 52.8612424 | 0.1359437 | 1.9123655 |
Litoria sanguinolenta | 34.34622 | 36.6838166 | 0.1373189 | 1.3251363 |
Litoria scabra | 33.93824 | 27.3811981 | 0.1377052 | 1.1417792 |
Litoria singadanae | 34.35055 | 36.5439047 | 0.1364680 | 1.4207738 |
Litoria spinifera | 33.99348 | 29.0820642 | 0.1392352 | 1.1245569 |
Litoria staccato | 34.62259 | 29.2903588 | 0.1361268 | 1.0424061 |
Litoria timida | 34.45432 | 31.6376686 | 0.1376413 | 1.1327788 |
Litoria umarensis | 34.20532 | 44.0800556 | 0.1403844 | 1.5751367 |
Litoria umbonata | 34.46287 | 32.1501885 | 0.1337076 | 1.2444563 |
Litoria vagabunda | 34.32877 | 52.6112532 | 0.1385369 | 1.9248896 |
Litoria verae | 34.37421 | 37.4788258 | 0.1388088 | 1.3378527 |
Litoria wapogaensis | 33.95359 | 26.9601978 | 0.1357371 | 1.1204543 |
Litoria wisselensis | 34.82594 | 33.1411966 | 0.1373963 | 1.2866762 |
Aplastodiscus albofrenatus | 35.33240 | 20.3250798 | 0.1307744 | 0.7795935 |
Aplastodiscus arildae | 35.18881 | 16.3001585 | 0.1302993 | 0.6301407 |
Aplastodiscus eugenioi | 35.27582 | 17.9723730 | 0.1338066 | 0.7000611 |
Aplastodiscus albosignatus | 35.78877 | 18.6115691 | 0.1298782 | 0.7304514 |
Aplastodiscus callipygius | 35.67863 | 18.2155470 | 0.1320354 | 0.7049619 |
Aplastodiscus cavicola | 35.76235 | 23.1318426 | 0.1297349 | 0.8972836 |
Aplastodiscus leucopygius | 35.77449 | 19.8871301 | 0.1272130 | 0.7619592 |
Aplastodiscus cochranae | 35.62193 | 15.0797830 | 0.1331663 | 0.6107997 |
Aplastodiscus perviridis | 35.71998 | 18.0896407 | 0.1289706 | 0.6902654 |
Aplastodiscus flumineus | 35.67362 | 24.6001390 | 0.1287063 | 0.9261954 |
Aplastodiscus ehrhardti | 35.67202 | 15.0550427 | 0.1309081 | 0.6122547 |
Aplastodiscus musicus | 35.68463 | 20.2298984 | 0.1282314 | 0.7620841 |
Bokermannohyla ahenea | 36.07138 | 22.3887675 | 0.1253062 | 0.8387458 |
Bokermannohyla alvarengai | 35.51556 | 19.6206311 | 0.1308643 | 0.7670183 |
Bokermannohyla astartea | 35.94180 | 20.4598305 | 0.1288613 | 0.7864081 |
Bokermannohyla circumdata | 35.90272 | 20.4954888 | 0.1285404 | 0.7957107 |
Bokermannohyla hylax | 35.40984 | 19.8133410 | 0.1313214 | 0.7855217 |
Bokermannohyla caramaschii | 36.06320 | 23.7575152 | 0.1288822 | 0.9212416 |
Bokermannohyla carvalhoi | 35.59383 | 25.9286051 | 0.1304673 | 1.0019757 |
Bokermannohyla diamantina | 35.56467 | 18.6156746 | 0.1276306 | 0.7303353 |
Bokermannohyla feioi | 36.06267 | 22.8319546 | 0.1287303 | 0.8806784 |
Bokermannohyla gouveai | 36.03101 | 24.1414306 | 0.1289058 | 0.9046368 |
Bokermannohyla ibitiguara | 35.61096 | 20.0721323 | 0.1278937 | 0.7750212 |
Bokermannohyla ibitipoca | 36.13045 | 23.8379573 | 0.1283928 | 0.9140955 |
Bokermannohyla itapoty | 35.64710 | 20.0857575 | 0.1280698 | 0.7962547 |
Bokermannohyla izecksohni | 35.57566 | 21.5395889 | 0.1294244 | 0.8079637 |
Bokermannohyla langei | 35.55492 | 14.8146572 | 0.1298984 | 0.6116591 |
Bokermannohyla lucianae | 35.99929 | 32.8489254 | 0.1302390 | 1.2841420 |
Bokermannohyla luctuosa | 35.61299 | 18.2444494 | 0.1284547 | 0.6945208 |
Bokermannohyla martinsi | 35.64902 | 19.7081358 | 0.1280637 | 0.7750122 |
Bokermannohyla nanuzae | 35.47203 | 18.6930612 | 0.1283204 | 0.7439832 |
Bokermannohyla oxente | 35.59029 | 19.9776932 | 0.1283076 | 0.7959585 |
Bokermannohyla pseudopseudis | 35.60257 | 23.4504348 | 0.1270604 | 0.8674198 |
Bokermannohyla ravida | 35.57673 | 21.8507392 | 0.1265930 | 0.8450101 |
Bokermannohyla sagarana | 35.46541 | 20.2508751 | 0.1285067 | 0.7971357 |
Bokermannohyla saxicola | 35.52226 | 18.5452902 | 0.1310319 | 0.7171447 |
Bokermannohyla sazimai | 35.56909 | 21.8580124 | 0.1290888 | 0.8386992 |
Bokermannohyla vulcaniae | 35.60033 | 19.0340956 | 0.1282447 | 0.7257257 |
Hyloscirtus albopunctulatus | 35.12230 | 29.7363726 | 0.1292869 | 1.1072201 |
Hyloscirtus simmonsi | 33.99949 | 25.5839380 | 0.1305199 | 1.0407144 |
Hyloscirtus armatus | 34.64187 | 25.2381312 | 0.1324225 | 1.3094483 |
Hyloscirtus charazani | 34.70742 | 16.7384078 | 0.1293086 | 0.9712474 |
Hyloscirtus bogotensis | 34.70741 | 29.4720155 | 0.1311527 | 1.2384526 |
Hyloscirtus callipeza | 34.81613 | 25.4691696 | 0.1308195 | 1.0479139 |
Hyloscirtus caucanus | 34.74606 | 25.9672947 | 0.1314196 | 1.0727838 |
Hyloscirtus colymba | 34.77521 | 44.6069812 | 0.1310816 | 1.6312194 |
Hyloscirtus pacha | 34.69278 | 17.6373318 | 0.1307139 | 0.7535529 |
Hyloscirtus staufferorum | 34.60247 | 21.6908443 | 0.1297649 | 0.9026940 |
Hyloscirtus psarolaimus | 34.65811 | 14.9433319 | 0.1331065 | 0.6851455 |
Hyloscirtus ptychodactylus | 34.70486 | 15.0665752 | 0.1305090 | 0.6493997 |
Hyloscirtus larinopygion | 35.15042 | 22.0085923 | 0.1285779 | 0.9737390 |
Hyloscirtus denticulentus | 34.75396 | 23.8254929 | 0.1311317 | 1.0369854 |
Hyloscirtus jahni | 34.70482 | 30.2780590 | 0.1328984 | 1.1422981 |
Hyloscirtus lascinius | 35.28913 | 27.3940692 | 0.1276584 | 1.0634048 |
Hyloscirtus palmeri | 34.73932 | 30.5531491 | 0.1284372 | 1.2060454 |
Hyloscirtus lynchi | 34.61581 | 24.0277616 | 0.1295506 | 1.0868809 |
Hyloscirtus pantostictus | 34.70244 | 18.7244558 | 0.1323430 | 0.8405147 |
Hyloscirtus piceigularis | 34.63632 | 34.2525242 | 0.1304538 | 1.3761607 |
Hyloscirtus platydactylus | 34.69989 | 30.9067338 | 0.1303817 | 1.1720610 |
Hyloscirtus sarampiona | 34.62299 | 18.9659027 | 0.1302610 | 0.8262349 |
Hyloscirtus tapichalaca | 34.65990 | 30.7870405 | 0.1315416 | 1.2780611 |
Hyloscirtus torrenticola | 34.77631 | 24.6636654 | 0.1319696 | 1.0146415 |
Myersiohyla inparquesi | 35.86779 | 37.8353963 | 0.1285346 | 1.4542093 |
Myersiohyla loveridgei | 35.92467 | 36.2201647 | 0.1289176 | 1.3916432 |
Myersiohyla aromatica | 35.85684 | 34.4519857 | 0.1275184 | 1.3274508 |
Dendropsophus acreanus | 36.18855 | 32.0866876 | 0.1242998 | 1.1736457 |
Dendropsophus amicorum | 36.07928 | 27.3603620 | 0.1230869 | 1.0324181 |
Dendropsophus anataliasiasi | 36.11750 | 24.4693837 | 0.1238478 | 0.8702360 |
Dendropsophus aperomeus | 36.01973 | 20.3014066 | 0.1254132 | 0.9137795 |
Dendropsophus haraldschultzi | 36.05439 | 32.5699599 | 0.1245656 | 1.1538842 |
Dendropsophus araguaya | 36.15145 | 20.3380103 | 0.1238158 | 0.7240167 |
Dendropsophus battersbyi | 36.11607 | 33.2612121 | 0.1234282 | 1.2774821 |
Dendropsophus berthalutzae | 36.07595 | 21.3302249 | 0.1223425 | 0.8272814 |
Dendropsophus bipunctatus | 36.03257 | 28.4391004 | 0.1231013 | 1.1126774 |
Dendropsophus bogerti | 36.05560 | 23.6519502 | 0.1231974 | 0.9596930 |
Dendropsophus timbeba | 36.13977 | 33.4837718 | 0.1226164 | 1.1923797 |
Dendropsophus yaracuyanus | 36.13586 | 26.3141496 | 0.1216315 | 0.9886954 |
Dendropsophus cachimbo | 36.01816 | 28.6745568 | 0.1237980 | 1.0372220 |
Dendropsophus meridensis | 35.97408 | 19.1978523 | 0.1238004 | 0.7289553 |
Dendropsophus cerradensis | 36.02560 | 21.7879492 | 0.1254101 | 0.7672028 |
Dendropsophus columbianus | 35.98783 | 23.8575497 | 0.1235225 | 1.0177715 |
Dendropsophus gaucheri | 36.03876 | 37.7857130 | 0.1246711 | 1.3827138 |
Dendropsophus cruzi | 36.02306 | 21.6343626 | 0.1228821 | 0.7868631 |
Dendropsophus miyatai | 36.08560 | 31.4709480 | 0.1239774 | 1.1163378 |
Dendropsophus delarivai | 36.08994 | 27.9153749 | 0.1247030 | 1.3014303 |
Dendropsophus robertmertensi | 36.02487 | 26.7353389 | 0.1266181 | 0.9782746 |
Dendropsophus sartori | 36.07689 | 24.1668918 | 0.1252171 | 0.9286314 |
Dendropsophus dutrai | 36.06977 | 28.8124607 | 0.1232015 | 1.1256798 |
Dendropsophus elianeae | 36.04104 | 20.8794898 | 0.1238974 | 0.7557221 |
Dendropsophus garagoensis | 36.09001 | 16.3057829 | 0.1260465 | 0.7542740 |
Dendropsophus giesleri | 36.11374 | 23.1493018 | 0.1251230 | 0.8932843 |
Dendropsophus oliveirai | 36.03967 | 22.8038557 | 0.1260836 | 0.8952594 |
Dendropsophus gryllatus | 36.06762 | 24.9380309 | 0.1250600 | 0.9405408 |
Dendropsophus jimi | 36.10953 | 16.5012451 | 0.1214886 | 0.6267661 |
Dendropsophus joannae | 36.10004 | 29.2219141 | 0.1242635 | 1.1195722 |
Dendropsophus juliani | 35.66632 | 25.9732748 | 0.1277859 | 0.9171136 |
Dendropsophus minusculus | 35.73028 | 26.0590521 | 0.1225644 | 0.9710849 |
Dendropsophus rubicundulus | 35.70116 | 19.7915509 | 0.1238339 | 0.7167989 |
Dendropsophus tritaeniatus | 35.64413 | 25.4814765 | 0.1258088 | 0.9253715 |
Dendropsophus leali | 36.04682 | 31.6739856 | 0.1239677 | 1.1437316 |
Dendropsophus minimus | 36.08628 | 35.3134371 | 0.1259283 | 1.2734360 |
Dendropsophus meridianus | 36.85214 | 19.9202910 | 0.1225206 | 0.7615189 |
Dendropsophus limai | 36.08216 | 15.6166906 | 0.1229719 | 0.5991290 |
Dendropsophus luteoocellatus | 36.03197 | 25.9179713 | 0.1251967 | 0.9694633 |
Dendropsophus melanargyreus | 36.89654 | 23.1584752 | 0.1228259 | 0.8267914 |
Dendropsophus seniculus | 36.71052 | 18.9293016 | 0.1228402 | 0.7338620 |
Dendropsophus mathiassoni | 36.07086 | 26.6123490 | 0.1217639 | 1.0281608 |
Dendropsophus microcephalus | 36.01692 | 32.7127516 | 0.1261844 | 1.1780278 |
Dendropsophus phlebodes | 36.04030 | 35.9961770 | 0.1230212 | 1.3363461 |
Dendropsophus rhodopeplus | 35.95224 | 30.8370318 | 0.1272645 | 1.1599976 |
Dendropsophus microps | 36.09094 | 21.7920173 | 0.1237755 | 0.8561194 |
Dendropsophus nahdereri | 36.04618 | 13.7793390 | 0.1227479 | 0.5564025 |
Dendropsophus nanus | 36.07027 | 23.7810963 | 0.1256010 | 0.8689221 |
Dendropsophus walfordi | 36.12327 | 30.5552987 | 0.1241167 | 1.0748362 |
Dendropsophus riveroi | 36.08500 | 29.0111371 | 0.1252634 | 1.0507804 |
Dendropsophus reichlei | 36.18218 | 29.7206588 | 0.1234288 | 1.2296603 |
Dendropsophus padreluna | 36.15527 | 31.8598550 | 0.1233229 | 1.2592411 |
Dendropsophus pauiniensis | 36.01703 | 31.3680963 | 0.1240364 | 1.0758182 |
Dendropsophus praestans | 36.01742 | 18.5435692 | 0.1231229 | 0.7878785 |
Dendropsophus pseudomeridianus | 36.04716 | 22.3805163 | 0.1237927 | 0.8515267 |
Dendropsophus rhea | 36.15376 | 18.7787081 | 0.1215142 | 0.7118680 |
Dendropsophus rossalleni | 35.99282 | 33.8524670 | 0.1264913 | 1.2294194 |
Dendropsophus ruschii | 35.57986 | 27.3552364 | 0.1251641 | 1.0530949 |
Dendropsophus soaresi | 35.96477 | 24.0961566 | 0.1248126 | 0.9018840 |
Dendropsophus stingi | 35.98018 | 20.6431575 | 0.1238243 | 0.9090066 |
Dendropsophus studerae | 36.07498 | 25.8776510 | 0.1251041 | 1.0113299 |
Dendropsophus subocularis | 36.07090 | 32.3280049 | 0.1238494 | 1.2373128 |
Dendropsophus tintinnabulum | 36.05999 | 29.7469538 | 0.1216924 | 1.0365114 |
Dendropsophus virolinensis | 36.06626 | 20.7034061 | 0.1233165 | 0.9276185 |
Dendropsophus werneri | 36.04193 | 15.0839799 | 0.1239788 | 0.5934441 |
Dendropsophus xapuriensis | 36.00131 | 34.0019069 | 0.1243003 | 1.2107159 |
Xenohyla eugenioi | 36.09163 | 20.6659664 | 0.1225269 | 0.8151871 |
Xenohyla truncata | 36.15373 | 27.1266433 | 0.1242621 | 1.0508772 |
Lysapsus caraya | 37.49673 | 20.3035152 | 0.1230542 | 0.7209548 |
Lysapsus laevis | 37.13526 | 28.4058534 | 0.1275284 | 1.0967342 |
Pseudis bolbodactyla | 37.39067 | 17.8542790 | 0.1245552 | 0.6758156 |
Pseudis fusca | 37.31971 | 15.9711309 | 0.1268182 | 0.6240809 |
Pseudis tocantins | 37.39707 | 18.4122779 | 0.1251603 | 0.6600416 |
Pseudis cardosoi | 36.48704 | 10.3617898 | 0.1263417 | 0.4149430 |
Scarthyla vigilans | 35.55531 | 26.9025742 | 0.1289407 | 1.0056342 |
Scinax altae | 37.28313 | 50.5623916 | 0.1270889 | 1.8321075 |
Scinax auratus | 37.23595 | 31.0215705 | 0.1240500 | 1.2153146 |
Scinax baumgardneri | 37.27187 | 35.1553125 | 0.1252595 | 1.3004644 |
Scinax blairi | 37.48959 | 30.6291268 | 0.1236650 | 1.1556848 |
Scinax boesemani | 37.31603 | 38.5292075 | 0.1269832 | 1.3736310 |
Scinax parkeri | 37.52481 | 29.5266844 | 0.1246339 | 1.0801206 |
Scinax boulengeri | 37.41123 | 32.8445099 | 0.1234203 | 1.2149956 |
Scinax sugillatus | 37.40679 | 25.8506468 | 0.1236863 | 1.0348867 |
Scinax cabralensis | 37.19207 | 17.3360187 | 0.1261003 | 0.6790775 |
Scinax caldarum | 37.38856 | 20.7164910 | 0.1254622 | 0.7938904 |
Scinax crospedospilus | 37.29257 | 23.5907806 | 0.1255119 | 0.9111811 |
Scinax camposseabrai | 37.28560 | 19.6986231 | 0.1280473 | 0.7840392 |
Scinax cardosoi | 37.32709 | 25.6406240 | 0.1246497 | 0.9846302 |
Scinax castroviejoi | 36.54622 | 14.7800341 | 0.1267195 | 0.6976126 |
Scinax chiquitanus | 37.19378 | 26.3552140 | 0.1259775 | 1.0265368 |
Scinax funereus | 37.25128 | 29.6162447 | 0.1264295 | 1.1188718 |
Scinax oreites | 37.24678 | 19.0291850 | 0.1257351 | 0.8715794 |
Scinax constrictus | 37.38135 | 21.5978410 | 0.1267617 | 0.7895648 |
Scinax cretatus | 37.16772 | 28.4346473 | 0.1289224 | 1.1100186 |
Scinax cruentommus | 37.22195 | 35.5060340 | 0.1251393 | 1.2779144 |
Scinax staufferi | 37.34679 | 27.6861099 | 0.1261632 | 1.0393495 |
Scinax curicica | 37.21406 | 18.2588272 | 0.1283218 | 0.7249243 |
Scinax cuspidatus | 37.17583 | 29.5625744 | 0.1260405 | 1.1531715 |
Scinax danae | 37.27958 | 26.5602944 | 0.1263593 | 1.0218728 |
Scinax duartei | 37.43625 | 19.8900755 | 0.1232691 | 0.7652289 |
Scinax similis | 37.28576 | 25.8687770 | 0.1274680 | 1.0101367 |
Scinax hayii | 37.40840 | 22.1912528 | 0.1242489 | 0.8610538 |
Scinax exiguus | 37.29382 | 29.2602401 | 0.1243173 | 1.1141432 |
Scinax karenanneae | 37.25809 | 36.0481751 | 0.1271123 | 1.2761368 |
Scinax lindsayi | 37.27116 | 37.6805825 | 0.1266800 | 1.3057933 |
Scinax fuscomarginatus | 37.32667 | 24.4716997 | 0.1250333 | 0.9001568 |
Scinax proboscideus | 36.68456 | 27.7348603 | 0.1303256 | 1.0046744 |
Scinax jolyi | 36.69636 | 38.2847223 | 0.1277195 | 1.4128154 |
Scinax rostratus | 36.75887 | 29.3169669 | 0.1307867 | 1.0932253 |
Scinax iquitorum | 37.26045 | 36.0899120 | 0.1236808 | 1.3089043 |
Scinax kennedyi | 37.30217 | 34.4545673 | 0.1258850 | 1.2378596 |
Scinax manriquei | 37.20795 | 27.8534860 | 0.1275088 | 1.1006340 |
Scinax maracaya | 37.25614 | 21.4169608 | 0.1272055 | 0.8267333 |
Scinax nebulosus | 37.78960 | 32.5666208 | 0.1237381 | 1.1617482 |
Scinax pedromedinae | 37.30524 | 34.6419012 | 0.1260900 | 1.4511128 |
Scinax perereca | 37.32696 | 17.3168449 | 0.1256568 | 0.6748810 |
Scinax tigrinus | 37.65315 | 20.3067300 | 0.1289706 | 0.7562200 |
Scinax trilineatus | 37.28839 | 33.8754443 | 0.1262280 | 1.2665054 |
Scinax wandae | 37.39095 | 28.5568998 | 0.1251582 | 1.0593828 |
Sphaenorhynchus bromelicola | 37.20375 | 14.5084768 | 0.1264238 | 0.5807061 |
Sphaenorhynchus caramaschii | 37.51727 | 14.9804380 | 0.1250851 | 0.5863574 |
Sphaenorhynchus palustris | 37.31475 | 27.1899417 | 0.1277738 | 1.0674073 |
Sphaenorhynchus carneus | 37.46770 | 32.9084772 | 0.1282533 | 1.1880383 |
Sphaenorhynchus dorisae | 37.42989 | 36.3072307 | 0.1283073 | 1.3005768 |
Sphaenorhynchus planicola | 37.66935 | 24.7059018 | 0.1260851 | 0.9633148 |
Sphaenorhynchus mirim | 37.15788 | 23.5592492 | 0.1242493 | 0.9163662 |
Sphaenorhynchus surdus | 37.17566 | 14.0151114 | 0.1263878 | 0.5619788 |
Sphaenorhynchus orophilus | 37.23194 | 17.9288543 | 0.1245663 | 0.6946707 |
Nyctimantis rugiceps | 36.56708 | 23.8816052 | 0.1281675 | 0.9203655 |
Corythomantis greeningi | 36.71461 | 21.9741545 | 0.1299461 | 0.8423136 |
Trachycephalus coriaceus | 37.06664 | 28.5234286 | 0.1255911 | 1.0274072 |
Trachycephalus dibernardoi | 37.05328 | 14.3678013 | 0.1284856 | 0.5587666 |
Trachycephalus hadroceps | 37.01270 | 29.4769606 | 0.1265791 | 1.0708623 |
Trachycephalus resinifictrix | 37.03802 | 28.1098403 | 0.1257001 | 1.0078257 |
Trachycephalus imitatrix | 36.97395 | 13.4192481 | 0.1290884 | 0.5217342 |
Trachycephalus nigromaculatus | 37.04663 | 17.6059170 | 0.1263934 | 0.6776350 |
Trachycephalus lepidus | 37.07888 | 14.3184283 | 0.1269164 | 0.5341874 |
Trachycephalus jordani | 36.98972 | 20.0952268 | 0.1247778 | 0.8105600 |
Dryaderces pearsoni | 36.70667 | 31.3523912 | 0.1254760 | 1.2823154 |
Itapotihyla langsdorffii | 36.52514 | 20.1479478 | 0.1276448 | 0.7779178 |
Osteocephalus alboguttatus | 36.34898 | 23.6811824 | 0.1267887 | 0.9588912 |
Osteocephalus heyeri | 36.32726 | 29.4954475 | 0.1283991 | 1.0053536 |
Osteocephalus subtilis | 36.43382 | 31.1986274 | 0.1289442 | 1.0862022 |
Osteocephalus verruciger | 35.93347 | 20.4371571 | 0.1250937 | 0.8204113 |
Osteocephalus cabrerai | 36.35760 | 26.0996037 | 0.1255321 | 0.9489319 |
Osteocephalus castaneicola | 36.30612 | 28.0867745 | 0.1268045 | 1.2520978 |
Osteocephalus deridens | 36.27057 | 25.7379383 | 0.1284203 | 0.9503331 |
Osteocephalus fuscifacies | 36.27606 | 27.4665861 | 0.1270348 | 1.0284745 |
Osteocephalus leoniae | 36.29917 | 19.4885616 | 0.1272156 | 0.8861471 |
Osteocephalus planiceps | 36.25402 | 25.7523356 | 0.1304283 | 0.9698427 |
Osteocephalus leprieurii | 36.27085 | 27.4637851 | 0.1294768 | 0.9864510 |
Osteocephalus yasuni | 36.32279 | 31.0683869 | 0.1283486 | 1.0981215 |
Osteocephalus oophagus | 36.36374 | 28.7410206 | 0.1267177 | 1.0175931 |
Osteocephalus taurinus | 36.39764 | 28.1716296 | 0.1259697 | 1.0145041 |
Tepuihyla aecii | 36.40476 | 29.5267147 | 0.1274721 | 1.1355523 |
Tepuihyla edelcae | 36.30893 | 24.3441698 | 0.1282128 | 0.9473377 |
Tepuihyla rodriguezi | 36.38435 | 28.3811830 | 0.1255790 | 1.0744206 |
Tepuihyla exophthalma | 36.40093 | 27.9519061 | 0.1259160 | 1.0605680 |
Tepuihyla luteolabris | 36.36707 | 27.7172174 | 0.1279345 | 1.0675046 |
Osteopilus crucialis | 36.30672 | 70.6986334 | 0.1282017 | 2.5697962 |
Osteopilus marianae | 36.35382 | 74.1706688 | 0.1275226 | 2.7036141 |
Osteopilus wilderi | 36.29378 | 64.5726666 | 0.1284708 | 2.3434735 |
Osteopilus ocellatus | 36.31627 | 71.6339618 | 0.1280216 | 2.6006254 |
Osteopilus dominicensis | 36.38663 | 58.9026546 | 0.1277055 | 2.1424083 |
Osteopilus pulchrilineatus | 36.38508 | 63.0070722 | 0.1291889 | 2.3050757 |
Osteopilus vastus | 35.88509 | 55.4024447 | 0.1307992 | 2.0326437 |
Phyllodytes acuminatus | 36.56279 | 26.5010442 | 0.1273006 | 1.0398870 |
Phyllodytes brevirostris | 36.59005 | 32.0567351 | 0.1267425 | 1.2408872 |
Phyllodytes edelmoi | 36.56512 | 27.4258950 | 0.1293519 | 1.0652777 |
Phyllodytes gyrinaethes | 36.64828 | 28.7537445 | 0.1263215 | 1.1153790 |
Phyllodytes kautskyi | 36.58838 | 29.3774726 | 0.1246911 | 1.1487833 |
Phyllodytes maculosus | 36.57212 | 24.5349681 | 0.1276410 | 0.9598108 |
Phyllodytes punctatus | 36.59047 | 37.8642029 | 0.1260196 | 1.4805931 |
Phyllodytes tuberculosus | 36.52061 | 16.1464899 | 0.1291743 | 0.6460697 |
Phyllodytes wuchereri | 36.58344 | 27.3104935 | 0.1266546 | 1.0749943 |
Phytotriades auratus | 36.43872 | 41.1594202 | 0.1298135 | 1.5423305 |
Pseudacris brachyphona | 35.38471 | 9.3375931 | 0.1265851 | 0.3730978 |
Pseudacris brimleyi | 35.35055 | 6.4440702 | 0.1262738 | 0.2550310 |
Pseudacris clarkii | 35.43851 | 10.9579696 | 0.1251977 | 0.4340129 |
Pseudacris maculata | 35.68126 | 4.4653375 | 0.1245638 | 0.2306718 |
Pseudacris kalmi | 35.37562 | 4.6662589 | 0.1258860 | 0.1983079 |
Pseudacris nigrita | 35.42830 | 10.0487058 | 0.1250397 | 0.3734595 |
Pseudacris fouquettei | 35.42805 | 11.7611822 | 0.1267439 | 0.4318869 |
Pseudacris streckeri | 35.34790 | 11.8360462 | 0.1290029 | 0.4550012 |
Pseudacris ornata | 35.39345 | 13.0503144 | 0.1276962 | 0.4794677 |
Pseudacris ocularis | 35.19177 | 11.3650206 | 0.1276570 | 0.4265106 |
Triprion petasatus | 36.30095 | 30.8547377 | 0.1293621 | 1.1134153 |
Smilisca cyanosticta | 36.38276 | 18.5759239 | 0.1323309 | 0.6881534 |
Smilisca puma | 36.64592 | 21.2157475 | 0.1374102 | 0.8151012 |
Smilisca dentata | 36.29829 | 14.2692840 | 0.1338812 | 0.6025948 |
Smilisca sila | 36.27392 | 30.8767394 | 0.1332556 | 1.1509169 |
Smilisca sordida | 35.74569 | 25.6978768 | 0.1334889 | 0.9652028 |
Isthmohyla angustilineata | 36.39756 | 39.2847741 | 0.1307875 | 1.4092991 |
Isthmohyla debilis | 36.30098 | 36.9850137 | 0.1337652 | 1.3510577 |
Isthmohyla graceae | 36.46532 | 31.3714046 | 0.1333846 | 1.2027008 |
Isthmohyla infucata | 36.35565 | 44.3700196 | 0.1295075 | 1.5876761 |
Isthmohyla insolita | 35.93677 | 32.8302358 | 0.1314407 | 1.2461114 |
Isthmohyla lancasteri | 36.48293 | 31.1823892 | 0.1298117 | 1.2348731 |
Isthmohyla picadoi | 36.39547 | 29.7831161 | 0.1327408 | 1.1553551 |
Isthmohyla pictipes | 35.82071 | 31.9910882 | 0.1337814 | 1.2432834 |
Isthmohyla pseudopuma | 36.44968 | 31.5192734 | 0.1286519 | 1.2222338 |
Isthmohyla rivularis | 35.95807 | 37.1468162 | 0.1313743 | 1.3325080 |
Isthmohyla tica | 35.83487 | 40.0523797 | 0.1305406 | 1.4364009 |
Isthmohyla xanthosticta | 36.44082 | 30.6917375 | 0.1288788 | 1.1067991 |
Isthmohyla zeteki | 36.35976 | 32.5454775 | 0.1309296 | 1.2640934 |
Tlalocohyla godmani | 36.11358 | 18.4678507 | 0.1304522 | 0.7318871 |
Tlalocohyla loquax | 36.92453 | 27.1827848 | 0.1304950 | 1.0019723 |
Tlalocohyla picta | 36.65109 | 23.9145866 | 0.1324528 | 0.8989314 |
Hyla annectans | 36.30189 | 16.7338288 | 0.1307993 | 0.6989753 |
Hyla tsinlingensis | 36.27943 | 8.9267444 | 0.1310659 | 0.3830658 |
Hyla chinensis | 36.42974 | 16.0876824 | 0.1336184 | 0.5911377 |
Hyla savignyi | 36.34427 | 11.0752858 | 0.1285036 | 0.4995423 |
Hyla hallowellii | 36.35567 | 41.5412719 | 0.1321892 | 1.5162549 |
Hyla intermedia | 36.35491 | 9.7858207 | 0.1321228 | 0.4130477 |
Hyla sanchiangensis | 36.39020 | 17.0147920 | 0.1292033 | 0.6158972 |
Hyla sarda | 36.34809 | 12.2671101 | 0.1329907 | 0.5115061 |
Hyla simplex | 36.31108 | 23.6456891 | 0.1302864 | 0.8450204 |
Hyla zhaopingensis | 36.35195 | 20.0475156 | 0.1312882 | 0.7100984 |
Charadrahyla altipotens | 35.88012 | 25.6333377 | 0.1287761 | 0.9572468 |
Charadrahyla chaneque | 35.88984 | 26.6889970 | 0.1304316 | 0.9550003 |
Charadrahyla nephila | 35.86304 | 17.2816670 | 0.1308017 | 0.6925581 |
Charadrahyla taeniopus | 35.79620 | 18.7658759 | 0.1295825 | 0.7704689 |
Charadrahyla trux | 35.98842 | 23.6808045 | 0.1292333 | 0.9505629 |
Megastomatohyla mixe | 35.79827 | 14.0970907 | 0.1301363 | 0.6225722 |
Megastomatohyla mixomaculata | 35.79643 | 21.7498069 | 0.1277705 | 0.8739939 |
Megastomatohyla nubicola | 35.75959 | 35.9078335 | 0.1315057 | 1.3929500 |
Megastomatohyla pellita | 35.79703 | 29.6363042 | 0.1301177 | 1.1001625 |
Bromeliohyla bromeliacia | 36.25882 | 25.5220330 | 0.1298923 | 0.9905229 |
Bromeliohyla dendroscarta | 36.35686 | 20.2534334 | 0.1304015 | 0.8156058 |
Duellmanohyla chamulae | 35.72670 | 29.1434740 | 0.1289529 | 1.0441584 |
Duellmanohyla ignicolor | 35.73936 | 14.2483314 | 0.1301460 | 0.6287999 |
Duellmanohyla lythrodes | 35.75116 | 29.2279807 | 0.1294935 | 1.2903439 |
Duellmanohyla rufioculis | 35.77619 | 36.6789243 | 0.1305319 | 1.3880428 |
Duellmanohyla salvavida | 35.80672 | 43.0686206 | 0.1309868 | 1.6353137 |
Duellmanohyla schmidtorum | 36.24058 | 26.4939885 | 0.1293373 | 0.9705055 |
Duellmanohyla soralia | 35.74044 | 32.9708365 | 0.1322100 | 1.2937716 |
Duellmanohyla uranochroa | 35.75090 | 38.4199115 | 0.1309023 | 1.4922178 |
Ptychohyla dendrophasma | 35.74018 | 25.3100428 | 0.1305101 | 0.9348130 |
Ptychohyla euthysanota | 35.78012 | 23.2429833 | 0.1301791 | 0.8797630 |
Ptychohyla hypomykter | 36.27286 | 25.7439834 | 0.1294949 | 0.9854358 |
Ptychohyla legleri | 35.83081 | 33.5684138 | 0.1292556 | 1.3431014 |
Ptychohyla leonhardschultzei | 35.69761 | 24.9066349 | 0.1312504 | 0.9675596 |
Ptychohyla zophodes | 35.75869 | 23.4063254 | 0.1294377 | 0.9176485 |
Ptychohyla macrotympanum | 35.80959 | 25.0118332 | 0.1283930 | 0.9364599 |
Ptychohyla salvadorensis | 36.20431 | 23.4041821 | 0.1273174 | 0.8870587 |
Ecnomiohyla fimbrimembra | 36.28329 | 33.6246822 | 0.1304625 | 1.2064000 |
Ecnomiohyla miliaria | 36.25588 | 34.6787448 | 0.1302707 | 1.3125983 |
Ecnomiohyla minera | 36.21461 | 21.4742376 | 0.1306053 | 0.8422098 |
Ecnomiohyla phantasmagoria | 36.11689 | 27.7000628 | 0.1302793 | 1.0211321 |
Ecnomiohyla salvaje | 36.22711 | 30.8280397 | 0.1275333 | 1.1677039 |
Ecnomiohyla thysanota | 36.23362 | 31.7022036 | 0.1289401 | 1.1289280 |
Ecnomiohyla valancifer | 36.29746 | 25.2061227 | 0.1278830 | 0.9246893 |
Exerodonta abdivita | 36.16902 | 19.0944716 | 0.1297714 | 0.7645945 |
Exerodonta perkinsi | 35.70656 | 22.8085523 | 0.1295126 | 0.9155717 |
Exerodonta bivocata | 35.79278 | 28.8059400 | 0.1300936 | 1.0289608 |
Exerodonta catracha | 36.23689 | 20.5160392 | 0.1294441 | 0.8097971 |
Exerodonta chimalapa | 35.80917 | 26.8118844 | 0.1280912 | 0.9676089 |
Exerodonta smaragdina | 36.27409 | 21.6251683 | 0.1300978 | 0.8678886 |
Exerodonta xera | 36.22949 | 20.8334730 | 0.1310199 | 0.8499939 |
Exerodonta melanomma | 36.18757 | 26.4148975 | 0.1327651 | 1.0007692 |
Exerodonta sumichrasti | 36.25448 | 25.1262501 | 0.1299272 | 0.9412093 |
Plectrohyla acanthodes | 35.74814 | 22.2742608 | 0.1271328 | 0.8411552 |
Plectrohyla avia | 36.33623 | 25.2976613 | 0.1263734 | 0.9620606 |
Plectrohyla chrysopleura | 35.79293 | 32.3035436 | 0.1306272 | 1.2317754 |
Plectrohyla dasypus | 36.31160 | 37.5068249 | 0.1285260 | 1.4735509 |
Plectrohyla exquisita | 36.21985 | 35.9698205 | 0.1300386 | 1.4123350 |
Plectrohyla glandulosa | 35.87680 | 16.5127757 | 0.1272233 | 0.7258745 |
Plectrohyla guatemalensis | 35.83873 | 26.1513088 | 0.1282470 | 1.0036151 |
Plectrohyla hartwegi | 35.66568 | 23.4440821 | 0.1302450 | 0.8984077 |
Plectrohyla ixil | 35.79679 | 24.4111357 | 0.1277748 | 0.9290309 |
Plectrohyla lacertosa | 35.79025 | 25.3556320 | 0.1277927 | 0.9658139 |
Plectrohyla matudai | 36.42826 | 24.8582674 | 0.1291381 | 0.9495347 |
Plectrohyla pokomchi | 35.78591 | 19.5008893 | 0.1313972 | 0.7670001 |
Plectrohyla psiloderma | 35.82578 | 26.5620015 | 0.1290014 | 0.9926284 |
Plectrohyla quecchi | 35.76981 | 23.5396556 | 0.1299098 | 0.9030847 |
Plectrohyla sagorum | 35.88773 | 22.9207972 | 0.1271048 | 0.8950539 |
Plectrohyla tecunumani | 35.82252 | 15.7832729 | 0.1281341 | 0.6986712 |
Plectrohyla teuchestes | 35.79805 | 28.0297476 | 0.1294877 | 1.0445040 |
Macrogenioglottus alipioi | 34.44562 | 22.0377546 | 0.1362890 | 0.8563499 |
Odontophrynus achalensis | 33.52875 | 7.6299610 | 0.1369397 | 0.3286903 |
Odontophrynus cultripes | 34.94441 | 16.4934296 | 0.1377662 | 0.6276932 |
Odontophrynus cordobae | 33.34824 | 9.0808516 | 0.1385828 | 0.3769552 |
Odontophrynus lavillai | 34.92755 | 12.6825034 | 0.1385553 | 0.5035816 |
Odontophrynus carvalhoi | 34.09205 | 19.9299517 | 0.1399994 | 0.7693879 |
Proceratophrys appendiculata | 34.71142 | 21.0698292 | 0.1344052 | 0.8147374 |
Proceratophrys melanopogon | 34.75770 | 19.6566663 | 0.1345028 | 0.7591571 |
Proceratophrys phyllostomus | 34.64535 | 26.3346165 | 0.1388588 | 1.0185003 |
Proceratophrys moehringi | 34.09244 | 27.8651749 | 0.1367349 | 1.0754932 |
Proceratophrys boiei | 34.70858 | 20.0427994 | 0.1370544 | 0.7818353 |
Proceratophrys laticeps | 34.69035 | 27.0542486 | 0.1345743 | 1.0609415 |
Proceratophrys cururu | 34.72845 | 16.8869013 | 0.1374471 | 0.6865940 |
Proceratophrys concavitympanum | 34.08240 | 27.5527400 | 0.1360164 | 0.9745240 |
Proceratophrys moratoi | 34.92411 | 18.4263401 | 0.1343595 | 0.6906081 |
Proceratophrys goyana | 34.67940 | 19.7328865 | 0.1364530 | 0.7329793 |
Proceratophrys brauni | 34.74574 | 14.6821439 | 0.1328168 | 0.5894116 |
Proceratophrys cristiceps | 34.81870 | 24.3074429 | 0.1328736 | 0.9412419 |
Proceratophrys paviotii | 34.30599 | 25.0228660 | 0.1336683 | 0.9697462 |
Proceratophrys subguttata | 34.72842 | 15.7428270 | 0.1334230 | 0.6412752 |
Proceratophrys palustris | 34.68781 | 18.5682717 | 0.1366288 | 0.7042751 |
Proceratophrys vielliardi | 34.75149 | 19.7936817 | 0.1341758 | 0.7488271 |
Proceratophrys bigibbosa | 34.70944 | 15.0033454 | 0.1357548 | 0.5818948 |
Proceratophrys avelinoi | 34.91764 | 16.7093291 | 0.1352624 | 0.6360931 |
Adenomus kandianus | 34.83116 | 26.1842095 | 0.1337408 | 0.9476342 |
Adenomus kelaartii | 35.44174 | 24.4031983 | 0.1299752 | 0.8749833 |
Duttaphrynus atukoralei | 35.49324 | 24.5606931 | 0.1313116 | 0.8694519 |
Duttaphrynus scaber | 35.47492 | 20.5888928 | 0.1316486 | 0.7440006 |
Duttaphrynus beddomii | 35.45664 | 28.6915754 | 0.1328672 | 1.0453207 |
Duttaphrynus brevirostris | 35.40791 | 20.9651121 | 0.1321670 | 0.7784718 |
Duttaphrynus crocus | 35.44068 | 41.7205463 | 0.1321471 | 1.4872305 |
Duttaphrynus dhufarensis | 35.52021 | 23.1427248 | 0.1312352 | 0.8753369 |
Duttaphrynus himalayanus | 35.49113 | 9.0108450 | 0.1302522 | 0.5197369 |
Duttaphrynus hololius | 35.44901 | 20.2704884 | 0.1328466 | 0.7383462 |
Duttaphrynus kotagamai | 34.83293 | 27.4632775 | 0.1334500 | 0.9912224 |
Duttaphrynus microtympanum | 35.39216 | 23.5055180 | 0.1326525 | 0.8485894 |
Duttaphrynus noellerti | 35.41764 | 27.1365255 | 0.1340493 | 0.9829927 |
Duttaphrynus olivaceus | 35.47707 | 16.2699191 | 0.1321593 | 0.6341331 |
Duttaphrynus parietalis | 35.45754 | 23.0788995 | 0.1289141 | 0.8369255 |
Duttaphrynus scorteccii | 35.40414 | 21.8322749 | 0.1309286 | 0.8770401 |
Duttaphrynus silentvalleyensis | 34.86731 | 18.5387310 | 0.1339422 | 0.6781613 |
Duttaphrynus stomaticus | 35.50623 | 15.7353099 | 0.1315224 | 0.6156946 |
Duttaphrynus stuarti | 35.45289 | 9.5167431 | 0.1318204 | 0.5808769 |
Duttaphrynus sumatranus | 34.80952 | 37.8935658 | 0.1315079 | 1.3097801 |
Duttaphrynus valhallae | 35.47308 | 40.0893193 | 0.1301658 | 1.4463941 |
Xanthophryne koynayensis | 35.44790 | 21.9372423 | 0.1296164 | 0.8096123 |
Xanthophryne tigerina | 35.45819 | 21.6271405 | 0.1319866 | 0.7988646 |
Pedostibes tuberculosus | 34.90501 | 24.2477407 | 0.1314003 | 0.8779811 |
Churamiti maridadi | 35.36998 | 17.6719482 | 0.1330606 | 0.7590519 |
Nectophrynoides cryptus | 35.55099 | 28.7700417 | 0.1324099 | 1.1812039 |
Nectophrynoides frontierei | 35.48748 | 33.5450891 | 0.1320883 | 1.3371220 |
Nectophrynoides laevis | 35.52930 | 27.7279626 | 0.1337202 | 1.1295344 |
Nectophrynoides laticeps | 35.44879 | 19.3933666 | 0.1354803 | 0.8380736 |
Nectophrynoides minutus | 35.55512 | 29.2285633 | 0.1311665 | 1.2004596 |
Nectophrynoides paulae | 35.32712 | 18.5679913 | 0.1330366 | 0.8007157 |
Nectophrynoides poyntoni | 35.50548 | 19.7349453 | 0.1325848 | 0.9093152 |
Nectophrynoides pseudotornieri | 35.52724 | 25.7424721 | 0.1312193 | 1.0633890 |
Nectophrynoides tornieri | 35.51649 | 26.3465992 | 0.1310407 | 1.1025268 |
Nectophrynoides vestergaardi | 35.56446 | 35.1902039 | 0.1305145 | 1.4037319 |
Nectophrynoides viviparus | 35.50325 | 23.7370450 | 0.1309774 | 1.0324758 |
Nectophrynoides wendyae | 35.53465 | 20.2788087 | 0.1305281 | 0.9367257 |
Schismaderma carens | 35.47861 | 18.3585386 | 0.1306169 | 0.7726606 |
Bufotes balearicus | 35.92672 | 8.9156582 | 0.1322525 | 0.3848462 |
Bufotes latastii | 35.86421 | 4.3472691 | 0.1332363 | 0.3577085 |
Bufotes luristanicus | 35.87598 | 13.5829088 | 0.1318907 | 0.5669184 |
Bufotes oblongus | 35.88093 | 12.3247348 | 0.1312245 | 0.6050177 |
Bufotes pseudoraddei | 35.86388 | 6.2134026 | 0.1315311 | 0.3707296 |
Bufotes surdus | 35.81908 | 12.9674056 | 0.1313877 | 0.5331983 |
Bufotes turanensis | 35.84372 | 11.8703914 | 0.1309352 | 0.5707624 |
Bufotes variabilis | 35.88808 | 7.3455794 | 0.1330371 | 0.3549572 |
Bufotes zamdaensis | 35.85896 | 4.2025584 | 0.1320657 | 0.4070099 |
Bufotes zugmayeri | 35.83644 | 9.6141509 | 0.1317252 | 0.4752614 |
Ansonia albomaculata | 35.45973 | 32.9388709 | 0.1288913 | 1.1916879 |
Ansonia torrentis | 34.83762 | 34.7191770 | 0.1290963 | 1.2747820 |
Ansonia longidigita | 35.42961 | 38.0945815 | 0.1305750 | 1.3637423 |
Ansonia endauensis | 34.79720 | 34.2530289 | 0.1348732 | 1.1902274 |
Ansonia inthanon | 34.75501 | 24.9263460 | 0.1343161 | 0.9033635 |
Ansonia kraensis | 34.73042 | 28.5629390 | 0.1309107 | 1.0048334 |
Ansonia thinthinae | 34.71803 | 29.0896010 | 0.1341639 | 1.0456740 |
Ansonia siamensis | 34.77164 | 33.7082682 | 0.1298668 | 1.2171627 |
Ansonia fuliginea | 35.44563 | 53.0207873 | 0.1301011 | 1.9498358 |
Ansonia mcgregori | 34.83211 | 44.9449377 | 0.1331824 | 1.6325199 |
Ansonia muelleri | 34.82216 | 42.1637505 | 0.1316447 | 1.5234089 |
Ansonia glandulosa | 34.81630 | 43.5587892 | 0.1306315 | 1.5233275 |
Ansonia hanitschi | 35.39329 | 35.9988732 | 0.1291911 | 1.3041720 |
Ansonia platysoma | 34.70233 | 37.6593015 | 0.1328630 | 1.3874372 |
Ansonia minuta | 34.82512 | 35.0660163 | 0.1303776 | 1.2408649 |
Ansonia spinulifer | 35.25841 | 37.0728633 | 0.1332720 | 1.3187325 |
Ansonia jeetsukumarani | 34.75835 | 35.5892108 | 0.1324118 | 1.2839052 |
Ansonia latidisca | 35.22528 | 46.6036052 | 0.1310725 | 1.6642784 |
Ansonia latiffi | 34.83990 | 36.6627491 | 0.1300009 | 1.2857743 |
Ansonia latirostra | 35.28152 | 33.8208869 | 0.1330092 | 1.1778800 |
Ansonia tiomanica | 34.81097 | 32.4750177 | 0.1293184 | 1.1301003 |
Ansonia malayana | 34.86449 | 30.8246420 | 0.1331900 | 1.0973843 |
Pelophryne albotaeniata | 35.27559 | 52.8827503 | 0.1348140 | 1.9016986 |
Pelophryne api | 35.45578 | 38.0781631 | 0.1306146 | 1.3943337 |
Pelophryne brevipes | 35.26789 | 39.1598379 | 0.1321559 | 1.4111199 |
Pelophryne guentheri | 35.50379 | 36.3692664 | 0.1316714 | 1.3226200 |
Pelophryne lighti | 35.37515 | 44.7198579 | 0.1317720 | 1.6243426 |
Pelophryne linanitensis | 35.50204 | 25.5019904 | 0.1316496 | 0.9753959 |
Pelophryne misera | 35.43199 | 39.5522271 | 0.1318021 | 1.4677972 |
Pelophryne murudensis | 35.47933 | 27.6235428 | 0.1342736 | 1.0594310 |
Pelophryne rhopophilia | 35.43954 | 33.5759111 | 0.1328983 | 1.2165770 |
Pelophryne signata | 35.46660 | 40.4323489 | 0.1295018 | 1.4585897 |
Ghatophryne ornata | 34.79937 | 27.8241103 | 0.1307217 | 1.0288273 |
Ghatophryne rubigina | 34.79559 | 21.1485505 | 0.1294982 | 0.7583687 |
Ingerophrynus biporcatus | 35.43267 | 39.4730892 | 0.1331929 | 1.4102894 |
Ingerophrynus claviger | 35.39554 | 50.3036397 | 0.1284326 | 1.8322506 |
Ingerophrynus divergens | 35.40473 | 37.2803835 | 0.1317261 | 1.3236362 |
Ingerophrynus galeatus | 35.37127 | 26.7547701 | 0.1345437 | 0.9664523 |
Ingerophrynus philippinicus | 35.44300 | 49.0407572 | 0.1314224 | 1.7556065 |
Ingerophrynus gollum | 34.73786 | 38.5508883 | 0.1332794 | 1.3614489 |
Ingerophrynus kumquat | 35.42490 | 37.0724759 | 0.1304510 | 1.3005243 |
Ingerophrynus macrotis | 35.42031 | 25.1849275 | 0.1323409 | 0.9224505 |
Ingerophrynus parvus | 34.79179 | 28.5698542 | 0.1312255 | 0.9992073 |
Ingerophrynus quadriporcatus | 35.43527 | 38.6672668 | 0.1294823 | 1.3621191 |
Ingerophrynus celebensis | 35.32215 | 43.1281065 | 0.1341643 | 1.5940275 |
Bufo ailaoanus | 35.11008 | 16.2315680 | 0.1331076 | 0.7121010 |
Bufo aspinius | 34.99632 | 12.6750566 | 0.1324399 | 0.6429680 |
Bufo cryptotympanicus | 35.07303 | 16.3741942 | 0.1332996 | 0.6012758 |
Bufo tuberculatus | 35.14395 | 5.9428029 | 0.1332374 | 0.3912064 |
Bufo eichwaldi | 35.11257 | 10.9620459 | 0.1314125 | 0.5551417 |
Bufo japonicus | 35.02680 | 9.8121464 | 0.1331707 | 0.3995011 |
Bufo torrenticola | 34.99901 | 10.1603136 | 0.1329419 | 0.4078581 |
Bufo pageoti | 35.01504 | 15.7046443 | 0.1334151 | 0.6538492 |
Bufo stejnegeri | 35.03142 | 5.3514813 | 0.1334447 | 0.2446396 |
Bufo verrucosissimus | 35.09905 | 7.3669016 | 0.1299747 | 0.3661210 |
Strauchbufo raddei | 35.33320 | 6.4613252 | 0.1307411 | 0.3407825 |
Didynamipus sjostedti | 35.36204 | 36.2415991 | 0.1317457 | 1.3345330 |
Nimbaphrynoides occidentalis | 35.33423 | 34.5548060 | 0.1317484 | 1.2489595 |
Nectophryne afra | 35.29632 | 30.2568469 | 0.1314945 | 1.1056800 |
Nectophryne batesii | 35.21549 | 27.3610370 | 0.1313974 | 0.9999211 |
Werneria bambutensis | 34.79556 | 29.8629285 | 0.1307255 | 1.1380191 |
Werneria iboundji | 34.71272 | 24.4815701 | 0.1322958 | 0.8734771 |
Werneria mertensiana | 34.68638 | 30.1247915 | 0.1330718 | 1.1216648 |
Werneria tandyi | 34.72225 | 38.1690669 | 0.1293262 | 1.4080948 |
Werneria preussi | 34.76748 | 42.8263233 | 0.1326891 | 1.5749690 |
Werneria submontana | 34.72081 | 36.1757093 | 0.1281752 | 1.3305559 |
Wolterstorffina chirioi | 35.35492 | 26.5678603 | 0.1323167 | 1.0284082 |
Wolterstorffina mirei | 35.34803 | 26.0428791 | 0.1317892 | 1.0099529 |
Wolterstorffina parvipalmata | 34.69579 | 34.8673425 | 0.1297824 | 1.3007498 |
Leptophryne borbonica | 35.31562 | 31.0109553 | 0.1313269 | 1.0984341 |
Leptophryne cruentata | 34.66755 | 25.1875364 | 0.1323389 | 0.8801180 |
Pedostibes kempi | 35.22684 | 23.5270451 | 0.1318985 | 0.9212173 |
Altiphrynoides malcolmi | 35.12554 | 26.1305976 | 0.1323037 | 1.3224118 |
Amazophrynella bokermanni | 35.26772 | 38.6463966 | 0.1315749 | 1.3762122 |
Amazophrynella minuta | 35.11771 | 36.4867157 | 0.1335164 | 1.3203282 |
Dendrophryniscus berthalutzae | 35.25474 | 17.1300094 | 0.1301212 | 0.6877008 |
Dendrophryniscus krausae | 35.28414 | 14.6391078 | 0.1307613 | 0.5969076 |
Dendrophryniscus leucomystax | 35.21689 | 21.1483054 | 0.1306496 | 0.8147212 |
Dendrophryniscus brevipollicatus | 35.22112 | 27.0801940 | 0.1329571 | 1.0497258 |
Dendrophryniscus carvalhoi | 35.30652 | 33.4581266 | 0.1291717 | 1.2977836 |
Dendrophryniscus proboscideus | 35.30108 | 27.9994706 | 0.1313786 | 1.0947255 |
Dendrophryniscus stawiarskyi | 35.20643 | 17.1561836 | 0.1329137 | 0.6808884 |
Vandijkophrynus amatolicus | 35.13563 | 14.6690928 | 0.1329065 | 0.7104059 |
Vandijkophrynus inyangae | 35.17968 | 18.7344848 | 0.1321497 | 0.7827564 |
Vandijkophrynus angusticeps | 35.25651 | 14.5603680 | 0.1316464 | 0.6887052 |
Vandijkophrynus gariepensis | 35.19048 | 13.1927653 | 0.1329832 | 0.6251869 |
Vandijkophrynus robinsoni | 35.18982 | 16.1237826 | 0.1328317 | 0.7881477 |
Anaxyrus hemiophrys | 36.03568 | 3.5127715 | 0.1266966 | 0.1864475 |
Anaxyrus houstonensis | 36.06607 | 12.9177991 | 0.1250382 | 0.4753305 |
Anaxyrus microscaphus | 35.91994 | 5.9666803 | 0.1233382 | 0.2893595 |
Anaxyrus californicus | 35.97774 | 9.2482868 | 0.1236505 | 0.4343909 |
Anaxyrus debilis | 37.34067 | 10.4459130 | 0.1241215 | 0.4451499 |
Anaxyrus kelloggi | 35.94267 | 12.9084480 | 0.1258540 | 0.5089264 |
Anaxyrus mexicanus | 35.97549 | 10.3105342 | 0.1253500 | 0.4285197 |
Anaxyrus quercicus | 35.99303 | 11.0426034 | 0.1242137 | 0.4093134 |
Anaxyrus speciosus | 36.95540 | 13.5656368 | 0.1249515 | 0.5542702 |
Incilius occidentalis | 36.56727 | 14.9322438 | 0.1249271 | 0.6147031 |
Incilius aucoinae | 36.42283 | 25.2077376 | 0.1285786 | 0.9850586 |
Incilius melanochlorus | 36.39641 | 26.5945011 | 0.1261243 | 1.0047342 |
Incilius campbelli | 35.81029 | 23.4543529 | 0.1250094 | 0.8864794 |
Incilius leucomyos | 36.45645 | 22.6175565 | 0.1254232 | 0.8634570 |
Incilius macrocristatus | 36.39801 | 21.9684919 | 0.1274942 | 0.7892096 |
Incilius tutelarius | 35.79579 | 17.4063241 | 0.1266969 | 0.6580238 |
Incilius cristatus | 36.41486 | 16.5809990 | 0.1253855 | 0.6740380 |
Incilius perplexus | 36.42000 | 19.2652799 | 0.1281327 | 0.7622893 |
Incilius cavifrons | 35.72291 | 19.3603137 | 0.1274821 | 0.7080481 |
Incilius spiculatus | 35.78535 | 12.3396634 | 0.1279790 | 0.5495362 |
Incilius chompipe | 36.45748 | 22.6075211 | 0.1256610 | 0.9347218 |
Incilius coniferus | 36.47094 | 25.7656633 | 0.1258667 | 0.9811312 |
Incilius coccifer | 36.47462 | 23.0188273 | 0.1264908 | 0.8608147 |
Incilius cycladen | 36.46317 | 19.2111144 | 0.1280446 | 0.7615384 |
Incilius signifer | 36.49145 | 36.3191163 | 0.1251882 | 1.3413723 |
Incilius porteri | 36.41310 | 19.0897241 | 0.1281373 | 0.7316909 |
Incilius ibarrai | 36.46950 | 15.2924597 | 0.1260149 | 0.5955546 |
Incilius pisinnus | 36.45051 | 21.1882556 | 0.1264693 | 0.8646359 |
Incilius epioticus | 36.37982 | 28.8997244 | 0.1272831 | 1.1859751 |
Incilius gemmifer | 36.34127 | 18.2918366 | 0.1275401 | 0.6998054 |
Incilius guanacaste | 36.49205 | 30.7865999 | 0.1239423 | 1.1505372 |
Incilius holdridgei | 36.42661 | 27.4510376 | 0.1248283 | 0.9895505 |
Incilius luetkenii | 36.54825 | 20.5933574 | 0.1261011 | 0.7659573 |
Incilius nebulifer | 36.47617 | 16.4420008 | 0.1234030 | 0.6336554 |
Incilius valliceps | 36.41210 | 22.1386149 | 0.1267956 | 0.8167254 |
Incilius tacanensis | 35.82957 | 20.5965002 | 0.1263616 | 0.8026630 |
Incilius bocourti | 36.25522 | 19.7438448 | 0.1274121 | 0.7677863 |
Rhinella abei | 36.74118 | 10.9006551 | 0.1250059 | 0.4422981 |
Rhinella pombali | 36.73158 | 12.6038887 | 0.1258480 | 0.4868344 |
Rhinella achalensis | 36.56378 | 9.2358866 | 0.1254394 | 0.4037417 |
Rhinella achavali | 36.33822 | 9.2366831 | 0.1257520 | 0.3775466 |
Rhinella rubescens | 36.30004 | 15.6322267 | 0.1270945 | 0.5804241 |
Rhinella acrolopha | 36.58573 | 29.6183883 | 0.1279110 | 1.0863324 |
Rhinella acutirostris | 36.55210 | 27.0238589 | 0.1253891 | 0.9912560 |
Rhinella alata | 36.55634 | 28.6108924 | 0.1281364 | 1.0656376 |
Rhinella amabilis | 36.77235 | 16.0817288 | 0.1227261 | 0.7061256 |
Rhinella amboroensis | 35.92321 | 25.7658186 | 0.1260679 | 1.1382094 |
Rhinella veraguensis | 36.38182 | 19.9748464 | 0.1245394 | 1.0017442 |
Rhinella arborescandens | 36.44619 | 19.9164431 | 0.1252602 | 0.8842629 |
Rhinella arunco | 36.58646 | 6.5553694 | 0.1243358 | 0.3597176 |
Rhinella atacamensis | 36.73836 | 7.9825023 | 0.1273904 | 0.4647936 |
Rhinella bergi | 36.61275 | 14.1256223 | 0.1251814 | 0.5131944 |
Rhinella castaneotica | 36.50196 | 29.3272895 | 0.1274228 | 1.0339638 |
Rhinella cerradensis | 36.88074 | 16.2019138 | 0.1300585 | 0.5961285 |
Rhinella jimi | 36.92436 | 20.6675136 | 0.1279403 | 0.7976637 |
Rhinella chavin | 36.26387 | 14.7937596 | 0.1277133 | 0.7500062 |
Rhinella cristinae | 36.59081 | 23.8683145 | 0.1240037 | 0.9543205 |
Rhinella dapsilis | 36.52199 | 30.7889875 | 0.1261454 | 1.1367972 |
Rhinella martyi | 36.48259 | 30.6358918 | 0.1265049 | 1.1133777 |
Rhinella lescurei | 36.46705 | 26.1032499 | 0.1284349 | 0.9416199 |
Rhinella fernandezae | 36.62106 | 10.1486347 | 0.1274424 | 0.4042829 |
Rhinella festae | 36.54807 | 18.4408916 | 0.1263924 | 0.7672607 |
Rhinella fissipes | 36.55785 | 27.0848024 | 0.1242610 | 1.3145953 |
Rhinella gallardoi | 36.53532 | 14.7574086 | 0.1255248 | 0.6378595 |
Rhinella gnustae | 35.90304 | 10.5053631 | 0.1255695 | 0.6733245 |
Rhinella henseli | 36.56727 | 12.5891118 | 0.1236895 | 0.5032778 |
Rhinella inca | 36.59360 | 14.4939129 | 0.1254214 | 0.7679543 |
Rhinella iserni | 36.58299 | 33.7080666 | 0.1254464 | 1.5206741 |
Rhinella justinianoi | 36.61049 | 21.7624209 | 0.1243031 | 1.0379407 |
Rhinella limensis | 36.62087 | 16.5562114 | 0.1267166 | 0.7978144 |
Rhinella lindae | 36.51077 | 32.4465646 | 0.1262431 | 1.2265709 |
Rhinella macrorhina | 36.57904 | 16.9897702 | 0.1245416 | 0.7508256 |
Rhinella magnussoni | 36.54605 | 29.7752626 | 0.1272717 | 1.0721354 |
Rhinella manu | 36.41346 | 13.9183784 | 0.1239475 | 0.7987639 |
Rhinella nesiotes | 36.41072 | 28.0665866 | 0.1249733 | 1.2301770 |
Rhinella multiverrucosa | 36.67430 | 16.1909410 | 0.1240422 | 0.7992260 |
Rhinella nicefori | 36.62631 | 19.6204974 | 0.1246888 | 0.8145986 |
Rhinella ocellata | 36.53135 | 18.9153753 | 0.1290079 | 0.6911417 |
Rhinella poeppigii | 35.97371 | 22.1110522 | 0.1254827 | 1.0079103 |
Rhinella proboscidea | 36.56427 | 30.7713671 | 0.1263980 | 1.0756777 |
Rhinella pygmaea | 37.60213 | 21.3453837 | 0.1261858 | 0.8261741 |
Rhinella quechua | 36.59143 | 19.1981559 | 0.1242515 | 0.9725297 |
Rhinella roqueana | 36.59808 | 25.8749781 | 0.1262069 | 0.9670665 |
Rhinella rubropunctata | 36.49576 | 6.5069626 | 0.1247295 | 0.3759096 |
Rhinella ruizi | 36.54606 | 18.4635004 | 0.1276507 | 0.8216101 |
Rhinella rumbolli | 36.52757 | 12.3867523 | 0.1247267 | 0.6037890 |
Rhinella scitula | 35.93582 | 19.4902777 | 0.1276981 | 0.6786503 |
Rhinella sclerocephala | 36.50792 | 30.0610050 | 0.1249136 | 1.1233049 |
Rhinella stanlaii | 36.55036 | 22.0940579 | 0.1258570 | 1.0952267 |
Rhinella sternosignata | 36.53616 | 26.7701103 | 0.1254493 | 1.0423964 |
Rhinella tacana | 36.39047 | 19.3228360 | 0.1261228 | 0.9903784 |
Rhinella tenrec | 36.63820 | 31.9649818 | 0.1278191 | 1.2105331 |
Rhinella vellardi | 36.60368 | 18.9458447 | 0.1265229 | 0.9124408 |
Rhinella veredas | 36.51014 | 21.4275160 | 0.1275405 | 0.8099315 |
Rhinella yanachaga | 36.35901 | 19.6494314 | 0.1278061 | 0.9217852 |
Atelopus andinus | 34.06506 | 31.0179838 | 0.1292850 | 1.2652389 |
Atelopus arsyecue | 34.03874 | 24.8585896 | 0.1319212 | 0.9719388 |
Atelopus balios | 34.11297 | 25.3318181 | 0.1317062 | 0.9366497 |
Atelopus bomolochos | 34.03672 | 24.3493433 | 0.1318013 | 0.9404351 |
Atelopus carauta | 34.06963 | 34.1492387 | 0.1311225 | 1.2908873 |
Atelopus carrikeri | 34.06437 | 22.6337810 | 0.1312048 | 0.8848571 |
Atelopus certus | 34.00020 | 40.6724222 | 0.1342495 | 1.5065238 |
Atelopus chirripoensis | 34.60864 | 20.5143212 | 0.1332328 | 1.1926495 |
Atelopus chrysocorallus | 34.00709 | 32.5008370 | 0.1315493 | 1.2141573 |
Atelopus coynei | 34.02234 | 14.1365382 | 0.1341127 | 0.6785297 |
Atelopus cruciger | 33.98903 | 35.8526972 | 0.1328973 | 1.3223540 |
Atelopus dimorphus | 33.94101 | 30.7028714 | 0.1331727 | 1.2986456 |
Atelopus epikeisthos | 34.00278 | 30.5688673 | 0.1328530 | 1.3019853 |
Atelopus exiguus | 34.11752 | 16.6565610 | 0.1321631 | 0.6873446 |
Atelopus nanay | 34.03939 | 24.0409860 | 0.1320415 | 0.8916065 |
Atelopus famelicus | 34.00060 | 38.6532743 | 0.1323010 | 1.5007234 |
Atelopus flavescens | 33.97791 | 42.1774196 | 0.1302802 | 1.5557586 |
Atelopus franciscus | 33.93599 | 38.1371634 | 0.1318867 | 1.3978159 |
Atelopus galactogaster | 33.99630 | 39.2769887 | 0.1320713 | 1.5006033 |
Atelopus glyphus | 34.09901 | 37.8502923 | 0.1333644 | 1.3879053 |
Atelopus guitarraensis | 34.06035 | 27.0039560 | 0.1317352 | 1.1298309 |
Atelopus podocarpus | 34.00932 | 22.6235005 | 0.1336568 | 0.9753269 |
Atelopus ignescens | 34.00267 | 14.3235103 | 0.1323225 | 0.6624398 |
Atelopus laetissimus | 34.01285 | 24.9460089 | 0.1332165 | 0.9196353 |
Atelopus varius | 34.03504 | 30.4175552 | 0.1322922 | 1.1641835 |
Atelopus longibrachius | 33.97460 | 39.9737087 | 0.1330707 | 1.5494301 |
Atelopus longirostris | 34.05749 | 14.9405009 | 0.1310903 | 0.7164462 |
Atelopus lozanoi | 34.06518 | 22.9352889 | 0.1329542 | 1.0080147 |
Atelopus mandingues | 34.03856 | 21.7852784 | 0.1325289 | 0.9566417 |
Atelopus mittermeieri | 34.01800 | 22.2853383 | 0.1328151 | 0.9997384 |
Atelopus mucubajiensis | 34.03360 | 32.9783224 | 0.1310608 | 1.2276675 |
Atelopus muisca | 33.94503 | 22.3668116 | 0.1336363 | 0.9802376 |
Atelopus nahumae | 34.06169 | 26.7210462 | 0.1294103 | 0.9951222 |
Atelopus nepiozomus | 34.03237 | 18.0309055 | 0.1318183 | 0.7819804 |
Atelopus oxapampae | 34.09185 | 24.4569945 | 0.1311606 | 1.1461191 |
Atelopus palmatus | 33.98059 | 13.4533184 | 0.1323026 | 0.6061020 |
Atelopus pulcher | 34.05379 | 30.6512219 | 0.1321735 | 1.3051953 |
Atelopus pyrodactylus | 34.02039 | 30.1750495 | 0.1313364 | 1.3290152 |
Atelopus reticulatus | 33.93513 | 32.8544393 | 0.1342825 | 1.3820456 |
Atelopus sanjosei | 34.03727 | 35.9306282 | 0.1326413 | 1.3873888 |
Atelopus seminiferus | 34.03931 | 25.3804922 | 0.1336049 | 1.0993165 |
Atelopus simulatus | 34.59110 | 19.5458522 | 0.1320218 | 0.8784981 |
Atelopus siranus | 33.98550 | 29.4302308 | 0.1300840 | 1.2888447 |
Atelopus spurrelli | 33.99211 | 36.0476699 | 0.1316730 | 1.3901254 |
Atelopus tricolor | 34.20716 | 28.2780888 | 0.1309765 | 1.3237664 |
Atelopus walkeri | 34.10185 | 23.9435394 | 0.1295980 | 0.9176342 |
Bufoides meghalayanus | 34.53861 | 20.8875595 | 0.1303711 | 0.9024287 |
Capensibufo rosei | 35.36222 | 15.0531153 | 0.1299875 | 0.6953415 |
Capensibufo tradouwi | 35.24606 | 14.5823029 | 0.1324625 | 0.6970616 |
Mertensophryne anotis | 35.40258 | 30.2090552 | 0.1299873 | 1.1390197 |
Mertensophryne loveridgei | 35.37932 | 29.2078640 | 0.1311046 | 1.1328756 |
Mertensophryne howelli | 35.38804 | 35.8273827 | 0.1312162 | 1.3681549 |
Mertensophryne lindneri | 35.37464 | 28.4242457 | 0.1302679 | 1.1156163 |
Mertensophryne lonnbergi | 35.42195 | 24.3886497 | 0.1310555 | 1.1275070 |
Mertensophryne melanopleura | 35.35607 | 23.9283755 | 0.1294696 | 0.9796604 |
Mertensophryne micranotis | 35.39079 | 36.2062661 | 0.1318627 | 1.4405390 |
Mertensophryne mocquardi | 35.36637 | 22.9446172 | 0.1312119 | 1.0788321 |
Mertensophryne nairobiensis | 35.32911 | 20.2577120 | 0.1331775 | 0.9368216 |
Mertensophryne nyikae | 35.31917 | 29.6097408 | 0.1328933 | 1.3331982 |
Mertensophryne schmidti | 35.34364 | 27.5050661 | 0.1312202 | 1.0690126 |
Mertensophryne taitana | 35.35328 | 23.8059777 | 0.1328414 | 1.0079207 |
Mertensophryne usambarae | 35.37390 | 42.6742199 | 0.1326641 | 1.7002332 |
Mertensophryne uzunguensis | 35.35692 | 27.8758475 | 0.1305444 | 1.2590174 |
Poyntonophrynus beiranus | 35.34691 | 25.6031542 | 0.1305638 | 1.0007942 |
Poyntonophrynus damaranus | 36.28962 | 14.5353404 | 0.1323482 | 0.6281741 |
Poyntonophrynus dombensis | 35.26536 | 15.0459453 | 0.1315523 | 0.6445383 |
Poyntonophrynus fenoulheti | 35.40372 | 19.5790174 | 0.1314857 | 0.8118549 |
Poyntonophrynus grandisonae | 35.12522 | 15.1499942 | 0.1290208 | 0.6161834 |
Poyntonophrynus hoeschi | 35.33731 | 15.6976632 | 0.1302224 | 0.7065102 |
Poyntonophrynus kavangensis | 35.30309 | 20.2473354 | 0.1317571 | 0.8375877 |
Poyntonophrynus lughensis | 35.35574 | 35.9273091 | 0.1306500 | 1.4674106 |
Poyntonophrynus parkeri | 35.28589 | 23.0327126 | 0.1301360 | 1.0333644 |
Poyntonophrynus vertebralis | 35.34119 | 15.2917074 | 0.1299599 | 0.7189934 |
Laurentophryne parkeri | 35.35262 | 24.9690131 | 0.1276237 | 1.0166798 |
Metaphryniscus sosai | 35.19916 | 33.3965564 | 0.1329798 | 1.2781440 |
Nannophryne apolobambica | 35.22024 | 19.8485574 | 0.1325793 | 1.2144922 |
Nannophryne corynetes | 35.31629 | 15.8997972 | 0.1281268 | 0.8539352 |
Nannophryne variegata | 35.23681 | 5.9891532 | 0.1328576 | 0.5111197 |
Oreophrynella cryptica | 35.35178 | 35.5940544 | 0.1289411 | 1.3583891 |
Oreophrynella dendronastes | 35.15019 | 41.2420761 | 0.1324181 | 1.5332423 |
Oreophrynella huberi | 35.31137 | 32.3328036 | 0.1300325 | 1.2300338 |
Oreophrynella macconnelli | 35.17633 | 36.6938071 | 0.1295490 | 1.3623021 |
Oreophrynella nigra | 35.31341 | 37.9192576 | 0.1309872 | 1.4252345 |
Oreophrynella quelchii | 35.32884 | 36.5569119 | 0.1309520 | 1.3691920 |
Oreophrynella vasquezi | 35.36308 | 31.0314516 | 0.1304765 | 1.1930045 |
Oreophrynella weiassipuensis | 35.10860 | 34.4702840 | 0.1294893 | 1.2920565 |
Osornophryne bufoniformis | 35.18577 | 20.9226885 | 0.1309626 | 0.9222589 |
Osornophryne antisana | 35.19835 | 14.0327177 | 0.1291933 | 0.6346783 |
Osornophryne percrassa | 35.19785 | 27.9778520 | 0.1316896 | 1.2337678 |
Osornophryne puruanta | 35.14500 | 21.6381936 | 0.1324441 | 0.9730545 |
Osornophryne cofanorum | 35.03366 | 22.8309617 | 0.1317262 | 1.0237140 |
Osornophryne guacamayo | 35.23698 | 17.1980768 | 0.1292414 | 0.7813464 |
Osornophryne sumacoensis | 35.25214 | 25.2131921 | 0.1317810 | 1.0549256 |
Osornophryne talipes | 35.20451 | 23.2108239 | 0.1325689 | 1.0102005 |
Parapelophryne scalpta | 35.35914 | 49.5028869 | 0.1344618 | 1.7582776 |
Peltophryne cataulaciceps | 35.24405 | 62.3058731 | 0.1311330 | 2.2699611 |
Peltophryne longinasus | 35.27440 | 69.8530066 | 0.1311419 | 2.5321490 |
Peltophryne gundlachi | 35.16998 | 56.5105847 | 0.1306993 | 2.0512004 |
Peltophryne empusa | 35.22459 | 67.4290361 | 0.1323866 | 2.4438947 |
Peltophryne florentinoi | 35.24879 | 57.5275787 | 0.1304691 | 2.0916729 |
Peltophryne peltocephala | 35.15934 | 63.1083825 | 0.1318917 | 2.2895180 |
Peltophryne fustiger | 35.19928 | 54.5700891 | 0.1317842 | 1.9878861 |
Peltophryne taladai | 35.23140 | 61.7744614 | 0.1306144 | 2.2342201 |
Peltophryne guentheri | 35.17545 | 71.4539488 | 0.1315157 | 2.5995771 |
Peltophryne lemur | 35.24856 | 64.0283991 | 0.1324287 | 2.3658546 |
Pseudobufo subasper | 35.25779 | 44.5693186 | 0.1300819 | 1.5371435 |
Rhaebo blombergi | 35.02381 | 33.1122153 | 0.1342978 | 1.3133197 |
Rhaebo caeruleostictus | 35.08212 | 19.5248911 | 0.1323861 | 0.8149009 |
Rhaebo glaberrimus | 34.52886 | 32.9897688 | 0.1310494 | 1.3025697 |
Rhaebo guttatus | 35.04955 | 32.1869704 | 0.1319600 | 1.1606890 |
Rhaebo hypomelas | 35.15661 | 32.0599884 | 0.1293464 | 1.2829509 |
Rhaebo lynchi | 35.14797 | 35.8580456 | 0.1289433 | 1.3573454 |
Rhaebo nasicus | 34.54102 | 31.7859953 | 0.1301990 | 1.1968849 |
Truebella skoptes | 35.21988 | 23.5191369 | 0.1288299 | 1.3761998 |
Truebella tothastes | 35.29795 | 13.1134919 | 0.1300858 | 0.7611042 |
Frostius erythrophthalmus | 35.23968 | 23.3056253 | 0.1316565 | 0.9325698 |
Frostius pernambucensis | 35.33719 | 32.2575386 | 0.1313048 | 1.2702542 |
Melanophryniscus admirabilis | 34.47497 | 18.5628400 | 0.1305944 | 0.7323096 |
Melanophryniscus alipioi | 34.96327 | 14.3530842 | 0.1332953 | 0.5930302 |
Melanophryniscus atroluteus | 35.06521 | 14.8178376 | 0.1304168 | 0.5909739 |
Melanophryniscus cambaraensis | 34.54404 | 15.0002144 | 0.1317050 | 0.6090524 |
Melanophryniscus cupreuscapularis | 34.99878 | 18.1978181 | 0.1339878 | 0.6688359 |
Melanophryniscus dorsalis | 35.09563 | 16.4661500 | 0.1347633 | 0.6751854 |
Melanophryniscus fulvoguttatus | 34.96883 | 23.1011827 | 0.1335668 | 0.8248919 |
Melanophryniscus klappenbachi | 35.03516 | 19.2080286 | 0.1317283 | 0.6907243 |
Melanophryniscus stelzneri | 35.06464 | 13.1682181 | 0.1309114 | 0.6048878 |
Melanophryniscus langonei | 34.31513 | 12.7911251 | 0.1325819 | 0.5129390 |
Melanophryniscus macrogranulosus | 34.92130 | 13.9372789 | 0.1336346 | 0.5579309 |
Melanophryniscus montevidensis | 34.94778 | 14.6986493 | 0.1333500 | 0.6602740 |
Melanophryniscus moreirae | 35.02925 | 22.6717783 | 0.1317277 | 0.8489025 |
Melanophryniscus orejasmirandai | 35.07922 | 16.2706869 | 0.1345130 | 0.7446443 |
Melanophryniscus pachyrhynus | 35.06597 | 13.6447880 | 0.1332251 | 0.5620936 |
Melanophryniscus peritus | 35.05050 | 20.0662530 | 0.1315102 | 0.7580169 |
Melanophryniscus sanmartini | 35.02358 | 15.3394157 | 0.1341816 | 0.6615833 |
Melanophryniscus simplex | 35.07852 | 15.7040571 | 0.1337984 | 0.6273214 |
Melanophryniscus spectabilis | 35.08245 | 16.5594161 | 0.1306124 | 0.6565784 |
Melanophryniscus tumifrons | 35.09568 | 16.1232335 | 0.1335948 | 0.6433429 |
Edalorhina nasuta | 36.27354 | 18.7073421 | 0.1336140 | 0.8775205 |
Engystomops montubio | 36.75920 | 20.9416756 | 0.1318696 | 0.8433883 |
Engystomops pustulatus | 36.52844 | 20.7153230 | 0.1311398 | 0.8279026 |
Physalaemus caete | 36.60964 | 23.8326373 | 0.1346209 | 0.9297250 |
Physalaemus aguirrei | 36.42675 | 27.1870611 | 0.1326818 | 1.0610349 |
Physalaemus irroratus | 36.45277 | 23.3728622 | 0.1289947 | 0.9104527 |
Physalaemus maculiventris | 36.65234 | 20.1923446 | 0.1320654 | 0.7842384 |
Physalaemus moreirae | 36.40766 | 18.6662134 | 0.1306764 | 0.7170901 |
Physalaemus albifrons | 36.44264 | 18.6270143 | 0.1344178 | 0.7165931 |
Physalaemus centralis | 35.71338 | 17.3289629 | 0.1347089 | 0.6323514 |
Physalaemus ephippifer | 35.51333 | 27.8340813 | 0.1345210 | 0.9960033 |
Physalaemus erythros | 35.75214 | 14.5871336 | 0.1352921 | 0.5664967 |
Physalaemus maximus | 35.80934 | 13.9773065 | 0.1315266 | 0.5465853 |
Physalaemus angrensis | 36.34619 | 20.2441362 | 0.1332388 | 0.7540133 |
Physalaemus rupestris | 36.36991 | 22.3137614 | 0.1311286 | 0.8548396 |
Physalaemus atlanticus | 37.23987 | 18.9222066 | 0.1304566 | 0.7567729 |
Physalaemus santafecinus | 37.35823 | 12.5667334 | 0.1312305 | 0.4703211 |
Physalaemus spiniger | 37.12182 | 16.3974819 | 0.1288403 | 0.6387528 |
Physalaemus barrioi | 36.00508 | 16.3526960 | 0.1321302 | 0.6147210 |
Physalaemus biligonigerus | 35.99251 | 14.9144893 | 0.1333020 | 0.5753734 |
Physalaemus jordanensis | 36.18298 | 13.8948056 | 0.1312580 | 0.5376260 |
Physalaemus bokermanni | 36.51876 | 15.5032536 | 0.1324882 | 0.6069186 |
Physalaemus cuqui | 36.88809 | 13.7514444 | 0.1307270 | 0.5746019 |
Physalaemus kroyeri | 36.57926 | 19.8800535 | 0.1304654 | 0.7815604 |
Physalaemus fernandezae | 35.63700 | 10.0327272 | 0.1343204 | 0.4576415 |
Physalaemus deimaticus | 36.37199 | 16.7975844 | 0.1325630 | 0.6825474 |
Physalaemus insperatus | 36.40970 | 15.2627911 | 0.1308695 | 0.6223080 |
Physalaemus evangelistai | 36.33540 | 18.9471721 | 0.1325540 | 0.7509364 |
Physalaemus nanus | 36.34017 | 15.4228533 | 0.1319849 | 0.6235099 |
Physalaemus fischeri | 36.31729 | 30.6358561 | 0.1319181 | 1.1435621 |
Physalaemus olfersii | 36.34164 | 18.7908411 | 0.1310271 | 0.7323787 |
Physalaemus lisei | 36.29943 | 13.3395395 | 0.1327246 | 0.5407885 |
Physalaemus marmoratus | 37.67312 | 18.4800678 | 0.1318215 | 0.6833972 |
Physalaemus obtectus | 36.39366 | 20.4123343 | 0.1307354 | 0.7901597 |
Physalaemus soaresi | 36.38070 | 23.3504734 | 0.1312349 | 0.8921354 |
Pleurodema borellii | 37.19611 | 9.4766966 | 0.1304718 | 0.4497366 |
Pleurodema cinereum | 37.18823 | 10.1241881 | 0.1319652 | 0.5951182 |
Pleurodema fuscomaculatum | 37.11748 | 24.3630327 | 0.1322985 | 0.8558101 |
Pleurodema bibroni | 35.81643 | 9.4333641 | 0.1355485 | 0.3851898 |
Pleurodema kriegi | 35.82267 | 8.3331792 | 0.1342764 | 0.3586660 |
Pleurodema guayapae | 36.75042 | 9.4540861 | 0.1301690 | 0.3999375 |
Pseudopaludicola mystacalis | 36.48101 | 22.5266996 | 0.1314382 | 0.8436858 |
Pseudopaludicola boliviana | 36.52567 | 27.0261197 | 0.1286960 | 0.9712619 |
Pseudopaludicola pusilla | 36.54700 | 29.0485252 | 0.1307580 | 1.0836532 |
Pseudopaludicola saltica | 36.59960 | 23.9164955 | 0.1311752 | 0.8913482 |
Pseudopaludicola canga | 36.45520 | 33.4551916 | 0.1303129 | 1.1916364 |
Pseudopaludicola mineira | 36.50494 | 16.1948245 | 0.1275396 | 0.6513831 |
Pseudopaludicola llanera | 36.53589 | 29.7731036 | 0.1260592 | 1.1084553 |
Pseudopaludicola ternetzi | 36.74930 | 18.2225275 | 0.1291552 | 0.6874762 |
Crossodactylodes bokermanni | 35.93615 | 31.2561428 | 0.1300625 | 1.2095514 |
Crossodactylodes izecksohni | 36.02075 | 30.8111683 | 0.1311206 | 1.1942098 |
Crossodactylodes pintoi | 36.02339 | 24.6480102 | 0.1322302 | 0.9178945 |
Paratelmatobius mantiqueira | 35.97587 | 21.0712641 | 0.1322453 | 0.8060755 |
Paratelmatobius cardosoi | 36.00188 | 20.6151656 | 0.1296190 | 0.8191506 |
Paratelmatobius gaigeae | 36.03135 | 20.1367167 | 0.1306995 | 0.7539061 |
Paratelmatobius poecilogaster | 36.01358 | 20.5583116 | 0.1333081 | 0.8183076 |
Paratelmatobius lutzii | 36.08054 | 21.5212628 | 0.1281960 | 0.8069389 |
Scythrophrys sawayae | 36.03073 | 18.3497075 | 0.1326686 | 0.7458269 |
Rupirana cardosoi | 35.47791 | 21.4557465 | 0.1317179 | 0.8537356 |
Adenomera ajurauna | 34.86067 | 14.6966572 | 0.1342320 | 0.5730912 |
Adenomera araucaria | 35.34419 | 14.3138952 | 0.1296895 | 0.5740153 |
Adenomera thomei | 35.33126 | 30.6957497 | 0.1331121 | 1.2008729 |
Adenomera nana | 35.45841 | 15.8875116 | 0.1324253 | 0.6393327 |
Adenomera bokermanni | 35.38564 | 17.4913737 | 0.1320983 | 0.6773274 |
Adenomera coca | 35.36697 | 13.6877537 | 0.1311980 | 0.9425057 |
Adenomera diptyx | 35.41116 | 18.9506071 | 0.1323430 | 0.6927039 |
Adenomera hylaedactyla | 35.39350 | 28.5709900 | 0.1318151 | 1.0388234 |
Adenomera martinezi | 35.35206 | 29.3326675 | 0.1323411 | 1.0562728 |
Adenomera marmorata | 35.44286 | 19.1578594 | 0.1302786 | 0.7402232 |
Adenomera heyeri | 35.52512 | 35.0187468 | 0.1319803 | 1.2725990 |
Adenomera lutzi | 35.39185 | 32.1575265 | 0.1337709 | 1.1919543 |
Hydrolaetare caparu | 37.47125 | 23.5290065 | 0.1312401 | 0.8200392 |
Hydrolaetare schmidti | 36.41392 | 34.7324765 | 0.1317690 | 1.2220515 |
Hydrolaetare dantasi | 36.43028 | 33.5043130 | 0.1301014 | 1.1899950 |
Leptodactylus poecilochilus | 35.44867 | 27.8375641 | 0.1311916 | 1.0329955 |
Leptodactylus chaquensis | 36.46040 | 15.8663046 | 0.1312637 | 0.6006834 |
Leptodactylus fragilis | 38.12338 | 23.2250674 | 0.1281574 | 0.8738531 |
Leptodactylus longirostris | 37.86599 | 27.3308171 | 0.1301427 | 1.0053962 |
Leptodactylus caatingae | 36.52327 | 19.7394692 | 0.1291798 | 0.7641990 |
Leptodactylus camaquara | 37.51463 | 17.3861291 | 0.1317728 | 0.6857897 |
Leptodactylus colombiensis | 36.52463 | 27.2707592 | 0.1315883 | 1.0973239 |
Leptodactylus cunicularius | 36.56946 | 15.7825899 | 0.1331705 | 0.6086664 |
Leptodactylus cupreus | 37.47964 | 17.9185419 | 0.1293163 | 0.6931035 |
Leptodactylus notoaktites | 35.69695 | 13.4284133 | 0.1345796 | 0.5205640 |
Leptodactylus mystaceus | 35.65891 | 28.0110860 | 0.1329157 | 1.0121382 |
Leptodactylus spixi | 35.77497 | 21.1334840 | 0.1321075 | 0.8250210 |
Leptodactylus elenae | 35.93795 | 16.6512071 | 0.1303876 | 0.6068650 |
Leptodactylus diedrus | 36.85951 | 28.8186537 | 0.1297745 | 1.0026669 |
Leptodactylus discodactylus | 37.05933 | 25.9589457 | 0.1300614 | 0.9414296 |
Leptodactylus griseigularis | 37.08923 | 17.8783008 | 0.1285516 | 0.9103298 |
Leptodactylus validus | 36.61205 | 46.8360418 | 0.1304273 | 1.7394302 |
Leptodactylus fallax | 36.54158 | 50.0406161 | 0.1276546 | 1.8428222 |
Leptodactylus labyrinthicus | 36.70459 | 23.0400565 | 0.1291108 | 0.8373426 |
Leptodactylus myersi | 36.54907 | 35.3933862 | 0.1293879 | 1.2894410 |
Leptodactylus knudseni | 36.45353 | 29.5357300 | 0.1303475 | 1.0706648 |
Leptodactylus pentadactylus | 36.52621 | 32.0494970 | 0.1272322 | 1.1593204 |
Leptodactylus flavopictus | 36.55520 | 18.5246859 | 0.1318682 | 0.7228278 |
Leptodactylus furnarius | 36.01523 | 16.9262046 | 0.1327488 | 0.6346320 |
Leptodactylus plaumanni | 37.00816 | 12.8390123 | 0.1295658 | 0.4976682 |
Leptodactylus stenodema | 36.58751 | 31.7404305 | 0.1322606 | 1.1325103 |
Leptodactylus hylodes | 36.52889 | 29.1891845 | 0.1305304 | 1.1552490 |
Leptodactylus jolyi | 36.95606 | 15.5142791 | 0.1303924 | 0.5889605 |
Leptodactylus magistris | 35.72640 | 25.2738961 | 0.1316250 | 0.9538428 |
Leptodactylus laticeps | 36.52204 | 17.1724795 | 0.1300341 | 0.6440944 |
Leptodactylus lauramiriamae | 36.51318 | 26.3310022 | 0.1313425 | 0.9354005 |
Leptodactylus nesiotus | 36.15059 | 33.2402846 | 0.1322601 | 1.2262868 |
Leptodactylus marambaiae | 36.59740 | 26.6407296 | 0.1317241 | 1.0451368 |
Leptodactylus natalensis | 36.56315 | 26.0646455 | 0.1291910 | 1.0003491 |
Leptodactylus paraensis | 36.56970 | 29.7467355 | 0.1276516 | 1.0603802 |
Leptodactylus rhodonotus | 36.56169 | 31.1960747 | 0.1293562 | 1.3259194 |
Leptodactylus peritoaktites | 36.60434 | 25.5879783 | 0.1308053 | 0.9949166 |
Leptodactylus pustulatus | 36.54849 | 26.9850301 | 0.1308207 | 0.9652710 |
Leptodactylus rhodomerus | 36.52562 | 26.4311472 | 0.1330671 | 1.0487722 |
Leptodactylus riveroi | 36.66225 | 35.2499035 | 0.1332207 | 1.2396965 |
Leptodactylus silvanimbus | 36.53498 | 20.1309761 | 0.1307332 | 0.7513414 |
Leptodactylus rugosus | 36.46688 | 29.9879909 | 0.1319459 | 1.1369092 |
Leptodactylus sabanensis | 36.53384 | 25.4411414 | 0.1307931 | 0.9718616 |
Leptodactylus savagei | 36.53853 | 29.9965660 | 0.1326507 | 1.1094368 |
Leptodactylus sertanejo | 36.46835 | 19.4521157 | 0.1308334 | 0.7249981 |
Leptodactylus tapiti | 36.57346 | 20.3920147 | 0.1300997 | 0.7666681 |
Leptodactylus turimiquensis | 36.55808 | 32.6062338 | 0.1338481 | 1.2156383 |
Leptodactylus vastus | 36.56575 | 29.4784507 | 0.1303024 | 1.0949815 |
Leptodactylus viridis | 36.59207 | 28.5884327 | 0.1315597 | 1.1228650 |
Leptodactylus syphax | 36.32011 | 23.8139313 | 0.1302545 | 0.8818460 |
Celsiella revocata | 33.59445 | 30.2473216 | 0.1319174 | 1.1203549 |
Celsiella vozmedianoi | 33.57724 | 34.0007747 | 0.1340820 | 1.2507006 |
Hyalinobatrachium aureoguttatum | 33.75471 | 34.9245864 | 0.1314458 | 1.3696993 |
Hyalinobatrachium valerioi | 33.70486 | 28.4329683 | 0.1316411 | 1.1305481 |
Hyalinobatrachium talamancae | 33.76946 | 22.7034810 | 0.1312049 | 1.0083848 |
Hyalinobatrachium chirripoi | 33.74315 | 34.0922573 | 0.1298248 | 1.3184243 |
Hyalinobatrachium colymbiphyllum | 33.66930 | 38.3861401 | 0.1356566 | 1.4758901 |
Hyalinobatrachium pellucidum | 33.71843 | 24.2402472 | 0.1323760 | 1.0559132 |
Hyalinobatrachium cappellei | 33.70430 | 32.5999234 | 0.1331762 | 1.1679981 |
Hyalinobatrachium taylori | 33.71546 | 32.8023305 | 0.1315167 | 1.2125471 |
Hyalinobatrachium iaspidiense | 33.82644 | 35.3569542 | 0.1300873 | 1.2610273 |
Hyalinobatrachium fleischmanni | 33.67869 | 27.8809743 | 0.1334762 | 1.0533266 |
Hyalinobatrachium tatayoi | 33.71788 | 31.2067637 | 0.1314051 | 1.1992357 |
Hyalinobatrachium duranti | 33.75107 | 29.5262997 | 0.1312392 | 1.1216104 |
Hyalinobatrachium ibama | 33.74308 | 25.3915557 | 0.1305276 | 1.0573921 |
Hyalinobatrachium pallidum | 33.70107 | 29.8096139 | 0.1313788 | 1.1082223 |
Hyalinobatrachium fragile | 33.72649 | 31.6683085 | 0.1326616 | 1.1715144 |
Hyalinobatrachium orientale | 33.65906 | 42.3936855 | 0.1332026 | 1.5763922 |
Hyalinobatrachium esmeralda | 33.70004 | 21.9109343 | 0.1329656 | 0.9659856 |
Hyalinobatrachium guairarepanense | 33.76369 | 33.2854090 | 0.1296200 | 1.2497908 |
Hyalinobatrachium vireovittatum | 33.67809 | 39.1076646 | 0.1335969 | 1.4941840 |
Centrolene acanthidiocephalum | 33.56235 | 31.0213760 | 0.1289939 | 1.2577944 |
Centrolene antioquiense | 33.52348 | 24.0636861 | 0.1292905 | 1.0163093 |
Centrolene azulae | 33.48108 | 33.0360028 | 0.1333791 | 1.3986593 |
Centrolene ballux | 33.51296 | 11.5281489 | 0.1291011 | 0.5603604 |
Centrolene buckleyi | 34.04653 | 14.4738132 | 0.1296972 | 0.6655512 |
Centrolene condor | 33.53394 | 25.4278217 | 0.1315202 | 1.0185657 |
Centrolene heloderma | 33.56788 | 17.8731470 | 0.1299826 | 0.7749041 |
Centrolene hybrida | 33.51465 | 26.3560149 | 0.1333397 | 1.0941952 |
Centrolene lemniscatum | 33.53547 | 16.0569976 | 0.1311840 | 0.7781381 |
Centrolene lynchi | 33.55699 | 8.8729783 | 0.1333436 | 0.4422597 |
Centrolene medemi | 33.57195 | 31.5485991 | 0.1335595 | 1.2830998 |
Centrolene muelleri | 33.52655 | 20.8804870 | 0.1345394 | 0.9617397 |
Centrolene paezorum | 34.04636 | 19.0990298 | 0.1301078 | 0.8295609 |
Centrolene petrophilum | 33.39959 | 18.7257594 | 0.1327058 | 0.8255692 |
Centrolene quindianum | 33.45856 | 18.5789911 | 0.1321669 | 0.8454177 |
Centrolene robledoi | 33.50243 | 25.5310536 | 0.1332775 | 1.0741351 |
Centrolene sanchezi | 33.51600 | 24.1393106 | 0.1324069 | 0.9965511 |
Centrolene savagei | 33.55084 | 25.6710013 | 0.1334923 | 1.0850944 |
Centrolene solitaria | 33.53706 | 23.9737663 | 0.1335561 | 0.9586484 |
Centrolene venezuelense | 34.01799 | 24.9621253 | 0.1303068 | 0.9532852 |
Cochranella duidaeana | 33.95681 | 31.8392833 | 0.1319011 | 1.2242865 |
Cochranella euhystrix | 33.46035 | 40.0444288 | 0.1345661 | 1.6349650 |
Cochranella euknemos | 33.43706 | 32.9860585 | 0.1352981 | 1.2155807 |
Cochranella geijskesi | 33.53152 | 28.4736682 | 0.1312317 | 1.0220581 |
Cochranella granulosa | 33.52127 | 33.8827171 | 0.1333937 | 1.2654572 |
Cochranella litoralis | 33.98621 | 26.9844058 | 0.1331085 | 1.1158439 |
Cochranella mache | 33.54007 | 30.9934531 | 0.1342575 | 1.2394563 |
Cochranella nola | 33.57136 | 24.1292901 | 0.1305334 | 1.1756881 |
Cochranella phryxa | 33.99242 | 29.0584477 | 0.1316217 | 1.3598975 |
Cochranella ramirezi | 33.53914 | 32.4230110 | 0.1281267 | 1.2058125 |
Cochranella resplendens | 34.00929 | 27.5751301 | 0.1313065 | 1.1215230 |
Cochranella riveroi | 33.96465 | 34.4720388 | 0.1313320 | 1.2707465 |
Cochranella xanthocheridia | 33.51965 | 31.0082225 | 0.1304633 | 1.1766791 |
Espadarana andina | 32.93952 | 22.1287174 | 0.1337244 | 0.8789090 |
Nymphargus anomalus | 33.57746 | 14.7545104 | 0.1301123 | 0.6368559 |
Nymphargus armatus | 33.56525 | 33.9568255 | 0.1311198 | 1.4068493 |
Nymphargus bejaranoi | 34.00337 | 18.8823229 | 0.1302266 | 1.0158312 |
Nymphargus buenaventura | 33.58370 | 16.6931279 | 0.1290615 | 0.6889654 |
Nymphargus cariticommatus | 33.56190 | 22.5395739 | 0.1315369 | 0.9446151 |
Nymphargus chami | 34.15276 | 29.7998923 | 0.1291957 | 1.1325691 |
Nymphargus chancas | 33.64313 | 30.9300213 | 0.1294515 | 1.2701655 |
Nymphargus cochranae | 33.59961 | 18.4562212 | 0.1295591 | 0.8016269 |
Nymphargus cristinae | 34.03662 | 32.8586582 | 0.1295367 | 1.2437920 |
Nymphargus garciae | 33.99754 | 22.7226207 | 0.1303345 | 0.9667561 |
Nymphargus grandisonae | 34.09310 | 23.0020416 | 0.1316130 | 0.9606836 |
Nymphargus griffithsi | 34.02555 | 22.3764741 | 0.1337472 | 0.9360996 |
Nymphargus ignotus | 34.02742 | 34.0692113 | 0.1306729 | 1.3400367 |
Nymphargus laurae | 34.08030 | 20.2859901 | 0.1307589 | 0.8494245 |
Nymphargus luminosus | 34.04031 | 35.8204327 | 0.1311932 | 1.3546895 |
Nymphargus luteopunctatus | 34.06061 | 25.0695188 | 0.1302325 | 1.0287332 |
Nymphargus mariae | 34.03570 | 21.8423626 | 0.1294726 | 0.9187595 |
Nymphargus mixomaculatus | 33.63044 | 8.3937700 | 0.1296293 | 0.5285483 |
Nymphargus nephelophila | 33.57627 | 32.2929450 | 0.1335325 | 1.2512676 |
Nymphargus ocellatus | 34.01167 | 21.6039355 | 0.1313471 | 1.0104324 |
Nymphargus oreonympha | 33.94544 | 31.4195653 | 0.1329938 | 1.2122743 |
Nymphargus phenax | 33.98207 | 16.6999489 | 0.1348004 | 1.0697550 |
Nymphargus pluvialis | 33.58883 | 13.5383549 | 0.1304636 | 0.7525625 |
Nymphargus posadae | 33.96597 | 22.3316210 | 0.1312346 | 0.9521315 |
Nymphargus prasinus | 34.10865 | 28.3088928 | 0.1314722 | 1.1354919 |
Nymphargus rosada | 34.05368 | 23.6030944 | 0.1322461 | 1.0146644 |
Nymphargus ruizi | 34.06113 | 28.1315625 | 0.1293330 | 1.1463311 |
Nymphargus siren | 34.07226 | 23.0414835 | 0.1329945 | 0.9853339 |
Nymphargus spilotus | 34.04584 | 26.8981304 | 0.1309198 | 1.1637275 |
Nymphargus vicenteruedai | 33.63274 | 21.6648934 | 0.1297451 | 0.9580684 |
Nymphargus wileyi | 33.61895 | 21.2219849 | 0.1307580 | 0.8858312 |
Rulyrana adiazeta | 33.54789 | 27.1227342 | 0.1323136 | 1.1106908 |
Rulyrana flavopunctata | 33.57823 | 24.5788701 | 0.1327662 | 0.9984697 |
Rulyrana mcdiarmidi | 33.58246 | 24.1208738 | 0.1325285 | 1.0172382 |
Rulyrana saxiscandens | 33.55754 | 34.5779275 | 0.1316568 | 1.4227051 |
Rulyrana spiculata | 33.55302 | 20.3113832 | 0.1316330 | 1.0587415 |
Rulyrana susatamai | 33.52427 | 23.9128699 | 0.1318612 | 0.9951632 |
Sachatamia albomaculata | 33.59582 | 32.8936200 | 0.1313854 | 1.2408345 |
Sachatamia punctulata | 33.53492 | 26.1877340 | 0.1298624 | 1.0786850 |
Sachatamia ilex | 33.54502 | 34.0039896 | 0.1337593 | 1.2889473 |
Sachatamia orejuela | 33.52034 | 23.2957129 | 0.1316319 | 0.9675690 |
Teratohyla adenocheira | 33.52901 | 30.4338026 | 0.1318884 | 1.0677716 |
Teratohyla midas | 34.03799 | 33.4719206 | 0.1304343 | 1.2000599 |
Teratohyla spinosa | 33.48893 | 29.0493603 | 0.1316793 | 1.1163530 |
Teratohyla amelie | 33.99686 | 26.0830798 | 0.1322524 | 1.1530136 |
Teratohyla pulverata | 34.05080 | 33.4100301 | 0.1313171 | 1.2614253 |
Vitreorana antisthenesi | 33.97020 | 29.7596738 | 0.1321794 | 1.0929259 |
Vitreorana castroviejoi | 34.00469 | 40.3900527 | 0.1322055 | 1.5149458 |
Vitreorana eurygnatha | 34.05657 | 18.6423756 | 0.1313641 | 0.7241542 |
Vitreorana gorzulae | 33.95219 | 27.5287611 | 0.1305876 | 1.0498714 |
Vitreorana helenae | 33.95521 | 27.3819766 | 0.1316355 | 1.0506371 |
Vitreorana parvula | 33.60416 | 14.4410698 | 0.1298535 | 0.5826125 |
Vitreorana uranoscopa | 33.97157 | 17.8931107 | 0.1318042 | 0.6940331 |
Ikakogi tayrona | 33.68114 | 25.2362574 | 0.1319845 | 0.9270119 |
Allophryne ruthveni | 34.86452 | 39.3270059 | 0.1313495 | 1.4095369 |
Nasikabatrachus sahyadrensis | 34.82301 | 54.9376927 | 0.1378779 | 1.9800722 |
Sooglossus thomasseti | 33.04035 | 83.6734624 | 0.1439995 | 3.1109872 |
Sooglossus sechellensis | 33.67137 | 68.0749385 | 0.1399717 | 2.5311973 |
Sechellophryne pipilodryas | 33.71747 | 82.2796604 | 0.1368449 | 3.0595760 |
Sechellophryne gardineri | 33.72120 | 81.5350018 | 0.1395661 | 3.0334675 |
Hemisus barotseensis | 35.79353 | 28.1055685 | 0.1359514 | 1.1211405 |
Hemisus microscaphus | 35.73402 | 38.1810443 | 0.1380210 | 1.7537569 |
Hemisus marmoratus | 35.71051 | 35.0837494 | 0.1371161 | 1.3614321 |
Hemisus perreti | 35.72752 | 39.5264331 | 0.1361005 | 1.4033935 |
Hemisus guineensis | 35.79207 | 34.9421450 | 0.1358858 | 1.3594011 |
Hemisus guttatus | 35.67424 | 27.2605956 | 0.1354178 | 1.1876249 |
Hemisus olivaceus | 35.65563 | 43.1094499 | 0.1397306 | 1.6219021 |
Hemisus wittei | 35.75737 | 33.9785588 | 0.1348518 | 1.3988209 |
Hemisus brachydactylus | 35.73151 | 33.6910987 | 0.1370942 | 1.4733160 |
Balebreviceps hillmani | 34.70304 | 34.9789873 | 0.1380883 | 1.7282497 |
Callulina dawida | 34.75004 | 50.5295266 | 0.1380835 | 2.0607378 |
Callulina kanga | 34.66336 | 35.5990381 | 0.1371881 | 1.5299259 |
Callulina laphami | 34.64254 | 39.4392598 | 0.1374285 | 1.7119877 |
Callulina shengena | 34.57035 | 39.3099916 | 0.1381138 | 1.6642275 |
Callulina hanseni | 34.60071 | 44.1097703 | 0.1380014 | 1.8193115 |
Callulina meteora | 34.70775 | 45.3761590 | 0.1362309 | 1.8713381 |
Callulina kisiwamsitu | 34.67543 | 62.3819675 | 0.1370054 | 2.4871144 |
Callulina kreffti | 34.84795 | 41.4880151 | 0.1345883 | 1.7146473 |
Callulina stanleyi | 34.71140 | 37.7826305 | 0.1362243 | 1.6049301 |
Spelaeophryne methneri | 35.73386 | 39.5177068 | 0.1367333 | 1.6320828 |
Probreviceps durirostris | 34.83201 | 33.7202110 | 0.1360786 | 1.4322101 |
Probreviceps rungwensis | 34.73775 | 36.3813624 | 0.1371007 | 1.5966054 |
Probreviceps loveridgei | 34.78774 | 34.6554621 | 0.1353526 | 1.4713924 |
Probreviceps macrodactylus | 34.76842 | 45.7511136 | 0.1382357 | 1.8719997 |
Probreviceps uluguruensis | 34.80866 | 48.4917600 | 0.1367397 | 1.9903792 |
Probreviceps rhodesianus | 34.78480 | 28.7997779 | 0.1345239 | 1.1779153 |
Breviceps acutirostris | 35.67384 | 21.9471107 | 0.1355879 | 1.0569648 |
Breviceps adspersus | 35.71574 | 24.5137172 | 0.1407068 | 1.0392960 |
Breviceps gibbosus | 35.86239 | 18.1486407 | 0.1347297 | 0.8642603 |
Breviceps fichus | 35.85923 | 36.7440927 | 0.1369120 | 1.6152186 |
Breviceps mossambicus | 35.81952 | 34.7057860 | 0.1361835 | 1.4061223 |
Breviceps rosei | 35.78204 | 21.7085581 | 0.1393421 | 1.0448792 |
Breviceps bagginsi | 35.81801 | 28.1614249 | 0.1357996 | 1.2416005 |
Breviceps sopranus | 35.80348 | 28.7132304 | 0.1367409 | 1.1947798 |
Breviceps macrops | 35.85938 | 28.2495325 | 0.1358909 | 1.4231804 |
Breviceps namaquensis | 35.84358 | 23.9618268 | 0.1344599 | 1.1664561 |
Breviceps fuscus | 35.83721 | 19.6559430 | 0.1373618 | 0.9183382 |
Breviceps montanus | 35.85552 | 21.4474881 | 0.1350397 | 1.0206009 |
Breviceps verrucosus | 35.80662 | 24.8357444 | 0.1374861 | 1.1216026 |
Breviceps poweri | 35.76370 | 34.0141292 | 0.1368826 | 1.3754296 |
Breviceps sylvestris | 35.76447 | 26.3794311 | 0.1358075 | 1.1154490 |
Acanthixalus sonjae | 36.59167 | 51.6181482 | 0.1332141 | 1.8607160 |
Acanthixalus spinosus | 36.63873 | 42.8472917 | 0.1326268 | 1.5507902 |
Kassina arboricola | 36.92329 | 51.2763592 | 0.1330270 | 1.8497572 |
Kassina cassinoides | 36.93828 | 33.6974302 | 0.1336074 | 1.2163902 |
Kassina cochranae | 36.55626 | 40.4177593 | 0.1342822 | 1.4582999 |
Kassina decorata | 37.01313 | 39.4138639 | 0.1332270 | 1.4822666 |
Kassina fusca | 36.66873 | 34.0030871 | 0.1323139 | 1.2166450 |
Kassina jozani | 36.60006 | 57.3365910 | 0.1338105 | 2.2146759 |
Kassina kuvangensis | 36.85133 | 24.2587229 | 0.1359604 | 1.0037801 |
Kassina lamottei | 36.63582 | 43.6421448 | 0.1327194 | 1.5751488 |
Kassina maculata | 36.66236 | 31.1939014 | 0.1332083 | 1.2159382 |
Kassina maculifer | 36.77888 | 36.5449612 | 0.1314430 | 1.4889781 |
Kassina maculosa | 36.75993 | 37.0685627 | 0.1317801 | 1.3728386 |
Kassina senegalensis | 36.64983 | 28.4550247 | 0.1344795 | 1.1121046 |
Kassina mertensi | 36.71940 | 35.9751835 | 0.1358149 | 1.3523890 |
Kassina schioetzi | 36.66120 | 42.9768777 | 0.1323849 | 1.5420220 |
Kassina somalica | 36.65806 | 38.0314115 | 0.1356341 | 1.5627796 |
Kassina wazae | 36.88812 | 30.5817810 | 0.1338199 | 1.0977716 |
Phlyctimantis boulengeri | 36.57775 | 52.1815435 | 0.1307973 | 1.8987014 |
Phlyctimantis keithae | 36.52227 | 30.0272046 | 0.1329033 | 1.3811358 |
Phlyctimantis leonardi | 36.46806 | 40.3148878 | 0.1323268 | 1.4370516 |
Phlyctimantis verrucosus | 36.42668 | 42.2882514 | 0.1339175 | 1.6170789 |
Semnodactylus wealii | 36.67494 | 20.4800166 | 0.1342323 | 0.9417606 |
Afrixalus aureus | 36.87966 | 26.0274986 | 0.1337013 | 1.0531562 |
Afrixalus clarkei | 36.97334 | 26.4535463 | 0.1316232 | 1.1509294 |
Afrixalus delicatus | 36.92683 | 30.8919211 | 0.1327453 | 1.2225539 |
Afrixalus stuhlmanni | 36.88507 | 34.0315162 | 0.1373384 | 1.3592707 |
Afrixalus dorsalis | 36.95161 | 46.4584725 | 0.1329001 | 1.6791809 |
Afrixalus paradorsalis | 36.87952 | 43.4832250 | 0.1336730 | 1.5974380 |
Afrixalus dorsimaculatus | 36.81169 | 50.0531289 | 0.1335487 | 1.9974560 |
Afrixalus enseticola | 36.87780 | 28.8333460 | 0.1344113 | 1.3906403 |
Afrixalus equatorialis | 36.89360 | 38.2090696 | 0.1344354 | 1.3533810 |
Afrixalus fornasini | 36.84030 | 31.4144325 | 0.1335014 | 1.2394150 |
Afrixalus fulvovittatus | 36.87776 | 40.9448976 | 0.1362940 | 1.4791173 |
Afrixalus knysnae | 36.87086 | 16.9037395 | 0.1345712 | 0.7834226 |
Afrixalus lacteus | 36.75401 | 42.3237598 | 0.1344446 | 1.5876983 |
Afrixalus laevis | 36.87310 | 39.7353481 | 0.1344759 | 1.4561906 |
Afrixalus leucostictus | 36.98109 | 36.2132589 | 0.1323208 | 1.3586509 |
Afrixalus lindholmi | 36.77158 | 43.7091365 | 0.1331304 | 1.5765322 |
Afrixalus morerei | 36.88745 | 30.4586180 | 0.1294019 | 1.3169145 |
Afrixalus nigeriensis | 36.93278 | 46.8940709 | 0.1325526 | 1.6853257 |
Afrixalus orophilus | 36.97633 | 35.3719266 | 0.1310591 | 1.5270030 |
Afrixalus osorioi | 36.96926 | 33.7594059 | 0.1329192 | 1.2395072 |
Afrixalus quadrivittatus | 36.97393 | 36.8536233 | 0.1313655 | 1.3939420 |
Afrixalus schneideri | 37.00360 | 54.7395402 | 0.1321463 | 2.0118218 |
Afrixalus septentrionalis | 36.98934 | 34.5778330 | 0.1341833 | 1.4624006 |
Afrixalus spinifrons | 36.86668 | 24.6355575 | 0.1325143 | 1.1063868 |
Afrixalus sylvaticus | 36.91101 | 48.1453431 | 0.1327800 | 1.8936222 |
Afrixalus uluguruensis | 36.89942 | 26.5868095 | 0.1323810 | 1.1729433 |
Afrixalus upembae | 36.81538 | 30.3006397 | 0.1328588 | 1.2064739 |
Afrixalus vibekensis | 36.97691 | 51.3753933 | 0.1315131 | 1.8489759 |
Afrixalus vittiger | 36.92826 | 39.8456384 | 0.1333688 | 1.4292342 |
Afrixalus weidholzi | 36.87074 | 33.6502442 | 0.1309985 | 1.2160403 |
Afrixalus wittei | 36.97494 | 27.0587155 | 0.1315661 | 1.1025384 |
Heterixalus alboguttatus | 36.89993 | 36.5530817 | 0.1308601 | 1.4289955 |
Heterixalus boettgeri | 36.91633 | 35.7400913 | 0.1310560 | 1.3945025 |
Heterixalus madagascariensis | 36.84144 | 33.2464547 | 0.1328767 | 1.2798283 |
Heterixalus punctatus | 36.82754 | 33.0636293 | 0.1338707 | 1.2732622 |
Heterixalus andrakata | 36.83661 | 32.5684942 | 0.1334174 | 1.2376404 |
Heterixalus tricolor | 36.82486 | 29.7015053 | 0.1312809 | 1.0795702 |
Heterixalus variabilis | 36.82993 | 38.9416906 | 0.1324176 | 1.4394919 |
Heterixalus betsileo | 36.78709 | 38.7217657 | 0.1318456 | 1.5055508 |
Heterixalus carbonei | 36.79538 | 46.9468559 | 0.1361661 | 1.7325497 |
Heterixalus luteostriatus | 36.78368 | 37.4047677 | 0.1364461 | 1.3961464 |
Heterixalus rutenbergi | 36.85479 | 36.7847091 | 0.1343548 | 1.4286546 |
Tachycnemis seychellensis | 36.82922 | 69.6320926 | 0.1341037 | 2.5901278 |
Alexteroon hypsiphonus | 36.51623 | 36.6826332 | 0.1372875 | 1.3306723 |
Alexteroon jynx | 36.48939 | 48.3296902 | 0.1361137 | 1.7774334 |
Alexteroon obstetricans | 36.66812 | 36.8782542 | 0.1340075 | 1.3494611 |
Hyperolius acuticeps | 37.20839 | 26.7615240 | 0.1302870 | 1.1306801 |
Hyperolius howelli | 37.17460 | 25.1406250 | 0.1326657 | 1.1545143 |
Hyperolius friedemanni | 37.09227 | 25.5797656 | 0.1336246 | 1.1029649 |
Hyperolius adspersus | 37.11112 | 36.2757874 | 0.1335238 | 1.3092144 |
Hyperolius dartevellei | 37.15889 | 33.5203643 | 0.1325556 | 1.2431798 |
Hyperolius acutirostris | 37.04827 | 41.4797791 | 0.1336428 | 1.5451002 |
Hyperolius ademetzi | 37.08702 | 39.9750483 | 0.1356038 | 1.4992230 |
Hyperolius discodactylus | 37.06743 | 30.6180643 | 0.1325390 | 1.3050701 |
Hyperolius lateralis | 37.09088 | 32.9684231 | 0.1322550 | 1.3957749 |
Hyperolius nitidulus | 37.12084 | 31.5760113 | 0.1347930 | 1.1468582 |
Hyperolius tuberculatus | 37.15207 | 38.6811566 | 0.1324808 | 1.4074033 |
Hyperolius argus | 37.09790 | 28.5866001 | 0.1317531 | 1.1119825 |
Hyperolius atrigularis | 37.14824 | 30.0146661 | 0.1320260 | 1.2825263 |
Hyperolius balfouri | 37.12298 | 30.9961706 | 0.1315891 | 1.1786176 |
Hyperolius baumanni | 37.16273 | 50.4793880 | 0.1359916 | 1.7686657 |
Hyperolius sylvaticus | 37.24995 | 46.4208469 | 0.1334469 | 1.6677847 |
Hyperolius bobirensis | 37.23257 | 50.3195501 | 0.1326316 | 1.8167042 |
Hyperolius picturatus | 37.14442 | 44.9103898 | 0.1329717 | 1.6192554 |
Hyperolius benguellensis | 37.13080 | 21.6765669 | 0.1329131 | 0.8796280 |
Hyperolius nasutus | 37.16213 | 19.0618130 | 0.1331124 | 0.7718556 |
Hyperolius inyangae | 37.15150 | 21.8313699 | 0.1338025 | 0.9119184 |
Hyperolius bicolor | 37.04217 | 24.4663071 | 0.1330079 | 0.9045241 |
Hyperolius bolifambae | 37.14400 | 41.4498288 | 0.1338595 | 1.5394893 |
Hyperolius bopeleti | 37.23821 | 42.6233535 | 0.1320311 | 1.5794913 |
Hyperolius brachiofasciatus | 37.11994 | 36.1390433 | 0.1337665 | 1.3302401 |
Hyperolius camerunensis | 37.10153 | 40.8064678 | 0.1348237 | 1.5394260 |
Hyperolius castaneus | 37.21255 | 35.6747452 | 0.1331962 | 1.5257446 |
Hyperolius frontalis | 37.20947 | 29.7881459 | 0.1307263 | 1.2509582 |
Hyperolius cystocandicans | 37.11323 | 25.8480382 | 0.1332789 | 1.2022076 |
Hyperolius cinereus | 37.07079 | 21.2551491 | 0.1334424 | 0.8866154 |
Hyperolius chlorosteus | 37.13837 | 45.0978504 | 0.1309040 | 1.6302424 |
Hyperolius laurenti | 37.14118 | 49.3463233 | 0.1298524 | 1.7657596 |
Hyperolius torrentis | 37.05693 | 38.7627412 | 0.1322748 | 1.3684802 |
Hyperolius chrysogaster | 36.99037 | 35.2199681 | 0.1342530 | 1.4781501 |
Hyperolius cinnamomeoventris | 37.01104 | 35.8652476 | 0.1361989 | 1.3478353 |
Hyperolius veithi | 37.02626 | 38.3697817 | 0.1339644 | 1.3513444 |
Hyperolius molleri | 37.04655 | 55.1433132 | 0.1347808 | 2.0275973 |
Hyperolius thomensis | 37.04479 | 59.7003757 | 0.1339741 | 2.2011949 |
Hyperolius concolor | 37.05386 | 38.2448373 | 0.1336048 | 1.3753955 |
Hyperolius zonatus | 37.42831 | 49.1566544 | 0.1336381 | 1.7730883 |
Hyperolius constellatus | 37.19017 | 32.2382159 | 0.1299481 | 1.3523748 |
Hyperolius diaphanus | 37.16198 | 28.0784389 | 0.1348398 | 1.1212139 |
Hyperolius dintelmanni | 37.22202 | 47.7595794 | 0.1318838 | 1.7552411 |
Hyperolius endjami | 37.08282 | 38.8596878 | 0.1321272 | 1.4589627 |
Hyperolius fasciatus | 37.10187 | 22.9221690 | 0.1347153 | 0.8563173 |
Hyperolius ferreirai | 37.22861 | 22.7555719 | 0.1313046 | 0.8510682 |
Hyperolius ferrugineus | 37.12408 | 32.3423936 | 0.1327786 | 1.2806211 |
Hyperolius fuscigula | 37.13353 | 23.9311252 | 0.1337892 | 0.9104172 |
Hyperolius fusciventris | 37.04878 | 42.3574443 | 0.1348227 | 1.5271737 |
Hyperolius guttulatus | 37.04218 | 45.6707179 | 0.1332727 | 1.6472699 |
Hyperolius ghesquieri | 37.07555 | 35.8831805 | 0.1327243 | 1.2653708 |
Hyperolius glandicolor | 37.09721 | 28.6897062 | 0.1317361 | 1.2190091 |
Hyperolius phantasticus | 37.05302 | 40.1539645 | 0.1342843 | 1.4372641 |
Hyperolius gularis | 37.10746 | 25.0165020 | 0.1333334 | 0.9153504 |
Hyperolius horstockii | 36.95791 | 18.4117432 | 0.1338018 | 0.8701121 |
Hyperolius hutsebauti | 37.19428 | 36.1338365 | 0.1335588 | 1.3697089 |
Hyperolius igbettensis | 37.02939 | 37.8218924 | 0.1320159 | 1.3660902 |
Hyperolius jacobseni | 37.00830 | 36.5365899 | 0.1332200 | 1.3197883 |
Hyperolius poweri | 36.98934 | 25.9749326 | 0.1341923 | 1.1241137 |
Hyperolius inornatus | 37.10337 | 27.4322545 | 0.1342523 | 0.9669384 |
Hyperolius jackie | 37.18467 | 38.8903984 | 0.1308117 | 1.7741277 |
Hyperolius kachalolae | 37.11521 | 22.8710500 | 0.1308082 | 0.9408278 |
Hyperolius kibarae | 37.21616 | 27.1329821 | 0.1333360 | 1.0801941 |
Hyperolius kihangensis | 37.09734 | 25.7794961 | 0.1335530 | 1.1868824 |
Hyperolius kivuensis | 37.11825 | 26.7064848 | 0.1322865 | 1.1003553 |
Hyperolius quinquevittatus | 37.14174 | 24.6900194 | 0.1337519 | 1.0053623 |
Hyperolius kuligae | 37.04199 | 34.0136622 | 0.1357450 | 1.2868506 |
Hyperolius lamottei | 37.06951 | 35.5469343 | 0.1330998 | 1.2889961 |
Hyperolius langi | 37.09406 | 33.1234364 | 0.1316785 | 1.3068738 |
Hyperolius leleupi | 37.14278 | 30.6418754 | 0.1325603 | 1.2797770 |
Hyperolius leucotaenius | 37.11100 | 31.5327635 | 0.1349557 | 1.2899584 |
Hyperolius lupiroensis | 37.11219 | 31.2359963 | 0.1303869 | 1.3130102 |
Hyperolius major | 37.20603 | 23.1980220 | 0.1324220 | 0.9365792 |
Hyperolius marginatus | 37.06968 | 23.8452650 | 0.1322992 | 0.9644378 |
Hyperolius mariae | 37.04839 | 38.3615497 | 0.1327230 | 1.5359404 |
Hyperolius minutissimus | 37.12965 | 25.5269025 | 0.1329595 | 1.1265217 |
Hyperolius spinigularis | 37.07535 | 25.5826312 | 0.1349440 | 0.9902846 |
Hyperolius tanneri | 37.21578 | 51.1266794 | 0.1331288 | 2.0361249 |
Hyperolius mitchelli | 37.19978 | 28.5248607 | 0.1371942 | 1.1262108 |
Hyperolius puncticulatus | 37.14804 | 48.4951518 | 0.1349791 | 1.8937846 |
Hyperolius substriatus | 37.18365 | 28.3740023 | 0.1339130 | 1.1424449 |
Hyperolius montanus | 37.08714 | 24.7072587 | 0.1345370 | 1.1646426 |
Hyperolius mosaicus | 37.14728 | 38.0688182 | 0.1336485 | 1.4060675 |
Hyperolius ocellatus | 37.22244 | 34.8070411 | 0.1338864 | 1.2685641 |
Hyperolius nasicus | 37.07904 | 23.9717635 | 0.1331329 | 0.9884722 |
Hyperolius nienokouensis | 37.10543 | 57.5502939 | 0.1342489 | 2.0803883 |
Hyperolius nimbae | 37.08105 | 41.9799488 | 0.1340824 | 1.5193183 |
Hyperolius obscurus | 37.16807 | 27.5998814 | 0.1353737 | 1.0760335 |
Hyperolius occidentalis | 37.11388 | 33.9909732 | 0.1327641 | 1.2390530 |
Hyperolius parallelus | 37.09793 | 26.3611564 | 0.1318480 | 1.0267848 |
Hyperolius pardalis | 37.08399 | 37.1306491 | 0.1309046 | 1.3574560 |
Hyperolius parkeri | 36.99542 | 34.7423600 | 0.1356012 | 1.3321870 |
Hyperolius pickersgilli | 37.04100 | 24.9530483 | 0.1330992 | 1.0859663 |
Hyperolius pictus | 37.15723 | 29.8731464 | 0.1337286 | 1.3287661 |
Hyperolius platyceps | 37.07444 | 37.6256578 | 0.1351567 | 1.3585695 |
Hyperolius polli | 37.12413 | 34.6891859 | 0.1346818 | 1.2416524 |
Hyperolius polystictus | 37.13361 | 24.1817852 | 0.1344665 | 0.9885255 |
Hyperolius pseudargus | 37.04068 | 27.9907804 | 0.1320108 | 1.2321190 |
Hyperolius pusillus | 37.00136 | 29.8554637 | 0.1335966 | 1.1848987 |
Hyperolius pustulifer | 37.09632 | 38.4558151 | 0.1337551 | 1.7541904 |
Hyperolius pyrrhodictyon | 37.07787 | 22.4168520 | 0.1317420 | 0.9144053 |
Hyperolius quadratomaculatus | 37.12622 | 31.7643569 | 0.1334512 | 1.1996302 |
Hyperolius rhizophilus | 37.14197 | 28.1973481 | 0.1316782 | 0.9741723 |
Hyperolius rhodesianus | 37.01844 | 23.9714812 | 0.1332680 | 0.9850147 |
Hyperolius riggenbachi | 37.08023 | 34.6109296 | 0.1325592 | 1.3061640 |
Hyperolius robustus | 37.20032 | 35.0136120 | 0.1330028 | 1.2345266 |
Hyperolius rubrovermiculatus | 37.04952 | 46.4456919 | 0.1321302 | 1.8229297 |
Hyperolius rwandae | 37.14905 | 32.2732942 | 0.1332528 | 1.4440311 |
Hyperolius sankuruensis | 37.18702 | 30.6700271 | 0.1328842 | 1.0899661 |
Hyperolius schoutedeni | 37.16605 | 39.5515944 | 0.1340367 | 1.4334885 |
Hyperolius semidiscus | 37.11475 | 19.1482232 | 0.1344652 | 0.8522129 |
Hyperolius sheldricki | 37.11562 | 46.9758262 | 0.1329719 | 1.8930729 |
Hyperolius soror | 37.11635 | 36.9509027 | 0.1308565 | 1.3334898 |
Hyperolius steindachneri | 37.09007 | 24.9440468 | 0.1340476 | 0.9886350 |
Hyperolius stenodactylus | 37.16103 | 41.4375658 | 0.1325815 | 1.5416645 |
Hyperolius swynnertoni | 37.21241 | 24.3473246 | 0.1341434 | 0.9608220 |
Hyperolius vilhenai | 37.19931 | 28.0334711 | 0.1363334 | 1.0869691 |
Hyperolius viridigulosus | 37.15034 | 57.9730729 | 0.1321200 | 2.1030127 |
Hyperolius viridis | 37.16559 | 25.5809335 | 0.1331469 | 1.1342291 |
Hyperolius watsonae | 37.13228 | 57.2129916 | 0.1354533 | 2.2465329 |
Hyperolius xenorhinus | 37.16636 | 31.3080580 | 0.1329212 | 1.2396781 |
Kassinula wittei | 37.03875 | 24.1916716 | 0.1335150 | 0.9954662 |
Morerella cyanophthalma | 36.53373 | 68.2890338 | 0.1340592 | 2.4969336 |
Arlequinus krebsi | 36.86743 | 44.5161434 | 0.1348209 | 1.6842174 |
Callixalus pictus | 36.89619 | 34.2582818 | 0.1325987 | 1.4141995 |
Chrysobatrachus cupreonitens | 37.03148 | 30.3785095 | 0.1328967 | 1.2302892 |
Opisthothylax immaculatus | 36.84972 | 36.8736589 | 0.1348565 | 1.3354770 |
Paracassina kounhiensis | 36.86362 | 29.0154492 | 0.1307108 | 1.4213177 |
Paracassina obscura | 36.84252 | 26.1485867 | 0.1351887 | 1.1929484 |
Cryptothylax greshoffii | 35.97842 | 42.2161510 | 0.1362011 | 1.5062205 |
Cryptothylax minutus | 36.05622 | 47.4308070 | 0.1345187 | 1.6729987 |
Arthroleptis adelphus | 35.44509 | 43.6712739 | 0.1353371 | 1.5986619 |
Arthroleptis bioko | 35.50142 | 66.8759475 | 0.1327832 | 2.5317331 |
Arthroleptis brevipes | 35.42441 | 58.6844775 | 0.1348888 | 2.0574517 |
Arthroleptis poecilonotus | 35.44303 | 51.4447934 | 0.1346504 | 1.8673845 |
Arthroleptis crusculum | 35.35360 | 38.7178173 | 0.1345585 | 1.3963767 |
Arthroleptis nimbaensis | 35.37514 | 49.4693622 | 0.1348608 | 1.7903410 |
Arthroleptis langeri | 35.36851 | 57.6664391 | 0.1352291 | 2.0935717 |
Arthroleptis adolfifriederici | 35.45880 | 39.8070681 | 0.1328052 | 1.7601885 |
Arthroleptis krokosua | 35.41069 | 53.3101296 | 0.1347926 | 1.9176950 |
Arthroleptis palava | 35.47704 | 45.0675651 | 0.1337666 | 1.6968296 |
Arthroleptis variabilis | 35.41354 | 47.0911673 | 0.1343272 | 1.7140183 |
Arthroleptis perreti | 35.41894 | 62.8287039 | 0.1359034 | 2.3164573 |
Arthroleptis affinis | 35.58132 | 41.9487389 | 0.1323463 | 1.7767102 |
Arthroleptis nikeae | 35.45062 | 29.9811961 | 0.1352302 | 1.2929058 |
Arthroleptis reichei | 35.46057 | 33.4097969 | 0.1317544 | 1.4618724 |
Arthroleptis anotis | 35.41907 | 42.0368611 | 0.1365440 | 1.7848029 |
Arthroleptis aureoli | 34.61850 | 38.5634027 | 0.1368513 | 1.3961423 |
Arthroleptis formosus | 35.21415 | 32.0619002 | 0.1346854 | 1.1446549 |
Arthroleptis sylvaticus | 35.41208 | 46.4684848 | 0.1375806 | 1.6855270 |
Arthroleptis taeniatus | 35.38621 | 47.1515065 | 0.1321313 | 1.7139675 |
Arthroleptis bivittatus | 35.47882 | 49.2662984 | 0.1341733 | 1.7862302 |
Arthroleptis carquejai | 35.31685 | 32.3425615 | 0.1372072 | 1.2710286 |
Arthroleptis stenodactylus | 35.44277 | 33.4836101 | 0.1341497 | 1.3559660 |
Arthroleptis fichika | 35.43384 | 54.3346514 | 0.1344582 | 2.1642669 |
Arthroleptis kidogo | 35.45445 | 45.8928626 | 0.1368365 | 1.8931530 |
Arthroleptis xenochirus | 35.60829 | 29.7207050 | 0.1318225 | 1.2160053 |
Arthroleptis francei | 35.45409 | 33.8662338 | 0.1344485 | 1.2978256 |
Arthroleptis wahlbergii | 35.31783 | 30.6407343 | 0.1371571 | 1.3365790 |
Arthroleptis hematogaster | 35.34148 | 41.8488401 | 0.1354049 | 1.7246176 |
Arthroleptis kutogundua | 35.39726 | 37.0435684 | 0.1373625 | 1.7106303 |
Arthroleptis lameerei | 35.47645 | 30.4605973 | 0.1340168 | 1.2033221 |
Arthroleptis lonnbergi | 35.45212 | 52.6671987 | 0.1336510 | 2.1229409 |
Arthroleptis tanneri | 35.44242 | 60.1893114 | 0.1334142 | 2.3997313 |
Arthroleptis loveridgei | 35.33380 | 47.1018388 | 0.1387237 | 1.7958469 |
Arthroleptis mossoensis | 35.42962 | 50.6616787 | 0.1349511 | 2.1637481 |
Arthroleptis nguruensis | 35.54869 | 43.2581117 | 0.1350916 | 1.7843481 |
Arthroleptis nlonakoensis | 35.34690 | 49.7179677 | 0.1360804 | 1.8828371 |
Arthroleptis phrynoides | 35.39094 | 41.1410074 | 0.1338236 | 1.4725384 |
Arthroleptis pyrrhoscelis | 35.41522 | 39.8516716 | 0.1341749 | 1.6664317 |
Arthroleptis schubotzi | 35.45087 | 43.8260803 | 0.1341352 | 1.8925030 |
Arthroleptis xenodactyloides | 35.49078 | 32.6466562 | 0.1360625 | 1.3127458 |
Arthroleptis xenodactylus | 35.42790 | 58.2748801 | 0.1356460 | 2.3224174 |
Arthroleptis spinalis | 35.47819 | 56.0243514 | 0.1358391 | 2.3879873 |
Arthroleptis stridens | 35.37645 | 62.8625785 | 0.1348653 | 2.5082058 |
Arthroleptis troglodytes | 35.39370 | 29.5932915 | 0.1339139 | 1.1555920 |
Arthroleptis tuberosus | 35.27564 | 50.1102237 | 0.1376250 | 1.8262309 |
Arthroleptis vercammeni | 35.35276 | 36.0094898 | 0.1350865 | 1.4654786 |
Arthroleptis zimmeri | 35.34958 | 74.7589094 | 0.1356053 | 2.7452890 |
Cardioglossa alsco | 34.83491 | 41.5196838 | 0.1348409 | 1.5855757 |
Cardioglossa nigromaculata | 35.47592 | 53.5616641 | 0.1352480 | 1.9847200 |
Cardioglossa cyaneospila | 34.77455 | 38.5675579 | 0.1376159 | 1.7030297 |
Cardioglossa gratiosa | 34.81474 | 44.8539841 | 0.1350119 | 1.6211896 |
Cardioglossa elegans | 34.83243 | 49.9842402 | 0.1353782 | 1.8323498 |
Cardioglossa leucomystax | 34.87616 | 42.3037531 | 0.1346551 | 1.5352075 |
Cardioglossa trifasciata | 34.81293 | 55.9375011 | 0.1360942 | 2.0640396 |
Cardioglossa escalerae | 35.39084 | 48.0559523 | 0.1370707 | 1.7758605 |
Cardioglossa manengouba | 34.86353 | 58.0268738 | 0.1319735 | 2.1391097 |
Cardioglossa oreas | 34.74090 | 48.8500178 | 0.1350017 | 1.8638499 |
Cardioglossa pulchra | 34.81289 | 48.9714422 | 0.1336167 | 1.8242696 |
Cardioglossa venusta | 34.82891 | 54.6651784 | 0.1381922 | 2.0503487 |
Cardioglossa gracilis | 34.76170 | 45.0312904 | 0.1341311 | 1.6372529 |
Cardioglossa melanogaster | 34.73286 | 48.0583483 | 0.1316667 | 1.7905296 |
Cardioglossa schioetzi | 35.32152 | 46.6348053 | 0.1342617 | 1.7289018 |
Astylosternus batesi | 35.41696 | 42.7133211 | 0.1345081 | 1.5433531 |
Astylosternus schioetzi | 34.87757 | 50.3310687 | 0.1317373 | 1.8714233 |
Astylosternus diadematus | 34.77234 | 51.7016981 | 0.1349952 | 1.9324435 |
Astylosternus perreti | 34.83057 | 51.2498588 | 0.1344841 | 1.9150933 |
Astylosternus rheophilus | 34.78408 | 44.0995075 | 0.1345976 | 1.6584236 |
Astylosternus nganhanus | 35.35185 | 42.6731303 | 0.1369280 | 1.6169060 |
Trichobatrachus robustus | 34.76022 | 41.8068420 | 0.1348104 | 1.5230549 |
Astylosternus fallax | 34.89950 | 54.5269762 | 0.1328839 | 2.0164494 |
Astylosternus laurenti | 34.91213 | 60.7981082 | 0.1333397 | 2.2595122 |
Astylosternus montanus | 34.80023 | 47.4606270 | 0.1337770 | 1.7977603 |
Astylosternus ranoides | 35.35537 | 42.0872786 | 0.1358309 | 1.6074816 |
Astylosternus laticephalus | 35.41386 | 63.2166875 | 0.1331742 | 2.2919013 |
Astylosternus occidentalis | 35.38251 | 56.9697149 | 0.1348139 | 2.0600365 |
Nyctibates corrugatus | 35.34812 | 55.4099510 | 0.1339744 | 2.0599851 |
Scotobleps gabonicus | 34.63941 | 44.6696101 | 0.1338934 | 1.6155646 |
Leptodactylodon albiventris | 34.73324 | 51.2113777 | 0.1360018 | 1.9112737 |
Leptodactylodon boulengeri | 34.74019 | 54.0014680 | 0.1342259 | 2.0280771 |
Leptodactylodon erythrogaster | 34.72139 | 61.0466991 | 0.1343134 | 2.2497241 |
Leptodactylodon stevarti | 34.69303 | 45.5076221 | 0.1346618 | 1.6710015 |
Leptodactylodon axillaris | 35.34713 | 47.7846643 | 0.1351260 | 1.8595532 |
Leptodactylodon perreti | 34.77058 | 43.1199877 | 0.1319666 | 1.6443265 |
Leptodactylodon bueanus | 34.77235 | 50.6638821 | 0.1350595 | 1.8616579 |
Leptodactylodon bicolor | 34.70906 | 44.9349795 | 0.1371978 | 1.6858790 |
Leptodactylodon ornatus | 34.75138 | 49.0389204 | 0.1346625 | 1.8425693 |
Leptodactylodon mertensi | 34.79674 | 51.4047474 | 0.1343089 | 1.9311745 |
Leptodactylodon polyacanthus | 34.73695 | 45.2340851 | 0.1356841 | 1.7077960 |
Leptodactylodon ovatus | 34.77798 | 53.0121334 | 0.1355692 | 1.9771559 |
Leptodactylodon wildi | 34.81806 | 58.3719268 | 0.1356830 | 2.1502111 |
Leptodactylodon blanci | 34.80709 | 48.0698705 | 0.1345760 | 1.6934031 |
Leptodactylodon ventrimarmoratus | 35.39303 | 50.7955064 | 0.1360034 | 1.8855970 |
Leptopelis anchietae | 35.33692 | 26.0970784 | 0.1339190 | 1.0519754 |
Leptopelis lebeaui | 35.20733 | 37.4180383 | 0.1337201 | 1.4457643 |
Leptopelis argenteus | 35.36796 | 41.1194074 | 0.1348992 | 1.6137958 |
Leptopelis cynnamomeus | 35.19029 | 31.1928692 | 0.1353020 | 1.2674787 |
Leptopelis ocellatus | 35.34202 | 44.7326355 | 0.1354051 | 1.6036965 |
Leptopelis spiritusnoctis | 35.25623 | 54.8154835 | 0.1342984 | 1.9723581 |
Leptopelis aubryi | 35.23641 | 41.7507235 | 0.1348448 | 1.5049915 |
Leptopelis marginatus | 35.12915 | 28.3185274 | 0.1356792 | 1.1708763 |
Leptopelis aubryioides | 35.18851 | 49.4621260 | 0.1371899 | 1.8027921 |
Leptopelis susanae | 34.74945 | 33.1423050 | 0.1347791 | 1.5471701 |
Leptopelis bequaerti | 35.30443 | 49.5478670 | 0.1328800 | 1.7952586 |
Leptopelis uluguruensis | 35.29125 | 39.7509814 | 0.1347431 | 1.6595445 |
Leptopelis bocagii | 36.29791 | 28.9437515 | 0.1375596 | 1.2028930 |
Leptopelis concolor | 35.18509 | 56.0239670 | 0.1371070 | 2.2312725 |
Leptopelis vermiculatus | 35.21525 | 44.0110224 | 0.1347844 | 1.8638320 |
Leptopelis boulengeri | 35.21635 | 45.3037840 | 0.1352856 | 1.6355120 |
Leptopelis brevipes | 35.16872 | 61.9514295 | 0.1371247 | 2.3471631 |
Leptopelis notatus | 35.15884 | 37.5015505 | 0.1341017 | 1.3607264 |
Leptopelis brevirostris | 35.15957 | 45.4404293 | 0.1353211 | 1.6607520 |
Leptopelis palmatus | 34.64935 | 78.1914566 | 0.1356026 | 2.8679039 |
Leptopelis mossambicus | 35.17405 | 31.7063301 | 0.1345674 | 1.2591395 |
Leptopelis parvus | 35.25764 | 32.6902303 | 0.1340289 | 1.3016617 |
Leptopelis rufus | 35.23188 | 47.5318885 | 0.1341437 | 1.7222526 |
Leptopelis bufonides | 36.46827 | 34.9138024 | 0.1307695 | 1.2562831 |
Leptopelis nordequatorialis | 35.23494 | 40.1269088 | 0.1338758 | 1.5266810 |
Leptopelis christyi | 35.18790 | 43.3785002 | 0.1344181 | 1.7648961 |
Leptopelis flavomaculatus | 35.27317 | 36.7644281 | 0.1358658 | 1.4597566 |
Leptopelis calcaratus | 35.24396 | 43.2271302 | 0.1364498 | 1.5724526 |
Leptopelis yaldeni | 35.25580 | 28.1521411 | 0.1350419 | 1.2150077 |
Leptopelis crystallinoron | 35.14362 | 42.7701573 | 0.1350355 | 1.5703362 |
Leptopelis parkeri | 35.17442 | 43.1574371 | 0.1367748 | 1.7983179 |
Leptopelis fiziensis | 35.08515 | 41.7390281 | 0.1349985 | 1.7089279 |
Leptopelis karissimbensis | 35.10423 | 38.2903551 | 0.1363078 | 1.6929354 |
Leptopelis kivuensis | 35.07224 | 44.3294631 | 0.1361227 | 1.9045315 |
Leptopelis millsoni | 35.16738 | 48.7933937 | 0.1326765 | 1.7651200 |
Leptopelis fenestratus | 35.21476 | 35.8616544 | 0.1351930 | 1.4208478 |
Leptopelis mackayi | 35.21528 | 38.3828582 | 0.1367115 | 1.5540645 |
Leptopelis gramineus | 36.38146 | 31.9276933 | 0.1356314 | 1.5561849 |
Leptopelis natalensis | 35.27063 | 27.0454880 | 0.1329986 | 1.1960350 |
Leptopelis jordani | 35.15965 | 34.7005486 | 0.1342382 | 1.3523121 |
Leptopelis occidentalis | 35.13866 | 59.5489548 | 0.1329759 | 2.1486398 |
Leptopelis macrotis | 34.73208 | 58.3336363 | 0.1365483 | 2.1050120 |
Leptopelis ragazzii | 34.78849 | 33.9590528 | 0.1370239 | 1.6662951 |
Leptopelis modestus | 34.76736 | 47.2415363 | 0.1367145 | 1.7781550 |
Leptopelis xenodactylus | 35.17911 | 23.6620484 | 0.1369113 | 1.0770848 |
Leptopelis parbocagii | 36.22020 | 32.6615331 | 0.1368041 | 1.3327823 |
Leptopelis viridis | 35.09904 | 41.0938391 | 0.1364177 | 1.4888277 |
Leptopelis vannutellii | 35.13280 | 34.8239581 | 0.1344651 | 1.5719258 |
Leptopelis zebra | 35.16346 | 48.4944753 | 0.1360101 | 1.8088003 |
Leptopelis oryi | 35.16424 | 38.7488035 | 0.1338467 | 1.4868343 |
Phrynomantis affinis | 34.13351 | 26.6131851 | 0.1394993 | 1.0959718 |
Phrynomantis annectens | 34.10403 | 20.4703732 | 0.1384481 | 0.9137037 |
Phrynomantis bifasciatus | 34.09161 | 28.8523704 | 0.1419318 | 1.1905813 |
Phrynomantis microps | 34.15308 | 35.2517758 | 0.1407385 | 1.2734795 |
Phrynomantis somalicus | 34.13479 | 44.7301009 | 0.1411336 | 1.7377854 |
Hoplophryne rogersi | 34.61374 | 46.2765196 | 0.1376124 | 1.8904587 |
Hoplophryne uluguruensis | 34.65228 | 37.1060444 | 0.1389930 | 1.5415260 |
Parhoplophryne usambarica | 34.88426 | 49.5893642 | 0.1370555 | 1.9790978 |
Adelastes hylonomos | 36.10297 | 39.2847261 | 0.1377924 | 1.4084867 |
Arcovomer passarellii | 36.22562 | 28.7459645 | 0.1346833 | 1.1151482 |
Elachistocleis ovalis | 36.63905 | 22.2941958 | 0.1332599 | 0.8154826 |
Elachistocleis surinamensis | 36.65243 | 27.4135324 | 0.1340948 | 1.0200209 |
Elachistocleis bumbameuboi | 36.38913 | 35.2587509 | 0.1360326 | 1.2519301 |
Elachistocleis erythrogaster | 37.31863 | 14.4438872 | 0.1359066 | 0.5804027 |
Elachistocleis carvalhoi | 36.37817 | 33.0310856 | 0.1330727 | 1.1750865 |
Elachistocleis piauiensis | 37.35115 | 27.8400148 | 0.1358138 | 1.0319189 |
Elachistocleis helianneae | 36.36812 | 29.7595193 | 0.1333209 | 1.0438990 |
Elachistocleis pearsei | 36.40749 | 34.5251777 | 0.1332881 | 1.2999779 |
Elachistocleis matogrosso | 36.36281 | 23.7513823 | 0.1354273 | 0.8386752 |
Elachistocleis skotogaster | 36.40853 | 14.5130728 | 0.1345493 | 0.6844652 |
Elachistocleis panamensis | 36.37106 | 31.6862942 | 0.1332960 | 1.1791274 |
Elachistocleis surumu | 36.37498 | 26.7021721 | 0.1345492 | 0.9887196 |
Gastrophryne olivacea | 36.24391 | 11.8789410 | 0.1364330 | 0.4816355 |
Gastrophryne elegans | 36.26468 | 21.6220531 | 0.1353152 | 0.8145452 |
Hypopachus barberi | 36.20669 | 23.0881811 | 0.1350815 | 0.8851707 |
Hypopachus variolosus | 36.27605 | 23.3299284 | 0.1374070 | 0.8868556 |
Hypopachus pictiventris | 36.28144 | 29.2757396 | 0.1360199 | 1.1079126 |
Hamptophryne alios | 36.27497 | 28.6462912 | 0.1354807 | 1.1508375 |
Stereocyclops histrio | 36.21366 | 29.9751137 | 0.1363778 | 1.1786455 |
Stereocyclops parkeri | 36.42693 | 20.2757840 | 0.1342884 | 0.7791642 |
Dasypops schirchi | 35.78579 | 38.2476392 | 0.1354380 | 1.5051413 |
Myersiella microps | 35.81668 | 27.8094659 | 0.1352932 | 1.0770361 |
Chiasmocleis cordeiroi | 35.44969 | 27.6880722 | 0.1355253 | 1.0943920 |
Chiasmocleis crucis | 35.42064 | 29.2248716 | 0.1366478 | 1.1525062 |
Chiasmocleis schubarti | 35.41271 | 27.3568317 | 0.1367868 | 1.0665315 |
Chiasmocleis capixaba | 35.40284 | 29.5757451 | 0.1353241 | 1.1604706 |
Chiasmocleis carvalhoi | 35.32893 | 36.6592366 | 0.1374456 | 1.2708580 |
Chiasmocleis mehelyi | 35.32001 | 24.6425743 | 0.1385155 | 0.8668989 |
Chiasmocleis albopunctata | 35.38668 | 23.6245895 | 0.1364636 | 0.8545727 |
Chiasmocleis leucosticta | 35.30664 | 17.4900391 | 0.1369009 | 0.6788107 |
Chiasmocleis mantiqueira | 35.36454 | 18.0853389 | 0.1368406 | 0.7124682 |
Chiasmocleis centralis | 36.39830 | 24.9103237 | 0.1383082 | 0.9049684 |
Chiasmocleis gnoma | 35.40312 | 31.0378138 | 0.1399731 | 1.2167682 |
Chiasmocleis anatipes | 35.38656 | 32.1626727 | 0.1378422 | 1.2495967 |
Chiasmocleis devriesi | 35.40239 | 32.6090119 | 0.1371097 | 1.1144085 |
Chiasmocleis sapiranga | 35.36375 | 28.6171432 | 0.1370152 | 1.1308372 |
Chiasmocleis atlantica | 35.27940 | 20.8241722 | 0.1391891 | 0.8064832 |
Chiasmocleis avilapiresae | 35.40653 | 35.1720427 | 0.1358403 | 1.2296575 |
Chiasmocleis shudikarensis | 35.30627 | 36.3582983 | 0.1364380 | 1.2839830 |
Ctenophryne aequatorialis | 35.25964 | 16.1765194 | 0.1388052 | 0.7018206 |
Ctenophryne carpish | 35.36454 | 30.0858932 | 0.1347060 | 1.3253573 |
Ctenophryne aterrima | 35.19703 | 34.1441397 | 0.1391114 | 1.3365610 |
Ctenophryne minor | 35.19699 | 42.7893241 | 0.1393567 | 1.6606936 |
Ctenophryne barbatula | 35.32390 | 20.3158678 | 0.1386453 | 0.9553269 |
Paradoxophyla palmata | 35.29666 | 41.0287822 | 0.1399237 | 1.5937607 |
Paradoxophyla tiarano | 34.33984 | 36.6103283 | 0.1394592 | 1.3605616 |
Scaphiophryne boribory | 34.32502 | 28.6536912 | 0.1406592 | 1.1075828 |
Scaphiophryne madagascariensis | 35.25543 | 34.7826030 | 0.1418875 | 1.3450212 |
Scaphiophryne menabensis | 34.53743 | 41.6055877 | 0.1423899 | 1.5495280 |
Scaphiophryne marmorata | 34.29899 | 35.9720318 | 0.1403543 | 1.4257548 |
Scaphiophryne gottlebei | 35.29939 | 33.3574373 | 0.1398984 | 1.2736364 |
Scaphiophryne spinosa | 34.29622 | 38.5136991 | 0.1405176 | 1.4931059 |
Scaphiophryne calcarata | 34.41123 | 39.4282469 | 0.1386824 | 1.4839563 |
Scaphiophryne brevis | 34.35354 | 36.1918298 | 0.1399173 | 1.3768605 |
Anodonthyla boulengerii | 34.28335 | 34.4348646 | 0.1409215 | 1.3286724 |
Anodonthyla vallani | 34.24426 | 37.5353419 | 0.1390983 | 1.4503303 |
Anodonthyla hutchisoni | 34.24954 | 36.3078207 | 0.1389831 | 1.3520340 |
Anodonthyla moramora | 34.28511 | 28.0168128 | 0.1391493 | 1.0808742 |
Anodonthyla nigrigularis | 34.29802 | 38.4632165 | 0.1385915 | 1.4996147 |
Anodonthyla pollicaris | 34.36713 | 35.5087435 | 0.1356396 | 1.4224756 |
Anodonthyla theoi | 34.29026 | 38.0976429 | 0.1381298 | 1.4328998 |
Anodonthyla jeanbai | 34.26787 | 41.4493393 | 0.1382044 | 1.6027590 |
Anodonthyla emilei | 34.39653 | 32.8081054 | 0.1373680 | 1.2682875 |
Anodonthyla montana | 34.31641 | 36.2178789 | 0.1402798 | 1.3742065 |
Anodonthyla rouxae | 34.36214 | 39.4803407 | 0.1389056 | 1.5177742 |
Cophyla berara | 34.21660 | 48.7574504 | 0.1387455 | 1.8098823 |
Cophyla occultans | 34.15788 | 35.6644772 | 0.1402276 | 1.3349754 |
Cophyla phyllodactyla | 34.22043 | 38.8720311 | 0.1400607 | 1.4486149 |
Rhombophryne minuta | 35.35812 | 32.4289102 | 0.1387983 | 1.2273604 |
Plethodontohyla fonetana | 34.30479 | 39.4300520 | 0.1399030 | 1.4418528 |
Plethodontohyla guentheri | 34.38116 | 35.3969190 | 0.1419844 | 1.3339045 |
Plethodontohyla notosticta | 34.18025 | 39.7140211 | 0.1420828 | 1.5217102 |
Plethodontohyla bipunctata | 35.42609 | 42.9857626 | 0.1365352 | 1.6819134 |
Plethodontohyla tuberata | 34.39289 | 33.5660931 | 0.1402885 | 1.3115953 |
Plethodontohyla brevipes | 34.34467 | 35.4746950 | 0.1406144 | 1.3607687 |
Plethodontohyla ocellata | 34.37605 | 37.5074540 | 0.1398365 | 1.4499865 |
Plethodontohyla inguinalis | 34.14395 | 35.2123768 | 0.1420183 | 1.3566608 |
Plethodontohyla mihanika | 34.33885 | 37.9065144 | 0.1375529 | 1.4802165 |
Rhombophryne laevipes | 35.43492 | 34.4159494 | 0.1395258 | 1.3044559 |
Rhombophryne coudreaui | 35.44866 | 34.1990564 | 0.1387013 | 1.2856744 |
Rhombophryne testudo | 34.50153 | 34.7658519 | 0.1395498 | 1.2630148 |
Rhombophryne coronata | 35.39954 | 37.9924997 | 0.1374460 | 1.4847747 |
Rhombophryne serratopalpebrosa | 34.43301 | 36.6540548 | 0.1391830 | 1.3812968 |
Rhombophryne guentherpetersi | 34.39779 | 32.8365144 | 0.1408160 | 1.2268019 |
Rhombophryne mangabensis | 35.33623 | 30.1903939 | 0.1410622 | 1.1095828 |
Rhombophryne matavy | 34.38392 | 50.3432108 | 0.1378488 | 1.8932153 |
Stumpffia analamaina | 34.35181 | 30.2443705 | 0.1399739 | 1.1104830 |
Stumpffia be | 34.32863 | 41.2747980 | 0.1403470 | 1.5281456 |
Stumpffia hara | 34.43267 | 52.3442065 | 0.1386798 | 1.9648005 |
Stumpffia megsoni | 34.32989 | 58.6050607 | 0.1405778 | 2.1992739 |
Stumpffia staffordi | 34.35743 | 47.8540668 | 0.1389321 | 1.7947364 |
Stumpffia gimmeli | 34.29132 | 35.0937290 | 0.1400087 | 1.3105731 |
Stumpffia psologlossa | 34.23199 | 30.0003666 | 0.1400295 | 1.1296293 |
Stumpffia madagascariensis | 34.41780 | 56.3201164 | 0.1368325 | 2.1145802 |
Stumpffia pygmaea | 34.31829 | 35.4653276 | 0.1412816 | 1.2866861 |
Stumpffia grandis | 34.39826 | 38.6301357 | 0.1386395 | 1.4820583 |
Stumpffia roseifemoralis | 34.41914 | 31.6314943 | 0.1406395 | 1.1930096 |
Stumpffia tetradactyla | 34.32417 | 33.1866919 | 0.1420185 | 1.2676903 |
Stumpffia miery | 34.37511 | 31.5877497 | 0.1416859 | 1.2191371 |
Stumpffia tridactyla | 34.34681 | 40.0680773 | 0.1408173 | 1.5672738 |
Madecassophryne truebae | 34.31743 | 39.0380794 | 0.1424803 | 1.5149442 |
Melanobatrachus indicus | 33.92412 | 43.7891387 | 0.1380146 | 1.5683498 |
Otophryne pyburni | 33.74014 | 40.1669527 | 0.1403386 | 1.4582106 |
Otophryne robusta | 33.79596 | 37.4127536 | 0.1404056 | 1.4259233 |
Otophryne steyermarki | 33.85214 | 34.8465532 | 0.1382144 | 1.3352130 |
Synapturanus mirandaribeiroi | 33.86087 | 47.1403061 | 0.1354057 | 1.6869606 |
Synapturanus salseri | 33.80237 | 47.5871258 | 0.1395724 | 1.6662851 |
Synapturanus rabus | 34.79044 | 42.5518893 | 0.1389849 | 1.5351738 |
Kalophrynus baluensis | 33.15001 | 48.8735297 | 0.1392074 | 1.8127693 |
Kalophrynus intermedius | 33.09635 | 39.2337879 | 0.1429450 | 1.3778278 |
Kalophrynus subterrestris | 33.12900 | 40.9319977 | 0.1402047 | 1.4546748 |
Kalophrynus heterochirus | 33.10163 | 41.4701093 | 0.1428299 | 1.4832854 |
Kalophrynus palmatissimus | 33.02490 | 36.3274963 | 0.1425832 | 1.2879557 |
Kalophrynus bunguranus | 33.21721 | 69.8185299 | 0.1426661 | 2.5346032 |
Kalophrynus orangensis | 33.23990 | 35.9937282 | 0.1408618 | 1.3179996 |
Kalophrynus nubicola | 33.19617 | 39.1403367 | 0.1403970 | 1.4374320 |
Kalophrynus eok | 33.17114 | 31.3307694 | 0.1428788 | 1.1980225 |
Kalophrynus interlineatus | 33.15182 | 29.6543749 | 0.1418527 | 1.0754930 |
Kalophrynus punctatus | 33.20645 | 53.2840614 | 0.1397237 | 1.9186066 |
Kalophrynus minusculus | 33.24594 | 45.1789054 | 0.1428596 | 1.5977562 |
Kalophrynus robinsoni | 33.23255 | 48.5041528 | 0.1428330 | 1.6960443 |
Kalophrynus pleurostigma | 33.40101 | 46.6826336 | 0.1401591 | 1.6411839 |
Choerophryne allisoni | 31.42857 | 29.7086676 | 0.1445558 | 1.0683566 |
Choerophryne burtoni | 31.53731 | 31.6305860 | 0.1425616 | 1.1867104 |
Choerophryne longirostris | 31.49185 | 46.7440166 | 0.1477251 | 1.7507428 |
Choerophryne proboscidea | 31.44849 | 37.1858529 | 0.1440739 | 1.3868028 |
Choerophryne rostellifer | 31.55942 | 42.9320010 | 0.1458863 | 1.5859349 |
Aphantophryne minuta | 31.44847 | 28.6778476 | 0.1450950 | 1.0651116 |
Aphantophryne sabini | 31.47264 | 29.9388308 | 0.1440747 | 1.0674233 |
Aphantophryne pansa | 31.40979 | 38.7493892 | 0.1470964 | 1.4696364 |
Asterophrys leucopus | 31.53603 | 34.8754011 | 0.1437192 | 1.2747020 |
Asterophrys turpicola | 31.52008 | 37.9183562 | 0.1460157 | 1.3888682 |
Xenorhina adisca | 31.52857 | 38.9578595 | 0.1422696 | 1.4327745 |
Xenorhina anorbis | 31.54126 | 33.3640330 | 0.1412189 | 1.2658281 |
Xenorhina arboricola | 31.32316 | 41.0100400 | 0.1444935 | 1.5176237 |
Xenorhina arfakiana | 31.56758 | 53.2000207 | 0.1469989 | 1.9140149 |
Xenorhina bidens | 31.53964 | 33.4754772 | 0.1443199 | 1.2028872 |
Xenorhina bouwensi | 31.45077 | 39.0338312 | 0.1451639 | 1.4394624 |
Xenorhina eiponis | 31.37106 | 33.7653216 | 0.1472845 | 1.3152171 |
Xenorhina fuscigula | 32.47355 | 35.3789832 | 0.1435701 | 1.3510223 |
Xenorhina gigantea | 31.49060 | 35.6495039 | 0.1425712 | 1.3582037 |
Xenorhina huon | 31.39578 | 32.2859910 | 0.1446089 | 1.2293352 |
Xenorhina lanthanites | 31.39696 | 70.2897410 | 0.1436707 | 2.6652127 |
Xenorhina macrodisca | 31.50695 | 28.5323596 | 0.1452598 | 1.1903677 |
Xenorhina macrops | 31.55226 | 38.4691226 | 0.1414434 | 1.4477885 |
Xenorhina mehelyi | 31.52860 | 32.2789788 | 0.1445829 | 1.2073574 |
Xenorhina minima | 31.49127 | 38.9487255 | 0.1426918 | 1.4724475 |
Xenorhina multisica | 31.47723 | 30.0216329 | 0.1425843 | 1.2082065 |
Xenorhina obesa | 31.48522 | 37.8454625 | 0.1450005 | 1.4072921 |
Xenorhina ocellata | 31.44946 | 38.5666956 | 0.1482900 | 1.4592920 |
Xenorhina ophiodon | 31.46776 | 50.3482163 | 0.1442356 | 1.8062403 |
Xenorhina oxycephala | 31.44983 | 42.0518570 | 0.1471554 | 1.5543458 |
Xenorhina parkerorum | 31.51868 | 33.0516554 | 0.1423084 | 1.2405323 |
Xenorhina rostrata | 31.48351 | 36.6501122 | 0.1436908 | 1.3670052 |
Xenorhina scheepstrai | 31.48177 | 36.8570499 | 0.1446639 | 1.3991008 |
Xenorhina schiefenhoeveli | 31.55202 | 36.1056593 | 0.1450989 | 1.4097450 |
Xenorhina similis | 31.42989 | 36.1920424 | 0.1477656 | 1.3274247 |
Xenorhina subcrocea | 31.38787 | 33.6916246 | 0.1426807 | 1.2562966 |
Xenorhina tumulus | 32.49871 | 38.4178078 | 0.1447076 | 1.4345430 |
Xenorhina varia | 31.55541 | 83.2890085 | 0.1441274 | 3.1566062 |
Xenorhina zweifeli | 31.49103 | 42.2470952 | 0.1435812 | 1.5340709 |
Austrochaperina adamantina | 31.52177 | 42.6757525 | 0.1438428 | 1.5995625 |
Austrochaperina adelphe | 31.46002 | 31.4801134 | 0.1444541 | 1.1028638 |
Austrochaperina aquilonia | 31.52513 | 43.9999599 | 0.1459638 | 1.6494328 |
Austrochaperina archboldi | 31.54071 | 31.7504332 | 0.1435945 | 1.1603387 |
Austrochaperina basipalmata | 30.89936 | 47.1057688 | 0.1457973 | 1.7602207 |
Austrochaperina blumi | 31.59039 | 34.1460275 | 0.1426773 | 1.3331852 |
Austrochaperina brevipes | 31.57449 | 30.1314464 | 0.1442401 | 1.1165581 |
Austrochaperina derongo | 31.37923 | 35.2774805 | 0.1425568 | 1.3256471 |
Austrochaperina fryi | 31.50280 | 24.7779723 | 0.1445022 | 0.9307821 |
Austrochaperina gracilipes | 31.47781 | 31.5710335 | 0.1438343 | 1.1320266 |
Austrochaperina hooglandi | 31.54703 | 37.1253948 | 0.1437708 | 1.3709492 |
Austrochaperina kosarek | 31.53965 | 40.0919511 | 0.1433067 | 1.5217180 |
Austrochaperina macrorhyncha | 30.84358 | 37.9768480 | 0.1437988 | 1.4137417 |
Austrochaperina mehelyi | 31.46260 | 35.7708079 | 0.1435975 | 1.3473438 |
Austrochaperina minutissima | 31.51766 | 44.4175183 | 0.1465363 | 1.5861601 |
Austrochaperina novaebritanniae | 31.45760 | 47.2915559 | 0.1447115 | 1.6800421 |
Austrochaperina palmipes | 30.83750 | 44.1866268 | 0.1437677 | 1.6260831 |
Austrochaperina parkeri | 31.47133 | 36.8922230 | 0.1460500 | 1.3636504 |
Austrochaperina pluvialis | 31.46543 | 27.4494048 | 0.1451126 | 1.0478267 |
Austrochaperina polysticta | 31.40498 | 36.9221406 | 0.1447782 | 1.4062653 |
Austrochaperina rivularis | 31.67985 | 35.5441935 | 0.1471025 | 1.2948445 |
Austrochaperina robusta | 31.50751 | 24.3943404 | 0.1406233 | 0.9589234 |
Austrochaperina septentrionalis | 31.57799 | 44.0864281 | 0.1426421 | 1.6644176 |
Austrochaperina yelaensis | 31.57864 | 60.5556139 | 0.1452234 | 2.1974335 |
Barygenys atra | 31.54228 | 36.8736218 | 0.1424263 | 1.3557257 |
Barygenys cheesmanae | 31.45260 | 23.4733898 | 0.1462694 | 0.9098055 |
Barygenys exsul | 31.39611 | 57.7321587 | 0.1480174 | 2.0955228 |
Barygenys flavigularis | 31.53790 | 37.4348337 | 0.1441401 | 1.3806595 |
Barygenys maculata | 31.51015 | 40.8795703 | 0.1472740 | 1.4818701 |
Barygenys nana | 31.47197 | 37.8375563 | 0.1456746 | 1.4489271 |
Barygenys parvula | 31.49779 | 34.1059774 | 0.1445192 | 1.2679881 |
Callulops boettgeri | 31.43637 | 45.9942563 | 0.1443199 | 1.6514719 |
Callulops comptus | 31.47199 | 31.7398324 | 0.1453606 | 1.2384217 |
Callulops doriae | 32.44182 | 42.4603216 | 0.1422923 | 1.5518660 |
Callulops dubius | 31.56435 | 46.2760257 | 0.1431930 | 1.6704439 |
Callulops fuscus | 31.43041 | 52.1690114 | 0.1432365 | 1.8967550 |
Callulops glandulosus | 31.46722 | 31.9555621 | 0.1431143 | 1.2666898 |
Callulops humicola | 31.32318 | 31.6562494 | 0.1478319 | 1.2123459 |
Callulops kopsteini | 31.46917 | 61.6507305 | 0.1463771 | 2.2495394 |
Callulops marmoratus | 31.33584 | 32.4234632 | 0.1461105 | 1.2544321 |
Callulops personatus | 31.42031 | 43.2850836 | 0.1430884 | 1.6266841 |
Callulops robustus | 31.45055 | 49.0615608 | 0.1451887 | 1.7502096 |
Callulops sagittatus | 31.42530 | 37.7313875 | 0.1439256 | 1.3560807 |
Callulops stictogaster | 31.46707 | 37.0387651 | 0.1443836 | 1.4159524 |
Callulops wilhelmanus | 31.36225 | 33.5432702 | 0.1447448 | 1.2966818 |
Cophixalus ateles | 31.45423 | 34.9126943 | 0.1450849 | 1.2334794 |
Cophixalus balbus | 31.61504 | 42.9108814 | 0.1440659 | 1.5997801 |
Cophixalus bewaniensis | 31.52874 | 44.1744595 | 0.1430706 | 1.6083261 |
Cophixalus biroi | 31.30278 | 41.5955075 | 0.1441531 | 1.5457049 |
Cophixalus cheesmanae | 31.33819 | 34.4527497 | 0.1458730 | 1.2793585 |
Cophixalus crepitans | 31.43987 | 30.8911945 | 0.1462439 | 1.1117582 |
Cophixalus cryptotympanum | 31.30216 | 41.8290824 | 0.1452251 | 1.5083284 |
Cophixalus daymani | 31.59013 | 41.3789695 | 0.1429301 | 1.4934431 |
Cophixalus humicola | 31.52569 | 49.5998890 | 0.1443003 | 1.8079078 |
Cophixalus kaindiensis | 31.57949 | 36.6660650 | 0.1415466 | 1.3521367 |
Cophixalus misimae | 31.49021 | 49.3771749 | 0.1458559 | 1.7617815 |
Cophixalus montanus | 31.46389 | 42.1646042 | 0.1446234 | 1.5148210 |
Cophixalus nubicola | 31.63740 | 34.6358917 | 0.1440155 | 1.3685851 |
Cophixalus parkeri | 31.42820 | 33.9144478 | 0.1449466 | 1.2767317 |
Cophixalus peninsularis | 31.46315 | 31.5306532 | 0.1418661 | 1.1364150 |
Cophixalus pipilans | 31.59718 | 42.3461637 | 0.1395511 | 1.6020185 |
Cophixalus pulchellus | 31.42912 | 38.3284424 | 0.1466110 | 1.3865849 |
Cophixalus riparius | 31.47128 | 32.1612444 | 0.1428800 | 1.2101550 |
Cophixalus shellyi | 31.34679 | 34.8734610 | 0.1442290 | 1.3119823 |
Cophixalus sphagnicola | 31.39612 | 31.3128754 | 0.1454748 | 1.1556557 |
Cophixalus tagulensis | 30.87435 | 60.0800506 | 0.1430648 | 2.1918100 |
Cophixalus tetzlaffi | 31.31037 | 65.2982914 | 0.1435823 | 2.4144510 |
Cophixalus timidus | 31.32523 | 43.9634214 | 0.1448354 | 1.5955451 |
Cophixalus tridactylus | 31.47920 | 46.3582964 | 0.1428823 | 1.6521702 |
Cophixalus variabilis | 31.45940 | 48.7607793 | 0.1429633 | 1.7557562 |
Cophixalus verecundus | 31.40441 | 29.6355307 | 0.1440143 | 1.0566657 |
Cophixalus verrucosus | 31.43217 | 41.3460220 | 0.1452742 | 1.5078487 |
Cophixalus zweifeli | 31.46106 | 32.8188575 | 0.1450997 | 1.1787970 |
Copiula exspectata | 31.50219 | 69.8503842 | 0.1439819 | 2.6485887 |
Copiula fistulans | 31.55234 | 36.9918052 | 0.1449070 | 1.3698067 |
Copiula major | 31.44036 | 42.5934635 | 0.1449135 | 1.5193018 |
Copiula minor | 31.63352 | 55.7403646 | 0.1408642 | 2.0355797 |
Copiula obsti | 31.49846 | 41.9962969 | 0.1428708 | 1.4975308 |
Copiula oxyrhina | 31.58767 | 49.4097889 | 0.1440741 | 1.7538058 |
Copiula pipiens | 31.51164 | 43.8408024 | 0.1451935 | 1.6221857 |
Copiula tyleri | 31.65140 | 40.8539408 | 0.1437746 | 1.5208904 |
Hylophorbus picoides | 31.50086 | 56.0622791 | 0.1474798 | 2.0404816 |
Hylophorbus tetraphonus | 31.53175 | 55.3475220 | 0.1453231 | 1.9970230 |
Hylophorbus sextus | 31.48934 | 52.9457845 | 0.1467539 | 1.9089442 |
Hylophorbus rainerguentheri | 31.57252 | 32.8976062 | 0.1438551 | 1.2368143 |
Hylophorbus richardsi | 31.58562 | 33.8483176 | 0.1433513 | 1.2713280 |
Hylophorbus wondiwoi | 31.60003 | 41.9931279 | 0.1452670 | 1.4981043 |
Hylophorbus rufescens | 31.63592 | 31.5092673 | 0.1440181 | 1.1345434 |
Hylophorbus nigrinus | 31.57711 | 42.6753731 | 0.1426618 | 1.7146969 |
Mantophryne louisiadensis | 31.46049 | 62.2843736 | 0.1434801 | 2.2603167 |
Mantophryne lateralis | 31.45534 | 37.5086317 | 0.1451445 | 1.3785718 |
Oreophryne albopunctata | 31.33845 | 42.5429493 | 0.1450618 | 1.5535040 |
Oreophryne alticola | 31.56606 | 33.4308117 | 0.1435795 | 1.3052731 |
Oreophryne anthonyi | 31.38881 | 33.8692371 | 0.1433707 | 1.2311253 |
Oreophryne anulata | 31.45271 | 49.2541217 | 0.1430503 | 1.7781645 |
Oreophryne asplenicola | 31.30327 | 66.5045399 | 0.1445012 | 2.5215113 |
Oreophryne pseudasplenicola | 31.28329 | 76.5766185 | 0.1456252 | 2.9042387 |
Oreophryne atrigularis | 31.49835 | 43.7021335 | 0.1438838 | 1.6200673 |
Oreophryne biroi | 31.31094 | 35.6187346 | 0.1441785 | 1.3316757 |
Oreophryne brachypus | 31.26216 | 44.7086281 | 0.1440878 | 1.6216231 |
Oreophryne brevicrus | 31.33832 | 37.1534155 | 0.1459689 | 1.4160215 |
Oreophryne brevirostris | 31.62540 | 34.3085333 | 0.1448027 | 1.3390104 |
Oreophryne celebensis | 31.26794 | 57.8021932 | 0.1455319 | 2.1058360 |
Oreophryne clamata | 31.36345 | 44.4692265 | 0.1469432 | 1.5861210 |
Oreophryne crucifer | 31.38515 | 41.2641267 | 0.1452418 | 1.5232139 |
Oreophryne flava | 31.35103 | 34.0498438 | 0.1423549 | 1.3101069 |
Oreophryne frontifasciata | 31.38185 | 61.7005246 | 0.1435547 | 2.2708093 |
Oreophryne geislerorum | 31.36849 | 33.4094191 | 0.1428946 | 1.2317310 |
Oreophryne geminus | 31.45611 | 34.0146276 | 0.1449099 | 1.2224417 |
Oreophryne habbemensis | 31.37077 | 44.6863001 | 0.1435517 | 1.6272477 |
Oreophryne hypsiops | 31.40381 | 37.2024138 | 0.1449140 | 1.3756911 |
Oreophryne idenburgensis | 31.29067 | 50.3886603 | 0.1452339 | 1.7747809 |
Oreophryne inornata | 31.25730 | 58.3261766 | 0.1458377 | 2.1305910 |
Oreophryne insulana | 31.35804 | 52.3154154 | 0.1449642 | 1.9076513 |
Oreophryne jeffersoniana | 31.28742 | 46.4396012 | 0.1445091 | 1.6894428 |
Oreophryne kampeni | 31.31377 | 33.0291898 | 0.1441258 | 1.1781026 |
Oreophryne kapisa | 31.24820 | 56.6529750 | 0.1466964 | 2.1048813 |
Oreophryne loriae | 31.36167 | 32.5033685 | 0.1450744 | 1.1597552 |
Oreophryne minuta | 31.27951 | 29.3501556 | 0.1436887 | 1.2247821 |
Oreophryne moluccensis | 31.45978 | 57.8264484 | 0.1439794 | 2.0969053 |
Oreophryne monticola | 31.37129 | 50.9007000 | 0.1458107 | 1.8366306 |
Oreophryne notata | 31.38859 | 32.5836767 | 0.1456658 | 1.2408017 |
Oreophryne rookmaakeri | 31.46035 | 55.0870668 | 0.1413766 | 2.0450889 |
Oreophryne sibilans | 31.29745 | 49.8243759 | 0.1464590 | 1.7816628 |
Oreophryne terrestris | 31.41994 | 41.2056895 | 0.1435241 | 1.4828212 |
Oreophryne unicolor | 31.27945 | 55.6450618 | 0.1449580 | 2.0254048 |
Oreophryne variabilis | 31.41023 | 54.5035500 | 0.1453649 | 2.0065418 |
Oreophryne waira | 31.34143 | 69.3086306 | 0.1471936 | 2.6276977 |
Oreophryne wapoga | 31.31891 | 47.9910324 | 0.1446059 | 1.8631736 |
Sphenophryne cornuta | 31.48107 | 40.4228897 | 0.1447414 | 1.4875396 |
Gastrophrynoides borneensis | 33.54990 | 44.7153966 | 0.1416813 | 1.5927881 |
Glyphoglossus molossus | 35.41039 | 32.8539643 | 0.1393871 | 1.1543116 |
Microhyla achatina | 34.11878 | 40.3050338 | 0.1419448 | 1.4615475 |
Microhyla borneensis | 34.18975 | 37.6551146 | 0.1388445 | 1.3145615 |
Microhyla berdmorei | 34.73556 | 28.4866664 | 0.1396299 | 1.0367755 |
Microhyla pulchra | 34.70529 | 27.1429613 | 0.1396997 | 0.9887275 |
Microhyla rubra | 34.63915 | 23.5947787 | 0.1405643 | 0.8629311 |
Microhyla maculifera | 34.71924 | 33.7670363 | 0.1397449 | 1.1944547 |
Microhyla chakrapanii | 34.67672 | 36.9975025 | 0.1386860 | 1.2901080 |
Microhyla karunaratnei | 34.75358 | 29.9963796 | 0.1403607 | 1.0897901 |
Microhyla palmipes | 34.77981 | 41.0632690 | 0.1383021 | 1.4577030 |
Microhyla mixtura | 34.64310 | 12.8776242 | 0.1393478 | 0.5245570 |
Microhyla okinavensis | 34.67116 | 45.9770808 | 0.1410245 | 1.6746815 |
Microhyla superciliaris | 34.66862 | 41.2251256 | 0.1428557 | 1.4521951 |
Microhyla picta | 34.80536 | 30.8705602 | 0.1394597 | 1.1062737 |
Microhyla pulverata | 34.66977 | 30.1833264 | 0.1412639 | 1.1076868 |
Microhyla sholigari | 34.58847 | 20.3475942 | 0.1412893 | 0.7379431 |
Microhyla zeylanica | 34.86178 | 29.7191929 | 0.1394084 | 1.0786052 |
Micryletta inornata | 34.04029 | 50.6518136 | 0.1414811 | 1.7806164 |
Micryletta steinegeri | 34.09604 | 49.0608493 | 0.1408159 | 1.7497632 |
Chaperina fusca | 33.87773 | 45.2145262 | 0.1456986 | 1.6053328 |
Kaloula assamensis | 34.54892 | 29.8132354 | 0.1396028 | 1.1349785 |
Kaloula aureata | 34.35252 | 31.5787044 | 0.1417123 | 1.1035409 |
Kaloula baleata | 34.29719 | 34.4168247 | 0.1456301 | 1.2531531 |
Kaloula mediolineata | 34.42634 | 25.5855790 | 0.1437211 | 0.8902809 |
Kaloula conjuncta | 34.33421 | 41.7495089 | 0.1425138 | 1.5106543 |
Kaloula rigida | 34.23789 | 42.5530409 | 0.1407510 | 1.5209516 |
Kaloula kokacii | 33.88272 | 42.2681944 | 0.1413494 | 1.5153457 |
Kaloula picta | 34.33331 | 43.0779750 | 0.1414160 | 1.5526764 |
Kaloula borealis | 34.68825 | 9.1803141 | 0.1397242 | 0.3954540 |
Kaloula rugifera | 34.60171 | 11.3464789 | 0.1443856 | 0.5276955 |
Kaloula verrucosa | 34.70987 | 17.6060275 | 0.1411184 | 0.8112818 |
Uperodon globulosus | 35.36601 | 26.5223341 | 0.1428534 | 0.9692793 |
Uperodon systoma | 35.37920 | 25.2206096 | 0.1392109 | 0.9383407 |
Metaphrynella pollicaris | 34.07621 | 43.2505223 | 0.1412248 | 1.5235831 |
Metaphrynella sundana | 33.99698 | 44.3691898 | 0.1436834 | 1.5816560 |
Phrynella pulchra | 34.17476 | 45.9222159 | 0.1423197 | 1.6143390 |
Dyscophus insularis | 33.90136 | 35.9036211 | 0.1410256 | 1.3432572 |
Dyscophus antongilii | 33.74328 | 37.5274206 | 0.1432157 | 1.4431594 |
Dyscophus guineti | 33.74005 | 39.4547693 | 0.1419993 | 1.5229277 |
Hildebrandtia macrotympanum | 35.12332 | 45.8539520 | 0.1356085 | 1.8157680 |
Hildebrandtia ornatissima | 35.15858 | 29.4523866 | 0.1354883 | 1.1990081 |
Hildebrandtia ornata | 35.25022 | 29.2659767 | 0.1367635 | 1.1473379 |
Lanzarana largeni | 34.32664 | 41.2909699 | 0.1338031 | 1.6034896 |
Ptychadena aequiplicata | 34.51013 | 50.2731527 | 0.1358422 | 1.8242025 |
Ptychadena obscura | 34.24577 | 33.3299579 | 0.1346635 | 1.3863214 |
Ptychadena mahnerti | 34.54463 | 29.1063760 | 0.1369122 | 1.3564248 |
Ptychadena uzungwensis | 34.56566 | 32.9466014 | 0.1354140 | 1.3440274 |
Ptychadena porosissima | 34.35059 | 30.7034338 | 0.1342288 | 1.2854285 |
Ptychadena perreti | 34.20796 | 47.7007467 | 0.1352801 | 1.7265756 |
Ptychadena anchietae | 34.41599 | 30.7087572 | 0.1371922 | 1.2621208 |
Ptychadena oxyrhynchus | 34.30453 | 35.9795818 | 0.1340022 | 1.4009835 |
Ptychadena tellinii | 34.29064 | 35.0729805 | 0.1357888 | 1.2821619 |
Ptychadena longirostris | 34.12407 | 53.6117389 | 0.1386989 | 1.9313092 |
Ptychadena bunoderma | 34.26234 | 30.9597100 | 0.1364392 | 1.2333718 |
Ptychadena upembae | 34.58833 | 32.7609578 | 0.1348723 | 1.3414934 |
Ptychadena ansorgii | 34.62683 | 33.0290769 | 0.1342158 | 1.3450539 |
Ptychadena arnei | 34.33260 | 51.6637591 | 0.1330813 | 1.8715246 |
Ptychadena pumilio | 34.45743 | 41.4822145 | 0.1357350 | 1.5134181 |
Ptychadena retropunctata | 34.45188 | 37.7480761 | 0.1368602 | 1.3640585 |
Ptychadena bibroni | 34.18541 | 43.7987100 | 0.1356981 | 1.5883899 |
Ptychadena christyi | 34.18287 | 46.4199023 | 0.1340218 | 1.8776250 |
Ptychadena stenocephala | 34.13407 | 44.3796978 | 0.1351132 | 1.7034210 |
Ptychadena broadleyi | 34.17774 | 32.6808604 | 0.1343348 | 1.2592392 |
Ptychadena keilingi | 34.12788 | 32.8820741 | 0.1350488 | 1.3178058 |
Ptychadena chrysogaster | 34.07876 | 43.2070671 | 0.1370446 | 1.9486551 |
Ptychadena harenna | 34.14297 | 37.5856072 | 0.1356911 | 1.8616188 |
Ptychadena cooperi | 34.52393 | 32.9403782 | 0.1366553 | 1.6488029 |
Ptychadena erlangeri | 34.30785 | 33.9447841 | 0.1351183 | 1.5811355 |
Ptychadena nana | 34.28650 | 31.6450689 | 0.1362041 | 1.6502863 |
Ptychadena wadei | 34.39133 | 29.0667459 | 0.1324439 | 1.2379214 |
Ptychadena filwoha | 34.39244 | 33.3665870 | 0.1363476 | 1.6445811 |
Ptychadena subpunctata | 34.31268 | 33.5374443 | 0.1366012 | 1.3652181 |
Ptychadena gansi | 34.22042 | 57.3045671 | 0.1350798 | 2.1743459 |
Ptychadena grandisonae | 34.19510 | 33.4833555 | 0.1357304 | 1.3724005 |
Ptychadena guibei | 34.17967 | 30.7528521 | 0.1377485 | 1.2275603 |
Ptychadena neumanni | 34.47589 | 34.5045217 | 0.1369694 | 1.5921999 |
Ptychadena ingeri | 34.44032 | 42.0491959 | 0.1345563 | 1.5729967 |
Ptychadena submascareniensis | 34.19531 | 44.4192161 | 0.1356811 | 1.6080379 |
Ptychadena mapacha | 34.18963 | 29.0163695 | 0.1360337 | 1.1604276 |
Ptychadena straeleni | 34.13279 | 37.7634307 | 0.1385246 | 1.3908702 |
Ptychadena mascareniensis | 34.44350 | 35.8642954 | 0.1361977 | 1.3826998 |
Ptychadena newtoni | 34.42073 | 68.6269244 | 0.1390415 | 2.5317953 |
Ptychadena nilotica | 34.43075 | 36.2385547 | 0.1360738 | 1.4945216 |
Ptychadena taenioscelis | 34.10469 | 32.9099015 | 0.1360064 | 1.3218140 |
Ptychadena trinodis | 34.16060 | 38.5469428 | 0.1352686 | 1.3950151 |
Ptychadena mossambica | 34.11509 | 32.7866635 | 0.1364944 | 1.3479541 |
Ptychadena tournieri | 34.37629 | 43.6882735 | 0.1360967 | 1.5729977 |
Ptychadena perplicata | 34.14250 | 30.6738120 | 0.1389880 | 1.2370911 |
Ptychadena schillukorum | 34.12936 | 35.6889468 | 0.1383778 | 1.3806037 |
Ptychadena pujoli | 34.13759 | 40.1109001 | 0.1369247 | 1.4415594 |
Ptychadena superciliaris | 34.20858 | 56.3516066 | 0.1361110 | 2.0346590 |
Odontobatrachus natator | 33.35491 | 43.6153557 | 0.1384920 | 1.5763228 |
Phrynobatrachus latifrons | 34.12659 | 40.9039556 | 0.1347678 | 1.4679129 |
Phrynobatrachus asper | 34.40365 | 34.0644413 | 0.1374922 | 1.4060368 |
Phrynobatrachus acridoides | 34.40285 | 34.6421240 | 0.1339562 | 1.4127760 |
Phrynobatrachus pakenhami | 34.44659 | 56.9478262 | 0.1347458 | 2.2399780 |
Phrynobatrachus bullans | 34.34010 | 30.0884612 | 0.1371434 | 1.3612173 |
Phrynobatrachus francisci | 34.02063 | 41.3987802 | 0.1349921 | 1.4921553 |
Phrynobatrachus natalensis | 34.13362 | 31.7553134 | 0.1367491 | 1.2615441 |
Phrynobatrachus bequaerti | 34.28499 | 38.1756398 | 0.1365249 | 1.6517268 |
Phrynobatrachus africanus | 34.36054 | 47.4107762 | 0.1380031 | 1.7267261 |
Phrynobatrachus elberti | 34.19922 | 37.9360219 | 0.1342591 | 1.3938459 |
Phrynobatrachus brevipalmatus | 34.15825 | 34.8289172 | 0.1346156 | 1.3104699 |
Phrynobatrachus albomarginatus | 34.10522 | 43.4204712 | 0.1371429 | 1.6143780 |
Phrynobatrachus mababiensis | 34.28429 | 30.3121194 | 0.1378338 | 1.2576095 |
Phrynobatrachus alleni | 34.19658 | 59.6490279 | 0.1393333 | 2.1564541 |
Phrynobatrachus phyllophilus | 34.06799 | 55.6911132 | 0.1351814 | 2.0137539 |
Phrynobatrachus ghanensis | 34.06750 | 63.6501882 | 0.1329366 | 2.3076371 |
Phrynobatrachus guineensis | 33.87805 | 50.9295338 | 0.1368139 | 1.8421043 |
Phrynobatrachus annulatus | 34.37724 | 54.9350435 | 0.1352215 | 1.9872169 |
Phrynobatrachus calcaratus | 34.28502 | 46.8870268 | 0.1371833 | 1.7021712 |
Phrynobatrachus villiersi | 34.12632 | 61.0213661 | 0.1368073 | 2.2076739 |
Phrynobatrachus cornutus | 34.14066 | 42.7336905 | 0.1347038 | 1.5523922 |
Phrynobatrachus anotis | 33.99312 | 35.6077155 | 0.1352364 | 1.4120200 |
Phrynobatrachus nanus | 33.98225 | 46.4965890 | 0.1352925 | 1.7090345 |
Phrynobatrachus auritus | 34.02804 | 40.3368299 | 0.1352004 | 1.4697983 |
Phrynobatrachus plicatus | 34.32558 | 58.8450710 | 0.1357758 | 2.1148221 |
Phrynobatrachus gastoni | 34.09697 | 50.3868607 | 0.1354139 | 1.8134110 |
Phrynobatrachus batesii | 34.06346 | 45.5010607 | 0.1346390 | 1.6739078 |
Phrynobatrachus werneri | 33.48294 | 49.4114026 | 0.1332490 | 1.8514563 |
Phrynobatrachus cricogaster | 34.30016 | 55.8899347 | 0.1353784 | 2.0703618 |
Phrynobatrachus steindachneri | 34.34474 | 39.7731649 | 0.1347676 | 1.5220064 |
Phrynobatrachus chukuchuku | 34.21231 | 38.7298599 | 0.1384828 | 1.5023784 |
Phrynobatrachus breviceps | 34.02771 | 31.5004284 | 0.1341242 | 1.4484241 |
Phrynobatrachus hylaios | 34.28624 | 45.5001714 | 0.1359389 | 1.6632009 |
Phrynobatrachus graueri | 34.49886 | 39.6128498 | 0.1361448 | 1.7346878 |
Phrynobatrachus kinangopensis | 34.45527 | 32.6889796 | 0.1349918 | 1.5314706 |
Phrynobatrachus cryptotis | 34.18320 | 34.2350650 | 0.1332178 | 1.3511684 |
Phrynobatrachus irangi | 34.09930 | 27.4151842 | 0.1360126 | 1.2513703 |
Phrynobatrachus dalcqi | 34.01251 | 34.3576094 | 0.1374166 | 1.3533759 |
Phrynobatrachus intermedius | 34.37871 | 79.1472842 | 0.1353511 | 2.8690836 |
Phrynobatrachus liberiensis | 34.28112 | 57.2153868 | 0.1365893 | 2.0780066 |
Phrynobatrachus tokba | 34.06317 | 49.6070178 | 0.1371728 | 1.7924068 |
Phrynobatrachus dispar | 34.32351 | 74.7507588 | 0.1339797 | 2.7403813 |
Phrynobatrachus leveleve | 34.31233 | 71.4087300 | 0.1345111 | 2.6341905 |
Phrynobatrachus inexpectatus | 34.02583 | 33.3254557 | 0.1378371 | 1.6815939 |
Phrynobatrachus minutus | 34.29046 | 32.8015570 | 0.1390414 | 1.5450022 |
Phrynobatrachus scheffleri | 34.28045 | 33.9214845 | 0.1390162 | 1.4639367 |
Phrynobatrachus rungwensis | 34.25707 | 30.1150825 | 0.1366595 | 1.2744464 |
Phrynobatrachus uzungwensis | 33.42862 | 36.3455260 | 0.1364463 | 1.5710306 |
Phrynobatrachus parvulus | 34.05103 | 31.2215891 | 0.1371204 | 1.2843086 |
Phrynobatrachus keniensis | 34.31648 | 28.8461975 | 0.1377458 | 1.3506711 |
Phrynobatrachus fraterculus | 34.25902 | 48.4895326 | 0.1351435 | 1.7524974 |
Phrynobatrachus gutturosus | 34.28823 | 49.9918446 | 0.1359689 | 1.7933322 |
Phrynobatrachus pintoi | 33.95382 | 33.5961575 | 0.1374982 | 1.1986232 |
Phrynobatrachus kakamikro | 33.97179 | 28.6956023 | 0.1372650 | 1.2562565 |
Phrynobatrachus taiensis | 34.11620 | 63.7653371 | 0.1367258 | 2.3114594 |
Phrynobatrachus giorgii | 34.03563 | 41.6553444 | 0.1372642 | 1.4676635 |
Phrynobatrachus scapularis | 34.24865 | 45.3981763 | 0.1357113 | 1.6815594 |
Phrynobatrachus ogoensis | 34.14309 | 41.6701227 | 0.1364115 | 1.4477210 |
Phrynobatrachus perpalmatus | 34.29422 | 33.4595628 | 0.1351265 | 1.3010064 |
Phrynobatrachus pallidus | 34.37978 | 60.0408490 | 0.1365370 | 2.3531526 |
Phrynobatrachus rouxi | 34.17976 | 43.1977053 | 0.1339384 | 2.0517233 |
Phrynobatrachus parkeri | 34.10655 | 44.0105413 | 0.1337862 | 1.5836497 |
Phrynobatrachus sternfeldi | 34.02050 | 39.3670229 | 0.1349916 | 1.4307976 |
Phrynobatrachus pygmaeus | 33.99578 | 39.5930401 | 0.1348249 | 1.4568488 |
Phrynobatrachus sulfureogularis | 34.06998 | 45.9769920 | 0.1334260 | 1.9929721 |
Phrynobatrachus stewartae | 34.21832 | 31.1405704 | 0.1349107 | 1.3456232 |
Phrynobatrachus ukingensis | 34.27768 | 38.1238026 | 0.1350735 | 1.6576982 |
Phrynobatrachus ungujae | 34.03877 | 56.6652720 | 0.1355771 | 2.2342485 |
Phrynobatrachus acutirostris | 33.51066 | 38.7784651 | 0.1361306 | 1.6779777 |
Phrynobatrachus dendrobates | 34.08270 | 42.5485698 | 0.1344518 | 1.7030948 |
Phrynobatrachus petropedetoides | 34.10609 | 37.2758949 | 0.1348853 | 1.5039353 |
Phrynobatrachus versicolor | 34.15861 | 42.6159078 | 0.1354856 | 1.9129899 |
Phrynobatrachus krefftii | 34.08610 | 60.0734843 | 0.1375360 | 2.3961861 |
Phrynobatrachus sandersoni | 34.26580 | 57.3629340 | 0.1375449 | 2.1346664 |
Conraua alleni | 33.39344 | 49.7806786 | 0.1359365 | 1.7962485 |
Conraua robusta | 33.47538 | 57.6570525 | 0.1368379 | 2.1535655 |
Conraua derooi | 33.46948 | 57.9150428 | 0.1365373 | 2.0310324 |
Conraua beccarii | 34.19674 | 27.8011971 | 0.1357926 | 1.2233781 |
Conraua crassipes | 33.42519 | 47.0548566 | 0.1362573 | 1.7120396 |
Conraua goliath | 33.40466 | 52.4409113 | 0.1351742 | 1.9453345 |
Micrixalus elegans | 33.48744 | 32.8118682 | 0.1350687 | 1.2201041 |
Micrixalus nudis | 34.31438 | 37.2979109 | 0.1345866 | 1.3421065 |
Micrixalus fuscus | 33.37829 | 35.9191232 | 0.1370533 | 1.3016405 |
Micrixalus kottigeharensis | 34.30138 | 35.4144876 | 0.1363030 | 1.3193445 |
Micrixalus saxicola | 33.42494 | 30.9494938 | 0.1388976 | 1.1474530 |
Micrixalus phyllophilus | 33.40551 | 34.5428860 | 0.1348498 | 1.2490760 |
Micrixalus swamianus | 34.04723 | 30.7538397 | 0.1351242 | 1.1436448 |
Micrixalus silvaticus | 33.45805 | 38.7141425 | 0.1363653 | 1.3977850 |
Micrixalus thampii | 33.42677 | 27.7727653 | 0.1365916 | 1.0150051 |
Micrixalus gadgili | 33.44447 | 45.3248303 | 0.1364512 | 1.6448377 |
Micrixalus narainensis | 33.49511 | 33.7317431 | 0.1347999 | 1.2534167 |
Arthroleptides martiensseni | 33.37953 | 53.0629266 | 0.1347459 | 2.1131117 |
Arthroleptides yakusini | 33.43919 | 35.2567099 | 0.1342516 | 1.4922359 |
Petropedetes cameronensis | 33.29735 | 52.3231649 | 0.1359186 | 1.9365547 |
Petropedetes parkeri | 34.16068 | 47.9266658 | 0.1368210 | 1.7796575 |
Petropedetes perreti | 33.27119 | 46.8508804 | 0.1392700 | 1.7586516 |
Petropedetes johnstoni | 33.96312 | 54.4211449 | 0.1361962 | 2.0147939 |
Petropedetes palmipes | 34.18371 | 48.8588461 | 0.1393948 | 1.8039886 |
Ericabatrachus baleensis | 33.30504 | 35.0565464 | 0.1375822 | 1.7317577 |
Aubria masako | 34.35765 | 43.6881006 | 0.1341188 | 1.5683095 |
Aubria occidentalis | 34.39129 | 53.9618882 | 0.1342332 | 1.9469832 |
Aubria subsigillata | 34.37881 | 42.3424795 | 0.1370176 | 1.5311714 |
Pyxicephalus adspersus | 35.11601 | 23.8780098 | 0.1343861 | 1.0274677 |
Pyxicephalus edulis | 34.95854 | 31.2777004 | 0.1378963 | 1.2379313 |
Pyxicephalus angusticeps | 34.34674 | 35.5024949 | 0.1362021 | 1.3683620 |
Pyxicephalus obbianus | 35.03760 | 38.3869729 | 0.1377434 | 1.5051965 |
Amietia tenuoplicata | 33.45135 | 38.0049031 | 0.1359969 | 1.6125052 |
Amietia angolensis | 34.29228 | 25.8139852 | 0.1352157 | 1.0446312 |
Amietia desaegeri | 34.28500 | 34.9400299 | 0.1375508 | 1.4481439 |
Amietia inyangae | 33.41188 | 25.5398388 | 0.1376740 | 1.0444134 |
Amietia johnstoni | 33.44028 | 28.7875467 | 0.1344562 | 1.1125411 |
Amietia vertebralis | 34.16374 | 22.3554251 | 0.1377993 | 1.0620521 |
Amietia ruwenzorica | 33.37046 | 43.0524678 | 0.1356381 | 1.7779528 |
Amietia wittei | 33.35622 | 30.3898921 | 0.1373278 | 1.3972975 |
Amietia fuscigula | 34.43164 | 20.6296147 | 0.1337904 | 0.9783156 |
Amietia vandijki | 33.58481 | 17.8516660 | 0.1328858 | 0.8299731 |
Strongylopus bonaespei | 34.40294 | 20.2740969 | 0.1339964 | 0.9713654 |
Strongylopus fuelleborni | 34.40114 | 32.8093107 | 0.1373934 | 1.4167363 |
Strongylopus kilimanjaro | 33.44635 | 39.5167742 | 0.1334243 | 1.7427764 |
Strongylopus fasciatus | 34.33593 | 25.4491278 | 0.1357069 | 1.0992561 |
Strongylopus springbokensis | 34.33834 | 20.8540270 | 0.1351556 | 1.0160654 |
Strongylopus rhodesianus | 33.51390 | 28.8021640 | 0.1339422 | 1.1581941 |
Strongylopus kitumbeine | 34.38173 | 24.0575917 | 0.1343695 | 1.1374046 |
Strongylopus wageri | 34.41544 | 24.4744749 | 0.1346591 | 1.1001983 |
Strongylopus merumontanus | 33.49870 | 26.2618751 | 0.1355786 | 1.1945499 |
Strongylopus grayii | 34.37534 | 20.8866231 | 0.1341118 | 0.9617047 |
Arthroleptella bicolor | 34.25090 | 18.2093026 | 0.1318380 | 0.8917577 |
Arthroleptella subvoce | 34.11975 | 19.0111306 | 0.1369268 | 0.9130022 |
Arthroleptella drewesii | 33.62898 | 21.4272928 | 0.1362208 | 1.0647422 |
Arthroleptella landdrosia | 34.18618 | 19.2252861 | 0.1368808 | 0.9266355 |
Arthroleptella lightfooti | 34.22507 | 19.3312238 | 0.1365418 | 0.9088354 |
Arthroleptella villiersi | 34.27388 | 20.3121670 | 0.1313506 | 0.9729909 |
Arthroleptella rugosa | 34.23703 | 24.3028594 | 0.1347815 | 1.2075042 |
Natalobatrachus bonebergi | 33.53030 | 27.2141634 | 0.1357380 | 1.2171325 |
Nothophryne broadleyi | 33.61491 | 30.3615809 | 0.1371495 | 1.1707027 |
Cacosternum leleupi | 34.11454 | 31.3235393 | 0.1354544 | 1.2719753 |
Cacosternum boettgeri | 34.16867 | 22.9713900 | 0.1358708 | 1.0184075 |
Cacosternum kinangopensis | 34.15118 | 28.8117207 | 0.1363883 | 1.4461586 |
Cacosternum plimptoni | 34.08835 | 31.2937704 | 0.1394555 | 1.4617981 |
Cacosternum striatum | 34.07393 | 27.7795993 | 0.1365365 | 1.2180283 |
Cacosternum parvum | 34.11397 | 26.0285531 | 0.1385302 | 1.1607369 |
Cacosternum nanum | 34.11088 | 24.2111344 | 0.1368893 | 1.1099696 |
Cacosternum capense | 35.10027 | 19.3311869 | 0.1358415 | 0.9217407 |
Cacosternum namaquense | 34.06226 | 18.5077661 | 0.1355596 | 0.9103051 |
Cacosternum karooicum | 34.05224 | 16.7832757 | 0.1372535 | 0.8094466 |
Cacosternum platys | 34.09928 | 20.8175025 | 0.1347344 | 0.9793799 |
Microbatrachella capensis | 34.42249 | 21.8143853 | 0.1340197 | 1.0435054 |
Poyntonia paludicola | 33.62631 | 20.1989917 | 0.1344109 | 0.9698318 |
Anhydrophryne hewitti | 34.04609 | 26.9063729 | 0.1337215 | 1.2024679 |
Anhydrophryne ngongoniensis | 34.07517 | 26.0260314 | 0.1355856 | 1.1931215 |
Anhydrophryne rattrayi | 34.04633 | 19.9500130 | 0.1348657 | 0.9736964 |
Tomopterna cryptotis | 33.97739 | 25.9038471 | 0.1371976 | 1.0210312 |
Tomopterna tandyi | 34.01049 | 20.3580175 | 0.1339464 | 0.9064900 |
Tomopterna damarensis | 35.02620 | 19.7263866 | 0.1355686 | 0.8383672 |
Tomopterna delalandii | 34.29160 | 17.8084239 | 0.1373458 | 0.8574217 |
Tomopterna gallmanni | 34.09943 | 29.4628026 | 0.1347839 | 1.3348449 |
Tomopterna tuberculosa | 34.33107 | 28.8082955 | 0.1345512 | 1.2105001 |
Tomopterna elegans | 34.03412 | 34.2800066 | 0.1361414 | 1.3196785 |
Tomopterna wambensis | 34.31302 | 37.9029697 | 0.1333458 | 1.6728265 |
Tomopterna kachowskii | 34.09091 | 26.9468785 | 0.1368839 | 1.2341690 |
Tomopterna krugerensis | 34.06616 | 23.2158149 | 0.1350281 | 0.9753391 |
Tomopterna luganga | 34.19561 | 27.0969805 | 0.1382727 | 1.2151130 |
Tomopterna marmorata | 34.03222 | 25.9373949 | 0.1361907 | 1.0788291 |
Tomopterna milletihorsini | 34.09921 | 31.2682106 | 0.1323098 | 1.1226135 |
Tomopterna natalensis | 34.07637 | 22.4909648 | 0.1366263 | 1.0012662 |
Platymantis levigatus | 32.49000 | 64.2156808 | 0.1386834 | 2.3270955 |
Platymantis mimulus | 31.19574 | 50.8023880 | 0.1375590 | 1.8221222 |
Platymantis naomii | 31.13705 | 58.6281680 | 0.1391270 | 2.1343940 |
Platymantis panayensis | 31.95491 | 51.6517162 | 0.1395452 | 1.8827949 |
Platymantis rabori | 32.29815 | 57.9067285 | 0.1352910 | 2.0937246 |
Platymantis isarog | 32.20459 | 59.2659013 | 0.1393669 | 2.1284204 |
Platymantis cornutus | 32.24133 | 62.6924104 | 0.1397108 | 2.2351576 |
Platymantis cagayanensis | 32.40326 | 64.2567178 | 0.1372403 | 2.3062093 |
Platymantis diesmosi | 32.41051 | 61.2997425 | 0.1362882 | 2.2012827 |
Platymantis lawtoni | 32.29263 | 70.1405636 | 0.1366256 | 2.5412813 |
Platymantis guentheri | 32.20571 | 47.4084257 | 0.1376539 | 1.7129896 |
Platymantis subterrestris | 32.16013 | 58.5738147 | 0.1394075 | 2.0841596 |
Platymantis hazelae | 31.68087 | 36.7352119 | 0.1377532 | 1.3436300 |
Platymantis pygmaeus | 31.78836 | 43.8313865 | 0.1395946 | 1.5645022 |
Platymantis indeprensus | 32.25571 | 72.3073111 | 0.1402421 | 2.6350431 |
Platymantis paengi | 32.25421 | 66.9584438 | 0.1399407 | 2.4360320 |
Platymantis insulatus | 32.22886 | 52.3068128 | 0.1374243 | 1.9082688 |
Platymantis taylori | 32.34143 | 67.2561365 | 0.1365442 | 2.4077103 |
Platymantis negrosensis | 32.33301 | 63.2262457 | 0.1392691 | 2.3058752 |
Platymantis pseudodorsalis | 32.32437 | 71.7357768 | 0.1375975 | 2.6145745 |
Platymantis polillensis | 32.22787 | 63.2038140 | 0.1363746 | 2.2667281 |
Platymantis sierramadrensis | 32.27245 | 68.5290334 | 0.1378534 | 2.4366492 |
Platymantis spelaeus | 32.45737 | 73.3797571 | 0.1373798 | 2.6360579 |
Lankanectes corrugatus | 33.45824 | 37.7526869 | 0.1369577 | 1.3450510 |
Nyctibatrachus sylvaticus | 32.91046 | 43.1922244 | 0.1348500 | 1.5941856 |
Nyctibatrachus major | 32.86054 | 36.2476877 | 0.1368283 | 1.3228206 |
Nyctibatrachus dattatreyaensis | 32.85307 | 30.3266047 | 0.1365032 | 1.1330925 |
Nyctibatrachus karnatakaensis | 32.79677 | 28.1254197 | 0.1365983 | 1.0456971 |
Nyctibatrachus sanctipalustris | 33.67398 | 36.9455816 | 0.1358358 | 1.3751247 |
Nyctibatrachus kempholeyensis | 32.83313 | 37.8503993 | 0.1385259 | 1.4001205 |
Nyctibatrachus humayuni | 32.95900 | 34.8496728 | 0.1368973 | 1.2944740 |
Nyctibatrachus petraeus | 32.92886 | 31.9082733 | 0.1366137 | 1.1715529 |
Nyctibatrachus aliciae | 33.74247 | 38.6959195 | 0.1336159 | 1.4156174 |
Nyctibatrachus vasanthi | 32.82412 | 46.2580852 | 0.1387027 | 1.6634327 |
Nyctibatrachus deccanensis | 33.68978 | 33.6648735 | 0.1351962 | 1.2252789 |
Nyctibatrachus minor | 33.72791 | 30.7280790 | 0.1351213 | 1.1158207 |
Nyctibatrachus beddomii | 33.72757 | 34.1962686 | 0.1363631 | 1.2297687 |
Nyctibatrachus minimus | 33.50434 | 43.0199321 | 0.1347260 | 1.5607476 |
Indirana beddomii | 34.70178 | 35.6756257 | 0.1320385 | 1.3024483 |
Indirana brachytarsus | 34.03380 | 32.7483408 | 0.1342447 | 1.1867229 |
Indirana leithii | 34.74526 | 35.6861318 | 0.1323513 | 1.3129141 |
Indirana semipalmata | 34.05621 | 37.2658682 | 0.1333498 | 1.3549693 |
Indirana gundia | 34.08508 | 40.9310975 | 0.1315131 | 1.5128096 |
Indirana longicrus | 34.02124 | 35.6992366 | 0.1321526 | 1.3272403 |
Indirana diplosticta | 33.91454 | 43.2315783 | 0.1330741 | 1.5430480 |
Indirana leptodactyla | 34.58953 | 37.0531686 | 0.1309783 | 1.3356239 |
Indirana phrynoderma | 34.49028 | 32.2078070 | 0.1328029 | 1.1376044 |
Ingerana borealis | 35.02161 | 30.1115658 | 0.1321959 | 1.2132064 |
Ingerana tenasserimensis | 34.80948 | 39.7470783 | 0.1330537 | 1.4215323 |
Ingerana charlesdarwini | 34.63531 | 42.8084502 | 0.1308568 | 1.4908037 |
Ingerana reticulata | 34.10374 | 12.9483144 | 0.1317647 | 0.7833483 |
Occidozyga baluensis | 34.68477 | 44.8004348 | 0.1311474 | 1.5997167 |
Occidozyga celebensis | 34.50370 | 49.6520095 | 0.1380648 | 1.8366578 |
Occidozyga lima | 34.57823 | 34.5010184 | 0.1337142 | 1.2459697 |
Occidozyga magnapustulosa | 34.36191 | 32.8969354 | 0.1342109 | 1.1817891 |
Occidozyga martensii | 34.30022 | 29.4147490 | 0.1352992 | 1.0657763 |
Occidozyga semipalmata | 34.46961 | 53.3847917 | 0.1319218 | 1.9693544 |
Occidozyga sumatrana | 34.55165 | 48.0340453 | 0.1323231 | 1.7273137 |
Occidozyga floresiana | 33.76592 | 38.7497278 | 0.1378544 | 1.4229301 |
Occidozyga diminutiva | 33.62624 | 70.6251411 | 0.1335460 | 2.5934102 |
Allopaa hazarensis | 36.15805 | 8.0308111 | 0.1317630 | 0.5390387 |
Chrysopaa sternosignata | 35.99743 | 14.5742383 | 0.1315267 | 0.6680340 |
Ombrana sikimensis | 35.30282 | 21.3415366 | 0.1328674 | 1.0461706 |
Euphlyctis hexadactylus | 37.25920 | 26.8930182 | 0.1265245 | 0.9605230 |
Euphlyctis cyanophlyctis | 37.29928 | 20.6055432 | 0.1295874 | 0.7815540 |
Euphlyctis ehrenbergii | 37.20970 | 26.5049417 | 0.1320721 | 1.0673109 |
Euphlyctis ghoshi | 37.32430 | 36.2422143 | 0.1305215 | 1.2377183 |
Hoplobatrachus crassus | 38.70098 | 25.0543542 | 0.1287983 | 0.9078453 |
Hoplobatrachus tigerinus | 38.14047 | 19.5993064 | 0.1285650 | 0.7324167 |
Hoplobatrachus occipitalis | 37.29963 | 24.9587237 | 0.1280308 | 0.9315330 |
Nannophrys ceylonensis | 37.00743 | 34.9566510 | 0.1302394 | 1.2627574 |
Nannophrys marmorata | 37.11432 | 32.0122983 | 0.1279112 | 1.1545068 |
Nannophrys naeyakai | 36.21617 | 34.5655676 | 0.1325771 | 1.2161116 |
Fejervarya iskandari | 36.55580 | 33.9712129 | 0.1297710 | 1.1969067 |
Fejervarya orissaensis | 36.61933 | 25.9183864 | 0.1304905 | 0.9197083 |
Fejervarya moodiei | 36.88813 | 44.6599842 | 0.1307736 | 1.5828174 |
Fejervarya multistriata | 36.81537 | 37.4927863 | 0.1299125 | 1.3585629 |
Fejervarya triora | 36.54477 | 28.1120171 | 0.1304501 | 0.9658406 |
Fejervarya verruculosa | 36.53754 | 46.0123487 | 0.1300220 | 1.6738751 |
Fejervarya vittigera | 36.57534 | 58.0512162 | 0.1301323 | 2.0923317 |
Sphaerotheca breviceps | 36.53970 | 21.8497554 | 0.1297897 | 0.7990234 |
Sphaerotheca dobsonii | 37.61181 | 28.4813684 | 0.1279225 | 1.0279084 |
Sphaerotheca leucorhynchus | 37.57133 | 28.2175995 | 0.1286579 | 1.0390981 |
Sphaerotheca maskeyi | 37.53500 | 23.7307846 | 0.1282568 | 1.0645302 |
Sphaerotheca rolandae | 37.57086 | 29.6659137 | 0.1291156 | 1.0419848 |
Sphaerotheca swani | 37.49241 | 29.3647618 | 0.1302325 | 1.1322224 |
Limnonectes acanthi | 34.44401 | 55.6630538 | 0.1338317 | 1.9943316 |
Limnonectes arathooni | 35.11627 | 52.2113846 | 0.1306163 | 1.9201727 |
Limnonectes microtympanum | 34.44107 | 55.0133429 | 0.1312404 | 2.0478908 |
Limnonectes asperatus | 35.16511 | 34.5447996 | 0.1311728 | 1.2040242 |
Limnonectes kuhlii | 34.47027 | 39.4174466 | 0.1297016 | 1.4346676 |
Limnonectes fujianensis | 35.38096 | 22.8255888 | 0.1325458 | 0.8220447 |
Limnonectes namiyei | 34.38404 | 42.6603034 | 0.1332658 | 1.5418342 |
Limnonectes poilani | 33.66618 | 23.6156966 | 0.1348330 | 0.8296146 |
Limnonectes dabanus | 35.37863 | 28.4703074 | 0.1334018 | 0.9950351 |
Limnonectes gyldenstolpei | 35.16379 | 29.2669736 | 0.1299188 | 1.0390572 |
Limnonectes dammermani | 34.49331 | 48.0850726 | 0.1327683 | 1.7538915 |
Limnonectes diuatus | 34.58059 | 38.7031689 | 0.1294570 | 1.3918886 |
Limnonectes doriae | 35.13648 | 31.7199951 | 0.1306393 | 1.1307667 |
Limnonectes hascheanus | 35.09663 | 30.1139396 | 0.1293106 | 1.0885989 |
Limnonectes limborgi | 35.03804 | 28.5896592 | 0.1325599 | 1.0489193 |
Limnonectes plicatellus | 34.41098 | 39.2894812 | 0.1329640 | 1.3785826 |
Limnonectes kohchangae | 35.12461 | 32.1030839 | 0.1312360 | 1.1015934 |
Limnonectes finchi | 34.67839 | 33.9911165 | 0.1334289 | 1.2165516 |
Limnonectes ingeri | 34.05377 | 35.6451176 | 0.1346465 | 1.2823785 |
Limnonectes fragilis | 34.41589 | 44.1930039 | 0.1316866 | 1.5682648 |
Limnonectes grunniens | 35.33754 | 43.1207372 | 0.1335321 | 1.5851052 |
Limnonectes ibanorum | 35.26941 | 38.5313945 | 0.1328489 | 1.3680019 |
Limnonectes heinrichi | 33.76309 | 48.8059733 | 0.1351175 | 1.7815615 |
Limnonectes modestus | 34.71537 | 45.2907328 | 0.1329494 | 1.6634801 |
Limnonectes macrocephalus | 34.47581 | 41.9777377 | 0.1329869 | 1.5006307 |
Limnonectes visayanus | 33.63521 | 46.6364251 | 0.1333593 | 1.7020624 |
Limnonectes magnus | 33.71071 | 46.4844881 | 0.1351523 | 1.6881487 |
Limnonectes kadarsani | 34.45193 | 45.9444302 | 0.1328861 | 1.6637835 |
Limnonectes microdiscus | 35.03233 | 41.4203732 | 0.1302215 | 1.4943610 |
Limnonectes kenepaiensis | 35.19292 | 53.4031672 | 0.1361679 | 1.9138477 |
Limnonectes khammonensis | 35.23892 | 25.4834122 | 0.1327094 | 0.8863826 |
Limnonectes khasianus | 35.07850 | 29.7632624 | 0.1309254 | 1.1509533 |
Limnonectes leporinus | 35.18808 | 36.6054542 | 0.1319113 | 1.3022261 |
Limnonectes leytensis | 34.46943 | 48.7484639 | 0.1338404 | 1.7695419 |
Limnonectes macrodon | 35.30781 | 36.0185261 | 0.1326843 | 1.2956634 |
Limnonectes shompenorum | 35.04021 | 47.8784479 | 0.1327002 | 1.7311020 |
Limnonectes paramacrodon | 35.29052 | 42.0443652 | 0.1321673 | 1.4876662 |
Limnonectes macrognathus | 35.16612 | 30.2022167 | 0.1305009 | 1.0783926 |
Limnonectes mawlyndipi | 35.15350 | 18.2756559 | 0.1325025 | 0.7884142 |
Limnonectes micrixalus | 34.50135 | 65.8155149 | 0.1348462 | 2.4446146 |
Limnonectes nitidus | 34.53354 | 36.6612099 | 0.1315586 | 1.3186284 |
Limnonectes palavanensis | 34.54376 | 42.8569963 | 0.1316625 | 1.5361607 |
Limnonectes parvus | 34.55071 | 48.9127860 | 0.1302589 | 1.7730775 |
Limnonectes tweediei | 35.09340 | 38.3581428 | 0.1315665 | 1.3533739 |
Nanorana aenea | 38.30122 | 22.5923405 | 0.1266960 | 0.8905850 |
Nanorana unculuanus | 37.73238 | 18.9848412 | 0.1262629 | 0.8094385 |
Nanorana annandalii | 37.77073 | 18.2242826 | 0.1260667 | 0.9204034 |
Nanorana arnoldi | 37.66528 | 11.1721405 | 0.1288648 | 0.6490755 |
Nanorana maculosa | 37.70801 | 21.4449328 | 0.1258660 | 0.9389666 |
Nanorana medogensis | 37.70224 | 11.8912729 | 0.1292209 | 0.7226686 |
Nanorana blanfordii | 37.63530 | 14.1877133 | 0.1275141 | 0.7469903 |
Nanorana conaensis | 37.54010 | 16.5356630 | 0.1299967 | 0.8937617 |
Nanorana ercepeae | 37.68616 | 14.4120764 | 0.1279254 | 0.6941810 |
Nanorana taihangnica | 37.67919 | 10.6194119 | 0.1269075 | 0.4642796 |
Nanorana liebigii | 37.70313 | 10.8571474 | 0.1273497 | 0.6391476 |
Nanorana minica | 37.65472 | 10.7043254 | 0.1287109 | 0.5902483 |
Nanorana mokokchungensis | 37.63107 | 29.1160221 | 0.1262916 | 1.0873220 |
Nanorana parkeri | 38.28232 | 6.4722284 | 0.1291963 | 0.5658316 |
Nanorana pleskei | 38.34453 | 7.0121322 | 0.1295869 | 0.5078671 |
Nanorana ventripunctata | 38.50914 | 13.1122005 | 0.1270620 | 0.7928125 |
Nanorana polunini | 37.75378 | 12.1118927 | 0.1270595 | 0.6801575 |
Nanorana quadranus | 37.72184 | 11.7460693 | 0.1258683 | 0.4914523 |
Nanorana rarica | 38.54830 | 6.6668713 | 0.1287705 | 0.5230524 |
Nanorana rostandi | 37.66914 | 9.6025447 | 0.1273421 | 0.5772400 |
Nanorana vicina | 37.68358 | 8.4120234 | 0.1252208 | 0.5365041 |
Nanorana yunnanensis | 37.68984 | 18.1172162 | 0.1274181 | 0.7834525 |
Quasipaa boulengeri | 38.86486 | 14.0472303 | 0.1277544 | 0.5730122 |
Quasipaa verrucospinosa | 38.87653 | 24.3724097 | 0.1256713 | 0.9395367 |
Quasipaa jiulongensis | 38.80290 | 15.3137436 | 0.1277208 | 0.5638494 |
Quasipaa shini | 38.88512 | 20.3390285 | 0.1266756 | 0.7513675 |
Quasipaa exilispinosa | 39.34434 | 17.2478674 | 0.1231967 | 0.6229766 |
Quasipaa yei | 38.69298 | 13.0545008 | 0.1268549 | 0.4703952 |
Quasipaa delacouri | 38.20034 | 22.9954239 | 0.1257979 | 0.8686169 |
Quasipaa fasciculispina | 38.25535 | 25.1284889 | 0.1256282 | 0.8565287 |
Amolops archotaphus | 33.07479 | 26.0451714 | 0.1343301 | 1.0051289 |
Amolops aniqiaoensis | 33.17955 | 13.4790490 | 0.1319989 | 0.8170666 |
Amolops assamensis | 33.18172 | 36.6570338 | 0.1345106 | 1.3840981 |
Amolops bellulus | 33.13002 | 20.9923716 | 0.1351592 | 1.0541397 |
Amolops chakrataensis | 33.11484 | 19.4655196 | 0.1344752 | 0.9117390 |
Amolops chunganensis | 33.87965 | 16.4236573 | 0.1309472 | 0.6790184 |
Amolops compotrix | 33.07249 | 32.3982041 | 0.1376847 | 1.1462722 |
Amolops cucae | 33.07143 | 24.4868244 | 0.1343076 | 0.9398164 |
Amolops vitreus | 33.16521 | 25.7935049 | 0.1316995 | 1.0364661 |
Amolops cremnobatus | 33.32288 | 29.9003321 | 0.1289623 | 1.0850643 |
Amolops daiyunensis | 33.05568 | 24.0106627 | 0.1341384 | 0.8738968 |
Amolops iriodes | 33.92502 | 29.0342717 | 0.1329873 | 1.0936796 |
Amolops formosus | 33.18429 | 16.7207543 | 0.1335122 | 0.8485461 |
Amolops gerbillus | 33.18895 | 20.3652108 | 0.1325792 | 0.9753305 |
Amolops granulosus | 33.74674 | 11.5421489 | 0.1316467 | 0.5290846 |
Amolops lifanensis | 33.04941 | 10.2333069 | 0.1374920 | 0.5320435 |
Amolops hainanensis | 33.14426 | 49.0627889 | 0.1320012 | 1.7410919 |
Amolops hongkongensis | 33.09714 | 40.9462832 | 0.1360458 | 1.4800370 |
Amolops jaunsari | 33.14461 | 17.2128486 | 0.1341782 | 0.8029931 |
Amolops jinjiangensis | 33.12608 | 14.7236644 | 0.1336047 | 0.8744822 |
Amolops tuberodepressus | 33.14968 | 24.5858093 | 0.1325232 | 1.0735413 |
Amolops loloensis | 33.09788 | 17.6094523 | 0.1343013 | 0.8500152 |
Amolops mantzorum | 33.12913 | 12.2131612 | 0.1341193 | 0.6624975 |
Amolops kaulbacki | 33.04899 | 17.4332208 | 0.1371004 | 0.9095366 |
Amolops larutensis | 33.11471 | 44.8531343 | 0.1365602 | 1.5865765 |
Amolops longimanus | 33.72273 | 25.8073179 | 0.1365734 | 1.1436013 |
Amolops marmoratus | 33.20643 | 23.4696824 | 0.1341763 | 1.0112268 |
Amolops medogensis | 33.21921 | 13.3786966 | 0.1341189 | 0.8121172 |
Amolops mengyangensis | 33.02641 | 23.8186119 | 0.1364861 | 1.0209959 |
Amolops minutus | 33.19330 | 28.7126511 | 0.1335837 | 1.1162751 |
Amolops monticola | 33.03901 | 13.7608384 | 0.1361774 | 0.7896819 |
Amolops panhai | 33.22372 | 33.5909936 | 0.1302906 | 1.1787383 |
Amolops ricketti | 33.15176 | 22.5995992 | 0.1351319 | 0.8216175 |
Amolops wuyiensis | 33.25416 | 22.2176829 | 0.1316525 | 0.8203297 |
Amolops spinapectoralis | 33.15246 | 31.2106695 | 0.1344849 | 1.1119492 |
Amolops splendissimus | 33.23531 | 26.0387289 | 0.1325000 | 1.0245921 |
Amolops torrentis | 33.07230 | 52.3421529 | 0.1348497 | 1.8582779 |
Amolops viridimaculatus | 33.14203 | 21.2838301 | 0.1367685 | 1.0126647 |
Babina holsti | 33.42207 | 44.9970826 | 0.1350286 | 1.6325056 |
Babina subaspera | 33.13875 | 41.8340602 | 0.1362651 | 1.5364482 |
Odorrana absita | 32.57304 | 29.8235633 | 0.1330908 | 1.0633775 |
Odorrana khalam | 32.57789 | 26.8160651 | 0.1333100 | 0.9458925 |
Odorrana amamiensis | 32.66202 | 40.0118410 | 0.1328575 | 1.4676651 |
Odorrana narina | 32.58249 | 47.0774461 | 0.1353837 | 1.7030618 |
Odorrana supranarina | 32.57679 | 41.5222249 | 0.1334412 | 1.4794741 |
Odorrana jingdongensis | 32.60008 | 21.4208297 | 0.1351254 | 0.9194860 |
Odorrana grahami | 32.63454 | 18.0768137 | 0.1324823 | 0.8383472 |
Odorrana junlianensis | 32.64752 | 19.4468490 | 0.1339170 | 0.8016456 |
Odorrana anlungensis | 32.64521 | 19.4867443 | 0.1325801 | 0.7954388 |
Odorrana aureola | 32.61765 | 27.0670084 | 0.1345619 | 0.9797208 |
Odorrana livida | 32.59824 | 29.3198362 | 0.1369741 | 1.0321092 |
Odorrana chloronota | 32.57719 | 23.8318769 | 0.1363539 | 0.8809783 |
Odorrana leporipes | 32.50690 | 27.0667424 | 0.1352392 | 0.9511375 |
Odorrana graminea | 32.60172 | 32.9823782 | 0.1347148 | 1.1686813 |
Odorrana bacboensis | 32.59256 | 23.3479389 | 0.1348466 | 0.8807860 |
Odorrana hainanensis | 32.65427 | 50.7123178 | 0.1338131 | 1.8015070 |
Odorrana banaorum | 32.56605 | 25.8259550 | 0.1324327 | 0.9038989 |
Odorrana morafkai | 32.60684 | 29.2396120 | 0.1329602 | 1.0295655 |
Odorrana bolavensis | 32.57741 | 28.8966072 | 0.1339446 | 1.0065076 |
Odorrana chapaensis | 32.59398 | 21.9248746 | 0.1360166 | 0.8441888 |
Odorrana geminata | 32.55539 | 24.6162680 | 0.1338928 | 0.9516788 |
Odorrana exiliversabilis | 32.72082 | 16.4137263 | 0.1336788 | 0.6000984 |
Odorrana nasuta | 32.68486 | 45.9310077 | 0.1334406 | 1.6346439 |
Odorrana versabilis | 32.72928 | 20.4742590 | 0.1344829 | 0.7544039 |
Odorrana gigatympana | 32.59192 | 30.1221354 | 0.1352696 | 1.0652620 |
Odorrana hejiangensis | 32.57692 | 14.1698372 | 0.1344244 | 0.5702983 |
Odorrana hosii | 32.56841 | 41.2821509 | 0.1335087 | 1.4604710 |
Odorrana schmackeri | 32.59093 | 14.9017318 | 0.1353297 | 0.5721473 |
Odorrana indeprensa | 32.65667 | 31.1677668 | 0.1330867 | 1.0666658 |
Odorrana ishikawae | 32.56161 | 42.3212467 | 0.1358735 | 1.5315015 |
Odorrana kuangwuensis | 32.60661 | 10.8042194 | 0.1331159 | 0.4518653 |
Odorrana margaretae | 32.61945 | 14.6376738 | 0.1364481 | 0.5997134 |
Odorrana lungshengensis | 32.59254 | 20.4169065 | 0.1339699 | 0.7686470 |
Odorrana mawphlangensis | 32.52967 | 25.9830096 | 0.1364090 | 1.0499308 |
Odorrana monjerai | 32.53542 | 40.2578116 | 0.1334687 | 1.3977162 |
Odorrana nasica | 32.69270 | 26.8312802 | 0.1316796 | 0.9680645 |
Odorrana orba | 32.55738 | 28.2458097 | 0.1348538 | 1.0014831 |
Odorrana splendida | 32.54850 | 41.0444391 | 0.1359049 | 1.5077505 |
Odorrana utsunomiyaorum | 32.51471 | 33.1015976 | 0.1356877 | 1.1812941 |
Odorrana tiannanensis | 32.57726 | 27.5651492 | 0.1343450 | 1.0407415 |
Odorrana tormota | 32.60910 | 14.5706917 | 0.1369549 | 0.5300616 |
Odorrana trankieni | 32.55970 | 27.2969817 | 0.1358834 | 0.9951674 |
Odorrana wuchuanensis | 32.64199 | 17.4305450 | 0.1327089 | 0.6712679 |
Odorrana yentuensis | 32.61404 | 27.0193922 | 0.1342587 | 0.9734683 |
Rana amurensis | 33.00096 | 4.2394106 | 0.1318924 | 0.2464539 |
Rana coreana | 33.02578 | 10.0496838 | 0.1336311 | 0.4260121 |
Rana sakuraii | 32.09859 | 10.6889121 | 0.1371526 | 0.4326171 |
Rana tagoi | 32.80907 | 11.6617416 | 0.1336728 | 0.4692583 |
Rana pyrenaica | 31.82601 | 5.9804209 | 0.1329434 | 0.2903853 |
Rana italica | 31.73597 | 7.1800944 | 0.1340469 | 0.3138864 |
Rana asiatica | 32.66387 | 5.5201404 | 0.1340863 | 0.3488347 |
Rana macrocnemis | 32.63539 | 7.3767640 | 0.1339631 | 0.3644144 |
Rana tavasensis | 31.88346 | 9.9276168 | 0.1311046 | 0.4582389 |
Rana pseudodalmatina | 32.72514 | 9.5893504 | 0.1332046 | 0.4771051 |
Rana aurora | 32.38134 | 5.6018105 | 0.1324466 | 0.3312136 |
Rana muscosa | 31.51051 | 8.5783049 | 0.1344169 | 0.4246923 |
Rana sierrae | 32.39104 | 7.5541213 | 0.1358650 | 0.4192967 |
Rana draytonii | 32.37649 | 8.4820316 | 0.1386862 | 0.4304917 |
Rana chaochiaoensis | 32.97634 | 13.0649104 | 0.1329623 | 0.6106310 |
Rana zhenhaiensis | 33.17701 | 13.3911016 | 0.1331765 | 0.4890543 |
Rana omeimontis | 32.91606 | 10.0770380 | 0.1318776 | 0.4310531 |
Rana hanluica | 33.13891 | 13.5768357 | 0.1334667 | 0.5048711 |
Rana japonica | 33.20863 | 9.9594583 | 0.1315259 | 0.4015722 |
Rana kukunoris | 30.52672 | 3.6827245 | 0.1397259 | 0.2654785 |
Rana huanrensis | 29.54801 | 6.8367098 | 0.1368803 | 0.3059040 |
Rana pirica | 29.36064 | 4.8586117 | 0.1402077 | 0.2746369 |
Rana ornativentris | 29.91526 | 8.5711169 | 0.1399334 | 0.3498978 |
Rana dalmatina | 33.02775 | 7.6503805 | 0.1344551 | 0.3780462 |
Rana latastei | 32.83497 | 8.9256854 | 0.1339196 | 0.4166030 |
Rana graeca | 32.91905 | 10.6812868 | 0.1354888 | 0.5107871 |
Rana johnsi | 32.80924 | 18.8277604 | 0.1344104 | 0.7217826 |
Rana tsushimensis | 32.94718 | 12.5451933 | 0.1351112 | 0.4937246 |
Rana sangzhiensis | 32.14614 | 18.3420526 | 0.1326363 | 0.6874427 |
Rana shuchinae | 32.08207 | 11.2516102 | 0.1345247 | 0.6434477 |
Glandirana minima | 33.67199 | 23.3289536 | 0.1335388 | 0.8580812 |
Pterorana khare | 33.65817 | 28.7939915 | 0.1343344 | 1.1133573 |
Sanguirana everetti | 32.69940 | 45.3944045 | 0.1336807 | 1.6447996 |
Sanguirana igorota | 32.72852 | 48.9131068 | 0.1320049 | 1.7460662 |
Sanguirana sanguinea | 32.72760 | 46.4155884 | 0.1328430 | 1.6643249 |
Sanguirana tipanan | 33.51510 | 53.6608063 | 0.1346740 | 1.9065739 |
Hylarana chitwanensis | 33.53630 | 23.6614627 | 0.1313977 | 1.0775179 |
Hylarana garoensis | 33.52155 | 22.8546308 | 0.1356110 | 1.0033888 |
Hylarana macrodactyla | 33.46014 | 32.4126321 | 0.1329293 | 1.1555581 |
Hylarana margariana | 32.84083 | 25.3822606 | 0.1337270 | 0.9581327 |
Hylarana montivaga | 32.91624 | 33.7271775 | 0.1347548 | 1.2154664 |
Hylarana persimilis | 33.64623 | 33.6910382 | 0.1306178 | 1.1491573 |
Hylarana taipehensis | 33.52070 | 28.3584151 | 0.1337640 | 1.0169368 |
Hylarana tytleri | 33.61876 | 28.3796188 | 0.1331199 | 1.0440570 |
Pelophylax bedriagae | 34.61256 | 15.0951917 | 0.1322584 | 0.6540504 |
Pelophylax caralitanus | 34.69599 | 11.2044652 | 0.1321087 | 0.5150636 |
Pelophylax cerigensis | 34.71231 | 22.5849008 | 0.1305984 | 0.9189920 |
Pelophylax kurtmuelleri | 34.66453 | 12.1823997 | 0.1299983 | 0.5415747 |
Pelophylax ridibundus | 34.68801 | 7.7036209 | 0.1317450 | 0.3833080 |
Pelophylax bergeri | 34.65935 | 9.3080097 | 0.1321746 | 0.3925843 |
Pelophylax shqipericus | 34.56027 | 9.1337703 | 0.1314194 | 0.4068579 |
Pelophylax chosenicus | 34.64755 | 9.7332115 | 0.1332570 | 0.4288022 |
Pelophylax plancyi | 34.68506 | 10.5971311 | 0.1304076 | 0.4233562 |
Pelophylax nigromaculatus | 34.61127 | 10.4226533 | 0.1295350 | 0.4563814 |
Pelophylax hubeiensis | 34.61296 | 14.1484946 | 0.1355375 | 0.5250549 |
Pelophylax cretensis | 34.63876 | 21.0623690 | 0.1332766 | 0.8458434 |
Pelophylax epeiroticus | 34.56774 | 13.2097610 | 0.1339338 | 0.6366595 |
Pelophylax fukienensis | 34.59532 | 17.8147584 | 0.1329365 | 0.6514172 |
Pelophylax porosus | 34.69703 | 11.9042867 | 0.1297662 | 0.4803182 |
Pelophylax tenggerensis | 34.57188 | 9.2949087 | 0.1315838 | 0.4913381 |
Pelophylax terentievi | 34.61304 | 9.7079506 | 0.1313005 | 0.6572904 |
Clinotarsus alticola | 33.22293 | 31.5811226 | 0.1360188 | 1.1983108 |
Clinotarsus curtipes | 33.86592 | 29.8464878 | 0.1338127 | 1.0866341 |
Huia cavitympanum | 33.90005 | 49.2057770 | 0.1326085 | 1.7607586 |
Meristogenys amoropalamus | 33.18998 | 44.3222762 | 0.1369138 | 1.6153975 |
Meristogenys orphnocnemis | 33.24455 | 48.5226699 | 0.1346864 | 1.7428979 |
Meristogenys whiteheadi | 33.25898 | 50.4395525 | 0.1312296 | 1.8063013 |
Meristogenys poecilus | 33.28508 | 41.8108780 | 0.1331460 | 1.4713918 |
Meristogenys macrophthalmus | 33.30939 | 50.4592370 | 0.1314740 | 1.7886923 |
Meristogenys jerboa | 33.25331 | 51.1942699 | 0.1338703 | 1.7973844 |
Meristogenys phaeomerus | 33.25006 | 44.0716977 | 0.1339396 | 1.5614177 |
Meristogenys kinabaluensis | 33.24449 | 48.4273587 | 0.1311321 | 1.7595068 |
Staurois parvus | 33.52683 | 55.5664515 | 0.1343101 | 2.0298614 |
Staurois tuberilinguis | 33.50374 | 48.1562514 | 0.1355964 | 1.7198447 |
Staurois latopalmatus | 33.45530 | 49.9996804 | 0.1345455 | 1.7831465 |
Buergeria buergeri | 35.53063 | 13.2187867 | 0.1310527 | 0.5283378 |
Buergeria oxycephala | 35.51347 | 48.5880696 | 0.1311981 | 1.7254816 |
Buergeria robusta | 35.45206 | 45.1765667 | 0.1334165 | 1.6357832 |
Chiromantis kelleri | 34.34138 | 26.1610641 | 0.1342566 | 1.0812862 |
Chiromantis petersii | 34.28138 | 23.5261330 | 0.1332454 | 1.0403425 |
Chiromantis xerampelina | 34.27738 | 22.7577252 | 0.1302941 | 0.9252885 |
Chiromantis rufescens | 34.24738 | 36.7560763 | 0.1329333 | 1.3397171 |
Feihyla kajau | 34.23177 | 39.1486093 | 0.1340809 | 1.3949759 |
Feihyla palpebralis | 34.24272 | 28.1783855 | 0.1334098 | 1.0497809 |
Ghatixalus asterops | 34.28458 | 29.6735875 | 0.1343876 | 1.0577111 |
Ghatixalus variabilis | 34.20414 | 20.7813556 | 0.1373084 | 0.7619503 |
Polypedates chlorophthalmus | 34.48901 | 38.9850892 | 0.1327587 | 1.3880337 |
Polypedates colletti | 35.02408 | 37.2350438 | 0.1343483 | 1.3241167 |
Polypedates cruciger | 34.95848 | 30.4012616 | 0.1329198 | 1.0782838 |
Polypedates insularis | 35.01122 | 47.1666120 | 0.1308848 | 1.6873475 |
Polypedates macrotis | 34.94310 | 40.8463746 | 0.1325272 | 1.4480928 |
Polypedates maculatus | 34.99914 | 21.0567314 | 0.1335008 | 0.7791250 |
Polypedates megacephalus | 35.05278 | 22.9054732 | 0.1336873 | 0.8414945 |
Polypedates mutus | 35.01386 | 22.9082478 | 0.1326270 | 0.8514266 |
Polypedates occidentalis | 34.91986 | 24.7931042 | 0.1340832 | 0.8665060 |
Polypedates otilophus | 35.00593 | 43.3527401 | 0.1314744 | 1.5535475 |
Polypedates pseudocruciger | 35.06188 | 26.6378681 | 0.1306674 | 0.9616056 |
Polypedates taeniatus | 35.06703 | 20.9256390 | 0.1299878 | 0.8542592 |
Polypedates zed | 34.97955 | 23.5289908 | 0.1331363 | 1.0708110 |
Taruga eques | 34.87960 | 30.9534438 | 0.1337377 | 1.1170447 |
Taruga fastigo | 34.94060 | 27.8826277 | 0.1314375 | 1.0117671 |
Taruga longinasus | 34.88801 | 33.1563582 | 0.1328128 | 1.1971205 |
Gracixalus ananjevae | 34.18389 | 31.4186660 | 0.1311553 | 1.1291754 |
Gracixalus jinxiuensis | 34.22680 | 25.7041817 | 0.1323061 | 0.9347917 |
Gracixalus medogensis | 34.23031 | 12.9567041 | 0.1304974 | 0.7859256 |
Gracixalus gracilipes | 34.12446 | 28.4634327 | 0.1373368 | 1.0906111 |
Gracixalus quangi | 34.15759 | 32.0604396 | 0.1333532 | 1.2188761 |
Gracixalus supercornutus | 34.20360 | 31.5019639 | 0.1328328 | 1.1219696 |
Rhacophorus vampyrus | 34.26833 | 30.4880075 | 0.1350440 | 1.0723643 |
Kurixalus appendiculatus | 33.62933 | 48.7688137 | 0.1355145 | 1.7689886 |
Kurixalus baliogaster | 33.45191 | 27.7273637 | 0.1309766 | 0.9768165 |
Kurixalus banaensis | 33.49511 | 29.0667894 | 0.1311191 | 1.0349718 |
Kurixalus bisacculus | 33.56770 | 31.8585202 | 0.1323910 | 1.1181280 |
Kurixalus odontotarsus | 33.51163 | 22.4818070 | 0.1320775 | 0.8930485 |
Kurixalus verrucosus | 33.43671 | 26.5657733 | 0.1318992 | 0.9764279 |
Kurixalus naso | 33.42328 | 18.9194816 | 0.1364593 | 0.9078617 |
Kurixalus idiootocus | 32.97881 | 33.0368928 | 0.1357364 | 1.1948722 |
Pseudophilautus abundus | 34.25310 | 30.1980291 | 0.1336262 | 1.0889111 |
Pseudophilautus alto | 34.18249 | 33.4910045 | 0.1340856 | 1.2090538 |
Pseudophilautus amboli | 34.26727 | 19.9114120 | 0.1335834 | 0.7469849 |
Pseudophilautus wynaadensis | 34.30476 | 32.2989270 | 0.1356874 | 1.1743121 |
Pseudophilautus asankai | 34.26951 | 32.1618591 | 0.1363632 | 1.1608209 |
Pseudophilautus auratus | 34.26863 | 32.6656861 | 0.1355667 | 1.1852392 |
Pseudophilautus caeruleus | 34.25403 | 28.0954084 | 0.1368206 | 1.0199254 |
Pseudophilautus cavirostris | 34.34421 | 30.5461669 | 0.1326215 | 1.1032235 |
Pseudophilautus cuspis | 34.43293 | 31.9212738 | 0.1346475 | 1.1526645 |
Pseudophilautus decoris | 34.27354 | 29.2194346 | 0.1344528 | 1.0627913 |
Pseudophilautus mittermeieri | 34.32208 | 32.8577026 | 0.1340431 | 1.1840891 |
Pseudophilautus femoralis | 34.36389 | 30.2126967 | 0.1352023 | 1.0910137 |
Pseudophilautus poppiae | 34.39935 | 29.9913492 | 0.1313006 | 1.0881275 |
Pseudophilautus mooreorum | 34.30495 | 35.1876284 | 0.1325986 | 1.2653367 |
Pseudophilautus fergusonianus | 34.25549 | 30.1877331 | 0.1340485 | 1.0717810 |
Pseudophilautus folicola | 34.27601 | 32.8112075 | 0.1322098 | 1.1850514 |
Pseudophilautus frankenbergi | 34.25750 | 30.6765462 | 0.1306174 | 1.0971043 |
Pseudophilautus fulvus | 34.16010 | 30.1707649 | 0.1351568 | 1.0862951 |
Pseudophilautus schmarda | 34.29825 | 32.6048120 | 0.1335525 | 1.1781872 |
Pseudophilautus kani | 34.21064 | 44.8468944 | 0.1329923 | 1.6151481 |
Pseudophilautus limbus | 34.29267 | 33.4422061 | 0.1348423 | 1.2077911 |
Pseudophilautus lunatus | 34.28278 | 30.0171342 | 0.1342868 | 1.0857800 |
Pseudophilautus macropus | 33.76313 | 31.8521691 | 0.1343414 | 1.1479329 |
Pseudophilautus microtympanum | 34.35567 | 29.4925346 | 0.1339203 | 1.0666129 |
Pseudophilautus steineri | 34.25480 | 33.4867649 | 0.1339260 | 1.2042118 |
Pseudophilautus nemus | 34.33321 | 31.7540911 | 0.1340080 | 1.1496005 |
Pseudophilautus ocularis | 34.31650 | 27.7206503 | 0.1324595 | 1.0056702 |
Pseudophilautus reticulatus | 34.27698 | 32.6738768 | 0.1331543 | 1.1824134 |
Pseudophilautus pleurotaenia | 34.29362 | 33.8006262 | 0.1333342 | 1.2126163 |
Pseudophilautus popularis | 34.29252 | 29.8661115 | 0.1341081 | 1.0635059 |
Pseudophilautus regius | 34.24579 | 30.9862663 | 0.1352956 | 1.1074024 |
Pseudophilautus rus | 34.27489 | 31.4038627 | 0.1319665 | 1.1306975 |
Pseudophilautus sarasinorum | 33.80154 | 31.8914351 | 0.1330379 | 1.1399887 |
Pseudophilautus semiruber | 34.48474 | 31.3821533 | 0.1335145 | 1.1310128 |
Pseudophilautus simba | 34.39360 | 29.9716299 | 0.1349421 | 1.0875275 |
Pseudophilautus singu | 34.34080 | 32.3879094 | 0.1329781 | 1.1691694 |
Pseudophilautus sordidus | 34.31275 | 29.9130318 | 0.1346543 | 1.0807674 |
Pseudophilautus stellatus | 34.35611 | 30.9200396 | 0.1321691 | 1.1240310 |
Pseudophilautus stictomerus | 34.22797 | 33.9138275 | 0.1344049 | 1.2078419 |
Pseudophilautus stuarti | 34.26899 | 29.4516889 | 0.1338642 | 1.0571128 |
Pseudophilautus tanu | 34.29012 | 28.6644322 | 0.1332671 | 1.0395377 |
Pseudophilautus viridis | 34.33474 | 31.3679822 | 0.1332078 | 1.1368796 |
Pseudophilautus zorro | 34.47227 | 31.0119183 | 0.1348226 | 1.1200387 |
Raorchestes akroparallagi | 34.28904 | 30.4172663 | 0.1322251 | 1.1082105 |
Raorchestes bobingeri | 34.19220 | 39.1007654 | 0.1333842 | 1.4096064 |
Raorchestes glandulosus | 34.14888 | 30.7768668 | 0.1360912 | 1.1240610 |
Raorchestes anili | 34.41560 | 34.4946708 | 0.1338031 | 1.2474013 |
Raorchestes kaikatti | 34.28907 | 29.0763346 | 0.1324870 | 1.0201374 |
Raorchestes sushili | 34.24295 | 28.7785882 | 0.1341557 | 1.0050397 |
Raorchestes beddomii | 34.33428 | 32.3873150 | 0.1333225 | 1.1579987 |
Raorchestes munnarensis | 34.41927 | 32.8394718 | 0.1340069 | 1.1694862 |
Raorchestes resplendens | 34.48363 | 27.5319984 | 0.1336291 | 0.9840720 |
Raorchestes dubois | 34.24146 | 31.3442262 | 0.1344996 | 1.1170372 |
Raorchestes bombayensis | 34.31682 | 26.1674111 | 0.1284632 | 0.9688925 |
Raorchestes tuberohumerus | 34.28785 | 24.1306239 | 0.1315863 | 0.8850969 |
Raorchestes charius | 34.28398 | 33.7616691 | 0.1310064 | 1.2569264 |
Raorchestes griet | 34.27462 | 27.1200340 | 0.1329062 | 0.9668984 |
Raorchestes coonoorensis | 34.35610 | 19.9393726 | 0.1327912 | 0.7335199 |
Raorchestes chlorosomma | 34.27637 | 31.2039627 | 0.1344517 | 1.1237528 |
Raorchestes luteolus | 34.29101 | 23.0531019 | 0.1313639 | 0.8476617 |
Raorchestes travancoricus | 34.28469 | 43.0788144 | 0.1315133 | 1.5632392 |
Raorchestes chotta | 34.20215 | 40.0222138 | 0.1348330 | 1.4365240 |
Raorchestes chromasynchysi | 34.28074 | 29.9076402 | 0.1302659 | 1.1007476 |
Raorchestes signatus | 34.36663 | 22.9901152 | 0.1321500 | 0.8303023 |
Raorchestes tinniens | 34.36823 | 23.0401163 | 0.1358839 | 0.8472012 |
Raorchestes graminirupes | 34.42840 | 40.9733399 | 0.1358570 | 1.4744403 |
Raorchestes gryllus | 34.25946 | 31.5105348 | 0.1330607 | 1.1180049 |
Raorchestes menglaensis | 33.67226 | 25.8341394 | 0.1332146 | 1.0471452 |
Raorchestes longchuanensis | 34.23274 | 24.0018132 | 0.1316562 | 0.9778726 |
Raorchestes marki | 34.24917 | 28.9378452 | 0.1321800 | 1.0123274 |
Raorchestes nerostagona | 34.19729 | 21.2009078 | 0.1351085 | 0.7796698 |
Raorchestes ochlandrae | 34.30312 | 30.0058043 | 0.1335718 | 1.0877171 |
Raorchestes parvulus | 34.28412 | 31.3970794 | 0.1347159 | 1.1442962 |
Raorchestes ponmudi | 34.24369 | 32.6061583 | 0.1355034 | 1.1792607 |
Nyctixalus margaritifer | 33.96612 | 32.7674855 | 0.1334370 | 1.1785866 |
Nyctixalus spinosus | 34.08559 | 49.3313274 | 0.1351343 | 1.7904617 |
Philautus abditus | 33.08146 | 26.8708730 | 0.1328078 | 0.9510400 |
Philautus acutirostris | 32.27012 | 36.1578249 | 0.1361468 | 1.3104637 |
Philautus acutus | 33.50546 | 42.0587075 | 0.1340149 | 1.5427405 |
Philautus aurantium | 33.49888 | 48.4938794 | 0.1374585 | 1.7613234 |
Philautus amoenus | 33.56342 | 54.5597952 | 0.1347763 | 2.0044806 |
Philautus mjobergi | 33.53594 | 50.3045151 | 0.1372959 | 1.8434940 |
Philautus aurifasciatus | 33.47546 | 41.7225055 | 0.1361537 | 1.4949362 |
Philautus bunitus | 33.63437 | 44.3226821 | 0.1342997 | 1.6020782 |
Philautus kerangae | 33.59180 | 40.9480741 | 0.1357995 | 1.5162208 |
Philautus cardamonus | 33.56965 | 30.6275375 | 0.1353598 | 1.0456830 |
Philautus cornutus | 33.56883 | 42.4874141 | 0.1356628 | 1.4589507 |
Philautus davidlabangi | 33.55836 | 38.8261442 | 0.1325805 | 1.3781809 |
Philautus disgregus | 33.57289 | 50.6179386 | 0.1341868 | 1.7928139 |
Philautus erythrophthalmus | 33.49827 | 44.5322800 | 0.1361097 | 1.5985048 |
Philautus everetti | 33.46413 | 55.7098764 | 0.1340567 | 2.0008963 |
Philautus garo | 33.48596 | 28.5457645 | 0.1312356 | 1.1151553 |
Philautus gunungensis | 33.46584 | 56.1725888 | 0.1376262 | 2.0682973 |
Philautus hosii | 33.45371 | 39.6693542 | 0.1360454 | 1.4235797 |
Philautus ingeri | 33.57186 | 42.2114237 | 0.1347566 | 1.5474563 |
Philautus kempiae | 33.49445 | 28.5019185 | 0.1355009 | 1.1130475 |
Philautus kempii | 33.51911 | 12.4601912 | 0.1352888 | 0.6987453 |
Philautus leitensis | 33.57469 | 47.2218274 | 0.1325023 | 1.7124781 |
Philautus longicrus | 33.49009 | 61.0206571 | 0.1359094 | 2.2066619 |
Philautus maosonensis | 33.44663 | 29.0234107 | 0.1353771 | 1.0678661 |
Philautus microdiscus | 33.51359 | 21.8556822 | 0.1327521 | 1.0414129 |
Philautus namdaphaensis | 33.48893 | 26.3953524 | 0.1351760 | 1.1798584 |
Philautus pallidipes | 33.56452 | 28.1236791 | 0.1351250 | 0.9823343 |
Philautus petersi | 33.69632 | 62.1534248 | 0.1327375 | 2.2544019 |
Philautus poecilius | 33.54884 | 35.3226529 | 0.1345371 | 1.2746567 |
Philautus refugii | 33.52199 | 47.5268615 | 0.1350634 | 1.6871277 |
Philautus saueri | 33.58897 | 58.3663617 | 0.1359725 | 2.1467695 |
Philautus schmackeri | 33.52931 | 48.5492307 | 0.1343325 | 1.7453368 |
Philautus similipalensis | 33.70881 | 27.7287218 | 0.1344276 | 0.9194723 |
Philautus surrufus | 33.35210 | 43.0827088 | 0.1372878 | 1.5614544 |
Philautus tectus | 33.51703 | 42.5047621 | 0.1357995 | 1.5136641 |
Philautus tytthus | 33.54514 | 27.0965083 | 0.1329037 | 1.1209666 |
Philautus umbra | 33.61853 | 42.9312718 | 0.1341892 | 1.5696680 |
Philautus vermiculatus | 33.48937 | 39.3626831 | 0.1356311 | 1.3913814 |
Philautus vittiger | 33.53057 | 34.7732031 | 0.1346622 | 1.2351075 |
Philautus worcesteri | 33.67986 | 47.9581764 | 0.1359593 | 1.7296716 |
Rhacophorus angulirostris | 34.21538 | 46.5301808 | 0.1347259 | 1.7263865 |
Rhacophorus annamensis | 33.73781 | 29.3746198 | 0.1359779 | 1.0251321 |
Rhacophorus exechopygus | 34.20079 | 28.5283785 | 0.1349877 | 1.0111370 |
Rhacophorus baluensis | 34.31363 | 40.2214663 | 0.1339015 | 1.4631954 |
Rhacophorus barisani | 33.79648 | 46.9312302 | 0.1329860 | 1.6523611 |
Rhacophorus gauni | 34.28807 | 43.7150709 | 0.1352133 | 1.5545693 |
Rhacophorus gadingensis | 34.26541 | 52.2521692 | 0.1340214 | 1.8672722 |
Rhacophorus bifasciatus | 33.74028 | 49.7472039 | 0.1323424 | 1.7744960 |
Rhacophorus bimaculatus | 34.22539 | 52.3500046 | 0.1353855 | 1.8913175 |
Rhacophorus bipunctatus | 34.18711 | 28.9020166 | 0.1345694 | 1.1152326 |
Rhacophorus rhodopus | 34.19711 | 25.8419551 | 0.1346370 | 1.0096799 |
Rhacophorus reinwardtii | 34.20950 | 42.3511962 | 0.1350358 | 1.5416306 |
Rhacophorus calcadensis | 34.29437 | 30.7263597 | 0.1337252 | 1.0917939 |
Rhacophorus calcaneus | 34.15291 | 35.0887982 | 0.1329451 | 1.2660191 |
Rhacophorus catamitus | 33.78570 | 43.4451977 | 0.1325237 | 1.5332590 |
Rhacophorus translineatus | 34.30934 | 14.3463192 | 0.1318332 | 0.7827558 |
Rhacophorus pardalis | 34.23761 | 43.5602210 | 0.1328676 | 1.5634456 |
Rhacophorus fasciatus | 34.15076 | 50.7193236 | 0.1329237 | 1.8249644 |
Rhacophorus harrissoni | 34.24655 | 42.6567105 | 0.1322725 | 1.5169530 |
Rhacophorus rufipes | 34.22895 | 42.8755721 | 0.1313595 | 1.5134232 |
Rhacophorus georgii | 34.31250 | 46.8593344 | 0.1340060 | 1.7273817 |
Rhacophorus helenae | 34.29469 | 26.1352044 | 0.1334346 | 0.8898189 |
Rhacophorus kio | 34.25836 | 27.0833690 | 0.1335241 | 1.0388316 |
Rhacophorus hoanglienensis | 34.35968 | 27.3055371 | 0.1343087 | 1.0630306 |
Rhacophorus lateralis | 34.29864 | 25.8537975 | 0.1337109 | 0.9500845 |
Rhacophorus malabaricus | 34.25791 | 28.2036569 | 0.1345907 | 1.0280316 |
Rhacophorus pseudomalabaricus | 34.31042 | 32.5703932 | 0.1330654 | 1.1621785 |
Rhacophorus margaritifer | 33.72706 | 37.8540545 | 0.1346667 | 1.3586963 |
Rhacophorus marmoridorsum | 34.25166 | 35.9397960 | 0.1303003 | 1.2860451 |
Rhacophorus modestus | 33.69630 | 49.0610570 | 0.1363611 | 1.7039393 |
Rhacophorus monticola | 33.79878 | 58.6567400 | 0.1341880 | 2.1933935 |
Rhacophorus nigropalmatus | 34.16209 | 40.7907944 | 0.1354595 | 1.4367601 |
Rhacophorus orlovi | 33.81781 | 32.5561589 | 0.1317460 | 1.1529287 |
Rhacophorus verrucopus | 34.33080 | 13.0317001 | 0.1318897 | 0.7894793 |
Rhacophorus poecilonotus | 34.28803 | 43.2178927 | 0.1332314 | 1.5622328 |
Rhacophorus robertingeri | 33.78444 | 33.4458313 | 0.1320646 | 1.1851400 |
Rhacophorus robinsonii | 34.29187 | 40.0922422 | 0.1327725 | 1.4168280 |
Rhacophorus spelaeus | 34.16999 | 30.5257348 | 0.1356809 | 1.0698763 |
Rhacophorus tuberculatus | 34.19721 | 17.2979458 | 0.1347610 | 0.8474985 |
Rhacophorus turpes | 34.24761 | 27.7063315 | 0.1328231 | 1.1444056 |
Theloderma asperum | 34.36683 | 37.9820408 | 0.1364111 | 1.3523752 |
Theloderma rhododiscus | 34.25124 | 22.0733284 | 0.1352557 | 0.8249338 |
Theloderma bicolor | 34.50427 | 22.4749187 | 0.1353173 | 0.9397243 |
Theloderma corticale | 34.39695 | 25.3003852 | 0.1331091 | 0.9164720 |
Theloderma gordoni | 34.47766 | 32.2603370 | 0.1324899 | 1.1950127 |
Theloderma leporosum | 34.24921 | 38.2935419 | 0.1353218 | 1.3462841 |
Theloderma horridum | 34.27303 | 41.6439930 | 0.1346373 | 1.4841784 |
Theloderma laeve | 34.29306 | 29.9164081 | 0.1319626 | 1.0544573 |
Theloderma lateriticum | 34.23879 | 27.4200061 | 0.1330211 | 1.0240944 |
Theloderma licin | 34.25980 | 41.6557903 | 0.1344783 | 1.4797533 |
Theloderma moloch | 34.30166 | 14.7865597 | 0.1341532 | 0.8029772 |
Theloderma nagalandense | 34.20684 | 26.2502075 | 0.1330357 | 1.0309790 |
Theloderma nebulosum | 34.06100 | 32.5014440 | 0.1341250 | 1.1561129 |
Theloderma truongsonense | 33.68407 | 31.0461196 | 0.1349781 | 1.0951407 |
Theloderma phrynoderma | 34.27567 | 29.5363079 | 0.1340946 | 1.0558458 |
Theloderma ryabovi | 34.28939 | 32.6979523 | 0.1355901 | 1.1834989 |
Theloderma stellatum | 34.15408 | 34.9758181 | 0.1337790 | 1.2126933 |
Liuixalus hainanus | 34.57256 | 48.9988299 | 0.1329657 | 1.7472446 |
Liuixalus ocellatus | 34.58056 | 49.8857885 | 0.1347608 | 1.7705730 |
Liuixalus romeri | 34.56632 | 37.9318605 | 0.1317228 | 1.3703468 |
Boophis albilabris | 34.06437 | 38.9554940 | 0.1338597 | 1.4885053 |
Boophis occidentalis | 33.67070 | 37.1508958 | 0.1311617 | 1.3938193 |
Boophis albipunctatus | 33.72313 | 39.0904497 | 0.1324941 | 1.5239013 |
Boophis tampoka | 34.16652 | 41.8103370 | 0.1334125 | 1.5184275 |
Boophis jaegeri | 34.17109 | 40.8562277 | 0.1349567 | 1.5044736 |
Boophis anjanaharibeensis | 34.18583 | 29.7782832 | 0.1360104 | 1.1101449 |
Boophis septentrionalis | 33.68424 | 36.0138983 | 0.1356782 | 1.3496565 |
Boophis englaenderi | 33.64994 | 34.7881677 | 0.1369490 | 1.3005209 |
Boophis ankaratra | 33.67656 | 34.4800195 | 0.1345590 | 1.3410974 |
Boophis schuboeae | 33.64515 | 35.2884911 | 0.1372963 | 1.3624588 |
Boophis andreonei | 34.09384 | 32.2603144 | 0.1340973 | 1.2026965 |
Boophis sibilans | 33.69541 | 35.4499497 | 0.1333474 | 1.3606438 |
Boophis blommersae | 34.11188 | 38.8762896 | 0.1353567 | 1.4589149 |
Boophis andohahela | 34.21935 | 35.6031592 | 0.1301002 | 1.3701271 |
Boophis elenae | 34.11134 | 34.7150799 | 0.1351387 | 1.3692929 |
Boophis axelmeyeri | 33.62996 | 34.0543554 | 0.1361582 | 1.2730890 |
Boophis burgeri | 34.09968 | 38.2517764 | 0.1354536 | 1.5365388 |
Boophis reticulatus | 33.66026 | 36.5767871 | 0.1344820 | 1.4028022 |
Boophis rufioculis | 33.61280 | 36.6301004 | 0.1343463 | 1.4424695 |
Boophis boehmei | 33.68131 | 37.0553398 | 0.1336642 | 1.4459310 |
Boophis quasiboehmei | 33.63817 | 35.6705036 | 0.1348702 | 1.3721913 |
Boophis popi | 33.61279 | 32.1633218 | 0.1357799 | 1.2399767 |
Boophis fayi | 34.07399 | 37.4406178 | 0.1367128 | 1.4020448 |
Boophis brachychir | 33.73740 | 41.1841114 | 0.1321448 | 1.5396988 |
Boophis entingae | 33.75033 | 37.6843553 | 0.1335486 | 1.4294428 |
Boophis goudotii | 34.11725 | 36.2411670 | 0.1350650 | 1.3915042 |
Boophis obscurus | 34.10277 | 35.2090538 | 0.1329744 | 1.3561371 |
Boophis luciae | 33.71429 | 38.9369364 | 0.1334978 | 1.5344392 |
Boophis luteus | 33.60363 | 38.8003663 | 0.1337557 | 1.5012660 |
Boophis madagascariensis | 34.08954 | 39.4038484 | 0.1342462 | 1.5146443 |
Boophis roseipalmatus | 33.59170 | 35.1516803 | 0.1372713 | 1.3126439 |
Boophis liami | 33.78635 | 31.8098389 | 0.1329460 | 1.2785338 |
Boophis sambirano | 33.69325 | 31.9103594 | 0.1350377 | 1.1973406 |
Boophis mandraka | 33.79446 | 41.2425777 | 0.1321183 | 1.5958477 |
Boophis andrangoloaka | 34.06832 | 37.7594008 | 0.1343904 | 1.4589295 |
Boophis rhodoscelis | 34.08922 | 36.4168672 | 0.1330470 | 1.4284374 |
Boophis laurenti | 33.74421 | 36.7093774 | 0.1342507 | 1.3950964 |
Boophis lilianae | 33.68272 | 29.8478706 | 0.1326108 | 1.1520277 |
Boophis arcanus | 34.19453 | 38.4792269 | 0.1359567 | 1.5098720 |
Boophis feonnyala | 34.17979 | 41.1879760 | 0.1334815 | 1.6500919 |
Boophis haematopus | 34.23794 | 40.8525549 | 0.1339867 | 1.5928057 |
Boophis pyrrhus | 33.84013 | 36.2357293 | 0.1301170 | 1.4107740 |
Boophis miniatus | 33.75028 | 34.9717947 | 0.1327482 | 1.3442918 |
Boophis baetkei | 34.16742 | 53.4121383 | 0.1337327 | 2.0042278 |
Boophis ulftunni | 33.79853 | 35.1595309 | 0.1320958 | 1.3167583 |
Boophis majori | 33.68672 | 33.0197520 | 0.1356375 | 1.2673485 |
Boophis narinsi | 33.69647 | 30.0414017 | 0.1351719 | 1.1606470 |
Boophis picturatus | 33.68199 | 36.6046261 | 0.1361604 | 1.4295148 |
Boophis microtympanum | 33.63778 | 32.9544343 | 0.1349497 | 1.2717185 |
Boophis williamsi | 33.66518 | 30.9365195 | 0.1342654 | 1.2322619 |
Boophis marojezensis | 33.76504 | 30.0626098 | 0.1334899 | 1.1560176 |
Boophis vittatus | 33.75071 | 33.9834500 | 0.1311072 | 1.2697035 |
Boophis bottae | 33.78434 | 36.8025712 | 0.1327857 | 1.4392038 |
Boophis erythrodactylus | 34.12429 | 32.9632432 | 0.1359858 | 1.2902973 |
Boophis rappiodes | 33.67440 | 36.6384831 | 0.1338380 | 1.4304516 |
Boophis tasymena | 33.69537 | 37.8841106 | 0.1327288 | 1.4694289 |
Boophis viridis | 33.67003 | 34.1668393 | 0.1328601 | 1.3178431 |
Boophis periegetes | 33.67379 | 34.8227070 | 0.1349447 | 1.3391560 |
Boophis solomaso | 34.10433 | 41.4496339 | 0.1362846 | 1.6266619 |
Boophis haingana | 33.74841 | 38.2940902 | 0.1340857 | 1.4824043 |
Boophis miadana | 33.71870 | 39.8451102 | 0.1306540 | 1.5398452 |
Boophis piperatus | 34.17757 | 31.6565999 | 0.1328687 | 1.2203205 |
Boophis sandrae | 33.82765 | 30.1851884 | 0.1305287 | 1.1645161 |
Boophis spinophis | 34.19421 | 34.4608425 | 0.1322576 | 1.3261784 |
Boophis tsilomaro | 33.73504 | 57.8668049 | 0.1352057 | 2.1530137 |
Boophis opisthodon | 34.14313 | 37.8788858 | 0.1332763 | 1.4648096 |
Boophis calcaratus | 33.65685 | 35.9931077 | 0.1341058 | 1.4058575 |
Boophis guibei | 34.14298 | 34.9191057 | 0.1334765 | 1.3577247 |
Boophis lichenoides | 34.11431 | 37.2128291 | 0.1351705 | 1.4322248 |
Boophis doulioti | 34.12625 | 35.4959227 | 0.1338699 | 1.3391923 |
Boophis tephraeomystax | 34.13946 | 37.7725089 | 0.1312206 | 1.4412637 |
Boophis xerophilus | 34.14841 | 38.4444079 | 0.1336789 | 1.4560324 |
Boophis idae | 34.08289 | 36.6155387 | 0.1361890 | 1.4305991 |
Boophis pauliani | 34.14750 | 37.1088922 | 0.1359723 | 1.4501845 |
Blommersia angolafa | 34.14743 | 37.9024626 | 0.1346279 | 1.4320384 |
Blommersia grandisonae | 34.20587 | 39.6795913 | 0.1353647 | 1.5299468 |
Blommersia kely | 34.33049 | 37.4355846 | 0.1379339 | 1.4620689 |
Blommersia sarotra | 34.35878 | 35.2472346 | 0.1341046 | 1.3964496 |
Blommersia blommersae | 34.08131 | 36.6364861 | 0.1357203 | 1.4486589 |
Blommersia dejongi | 34.27211 | 37.4299970 | 0.1338896 | 1.4126265 |
Blommersia galani | 34.23268 | 29.8483964 | 0.1352150 | 1.1267219 |
Blommersia domerguei | 34.24222 | 32.7337852 | 0.1358007 | 1.2734232 |
Blommersia variabilis | 34.08967 | 37.0838899 | 0.1360047 | 1.3698919 |
Blommersia wittei | 34.04916 | 43.0392219 | 0.1313395 | 1.6038493 |
Guibemantis albolineatus | 34.13170 | 36.2847924 | 0.1323553 | 1.4121303 |
Guibemantis bicalcaratus | 34.10449 | 37.9020362 | 0.1343464 | 1.4627794 |
Guibemantis methueni | 34.10817 | 37.6956880 | 0.1344766 | 1.4656979 |
Guibemantis annulatus | 34.13967 | 41.5122676 | 0.1327365 | 1.6175596 |
Guibemantis flavobrunneus | 34.04706 | 35.6776623 | 0.1351191 | 1.3741055 |
Guibemantis pulcher | 34.07965 | 37.5099974 | 0.1330232 | 1.4425973 |
Guibemantis tasifotsy | 34.08494 | 35.4420066 | 0.1354543 | 1.3511566 |
Guibemantis punctatus | 34.11883 | 42.7559830 | 0.1366924 | 1.6540575 |
Guibemantis wattersoni | 34.10903 | 42.3740010 | 0.1353871 | 1.6510022 |
Guibemantis liber | 34.12419 | 37.6438550 | 0.1323148 | 1.4437087 |
Guibemantis timidus | 34.11925 | 35.6695311 | 0.1315710 | 1.3839937 |
Guibemantis depressiceps | 34.08095 | 37.4167172 | 0.1329741 | 1.4444187 |
Guibemantis kathrinae | 34.11303 | 33.6383729 | 0.1369639 | 1.3064926 |
Guibemantis tornieri | 34.11147 | 39.6400987 | 0.1351273 | 1.5423541 |
Mantella crocea | 34.56518 | 38.5275457 | 0.1332642 | 1.4957375 |
Mantella milotympanum | 34.29375 | 36.2390093 | 0.1338406 | 1.4523111 |
Mantella pulchra | 34.29880 | 35.2245238 | 0.1330841 | 1.3543522 |
Mantella madagascariensis | 33.64387 | 35.8604304 | 0.1348189 | 1.4053537 |
Mantella betsileo | 34.21755 | 40.5493298 | 0.1335361 | 1.5224461 |
Mantella ebenaui | 34.26994 | 35.0762348 | 0.1325249 | 1.3064694 |
Mantella viridis | 33.64132 | 53.4413621 | 0.1351426 | 2.0023389 |
Mantella expectata | 33.64466 | 37.4414194 | 0.1346029 | 1.4271150 |
Mantella laevigata | 34.20989 | 37.0130123 | 0.1337572 | 1.4066421 |
Mantella manery | 34.23192 | 31.8089731 | 0.1335527 | 1.1729046 |
Mantella baroni | 34.29344 | 33.3278419 | 0.1359808 | 1.3056258 |
Mantella haraldmeieri | 33.68039 | 37.2617535 | 0.1349767 | 1.4341173 |
Mantella nigricans | 33.68705 | 34.0767397 | 0.1333467 | 1.2800040 |
Mantella cowanii | 33.72641 | 36.4550923 | 0.1340966 | 1.4269322 |
Mantella bernhardi | 34.28862 | 37.5965059 | 0.1336858 | 1.4428693 |
Wakea madinika | 34.22710 | 34.9638227 | 0.1351968 | 1.2699450 |
Boehmantis microtympanum | 33.58289 | 39.4722532 | 0.1364827 | 1.5286143 |
Gephyromantis ambohitra | 33.54949 | 38.1544158 | 0.1358140 | 1.4247573 |
Gephyromantis asper | 34.23005 | 34.5245328 | 0.1350531 | 1.3410421 |
Gephyromantis tahotra | 33.68942 | 29.8189369 | 0.1358867 | 1.1146836 |
Gephyromantis horridus | 34.31959 | 37.1265958 | 0.1336272 | 1.3942004 |
Gephyromantis malagasius | 34.04047 | 38.5288434 | 0.1363550 | 1.4944752 |
Gephyromantis striatus | 34.15220 | 36.6378008 | 0.1361099 | 1.3898223 |
Gephyromantis ventrimaculatus | 34.30115 | 41.3434576 | 0.1345964 | 1.6137372 |
Gephyromantis klemmeri | 34.31366 | 32.1829501 | 0.1344881 | 1.2102013 |
Gephyromantis rivicola | 33.65692 | 40.1579343 | 0.1339820 | 1.5125511 |
Gephyromantis silvanus | 33.67959 | 33.0310121 | 0.1350812 | 1.2309118 |
Gephyromantis webbi | 33.63809 | 35.0415782 | 0.1358031 | 1.3035448 |
Gephyromantis atsingy | 34.10730 | 37.6406590 | 0.1364643 | 1.3758593 |
Gephyromantis azzurrae | 33.69919 | 36.9543227 | 0.1315305 | 1.4093634 |
Gephyromantis corvus | 34.22860 | 37.8599530 | 0.1371713 | 1.4309832 |
Gephyromantis pseudoasper | 34.07166 | 38.0997375 | 0.1348831 | 1.4276450 |
Gephyromantis blanci | 34.22089 | 34.5501231 | 0.1345743 | 1.3331056 |
Gephyromantis runewsweeki | 34.17763 | 32.9895992 | 0.1357077 | 1.2765962 |
Gephyromantis enki | 34.18756 | 35.9806166 | 0.1355563 | 1.3868298 |
Gephyromantis boulengeri | 34.15368 | 35.6513114 | 0.1332648 | 1.3770796 |
Gephyromantis eiselti | 34.07231 | 35.4928269 | 0.1353647 | 1.4157856 |
Gephyromantis mafy | 33.98416 | 41.8352760 | 0.1357996 | 1.6489214 |
Gephyromantis thelenae | 34.08517 | 39.8846099 | 0.1320861 | 1.5992640 |
Gephyromantis decaryi | 33.98624 | 36.5601859 | 0.1371059 | 1.4097783 |
Gephyromantis hintelmannae | 34.01144 | 38.8920330 | 0.1364066 | 1.5269919 |
Gephyromantis verrucosus | 34.04441 | 33.6588640 | 0.1351796 | 1.2777173 |
Gephyromantis leucocephalus | 34.24599 | 42.7014476 | 0.1338787 | 1.6557973 |
Gephyromantis ranjomavo | 33.66289 | 31.3014835 | 0.1346679 | 1.1825109 |
Gephyromantis spiniferus | 34.30883 | 42.1018165 | 0.1337423 | 1.6182287 |
Gephyromantis cornutus | 33.50278 | 39.1076784 | 0.1342327 | 1.5515885 |
Gephyromantis tschenki | 34.02949 | 37.6510606 | 0.1347823 | 1.4597015 |
Gephyromantis redimitus | 33.99142 | 40.0604852 | 0.1359301 | 1.5382619 |
Gephyromantis granulatus | 34.19031 | 37.1653185 | 0.1365775 | 1.3925261 |
Gephyromantis moseri | 34.03625 | 35.3342509 | 0.1341706 | 1.3532881 |
Gephyromantis leucomaculatus | 34.14442 | 35.5544092 | 0.1357843 | 1.3391123 |
Gephyromantis zavona | 33.58406 | 32.4633388 | 0.1335833 | 1.2100552 |
Gephyromantis salegy | 34.09330 | 35.0445412 | 0.1338625 | 1.3152886 |
Gephyromantis schilfi | 34.00196 | 34.6257679 | 0.1350030 | 1.2895591 |
Gephyromantis tandroka | 33.58216 | 33.1136373 | 0.1340923 | 1.2413554 |
Gephyromantis luteus | 34.27442 | 37.1948302 | 0.1344481 | 1.4325199 |
Gephyromantis sculpturatus | 34.32264 | 36.3899797 | 0.1330565 | 1.4225320 |
Gephyromantis plicifer | 34.00912 | 34.9796505 | 0.1356264 | 1.3470014 |
Mantidactylus aerumnalis | 34.20646 | 36.2351846 | 0.1351758 | 1.4062689 |
Mantidactylus albofrenatus | 33.56801 | 35.1420010 | 0.1357779 | 1.4108255 |
Mantidactylus brevipalmatus | 33.56565 | 38.5534333 | 0.1350136 | 1.4878144 |
Mantidactylus delormei | 33.65246 | 36.0594471 | 0.1331606 | 1.3748473 |
Mantidactylus paidroa | 33.62583 | 33.2821313 | 0.1309444 | 1.2851184 |
Mantidactylus alutus | 34.33717 | 37.4036551 | 0.1367543 | 1.4484701 |
Mantidactylus curtus | 33.55380 | 40.0025550 | 0.1338267 | 1.5201414 |
Mantidactylus madecassus | 33.62834 | 39.3632699 | 0.1352063 | 1.5113206 |
Mantidactylus pauliani | 33.58380 | 35.0716629 | 0.1361633 | 1.3991732 |
Mantidactylus bellyi | 33.56414 | 42.2556622 | 0.1332361 | 1.5815824 |
Mantidactylus ulcerosus | 33.53829 | 36.4278942 | 0.1347924 | 1.3729053 |
Mantidactylus betsileanus | 33.55022 | 41.1804098 | 0.1339119 | 1.5709119 |
Mantidactylus noralottae | 34.02794 | 36.0873812 | 0.1360314 | 1.3781139 |
Mantidactylus ambohimitombi | 33.67438 | 32.6715781 | 0.1345807 | 1.2739447 |
Mantidactylus ambreensis | 33.61719 | 39.0962875 | 0.1350499 | 1.4639378 |
Mantidactylus femoralis | 33.50601 | 36.5425589 | 0.1367609 | 1.3953814 |
Mantidactylus zolitschka | 33.56451 | 40.1238617 | 0.1359249 | 1.6095425 |
Mantidactylus mocquardi | 33.51014 | 39.6624523 | 0.1388057 | 1.5220648 |
Mantidactylus biporus | 33.64820 | 37.1399010 | 0.1323105 | 1.4249316 |
Mantidactylus bourgati | 33.59725 | 37.0357471 | 0.1365414 | 1.4248153 |
Mantidactylus charlotteae | 33.63082 | 38.4699491 | 0.1337205 | 1.4863225 |
Mantidactylus opiparis | 33.55528 | 38.6968745 | 0.1358116 | 1.4791247 |
Mantidactylus melanopleura | 33.52597 | 39.7596543 | 0.1354068 | 1.5309768 |
Mantidactylus zipperi | 33.62946 | 40.1211153 | 0.1350144 | 1.5648265 |
Mantidactylus lugubris | 33.60169 | 34.7079673 | 0.1349328 | 1.3370649 |
Mantidactylus tricinctus | 33.57395 | 40.9118440 | 0.1346862 | 1.5814150 |
Mantidactylus majori | 33.59785 | 38.3543017 | 0.1353503 | 1.4875496 |
Mantidactylus argenteus | 34.08681 | 32.2897188 | 0.1319842 | 1.2486756 |
Mantidactylus cowanii | 33.63801 | 39.0745812 | 0.1325754 | 1.5295839 |
Mantidactylus grandidieri | 33.55878 | 36.3214311 | 0.1343737 | 1.4022044 |
Mantidactylus guttulatus | 33.57074 | 35.1740986 | 0.1363710 | 1.3454306 |
Spinomantis aglavei | 33.68267 | 36.5159729 | 0.1323347 | 1.4065561 |
Spinomantis fimbriatus | 34.12157 | 35.7744988 | 0.1333992 | 1.3722590 |
Spinomantis tavaratra | 34.08525 | 31.0912842 | 0.1332289 | 1.1556551 |
Spinomantis phantasticus | 33.69033 | 37.9419334 | 0.1360104 | 1.4474296 |
Spinomantis bertini | 33.72554 | 35.4064425 | 0.1343952 | 1.3657610 |
Spinomantis guibei | 33.67211 | 43.3145221 | 0.1361180 | 1.6868688 |
Spinomantis microtis | 33.66020 | 39.5837116 | 0.1339489 | 1.5354941 |
Spinomantis brunae | 33.65240 | 43.7996976 | 0.1339881 | 1.7076971 |
Spinomantis elegans | 33.74601 | 39.7176563 | 0.1336128 | 1.5282744 |
Spinomantis peraccae | 34.02520 | 35.9703421 | 0.1357367 | 1.3769420 |
Spinomantis massi | 34.14283 | 31.9997567 | 0.1361332 | 1.1968339 |
Tsingymantis antitra | 34.32781 | 39.6708299 | 0.1348581 | 1.4707729 |
Laliostoma labrosum | 34.29460 | 36.0655586 | 0.1347566 | 1.3591491 |
Aglyptodactylus securifer | 34.26081 | 40.7942148 | 0.1346237 | 1.5174793 |
Aglyptodactylus laticeps | 34.23987 | 43.2735997 | 0.1335303 | 1.6098148 |
Aglyptodactylus madagascariensis | 34.26118 | 41.0900700 | 0.1336204 | 1.5891644 |
Oreobates gemcare | 27.18024 | 2.9400451 | 0.1326552 | 0.2002437 |
Oreobates granulosus | 30.08670 | 5.8639713 | 0.1394010 | 0.3568929 |
Pristimantis pharangobates | 26.77105 | 9.0765376 | 0.1370976 | 0.4712096 |
Dryophytes walkeri | 36.25684 | 11.0801553 | 0.1290336 | 0.4251331 |
Dendropsophus molitor | 35.94550 | 6.5445313 | 0.1114455 | 0.2843902 |
Paramesotriton labiatus | 33.29464 | 13.7005921 | 0.1384989 | 0.4894372 |
Hyloxalus italoi | 33.54766 | 15.1925930 | 0.1376286 | 0.6148015 |
Polypedates braueri | 35.69335 | 4.4672186 | 0.1396728 | 0.1748780 |
Hynobius fucus | 29.53878 | 16.7055366 | 0.1387388 | 0.6095587 |
Cynops orientalis | 34.43684 | 5.4331496 | 0.1463195 | 0.1994169 |
Cophixalus australis | 32.31767 | 19.6651206 | 0.1467242 | 0.7645302 |
Chalcorana labialis | 32.96300 | 21.5367799 | 0.1317188 | 0.7552998 |
Kalophrynus limbooliati | 32.94849 | 27.0779766 | 0.1411581 | 0.9369931 |
Pristimantis matidiktyo | 33.79371 | 15.3999838 | 0.1477094 | 0.6131096 |
Pristimantis festae | 30.38937 | 5.4975168 | 0.1405368 | 0.2732094 |
# Summary statistics
summary(species_ARR$slope)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04859 0.13112 0.13464 0.13440 0.13813 0.21569
species_ARR %>%
summarise(ARR = mean(slope), sd = sd(slope))
## ARR sd
## 1 0.1344049 0.008228308
# Figure
ggplot(species_ARR) + geom_density(aes(slope), fill = "#CE5B97", alpha = 1) + xlab("Acclimation Response Ratio (ARR)") +
ylab("Number of species") + theme_classic() + theme(text = element_text(color = "black"),
axis.title.x = element_text(size = 50, margin = margin(t = 40, r = 0, b = 0,
l = 0)), axis.title.y = element_text(size = 50, margin = margin(t = 0, r = 40,
b = 0, l = 0)), axis.text.x = element_text(size = 40, margin = margin(t = 20,
r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40, margin = margin(t = 0,
r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA, size = 2))
ggsave(file = "fig/Figure_S3.png", width = 20, height = 15, dpi = 500)
Identity of overheating species
# Return a list of species predicted to overheat
sp_overheating <- pop_sub_future4C %>%
group_by(tip.label) %>%
filter(overheating_risk > 0) %>%
summarise(overheating_days = mean(overheating_days))
# Identify whether overheating species were studied previously
## Load training data used for the imputation
training_data <- readRDS("RData/General_data/pre_data_for_imputation.rds")
# Filter to experimental data
training_data <- filter(training_data, imputed == "no")
# Identify if the overheating species were in the original dataset
sp_overheating <- sp_overheating %>%
mutate(previously_studied = ifelse(tip.label %in% training_data$tip.label, "yes",
"no"))
# Display data
kable(sp_overheating, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
tip.label | overheating_days | previously_studied |
---|---|---|
Adelphobates castaneoticus | 1.331726 | no |
Adelphobates galactonotus | 2.653211 | no |
Adelphobates quinquevittatus | 2.487621 | no |
Adenomera andreae | 1.476255 | yes |
Adenomera diptyx | 1.589523 | no |
Adenomera hylaedactyla | 1.813473 | no |
Allobates brunneus | 1.479895 | no |
Allobates conspicuus | 1.584121 | yes |
Allobates crombiei | 1.346467 | no |
Allobates fuscellus | 1.577168 | no |
Allobates gasconi | 1.034722 | no |
Allobates marchesianus | 1.446721 | no |
Allobates subfolionidificans | 3.063564 | no |
Allobates trilineatus | 2.576257 | yes |
Allophryne ruthveni | 1.013036 | no |
Amazophrynella minuta | 1.000702 | no |
Ambystoma mavortium | 1.157669 | yes |
Ambystoma texanum | 1.074166 | no |
Ameerega braccata | 1.282663 | no |
Ameerega flavopicta | 1.205529 | no |
Ameerega picta | 1.711742 | no |
Amolops compotrix | 1.375637 | no |
Amphiuma means | 1.658379 | no |
Amphiuma pholeter | 1.096859 | no |
Amphiuma tridactylum | 1.237851 | yes |
Andrias davidianus | 1.232301 | no |
Aneides aeneus | 5.695831 | yes |
Aneides hardii | 2.196203 | no |
Anomaloglossus degranvillei | 1.022415 | no |
Ascaphus montanus | 3.160715 | no |
Ascaphus truei | 2.648305 | yes |
Atelopus spumarius | 1.083059 | yes |
Austrochaperina adelphe | 4.328498 | no |
Austrochaperina gracilipes | 1.651183 | no |
Austrochaperina palmipes | 1.832494 | no |
Barycholos pulcher | 13.427604 | no |
Barycholos ternetzi | 69.276214 | no |
Boana albopunctata | 1.935578 | yes |
Boana boans | 1.042691 | yes |
Boana curupi | 1.013235 | yes |
Boana fasciata | 1.302430 | yes |
Boana pulchella | 1.426624 | yes |
Bolitoglossa alberchi | 1.256514 | no |
Bolitoglossa altamazonica | 4.623826 | no |
Bolitoglossa hartwegi | 1.877880 | no |
Bolitoglossa mexicana | 1.839333 | no |
Bolitoglossa occidentalis | 1.460407 | no |
Bolitoglossa paraensis | 1.324701 | no |
Bolitoglossa platydactyla | 1.139128 | no |
Bolitoglossa rostrata | 2.249686 | no |
Bolitoglossa rufescens | 1.822126 | no |
Bolitoglossa veracrucis | 1.401811 | no |
Bolitoglossa yucatana | 4.900477 | no |
Bradytriton silus | 1.991500 | no |
Bufo bufo | 2.417129 | yes |
Bufotes boulengeri | 2.098399 | yes |
Bufotes luristanicus | 6.747333 | no |
Bufotes surdus | 15.528455 | no |
Bufotes variabilis | 5.008294 | no |
Ceratophrys cornuta | 1.106527 | no |
Chiasmocleis albopunctata | 1.633212 | no |
Cophixalus aenigma | 17.599878 | yes |
Cophixalus concinnus | 7.306129 | yes |
Cophixalus monticola | 1.387947 | yes |
Craugastor augusti | 2.285813 | no |
Craugastor loki | 1.194720 | yes |
Craugastor palenque | 1.163104 | no |
Craugastor tarahumaraensis | 3.257659 | no |
Crinia bilingua | 2.384508 | no |
Crinia deserticola | 1.829380 | no |
Crinia pseudinsignifera | 1.006397 | no |
Crinia remota | 1.991712 | no |
Crossodactylus schmidti | 2.786193 | yes |
Cryptobranchus alleganiensis | 1.426452 | yes |
Cryptotriton alvarezdeltoroi | 1.828001 | no |
Cyclorana vagitus | 1.184105 | no |
Dendrobates leucomelas | 1.477984 | no |
Dendrobates tinctorius | 1.702112 | no |
Dendropsophus acreanus | 1.635752 | no |
Dendropsophus melanargyreus | 1.124785 | no |
Dendropsophus minutus | 1.847820 | yes |
Dendropsophus nanus | 1.659602 | no |
Dendropsophus rubicundulus | 1.718883 | no |
Dendropsophus schubarti | 1.014800 | yes |
Dendropsophus tritaeniatus | 1.999748 | no |
Desmognathus abditus | 1.017217 | no |
Desmognathus aeneus | 7.418641 | no |
Desmognathus apalachicolae | 2.536264 | no |
Desmognathus auriculatus | 1.335424 | no |
Desmognathus brimleyorum | 4.323020 | yes |
Desmognathus carolinensis | 1.002789 | yes |
Desmognathus folkertsi | 1.441581 | no |
Desmognathus fuscus | 1.647850 | yes |
Desmognathus marmoratus | 1.765940 | no |
Desmognathus monticola | 3.692913 | yes |
Desmognathus ochrophaeus | 1.344759 | yes |
Desmognathus ocoee | 3.162387 | yes |
Desmognathus quadramaculatus | 3.089325 | yes |
Desmognathus wrighti | 1.694690 | no |
Dicamptodon aterrimus | 6.337150 | no |
Dicamptodon tenebrosus | 5.099773 | yes |
Discoglossus galganoi | 1.149753 | yes |
Discoglossus pictus | 3.839415 | yes |
Discoglossus scovazzi | 3.556542 | yes |
Duttaphrynus stomaticus | 1.118469 | no |
Elachistocleis ovalis | 1.129576 | no |
Ensatina eschscholtzii | 1.098729 | yes |
Euparkerella brasiliensis | 7.380927 | no |
Euparkerella cochranae | 7.560558 | no |
Eurycea cirrigera | 1.362908 | no |
Eurycea guttolineata | 1.233125 | no |
Eurycea longicauda | 1.738471 | yes |
Eurycea lucifuga | 1.761298 | yes |
Eurycea quadridigitata | 1.035942 | yes |
Geobatrachus walkeri | 6.353011 | no |
Gyrinophilus porphyriticus | 4.533337 | yes |
Haddadus binotatus | 1.581247 | no |
Hamptophryne boliviana | 1.313814 | yes |
Heleioporus albopunctatus | 1.017152 | no |
Heleioporus psammophilus | 1.032387 | no |
Hemidactylium scutatum | 1.492399 | yes |
Hemiphractus scutatus | 1.354140 | no |
Hemisus guineensis | 2.293496 | no |
Hemisus marmoratus | 2.435910 | no |
Hildebrandtia ornata | 2.447793 | no |
Holoaden bradei | 13.608913 | no |
Holoaden luederwaldti | 6.581455 | no |
Holoaden pholeter | 10.740588 | no |
Hoplobatrachus occipitalis | 1.062619 | no |
Hyalinobatrachium cappellei | 1.508875 | no |
Hyalinobatrachium iaspidiense | 1.323588 | no |
Hydrolaetare schmidti | 1.326707 | no |
Hyla meridionalis | 5.071485 | yes |
Hyla savignyi | 5.363118 | no |
Hylarana erythraea | 2.078765 | yes |
Hylarana tytleri | 1.066961 | no |
Hyloxalus littoralis | 1.556655 | no |
Hynobius amjiensis | 12.695057 | no |
Hynobius guabangshanensis | 2.663397 | no |
Hynobius yiwuensis | 5.222396 | no |
Ischnocnema guentheri | 1.076585 | no |
Ischnocnema juipoca | 1.407624 | no |
Ischnocnema nasuta | 1.394687 | no |
Ixalotriton parvus | 1.427332 | no |
Kalophrynus interlineatus | 1.032133 | no |
Kassina senegalensis | 1.128485 | no |
Kurixalus baliogaster | 1.032591 | no |
Leptodactylus bolivianus | 2.038849 | yes |
Leptodactylus chaquensis | 1.250766 | no |
Leptodactylus elenae | 1.662158 | no |
Leptodactylus labyrinthicus | 1.152348 | no |
Leptodactylus leptodactyloides | 1.432079 | yes |
Leptodactylus mystaceus | 1.828486 | no |
Leptodactylus syphax | 1.381226 | no |
Leptopelis bufonides | 1.393931 | no |
Leptopelis viridis | 2.677689 | no |
Limnodynastes convexiusculus | 2.243918 | no |
Limnodynastes depressus | 4.051300 | no |
Limnodynastes dorsalis | 1.000018 | yes |
Limnodynastes fletcheri | 3.453354 | yes |
Limnodynastes lignarius | 2.544430 | no |
Limnodynastes tasmaniensis | 1.733422 | yes |
Lithobates catesbeianus | 1.287967 | yes |
Lithobates clamitans | 1.234238 | yes |
Lithobates palmipes | 1.490301 | yes |
Lithobates palustris | 10.138647 | yes |
Lithobates sylvaticus | 1.927050 | yes |
Lithodytes lineatus | 1.445530 | yes |
Litoria caerulea | 1.428783 | yes |
Litoria coplandi | 1.858656 | no |
Litoria dahlii | 1.309442 | no |
Litoria inermis | 2.026817 | no |
Litoria latopalmata | 1.452543 | no |
Litoria meiriana | 1.756409 | no |
Litoria microbelos | 1.922523 | no |
Litoria nasuta | 2.357258 | yes |
Litoria pallida | 2.062274 | no |
Litoria personata | 1.940655 | no |
Litoria rothii | 1.598491 | yes |
Litoria splendida | 1.330801 | no |
Litoria tornieri | 2.220073 | no |
Litoria watjulumensis | 1.725043 | no |
Liua shihi | 2.199425 | no |
Lyciasalamandra antalyana | 3.204503 | no |
Lyciasalamandra atifi | 21.811932 | no |
Lyciasalamandra luschani | 5.764057 | no |
Melanophryniscus klappenbachi | 1.389241 | no |
Mixophyes balbus | 1.707620 | no |
Mixophyes carbinensis | 4.010866 | no |
Mixophyes coggeri | 2.005359 | no |
Mixophyes fasciolatus | 1.943606 | yes |
Mixophyes iteratus | 1.770930 | no |
Mixophyes schevilli | 4.517787 | no |
Neobatrachus albipes | 1.445296 | no |
Neobatrachus aquilonius | 5.145644 | no |
Neobatrachus fulvus | 1.748348 | no |
Neobatrachus kunapalari | 1.383805 | no |
Neobatrachus pelobatoides | 1.928492 | no |
Neobatrachus pictus | 2.309000 | yes |
Neobatrachus sudelli | 2.178646 | yes |
Neobatrachus sutor | 2.159647 | no |
Neobatrachus wilsmorei | 1.606960 | no |
Neurergus crocatus | 1.276431 | no |
Neurergus kaiseri | 74.430061 | no |
Noblella lochites | 2.548177 | no |
Noblella myrmecoides | 63.385401 | yes |
Notaden bennettii | 2.718532 | no |
Notaden melanoscaphus | 3.095176 | no |
Notaden nichollsi | 2.072915 | no |
Odontophrynus lavillai | 1.307316 | no |
Odorrana absita | 1.404542 | no |
Odorrana banaorum | 2.613998 | no |
Odorrana bolavensis | 2.895646 | no |
Odorrana chloronota | 2.026089 | no |
Odorrana exiliversabilis | 1.813434 | no |
Odorrana gigatympana | 1.897480 | no |
Odorrana khalam | 2.249571 | no |
Odorrana morafkai | 2.448698 | no |
Odorrana schmackeri | 1.646018 | no |
Odorrana tormota | 1.567071 | no |
Oedipina elongata | 2.420335 | no |
Oophaga pumilio | 3.674345 | yes |
Oreobates crepitans | 11.995133 | no |
Oreobates heterodactylus | 16.802539 | no |
Oreobates quixensis | 1.252196 | yes |
Pachyhynobius shangchengensis | 13.101708 | no |
Paramesotriton chinensis | 1.095738 | yes |
Pelodytes ibericus | 2.684227 | yes |
Pelodytes punctatus | 2.330505 | yes |
Pelophylax bedriagae | 12.288878 | no |
Pelophylax ridibundus | 9.515201 | no |
Pelophylax saharicus | 4.251406 | yes |
Phaeognathus hubrichti | 11.110938 | no |
Philautus abditus | 1.633884 | no |
Phrynobatrachus francisci | 1.169150 | no |
Phrynobatrachus latifrons | 4.376321 | no |
Phrynobatrachus natalensis | 2.287181 | no |
Phrynomantis microps | 4.941136 | no |
Phyllomedusa vaillantii | 1.000307 | yes |
Physalaemus albonotatus | 1.027794 | yes |
Physalaemus biligonigerus | 1.541520 | no |
Physalaemus centralis | 1.746665 | no |
Physalaemus cuvieri | 1.820027 | yes |
Phyzelaphryne miriamae | 1.719845 | no |
Pipa pipa | 1.867824 | no |
Platyplectrum spenceri | 1.316863 | no |
Plethodon albagula | 6.944689 | no |
Plethodon angusticlavius | 11.715994 | no |
Plethodon caddoensis | 3.460685 | yes |
Plethodon cylindraceus | 1.912407 | yes |
Plethodon dorsalis | 9.016353 | yes |
Plethodon electromorphus | 1.082588 | no |
Plethodon fourchensis | 11.698422 | no |
Plethodon glutinosus | 3.228969 | yes |
Plethodon hoffmani | 1.136886 | no |
Plethodon kentucki | 1.183375 | no |
Plethodon kiamichi | 12.561662 | no |
Plethodon kisatchie | 7.558786 | no |
Plethodon meridianus | 1.141825 | no |
Plethodon metcalfi | 1.305740 | no |
Plethodon montanus | 1.493882 | yes |
Plethodon ouachitae | 6.951801 | yes |
Plethodon punctatus | 1.282301 | yes |
Plethodon sequoyah | 13.388303 | no |
Plethodon serratus | 6.034191 | yes |
Plethodon ventralis | 12.416570 | no |
Plethodon virginia | 1.105922 | yes |
Plethodon websteri | 6.498700 | no |
Plethodon wehrlei | 1.064428 | yes |
Plethodon welleri | 1.547475 | no |
Pleurodeles waltl | 1.366367 | yes |
Polypedates maculatus | 1.397946 | no |
Pristimantis aaptus | 4.357656 | no |
Pristimantis altamazonicus | 8.535277 | no |
Pristimantis aureolineatus | 6.212337 | no |
Pristimantis carmelitae | 1.264909 | no |
Pristimantis carvalhoi | 21.190875 | yes |
Pristimantis chiastonotus | 3.239237 | no |
Pristimantis conspicillatus | 1.829450 | yes |
Pristimantis cristinae | 1.744426 | no |
Pristimantis croceoinguinis | 4.437011 | no |
Pristimantis cuentasi | 2.322960 | no |
Pristimantis delicatus | 1.674408 | no |
Pristimantis diadematus | 5.393396 | no |
Pristimantis dundeei | 13.568224 | no |
Pristimantis eurydactylus | 10.678542 | no |
Pristimantis fasciatus | 2.698440 | no |
Pristimantis fenestratus | 4.413487 | yes |
Pristimantis gaigei | 3.908528 | no |
Pristimantis gutturalis | 3.318569 | no |
Pristimantis inguinalis | 4.041425 | no |
Pristimantis insignitus | 1.181215 | no |
Pristimantis kareliae | 1.771033 | no |
Pristimantis lacrimosus | 4.174917 | no |
Pristimantis lanthanites | 4.365206 | no |
Pristimantis lythrodes | 4.499982 | no |
Pristimantis malkini | 4.262287 | no |
Pristimantis marmoratus | 3.857256 | no |
Pristimantis martiae | 9.464643 | no |
Pristimantis megalops | 1.094705 | no |
Pristimantis ockendeni | 59.045692 | yes |
Pristimantis orcus | 5.389253 | no |
Pristimantis orphnolaimus | 5.987749 | no |
Pristimantis paramerus | 1.088396 | no |
Pristimantis pedimontanus | 1.050806 | no |
Pristimantis penelopus | 4.068818 | no |
Pristimantis peruvianus | 9.001511 | no |
Pristimantis pharangobates | 2.869022 | yes |
Pristimantis phoxocephalus | 1.561697 | yes |
Pristimantis pseudoacuminatus | 5.332077 | no |
Pristimantis rivasi | 3.835742 | no |
Pristimantis ruthveni | 1.099069 | no |
Pristimantis sanctaemartae | 1.598943 | no |
Pristimantis skydmainos | 7.622426 | no |
Pristimantis tayrona | 1.466375 | no |
Pristimantis toftae | 5.652714 | yes |
Pristimantis tubernasus | 1.216822 | no |
Pristimantis turik | 4.749128 | no |
Pristimantis variabilis | 13.382752 | no |
Pristimantis ventrimarmoratus | 6.109769 | no |
Pristimantis vertebralis | 7.522321 | yes |
Pristimantis vilarsi | 4.257651 | no |
Pristimantis yustizi | 1.169627 | no |
Pristimantis zeuctotylus | 2.995230 | no |
Pristimantis zimmermanae | 2.919899 | no |
Pseudohynobius flavomaculatus | 1.617805 | no |
Pseudopaludicola boliviana | 1.271592 | no |
Pseudopaludicola mystacalis | 1.217528 | no |
Pseudophryne guentheri | 1.050981 | no |
Pseudotriton montanus | 1.713707 | yes |
Pseudotriton ruber | 3.131363 | yes |
Ptychadena bibroni | 5.696183 | no |
Ptychadena mascareniensis | 1.643866 | no |
Ptychadena nilotica | 2.141543 | no |
Ptychadena oxyrhynchus | 1.881074 | no |
Ptychadena pumilio | 3.898629 | no |
Ptychadena schillukorum | 5.333008 | no |
Ptychadena tellinii | 4.480989 | no |
Ptychadena trinodis | 6.073547 | no |
Pyxicephalus edulis | 3.865562 | no |
Rana arvalis | 1.012366 | yes |
Rana chensinensis | 2.580704 | yes |
Rana dalmatina | 1.771325 | no |
Rana dybowskii | 5.002942 | yes |
Rana graeca | 1.618548 | no |
Rana huanrensis | 1.345701 | no |
Rana iberica | 2.146867 | yes |
Rana italica | 2.905115 | no |
Rana johnsi | 1.786053 | no |
Rana macrocnemis | 2.348911 | no |
Rana ornativentris | 1.233939 | no |
Rana pseudodalmatina | 3.671341 | no |
Rana tavasensis | 3.501609 | no |
Rana zhenhaiensis | 1.517115 | no |
Ranitomeya ventrimaculata | 1.582316 | no |
Rhaebo guttatus | 1.699722 | no |
Rhinella margaritifera | 2.209977 | yes |
Rhyacotriton cascadae | 3.833673 | no |
Rhyacotriton kezeri | 3.826069 | no |
Rhyacotriton olympicus | 1.375881 | yes |
Rhyacotriton variegatus | 14.075879 | yes |
Salamandra infraimmaculata | 6.586722 | no |
Salamandra salamandra | 4.020116 | yes |
Scaphiopus holbrookii | 2.854943 | yes |
Scaphiopus hurterii | 1.737107 | no |
Spea bombifrons | 1.286498 | no |
Spea multiplicata | 1.895247 | no |
Strabomantis anomalus | 2.429292 | no |
Strabomantis biporcatus | 3.639925 | no |
Strabomantis bufoniformis | 8.497761 | no |
Strabomantis sulcatus | 28.347202 | no |
Teratohyla adenocheira | 1.717075 | no |
Teratohyla midas | 1.466248 | no |
Tomopterna cryptotis | 3.987576 | no |
Triturus pygmaeus | 1.080501 | yes |
Uperoleia arenicola | 4.432716 | no |
Uperoleia aspera | 3.039199 | no |
Uperoleia borealis | 2.886874 | no |
Uperoleia inundata | 2.853900 | no |
Uperoleia lithomoda | 2.856264 | no |
Uperoleia micromeles | 2.561785 | no |
Uperoleia mimula | 1.185296 | no |
Uperoleia minima | 1.363201 | no |
Uperoleia mjobergii | 4.155718 | no |
Uperoleia orientalis | 2.250057 | no |
Uperoleia rugosa | 2.182497 | yes |
Uperoleia talpa | 3.198082 | no |
Uperoleia trachyderma | 2.756491 | no |
Xenopus laevis | 1.000000 | yes |
Xenopus muelleri | 1.472585 | no |
Xenopus tropicalis | 4.952321 | no |
sp_overheating$previously_studied = as.factor(sp_overheating$previously_studied)
summary(sp_overheating)
## tip.label overheating_days previously_studied
## Length:391 Min. : 1.000 no :288
## Class :character 1st Qu.: 1.389 yes:103
## Mode :character Median : 1.927
## Mean : 3.950
## 3rd Qu.: 3.904
## Max. :74.430
# 73.66% (288/391) of the species identified with a positive overheating risk
# were not assessed experimentally.
ggplot(sp_overheating, aes(x = previously_studied, y = log(overheating_days), col = previously_studied,
fill = previously_studied)) + stat_halfeye(adjust = 1, justification = -0.5,
.width = 0, point_colour = NA, alpha = 0.5, width = 0.5) + geom_jitter(width = 0.15,
alpha = 0.85) + geom_boxplot(width = 0.4, outlier.color = NA, alpha = 0.9, color = "black",
lwd = 1.15, notch = TRUE, fill = NA) + theme_classic() + ylab("Overheating days (log scale)") +
xlab("Experimentally assessed in previous studies") + theme(axis.title.x = element_text(size = 20,
vjust = -0.2), axis.title.y = element_text(size = 20, hjust = 0.5), axis.text.y = element_text(size = 15),
axis.text.x = element_text(size = 15), panel.border = element_rect(fill = NA,
size = 2))
Figure A1: Mean number of predicted overheating days in terrestrial conditions for species that were assessed experimentally previously (blue), or were fully imputed (pink).
Performance of the imputation
# Load data that was used for the imputation
data_for_imp <- readRDS("RData/General_data/pre_data_for_imputation.rds")
# Load datasets from the cross-validation
first_crossV <- readRDS(file = "Rdata/Imputation/results/1st_cross_validation_5th_cycle.Rds") %>%
mutate(crossV = "1")
second_crossV <- readRDS(file = "Rdata/Imputation/results/2nd_cross_validation_5th_cycle.Rds") %>%
mutate(crossV = "2")
third_crossV <- readRDS(file = "Rdata/Imputation/results/3rd_cross_validation_5th_cycle.Rds") %>%
mutate(crossV = "3")
fourth_crossV <- readRDS(file = "Rdata/Imputation/results/4th_cross_validation_5th_cycle.Rds") %>%
mutate(crossV = "4")
fifth_crossV <- readRDS(file = "Rdata/Imputation/results/5th_cross_validation_5th_cycle.Rds") %>%
mutate(crossV = "5")
all_imputed_dat <- bind_rows(first_crossV, second_crossV, third_crossV, fourth_crossV,
fifth_crossV)
# Filter to data that was used for the cross-validation
imp_data <- all_imputed_dat[all_imputed_dat$dat_to_validate == "yes", ]
imp_data <- dplyr::filter(imp_data, is.na(tip.label) == FALSE)
# Add row number
row_n_imp <- data.frame(row_n = imp_data$row_n)
# Filter to original data
original_data <- data_for_imp[data_for_imp$row_n %in% row_n_imp$row_n, ]
original_data <- dplyr:::select(original_data, row_n, mean_UTL)
# Combine dataframes
data <- dplyr::left_join(original_data, imp_data, by = "row_n")
data <- rename(data, original_CTmax = mean_UTL.x, imputed_CTmax = filled_mean_UTL5)
# Remove observations that were cross-validated twice
duplicates <- data %>%
group_by(row_n) %>%
summarise(n = n()) %>%
filter(n > 1)
duplicates <- duplicates$row_n
data <- data[!(data$row_n %in% duplicates & data$crossV == "5"), ]
data %>%
summarise(mean = mean(original_CTmax), sd = sd(original_CTmax), n = n())
## mean sd n
## 1 36.18638 2.669832 375
data %>%
summarise(mean = mean(imputed_CTmax), sd = sd(imputed_CTmax), n = n())
## mean sd n
## 1 35.93433 2.543695 375
ggplot(data) + geom_point(aes(x = acclimation_temp, y = original_CTmax), fill = "orange",
col = "black", shape = 21, size = 4, alpha = 0.75) + geom_point(aes(x = acclimation_temp,
y = imputed_CTmax), fill = "#2A788EFF", col = "black", shape = 21, size = 4,
alpha = 0.75) + geom_smooth(aes(x = acclimation_temp, y = original_CTmax), col = "orange",
fill = "orange", method = "lm", linewidth = 2) + geom_smooth(aes(x = acclimation_temp,
y = imputed_CTmax), col = "#2A788EFF", fill = "#2A788EFF", method = "lm", linewidth = 2) +
theme_classic() + xlab("Acclimation temperature") + ylab("CTmax") + theme(axis.title = element_text(size = 20))
Figure A2: Relationship between acclimation temperature and CTmax in the original (orange) and imputed (blue) cross-validated data.
Statistical analyses
Thermal safety margin
This code ran on an HPC environment, where the original code can be found in R/Models/Running_models_TSM.R and the resources used in pbs/Models/Running_models_TSM.pbs
Population-level patterns
Load the data
# Load population-level data
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
## Pond
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C.rds")
Generalized additive mixed models
Here, we investigate latitudinal patterns in TSM using generalized additive models. These models do not account for the phylogenetic relatedness between species, yet they are better at capturing non-linear patterns in TSM with latitude. While we could have fitted models with smooth terms using brms or stan, these models exceeded our computational capacities.
Run the models
# Function to run population-level TSM models in parallel
run_TSM_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(TSM ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, weights = 1/(data$TSM_se^2), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
TSM = NA, TSM_se = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$TSM_pred <- pred$fit
new_data$TSM_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = TSM_pred + 1.96 * TSM_pred_se, lower = TSM_pred -
1.96 * TSM_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model summaries and predictions
saveRDS(summary_gam, file = paste0("RData/Models/TSM/summary_GAM_pop_lat_TSM_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/TSM/summary_MER_pop_lat_TSM_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/TSM/predictions_pop_lat_TSM_",
habitat_scenario, ".rds"))
}
# Create a list of datasets
dataset_list <- list(pond_current = pop_pond_current, pond_future2C = pop_pond_future2C,
pond_future4C = pop_pond_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C, arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
# Run function
results_pop <- future_lapply(names(dataset_list), function(x) {
run_TSM_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_pop_lat_TSM_substrate_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 888487.8"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-9.2085 -0.6128 -0.2328 0.1271 24.8399 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.535 1.592 "
## [12] " genus (Intercept) 7.623 2.761 "
## [13] " Xr s(lat) 1070.894 32.725 "
## [14] " Residual 8.463 2.909 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 13.1341 0.1375 95.53"
## [20] "Xs(lat)Fx1 -5.3406 0.4064 -13.14"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_pop_lat_TSM_substrate_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2878eaf8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 13.1341 0.1375 95.53 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.992 8.992 3593 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0236 "
## [22] "lmer.REML = 8.8849e+05 Scale est. = 8.4635 n = 203853"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_pop_lat_TSM_substrate_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 920244.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-9.362 -0.612 -0.253 0.101 36.701 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.445 1.564 "
## [12] " genus (Intercept) 7.718 2.778 "
## [13] " Xr s(lat) 866.391 29.435 "
## [14] " Residual 8.185 2.861 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 12.5492 0.1383 90.74"
## [20] "Xs(lat)Fx1 -5.8871 0.4195 -14.03"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.011 "
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_pop_lat_TSM_substrate_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd3a3d00>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 12.5492 0.1383 90.74 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.99 8.99 3335 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.044 "
## [22] "lmer.REML = 9.2024e+05 Scale est. = 8.1851 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_pop_lat_TSM_substrate_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 942290.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-10.5351 -0.6048 -0.2555 0.1243 24.3450 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.193 1.481 "
## [12] " genus (Intercept) 7.323 2.706 "
## [13] " Xr s(lat) 772.140 27.787 "
## [14] " Residual 6.888 2.625 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 11.2144 0.1347 83.23"
## [20] "Xs(lat)Fx1 -7.5650 0.4102 -18.44"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_pop_lat_TSM_substrate_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xfd55718>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 11.2144 0.1347 83.23 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.989 8.989 3850 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.131 "
## [22] "lmer.REML = 9.4229e+05 Scale est. = 6.8884 n = 203853"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_pop_lat_TSM_pond_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 997734.8"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-11.5555 -0.5943 -0.2436 0.0649 27.6299 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.941 2.223 "
## [12] " genus (Intercept) 11.247 3.354 "
## [13] " Xr s(lat) 1552.192 39.398 "
## [14] " Residual 9.776 3.127 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 15.6645 0.1690 92.66"
## [20] "Xs(lat)Fx1 -5.5015 0.4669 -11.78"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_pop_lat_TSM_pond_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xdac67c8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 15.665 0.169 92.66 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 3694 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.027 "
## [22] "lmer.REML = 9.9773e+05 Scale est. = 9.776 n = 204808"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_pop_lat_TSM_pond_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1004856"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-12.4875 -0.5365 -0.1943 0.1022 29.4208 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.378 2.092 "
## [12] " genus (Intercept) 10.381 3.222 "
## [13] " Xr s(lat) 1714.903 41.411 "
## [14] " Residual 8.695 2.949 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 14.7083 0.1623 90.61"
## [20] "Xs(lat)Fx1 -7.0912 0.4605 -15.40"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_pop_lat_TSM_pond_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xfd4fc58>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 14.7083 0.1623 90.61 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.994 8.994 4156 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0333 "
## [22] "lmer.REML = 1.0049e+06 Scale est. = 8.6948 n = 204808"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_pop_lat_TSM_pond_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 969628.2"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-12.5919 -0.4160 -0.0516 0.2807 29.0071 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 3.491 1.868 "
## [12] " genus (Intercept) 8.144 2.854 "
## [13] " Xr s(lat) 1764.336 42.004 "
## [14] " Residual 8.341 2.888 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 12.9019 0.1442 89.45"
## [20] "Xs(lat)Fx1 -9.9258 0.4635 -21.42"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_pop_lat_TSM_pond_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2879d310>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 12.9019 0.1442 89.45 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.994 8.994 4134 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0884 "
## [22] "lmer.REML = 9.6963e+05 Scale est. = 8.3408 n = 204808"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_pop_lat_TSM_arboreal_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 228674.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-4.7098 -0.6323 -0.2156 0.1481 19.7636 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.104 1.450 "
## [12] " genus (Intercept) 5.826 2.414 "
## [13] " Xr s(lat) 3348.846 57.869 "
## [14] " Residual 7.995 2.828 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 13.0576 0.2013 64.866"
## [20] "Xs(lat)Fx1 8.2292 0.8370 9.832"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.011 "
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_pop_lat_TSM_arboreal_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x308f27e8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 13.0576 0.2013 64.87 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.981 8.981 1181 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.00786 "
## [22] "lmer.REML = 2.2867e+05 Scale est. = 7.9952 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_pop_lat_TSM_arboreal_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 230078.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-5.8711 -0.6573 -0.2430 0.1439 18.4365 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 1.969 1.403 "
## [12] " genus (Intercept) 5.687 2.385 "
## [13] " Xr s(lat) 3502.945 59.186 "
## [14] " Residual 6.540 2.557 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 12.4496 0.1986 62.69"
## [20] "Xs(lat)Fx1 9.1879 0.8023 11.45"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.011 "
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_pop_lat_TSM_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x6273c480>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 12.4496 0.1986 62.69 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.983 8.983 1179 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0374 "
## [22] "lmer.REML = 2.3008e+05 Scale est. = 6.5404 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_pop_lat_TSM_arboreal_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 242333.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-7.3572 -0.6655 -0.2737 0.1364 17.2196 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 1.882 1.372 "
## [12] " genus (Intercept) 5.392 2.322 "
## [13] " Xr s(lat) 2880.198 53.667 "
## [14] " Residual 5.618 2.370 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 11.2578 0.1946 57.844"
## [20] "Xs(lat)Fx1 7.1035 0.8119 8.749"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.012 "
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_pop_lat_TSM_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x3087b018>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 11.2578 0.1946 57.84 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.978 8.978 1002 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0877 "
## [22] "lmer.REML = 2.4233e+05 Scale est. = 5.6184 n = 56210"
Visualize the results
# Find limits for colours of the plot
tsm_min <- min(min(pop_sub_current$TSM, na.rm = TRUE), min(pop_sub_future4C$TSM,
na.rm = TRUE), min(pop_arb_current$TSM, na.rm = TRUE), min(pop_arb_future4C$TSM,
na.rm = TRUE), min(pop_pond_current$TSM, na.rm = TRUE), min(pop_pond_future4C$TSM,
na.rm = TRUE))
tsm_max <- max(max(pop_sub_current$TSM, na.rm = TRUE), max(pop_sub_future4C$TSM,
na.rm = TRUE), max(pop_arb_current$TSM, na.rm = TRUE), max(pop_arb_future4C$TSM,
na.rm = TRUE), max(pop_pond_current$TSM, na.rm = TRUE), max(pop_pond_future4C$TSM,
na.rm = TRUE))
Vegetated substrate
# Load model predictions
pred_sub_current <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_substrate_current.rds")
pred_sub_future2C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_substrate_future2C.rds")
pred_sub_future4C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_substrate_future4C.rds")
pop_TSM_sub <- ggplot() + geom_point(data = pop_sub_future4C, aes(x = lat, y = TSM),
colour = "#EF4187", shape = 20, alpha = 0.85, size = 2) + geom_point(data = pop_sub_future2C,
aes(x = lat, y = TSM), colour = "#FAA43A", shape = 20, alpha = 0.85, size = 2) +
geom_point(data = pop_sub_current, aes(x = lat, y = TSM), colour = "#5DC8D9",
shape = 20, alpha = 0.85, size = 2) + geom_ribbon(data = pred_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_sub_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("TSM") + ylim(0, tsm_max) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_TSM_sub
Figure A3: Latitudinal variation in thermal safety margin for amphibians on terrestrial conditions. Thermal safety margins (TSM) were calculated as the mean difference between CTmax and the predicted operative body temperature during the warmest quarters of 2006-2015. Blue ribbons and points depict TSM in current microclimates. Orange ribbons and points depict TSM in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict TSM in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
Pond or wetland
# Load model predictions
pred_pond_current <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_pond_current.rds")
pred_pond_future2C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_pond_future2C.rds")
pred_pond_future4C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_pond_future4C.rds")
pop_TSM_pond <- ggplot() + geom_point(data = pop_pond_future4C, aes(x = lat, y = TSM),
colour = "#EF4187", shape = 20, alpha = 0.85, size = 2) + geom_point(data = pop_pond_future2C,
aes(x = lat, y = TSM), colour = "#FAA43A", shape = 20, alpha = 0.85, size = 2) +
geom_point(data = pop_pond_current, aes(x = lat, y = TSM), colour = "#5DC8D9",
shape = 20, alpha = 0.85, size = 2) + geom_ribbon(data = pred_pond_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_pond_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_pond_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("TSM") + ylim(0, tsm_max) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_TSM_pond
Figure A4: Latitudinal variation in thermal safety margin for amphibians
in ponds or wetlands. Thermal safety margins (TSM) were calculated as
the mean difference between CTmax and the predicted operative body
temperature during the warmest quarters of 2006-2015. Blue ribbons and
points depict TSM in current microclimates. Orange ribbons and points
depict TSM in future climates with 2 degrees Celsius above preindustrial
levels. Pink ribbons and points depict TSM in future climates with 4
degrees Celsius above preindustrial levels. Ribbons delimit the lower
and upper 95% confidence intervals predicted from generalised additive
mixed models.
Above-ground vegetation
# Load model predictions
pred_arb_current <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_arboreal_current.rds")
pred_arb_future2C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_arboreal_future2C.rds")
pred_arb_future4C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_arboreal_future4C.rds")
pop_TSM_arb <- ggplot() + geom_point(data = pop_arb_future4C, aes(x = lat, y = TSM),
colour = "#EF4187", shape = 20, alpha = 0.85, size = 2) + geom_point(data = pop_arb_future2C,
aes(x = lat, y = TSM), colour = "#FAA43A", shape = 20, alpha = 0.85, size = 2) +
geom_point(data = pop_arb_current, aes(x = lat, y = TSM), colour = "#5DC8D9",
shape = 20, alpha = 0.85, size = 2) + geom_ribbon(data = pred_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_arb_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("Thermal safety margin") + ylim(0, tsm_max) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_TSM_arb
Figure A5: Latitudinal variation in thermal safety margin for amphibians in above-ground vegetation. Thermal safety margins (TSM) were calculated as the mean difference between CTmax and the predicted operative body temperature during the warmest quarters of 2006-2015. Blue ribbons and points depict TSM in current microclimates. Orange ribbons and points depict TSM in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict TSM in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
All habitats
all_habitats <- (pop_TSM_sub/pop_TSM_pond/pop_TSM_arb/plot_layout(ncol = 1))
all_habitats
Figure A6: Latitudinal variation in thermal safety margin for amphibians on terrestrial conditions (top panel), in water bodies (middle panel) or in above-ground vegetation (bottom panel). Thermal safety margins (TSM) were calculated as the mean difference between CTmax and the predicted operative body temperature during the warmest quarters of 2006-2015. Blue ribbons and points depict TSM in current microclimates. Orange ribbons and points depict TSM in future climates with 2 degrees Celsius above preindustrial levels. Red ribbons and points depict TSM in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
Bayesian linear mixed models
Here, we used Bayesian linear mixed models to estimate the mean thermal safety margin in each microhabitat and climatic scenario. These models account for the different degrees of phylogenetic relatedness and decompose sources of variation among species.
Run the models
Full dataset
# Run analyses with MCMCglmm to estimate mean TSM in each microhabitat and scenario
# Combine datasets
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
pop_pond_current %>% mutate(habitat_scenario = "pond_current"),
pop_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
pop_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
# Duplicate tip.label column values
all_data$species <- all_data$tip.label
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
# Force the tree to be ultrametric
tree <- force.ultrametric(tree, method="extend")
Ainv<-inverseA(tree)$Ainv
# Convert tibble to dataframe (needed for MCMCglmm)
all_data <- as.data.frame(all_data)
# Set prior
prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G3 = list(V = 1, fix = 1)))
set.seed(123)
# Intercept-less model, variation between microhabitat and climate scenarios
model_MCMC <- MCMCglmm(TSM ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(TSM_se):units, # Genus, species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC, file = "RData/Models/TSM/model_MCMCglmm_TSM.rds")
saveRDS(predictions, file = "RData/Models/TSM/predictions_MCMCglmm_TSM.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_MCMC_contrast <- MCMCglmm(TSM ~ relevel(habitat_scenario, ref = "substrate_current"), # substrate_current as the reference level
random = ~ species + tip.label + idh(TSM_se):units,
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
saveRDS(model_MCMC_contrast, file = "RData/Models/TSM/model_MCMCglmm_TSM_contrast.rds")
Subset of overheating populations
Here, we only focus on the populations that are predicted to overheat.
# Reload dataset without pond data
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C")
)
# Filter to populations predicted to overheat
all_data$habitat_scenario <- as.character(all_data$habitat_scenario)
all_data$species <- all_data$tip.label
all_data <- filter(all_data, overheating_risk > 0)
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
# Run model
model_TSM <- MCMCglmm(TSM ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(TSM_se):units, # Species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
nitt = 600000,
thin = 500,
burnin = 100000,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_TSM,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_TSM, file = "RData/Models/TSM/model_MCMCglmm_TSM_overheating_pop.rds")
saveRDS(predictions, file = "RData/Models/TSM/predictions_MCMCglmm_TSM_overheating_pop.rds")
Model summaries
Full dataset
# Model summary
model_MCMC_TSM <- readRDS("RData/Models/TSM/model_MCMCglmm_TSM.rds")
summary(model_MCMC_TSM)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5554355
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 1.295 1.171 1.408 673.1
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 11.96 10.9 12.94 508.6
##
## ~idh(TSM_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## TSM_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 1.828 1.821 1.834 1010
##
## Location effects: TSM ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 12.232 9.402 14.960 1000 <0.001
## habitat_scenarioarboreal_future2C 11.509 8.660 14.236 1000 <0.001
## habitat_scenarioarboreal_future4C 10.066 7.229 12.797 1000 <0.001
## habitat_scenariopond_current 13.600 10.708 16.275 1000 <0.001
## habitat_scenariopond_future2C 12.831 9.940 15.506 1000 <0.001
## habitat_scenariopond_future4C 11.683 8.796 14.361 1000 <0.001
## habitat_scenariosubstrate_current 11.694 8.856 14.428 1000 <0.001
## habitat_scenariosubstrate_future2C 10.915 8.025 13.594 1000 <0.001
## habitat_scenariosubstrate_future4C 9.411 6.530 12.090 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariopond_current ***
## habitat_scenariopond_future2C ***
## habitat_scenariopond_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model prediction
print(readRDS("RData/Models/TSM/predictions_MCMCglmm_TSM.rds"))
## habitat_scenario prediction lower.HPD upper.HPD
## 1 arboreal_current 12.234546 9.402457 14.95957
## 2 arboreal_future2C 11.516657 8.660441 14.23555
## 3 arboreal_future4C 10.073365 7.228783 12.79706
## 4 pond_current 13.598003 10.708231 16.27547
## 5 pond_future2C 12.826568 9.939599 15.50559
## 6 pond_future4C 11.682330 8.795805 14.36130
## 7 substrate_current 11.693736 8.855884 14.42791
## 8 substrate_future2C 10.913539 8.025024 13.59418
## 9 substrate_future4C 9.408846 6.529886 12.08967
# Model diagnostics
plot(model_MCMC_TSM)
# Model summary (contrasts)
model_MCMC_TSM_contrast <- readRDS("RData/Models/TSM/model_MCMCglmm_TSM_contrast.rds")
summary(model_MCMC_TSM_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5554457
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 1.298 1.181 1.401 656.2
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 12 11.03 12.96 547.4
##
## ~idh(TSM_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## TSM_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 1.828 1.822 1.834 1041
##
## Location effects: TSM ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 11.6552891
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.5382288
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.1847409
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.6279122
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1.9054523
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1.1363197
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C -0.0118602
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.7801647
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -2.2837740
## l-95% CI
## (Intercept) 5.4040714
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.5164637
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.2048826
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.6464856
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1.8918003
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1.1249267
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C -0.0251820
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.7942958
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -2.2970070
## u-95% CI
## (Intercept) 19.8011664
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.5625205
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.1623052
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.6099889
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1.9173982
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1.1496370
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C -0.0003685
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.7679891
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -2.2720909
## eff.samp
## (Intercept) 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1004.3
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 960.2
## pMCMC
## (Intercept) 0.004
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.062
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) **
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C .
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Subset of overheating populations
# Model summary
model_MCMC_TSM <- readRDS("RData/Models/TSM/model_MCMCglmm_TSM_overheating_pop.rds")
summary(model_MCMC_TSM)
##
## Iterations = 100001:599501
## Thinning interval = 500
## Sample size = 1000
##
## DIC: 15564.97
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 0.2729 0.1348 0.4202 1000
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 2.957 2.071 3.875 1000
##
## ~idh(TSM_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## TSM_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.1926 0.1732 0.2115 1000
##
## Location effects: TSM ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 8.713 7.202 10.278 1000 <0.001
## habitat_scenarioarboreal_future2C 8.044 6.656 9.755 1000 <0.001
## habitat_scenarioarboreal_future4C 6.728 5.442 8.480 1000 <0.001
## habitat_scenariosubstrate_current 8.199 6.908 9.983 1000 <0.001
## habitat_scenariosubstrate_future2C 7.575 6.231 9.342 1000 <0.001
## habitat_scenariosubstrate_future4C 6.304 5.024 8.090 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model prediction
print(readRDS("RData/Models/TSM/predictions_MCMCglmm_TSM_overheating_pop.rds"))
## habitat_scenario prediction lower.HPD upper.HPD
## 1 arboreal_current 8.679359 7.201852 10.277665
## 2 arboreal_future2C 8.004740 6.656127 9.754878
## 3 arboreal_future4C 6.693707 5.442138 8.480200
## 4 substrate_current 8.165787 6.907548 9.982687
## 5 substrate_future2C 7.538825 6.230643 9.342165
## 6 substrate_future4C 6.259877 5.024256 8.089966
# Model diagnostics
plot(model_MCMC_TSM)
Community-level patterns
Load the data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current.rds")
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C.rds")
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C.rds")
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
Generalized additive mixed models
Here, we investigate community-level latitudinal patterns in TSM using generalized additive models.
Run the models
# Function to run community-level TSM models in parallel
run_community_TSM_analysis <- function(dataset, habitat_scenario) {
data <- dataset
# Run model
model <- gamm4::gamm4(community_TSM ~ s(lat, bs = "tp"), data = data, weights = 1/(data$community_TSM_se^2),
REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
community_TSM = NA, community_TSM_se = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$TSM_pred <- pred$fit
new_data$TSM_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = TSM_pred + 1.96 * TSM_pred_se, lower = TSM_pred -
1.96 * TSM_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/TSM/summary_GAM_community_lat_TSM_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/TSM/summary_MER_community_lat_TSM_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/TSM/predictions_community_lat_TSM_",
habitat_scenario, ".rds"))
}
# Create a list of all the datasets
dataset_list <- list(arboreal_current = community_arb_current, arboreal_future2C = community_arb_future2C,
arboreal_future4C = community_arb_future4C, pond_current = community_pond_current,
pond_future2C = community_pond_future2C, pond_future4C = community_pond_future4C,
substrate_current = community_sub_current, substrate_future2C = community_sub_future2C,
substrate_future4C = community_sub_future4C)
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_community_TSM_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_community_lat_TSM_substrate_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 74037.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-6.9667 -0.3461 -0.0323 0.3129 7.1483 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 404.402 20.11 "
## [12] " Residual 8.705 2.95 "
## [13] "Number of obs: 14090, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 14.71909 0.02466 596.99"
## [18] "Xs(lat)Fx1 -5.46022 1.05401 -5.18"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.087"
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_community_lat_TSM_substrate_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x112356f8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 14.71909 0.02466 597 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.847 8.847 2883 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.636 "
## [22] "lmer.REML = 74038 Scale est. = 8.7051 n = 14090"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_community_lat_TSM_substrate_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 72259.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-6.3964 -0.3777 -0.0614 0.2801 7.3222 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 444.16 21.075 "
## [12] " Residual 10.37 3.221 "
## [13] "Number of obs: 14090, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 13.98110 0.02281 612.934"
## [18] "Xs(lat)Fx1 -6.42600 1.02557 -6.266"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.091"
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_community_lat_TSM_substrate_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x1165d778>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 13.98110 0.02281 612.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.873 8.873 3081 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.648 "
## [22] "lmer.REML = 72260 Scale est. = 10.372 n = 14090"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_community_lat_TSM_substrate_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 71853.6"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-5.4042 -0.4791 -0.1198 0.2551 7.8523 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 530.63 23.036 "
## [12] " Residual 13.96 3.737 "
## [13] "Number of obs: 14090, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 12.566 0.022 571.187"
## [18] "Xs(lat)Fx1 -8.049 1.013 -7.943"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.088"
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_community_lat_TSM_substrate_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x12c47f98>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 12.566 0.022 571.2 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.898 8.898 3363 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.657 "
## [22] "lmer.REML = 71854 Scale est. = 13.963 n = 14090"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_community_lat_TSM_pond_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 75984.6"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-5.6067 -0.3149 0.0316 0.4214 6.9417 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 636.38 25.227 "
## [12] " Residual 14.42 3.798 "
## [13] "Number of obs: 14091, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 16.53604 0.02354 702.50"
## [18] "Xs(lat)Fx1 -12.30969 1.10367 -11.15"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.106"
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_community_lat_TSM_pond_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x8f345b0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 16.53604 0.02354 702.5 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.867 8.867 2481 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.609 "
## [22] "lmer.REML = 75985 Scale est. = 14.425 n = 14091"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_community_lat_TSM_pond_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 75284.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-5.0086 -0.3795 -0.0355 0.3930 6.9066 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 630.74 25.114 "
## [12] " Residual 16.18 4.023 "
## [13] "Number of obs: 14091, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 15.93334 0.02389 666.81"
## [18] "Xs(lat)Fx1 -13.09508 1.06732 -12.27"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.091"
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_community_lat_TSM_pond_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xf5ab250>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 15.93334 0.02389 666.8 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.869 8.869 2194 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.565 "
## [22] "lmer.REML = 75284 Scale est. = 16.181 n = 14091"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_community_lat_TSM_pond_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 79000.3"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-4.3978 -0.4491 -0.1310 0.2826 8.3279 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 666.17 25.810 "
## [12] " Residual 18.54 4.306 "
## [13] "Number of obs: 14091, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 15.15554 0.03016 502.55"
## [18] "Xs(lat)Fx1 -14.55793 1.06332 -13.69"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.057"
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_community_lat_TSM_pond_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x1149e410>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 15.15554 0.03016 502.5 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.844 8.844 1334 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.408 "
## [22] "lmer.REML = 79000 Scale est. = 18.544 n = 14091"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_community_lat_TSM_arboreal_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 29910.8"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-7.5152 -0.4005 0.0195 0.4843 8.4519 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 626.808 25.04 "
## [12] " Residual 2.046 1.43 "
## [13] "Number of obs: 6614, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 13.67804 0.02506 545.91"
## [18] "Xs(lat)Fx1 -7.71319 0.61792 -12.48"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.059"
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_community_lat_TSM_arboreal_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xba8e910>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 13.67804 0.02506 545.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.956 8.956 2132 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.742 "
## [22] "lmer.REML = 29911 Scale est. = 2.0459 n = 6614"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_community_lat_TSM_arboreal_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 29160"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-6.7428 -0.4130 0.0040 0.4709 8.6408 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 478.147 21.867 "
## [12] " Residual 2.702 1.644 "
## [13] "Number of obs: 6614, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 12.89011 0.02331 552.9"
## [18] "Xs(lat)Fx1 -6.91282 0.62269 -11.1"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.033"
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_community_lat_TSM_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xc380ab0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 12.89011 0.02331 552.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.944 8.944 1911 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.719 "
## [22] "lmer.REML = 29160 Scale est. = 2.7016 n = 6614"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/summary_MER_community_lat_TSM_arboreal_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 29533.7"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-5.0023 -0.4621 -0.0077 0.4539 9.1474 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 348.083 18.657 "
## [12] " Residual 4.961 2.227 "
## [13] "Number of obs: 6614, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 11.36631 0.02398 473.901"
## [18] "Xs(lat)Fx1 -6.13991 0.69099 -8.886"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 0.000 "
# Generalized additive model
print(readRDS("RData/Models/TSM/summary_GAM_community_lat_TSM_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x11e49ba8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 11.36631 0.02398 473.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.905 8.905 1456 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.661 "
## [22] "lmer.REML = 29534 Scale est. = 4.9606 n = 6614"
Visualize the results
Load data
# Substrate data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells.rds")
# Pond data
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current_clipped_cells.rds")
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C_clipped_cells.rds")
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C_clipped_cells.rds")
# Above-ground vegetation
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_clipped_cells.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_clipped_cells.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_clipped_cells.rds")
# Upload high resolution Earth data
world <- ne_countries(scale = "large", returnclass = "sf")
world <- world %>%
filter(!grepl("Antarctica", name))
st_crs(world) <- st_crs(community_pond_current)
# Find limits for colours of the plot
tsm_min <- min(min(community_sub_current$community_TSM, na.rm = TRUE), min(community_sub_future4C$community_TSM,
na.rm = TRUE), min(community_arb_current$community_TSM, na.rm = TRUE), min(community_arb_future4C$community_TSM,
na.rm = TRUE), min(community_pond_current$community_TSM, na.rm = TRUE), min(community_pond_future4C$community_TSM,
na.rm = TRUE))
tsm_max <- max(max(community_sub_current$community_TSM, na.rm = TRUE), max(community_sub_future4C$community_TSM,
na.rm = TRUE), max(community_arb_current$community_TSM, na.rm = TRUE), max(community_arb_future4C$community_TSM,
na.rm = TRUE), max(community_pond_current$community_TSM, na.rm = TRUE), max(community_pond_future4C$community_TSM,
na.rm = TRUE))
Vegetated substrate
# Current
map_sub_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_current,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
name = "TSM", na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5),
limits = c(tsm_min, tsm_max), begin = 0, end = 1) + theme_void() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 2, colour = "#5DC8D9"))
# Future +2C
map_sub_TSM_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future2C,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5), limits = c(tsm_min,
tsm_max), begin = 0, end = 1) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#FAA43A"))
# Future +4C
map_sub_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future4C,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5), limits = c(tsm_min,
tsm_max), begin = 0, end = 1) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_sub_current <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_current.rds")
pred_community_sub_future2C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_future2C.rds")
pred_community_sub_future4C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_future4C.rds")
lat_sub_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_sub_future4C, aes(x = lat, y = community_TSM),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_sub_future2C,
aes(x = lat, y = community_TSM), alpha = 0.85, col = "#FAA43A", shape = ".") +
geom_point(data = community_sub_current, aes(x = lat, y = community_TSM), alpha = 0.85,
col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black",
size = 0.1) + geom_ribbon(data = pred_community_sub_future2C, aes(x = lat, ymin = lower,
ymax = upper), fill = "#FAA43A", colour = "black", size = 0.1) + geom_ribbon(data = pred_community_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black",
size = 0.1) + xlim(-55.00099, 72.00064) + ylim(0, 40) + xlab("") + ylab("TSM") +
coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(size = 12), axis.text.x = element_text(color = "black",
size = 11), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
substrate_plot <- (map_sub_TSM_current + map_sub_TSM_future2C + map_sub_TSM_future4C +
lat_sub_all + plot_layout(ncol = 4))
substrate_plot
Figure A7: Community-level patterns in thermal safety margin for amphibians on terrestrial conditions. Thermal safety margins (TSM) were calculated as the mean difference between CTmax and the predicted operative body temperature during the warmest quarters of 2006-2015 in each community (1-degree grid cell). The first column refer to current climates (blue), the middle column assume +2C of warming above pre-industrial levels (orange), and the right column assume +4C of warming above pre-industrial levels (pink). The right panel depicts latitudinal patterns in TSM in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (pink). Black colour depicts areas with no data.
Pond or wetland
# Current
map_pond_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_current,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
name = "TSM", na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5),
limits = c(tsm_min, tsm_max), begin = 0, end = 1) + theme_void() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 2, colour = "#5DC8D9"))
# Future +2C
map_pond_TSM_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_future2C,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5), limits = c(tsm_min,
tsm_max), begin = 0, end = 1) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#FAA43A"))
# Future +4C
map_pond_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_future4C,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5), limits = c(tsm_min,
tsm_max), begin = 0, end = 1) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_pond_current <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_current.rds")
pred_community_pond_future2C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_future2C.rds")
pred_community_pond_future4C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_future4C.rds")
lat_pond_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_pond_future4C, aes(x = lat, y = community_TSM),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_pond_future2C,
aes(x = lat, y = community_TSM), alpha = 0.85, col = "#FAA43A", shape = ".") +
geom_point(data = community_pond_current, aes(x = lat, y = community_TSM), alpha = 0.85,
col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_pond_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black",
size = 0.1) + geom_ribbon(data = pred_community_pond_future2C, aes(x = lat, ymin = lower,
ymax = upper), fill = "#FAA43A", colour = "black", size = 0.1) + geom_ribbon(data = pred_community_pond_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black",
size = 0.1) + xlim(-55.00099, 72.00064) + ylim(0, 40) + xlab("") + ylab("TSM") +
coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(size = 12), axis.text.x = element_text(color = "black",
size = 11), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
pond_plot <- (map_pond_TSM_current + map_pond_TSM_future2C + map_pond_TSM_future4C +
lat_pond_all + plot_layout(ncol = 4))
pond_plot
Figure A8: Community-level patterns in thermal safety margin for amphibians in water bodies. Thermal safety margins (TSM) were calculated as the mean difference between CTmax and the predicted operative body temperature during the warmest quarters of 2006-2015 in each community (1-degree grid cell). The first column refer to current climates (blue), the middle column assume +2C of warming above pre-industrial levels (orange), and the right column assume +4C of warming above pre-industrial levels (pink). The right panel depicts latitudinal patterns in TSM in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (pink). Black colour depicts areas with no data.
Above-ground vegetation
# Current
map_arb_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_current,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
name = "TSM", na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5),
limits = c(tsm_min, tsm_max), begin = 0, end = 1) + theme_void() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 2, colour = "#5DC8D9"))
# Future +2C
map_arb_TSM_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future2C,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5), limits = c(tsm_min,
tsm_max), begin = 0, end = 1) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#FAA43A"))
# Future +4C
map_arb_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future4C,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(name = "TSM",
option = "plasma", na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5),
limits = c(tsm_min, tsm_max), begin = 0, end = 1) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "bottom",
panel.border = element_rect(fill = NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_arb_current <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_arboreal_current.rds")
pred_community_arb_future2C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_arboreal_future2C.rds")
pred_community_arb_future4C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_arboreal_future4C.rds")
lat_arb_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_arb_future4C, aes(x = lat, y = community_TSM),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_arb_future2C,
aes(x = lat, y = community_TSM), alpha = 0.85, col = "#FAA43A", shape = ".") +
geom_point(data = community_arb_current, aes(x = lat, y = community_TSM), alpha = 0.85,
col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black",
size = 0.1) + geom_ribbon(data = pred_community_arb_future2C, aes(x = lat, ymin = lower,
ymax = upper), fill = "#FAA43A", colour = "black", size = 0.1) + geom_ribbon(data = pred_community_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black",
size = 0.1) + xlim(-55.00099, 72.00064) + ylim(0, 40) + xlab("") + ylab("TSM") +
coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(size = 12), axis.text.x = element_text(color = "black",
size = 11), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
arboreal_plot <- (map_arb_TSM_current + map_arb_TSM_future2C + map_arb_TSM_future4C +
lat_arb_all + plot_layout(ncol = 4))
arboreal_plot
Figure A9: Community-level patterns in thermal safety margin for amphibians in above-ground vegetation. Thermal safety margins (TSM) were calculated as the mean difference between CTmax and the predicted operative body temperature during the warmest quarters of 2006-2015 in each community (1-degree grid cell). The first column refer to current climates (blue), the middle column assume +2C of warming above pre-industrial levels (orange), and the right column assume +4C of warming above pre-industrial levels (pink). The right panel depicts latitudinal patterns in TSM in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (pink). Black colour depicts areas with no data.
All habitats
all_habitats <- (substrate_plot/pond_plot/arboreal_plot/plot_layout(ncol = 1))
all_habitats
Figure A10: Community-level patterns in thermal safety margin for amphibians on terrestrial conditions (top row), in water bodies (middle row), or in above-ground vegetation (bottom row). Thermal safety margins (TSM) were calculated as the mean difference between CTmax and the predicted operative body temperature during the warmest quarters of 2006-2015 in each community (1-degree grid cell). The first column refer to current climates (blue), the middle column assume +2C of warming above pre-industrial levels (orange), and the right column assume +4C of warming above pre-industrial levels (pink). The right panel depicts latitudinal patterns in TSM in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (pink). Black colour depicts areas with no data.
Bayesian linear mixed models
Here, we used Bayesian linear mixed models to estimate the mean thermal safety margin in each microhabitat and climatic scenario. These models account for the different degrees of phylogenetic relatedness and decompose sources of variation among species.
Run the models
Full dataset
all_community_data <- bind_rows(
community_sub_current %>% mutate(habitat_scenario = "substrate_current"),
community_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
community_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
community_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
community_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
community_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
community_pond_current %>% mutate(habitat_scenario = "pond_current"),
community_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
community_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
all_community_data <- as.data.frame(all_community_data)
prior_community <- list(R = list(V = 1, nu = 0.002),
G = list(G4 = list(V = 1, fix = 1)))
# Intercept-less model
model_MCMC_community <- MCMCglmm(community_TSM ~ habitat_scenario - 1, # No intercept
random = ~ idh(community_TSM_se):units,
singular.ok=TRUE,
prior = prior_community,
verbose=FALSE,
data = all_community_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC_community,
by="habitat_scenario",
specs="habitat_scenario",
data=all_community_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC_community, file = "RData/Models/TSM/model_MCMCglmm_community_TSM.rds")
saveRDS(predictions, file = "RData/Models/TSM/predictions_MCMCglmm_community_TSM.rds")
# Contrast
all_community_data$habitat_scenario <- as.factor(all_community_data$habitat_scenario)
model_MCMC_community_contrast <- MCMCglmm(community_TSM ~ relevel(habitat_scenario, ref = "substrate_current"), # Contrast
random = ~ idh(community_TSM_se):units,
singular.ok=TRUE,
prior = prior_community,
verbose=FALSE,
data = all_community_data)
saveRDS(model_MCMC_community_contrast, file = "RData/Models/TSM/model_MCMCglmm_community_TSM_contrast.rds")
Subset of overheating communities
Here, we only focus on the communities that are predicted to overheat.
# Reload dataset without pond data
all_community_data <- bind_rows(community_sub_current %>%
mutate(habitat_scenario = "substrate_current"), community_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), community_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), community_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), community_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), community_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
# Filter to overheating communities
all_community_data$habitat_scenario <- as.character(all_community_data$habitat_scenario)
all_community_data <- filter(all_community_data, n_species_overheating > 0)
# Run model
model_TSM_community <- MCMCglmm(community_TSM ~ habitat_scenario - 1, random = ~idh(community_TSM_se):units,
singular.ok = TRUE, prior = prior_community, verbose = FALSE, nitt = 6e+05, thin = 500,
burnin = 1e+05, data = all_community_data)
# Get predictions
predictions <- data.frame(emmeans(model_TSM_community, by = "habitat_scenario", specs = "habitat_scenario",
data = all_community_data, type = "response"))
predictions <- predictions %>%
rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_TSM_community, file = "RData/Models/TSM/model_MCMCglmm_community_TSM_overheating_communities.rds")
saveRDS(predictions, file = "RData/Models/TSM/predictions_MCMCglmm_community_TSM_overheating_communities.rds")
Model summaries
Full dataset
# Model summary
model_MCMC_TSM <- readRDS("RData/Models/TSM/model_MCMCglmm_community_TSM.rds")
summary(model_MCMC_TSM)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 563561.6
##
## G-structure: ~idh(community_TSM_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## community_TSM_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 11.06 10.95 11.16 1000
##
## Location effects: community_TSM ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 14.28 14.19 14.38 1093.8 <0.001
## habitat_scenarioarboreal_future2C 13.39 13.30 13.48 1101.5 <0.001
## habitat_scenarioarboreal_future4C 11.75 11.67 11.83 1000.0 <0.001
## habitat_scenariopond_current 17.41 17.35 17.47 1000.0 <0.001
## habitat_scenariopond_future2C 16.53 16.47 16.58 1000.0 <0.001
## habitat_scenariopond_future4C 15.29 15.23 15.35 1134.2 <0.001
## habitat_scenariosubstrate_current 15.28 15.21 15.33 1000.0 <0.001
## habitat_scenariosubstrate_future2C 14.33 14.28 14.40 1175.5 <0.001
## habitat_scenariosubstrate_future4C 12.60 12.54 12.66 794.2 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariopond_current ***
## habitat_scenariopond_future2C ***
## habitat_scenariopond_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model prediction
print(readRDS("RData/Models/TSM/predictions_MCMCglmm_community_TSM.rds"))
## habitat_scenario prediction lower.HPD upper.HPD
## 1 arboreal_current 14.27894 14.19096 14.38106
## 2 arboreal_future2C 13.39284 13.29830 13.47715
## 3 arboreal_future4C 11.74607 11.66519 11.83032
## 4 pond_current 17.40769 17.35164 17.47057
## 5 pond_future2C 16.52833 16.46825 16.58132
## 6 pond_future4C 15.28669 15.22536 15.34608
## 7 substrate_current 15.27923 15.20782 15.33023
## 8 substrate_future2C 14.32752 14.27874 14.39567
## 9 substrate_future4C 12.60216 12.54180 12.65637
# Model diagnostics
plot(model_MCMC_TSM)
# Model summary (contrasts)
model_MCMC_TSM_contrast <- readRDS("RData/Models/TSM/model_MCMCglmm_community_TSM_contrast.rds")
summary(model_MCMC_TSM_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 563567.3
##
## G-structure: ~idh(community_TSM_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## community_TSM_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 11.06 10.96 11.17 1000
##
## Location effects: community_TSM ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 15.276861
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.995725
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -1.886305
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -3.531581
## relevel(habitat_scenario, ref = "substrate_current")pond_current 2.131792
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1.251745
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.008047
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.949783
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -2.676880
## l-95% CI
## (Intercept) 15.214197
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -1.100467
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -1.995412
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -3.638431
## relevel(habitat_scenario, ref = "substrate_current")pond_current 2.043326
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1.164948
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C -0.075235
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -1.027735
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -2.760619
## u-95% CI
## (Intercept) 15.335050
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.869741
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -1.780184
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -3.423781
## relevel(habitat_scenario, ref = "substrate_current")pond_current 2.208417
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1.333020
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.088532
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.867118
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -2.592223
## eff.samp
## (Intercept) 1000
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 1105
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1030
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1000
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1022
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1135
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1000
## pMCMC
## (Intercept) <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.864
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Subset of overheating communities
# Model summary
model_MCMC_TSM <- readRDS("RData/Models/TSM/model_MCMCglmm_community_TSM_overheating_communities.rds")
summary(model_MCMC_TSM)
##
## Iterations = 100001:599501
## Thinning interval = 500
## Sample size = 1000
##
## DIC: 6116.34
##
## G-structure: ~idh(community_TSM_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## community_TSM_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.3691 0.3282 0.4133 1000
##
## Location effects: community_TSM ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 10.805 10.468 11.144 1000.0 <0.001
## habitat_scenarioarboreal_future2C 10.248 10.042 10.461 1000.0 <0.001
## habitat_scenarioarboreal_future4C 9.021 8.904 9.136 976.8 <0.001
## habitat_scenariosubstrate_current 11.141 11.005 11.295 1000.0 <0.001
## habitat_scenariosubstrate_future2C 10.481 10.391 10.579 1000.0 <0.001
## habitat_scenariosubstrate_future4C 9.214 9.162 9.263 1000.0 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model prediction
print(readRDS("RData/Models/TSM/predictions_MCMCglmm_community_TSM_overheating_communities.rds"))
## habitat_scenario prediction lower.HPD upper.HPD
## 1 arboreal_current 10.808927 10.468021 11.143725
## 2 arboreal_future2C 10.252744 10.042049 10.460654
## 3 arboreal_future4C 9.021466 8.903870 9.135951
## 4 substrate_current 11.139340 11.004630 11.294944
## 5 substrate_future2C 10.479197 10.390957 10.579051
## 6 substrate_future4C 9.215602 9.161738 9.263436
# Model diagnostics
plot(model_MCMC_TSM)
CTmax
Here, we investigate the variation in CTmax across habitats and warming scenarios.
This code ran on an HPC environment, where the original code can be found in R/Models/Running_models_CTmax.R and the resources used in pbs/Models/Running_models_CTmax.pbs
Population-level patterns
Load the data
# Load population-level data
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
## Pond
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C.rds")
Generalized additive mixed models
Here, we investigate latitudinal patterns in CTmax using generalized additive models. These models do not account for the phylogenetic relatedness between species, yet they are better at capturing non-linear patterns in CTmax with latitude. While we could have fitted models with smooth terms using brms or stan, these models exceeded our computational capacities.
Run the models
# Function to run population-level CTmax models in parallel
run_CTmax_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(CTmax ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, weights = 1/(data$CTmax_se^2), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
CTmax = NA, CTmax_se = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$CTmax_pred <- pred$fit
new_data$CTmax_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = CTmax_pred + 1.96 * CTmax_pred_se, lower = CTmax_pred -
1.96 * CTmax_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model summaries and predictions
saveRDS(summary_gam, file = paste0("RData/Models/CTmax/summary_GAM_pop_lat_CTmax_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/CTmax/summary_MER_pop_lat_CTmax_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/CTmax/predictions_pop_lat_CTmax_",
habitat_scenario, ".rds"))
}
# Create a list of datasets
dataset_list <- list(pond_current = pop_pond_current, pond_future2C = pop_pond_future2C,
pond_future4C = pop_pond_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C, arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
# Run function
results_pop <- future_lapply(names(dataset_list), function(x) {
run_CTmax_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_pop_lat_CTmax_substrate_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 189401.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-28.1177 -0.0838 0.2448 0.6008 8.6807 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3767 0.6138 "
## [12] " genus (Intercept) 3.6665 1.9148 "
## [13] " Xr s(lat) 28.5714 5.3452 "
## [14] " Residual 0.2641 0.5140 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 36.86618 0.09075 406.253"
## [20] "Xs(lat)Fx1 0.68285 0.07371 9.264"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_pop_lat_CTmax_substrate_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x26db6528>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 36.86618 0.09075 406.3 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.991 8.991 3009 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.122 "
## [22] "lmer.REML = 1.894e+05 Scale est. = 0.26415 n = 203853"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_pop_lat_CTmax_substrate_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 197472"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-37.361 -0.057 0.257 0.598 8.772 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3667 0.6056 "
## [12] " genus (Intercept) 3.6343 1.9064 "
## [13] " Xr s(lat) 24.9774 4.9977 "
## [14] " Residual 0.2269 0.4764 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 36.96300 0.09033 409.22"
## [20] "Xs(lat)Fx1 0.79546 0.07194 11.06"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_pop_lat_CTmax_substrate_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xb98a360>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 36.96300 0.09033 409.2 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.99 8.99 3089 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.136 "
## [22] "lmer.REML = 1.9747e+05 Scale est. = 0.22695 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_pop_lat_CTmax_substrate_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 186049"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-29.3523 -0.0598 0.2385 0.5747 9.8201 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3530 0.5942 "
## [12] " genus (Intercept) 3.6137 1.9010 "
## [13] " Xr s(lat) 20.3852 4.5150 "
## [14] " Residual 0.1614 0.4017 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.14027 0.09001 412.61"
## [20] "Xs(lat)Fx1 0.91267 0.06475 14.09"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_pop_lat_CTmax_substrate_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe3bce50>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.14027 0.09001 412.6 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.99 8.99 3655 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.155 "
## [22] "lmer.REML = 1.8605e+05 Scale est. = 0.16136 n = 203853"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_pop_lat_CTmax_pond_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 237271.6"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-28.5487 -0.0716 0.2408 0.5933 11.4133 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3959 0.6292 "
## [12] " genus (Intercept) 3.7194 1.9286 "
## [13] " Xr s(lat) 36.4147 6.0345 "
## [14] " Residual 0.2314 0.4811 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 36.97936 0.09119 405.54"
## [20] "Xs(lat)Fx1 0.83042 0.07311 11.36"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_pop_lat_CTmax_pond_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xc0e0c28>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 36.97936 0.09119 405.5 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 3544 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.177 "
## [22] "lmer.REML = 2.3727e+05 Scale est. = 0.23144 n = 204808"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_pop_lat_CTmax_pond_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 243435.2"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-29.0257 -0.1074 0.1893 0.5349 12.0258 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3860 0.6213 "
## [12] " genus (Intercept) 3.6997 1.9235 "
## [13] " Xr s(lat) 40.2470 6.3440 "
## [14] " Residual 0.2045 0.4522 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.12679 0.09092 408.36"
## [20] "Xs(lat)Fx1 1.07909 0.07196 14.99"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_pop_lat_CTmax_pond_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe3b9240>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.12679 0.09092 408.4 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 4011 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.184 "
## [22] "lmer.REML = 2.4344e+05 Scale est. = 0.20451 n = 204808"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_pop_lat_CTmax_pond_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 207892.2"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-28.7588 -0.2820 0.0452 0.4111 12.1417 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3706 0.6088 "
## [12] " genus (Intercept) 3.6967 1.9227 "
## [13] " Xr s(lat) 41.5409 6.4452 "
## [14] " Residual 0.1951 0.4417 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.3972 0.0908 411.84"
## [20] "Xs(lat)Fx1 1.5297 0.0726 21.07"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_pop_lat_CTmax_pond_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x26dc4170>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.3972 0.0908 411.8 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.994 8.994 4020 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.147 "
## [22] "lmer.REML = 2.0789e+05 Scale est. = 0.19511 n = 204808"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_pop_lat_CTmax_arboreal_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 40976.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-18.3424 -0.0968 0.2464 0.5930 4.3570 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3143 0.5606 "
## [12] " genus (Intercept) 2.9902 1.7292 "
## [13] " Xr s(lat) 81.5595 9.0310 "
## [14] " Residual 0.2712 0.5207 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.4897 0.1346 278.508"
## [20] "Xs(lat)Fx1 -1.1780 0.1596 -7.382"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_pop_lat_CTmax_arboreal_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2ef16ec8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.4897 0.1346 278.5 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.972 8.972 949.9 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0571 "
## [22] "lmer.REML = 40977 Scale est. = 0.27118 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_pop_lat_CTmax_arboreal_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 39790.3"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.8778 -0.0851 0.2543 0.6113 5.3014 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3072 0.5542 "
## [12] " genus (Intercept) 2.9693 1.7232 "
## [13] " Xr s(lat) 84.3615 9.1849 "
## [14] " Residual 0.2114 0.4598 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.5942 0.1341 280.376"
## [20] "Xs(lat)Fx1 -1.3244 0.1493 -8.873"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_pop_lat_CTmax_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x5a49c8d0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.5942 0.1341 280.4 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.976 8.976 1039 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0575 "
## [22] "lmer.REML = 39790 Scale est. = 0.21138 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_pop_lat_CTmax_arboreal_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 41496.1"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.6454 -0.0669 0.2564 0.6181 7.3854 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.2998 0.5475 "
## [12] " genus (Intercept) 2.9329 1.7126 "
## [13] " Xr s(lat) 67.7798 8.2328 "
## [14] " Residual 0.1498 0.3870 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.7647 0.1332 283.430"
## [20] "Xs(lat)Fx1 -0.9871 0.1373 -7.192"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_pop_lat_CTmax_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2ee9c380>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.7647 0.1332 283.4 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.974 8.974 1103 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0593 "
## [22] "lmer.REML = 41496 Scale est. = 0.14977 n = 56210"
Visualize the results
# Find limits for colours of the plot
CTmax_min <- min(min(pop_sub_current$CTmax, na.rm = TRUE), min(pop_sub_future4C$CTmax,
na.rm = TRUE), min(pop_arb_current$CTmax, na.rm = TRUE), min(pop_arb_future4C$CTmax,
na.rm = TRUE), min(pop_pond_current$CTmax, na.rm = TRUE), min(pop_pond_future4C$CTmax,
na.rm = TRUE))
CTmax_max <- max(max(pop_sub_current$CTmax, na.rm = TRUE), max(pop_sub_future4C$CTmax,
na.rm = TRUE), max(pop_arb_current$CTmax, na.rm = TRUE), max(pop_arb_future4C$CTmax,
na.rm = TRUE), max(pop_pond_current$CTmax, na.rm = TRUE), max(pop_pond_future4C$CTmax,
na.rm = TRUE))
Vegetated substrate
# Load model predictions
pred_sub_current <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_substrate_current.rds")
pred_sub_future2C <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_substrate_future2C.rds")
pred_sub_future4C <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_substrate_future4C.rds")
pop_CTmax_sub <- ggplot() + geom_point(data = pop_sub_future4C, aes(x = lat, y = CTmax),
colour = "#EF4187", shape = 20, alpha = 0.85, size = 2) + geom_point(data = pop_sub_future2C,
aes(x = lat, y = CTmax), colour = "#FAA43A", shape = 20, alpha = 0.85, size = 2) +
geom_point(data = pop_sub_current, aes(x = lat, y = CTmax), colour = "#5DC8D9",
shape = 20, alpha = 0.85, size = 2) + geom_ribbon(data = pred_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_sub_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("CTmax") + ylim(CTmax_min, CTmax_max) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_CTmax_sub
Figure A11: Latitudinal variation in CTmax for amphibians on terrestrial conditions. CTmax is the mean predicted CTmax across the the warmest quarters of 2006-2015. Blue ribbons and points depict CTmax in current microclimates. Orange ribbons and points depict CTmax in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict CTmax in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
Pond or wetland
# Load model predictions
pred_pond_current <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_pond_current.rds")
pred_pond_future2C <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_pond_future2C.rds")
pred_pond_future4C <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_pond_future4C.rds")
pop_CTmax_pond <- ggplot() + geom_point(data = pop_pond_future4C, aes(x = lat, y = CTmax),
colour = "#EF4187", shape = 20, alpha = 0.85, size = 2) + geom_point(data = pop_pond_future2C,
aes(x = lat, y = CTmax), colour = "#FAA43A", shape = 20, alpha = 0.85, size = 2) +
geom_point(data = pop_pond_current, aes(x = lat, y = CTmax), colour = "#5DC8D9",
shape = 20, alpha = 0.85, size = 2) + geom_ribbon(data = pred_pond_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_pond_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_pond_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("CTmax") + ylim(CTmax_min, CTmax_max) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_CTmax_pond
Figure A12: Latitudinal variation in CTmax for amphibians in water
bodies. CTmax is the mean predicted CTmax across the the warmest
quarters of 2006-2015. Blue ribbons and points depict CTmax in current
microclimates. Orange ribbons and points depict CTmax in future climates
with 2 degrees Celsius above preindustrial levels. Pink ribbons and
points depict CTmax in future climates with 4 degrees Celsius above
preindustrial levels. Ribbons delimit the lower and upper 95% confidence
intervals predicted from generalised additive mixed models.
Above-ground vegetation
# Load model predictions
pred_arb_current <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_arboreal_current.rds")
pred_arb_future2C <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_arboreal_future2C.rds")
pred_arb_future4C <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_arboreal_future4C.rds")
pop_CTmax_arb <- ggplot() + geom_point(data = pop_arb_future4C, aes(x = lat, y = CTmax),
colour = "#EF4187", shape = 20, alpha = 0.85, size = 2) + geom_point(data = pop_arb_future2C,
aes(x = lat, y = CTmax), colour = "#FAA43A", shape = 20, alpha = 0.85, size = 2) +
geom_point(data = pop_arb_current, aes(x = lat, y = CTmax), colour = "#5DC8D9",
shape = 20, alpha = 0.85, size = 2) + geom_ribbon(data = pred_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_arb_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("CTmax") + ylim(CTmax_min, CTmax_max) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_CTmax_arb
Figure A13: Latitudinal variation in CTmax for amphibians in above-ground vegetation. CTmax is the mean predicted CTmax across the the warmest quarters of 2006-2015. Blue ribbons and points depict CTmax in current microclimates. Orange ribbons and points depict CTmax in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict CTmax in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
All habitats
all_habitats <- (pop_CTmax_sub/pop_CTmax_pond/pop_CTmax_arb/plot_layout(ncol = 1))
all_habitats
Figure A14: Latitudinal variation in CTmax for amphibians on terrestrial conditions (top panel), in water bodies (middle panel) or in above-ground vegetation (bottom panel). CTmax is the mean predicted CTmax across the the warmest quarters of 2006-2015. Blue ribbons and points depict CTmax in current microclimates. Orange ribbons and points depict CTmax in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict CTmax in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
Bayesian linear mixed models
Here, we used Bayesian linear mixed models to estimate the mean CTmax in each microhabitat and climatic scenario. These models account for the different degrees of phylogenetic relatedness and decompose sources of variation among species.
Run the models
Full dataset
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
pop_pond_current %>% mutate(habitat_scenario = "pond_current"),
pop_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
pop_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
all_data$species <- all_data$tip.label
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
# Run models with MCMCglmm
prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G3 = list(V = 1, fix = 1)))
set.seed(123)
# Intercept-less model, variation between microhabitat and climate scenarios
model_MCMC <- MCMCglmm(CTmax ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(CTmax_se):units, # Species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC, file = "RData/Models/CTmax/model_MCMCglmm_CTmax.rds")
saveRDS(predictions, file = "RData/Models/CTmax/predictions_MCMCglmm_CTmax.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
# The contrast model could not estimate the phylogenetic effect (likely because CTmax values are rather close).
# Therefore, only a the species-level random effect was kept
prior2 <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, fix = 1)))
model_MCMC_contrast <- MCMCglmm(CTmax ~ relevel(habitat_scenario, ref = "substrate_current"), # substrate_current as the reference level
random = ~ species + idh(CTmax_se):units,
singular.ok=TRUE,
prior = prior2,
verbose=FALSE,
data = all_data)
saveRDS(model_MCMC_contrast, file = "RData/Models/CTmax/model_MCMCglmm_CTmax_contrast.rds")
Subset of overheating populations
Here, we only focus on the populations that are predicted to overheat.
# Reload dataset without pond data
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C")
)
# Filter to populations predicted to overheat
all_data$habitat_scenario <- as.character(all_data$habitat_scenario)
all_data$species <- all_data$tip.label
all_data <- filter(all_data, overheating_risk > 0)
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
# Run model
model_CTmax <- MCMCglmm(CTmax ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(CTmax_se):units, # Species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
nitt = 600000,
thin = 500,
burnin = 100000,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_CTmax,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_CTmax, file = "RData/Models/CTmax/model_MCMCglmm_CTmax_overheating_pop.rds")
saveRDS(predictions, file = "RData/Models/CTmax/predictions_MCMCglmm_CTmax_overheating_pop.rds")
Model summaries
Full dataset
# Model summary
model_MCMC_CTmax <- readRDS("RData/Models/CTmax/model_MCMCglmm_CTmax.rds")
summary(model_MCMC_CTmax)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: -1831730
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 0.07132 0.05993 0.08373 365.2
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 2.958 2.517 3.676 878.2
##
## ~idh(CTmax_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## CTmax_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.005869 0.0056 0.006203 10.81
##
## Location effects: CTmax ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 35.215 6.944 59.413 1000 0.020 *
## habitat_scenarioarboreal_future2C 35.291 7.025 59.494 1000 0.020 *
## habitat_scenarioarboreal_future4C 35.414 7.152 59.620 1000 0.018 *
## habitat_scenariopond_current 35.366 7.101 59.568 1000 0.018 *
## habitat_scenariopond_future2C 35.456 7.189 59.658 1000 0.018 *
## habitat_scenariopond_future4C 35.587 7.319 59.789 1000 0.018 *
## habitat_scenariosubstrate_current 35.216 6.949 59.416 1000 0.020 *
## habitat_scenariosubstrate_future2C 35.297 7.030 59.494 1000 0.020 *
## habitat_scenariosubstrate_future4C 35.429 7.162 59.629 1000 0.018 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model prediction
print(readRDS("RData/Models/CTmax/predictions_MCMCglmm_CTmax.rds"))
## habitat_scenario prediction lower.HPD upper.HPD
## 1 arboreal_current 35.55511 6.944097 59.41312
## 2 arboreal_future2C 35.63430 7.025288 59.49365
## 3 arboreal_future4C 35.75048 7.151952 59.62037
## 4 pond_current 35.70696 7.100851 59.56830
## 5 pond_future2C 35.79570 7.189272 59.65817
## 6 pond_future4C 35.92880 7.318508 59.78906
## 7 substrate_current 35.55639 6.948867 59.41632
## 8 substrate_future2C 35.63727 7.029510 59.49434
## 9 substrate_future4C 35.76828 7.161976 59.62927
# Model diagnostics
plot(model_MCMC_CTmax)
# Model summary (contrasts)
model_MCMC_CTmax_contrast <- readRDS("RData/Models/CTmax/model_MCMCglmm_CTmax_contrast.rds")
summary(model_MCMC_CTmax_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: -1825856
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 4.125 3.775 4.706 1000
##
## ~idh(CTmax_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## CTmax_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.005893 0.005641 0.006153 13.78
##
## Location effects: CTmax ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 37.067199
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.001108
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.075286
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.199362
## relevel(habitat_scenario, ref = "substrate_current")pond_current 0.150410
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.240008
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.371919
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.081434
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.212896
## l-95% CI
## (Intercept) 36.240948
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.013147
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.064217
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.190687
## relevel(habitat_scenario, ref = "substrate_current")pond_current 0.144416
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.234570
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.366573
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.076287
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.207861
## u-95% CI
## (Intercept) 38.037866
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.011606
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.084346
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.207925
## relevel(habitat_scenario, ref = "substrate_current")pond_current 0.154809
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.244828
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.377168
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.086811
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.218235
## eff.samp
## (Intercept) 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 1319.3
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 668.1
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1000.0
## pMCMC
## (Intercept) <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.856
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Subset of overheating populations
# Model summary
model_MCMC_CTmax <- readRDS("RData/Models/CTmax/model_MCMCglmm_CTmax_overheating_pop.rds")
summary(model_MCMC_CTmax)
##
## Iterations = 100001:599501
## Thinning interval = 500
## Sample size = 1000
##
## DIC: -30909.86
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 0.06137 8.176e-08 0.1653 148.3
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 6.303 4.936 7.606 588.3
##
## ~idh(CTmax_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## CTmax_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.0004679 0.0001382 0.0009026 340.1
##
## Location effects: CTmax ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 35.44 33.42 37.56 1000 <0.001
## habitat_scenarioarboreal_future2C 35.52 33.33 37.48 1000 <0.001
## habitat_scenarioarboreal_future4C 35.64 33.46 37.62 1000 <0.001
## habitat_scenariosubstrate_current 35.45 33.26 37.40 1000 <0.001
## habitat_scenariosubstrate_future2C 35.53 33.34 37.49 1000 <0.001
## habitat_scenariosubstrate_future4C 35.64 33.45 37.60 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model prediction
print(readRDS("RData/Models/CTmax/predictions_MCMCglmm_CTmax_overheating_pop.rds"))
## habitat_scenario prediction lower.HPD upper.HPD
## 1 arboreal_current 35.47239 33.41860 37.56471
## 2 arboreal_future2C 35.55301 33.32855 37.47915
## 3 arboreal_future4C 35.66557 33.46189 37.61679
## 4 substrate_current 35.48424 33.25732 37.40287
## 5 substrate_future2C 35.55916 33.34403 37.48526
## 6 substrate_future4C 35.66107 33.45251 37.59708
# Model diagnostics
plot(model_MCMC_CTmax)
Community-level patterns
Load the data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current.rds")
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C.rds")
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C.rds")
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
Generalized additive mixed models
Here, we investigate community-level latitudinal patterns in CTmax using generalized additive models.
Run the models
# Function to run community-level CTmax models in parallel
run_community_CTmax_analysis <- function(dataset, habitat_scenario) {
data <- dataset
# Run model
model <- gamm4::gamm4(community_CTmax ~ s(lat, bs = "tp"), data = data, weights = 1/(data$community_CTmax_se^2),
REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
community_CTmax = NA, community_CTmax_se = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$CTmax_pred <- pred$fit
new_data$CTmax_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = CTmax_pred + 1.96 * CTmax_pred_se, lower = CTmax_pred -
1.96 * CTmax_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/CTmax/summary_GAM_community_lat_CTmax_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/CTmax/summary_MER_community_lat_CTmax_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/CTmax/predictions_community_lat_CTmax_",
habitat_scenario, ".rds"))
}
# Create a list of all the datasets
dataset_list <- list(arboreal_current = community_arb_current, arboreal_future2C = community_arb_future2C,
arboreal_future4C = community_arb_future4C, pond_current = community_pond_current,
pond_future2C = community_pond_future2C, pond_future4C = community_pond_future4C,
substrate_current = community_sub_current, substrate_future2C = community_sub_future2C,
substrate_future4C = community_sub_future4C)
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_community_CTmax_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_community_lat_CTmax_substrate_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 53126.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-4.3022 -0.5251 -0.1584 0.2617 9.1728 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 163.060 12.769 "
## [12] " Residual 1.972 1.404 "
## [13] "Number of obs: 14090, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 37.14118 0.01174 3162.56"
## [18] "Xs(lat)Fx1 -3.64668 0.51145 -7.13"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.090"
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_community_lat_CTmax_substrate_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x13dab800>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.14118 0.01174 3163 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.912 8.912 5772 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.777 "
## [22] "lmer.REML = 53126 Scale est. = 1.9724 n = 14090"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_community_lat_CTmax_substrate_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 51643.1"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-4.4722 -0.5490 -0.1577 0.2926 9.0591 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 170.2 13.045 "
## [12] " Residual 2.4 1.549 "
## [13] "Number of obs: 14090, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 37.27164 0.01098 3395.674"
## [18] "Xs(lat)Fx1 -3.41781 0.50058 -6.828"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.094"
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_community_lat_CTmax_substrate_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x10d6c308>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.27164 0.01098 3396 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.921 8.921 6020 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.783 "
## [22] "lmer.REML = 51643 Scale est. = 2.3997 n = 14090"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_community_lat_CTmax_substrate_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 50443"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-5.2013 -0.5499 -0.1451 0.3414 8.1019 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 171.321 13.089 "
## [12] " Residual 3.054 1.748 "
## [13] "Number of obs: 14090, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 37.49911 0.01029 3644.06"
## [18] "Xs(lat)Fx1 -2.81333 0.47848 -5.88"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.089"
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_community_lat_CTmax_substrate_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe89c468>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.49911 0.01029 3644 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.93 8.93 6292 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.789 "
## [22] "lmer.REML = 50443 Scale est. = 3.054 n = 14090"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_community_lat_CTmax_pond_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 52123.7"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-4.5524 -0.5793 -0.1873 0.2393 8.6135 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 177.303 13.316 "
## [12] " Residual 2.651 1.628 "
## [13] "Number of obs: 14091, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 37.38098 0.01009 3703.151"
## [18] "Xs(lat)Fx1 -2.43644 0.47934 -5.083"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.108"
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_community_lat_CTmax_pond_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x85be8a0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.38098 0.01009 3703 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.91 8.91 6479 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.802 "
## [22] "lmer.REML = 52124 Scale est. = 2.6515 n = 14091"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_community_lat_CTmax_pond_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 51932.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-5.1306 -0.5639 -0.1658 0.3019 7.8297 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 189.502 13.766 "
## [12] " Residual 3.084 1.756 "
## [13] "Number of obs: 14091, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 37.53779 0.01043 3597.866"
## [18] "Xs(lat)Fx1 -2.18132 0.47226 -4.619"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.093"
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_community_lat_CTmax_pond_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe4f4618>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.53779 0.01043 3598 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.915 8.915 6266 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.79 "
## [22] "lmer.REML = 51932 Scale est. = 3.0836 n = 14091"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_community_lat_CTmax_pond_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 55466.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-6.6624 -0.5141 -0.0967 0.3408 9.0554 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 303.316 17.416 "
## [12] " Residual 3.488 1.868 "
## [13] "Number of obs: 14091, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 37.70931 0.01308 2882.235"
## [18] "Xs(lat)Fx1 -1.36614 0.47213 -2.894"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.059"
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_community_lat_CTmax_pond_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x10a9fca0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.70931 0.01308 2882 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.933 8.933 4441 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.711 "
## [22] "lmer.REML = 55467 Scale est. = 3.4879 n = 14091"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_community_lat_CTmax_arboreal_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 27422.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-7.9526 -0.2275 0.0530 0.3765 5.2504 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 268.666 16.391 "
## [12] " Residual 1.405 1.185 "
## [13] "Number of obs: 6614, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 38.72989 0.02076 1865.699"
## [18] "Xs(lat)Fx1 -2.41397 0.50913 -4.741"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.059"
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_community_lat_CTmax_arboreal_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xb11e548>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 38.72989 0.02076 1866 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.93 8.93 1166 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.608 "
## [22] "lmer.REML = 27423 Scale est. = 1.405 n = 6614"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_community_lat_CTmax_arboreal_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 26813.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-6.8921 -0.2294 0.0713 0.4287 5.4185 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 283.184 16.828 "
## [12] " Residual 1.895 1.377 "
## [13] "Number of obs: 6614, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 38.80794 0.01952 1987.74"
## [18] "Xs(lat)Fx1 -3.04900 0.52029 -5.86"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.033"
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_community_lat_CTmax_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xba0a730>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 38.80794 0.01952 1988 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.934 8.934 1125 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.598 "
## [22] "lmer.REML = 26813 Scale est. = 1.8949 n = 6614"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/summary_MER_community_lat_CTmax_arboreal_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 25252.7"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-6.1126 -0.2827 0.1085 0.4439 6.6635 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 286.262 16.919 "
## [12] " Residual 2.595 1.611 "
## [13] "Number of obs: 6614, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 38.98868 0.01735 2247.506"
## [18] "Xs(lat)Fx1 -2.83927 0.50365 -5.637"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 0.000 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/summary_GAM_community_lat_CTmax_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x116331b0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 38.98868 0.01735 2248 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.939 8.939 1147 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.602 "
## [22] "lmer.REML = 25253 Scale est. = 2.5948 n = 6614"
Visualize the results
Load data
# Substrate data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells.rds")
# Pond data
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current_clipped_cells.rds")
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C_clipped_cells.rds")
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C_clipped_cells.rds")
# Above-ground vegetation
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_clipped_cells.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_clipped_cells.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_clipped_cells.rds")
# Upload high resolution Earth data
world <- ne_countries(scale = "large", returnclass = "sf")
world <- world %>%
filter(!grepl("Antarctica", name))
st_crs(world) <- st_crs(community_sub_current)
# Find limits for colours of the plot
CTmax_min <- min(min(community_sub_current$community_CTmax, na.rm = TRUE), min(community_sub_future4C$community_CTmax,
na.rm = TRUE), min(community_arb_current$community_CTmax, na.rm = TRUE), min(community_arb_future4C$community_CTmax,
na.rm = TRUE), min(community_pond_current$community_CTmax, na.rm = TRUE), min(community_pond_future4C$community_CTmax,
na.rm = TRUE))
CTmax_max <- max(max(community_sub_current$community_CTmax, na.rm = TRUE), max(community_sub_future4C$community_CTmax,
na.rm = TRUE), max(community_arb_current$community_CTmax, na.rm = TRUE), max(community_arb_future4C$community_CTmax,
na.rm = TRUE), max(community_pond_current$community_CTmax, na.rm = TRUE), max(community_pond_future4C$community_CTmax,
na.rm = TRUE))
Vegetated substrate
# Current
map_sub_CTmax_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_current,
aes(fill = community_CTmax), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "inferno",
name = "CTmax", na.value = "gray1", breaks = seq(25, 50, by = 5), limits = c(CTmax_min,
CTmax_max), begin = 0, end = 1) + theme_void() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 2, colour = "#5DC8D9"))
# Future +2C
map_sub_CTmax_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_sub_future2C, aes(fill = community_CTmax), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "inferno", na.value = "gray1", breaks = seq(25,
50, by = 5), limits = c(CTmax_min, CTmax_max), begin = 0, end = 1) + theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#FAA43A"))
# Future +4C
map_sub_CTmax_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_sub_future4C, aes(fill = community_CTmax), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "inferno", na.value = "gray1", breaks = seq(25,
50, by = 5), limits = c(CTmax_min, CTmax_max), begin = 0, end = 1) + theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_sub_current <- readRDS("RData/Models/CTmax/predictions_community_lat_CTmax_substrate_current.rds")
pred_community_sub_future2C <- readRDS("RData/Models/CTmax/predictions_community_lat_CTmax_substrate_future2C.rds")
pred_community_sub_future4C <- readRDS("RData/Models/CTmax/predictions_community_lat_CTmax_substrate_future4C.rds")
lat_sub_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_sub_future4C, aes(x = lat, y = community_CTmax),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_sub_future2C,
aes(x = lat, y = community_CTmax), alpha = 0.85, col = "#FAA43A", shape = ".") +
geom_point(data = community_sub_current, aes(x = lat, y = community_CTmax), alpha = 0.85,
col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black",
size = 0.1) + geom_ribbon(data = pred_community_sub_future2C, aes(x = lat, ymin = lower,
ymax = upper), fill = "#FAA43A", colour = "black", size = 0.1) + geom_ribbon(data = pred_community_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black",
size = 0.1) + xlim(-55.00099, 72.00064) + ylim(CTmax_min, CTmax_max) + xlab("") +
ylab("CTmax") + coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(size = 12), axis.text.x = element_text(color = "black",
size = 11), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
substrate_plot <- (map_sub_CTmax_current + map_sub_CTmax_future2C + map_sub_CTmax_future4C +
lat_sub_all + plot_layout(ncol = 4))
substrate_plot
Figure A15: Community-level patterns in CTmax for amphibians on terrestrial conditions. CTmax estimates were averaged within communities (1-degree grid cells). The first column refer to current climates (blue), the middle column assume +2C of warming above pre-industrial levels (orange), and the right column assume +4C of warming above pre-industrial levels (pink). The right panel depicts latitudinal patterns in CTmax in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (pink). Black colour depicts areas with no data.
Pond or wetland
# Current
map_pond_CTmax_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_pond_current, aes(fill = community_CTmax), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "inferno", name = "CTmax", na.value = "gray1",
breaks = seq(25, 50, by = 5), limits = c(CTmax_min, CTmax_max), begin = 0, end = 1) +
theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +2C
map_pond_CTmax_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_pond_future2C, aes(fill = community_CTmax), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "inferno", na.value = "gray1", breaks = seq(25,
50, by = 5), limits = c(CTmax_min, CTmax_max), begin = 0, end = 1) + theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#FAA43A"))
# Future +4C
map_pond_CTmax_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_pond_future4C, aes(fill = community_CTmax), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "inferno", na.value = "gray1", breaks = seq(25,
50, by = 5), limits = c(CTmax_min, CTmax_max), begin = 0, end = 1) + theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_pond_current <- readRDS("RData/Models/CTmax/predictions_community_lat_CTmax_substrate_current.rds")
pred_community_pond_future2C <- readRDS("RData/Models/CTmax/predictions_community_lat_CTmax_substrate_future2C.rds")
pred_community_pond_future4C <- readRDS("RData/Models/CTmax/predictions_community_lat_CTmax_substrate_future4C.rds")
lat_pond_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_pond_future4C, aes(x = lat, y = community_CTmax),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_pond_future2C,
aes(x = lat, y = community_CTmax), alpha = 0.85, col = "#FAA43A", shape = ".") +
geom_point(data = community_pond_current, aes(x = lat, y = community_CTmax),
alpha = 0.85, col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_pond_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black",
size = 0.1) + geom_ribbon(data = pred_community_pond_future2C, aes(x = lat, ymin = lower,
ymax = upper), fill = "#FAA43A", colour = "black", size = 0.1) + geom_ribbon(data = pred_community_pond_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black",
size = 0.1) + xlim(-55.00099, 72.00064) + ylim(CTmax_min, CTmax_max) + xlab("") +
ylab("CTmax") + coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(size = 12), axis.text.x = element_text(color = "black",
size = 11), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
pond_plot <- (map_pond_CTmax_current + map_pond_CTmax_future2C + map_pond_CTmax_future4C +
lat_pond_all + plot_layout(ncol = 4))
pond_plot
Figure A16: Community-level patterns in CTmax for amphibians in water bodies. CTmax estimates were averaged within communities (1-degree grid cells). The first column refer to current climates (blue), the middle column assume +2C of warming above pre-industrial levels (orange), and the right column assume +4C of warming above pre-industrial levels (pink). The right panel depicts latitudinal patterns in CTmax in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (pink). Black colour depicts areas with no data.
Above-ground vegetation
# Current
map_arb_CTmax_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_current,
aes(fill = community_CTmax), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "inferno",
name = "CTmax", na.value = "gray1", breaks = seq(25, 50, by = 5), limits = c(CTmax_min,
CTmax_max), begin = 0, end = 1) + theme_void() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 2, colour = "#5DC8D9"))
# Future +2C
map_arb_CTmax_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_arb_future2C, aes(fill = community_CTmax), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "inferno", na.value = "gray1", breaks = seq(25,
50, by = 5), limits = c(CTmax_min, CTmax_max), begin = 0, end = 1) + theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#FAA43A"))
# Future +4C
map_arb_CTmax_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_arb_future4C, aes(fill = community_CTmax), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(name = "CTmax", option = "inferno", na.value = "gray1",
breaks = seq(25, 50, by = 5), limits = c(CTmax_min, CTmax_max), begin = 0, end = 1) +
theme_void() + theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "bottom", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_arb_current <- readRDS("RData/Models/CTmax/predictions_community_lat_CTmax_arboreal_current.rds")
pred_community_arb_future2C <- readRDS("RData/Models/CTmax/predictions_community_lat_CTmax_arboreal_future2C.rds")
pred_community_arb_future4C <- readRDS("RData/Models/CTmax/predictions_community_lat_CTmax_arboreal_future4C.rds")
lat_arb_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_arb_future4C, aes(x = lat, y = community_CTmax),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_arb_future2C,
aes(x = lat, y = community_CTmax), alpha = 0.85, col = "#FAA43A", shape = ".") +
geom_point(data = community_arb_current, aes(x = lat, y = community_CTmax), alpha = 0.85,
col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black",
size = 0.1) + geom_ribbon(data = pred_community_arb_future2C, aes(x = lat, ymin = lower,
ymax = upper), fill = "#FAA43A", colour = "black", size = 0.1) + geom_ribbon(data = pred_community_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black",
size = 0.1) + xlim(-55.00099, 72.00064) + ylim(CTmax_min, CTmax_max) + xlab("") +
ylab("CTmax") + coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(size = 12), axis.text.x = element_text(color = "black",
size = 11), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
arboreal_plot <- (map_arb_CTmax_current + map_arb_CTmax_future2C + map_arb_CTmax_future4C +
lat_arb_all + plot_layout(ncol = 4))
arboreal_plot
Figure A17: Community-level patterns in CTmax for amphibians in above-ground vegetation. CTmax estimates were averaged within communities (1-degree grid cells). The first column refer to current climates (blue), the middle column assume +2C of warming above pre-industrial levels (orange), and the right column assume +4C of warming above pre-industrial levels (pink). The right panel depicts latitudinal patterns in CTmax in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (pink). Black colour depicts areas with no data.
All habitats
all_habitats <- (substrate_plot/pond_plot/arboreal_plot/plot_layout(ncol = 1))
all_habitats
Figure A18: Community-level patterns in CTmax for amphibians on terrestrial conditions (top row), in water bodies (middle row), or in above-ground vegetation (bottom row). CTmax estimates were averaged within communities (1-degree grid cells). The first column refer to current climates (blue), the middle column assume +2C of warming above pre-industrial levels (orange), and the right column assume +4C of warming above pre-industrial levels (pink). The right panel depicts latitudinal patterns in CTmax in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (pink). Black colour depicts areas with no data.
Bayesian linear mixed models
Here, we used Bayesian linear mixed models to estimate the mean thermal safety margin in each microhabitat and climatic scenario. These models account for the different degrees of phylogenetic relatedness and decompose sources of variation among species.
Run the models
Full dataset
all_community_data <- bind_rows(
community_sub_current %>% mutate(habitat_scenario = "substrate_current"),
community_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
community_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
community_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
community_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
community_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
community_pond_current %>% mutate(habitat_scenario = "pond_current"),
community_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
community_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
all_community_data <- as.data.frame(all_community_data)
prior_community <- list(R = list(V = 1, nu = 0.002),
G = list(G4 = list(V = 1, fix = 1)))
# Intercept-less model
model_MCMC_community <- MCMCglmm(community_CTmax ~ habitat_scenario - 1, # No intercept
random = ~ idh(community_CTmax_se):units,
singular.ok=TRUE,
prior = prior_community,
verbose=FALSE,
data = all_community_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC_community,
by="habitat_scenario",
specs="habitat_scenario",
data=all_community_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC_community, file = "RData/Models/CTmax/model_MCMCglmm_community_CTmax.rds")
saveRDS(predictions, file = "RData/Models/CTmax/predictions_MCMCglmm_community_CTmax.rds")
# Contrast
all_community_data$habitat_scenario <- as.factor(all_community_data$habitat_scenario)
model_MCMC_community_contrast <- MCMCglmm(community_CTmax ~ relevel(habitat_scenario, ref = "substrate_current"), # Contrast
random = ~ idh(community_CTmax_se):units,
singular.ok=TRUE,
prior = prior_community,
verbose=FALSE,
data = all_community_data)
saveRDS(model_MCMC_community_contrast, file = "RData/Models/CTmax/model_MCMCglmm_community_CTmax_contrast.rds")
Subset of overheating communities
Here, we only focus on the communities that are predicted to overheat.
# Reload dataset without pond data
all_community_data <- bind_rows(community_sub_current %>%
mutate(habitat_scenario = "substrate_current"), community_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), community_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), community_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), community_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), community_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
# Filter to overheating communities
all_community_data$habitat_scenario <- as.character(all_community_data$habitat_scenario)
all_community_data <- filter(all_community_data, n_species_overheating > 0)
# Run model
model_CTmax_community <- MCMCglmm(community_CTmax ~ habitat_scenario - 1, random = ~idh(community_TSM_se):units,
singular.ok = TRUE, prior = prior_community, verbose = FALSE, nitt = 6e+05, thin = 500,
burnin = 1e+05, data = all_community_data)
# Get predictions
predictions <- data.frame(emmeans(model_CTmax_community, by = "habitat_scenario",
specs = "habitat_scenario", data = all_community_data, type = "response"))
predictions <- predictions %>%
rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_CTmax_community, file = "RData/Models/CTmax/model_MCMCglmm_community_CTmax_overheating_communities.rds")
saveRDS(predictions, file = "RData/Models/CTmax/predictions_MCMCglmm_community_CTmax_overheating_communities.rds")
Model summaries
Full dataset
# Model summary
model_MCMC_CTmax <- readRDS("RData/Models/CTmax/model_MCMCglmm_community_CTmax.rds")
summary(model_MCMC_CTmax)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 471662.8
##
## G-structure: ~idh(community_CTmax_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## community_CTmax_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 4.063 4.019 4.111 1000
##
## Location effects: community_CTmax ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 38.69 38.63 38.76 1000.0 <0.001
## habitat_scenarioarboreal_future2C 38.83 38.77 38.89 1000.0 <0.001
## habitat_scenarioarboreal_future4C 39.07 39.02 39.12 1000.0 <0.001
## habitat_scenariopond_current 36.79 36.75 36.83 1000.0 <0.001
## habitat_scenariopond_future2C 36.98 36.94 37.02 1000.0 <0.001
## habitat_scenariopond_future4C 37.13 37.09 37.16 1126.2 <0.001
## habitat_scenariosubstrate_current 36.46 36.42 36.50 1000.0 <0.001
## habitat_scenariosubstrate_future2C 36.69 36.66 36.73 1165.1 <0.001
## habitat_scenariosubstrate_future4C 37.01 36.98 37.05 815.5 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariopond_current ***
## habitat_scenariopond_future2C ***
## habitat_scenariopond_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model prediction
print(readRDS("RData/Models/CTmax/predictions_MCMCglmm_community_CTmax.rds"))
## habitat_scenario prediction lower.HPD upper.HPD
## 1 arboreal_current 38.68505 38.62606 38.75544
## 2 arboreal_future2C 38.83369 38.77413 38.89273
## 3 arboreal_future4C 39.06704 39.01503 39.12334
## 4 pond_current 36.79336 36.75493 36.83136
## 5 pond_future2C 36.98145 36.94458 37.01798
## 6 pond_future4C 37.12763 37.08659 37.16412
## 7 substrate_current 36.45701 36.41711 36.49806
## 8 substrate_future2C 36.68814 36.65584 36.73033
## 9 substrate_future4C 37.01236 36.97742 37.05025
# Model diagnostics
plot(model_MCMC_CTmax)
# Model summary (contrasts)
model_MCMC_CTmax_contrast <- readRDS("RData/Models/CTmax/model_MCMCglmm_community_CTmax_contrast.rds")
summary(model_MCMC_CTmax_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 471657.7
##
## G-structure: ~idh(community_CTmax_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## community_CTmax_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 4.065 4.02 4.111 1000
##
## Location effects: community_CTmax ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 36.4561
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 2.2305
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 2.3764
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 2.6108
## relevel(habitat_scenario, ref = "substrate_current")pond_current 0.3375
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.5251
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.6708
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.2316
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.5552
## l-95% CI
## (Intercept) 36.4109
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 2.1546
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 2.3041
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 2.5410
## relevel(habitat_scenario, ref = "substrate_current")pond_current 0.2816
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.4682
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.6200
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.1815
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.4987
## u-95% CI
## (Intercept) 36.4928
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 2.3101
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 2.4496
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 2.6825
## relevel(habitat_scenario, ref = "substrate_current")pond_current 0.3906
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.5795
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.7264
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.2869
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.6124
## eff.samp
## (Intercept) 1000
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 1107
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1078
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1000
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1018
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1132
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1000
## pMCMC
## (Intercept) <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Subset of overheating communities
# Model summary
model_MCMC_CTmax <- readRDS("RData/Models/CTmax/model_MCMCglmm_community_CTmax_overheating_communities.rds")
summary(model_MCMC_CTmax)
##
## Iterations = 100001:599501
## Thinning interval = 500
## Sample size = 1000
##
## DIC: 11013.73
##
## G-structure: ~idh(community_TSM_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## community_TSM_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 4.174 3.881 4.456 1000
##
## Location effects: community_CTmax ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 39.26 38.69 39.77 1000.0 <0.001
## habitat_scenarioarboreal_future2C 39.43 39.03 39.88 1000.0 <0.001
## habitat_scenarioarboreal_future4C 39.76 39.51 40.01 1000.0 <0.001
## habitat_scenariosubstrate_current 38.68 38.37 38.95 1000.0 <0.001
## habitat_scenariosubstrate_future2C 38.74 38.52 38.96 912.4 <0.001
## habitat_scenariosubstrate_future4C 38.44 38.31 38.55 833.6 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model prediction
print(readRDS("RData/Models/CTmax/predictions_MCMCglmm_community_CTmax_overheating_communities.rds"))
## habitat_scenario prediction lower.HPD upper.HPD
## 1 arboreal_current 39.25406 38.68626 39.77482
## 2 arboreal_future2C 39.43976 39.02742 39.88057
## 3 arboreal_future4C 39.74924 39.50627 40.00914
## 4 substrate_current 38.68098 38.36684 38.94522
## 5 substrate_future2C 38.73135 38.51668 38.95778
## 6 substrate_future4C 38.43767 38.31321 38.55352
# Model diagnostics
plot(model_MCMC_CTmax)
Maximum operative body temperature
Here, we investigate the variation in maximum operative body temperatures across habitats and warming scenarios.
This code ran on an HPC environment, where the original code can be found in R/Models/Running_models_max_temp.R and the resources used in pbs/Models/Running_models_max_temp.pbs
Population-level patterns
Load the data
# Load population-level data
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
## Pond
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C.rds")
Generalized additive mixed models
Here, we investigate latitudinal patterns in maximum body temperature using generalized additive models. These models do not account for the phylogenetic relatedness between species, yet they are better at capturing non-linear patterns with latitude. While we could have fitted models with smooth terms using brms or stan, these models exceeded our computational capacities.
Run the models
# Function to run population-level max_temp models in parallel
run_max_temp_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(max_temp ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, weights = 1/(data$max_temp_se^2), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
max_temp = NA, max_temp_se = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$max_temp_pred <- pred$fit
new_data$max_temp_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = max_temp_pred + 1.96 * max_temp_pred_se,
lower = max_temp_pred - 1.96 * max_temp_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model summaries and predictions
saveRDS(summary_gam, file = paste0("RData/Models/max_temp/summary_GAM_pop_lat_max_temp_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/max_temp/summary_MER_pop_lat_max_temp_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/max_temp/predictions_pop_lat_max_temp_",
habitat_scenario, ".rds"))
}
# Create a list of datasets
dataset_list <- list(pond_current = pop_pond_current, pond_future2C = pop_pond_future2C,
pond_future4C = pop_pond_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C, arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
# Run function
results_pop <- future_lapply(names(dataset_list), function(x) {
run_max_temp_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_pop_lat_max_temp_substrate_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 970523.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-15.1972 -0.2173 0.1027 0.4365 5.1313 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.244 1.498 "
## [12] " genus (Intercept) 3.243 1.801 "
## [13] " Xr s(lat) 514.222 22.676 "
## [14] " Residual 6.884 2.624 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 23.91799 0.09766 244.915"
## [20] "Xs(lat)Fx1 1.84149 0.35746 5.152"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_pop_lat_max_temp_substrate_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x27cc69d8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 23.91799 0.09766 244.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.986 8.986 7027 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.62 "
## [22] "lmer.REML = 9.7052e+05 Scale est. = 6.8838 n = 203853"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_pop_lat_max_temp_substrate_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1014454"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.3780 -0.1976 0.0962 0.3968 4.4059 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.376 1.542 "
## [12] " genus (Intercept) 3.078 1.754 "
## [13] " Xr s(lat) 499.461 22.349 "
## [14] " Residual 8.259 2.874 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 24.74313 0.09687 255.439"
## [20] "Xs(lat)Fx1 1.36874 0.39258 3.487"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_pop_lat_max_temp_substrate_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xc8dbd00>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 24.74313 0.09687 255.4 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.982 8.982 6463 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.575 "
## [22] "lmer.REML = 1.0145e+06 Scale est. = 8.2586 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_pop_lat_max_temp_substrate_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1041554"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.5708 -0.2237 0.0911 0.3813 4.2896 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.090 1.446 "
## [12] " genus (Intercept) 2.963 1.721 "
## [13] " Xr s(lat) 500.779 22.378 "
## [14] " Residual 9.580 3.095 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 26.47169 0.09524 277.95"
## [20] "Xs(lat)Fx1 3.01508 0.41474 7.27"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_pop_lat_max_temp_substrate_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xf28d5e8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 26.47169 0.09524 278 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.98 8.98 6215 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.529 "
## [22] "lmer.REML = 1.0416e+06 Scale est. = 9.5802 n = 203853"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_pop_lat_max_temp_pond_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1021784"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-19.9213 -0.2537 0.0951 0.3906 7.7988 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.648 2.156 "
## [12] " genus (Intercept) 7.104 2.665 "
## [13] " Xr s(lat) 452.827 21.280 "
## [14] " Residual 4.941 2.223 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 21.9278 0.1408 155.699"
## [20] "Xs(lat)Fx1 0.5651 0.3864 1.463"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_pop_lat_max_temp_pond_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xcffe7c8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 21.9278 0.1408 155.7 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.981 8.981 6281 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.513 "
## [22] "lmer.REML = 1.0218e+06 Scale est. = 4.941 n = 204808"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_pop_lat_max_temp_pond_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1022036"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-19.1205 -0.2647 0.0918 0.3875 7.5190 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.530 2.128 "
## [12] " genus (Intercept) 6.744 2.597 "
## [13] " Xr s(lat) 516.377 22.724 "
## [14] " Residual 5.046 2.246 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 23.0311 0.1377 167.21"
## [20] "Xs(lat)Fx1 1.8997 0.3885 4.89"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_pop_lat_max_temp_pond_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xf287b28>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 23.0311 0.1377 167.2 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.983 8.983 5598 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.519 "
## [22] "lmer.REML = 1.022e+06 Scale est. = 5.0461 n = 204808"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_pop_lat_max_temp_pond_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1017630"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.8425 -0.2984 0.0858 0.3993 6.9493 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.404 2.099 "
## [12] " genus (Intercept) 6.414 2.533 "
## [13] " Xr s(lat) 536.559 23.164 "
## [14] " Residual 5.180 2.276 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 24.8034 0.1348 184.01"
## [20] "Xs(lat)Fx1 2.8585 0.3900 7.33"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_pop_lat_max_temp_pond_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x27cd5068>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 24.8034 0.1348 184 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.984 8.984 4899 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.506 "
## [22] "lmer.REML = 1.0176e+06 Scale est. = 5.1803 n = 204808"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_pop_lat_max_temp_arboreal_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 218385.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-27.0679 -0.3346 0.0899 0.5178 5.1108 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.489 1.578 "
## [12] " genus (Intercept) 2.937 1.714 "
## [13] " Xr s(lat) 398.989 19.975 "
## [14] " Residual 2.041 1.429 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 2.491e+01 1.566e-01 159.037"
## [20] "Xs(lat)Fx1 8.231e-04 3.644e-01 0.002"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_pop_lat_max_temp_arboreal_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2b1843b0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 24.9051 0.1566 159 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.958 8.958 2177 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0809 "
## [22] "lmer.REML = 2.1839e+05 Scale est. = 2.0412 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_pop_lat_max_temp_arboreal_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 218039.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-31.1293 -0.3508 0.0852 0.5182 5.5533 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.292 1.514 "
## [12] " genus (Intercept) 2.641 1.625 "
## [13] " Xr s(lat) 457.378 21.386 "
## [14] " Residual 1.985 1.409 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 25.6767 0.1494 171.915"
## [20] "Xs(lat)Fx1 -0.4224 0.3601 -1.173"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.008 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_pop_lat_max_temp_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x5ae08598>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 25.6767 0.1494 171.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.964 8.964 2299 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.025 "
## [22] "lmer.REML = 2.1804e+05 Scale est. = 1.9852 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_pop_lat_max_temp_arboreal_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 223065.6"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-30.6825 -0.4150 0.0965 0.5336 4.7667 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.208 1.486 "
## [12] " genus (Intercept) 2.315 1.522 "
## [13] " Xr s(lat) 482.097 21.957 "
## [14] " Residual 2.227 1.492 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 27.1886 0.1424 190.9"
## [20] "Xs(lat)Fx1 1.8764 0.3753 5.0"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.008 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_pop_lat_max_temp_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x332bf3e0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 27.1886 0.1424 190.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.963 8.963 1855 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0331 "
## [22] "lmer.REML = 2.2307e+05 Scale est. = 2.227 n = 56210"
Visualize the results
# Find limits for colours of the plot
max_temp_min <- min(min(pop_sub_current$max_temp, na.rm = TRUE), min(pop_sub_future4C$max_temp,
na.rm = TRUE), min(pop_arb_current$max_temp, na.rm = TRUE), min(pop_arb_future4C$max_temp,
na.rm = TRUE), min(pop_pond_current$max_temp, na.rm = TRUE), min(pop_pond_future4C$max_temp,
na.rm = TRUE))
max_temp_max <- max(max(pop_sub_current$max_temp, na.rm = TRUE), max(pop_sub_future4C$max_temp,
na.rm = TRUE), max(pop_arb_current$max_temp, na.rm = TRUE), max(pop_arb_future4C$max_temp,
na.rm = TRUE), max(pop_pond_current$max_temp, na.rm = TRUE), max(pop_pond_future4C$max_temp,
na.rm = TRUE))
Vegetated substrate
# Load model predictions
pred_sub_current <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_substrate_current.rds")
pred_sub_future2C <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_substrate_future2C.rds")
pred_sub_future4C <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_substrate_future4C.rds")
pop_max_temp_sub <- ggplot() + geom_point(data = pop_sub_future4C, aes(x = lat, y = max_temp),
colour = "#EF4187", shape = 20, alpha = 0.85, size = 2) + geom_point(data = pop_sub_future2C,
aes(x = lat, y = max_temp), colour = "#FAA43A", shape = 20, alpha = 0.85, size = 2) +
geom_point(data = pop_sub_current, aes(x = lat, y = max_temp), colour = "#5DC8D9",
shape = 20, alpha = 0.85, size = 2) + geom_ribbon(data = pred_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_sub_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("Body temperature") + ylim(max_temp_min, max_temp_max) +
scale_x_continuous(breaks = c(-50, -25, 0, 25, 50), limits = c(-55.00099, 72.00064)) +
theme_classic() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_max_temp_sub
Figure A19: Latitudinal variation in maximum operative body temperatures for amphibians on terrestrial conditions. Body temperatures are averaged across the the warmest quarters of 2006-2015. Blue ribbons and points depict body temperatures in current microclimates. Orange ribbons and points depict body temperatures in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict body temperatures in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
Pond or wetland
# Load model predictions
pred_pond_current <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_pond_current.rds")
pred_pond_future2C <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_pond_future2C.rds")
pred_pond_future4C <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_pond_future4C.rds")
pop_max_temp_pond <- ggplot() + geom_point(data = pop_pond_future4C, aes(x = lat,
y = max_temp), colour = "#EF4187", shape = 20, alpha = 0.85, size = 2) + geom_point(data = pop_pond_future2C,
aes(x = lat, y = max_temp), colour = "#FAA43A", shape = 20, alpha = 0.85, size = 2) +
geom_point(data = pop_pond_current, aes(x = lat, y = max_temp), colour = "#5DC8D9",
shape = 20, alpha = 0.85, size = 2) + geom_ribbon(data = pred_pond_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_pond_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_pond_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("Body temperature") + ylim(max_temp_min, max_temp_max) +
scale_x_continuous(breaks = c(-50, -25, 0, 25, 50), limits = c(-55.00099, 72.00064)) +
theme_classic() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_max_temp_pond
Figure A20: Latitudinal variation in maximum operative body temperatures
for amphibians in water bodies. Body temperatures are averaged across
the the warmest quarters of 2006-2015. Blue ribbons and points depict
body temperatures in current microclimates. Orange ribbons and points
depict body temperatures in future climates with 2 degrees Celsius above
preindustrial levels. Pink ribbons and points depict body temperatures
in future climates with 4 degrees Celsius above preindustrial levels.
Ribbons delimit the lower and upper 95% confidence intervals predicted
from generalised additive mixed models.
Above-ground vegetation
# Load model predictions
pred_arb_current <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_arboreal_current.rds")
pred_arb_future2C <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_arboreal_future2C.rds")
pred_arb_future4C <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_arboreal_future4C.rds")
pop_max_temp_arb <- ggplot() + geom_point(data = pop_arb_future4C, aes(x = lat, y = max_temp),
colour = "#EF4187", shape = 20, alpha = 0.85, size = 2) + geom_point(data = pop_arb_future2C,
aes(x = lat, y = max_temp), colour = "#FAA43A", shape = 20, alpha = 0.85, size = 2) +
geom_point(data = pop_arb_current, aes(x = lat, y = max_temp), colour = "#5DC8D9",
shape = 20, alpha = 0.85, size = 2) + geom_ribbon(data = pred_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_arb_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("Body temperature") + ylim(max_temp_min, max_temp_max) +
scale_x_continuous(breaks = c(-50, -25, 0, 25, 50), limits = c(-55.00099, 72.00064)) +
theme_classic() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_max_temp_arb
Figure A21: Latitudinal variation in maximum operative body temperatures for amphibians in above-ground vegetation. Body temperatures are averaged across the the warmest quarters of 2006-2015. Blue ribbons and points depict body temperatures in current microclimates. Orange ribbons and points depict body temperatures in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict body temperatures in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
All habitats
all_habitats <- (pop_max_temp_sub/pop_max_temp_pond/pop_max_temp_arb/plot_layout(ncol = 1))
all_habitats
Figure A22: Latitudinal variation in maximum operative body temperatures for amphibians on terrestrial conditions (top panel), in water bodies (middle panel) or in above-ground vegetation (bottom panel). Body temperatures are averaged across the the warmest quarters of 2006-2015. Blue ribbons and points depict body temperatures in current microclimates. Orange ribbons and points depict body temperatures in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict body temperatures in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
Bayesian linear mixed models
Here, we used Bayesian linear mixed models to estimate the mean body temperature in each microhabitat and climatic scenario. These models account for the different degrees of phylogenetic relatedness and decompose sources of variation among species.
Run the models
Full dataset
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
pop_pond_current %>% mutate(habitat_scenario = "pond_current"),
pop_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
pop_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
all_data$species <- all_data$tip.label
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
plan(sequential)
# Run models with MCMCglmm
prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G3 = list(V = 1, fix = 1)))
set.seed(123)
# Intercept-less model, variation between microhabitat and climate scenarios
model_MCMC <- MCMCglmm(max_temp ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(max_temp_se):units, # Species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC, file = "RData/Models/max_temp/model_MCMCglmm_max_temp.rds")
saveRDS(predictions, file = "RData/Models/max_temp/predictions_MCMCglmm_max_temp.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_MCMC_contrast <- MCMCglmm(max_temp ~ relevel(habitat_scenario, ref = "substrate_current"), # substrate_current as the reference level
random = ~ species + tip.label + idh(max_temp_se):units,
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
saveRDS(model_MCMC_contrast, file = "RData/Models/max_temp/model_MCMCglmm_max_temp_contrast.rds")
Subset of overheating populations
Here, we only focus on the populations that are predicted to overheat.
# Reload dataset without pond data
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C")
)
# Filter to populations predicted to overheat
all_data$habitat_scenario <- as.character(all_data$habitat_scenario)
all_data$species <- all_data$tip.label
all_data <- filter(all_data, overheating_risk > 0)
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
# Run model
model_max_temp <- MCMCglmm(max_temp ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(max_temp_se):units, # Species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
nitt = 600000,
thin = 500,
burnin = 100000,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_max_temp,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_max_temp, file = "RData/Models/max_temp/model_MCMCglmm_max_temp_overheating_pop.rds")
saveRDS(predictions, file = "RData/Models/max_temp/predictions_MCMCglmm_max_temp_overheating_pop.rds")
Model summaries
Full dataset
# Model summary
model_MCMC_max_temp <- readRDS("RData/Models/max_temp/model_MCMCglmm_max_temp.rds")
summary(model_MCMC_max_temp)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5936794
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 2.075 1.907 2.252 708.4
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 19.81 18.22 21.26 636.8
##
## ~idh(max_temp_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## max_temp_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 3.343 3.334 3.353 1000
##
## Location effects: max_temp ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 22.72 19.16 26.29 1000 <0.001
## habitat_scenarioarboreal_future2C 23.51 19.95 27.07 1000 <0.001
## habitat_scenarioarboreal_future4C 25.16 21.61 28.72 1000 <0.001
## habitat_scenariopond_current 21.54 17.99 25.11 1000 <0.001
## habitat_scenariopond_future2C 22.67 19.11 26.24 1000 <0.001
## habitat_scenariopond_future4C 24.50 20.94 28.07 1000 <0.001
## habitat_scenariosubstrate_current 23.20 19.64 26.77 1000 <0.001
## habitat_scenariosubstrate_future2C 24.05 20.50 27.62 1000 <0.001
## habitat_scenariosubstrate_future4C 25.83 22.27 29.40 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariopond_current ***
## habitat_scenariopond_future2C ***
## habitat_scenariopond_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model prediction
print(readRDS("RData/Models/max_temp/predictions_MCMCglmm_max_temp.rds"))
## habitat_scenario prediction lower.HPD upper.HPD
## 1 arboreal_current 22.72440 19.15780 26.28905
## 2 arboreal_future2C 23.52482 19.94505 27.07403
## 3 arboreal_future4C 25.16713 21.61498 28.72044
## 4 pond_current 21.55094 17.98937 25.11084
## 5 pond_future2C 22.67944 19.11084 26.24442
## 6 pond_future4C 24.50709 20.93759 28.07058
## 7 substrate_current 23.20207 19.64125 26.76607
## 8 substrate_future2C 24.06400 20.50457 27.62195
## 9 substrate_future4C 25.83500 22.27295 29.40320
# Model diagnostics
plot(model_MCMC_max_temp)
# Model summary (contrasts)
model_MCMC_max_temp_contrast <- readRDS("RData/Models/max_temp/model_MCMCglmm_max_temp_contrast.rds")
summary(model_MCMC_max_temp_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5936783
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 2.072 1.905 2.252 677.7
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 19.91 18.41 21.64 566.9
##
## ~idh(max_temp_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## max_temp_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 3.343 3.334 3.353 1000
##
## Location effects: max_temp ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 23.1623
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.4780
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.3133
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.9616
## relevel(habitat_scenario, ref = "substrate_current")pond_current -1.6561
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C -0.5244
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1.3018
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.8587
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.6309
## l-95% CI
## (Intercept) 15.3956
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.4981
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.2943
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.9414
## relevel(habitat_scenario, ref = "substrate_current")pond_current -1.6681
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C -0.5358
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1.2880
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.8464
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.6184
## u-95% CI
## (Intercept) 29.2021
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.4606
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.3322
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.9800
## relevel(habitat_scenario, ref = "substrate_current")pond_current -1.6421
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C -0.5104
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1.3136
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.8713
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.6444
## eff.samp
## (Intercept) 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 880.5
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 898.7
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 833.3
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 916.9
## pMCMC
## (Intercept) <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Subset of overheating populations
# Model summary
model_MCMC_max_temp <- readRDS("RData/Models/max_temp/model_MCMCglmm_max_temp_overheating_pop.rds")
summary(model_MCMC_max_temp)
##
## Iterations = 100001:599501
## Thinning interval = 500
## Sample size = 1000
##
## DIC: -28244.81
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 0.366 0.2 0.5227 1000
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 3.476 2.49 4.461 1000
##
## ~idh(max_temp_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## max_temp_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.0007174 0.000166 0.001472 232.4
##
## Location effects: max_temp ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 26.74 25.16 28.40 1000 <0.001
## habitat_scenarioarboreal_future2C 27.49 25.98 29.16 1000 <0.001
## habitat_scenarioarboreal_future4C 29.12 27.63 30.84 1000 <0.001
## habitat_scenariosubstrate_current 27.17 25.55 28.74 1000 <0.001
## habitat_scenariosubstrate_future2C 27.88 26.36 29.57 1000 <0.001
## habitat_scenariosubstrate_future4C 29.61 27.89 31.11 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model prediction
print(readRDS("RData/Models/max_temp/predictions_MCMCglmm_max_temp_overheating_pop.rds"))
## habitat_scenario prediction lower.HPD upper.HPD
## 1 arboreal_current 26.75141 25.15519 28.40130
## 2 arboreal_future2C 27.50296 25.98381 29.16038
## 3 arboreal_future4C 29.14249 27.63151 30.84459
## 4 substrate_current 27.18328 25.54506 28.73786
## 5 substrate_future2C 27.90692 26.35833 29.56681
## 6 substrate_future4C 29.63061 27.89394 31.10604
# Model diagnostics
plot(model_MCMC_max_temp)
Community-level patterns
Load the data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current.rds")
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C.rds")
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C.rds")
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
Generalized additive mixed models
Here, we investigate community-level latitudinal patterns in max_temp using generalized additive models.
Run the models
# Function to run community-level max_temp models in parallel
run_community_max_temp_analysis <- function(dataset, habitat_scenario) {
data <- dataset
# Run model
model <- gamm4::gamm4(community_max_temp ~ s(lat, bs = "tp"), data = data, weights = 1/(data$community_max_temp_se^2),
REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
community_max_temp = NA, community_max_temp_se = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$max_temp_pred <- pred$fit
new_data$max_temp_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = max_temp_pred + 1.96 * max_temp_pred_se,
lower = max_temp_pred - 1.96 * max_temp_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/max_temp/summary_GAM_community_lat_max_temp_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/max_temp/summary_MER_community_lat_max_temp_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/max_temp/predictions_community_lat_max_temp_",
habitat_scenario, ".rds"))
}
# Create a list of all the datasets
dataset_list <- list(arboreal_current = community_arb_current, arboreal_future2C = community_arb_future2C,
arboreal_future4C = community_arb_future4C, pond_current = community_pond_current,
pond_future2C = community_pond_future2C, pond_future4C = community_pond_future4C,
substrate_current = community_sub_current, substrate_future2C = community_sub_future2C,
substrate_future4C = community_sub_future4C)
plan(multicore(workers = 3))
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_community_max_temp_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_community_lat_max_temp_substrate_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 76280.3"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-18.9559 -0.2432 0.2540 0.5634 2.4507 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 779.440 27.918 "
## [12] " Residual 5.514 2.348 "
## [13] "Number of obs: 14090, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 20.45121 0.03441 594.308"
## [18] "Xs(lat)Fx1 -0.49862 1.04246 -0.478"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 0.025 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_community_lat_max_temp_substrate_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xaa0a8c8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 20.45121 0.03441 594.3 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.933 8.933 3372 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.651 "
## [22] "lmer.REML = 76280 Scale est. = 5.5136 n = 14090"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_community_lat_max_temp_substrate_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 79187.2"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-16.9858 -0.0940 0.3436 0.6276 2.0129 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 455.891 21.35 "
## [12] " Residual 7.234 2.69 "
## [13] "Number of obs: 14090, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 20.95077 0.03746 559.285"
## [18] "Xs(lat)Fx1 2.81709 1.15096 2.448"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 0.041 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_community_lat_max_temp_substrate_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x128dc918>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 20.95077 0.03746 559.3 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.862 8.862 3085 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.646 "
## [22] "lmer.REML = 79187 Scale est. = 7.2341 n = 14090"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_community_lat_max_temp_substrate_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 80365.2"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-12.9765 -0.0487 0.3682 0.6497 2.3408 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 498.28 22.322 "
## [12] " Residual 7.77 2.787 "
## [13] "Number of obs: 14090, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 22.91772 0.03907 586.550"
## [18] "Xs(lat)Fx1 0.24259 1.17353 0.207"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 0.011 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_community_lat_max_temp_substrate_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x9c0e8d8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 22.91772 0.03907 586.5 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.866 8.866 2710 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.626 "
## [22] "lmer.REML = 80365 Scale est. = 7.7697 n = 14090"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_community_lat_max_temp_pond_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 83552.3"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-16.7537 -0.3939 0.0719 0.3921 3.6539 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 1331.12 36.485 "
## [12] " Residual 17.99 4.241 "
## [13] "Number of obs: 14091, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 19.21680 0.04883 393.522"
## [18] "Xs(lat)Fx1 8.03832 1.28371 6.262"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 0.118 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_community_lat_max_temp_pond_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xacce950>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 19.21680 0.04883 393.5 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.921 8.921 1986 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.467 "
## [22] "lmer.REML = 83552 Scale est. = 17.989 n = 14091"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_community_lat_max_temp_pond_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 82957.3"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.0858 -0.3930 0.0936 0.4205 3.4156 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 1166.37 34.152 "
## [12] " Residual 16.76 4.094 "
## [13] "Number of obs: 14091, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 20.49940 0.04705 435.692"
## [18] "Xs(lat)Fx1 9.00629 1.22893 7.329"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 0.120 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_community_lat_max_temp_pond_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x128da9f8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 20.49940 0.04705 435.7 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.915 8.915 1987 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.473 "
## [22] "lmer.REML = 82957 Scale est. = 16.761 n = 14091"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_community_lat_max_temp_pond_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 82570.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-18.9800 -0.3712 0.1147 0.4776 3.2787 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 1113.54 33.370 "
## [12] " Residual 15.65 3.956 "
## [13] "Number of obs: 14091, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 22.45544 0.04515 497.343"
## [18] "Xs(lat)Fx1 10.29001 1.17366 8.767"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 0.111 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_community_lat_max_temp_pond_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xa4757a8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 22.45544 0.04515 497.3 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.916 8.916 1954 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.482 "
## [22] "lmer.REML = 82571 Scale est. = 15.649 n = 14091"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_community_lat_max_temp_arboreal_current.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 31283.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-15.6594 -0.2968 0.2176 0.5870 2.0863 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 394.100 19.852 "
## [12] " Residual 7.072 2.659 "
## [13] "Number of obs: 6614, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 24.08189 0.03506 686.861"
## [18] "Xs(lat)Fx1 -0.63100 1.60740 -0.393"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 0.064 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_community_lat_max_temp_arboreal_current.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xaf49828>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 24.08189 0.03506 686.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.692 8.692 630.6 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.428 "
## [22] "lmer.REML = 31283 Scale est. = 7.0717 n = 6614"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_community_lat_max_temp_arboreal_future2C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 31158.6"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-14.2020 -0.2453 0.2434 0.6171 2.6053 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 1218.765 34.911 "
## [12] " Residual 7.505 2.739 "
## [13] "Number of obs: 6614, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 24.86782 0.03491 712.302"
## [18] "Xs(lat)Fx1 -11.36821 1.57286 -7.228"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 -0.005"
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_community_lat_max_temp_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x848f210>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 24.86782 0.03491 712.3 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.901 8.901 682.5 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.469 "
## [22] "lmer.REML = 31159 Scale est. = 7.5048 n = 6614"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/summary_MER_community_lat_max_temp_arboreal_future4C.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 32909.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-22.7369 -0.1295 0.3087 0.6779 1.7389 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " Xr s(lat) 559.572 23.655 "
## [12] " Residual 9.614 3.101 "
## [13] "Number of obs: 6614, groups: Xr, 8"
## [14] ""
## [15] "Fixed effects:"
## [16] " Estimate Std. Error t value"
## [17] "X(Intercept) 26.36339 0.04024 655.11"
## [18] "Xs(lat)Fx1 7.97956 1.88186 4.24"
## [19] ""
## [20] "Correlation of Fixed Effects:"
## [21] " X(Int)"
## [22] "Xs(lat)Fx1 0.100 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/summary_GAM_community_lat_max_temp_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "community_max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x1216ade8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 26.36339 0.04024 655.1 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.712 8.712 404.2 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.355 "
## [22] "lmer.REML = 32910 Scale est. = 9.6136 n = 6614"
Visualize the results
Load data
# Substrate data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells.rds")
# Pond data
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current_clipped_cells.rds")
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C_clipped_cells.rds")
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C_clipped_cells.rds")
# Above-ground vegetation
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_clipped_cells.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_clipped_cells.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_clipped_cells.rds")
# Upload high resolution Earth data
world <- ne_countries(scale = "large", returnclass = "sf")
world <- world %>%
filter(!grepl("Antarctica", name))
st_crs(world) <- st_crs(community_sub_current)
# Find limits for colours of the plot
max_temp_min <- min(min(community_sub_current$community_max_temp, na.rm = TRUE),
min(community_sub_future4C$community_max_temp, na.rm = TRUE), min(community_arb_current$community_max_temp,
na.rm = TRUE), min(community_arb_future4C$community_max_temp, na.rm = TRUE),
min(community_pond_current$community_max_temp, na.rm = TRUE), min(community_pond_future4C$community_max_temp,
na.rm = TRUE))
max_temp_max <- max(max(community_sub_current$community_max_temp, na.rm = TRUE),
max(community_sub_future4C$community_max_temp, na.rm = TRUE), max(community_arb_current$community_max_temp,
na.rm = TRUE), max(community_arb_future4C$community_max_temp, na.rm = TRUE),
max(community_pond_current$community_max_temp, na.rm = TRUE), max(community_pond_future4C$community_max_temp,
na.rm = TRUE))
Vegetated substrate
# Current
map_sub_max_temp_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_sub_current, aes(fill = community_max_temp), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "rocket", name = "Body temperature",
na.value = "gray1", breaks = seq(-5, 35, by = 10), limits = c(max_temp_min, max_temp_max),
begin = 0, end = 1) + theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +2C
map_sub_max_temp_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_sub_future2C, aes(fill = community_max_temp), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "rocket", na.value = "gray1", breaks = seq(-5,
35, by = 10), limits = c(max_temp_min, max_temp_max), begin = 0, end = 1) + theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#FAA43A"))
# Future +4C
map_sub_max_temp_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_sub_future4C, aes(fill = community_max_temp), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "rocket", na.value = "gray1", breaks = seq(-5,
35, by = 10), limits = c(max_temp_min, max_temp_max), begin = 0, end = 1) + theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_sub_current <- readRDS("RData/Models/max_temp/predictions_community_lat_max_temp_substrate_current.rds")
pred_community_sub_future2C <- readRDS("RData/Models/max_temp/predictions_community_lat_max_temp_substrate_future2C.rds")
pred_community_sub_future4C <- readRDS("RData/Models/max_temp/predictions_community_lat_max_temp_substrate_future4C.rds")
lat_sub_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_sub_future4C, aes(x = lat, y = community_max_temp),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_sub_future2C,
aes(x = lat, y = community_max_temp), alpha = 0.85, col = "#FAA43A", shape = ".") +
geom_point(data = community_sub_current, aes(x = lat, y = community_max_temp),
alpha = 0.85, col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black",
size = 0.1) + geom_ribbon(data = pred_community_sub_future2C, aes(x = lat, ymin = lower,
ymax = upper), fill = "#FAA43A", colour = "black", size = 0.1) + geom_ribbon(data = pred_community_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black",
size = 0.1) + xlim(-55.00099, 72.00064) + ylim(0, max_temp_max) + xlab("") +
ylab("Body temperature") + coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(size = 12), axis.text.x = element_text(color = "black",
size = 11), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
substrate_plot <- (map_sub_max_temp_current + map_sub_max_temp_future2C + map_sub_max_temp_future4C +
lat_sub_all + plot_layout(ncol = 4))
substrate_plot
Figure A23: Community-level patterns in maximum operative body temperatures for amphibians on terrestrial conditions. Body temperatures were averaged within communities (1-degree grid cells). The first column refer to current climates (blue), the middle column assume +2C of warming above pre-industrial levels (orange), and the right column assume +4C of warming above pre-industrial levels (pink). The right panel depicts latitudinal patterns in max_temp in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (pink). Black colour depicts areas with no data.
Pond or wetland
# Current
map_pond_max_temp_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_pond_current, aes(fill = community_max_temp), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "rocket", name = "Body temperature",
na.value = "gray1", breaks = seq(-5, 35, by = 10), limits = c(max_temp_min, max_temp_max),
begin = 0, end = 1) + theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +2C
map_pond_max_temp_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_pond_future2C, aes(fill = community_max_temp), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "rocket", na.value = "gray1", breaks = seq(-5,
35, by = 10), limits = c(max_temp_min, max_temp_max), begin = 0, end = 1) + theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#FAA43A"))
# Future +4C
map_pond_max_temp_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_pond_future4C, aes(fill = community_max_temp), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "rocket", na.value = "gray1", breaks = seq(-5,
35, by = 10), limits = c(max_temp_min, max_temp_max), begin = 0, end = 1) + theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_pond_current <- readRDS("RData/Models/max_temp/predictions_community_lat_max_temp_substrate_current.rds")
pred_community_pond_future2C <- readRDS("RData/Models/max_temp/predictions_community_lat_max_temp_substrate_future2C.rds")
pred_community_pond_future4C <- readRDS("RData/Models/max_temp/predictions_community_lat_max_temp_substrate_future4C.rds")
lat_pond_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_pond_future4C, aes(x = lat, y = community_max_temp),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_pond_future2C,
aes(x = lat, y = community_max_temp), alpha = 0.85, col = "#FAA43A", shape = ".") +
geom_point(data = community_pond_current, aes(x = lat, y = community_max_temp),
alpha = 0.85, col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_pond_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black",
size = 0.1) + geom_ribbon(data = pred_community_pond_future2C, aes(x = lat, ymin = lower,
ymax = upper), fill = "#FAA43A", colour = "black", size = 0.1) + geom_ribbon(data = pred_community_pond_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black",
size = 0.1) + xlim(-55.00099, 72.00064) + ylim(0, max_temp_max) + xlab("") +
ylab("Body temperature") + coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(size = 12), axis.text.x = element_text(color = "black",
size = 11), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
pond_plot <- (map_pond_max_temp_current + map_pond_max_temp_future2C + map_pond_max_temp_future4C +
lat_pond_all + plot_layout(ncol = 4))
pond_plot
Figure A24: Community-level patterns in maximum operative body temperatures for amphibians in water bodies. Body temperatures were averaged within communities (1-degree grid cells). The first column refer to current climates (blue), the middle column assume +2C of warming above pre-industrial levels (orange), and the right column assume +4C of warming above pre-industrial levels (pink). The right panel depicts latitudinal patterns in max_temp in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (pink). Black colour depicts areas with no data.
Above-ground vegetation
# Current
map_arb_max_temp_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_arb_current, aes(fill = community_max_temp), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "rocket", name = "Body temperature",
na.value = "gray1", breaks = seq(-5, 35, by = 10), limits = c(max_temp_min, max_temp_max),
begin = 0, end = 1) + theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +2C
map_arb_max_temp_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_arb_future2C, aes(fill = community_max_temp), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "rocket", na.value = "gray1", breaks = seq(-5,
35, by = 10), limits = c(max_temp_min, max_temp_max), begin = 0, end = 1) + theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#FAA43A"))
# Future +4C
map_arb_max_temp_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray",
linetype = "dashed", size = 0.5) + geom_sf(data = world, fill = "black", col = "black") +
geom_sf(data = community_arb_future4C, aes(fill = community_max_temp), color = NA,
alpha = 1) + coord_sf(ylim = c(-55.00099, 72.00064), xlim = c(-166.82905,
178.56617)) + scale_fill_viridis(option = "rocket", na.value = "gray1", breaks = seq(-5,
35, by = 10), limits = c(max_temp_min, max_temp_max), begin = 0, end = 1) + theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), legend.position = "bottom", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_arb_current <- readRDS("RData/Models/max_temp/predictions_community_lat_max_temp_arboreal_current.rds")
pred_community_arb_future2C <- readRDS("RData/Models/max_temp/predictions_community_lat_max_temp_arboreal_future2C.rds")
pred_community_arb_future4C <- readRDS("RData/Models/max_temp/predictions_community_lat_max_temp_arboreal_future4C.rds")
lat_arb_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_arb_future4C, aes(x = lat, y = community_max_temp),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_arb_future2C,
aes(x = lat, y = community_max_temp), alpha = 0.85, col = "#FAA43A", shape = ".") +
geom_point(data = community_arb_current, aes(x = lat, y = community_max_temp),
alpha = 0.85, col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black",
size = 0.1) + geom_ribbon(data = pred_community_arb_future2C, aes(x = lat, ymin = lower,
ymax = upper), fill = "#FAA43A", colour = "black", size = 0.1) + geom_ribbon(data = pred_community_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black",
size = 0.1) + xlim(-55.00099, 72.00064) + ylim(0, max_temp_max) + xlab("") +
ylab("max_temp") + coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(size = 12), axis.text.x = element_text(color = "black",
size = 11), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
arboreal_plot <- (map_arb_max_temp_current + map_arb_max_temp_future2C + map_arb_max_temp_future4C +
lat_arb_all + plot_layout(ncol = 4))
arboreal_plot
Figure A25: Community-level patterns in maximum operative body temperatures for amphibians in above-ground vegetation. Body temperatures were averaged within communities (1-degree grid cells). The first column refer to current climates (blue), the middle column assume +2C of warming above pre-industrial levels (orange), and the right column assume +4C of warming above pre-industrial levels (pink). The right panel depicts latitudinal patterns in max_temp in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (pink). Black colour depicts areas with no data.
All habitats
all_habitats <- (substrate_plot/pond_plot/arboreal_plot/plot_layout(ncol = 1))
all_habitats
Figure A26: Community-level patterns in maximum operative body temperatures for amphibians on terrestrial conditions (top row), in water bodies (middle row), or in above-ground vegetation (bottom row). Body temperatures were averaged within communities (1-degree grid cells). The first column refer to current climates (blue), the middle column assume +2C of warming above pre-industrial levels (orange), and the right column assume +4C of warming above pre-industrial levels (pink). The right panel depicts latitudinal patterns in max_temp in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (pink). Black colour depicts areas with no data.
Bayesian linear mixed models
Here, we used Bayesian linear mixed models to estimate the mean thermal safety margin in each microhabitat and climatic scenario. These models account for the different degrees of phylogenetic relatedness and decompose sources of variation among species.
Run the models
Full dataset
all_community_data <- bind_rows(
community_sub_current %>% mutate(habitat_scenario = "substrate_current"),
community_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
community_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
community_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
community_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
community_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
community_pond_current %>% mutate(habitat_scenario = "pond_current"),
community_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
community_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
all_community_data <- as.data.frame(all_community_data)
prior_community <- list(R = list(V = 1, nu = 0.002),
G = list(G4 = list(V = 1, fix = 1)))
# Intercept-less model
model_MCMC_community <- MCMCglmm(community_max_temp ~ habitat_scenario - 1, # No intercept
random = ~ idh(community_max_temp_se):units,
singular.ok=TRUE,
prior = prior_community,
verbose=FALSE,
data = all_community_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC_community,
by="habitat_scenario",
specs="habitat_scenario",
data=all_community_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC_community, file = "RData/Models/max_temp/model_MCMCglmm_community_max_temp.rds")
saveRDS(predictions, file = "RData/Models/max_temp/predictions_MCMCglmm_community_max_temp.rds")
# Contrast
all_community_data$habitat_scenario <- as.factor(all_community_data$habitat_scenario)
model_MCMC_community_contrast <- MCMCglmm(community_max_temp ~ relevel(habitat_scenario, ref = "substrate_current"), # Contrast
random = ~ idh(community_max_temp_se):units,
singular.ok=TRUE,
prior = prior_community,
verbose=FALSE,
data = all_community_data)
saveRDS(model_MCMC_community_contrast, file = "RData/Models/max_temp/model_MCMCglmm_community_max_temp_contrast.rds")
Subset of overheating communities
Here, we only focus on the communities that are predicted to overheat.
# Reload dataset without pond data
all_community_data <- bind_rows(
community_sub_current %>% mutate(habitat_scenario = "substrate_current"),
community_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
community_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
community_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
community_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
community_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C")
)
# Filter to overheating communities
all_community_data$habitat_scenario <- as.character(all_community_data$habitat_scenario)
all_community_data <- filter(all_community_data, n_species_overheating > 0)
model_max_temp_community <- MCMCglmm(community_max_temp ~ habitat_scenario - 1, # No intercept
random = ~ idh(community_max_temp_se):units,
singular.ok=TRUE,
prior = prior_community,
verbose=FALSE,
nitt = 600000,
thin = 500,
burnin = 100000,
data = all_community_data)
# Get predictions
predictions <- data.frame(emmeans(model_max_temp_community,
by="habitat_scenario",
specs="habitat_scenario",
data=all_community_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_max_temp_community, file = "RData/Models/max_temp/model_MCMCglmm_community_max_temp_overheating_communities.rds")
saveRDS(predictions, file = "RData/Models/max_temp/predictions_MCMCglmm_community_max_temp_overheating_communities.rds")
Model summaries
Full dataset
# Model summary
model_MCMC_max_temp <- readRDS("RData/Models/max_temp/model_MCMCglmm_community_max_temp.rds")
summary(model_MCMC_max_temp)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 653132.7
##
## G-structure: ~idh(community_max_temp_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## community_max_temp_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 27.91 27.63 28.17 1000
##
## Location effects: community_max_temp ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 24.37 24.23 24.49 1000.0 <0.001
## habitat_scenarioarboreal_future2C 25.33 25.20 25.47 1000.0 <0.001
## habitat_scenarioarboreal_future4C 27.23 27.11 27.37 1000.0 <0.001
## habitat_scenariopond_current 19.16 19.08 19.26 781.2 <0.001
## habitat_scenariopond_future2C 20.47 20.37 20.55 1000.0 <0.001
## habitat_scenariopond_future4C 22.55 22.46 22.63 1000.0 <0.001
## habitat_scenariosubstrate_current 21.43 21.34 21.52 1000.0 <0.001
## habitat_scenariosubstrate_future2C 22.57 22.46 22.65 1000.0 <0.001
## habitat_scenariosubstrate_future4C 24.75 24.65 24.84 1000.0 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariopond_current ***
## habitat_scenariopond_future2C ***
## habitat_scenariopond_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model prediction
print(readRDS("RData/Models/max_temp/predictions_MCMCglmm_community_max_temp.rds"))
## habitat_scenario prediction lower.HPD upper.HPD
## 1 arboreal_current 24.36436 24.23064 24.48986
## 2 arboreal_future2C 25.33354 25.19825 25.46742
## 3 arboreal_future4C 27.23478 27.11246 27.36713
## 4 pond_current 19.16425 19.07934 19.25729
## 5 pond_future2C 20.46822 20.37069 20.55438
## 6 pond_future4C 22.55194 22.45972 22.63010
## 7 substrate_current 21.43123 21.33784 21.51840
## 8 substrate_future2C 22.56827 22.46491 22.65494
## 9 substrate_future4C 24.74836 24.65465 24.83646
# Model diagnostics
plot(model_MCMC_max_temp)
# Model summary (contrasts)
model_MCMC_max_temp_contrast <- readRDS("RData/Models/max_temp/model_MCMCglmm_community_max_temp_contrast.rds")
summary(model_MCMC_max_temp_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 653133
##
## G-structure: ~idh(community_max_temp_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## community_max_temp_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 27.9 27.64 28.16 909.5
##
## Location effects: community_max_temp ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 21.4305
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 2.9358
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 3.8997
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 5.7983
## relevel(habitat_scenario, ref = "substrate_current")pond_current -2.2688
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C -0.9656
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1.1181
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1.1356
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 3.3191
## l-95% CI
## (Intercept) 21.3395
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 2.7735
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 3.7410
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 5.6434
## relevel(habitat_scenario, ref = "substrate_current")pond_current -2.3894
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C -1.0894
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1.0028
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.9810
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 3.1890
## u-95% CI
## (Intercept) 21.5232
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 3.1053
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 4.0612
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 5.9529
## relevel(habitat_scenario, ref = "substrate_current")pond_current -2.1302
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C -0.8262
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1.2656
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1.2548
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 3.4538
## eff.samp
## (Intercept) 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 888.9
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1158.1
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1000.0
## pMCMC
## (Intercept) <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Subset of overheating communities
# Model summary
model_MCMC_max_temp <- readRDS("RData/Models/max_temp/model_MCMCglmm_community_max_temp_overheating_communities.rds")
summary(model_MCMC_max_temp)
##
## Iterations = 100001:599501
## Thinning interval = 500
## Sample size = 1000
##
## DIC: 6086.701
##
## G-structure: ~idh(community_max_temp_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## community_max_temp_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.324 0.2284 0.4276 1000
##
## Location effects: community_max_temp ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 28.35 28.14 28.60 1072 <0.001
## habitat_scenarioarboreal_future2C 29.07 28.90 29.27 1113 <0.001
## habitat_scenarioarboreal_future4C 30.67 30.55 30.78 1096 <0.001
## habitat_scenariosubstrate_current 28.15 28.01 28.30 1000 <0.001
## habitat_scenariosubstrate_future2C 28.82 28.71 28.94 1000 <0.001
## habitat_scenariosubstrate_future4C 30.43 30.35 30.50 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model prediction
print(readRDS("RData/Models/max_temp/predictions_MCMCglmm_community_max_temp_overheating_communities.rds"))
## habitat_scenario prediction lower.HPD upper.HPD
## 1 arboreal_current 28.35683 28.13941 28.59862
## 2 arboreal_future2C 29.07454 28.89560 29.27142
## 3 arboreal_future4C 30.66472 30.54688 30.77873
## 4 substrate_current 28.14615 28.00520 28.30060
## 5 substrate_future2C 28.82329 28.70738 28.94337
## 6 substrate_future4C 30.43003 30.35355 30.50219
# Model diagnostics
plot(model_MCMC_max_temp)
Overheating risk
Here, we investigate the variation in overheating risk across microhabitats and climatic scenarios. Note that none of the populations were predicted to overheat in water bodies.
This code ran on an HPC environment, where the original code can be found in R/Models/Running_models_overheating_risk.R and the resources used in pbs/Models/Running_models_overheating_risk.pbs
Load the data
# Load population-level data
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
Generalized additive mixed models
Here, we investigate latitudinal patterns in overheating risk using generalized additive models. These models do not account for the phylogenetic relatedness between species, yet they are better at capturing non-linear patterns with latitude. While we could have fitted models with smooth terms using brms or stan, these models exceeded our computational capacities.
Run the models
run_overheating_risk_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(overheating_risk ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, family = binomial(), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
overheating_risk = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$overheating_risk_pred <- pred$fit
new_data$overheating_risk_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = overheating_risk_pred + 1.96 * overheating_risk_pred_se,
lower = overheating_risk_pred - 1.96 * overheating_risk_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/overheating_risk/summary_GAM_pop_lat_overheating_risk_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/overheating_risk/summary_MER_pop_lat_overheating_risk_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/overheating_risk/predictions_pop_lat_overheating_risk_",
habitat_scenario, ".rds"))
}
# Create a list of all the datasets
dataset_list <- list(arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_overheating_risk_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/summary_MER_pop_lat_overheating_risk_substrate_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 5371.4 5422.6 -2680.7 5361.4 203849 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.861 -0.001 -0.001 0.000 50.589 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 98.004 9.900 "
## [15] " genus (Intercept) 2.151 1.467 "
## [16] " Xr s(lat) 2103.476 45.864 "
## [17] "Number of obs: 203854, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -15.0293 0.5022 -29.93 <2e-16 ***"
## [22] "Xs(lat)Fx1 0.6194 4.4149 0.14 0.888 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.050 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/summary_GAM_pop_lat_overheating_risk_substrate_current.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xf814e80>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -15.0293 0.9464 -15.88 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.51 7.51 178.4 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -3.7e-05 "
## [22] "glmer.ML = 4564.6 Scale est. = 1 n = 203854"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/summary_MER_pop_lat_overheating_risk_substrate_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 8751.3 8802.4 -4370.7 8741.3 203848 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-2.7836 -0.0024 -0.0016 -0.0010 28.4365 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 84.243 9.178 "
## [15] " genus (Intercept) 1.012 1.006 "
## [16] " Xr s(lat) 788.750 28.085 "
## [17] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -13.6662 0.3834 -35.643 <2e-16 ***"
## [22] "Xs(lat)Fx1 -0.9500 3.9997 -0.238 0.812 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 -0.001"
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/summary_GAM_pop_lat_overheating_risk_substrate_future2C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x10768188>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -13.6662 0.6669 -20.49 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.601 7.601 284.2 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -3.65e-05 "
## [22] "glmer.ML = 7511.9 Scale est. = 1 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/summary_MER_pop_lat_overheating_risk_substrate_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 21242.5 21293.7 -10616.3 21232.5 203848 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-5.854 -0.044 -0.015 -0.005 37.848 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 9.487 3.080 "
## [15] " genus (Intercept) 13.454 3.668 "
## [16] " Xr s(lat) 639.606 25.290 "
## [17] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -10.0280 0.3434 -29.198 < 2e-16 ***"
## [22] "Xs(lat)Fx1 7.2689 2.1529 3.376 0.000735 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 -0.002"
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/summary_GAM_pop_lat_overheating_risk_substrate_future4C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x11352b88>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -10.0280 0.3323 -30.18 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.296 8.296 992.3 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -1.06e-05 "
## [22] "glmer.ML = 18587 Scale est. = 1 n = 203853"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/summary_MER_pop_lat_overheating_risk_arboreal_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1008.9 1053.6 -499.5 998.9 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.8527 -0.0007 -0.0004 0.0000 16.3198 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 132.617 11.516 "
## [15] " genus (Intercept) 4.825 2.197 "
## [16] " Xr s(lat) 922.481 30.372 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -19.328 1.591 -12.151 <2e-16 ***"
## [22] "Xs(lat)Fx1 -2.701 5.480 -0.493 0.622 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.392 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/summary_GAM_pop_lat_overheating_risk_arboreal_current.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe2ce220>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -19.328 3.608 -5.357 8.44e-08 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 2.787 2.787 28.39 2.52e-06 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -4.91e-05 "
## [22] "glmer.ML = 879.61 Scale est. = 1 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/summary_MER_pop_lat_overheating_risk_arboreal_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1487.3 1532.0 -738.6 1477.3 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.1712 -0.0003 -0.0001 0.0000 18.5221 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 459.02 21.425 "
## [15] " genus (Intercept) 14.24 3.773 "
## [16] " Xr s(lat) 237193.94 487.026 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -41.771 1.269 -32.91 <2e-16 ***"
## [22] "Xs(lat)Fx1 -38.106 2.151 -17.72 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.257 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/summary_GAM_pop_lat_overheating_risk_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xeae4fe8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -41.771 8.981 -4.651 3.3e-06 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.447 5.447 97.76 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -9.68e-05 "
## [22] "glmer.ML = 1288.9 Scale est. = 1 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/summary_MER_pop_lat_overheating_risk_arboreal_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 3416.6 3461.3 -1703.3 3406.6 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.4706 -0.0023 -0.0016 -0.0004 29.6878 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 98.495 9.924 "
## [15] " genus (Intercept) 1.293 1.137 "
## [16] " Xr s(lat) 5935.534 77.042 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -14.4999 0.7147 -20.289 <2e-16 ***"
## [22] "Xs(lat)Fx1 -4.1582 5.5009 -0.756 0.45 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.042 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/summary_GAM_pop_lat_overheating_risk_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xf997158>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -14.50 1.31 -11.07 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 6.415 6.415 137.9 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.00011 "
## [22] "glmer.ML = 2969.3 Scale est. = 1 n = 56210"
Visualize the results
Vegetated substrate
# Load model predictions
pred_sub_current <- readRDS("RData/Models/overheating_risk/predictions_pop_lat_overheating_risk_substrate_current.rds")
pred_sub_future2C <- readRDS("RData/Models/overheating_risk/predictions_pop_lat_overheating_risk_substrate_future2C.rds")
pred_sub_future4C <- readRDS("RData/Models/overheating_risk/predictions_pop_lat_overheating_risk_substrate_future4C.rds")
pop_overheating_risk_sub <- ggplot() + geom_point(data = pop_sub_future4C, aes(x = lat,
y = overheating_risk), colour = "#EF4187", shape = 20, alpha = 0.85, size = 2,
position = position_jitter(width = 0.25, height = 0.025)) + geom_point(data = pop_sub_future2C,
aes(x = lat, y = overheating_risk), colour = "#FAA43A", shape = 20, alpha = 0.85,
size = 2, position = position_jitter(width = 0.25, height = 0.025)) + geom_point(data = pop_sub_current,
aes(x = lat, y = overheating_risk), colour = "#5DC8D9", shape = 20, alpha = 0.85,
size = 2, position = position_jitter(width = 0.25, height = 0.025)) + geom_ribbon(data = pred_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_sub_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("Overheating risk") + ylim(0, 1) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_overheating_risk_sub
Figure A27: Latitudinal variation in overheating risk for amphibians on terrestrial conditions. Overheating risk represents the probability (0-1) that a population exceeds its physiological limits at least once in the 910 days investigated. Blue ribbons and points depict overheating_risk in current microclimates. Orange ribbons and points depict overheating_risk in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict overheating_risk in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
Above-ground vegetation
# Load model predictions
pred_arb_current <- readRDS("RData/Models/overheating_risk/predictions_pop_lat_overheating_risk_arboreal_current.rds")
pred_arb_future2C <- readRDS("RData/Models/overheating_risk/predictions_pop_lat_overheating_risk_arboreal_future2C.rds")
pred_arb_future4C <- readRDS("RData/Models/overheating_risk/predictions_pop_lat_overheating_risk_arboreal_future4C.rds")
pop_overheating_risk_arb <- ggplot() + geom_point(data = pop_arb_future4C, aes(x = lat,
y = overheating_risk), colour = "#EF4187", shape = 20, alpha = 0.85, size = 2,
position = position_jitter(width = 0.25, height = 0.025)) + geom_point(data = pop_arb_future2C,
aes(x = lat, y = overheating_risk), colour = "#FAA43A", shape = 20, alpha = 0.85,
size = 2, position = position_jitter(width = 0.25, height = 0.025)) + geom_point(data = pop_arb_current,
aes(x = lat, y = overheating_risk), colour = "#5DC8D9", shape = 20, alpha = 0.85,
size = 2, position = position_jitter(width = 0.25, height = 0.025)) + geom_ribbon(data = pred_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_arb_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("Overheating risk") + ylim(0, 1) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_overheating_risk_arb
Figure A28: Latitudinal variation in overheating risk for amphibians in above ground vegetation. Overheating risk represents the probability (0-1) that a population exceeds its physiological limits at least once in the 910 days investigated. Blue ribbons and points depict overheating_risk in current microclimates. Orange ribbons and points depict overheating_risk in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict overheating_risk in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
All habitats
all_habitats <- (pop_overheating_risk_sub/pop_overheating_risk_arb/plot_layout(ncol = 1))
all_habitats
Figure A29: Latitudinal variation in overheating risk for amphibians on terrestrial conditions (top row) or in above ground vegetation (bottom row). Overheating risk represents the probability (0-1) that a population exceeds its physiological limits at least once in the 910 days investigated. Blue ribbons and points depict overheating_risk in current microclimates. Orange ribbons and points depict overheating_risk in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict overheating_risk in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
Linear mixed models
Here, we used linear mixed models to estimate the mean overheating risk in each microhabitat and climatic scenario. Note that we could not use bayesian linear mixed models because the models failed to mix, even after hundreds of thousands of iterations. These models therefore do not account for variation due to phylogeny, and confidence intervals are likely to be wider than predicted.
Run the models
all_data <- bind_rows(pop_sub_current %>%
mutate(habitat_scenario = "substrate_current"), pop_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), pop_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), pop_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), pop_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), pop_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
# Load training data for taxonomic information
training_data <- readRDS("RData/General_data/pre_data_for_imputation.rds")
training_data <- dplyr::select(training_data, tip.label, family)
all_data <- distinct(left_join(all_data, training_data, by = "tip.label"))
split_names <- strsplit(as.character(all_data$tip.label), " ")
all_data$genus <- sapply(split_names, `[`, 1)
all_data$species <- sapply(split_names, `[`, 2)
all_data <- as.data.frame(all_data)
set.seed(123)
# Run model
model_risk <- glmer(overheating_risk ~ habitat_scenario - 1 + (1 | genus/species),
family = "binomial", control = glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb")),
data = all_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_risk, terms = "habitat_scenario", type = "random",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model and predictions
saveRDS(model_risk, file = "RData/Models/overheating_risk/model_lme4_overheating_risk.rds")
saveRDS(predictions, file = "RData/Models/overheating_risk/predictions_lme4_overheating_risk.rds")
#### Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
# Run model
model_risk_contrast <- glmer(overheating_risk ~ relevel(habitat_scenario, ref = "substrate_current") +
(1 | genus/species), family = "binomial", control = glmerControl(optimizer = "optimx",
optCtrl = list(method = "nlminb")), data = all_data)
# Save model
saveRDS(model_risk_contrast, file = "RData/Models/overheating_risk/model_lme4_overheating_risk_contrast.rds")
Model summaries
# Model summary
model_overheating_risk <- readRDS("RData/Models/overheating_risk/model_lme4_overheating_risk.rds")
summary(model_overheating_risk)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: overheating_risk ~ habitat_scenario - 1 + (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## AIC BIC logLik deviance df.resid
## 42530.0 42622.5 -21257.0 42514.0 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.622 -0.014 -0.002 -0.001 48.777
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 69.6532 8.3458
## genus (Intercept) 0.3059 0.5531
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -14.5562 0.3125 -46.58 <2e-16 ***
## habitat_scenarioarboreal_future2C -13.8376 0.2981 -46.42 <2e-16 ***
## habitat_scenarioarboreal_future4C -12.5010 0.2976 -42.01 <2e-16 ***
## habitat_scenariosubstrate_current -13.8170 0.2953 -46.79 <2e-16 ***
## habitat_scenariosubstrate_future2C -13.1571 0.2937 -44.80 <2e-16 ***
## habitat_scenariosubstrate_future4C -11.6082 0.2922 -39.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.938
## hbtt_scnrr_4C 0.949 0.963
## hbtt_scnrs_ 0.950 0.964 0.977
## hbtt_scnrs_2C 0.952 0.967 0.980 0.986
## hbtt_scnrs_4C 0.954 0.969 0.982 0.989 0.992
# Model predictions
print(readRDS("RData/Models/overheating_risk/predictions_lme4_overheating_risk.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 4.767802e-07 0.3124954 2.584174e-07 8.796596e-07
## 2 arboreal_future2C 9.781078e-07 0.2980960 5.453146e-07 1.754390e-06
## 3 arboreal_future4C 3.722807e-06 0.2975650 2.077703e-06 6.670478e-06
## 4 substrate_current 9.985227e-07 0.2953044 5.597507e-07 1.781235e-06
## 5 substrate_future2C 1.931620e-06 0.2936826 1.086273e-06 3.434820e-06
## 6 substrate_future4C 9.090918e-06 0.2921752 5.127545e-06 1.611776e-05
# Model summary (contrasts)
model_overheating_risk_contrast <- readRDS("RData/Models/overheating_risk/model_lme4_overheating_risk_contrast.rds")
summary(model_overheating_risk_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## overheating_risk ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## AIC BIC logLik deviance df.resid
## 42530.0 42622.5 -21257.0 42514.0 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.622 -0.014 -0.002 -0.001 48.777
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 69.6531 8.3458
## genus (Intercept) 0.3059 0.5531
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate
## (Intercept) -13.81696
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.73922
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.02065
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.31597
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.65985
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.20877
## Std. Error
## (Intercept) 0.27087
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.09717
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.07987
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.06421
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.04859
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.04395
## z value
## (Intercept) -51.010
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -7.608
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.259
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 20.493
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 13.579
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 50.254
## Pr(>|z|)
## (Intercept) < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 2.79e-14
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.796
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C < 2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.065
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.077 0.263
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.088 0.315
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.102 0.303
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.131 0.319
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.384
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.371
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.392
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.461
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.500
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.690
Overheating days
Here, we investigate the variation in overheating days across microhabitats and climatic scenarios. Note that none of the populations were predicted to overheat in water bodies (except 11 species in high warming projections).
This code ran on an HPC environment, where the original code can be found in R/Models/Running_models_overheating_days.R and the resources used in pbs/Models/Running_models_overheating_days.pbs
Load the data
# Load population-level data
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
Generalized additive mixed models
Here, we investigate latitudinal patterns in overheating days using generalized additive models. These models do not account for the phylogenetic relatedness between species, yet they are better at capturing non-linear patterns with latitude. While we could have fitted models with smooth terms using brms or stan, these models exceeded our computational capacities.
Run the models
run_overheating_days_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
dataset$overheating_days <- round(dataset$overheating_days)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(dataset$lat), max(dataset$lat), length = 1000),
overheating_days = NA, genus = NA, species = NA)
# Apply filter for arboreal_future4C scenario
if (habitat_scenario == "arboreal_future4C") {
dataset <- dataset %>%
filter(lat >= -45 & lat <= 45) # Model does not run with full range of latitudes for this dataset
}
data <- dataset
# Run model
model <- gamm4::gamm4(overheating_days ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, family = binomial(), REML = TRUE)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$overheating_days_pred <- pred$fit
new_data$overheating_days_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = overheating_days_pred + 1.96 * overheating_days_pred_se,
lower = overheating_days_pred - 1.96 * overheating_days_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/overheating_days/summary_GAM_pop_lat_overheating_days_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/overheating_days/summary_MER_pop_lat_overheating_days_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/overheating_days/predictions_pop_lat_overheating_days_",
habitat_scenario, ".rds"))
}
# Create a list of all the datasets
dataset_list <- list(arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_overheating_days_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/summary_MER_pop_lat_overheating_days_substrate_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 14861.5 14912.6 -7425.7 14851.5 203849 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.712 -0.005 -0.002 -0.001 39.337 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 66.1243 8.1317 "
## [15] " genus (Intercept) 0.7806 0.8835 "
## [16] " Xr s(lat) 3721.0636 61.0005 "
## [17] "Number of obs: 203854, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -12.7836 0.3358 -38.06 <2e-16 ***"
## [22] "Xs(lat)Fx1 24.8491 1.8158 13.69 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 -0.040"
# Generalized additive model
print(readRDS("RData/Models/overheating_days/summary_GAM_pop_lat_overheating_days_substrate_current.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xc69c930>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -12.7836 0.5044 -25.34 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.527 8.527 541.4 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -4.17e-05 "
## [22] "glmer.ML = 9195 Scale est. = 1 n = 203854"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/summary_MER_pop_lat_overheating_days_substrate_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 23947.5 23998.7 -11968.8 23937.5 203848 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-2.2693 -0.0451 -0.0039 -0.0021 23.7539 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 56.3964 7.5098 "
## [15] " genus (Intercept) 0.4728 0.6876 "
## [16] " Xr s(lat) 9607.2612 98.0166 "
## [17] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -11.9316 0.2916 -40.91 <2e-16 ***"
## [22] "Xs(lat)Fx1 45.4426 2.6288 17.29 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.133 "
# Generalized additive model
print(readRDS("RData/Models/overheating_days/summary_GAM_pop_lat_overheating_days_substrate_future2C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xff68180>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -11.9316 0.3827 -31.18 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.824 8.824 1130 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -4.36e-05 "
## [22] "glmer.ML = 15227 Scale est. = 1 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/summary_MER_pop_lat_overheating_days_substrate_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 86407.6 86458.8 -43198.8 86397.6 203848 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-7.613 -0.105 -0.041 -0.014 43.656 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 7.535 2.745 "
## [15] " genus (Intercept) 11.626 3.410 "
## [16] " Xr s(lat) 4095.733 63.998 "
## [17] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -8.4341302 0.0001158 -72840 <2e-16 ***"
## [22] "Xs(lat)Fx1 30.4489755 0.0001176 258838 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.000 "
# Generalized additive model
print(readRDS("RData/Models/overheating_days/summary_GAM_pop_lat_overheating_days_substrate_future4C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x20644f30>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -8.4341 0.2629 -32.08 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.951 8.951 6624 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -3.18e-05 "
## [22] "glmer.ML = 63919 Scale est. = 1 n = 203853"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/summary_MER_pop_lat_overheating_days_arboreal_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 2505.7 2550.4 -1247.8 2495.7 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.1219 -0.0011 -0.0008 -0.0001 17.6245 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 128.98 11.357 "
## [15] " genus (Intercept) 3.14 1.772 "
## [16] " Xr s(lat) 4887.67 69.912 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -17.0116 0.9006 -18.889 <2e-16 ***"
## [22] "Xs(lat)Fx1 4.2675 3.0198 1.413 0.158 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.018 "
# Generalized additive model
print(readRDS("RData/Models/overheating_days/summary_GAM_pop_lat_overheating_days_arboreal_current.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xcf9dff8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -17.012 2.515 -6.764 1.35e-11 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 4.701 4.701 110.2 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -8.3e-05 "
## [22] "glmer.ML = 1453.9 Scale est. = 1 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/summary_MER_pop_lat_overheating_days_arboreal_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 4007.2 4051.9 -1998.6 3997.2 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.313 -0.014 -0.004 -0.001 97.169 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 13.01 3.607 "
## [15] " genus (Intercept) 18.70 4.325 "
## [16] " Xr s(lat) 6971.56 83.496 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -14.981012 0.000356 -42081 <2e-16 ***"
## [22] "Xs(lat)Fx1 -0.766909 0.000356 -2154 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.000 "
# Generalized additive model
print(readRDS("RData/Models/overheating_days/summary_GAM_pop_lat_overheating_days_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xff07dd8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -14.981 1.788 -8.38 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 4.974 4.974 159.8 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -6.96e-05 "
## [22] "glmer.ML = 2359.4 Scale est. = 1 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/summary_MER_pop_lat_overheating_days_arboreal_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 13732.7 13777.3 -6861.4 13722.7 55424 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-4.278 -0.069 -0.007 -0.002 74.160 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 47.8929 6.9205 "
## [15] " genus (Intercept) 0.3517 0.5931 "
## [16] " Xr s(lat) 3847.9852 62.0321 "
## [17] "Number of obs: 55429, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -11.4556 0.5059 -22.64 <2e-16 ***"
## [22] "Xs(lat)Fx1 -16.1371 1.2972 -12.44 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.044 "
# Generalized additive model
print(readRDS("RData/Models/overheating_days/summary_GAM_pop_lat_overheating_days_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x14e78d50>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -11.4556 0.6105 -18.76 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.062 8.062 676.9 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.000143 "
## [22] "glmer.ML = 9759.9 Scale est. = 1 n = 55429"
Visualize the results
Vegetated substrate
# Load model predictions
pred_sub_current <- readRDS("RData/Models/overheating_days/predictions_pop_lat_overheating_days_substrate_current.rds")
pred_sub_future2C <- readRDS("RData/Models/overheating_days/predictions_pop_lat_overheating_days_substrate_future2C.rds")
pred_sub_future4C <- readRDS("RData/Models/overheating_days/predictions_pop_lat_overheating_days_substrate_future4C.rds")
pop_overheating_days_sub <- ggplot() + geom_point(data = pop_sub_future4C, aes(x = lat,
y = overheating_days), colour = "#EF4187", shape = 20, alpha = 0.85, size = 2,
position = position_jitter(width = 0.25, height = 0.25)) + geom_point(data = pop_sub_future2C,
aes(x = lat, y = overheating_days), colour = "#FAA43A", shape = 20, alpha = 0.85,
size = 2, position = position_jitter(width = 0.25, height = 0.25)) + geom_point(data = pop_sub_current,
aes(x = lat, y = overheating_days), colour = "#5DC8D9", shape = 20, alpha = 0.85,
size = 2, position = position_jitter(width = 0.25, height = 0.25)) + geom_ribbon(data = pred_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_sub_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("Overheating days") + ylim(0, 131) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_overheating_days_sub
Figure A30: Latitudinal variation in overheating days for amphibians on terrestrial conditions. Overheating days represents the number of days that a population exceeds its physiological limits across the 910 days investigated. Blue ribbons and points depict overheating_days in current microclimates. Orange ribbons and points depict overheating_days in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict overheating_days in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
Above-ground vegetation
# Load model predictions
pred_arb_current <- readRDS("RData/Models/overheating_days/predictions_pop_lat_overheating_days_arboreal_current.rds")
pred_arb_future2C <- readRDS("RData/Models/overheating_days/predictions_pop_lat_overheating_days_arboreal_future2C.rds")
pred_arb_future4C <- readRDS("RData/Models/overheating_days/predictions_pop_lat_overheating_days_arboreal_future4C.rds")
pop_overheating_days_arb <- ggplot() + geom_point(data = pop_arb_future4C, aes(x = lat,
y = overheating_days), colour = "#EF4187", shape = 20, alpha = 0.85, size = 2,
position = position_jitter(width = 0.25, height = 0.25)) + geom_point(data = pop_arb_future2C,
aes(x = lat, y = overheating_days), colour = "#FAA43A", shape = 20, alpha = 0.85,
size = 2, position = position_jitter(width = 0.25, height = 0.25)) + geom_point(data = pop_arb_current,
aes(x = lat, y = overheating_days), colour = "#5DC8D9", shape = 20, alpha = 0.85,
size = 2, position = position_jitter(width = 0.25, height = 0.25)) + geom_ribbon(data = pred_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_arb_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("Overheating days") + ylim(0, 131) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_overheating_days_arb
Figure A31: Latitudinal variation in overheating days for amphibians in above ground vegetation. Overheating days represents the number of days that a population exceeds its physiological limits across the 910 days investigated. Blue ribbons and points depict overheating_days in current microclimates. Orange ribbons and points depict overheating_days in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict overheating_days in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
All habitats
all_habitats <- (pop_overheating_days_sub/pop_overheating_days_arb/plot_layout(ncol = 1))
all_habitats
Figure A32: Latitudinal variation in overheating days for amphibians on terrestrial conditions (top row) or in above ground vegetation (bottom row). Overheating days represents the number of days that a population exceeds its physiological limits across the 910 days investigated. Blue ribbons and points depict overheating_days in current microclimates. Orange ribbons and points depict overheating_days in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict overheating_days in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from generalised additive mixed models.
Linear mixed models
Here, we used linear mixed models to estimate the mean number of overheating days in each microhabitat and climatic scenario. Note that we could not use bayesian linear mixed models because the models failed to mix, even after hundreds of thousands of iterations. These models therefore do not account for variation due to phylogeny, and confidence intervals are likely to be wider than predicted.
Run the models
Full dataset
all_data <- bind_rows(pop_sub_current %>%
mutate(habitat_scenario = "substrate_current"), pop_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), pop_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), pop_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), pop_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), pop_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
# Load training data for taxonomic information
training_data <- readRDS("RData/General_data/pre_data_for_imputation.rds")
training_data <- dplyr::select(training_data, tip.label, family)
all_data <- distinct(left_join(all_data, training_data, by = "tip.label"))
split_names <- strsplit(as.character(all_data$tip.label), " ")
all_data$genus <- sapply(split_names, `[`, 1)
all_data$species <- sapply(split_names, `[`, 2)
all_data$overheating_days <- round(all_data$overheating_days)
all_data <- as.data.frame(all_data)
set.seed(123)
# Run model Note that this model fails if we add an observation-level random
# effect
model_days <- glmer(overheating_days ~ habitat_scenario - 1 + (1 | genus/species),
family = "poisson", control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05)),
data = all_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_days, terms = "habitat_scenario", type = "simulate",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model and predictions
saveRDS(model_days, file = "RData/Models/overheating_days/model_lme4_overheating_days.rds")
saveRDS(predictions, file = "RData/Models/overheating_days/predictions_lme4_overheating_days.rds")
#### Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_days_contrast <- glmer(overheating_days ~ relevel(habitat_scenario, ref = "substrate_current") +
(1 | genus/species), family = "poisson", control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun = 2e+05)), data = all_data)
# Save model
saveRDS(model_days_contrast, file = "RData/Models/overheating_days/model_lme4_overheating_days_contrast.rds")
Subset of overheating populations
# Filter to populations predicted to overheat
all_data <- filter(all_data, overheating_risk > 0)
model_days_overheating_pop <- glmer(overheating_days ~ habitat_scenario - 1 + (1 |
genus/species/obs), family = "poisson", control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun = 2e+05)), data = all_data)
# Get predictions
predictions_overheating_pop <- as.data.frame(ggpredict(model_days_overheating_pop,
terms = "habitat_scenario", type = "simulate", interval = "confidence", nsim = 1000))
predictions_overheating_pop <- predictions_overheating_pop %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model and predictions
saveRDS(model_days_overheating_pop, file = "RData/Models/overheating_days/model_lme4_overheating_days_overheating_pop.rds")
saveRDS(predictions_overheating_pop, file = "RData/Models/overheating_days/predictions_lme4_overheating_days_overheating_pop.rds")
Model summaries
Full dataset
# Model summary
model_overheating_days <- readRDS("RData/Models/overheating_days/model_lme4_overheating_days.rds")
summary(model_overheating_days)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: overheating_days ~ habitat_scenario - 1 + (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
##
## AIC BIC logLik deviance df.resid
## 155884.5 155977.0 -77934.3 155868.5 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.836 -0.057 -0.006 -0.002 116.897
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 52.50 7.2459
## genus (Intercept) 0.11 0.3317
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -13.1015 0.1172 -111.82 <2e-16 ***
## habitat_scenarioarboreal_future2C -12.5355 0.1139 -110.08 <2e-16 ***
## habitat_scenarioarboreal_future4C -10.8965 0.1115 -97.75 <2e-16 ***
## habitat_scenariosubstrate_current -12.4883 0.1111 -112.36 <2e-16 ***
## habitat_scenariosubstrate_future2C -11.8894 0.1110 -107.12 <2e-16 ***
## habitat_scenariosubstrate_future4C -10.0632 0.1104 -91.11 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.876
## hbtt_scnrr_4C 0.911 0.944
## hbtt_scnrs_ 0.904 0.937 0.974
## hbtt_scnrs_2C 0.910 0.943 0.980 0.977
## hbtt_scnrs_4C 0.916 0.949 0.987 0.984 0.991
# Model predictions
print(readRDS("RData/Models/overheating_days/predictions_lme4_overheating_days.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 0.008328287 0.02559816 0.0000000000 0.04267746
## 2 arboreal_future2C 0.014655631 0.03517287 0.0000000000 0.08279710
## 3 arboreal_future4C 0.075557250 0.08505270 0.0115388721 0.22957170
## 4 substrate_current 0.013504832 0.03957663 0.0004806136 0.07981448
## 5 substrate_future2C 0.024578353 0.05475054 0.0019021059 0.12697458
## 6 substrate_future4C 0.152603656 0.14084296 0.0459192408 0.45990199
# Model summary (contrasts)
model_overheating_days_contrast <- readRDS("RData/Models/overheating_days/model_lme4_overheating_days_contrast.rds")
summary(model_overheating_days_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula:
## overheating_days ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
##
## AIC BIC logLik deviance df.resid
## 155884.5 155977.0 -77934.3 155868.5 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.836 -0.057 -0.006 -0.002 116.897
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 52.52 7.2470
## genus (Intercept) 0.11 0.3317
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate
## (Intercept) -12.48936
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.61321
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.04722
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.59182
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.59891
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.42503
## Std. Error
## (Intercept) 0.16736
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.05006
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.04026
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.02548
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.02362
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.01977
## z value
## (Intercept) -74.628
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -12.248
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -1.173
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 62.484
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 25.357
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 122.637
## Pr(>|z|)
## (Intercept) <2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.241
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.026
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.043 0.204
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.073 0.322
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.074 0.300
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.082 0.359
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.403
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.377
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.451
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.595
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.712
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.768
## optimizer (bobyqa) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00248256 (tol = 0.002, component 1)
Subset of overheating populations
# Model summary
model_overheating_days_overheating_pop <- readRDS("RData/Models/overheating_days/model_lme4_overheating_days_overheating_pop.rds")
summary(model_overheating_days_overheating_pop)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: overheating_days ~ habitat_scenario - 1 + (1 | genus/species/obs)
## Data: all_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
##
## AIC BIC logLik deviance df.resid
## 34008.1 34070.7 -16995.1 33990.1 7682
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.9902 -0.4092 -0.0719 0.2867 1.8958
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs:(species:genus) (Intercept) 0.3096 0.5564
## species:genus (Intercept) 0.1873 0.4328
## genus (Intercept) 0.2534 0.5033
## Number of obs: 7691, groups:
## obs:(species:genus), 7691; species:genus, 391; genus, 118
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -0.90187 0.10344 -8.719 < 2e-16 ***
## habitat_scenarioarboreal_future2C -0.57655 0.08619 -6.689 2.24e-11 ***
## habitat_scenarioarboreal_future4C 0.38794 0.07181 5.402 6.58e-08 ***
## habitat_scenariosubstrate_current -0.43971 0.07215 -6.095 1.10e-09 ***
## habitat_scenariosubstrate_future2C -0.12056 0.06838 -1.763 0.0779 .
## habitat_scenariosubstrate_future4C 0.83364 0.06385 13.055 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.504
## hbtt_scnrr_4C 0.591 0.708
## hbtt_scnrs_ 0.569 0.681 0.806
## hbtt_scnrs_2C 0.593 0.711 0.845 0.845
## hbtt_scnrs_4C 0.611 0.733 0.876 0.873 0.916
# Model prediction
print(readRDS("RData/Models/overheating_days/predictions_lme4_overheating_days_overheating_pop.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 1.621303 1.235769 0.02631579 4.429112
## 2 arboreal_future2C 1.955541 1.355557 0.11289753 4.973498
## 3 arboreal_future4C 5.083953 2.005968 1.80564840 9.387467
## 4 substrate_current 2.154849 1.393408 0.23914474 5.264264
## 5 substrate_future2C 2.576727 1.495037 0.40998947 5.856829
## 6 substrate_future4C 6.747021 2.171997 3.13584040 11.384964
Relationship between TSM and overheating events
Here, we investigate the association between thermal safety margins and the predicted number of overheating events across microhabitats and climatic scenarios.
This code ran on an HPC environment, where the original code can be found in R/Models/Running_models_overheating_days_by_TSM.R and the resources used in pbs/Models/Running_models_overheating_days_by_TSM.pbs
Load the data
# Load population-level data
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
Linear mixed models
Note that we could not use bayesian linear mixed models because the models failed to mix, even after hundreds of thousands of iterations. Therefore, these predictions do not account for variation due to phylogenetic relatedness and confidence intervals are likely wider than those predicted.
Run the models
# Function to run the MCMCglmm for each habitat scenario
run_model <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
dataset$overheating_days <- round(dataset$overheating_days)
dataset <- dataset %>%
mutate(obs = as.character(row_number()))
data <- dataset
# Set the seed for reproducibility
set.seed(123)
# Fit the model
model <- glmer(overheating_days ~ TSM + (1 | genus/species/obs), family = "poisson",
control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05)),
data = data)
# Get predictions
predictions <- data.frame(emmeans(model, specs = "TSM", data = data, at = list(TSM = seq(min(data$TSM),
max(data$TSM), length = 100)), type = "response"))
predictions <- predictions %>%
rename(prediction = rate)
saveRDS(model, file = paste0("RData/Models/overheating_days/model_lme4_overheating_days_by_TSM_",
habitat_scenario, ".rds"))
saveRDS(predictions, file = paste0("RData/Models/overheating_days/predictions_lme4_overheating_days_by_TSM_",
habitat_scenario, ".rds"))
}
dataset_list <- list(substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C, arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C)
plan(multicore(workers = 2))
results <- future_lapply(names(dataset_list), function(x) {
run_model(dataset_list[[x]], x)
}, future.packages = c("lme4", "emmeans", "ggeffects", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Model summary
print(summary(readRDS("RData/Models/overheating_days/model_lme4_overheating_days_by_TSM_substrate_current.rds")))
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: overheating_days ~ TSM + (1 | genus/species/obs)
## Data: data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
##
## AIC BIC logLik deviance df.resid
## 12447.0 12498.1 -6218.5 12437.0 203849
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.745 -0.023 -0.006 -0.002 98.398
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs:(species:genus) (Intercept) 0.116 0.3406
## species:genus (Intercept) 3.346 1.8292
## genus (Intercept) 5.850 2.4186
## Number of obs: 203854, groups:
## obs:(species:genus), 203854; species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.72283 0.38956 9.556 <2e-16 ***
## TSM -1.20082 0.03084 -38.941 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## TSM -0.644
Future climate (+2C)
# Model summary
print(summary(readRDS("RData/Models/overheating_days/model_lme4_overheating_days_by_TSM_substrate_future2C.rds")))
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: overheating_days ~ TSM + (1 | genus/species/obs)
## Data: data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
##
## AIC BIC logLik deviance df.resid
## 18646.6 18697.8 -9318.3 18636.6 203848
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.203 -0.041 -0.011 -0.002 81.336
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs:(species:genus) (Intercept) 0.0779 0.2791
## species:genus (Intercept) 2.3801 1.5427
## genus (Intercept) 5.2724 2.2962
## Number of obs: 203853, groups:
## obs:(species:genus), 203853; species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.31747 0.31011 20.37 <2e-16 ***
## TSM -1.45241 0.02707 -53.66 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## TSM -0.647
Future climate (+4C)
# Model summary
print(summary(readRDS("RData/Models/overheating_days/model_lme4_overheating_days_by_TSM_substrate_future4C.rds")))
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: overheating_days ~ TSM + (1 | genus/species/obs)
## Data: data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
##
## AIC BIC logLik deviance df.resid
## 43718.4 43769.5 -21854.2 43708.4 203848
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.122 -0.074 -0.021 -0.005 133.660
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs:(species:genus) (Intercept) 0.2483 0.4983
## species:genus (Intercept) 1.0245 1.0122
## genus (Intercept) 2.9542 1.7188
## Number of obs: 203853, groups:
## obs:(species:genus), 203853; species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.61095 0.17145 44.39 <2e-16 ***
## TSM -1.61621 0.01476 -109.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## TSM -0.565
Above-ground vegetation
Current climate
# Model summary
print(summary(readRDS("RData/Models/overheating_days/model_lme4_overheating_days_by_TSM_arboreal_current.rds")))
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: overheating_days ~ TSM + (1 | genus/species/obs)
## Data: data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
##
## AIC BIC logLik deviance df.resid
## 1999.1 2043.8 -994.5 1989.1 56205
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4107 -0.0022 -0.0008 -0.0003 14.4385
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs:(species:genus) (Intercept) 0.00 0.000
## species:genus (Intercept) 15.19 3.897
## genus (Intercept) 0.00 0.000
## Number of obs: 56210, groups:
## obs:(species:genus), 56210; species:genus, 1771; genus, 174
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.92912 1.09109 4.518 6.25e-06 ***
## TSM -1.51134 0.09357 -16.152 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## TSM -0.645
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Future climate (+2C)
# Model summary
print(summary(readRDS("RData/Models/overheating_days/model_lme4_overheating_days_by_TSM_arboreal_future2C.rds")))
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: overheating_days ~ TSM + (1 | genus/species/obs)
## Data: data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
##
## AIC BIC logLik deviance df.resid
## 2988.7 3033.4 -1489.3 2978.7 56205
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.552 -0.013 -0.003 -0.001 36.350
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs:(species:genus) (Intercept) 0.000 0.000
## species:genus (Intercept) 2.358 1.536
## genus (Intercept) 4.359 2.088
## Number of obs: 56210, groups:
## obs:(species:genus), 56210; species:genus, 1771; genus, 174
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.83607 0.83558 9.378 <2e-16 ***
## TSM -1.73915 0.07952 -21.872 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## TSM -0.670
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Future climate (+4C)
# Model summary
print(summary(readRDS("RData/Models/overheating_days/model_lme4_overheating_days_by_TSM_arboreal_future4C.rds")))
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: overheating_days ~ TSM + (1 | genus/species/obs)
## Data: data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
##
## AIC BIC logLik deviance df.resid
## 6820.7 6865.4 -3405.3 6810.7 56205
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7715 -0.0428 -0.0104 -0.0022 21.1830
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs:(species:genus) (Intercept) 0.0000 0.0000
## species:genus (Intercept) 0.9173 0.9577
## genus (Intercept) 8.7890 2.9646
## Number of obs: 56210, groups:
## obs:(species:genus), 56210; species:genus, 1771; genus, 174
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 10.08279 0.58740 17.16 <2e-16 ***
## TSM -2.08512 0.03893 -53.57 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## TSM -0.403
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Visualize the results
Vegetated substrate
# Load model predictions
pred_sub_current <- readRDS("RData/Models/overheating_days/predictions_lme4_overheating_days_by_TSM_substrate_current.rds")
pred_sub_future2C <- readRDS("RData/Models/overheating_days/predictions_lme4_overheating_days_by_TSM_substrate_future2C.rds")
pred_sub_future4C <- readRDS("RData/Models/overheating_days/predictions_lme4_overheating_days_by_TSM_substrate_future4C.rds")
pop_days_TSM_sub <- ggplot() + geom_ribbon(data = pred_sub_future4C, aes(x = TSM,
ymin = asymp.LCL, ymax = asymp.UCL), fill = "#EF4187", colour = "black", linewidth = 0.5,
alpha = 0.75) + geom_ribbon(data = pred_sub_future2C, aes(x = TSM, ymin = asymp.LCL,
ymax = asymp.UCL), fill = "#FAA43A", colour = "black", linewidth = 0.5, alpha = 0.75) +
geom_ribbon(data = pred_sub_current, aes(x = TSM, ymin = asymp.LCL, ymax = asymp.UCL),
fill = "#5DC8D9", colour = "black", linewidth = 0.5, alpha = 0.75) + xlab("TSM") +
ylab("Overheating days") + xlim(0, 20) + ylim(-0.25, 210) + theme_classic() +
theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_days_TSM_sub
Figure A34: Relationship between the number of overheating days and TSM in terrestrial conditions. Overheating days represents the number of days that a population exceeds its physiological limits across the 910 days investigated. Blue ribbons and points depict overheating_days in current microclimates. Orange ribbons and points depict overheating_days in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict overheating_days in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from the models.
Above-ground vegetation
# Load model predictions
pred_arb_current <- readRDS("RData/Models/overheating_days/predictions_lme4_overheating_days_by_TSM_arboreal_current.rds")
pred_arb_future2C <- readRDS("RData/Models/overheating_days/predictions_lme4_overheating_days_by_TSM_arboreal_future2C.rds")
pred_arb_future4C <- readRDS("RData/Models/overheating_days/predictions_lme4_overheating_days_by_TSM_arboreal_future4C.rds")
pop_days_TSM_arb <- ggplot() + geom_ribbon(data = pred_arb_future4C, aes(x = TSM,
ymin = asymp.LCL, ymax = asymp.UCL), fill = "#EF4187", colour = "black", linewidth = 0.5,
alpha = 0.75) + geom_ribbon(data = pred_arb_future2C, aes(x = TSM, ymin = asymp.LCL,
ymax = asymp.UCL), fill = "#FAA43A", colour = "black", linewidth = 0.5, alpha = 0.75) +
geom_ribbon(data = pred_arb_current, aes(x = TSM, ymin = asymp.LCL, ymax = asymp.UCL),
fill = "#5DC8D9", colour = "black", linewidth = 0.5, alpha = 0.75) + xlab("TSM") +
ylab("Overheating days") + xlim(0, 20) + ylim(-0.25, 210) + theme_classic() +
theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
pop_days_TSM_arb
Figure A35: Relationship between the number of overheating days and TSM in above-ground vegetation. Overheating days represents the number of days that a population exceeds its physiological limits across the 910 days investigated. Blue ribbons and points depict overheating_days in current microclimates. Orange ribbons and points depict overheating_days in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict overheating_days in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from the models.
All habitats
all_habitats <- (pop_days_TSM_sub/pop_days_TSM_arb/plot_layout(ncol = 1))
all_habitats
Figure A36: Relationship between the number of overheating days and TSM in terrestrial (top row) or arboreal conditions (bottom row). Overheating days represents the number of days that a population exceeds its physiological limits across the 910 days investigated. Blue ribbons and points depict overheating_days in current microclimates. Orange ribbons and points depict overheating_days in future climates with 2 degrees Celsius above preindustrial levels. Pink ribbons and points depict overheating_days in future climates with 4 degrees Celsius above preindustrial levels. Ribbons delimit the lower and upper 95% confidence intervals predicted from the models.
Number of species overheating
Here, we investigate the variation in the number of species predicted to overheating in each community. Note that none of the populations were predicted to overheat in water bodies.
This code ran on an HPC environment, where the original code can be found in R/Models/Running_models_n_species_overheating.R and the resources used in pbs/Models/Running_models_n_species_overheating.pbs
Load the data
# Load population-level data
# Substrate
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
# Arboreal
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
Generalized additive mixed models
Here, we investigate latitudinal patterns in the number of species overheating in each community using generalized additive models.
Run the models
run_community_n_species_overheating_analysis <- function(dataset, habitat_scenario) {
data <- dataset
# Run model
model <- gamm4::gamm4(n_species_overheating ~ s(lat, bs = "tp"), data = data,
family = poisson(), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
n_species_overheating = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$n_species_overheating_pred <- pred$fit
new_data$n_species_overheating_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = n_species_overheating_pred + 1.96 * n_species_overheating_pred_se,
lower = n_species_overheating_pred - 1.96 * n_species_overheating_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/n_species_overheating/summary_GAM_community_lat_number_sp_overheating_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/n_species_overheating/summary_MER_community_lat_number_sp_overheating_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/n_species_overheating/predictions_community_lat_number_sp_overheating_",
habitat_scenario, ".rds"))
}
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_community_n_species_overheating_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/summary_MER_community_lat_number_sp_overheating_substrate_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 6218.2 6240.9 -3106.1 6212.2 14088 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.685 -0.216 -0.085 -0.056 97.337 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 1122 33.49 "
## [15] "Number of obs: 14091, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -4.6216 0.1598 -28.927 <2e-16 ***"
## [20] "Xs(lat)Fx1 2.8854 4.2856 0.673 0.501 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.171"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/summary_GAM_community_lat_number_sp_overheating_substrate_current.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xb3ee2e8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -4.6216 0.1682 -27.48 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.567 7.567 1027 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0325 "
## [22] "glmer.ML = 5478.3 Scale est. = 1 n = 14091"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/summary_MER_community_lat_number_sp_overheating_substrate_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 9756.6 9779.3 -4875.3 9750.6 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.847 -0.298 -0.164 -0.061 65.015 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 290.8 17.05 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -3.69613 0.09869 -37.453 <2e-16 ***"
## [20] "Xs(lat)Fx1 2.03001 2.63061 0.772 0.44 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.032"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/summary_GAM_community_lat_number_sp_overheating_substrate_future2C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xebca1e8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -3.69613 0.09985 -37.02 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.949 7.949 1705 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0394 "
## [22] "glmer.ML = 8566.6 Scale est. = 1 n = 14090"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/summary_MER_community_lat_number_sp_overheating_substrate_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 22586.5 22609.1 -11290.2 22580.5 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.192 -0.610 -0.394 -0.072 37.240 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 1147 33.86 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -2.45566 0.05986 -41.025 < 2e-16 ***"
## [20] "Xs(lat)Fx1 21.87656 3.07342 7.118 1.1e-12 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.342"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/summary_GAM_community_lat_number_sp_overheating_substrate_future4C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x101eb1e0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -2.45566 0.05984 -41.03 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.844 8.844 2688 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0576 "
## [22] "glmer.ML = 18997 Scale est. = 1 n = 14090"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/summary_MER_community_lat_number_sp_overheating_arboreal_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1197.1 1217.5 -595.6 1191.1 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.405 -0.110 -0.015 -0.001 34.123 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 1240 35.21 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -9.7538 3.7057 -2.632 0.00849 **"
## [20] "Xs(lat)Fx1 0.8302 11.5350 0.072 0.94263 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.540 "
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/summary_GAM_community_lat_number_sp_overheating_arboreal_current.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe872288>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -9.754 4.641 -2.102 0.0356 *"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 3.561 3.561 111.4 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0373 "
## [22] "glmer.ML = 981.31 Scale est. = 1 n = 6614"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/summary_MER_community_lat_number_sp_overheating_arboreal_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1911.2 1931.6 -952.6 1905.2 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.609 -0.099 -0.044 0.000 33.534 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 31301 176.9 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -26.979 2.715 -9.938 <2e-16 ***"
## [20] "Xs(lat)Fx1 -24.726 1.757 -14.070 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.179"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/summary_GAM_community_lat_number_sp_overheating_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xb3d7e18>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -26.98 12.83 -2.103 0.0355 *"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.455 5.455 248.1 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0594 "
## [22] "glmer.ML = 1564.4 Scale est. = 1 n = 6614"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/summary_MER_community_lat_number_sp_overheating_arboreal_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 4192.9 4213.3 -2093.4 4186.9 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.879 -0.231 -0.115 -0.009 184.676 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 14734 121.4 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -5.9651 0.5824 -10.24 <2e-16 ***"
## [20] "Xs(lat)Fx1 -18.8659 1.5317 -12.32 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.023"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/summary_GAM_community_lat_number_sp_overheating_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xeac27d8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -5.9651 0.7136 -8.36 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.253 7.253 706.1 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0825 "
## [22] "glmer.ML = 3393.1 Scale est. = 1 n = 6614"
Visualize the results
# Set colours
magma_subset <- viridis::magma(100)[40:100]
color_func <- colorRampPalette(c("gray95", magma_subset))
colors_magma <- color_func(100)
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells.rds")
# Arboreal
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_clipped_cells.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_clipped_cells.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_clipped_cells.rds")
sp_min <- min(min(community_sub_current$n_species_overheating, na.rm = TRUE), min(community_sub_future4C$n_species_overheating,
na.rm = TRUE), min(community_pond_current$n_species_overheating, na.rm = TRUE),
min(community_pond_future4C$n_species_overheating, na.rm = TRUE), min(community_arb_current$n_species_overheating,
na.rm = TRUE), min(community_arb_future4C$n_species_overheating, na.rm = TRUE))
sp_max <- max(max(community_sub_current$n_species_overheating, na.rm = TRUE), max(community_sub_future4C$n_species_overheating,
na.rm = TRUE), max(community_pond_current$n_species_overheating, na.rm = TRUE),
max(community_pond_future4C$n_species_overheating, na.rm = TRUE), max(community_arb_current$n_species_overheating,
na.rm = TRUE), max(community_arb_future4C$n_species_overheating, na.rm = TRUE))
Vegetated substrate
# Current
map_sub_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_current,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = colors_magma,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0.1, 0, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +2C
map_sub_TSM_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future2C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = colors_magma,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0.1, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#FAA43A"))
# Future +4C
map_sub_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future4C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = colors_magma,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_sub_current <- readRDS("RData/Models/n_species_overheating/predictions_community_lat_number_sp_overheating_substrate_current.rds")
pred_community_sub_future2C <- readRDS("RData/Models/n_species_overheating/predictions_community_lat_number_sp_overheating_substrate_future2C.rds")
pred_community_sub_future4C <- readRDS("RData/Models/n_species_overheating/predictions_community_lat_number_sp_overheating_substrate_future4C.rds")
lat_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_sub_future4C, aes(x = lat, y = n_species_overheating),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_sub_future2C,
aes(x = lat, y = n_species_overheating), alpha = 0.85, col = "#FAA43A", shape = ".") +
geom_point(data = community_sub_current, aes(x = lat, y = n_species_overheating),
alpha = 0.85, col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_community_sub_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_community_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlim(-55.00099, 72.00064) + ylim(0, 85) + xlab("Latitude") + ylab("Number of species overheating") +
coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_blank(), axis.text.x = element_text(color = "black", size = 11),
axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
substrate_plot <- (map_sub_TSM_current + map_sub_TSM_future2C + map_sub_TSM_future4C +
lat_all + plot_layout(ncol = 4))
substrate_plot
Figure A37: Number of species predicted to overheat in each community for amphibians on terrestrial conditions. The number of species overheating as assessed as the sum of species overheating at least once in the period surveyed (910 days between 2006 and 2015). The right panel depicts latitudinal patterns in the number of species overheating in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (red). Gray colour depicts species areas where none of the species overheat. Black colour depicts areas with no data.
Above-ground vegetation
# Current
map_arb_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_current,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = colors_magma,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0.1, 0, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +2C
map_arb_TSM_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future2C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = colors_magma,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0.1, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#FAA43A"))
# Future +4C
map_arb_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future4C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = colors_magma,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_arb_current <- readRDS("RData/Models/n_species_overheating/predictions_community_lat_number_sp_overheating_arboreal_current.rds")
pred_community_arb_future2C <- readRDS("RData/Models/n_species_overheating/predictions_community_lat_number_sp_overheating_arboreal_future2C.rds")
pred_community_arb_future4C <- readRDS("RData/Models/n_species_overheating/predictions_community_lat_number_sp_overheating_arboreal_future4C.rds")
lat_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_arb_future4C, aes(x = lat, y = n_species_overheating),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_arb_future2C,
aes(x = lat, y = n_species_overheating), alpha = 0.85, col = "#FAA43A", shape = ".") +
geom_point(data = community_arb_current, aes(x = lat, y = n_species_overheating),
alpha = 0.85, col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_community_arb_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_community_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlim(-55.00099, 72.00064) + ylim(0, 85) + xlab("Latitude") + ylab("Number of species overheating") +
coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_blank(), axis.text.x = element_text(color = "black", size = 11),
axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
arboreal_plot <- (map_arb_TSM_current + map_arb_TSM_future2C + map_arb_TSM_future4C +
lat_all + plot_layout(ncol = 4))
arboreal_plot
Figure A38: Number of species predicted to overheat in each community for amphibians in above-ground vegetation. The number of species overheating as assessed as the sum of species overheating at least once in the period surveyed (910 days between 2006 and 2015). The right panel depicts latitudinal patterns in the number of species overheating in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (red). Gray colour depicts species areas where none of the species overheat. Black colour depicts areas with no data.
All habitats
all_habitats <- (substrate_plot/arboreal_plot/plot_layout(ncol = 1))
all_habitats
Figure A39: Number of species predicted to overheat in each community for amphibians on terrestrial conditions (top panel) or in above-ground vegetation (bottom panel). The number of species overheating as assessed as the sum of species overheating at least once in the period surveyed (910 days between 2006 and 2015). The right panel depicts latitudinal patterns in the number of species overheating in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (red). Gray colour depicts species areas where none of the species overheat. Black colour depicts areas with no data.
Linear mixed models
Here, we used linear mixed models to estimate the mean number of species predicted to overheat in each microhabitat and climatic scenario. Note that we could not use bayesian linear mixed models because the models failed to mix, even after hundreds of thousands of iterations.
Run the models
Full dataset
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
all_community_data <- bind_rows(community_sub_current %>%
mutate(habitat_scenario = "substrate_current"), community_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), community_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), community_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), community_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), community_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
all_community_data <- all_community_data %>%
mutate(obs = as.character(row_number()))
all_community_data <- as.data.frame(all_community_data)
set.seed(123)
# Intercept-less model
model_n_sp <- glmer(n_species_overheating ~ habitat_scenario - 1 + (1 | obs), family = "poisson",
control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_community_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_n_sp, terms = "habitat_scenario", type = "simulate",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model summaries and predictions
saveRDS(model_n_sp, file = "RData/Models/n_species_overheating/model_lme4_number_sp_overheating.rds")
saveRDS(predictions, file = "RData/Models/n_species_overheating/predictions_lme4_number_sp_overheating.rds")
# Contrast
all_community_data$habitat_scenario <- as.factor(all_community_data$habitat_scenario)
model_n_sp_contrast <- glmer(n_species_overheating ~ relevel(habitat_scenario, ref = "substrate_current") +
(1 | obs), family = "poisson", control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_community_data)
saveRDS(model_n_sp_contrast, file = "RData/Models/n_species_overheating/model_lme4_number_sp_overheating_contrast.rds")
Subset of overheating communities
# Filter to overheating communities
all_community_data <- filter(all_community_data, n_species_overheating > 0)
# Run model
model_n_sp_overheating_communities <- glmer(n_species_overheating ~ habitat_scenario -
1 + (1 | obs), family = "poisson", control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun = 1e+09)), data = all_community_data)
# Get predictions
predictions_overheating_communities <- as.data.frame(ggpredict(model_n_sp_overheating_communities,
terms = "habitat_scenario", type = "simulate", interval = "confidence", nsim = 1000))
predictions_overheating_communities <- predictions_overheating_communities %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model summaries and predictions
saveRDS(model_n_sp_overheating_communities, file = "RData/Models/n_species_overheating/model_lme4_number_sp_overheating_overheating_communities.rds")
saveRDS(predictions_overheating_communities, file = "RData/Models/n_species_overheating/predictions_lme4_number_sp_overheating_overheating_communities.rds")
Model summaries
Full dataset
# Model summary
model_n_species_overheating <- readRDS("RData/Models/n_species_overheating/model_lme4_number_sp_overheating.rds")
summary(model_n_species_overheating)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: n_species_overheating ~ habitat_scenario - 1 + (1 | obs)
## Data: all_community_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 22227.8 22291.0 -11106.9 22213.8 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.02314 -0.01565 -0.01330 -0.01045 0.18585
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 55.47 7.447
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -9.58041 0.27184 -35.24 <2e-16 ***
## habitat_scenarioarboreal_future2C -9.18387 0.22894 -40.11 <2e-16 ***
## habitat_scenarioarboreal_future4C -8.30145 0.15935 -52.10 <2e-16 ***
## habitat_scenariosubstrate_current -9.11648 0.16106 -56.60 <2e-16 ***
## habitat_scenariosubstrate_future2C -8.63049 0.13501 -63.92 <2e-16 ***
## habitat_scenariosubstrate_future4C -7.50281 0.09945 -75.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.072
## hbtt_scnrr_4C 0.103 0.124
## hbtt_scnrs_ 0.104 0.125 0.178
## hbtt_scnrs_2C 0.124 0.149 0.213 0.215
## hbtt_scnrs_4C 0.170 0.204 0.290 0.294 0.351
# Model prediction
print(readRDS("RData/Models/n_species_overheating/predictions_lme4_number_sp_overheating.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 0.02088781 0.01660796 0.001511944 0.05398019
## 2 arboreal_future2C 0.03995615 0.02701276 0.005745389 0.09375189
## 3 arboreal_future4C 0.10655050 0.06838450 0.021314636 0.24254233
## 4 substrate_current 0.05635604 0.03117476 0.016035058 0.11809666
## 5 substrate_future2C 0.09628857 0.05181968 0.029086231 0.19937544
## 6 substrate_future4C 0.28801057 0.15671888 0.083158268 0.60375089
# Model summary (contrasts)
model_n_species_overheating_contrast <- readRDS("RData/Models/n_species_overheating/model_lme4_number_sp_overheating_contrast.rds")
summary(model_n_species_overheating_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula:
## n_species_overheating ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | obs)
## Data: all_community_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 22227.8 22291.0 -11106.9 22213.8 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.02314 -0.01565 -0.01330 -0.01045 0.18585
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 55.46 7.447
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate
## (Intercept) -9.1163
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.4640
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.0677
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.8149
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.4859
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1.6135
## Std. Error
## (Intercept) 0.1566
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.3006
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.2563
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.2024
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.1830
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.1586
## z value
## (Intercept) -58.229
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -1.544
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.264
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 4.026
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 2.655
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 10.176
## Pr(>|z|)
## (Intercept) < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.12266
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.79168
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 5.67e-05
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.00793
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C < 2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C **
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.415
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.482 0.248
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.623 0.322
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.692 0.358
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.798 0.413
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.372
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.413
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.477
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.536
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.619
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.688
Subset of overheating communities
# Model summary
model_n_species_overheating <- readRDS("RData/Models/n_species_overheating/model_lme4_number_sp_overheating_overheating_communities.rds")
summary(model_n_species_overheating)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: n_species_overheating ~ habitat_scenario - 1 + (1 | obs)
## Data: all_community_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 10812.3 10853.0 -5399.1 10798.3 2470
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.5014 -0.4646 -0.3080 0.3303 0.8234
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 0.6008 0.7751
## Number of obs: 2477, groups: obs, 2477
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current 0.52261 0.12507 4.179 2.93e-05 ***
## habitat_scenarioarboreal_future2C 0.72284 0.09809 7.369 1.72e-13 ***
## habitat_scenarioarboreal_future4C 0.70050 0.06188 11.320 < 2e-16 ***
## habitat_scenariosubstrate_current 0.88243 0.06364 13.867 < 2e-16 ***
## habitat_scenariosubstrate_future2C 0.85588 0.04970 17.221 < 2e-16 ***
## habitat_scenariosubstrate_future4C 0.81189 0.02907 27.932 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.002
## hbtt_scnrr_4C 0.005 0.006
## hbtt_scnrs_ 0.005 0.007 0.013
## hbtt_scnrs_2C 0.007 0.009 0.018 0.019
## hbtt_scnrs_4C 0.011 0.015 0.030 0.032 0.045
# Model prediction
print(readRDS("RData/Models/n_species_overheating/predictions_lme4_number_sp_overheating_overheating_communities.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 1.929784 1.366272 0.05371622 5.054054
## 2 arboreal_future2C 2.444730 1.528755 0.18896396 5.649099
## 3 arboreal_future4C 2.509284 1.520796 0.31228070 5.691842
## 4 substrate_current 3.185217 1.687332 0.60059289 6.882609
## 5 substrate_future2C 3.227951 1.675308 0.67840376 6.809742
## 6 substrate_future4C 3.084207 1.636719 0.61654744 6.557210
Proportion of species overheating
Here, we investigate the variation in the proportion of species predicted to overheat in each community. Note that none of the populations were predicted to overheat in water bodies.
This code ran on an HPC environment, where the original code can be found in R/Models/Running_models_prop_species_overheating.R and the resources used in pbs/Models/Running_models_prop_species_overheating.pbs
Load the data
# Load population-level data
# Substrate
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
# Arboreal
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
Generalized additive mixed models
Here, we investigate latitudinal patterns in the number of species overheating in each community using generalized additive models.
Run the models
run_community_proportion_overheating_analysis <- function(dataset, habitat_scenario) {
data <- dataset
# Run model
model <- gamm4::gamm4(proportion_species_overheating ~ s(lat, bs = "tp"), data = data,
weights = data$n_species, family = binomial(), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
proportion_species_overheating = NA, n_species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$overheating_risk_pred <- pred$fit
new_data$overheating_risk_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = overheating_risk_pred + 1.96 * overheating_risk_pred_se,
lower = overheating_risk_pred - 1.96 * overheating_risk_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/prop_species_overheating/summary_GAM_community_lat_proportion_sp_overheating_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/prop_species_overheating/summary_MER_community_lat_proportion_sp_overheating_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/prop_species_overheating/predictions_community_lat_proportion_sp_overheating_",
habitat_scenario, ".rds"))
}
# Create a list of datasets
dataset_list <- list(arboreal_current = community_arb_current, arboreal_future2C = community_arb_future2C,
arboreal_future4C = community_arb_future4C, substrate_current = community_sub_current,
substrate_future2C = community_sub_future2C, substrate_future4C = community_sub_future4C)
# Set up parallel processing
plan(multicore(workers = 3))
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_community_proportion_overheating_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/summary_MER_community_lat_proportion_sp_overheating_substrate_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 5492.8 5515.4 -2743.4 5486.8 14088 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -1.180 -0.171 -0.078 -0.040 108.961 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 1139 33.76 "
## [15] "Number of obs: 14091, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -6.8803 0.1689 -40.738 <2e-16 ***"
## [20] "Xs(lat)Fx1 3.3539 6.2435 0.537 0.591 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.249"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/summary_GAM_community_lat_proportion_sp_overheating_substrate_current.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xb965338>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -6.880 0.168 -40.96 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.576 7.576 417.6 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0197 "
## [22] "glmer.ML = 4789.7 Scale est. = 1 n = 14091"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/summary_MER_community_lat_proportion_sp_overheating_substrate_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 8573.1 8595.8 -4283.5 8567.1 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.461 -0.253 -0.119 -0.056 69.925 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 261.7 16.18 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -5.94578 0.09981 -59.568 <2e-16 ***"
## [20] "Xs(lat)Fx1 2.37820 3.06803 0.775 0.438 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.047"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/summary_GAM_community_lat_proportion_sp_overheating_substrate_future2C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe8a06f8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -5.9458 0.1009 -58.91 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.802 7.802 623.1 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0217 "
## [22] "glmer.ML = 7454 Scale est. = 1 n = 14090"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/summary_MER_community_lat_proportion_sp_overheating_substrate_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 20152.3 20174.9 -10073.1 20146.3 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-2.073 -0.531 -0.226 -0.074 39.252 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 1205 34.71 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -4.69352 0.05982 -78.457 < 2e-16 ***"
## [20] "Xs(lat)Fx1 23.64469 2.97760 7.941 2.01e-15 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.334"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/summary_GAM_community_lat_proportion_sp_overheating_substrate_future4C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x13f60e20>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -4.69352 0.06073 -77.29 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.823 8.823 1159 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0383 "
## [22] "glmer.ML = 16918 Scale est. = 1 n = 14090"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/summary_MER_community_lat_proportion_sp_overheating_arboreal_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 918.6 939.0 -456.3 912.6 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.7469 -0.0865 -0.0102 -0.0007 27.2347 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 1126 33.55 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -11.3026 3.5404 -3.192 0.00141 **"
## [20] "Xs(lat)Fx1 0.3667 10.5142 0.035 0.97218 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.500 "
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/summary_GAM_community_lat_proportion_sp_overheating_arboreal_current.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe5284f0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -11.303 4.591 -2.462 0.0138 *"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 3.466 3.466 88.33 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0682 "
## [22] "glmer.ML = 707.55 Scale est. = 1 n = 6614"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/summary_MER_community_lat_proportion_sp_overheating_arboreal_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1426.6 1447.0 -710.3 1420.6 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.1381 -0.0961 -0.0256 0.0000 24.1444 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 80138 283.1 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -44.319 1.959 -22.63 <2e-16 ***"
## [20] "Xs(lat)Fx1 -42.661 2.198 -19.41 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.094"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/summary_GAM_community_lat_proportion_sp_overheating_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xb024d68>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -44.32 19.92 -2.224 0.0261 *"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.592 5.592 197.7 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.116 "
## [22] "glmer.ML = 1084.1 Scale est. = 1 n = 6614"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/summary_MER_community_lat_proportion_sp_overheating_arboreal_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 3004.8 3025.2 -1499.4 2998.8 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -1.629 -0.216 -0.077 -0.007 147.828 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 44397 210.7 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -9.255 1.147 -8.065 7.31e-16 ***"
## [20] "Xs(lat)Fx1 -66.351 55.969 -1.185 0.236 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.282 "
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/summary_GAM_community_lat_proportion_sp_overheating_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe77fd20>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -9.255 1.148 -8.065 7.33e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.59 7.59 475.5 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.132 "
## [22] "glmer.ML = 2226.1 Scale est. = 1 n = 6614"
Visualize the results
# Set colours
magma_subset <- viridis::magma(100)[40:100]
color_func <- colorRampPalette(c("gray95", magma_subset))
colors_magma <- color_func(100)
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells.rds")
# Arboreal
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_clipped_cells.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_clipped_cells.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_clipped_cells.rds")
Vegetated substrate
# Current
map_sub_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_current,
aes(fill = proportion_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = colors_magma,
na.value = "gray1", name = "Proportion of species overheating", limits = c(0,
1)) + theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0.1, 0, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +2C
map_sub_TSM_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future2C,
aes(fill = proportion_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = colors_magma,
na.value = "gray1", name = "Proportion of species overheating", limits = c(0,
1)) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#FAA43A"))
# Future +4C
map_sub_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future4C,
aes(fill = proportion_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = colors_magma,
na.value = "gray1", name = "Proportion of species overheating", limits = c(0,
1)) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_sub_current <- readRDS("RData/Models/prop_species_overheating/predictions_community_lat_proportion_sp_overheating_substrate_current.rds")
pred_community_sub_future2C <- readRDS("RData/Models/prop_species_overheating/predictions_community_lat_proportion_sp_overheating_substrate_future2C.rds")
pred_community_sub_future4C <- readRDS("RData/Models/prop_species_overheating/predictions_community_lat_proportion_sp_overheating_substrate_future4C.rds")
lat_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_sub_future4C, aes(x = lat, y = proportion_species_overheating),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_sub_future2C,
aes(x = lat, y = proportion_species_overheating), alpha = 0.85, col = "#FAA43A",
shape = ".") + geom_point(data = community_sub_current, aes(x = lat, y = proportion_species_overheating),
alpha = 0.85, col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_community_sub_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_community_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlim(-55.00099, 72.00064) + ylim(0, 1) + xlab("Latitude") + ylab("Proportion of species overheating") +
coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_blank(), axis.text.x = element_text(color = "black", size = 11),
axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
substrate_plot <- (map_sub_TSM_current + map_sub_TSM_future2C + map_sub_TSM_future4C +
lat_all + plot_layout(ncol = 4))
substrate_plot
Figure A40: Proportion of species predicted to overheat in each community for amphibians on terrestrial conditions. The proportion of species overheating was assessed as the sum of species overheating at least once in the period surveyed (910 days between 2006 and 2015) divided by the total number of species in a given community. The right panel depicts latitudinal patterns in the number of species overheating in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (red). Gray colour depicts species areas where none of the species overheat. Black colour depicts areas with no data.
Above-ground vegetation
# Current
map_arb_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_current,
aes(fill = proportion_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = colors_magma,
na.value = "gray1", name = "Proportion of species overheating", limits = c(0,
1)) + theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0.1, 0, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +2C
map_arb_TSM_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future2C,
aes(fill = proportion_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = colors_magma,
na.value = "gray1", name = "Proportion of species overheating", limits = c(0,
1)) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#FAA43A"))
# Future +4C
map_arb_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future4C,
aes(fill = proportion_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = colors_magma,
na.value = "gray1", name = "Proportion of species overheating", limits = c(0,
1)) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_arb_current <- readRDS("RData/Models/prop_species_overheating/predictions_community_lat_proportion_sp_overheating_arboreal_current.rds")
pred_community_arb_future2C <- readRDS("RData/Models/prop_species_overheating/predictions_community_lat_proportion_sp_overheating_arboreal_future2C.rds")
pred_community_arb_future4C <- readRDS("RData/Models/prop_species_overheating/predictions_community_lat_proportion_sp_overheating_arboreal_future4C.rds")
lat_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_arb_future4C, aes(x = lat, y = proportion_species_overheating),
alpha = 0.85, col = "#EF4187", shape = ".") + geom_point(data = community_arb_future2C,
aes(x = lat, y = proportion_species_overheating), alpha = 0.85, col = "#FAA43A",
shape = ".") + geom_point(data = community_arb_current, aes(x = lat, y = proportion_species_overheating),
alpha = 0.85, col = "#5DC8D9", shape = ".") + geom_ribbon(data = pred_community_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_community_arb_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_community_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlim(-55.00099, 72.00064) + ylim(0, 1) + xlab("Latitude") + ylab("Proportion of species overheating") +
coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_blank(), axis.text.x = element_text(color = "black", size = 11),
axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
arboreal_plot <- (map_arb_TSM_current + map_arb_TSM_future2C + map_arb_TSM_future4C +
lat_all + plot_layout(ncol = 4))
arboreal_plot
Figure A41: Proportion of species predicted to overheat in each community for amphibians in above-ground vegetation. The proportion of species overheating was assessed as the sum of species overheating at least once in the period surveyed (910 days between 2006 and 2015) divided by the total number of species in a given community. The right panel depicts latitudinal patterns in the number of species overheating in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (red). Gray colour depicts species areas where none of the species overheat. Black colour depicts areas with no data.
All habitats
all_habitats <- (substrate_plot/arboreal_plot/plot_layout(ncol = 1))
all_habitats
Figure A42: Proportion of species predicted to overheat in each community for amphibians on terrestrial conditions (top panel) or in above-ground vegetation (bottom panel). TThe proportion of species overheating was assessed as the sum of species overheating at least once in the period surveyed (910 days between 2006 and 2015) divided by the total number of species in a given community. The right panel depicts latitudinal patterns in the number of species overheating in current climates (blue), or assuming +2C (orange) or +4C above pre-industrial levels (red). Gray colour depicts species areas where none of the species overheat. Black colour depicts areas with no data.
Linear mixed models
Here, we used linear mixed models to estimate the mean proportion of species predicted to overheat in each microhabitat and climatic scenario. Note that we could not use bayesian linear mixed models because the models failed to mix, even after hundreds of thousands of iterations.
Run the models
Full dataset
# Load community-level data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
all_community_data <- bind_rows(community_sub_current %>%
mutate(habitat_scenario = "substrate_current"), community_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), community_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), community_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), community_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), community_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
all_community_data <- all_community_data %>%
mutate(obs = as.character(row_number()))
all_community_data <- as.data.frame(all_community_data)
set.seed(123)
# Intercept-less model
model_prop <- glmer(proportion_species_overheating ~ habitat_scenario - 1 + (1 |
obs), family = "binomial", weights = n_species, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun = 1e+09)), data = all_community_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_prop, terms = "habitat_scenario", type = "random",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model summaries and predictions
saveRDS(model_prop, file = "RData/Models/prop_species_overheating/model_lme4_prop_species_overheating.rds")
saveRDS(predictions, file = "RData/Models/prop_species_overheating/predictions_lme4_prop_species_overheating.rds")
###### Contrasts
all_community_data$habitat_scenario <- as.factor(all_community_data$habitat_scenario)
# Run model
model_prop_contrast <- glmer(proportion_species_overheating ~ relevel(habitat_scenario,
ref = "substrate_current") + (1 | obs), family = "binomial", weights = n_species,
control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_community_data)
# Save model
saveRDS(model_prop_contrast, file = "RData/Models/prop_species_overheating/model_lme4_prop_species_overheating_contrast.rds")
Subset of overheating communities
# Filter to overheating communities
all_community_data <- filter(all_community_data, n_species_overheating > 0)
# Run model Intercept-less model
model_prop_overheating_communities <- glmer(proportion_species_overheating ~ habitat_scenario -
1 + (1 | obs), family = "binomial", weights = n_species, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun = 1e+09)), data = all_community_data)
# Get predictions
predictions_overheating_communities <- as.data.frame(ggpredict(model_prop_overheating_communities,
terms = "habitat_scenario", type = "random", interval = "confidence", nsim = 1000))
predictions_overheating_communities <- predictions_overheating_communities %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model summaries and predictions
saveRDS(model_prop_overheating_communities, file = "RData/Models/prop_species_overheating/model_lme4_prop_species_overheating_overheating_communities.rds")
saveRDS(predictions_overheating_communities, file = "RData/Models/prop_species_overheating/predictions_lme4_prop_species_overheating_overheating_communities.rds")
Model summaries
Full dataset
# Model summary
model_prop_sp_overheating <- readRDS("RData/Models/prop_species_overheating/model_lme4_prop_species_overheating.rds")
summary(model_prop_sp_overheating)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: proportion_species_overheating ~ habitat_scenario - 1 + (1 | obs)
## Data: all_community_data
## Weights: n_species
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 20831.7 20895.0 -10408.9 20817.7 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.09403 -0.01869 -0.01102 -0.00645 0.63760
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 42.26 6.5
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -11.3359 0.2673 -42.41 <2e-16 ***
## habitat_scenarioarboreal_future2C -10.8943 0.2263 -48.14 <2e-16 ***
## habitat_scenarioarboreal_future4C -9.9057 0.1634 -60.61 <2e-16 ***
## habitat_scenariosubstrate_current -11.3134 0.1581 -71.56 <2e-16 ***
## habitat_scenariosubstrate_future2C -10.7777 0.1350 -79.84 <2e-16 ***
## habitat_scenariosubstrate_future4C -9.4174 0.1061 -88.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.093
## hbtt_scnrr_4C 0.129 0.156
## hbtt_scnrs_ 0.134 0.161 0.225
## hbtt_scnrs_2C 0.157 0.190 0.266 0.275
## hbtt_scnrs_4C 0.208 0.252 0.351 0.363 0.428
# Model predictions
print(readRDS("RData/Models/prop_species_overheating/predictions_lme4_prop_species_overheating.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 1.193596e-05 0.2672754 7.068936e-06 2.015389e-05
## 2 arboreal_future2C 1.856423e-05 0.2263155 1.191351e-05 2.892761e-05
## 3 arboreal_future4C 4.988644e-05 0.1634379 3.621344e-05 6.872155e-05
## 4 substrate_current 1.220847e-05 0.1580970 8.955507e-06 1.664300e-05
## 5 substrate_future2C 2.085912e-05 0.1349987 1.600984e-05 2.717718e-05
## 6 substrate_future4C 8.129452e-05 0.1060685 6.603622e-05 1.000780e-04
# Model summary (contrasts)
model_prop_sp_overheating_contrast <- readRDS("RData/Models/prop_species_overheating/model_lme4_prop_species_overheating_contrast.rds")
summary(model_prop_sp_overheating_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## proportion_species_overheating ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | obs)
## Data: all_community_data
## Weights: n_species
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 20831.7 20895.0 -10408.9 20817.7 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.09403 -0.01869 -0.01102 -0.00645 0.63761
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 42.25 6.5
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate
## (Intercept) -11.31335
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.02249
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.41915
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.40769
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.53569
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1.89604
## Std. Error
## (Intercept) 0.15758
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.29126
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.25333
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.20018
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.17698
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.15448
## z value
## (Intercept) -71.796
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.077
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1.655
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 7.032
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 3.027
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 12.274
## Pr(>|z|)
## (Intercept) < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.93845
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.09802
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 2.04e-12
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.00247
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C < 2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C .
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C **
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.409
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.473 0.252
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.602 0.322
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.679 0.363
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.768 0.416
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.373
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.421
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.482
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.537
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.615
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.694
Subset of overheating populations
# Model summary
model_prop_sp_overheating <- readRDS("RData/Models/prop_species_overheating/model_lme4_prop_species_overheating_overheating_communities.rds")
summary(model_prop_sp_overheating)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: proportion_species_overheating ~ habitat_scenario - 1 + (1 | obs)
## Data: all_community_data
## Weights: n_species
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 11261.2 11301.9 -5623.6 11247.2 2470
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.99826 -0.37135 0.03171 0.42087 2.70620
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 1.019 1.009
## Number of obs: 2477, groups: obs, 2477
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -3.23209 0.15053 -21.47 <2e-16 ***
## habitat_scenarioarboreal_future2C -2.87037 0.12065 -23.79 <2e-16 ***
## habitat_scenarioarboreal_future4C -2.73669 0.07612 -35.95 <2e-16 ***
## habitat_scenariosubstrate_current -2.88750 0.07955 -36.30 <2e-16 ***
## habitat_scenariosubstrate_future2C -2.78072 0.06181 -44.99 <2e-16 ***
## habitat_scenariosubstrate_future4C -2.26730 0.03574 -63.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.001
## hbtt_scnrr_4C 0.002 0.002
## hbtt_scnrs_ 0.001 0.001 0.002
## hbtt_scnrs_2C 0.001 0.001 0.003 0.002
## hbtt_scnrs_4C 0.000 0.000 0.001 0.001 0.001
# Model prediction
print(readRDS("RData/Models/prop_species_overheating/predictions_lme4_prop_species_overheating_overheating_communities.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 0.03797581 0.15052796 0.02855036 0.05035162
## 2 arboreal_future2C 0.05363798 0.12064505 0.04282650 0.06698780
## 3 arboreal_future4C 0.06084280 0.07611802 0.05285610 0.06994720
## 4 substrate_current 0.05277503 0.07954997 0.04550268 0.06113521
## 5 substrate_future2C 0.05837474 0.06181235 0.05206100 0.06540136
## 6 substrate_future4C 0.09386742 0.03573994 0.08807642 0.09999741
Phylogenetic signal in CTmax
# Load the experimental data
training_data <- readRDS(file="RData/General_data/pre_data_for_imputation.rds")
training_data <- filter(training_data, imputed == "no")
tree <- readRDS(file="RData/General_data/tree_for_imputation.rds")
# Reorganise levels of some variables
training_data <- training_data %>%
mutate(species = tip.label,
acclimated,
life_stage_tested = factor(life_stage_tested),
life_stage_tested=factor(life_stage_tested,
levels=c("adult", "adults", "larvae"),
labels=c("adults", "adults", "larvae")),
endpoint2 = factor(endpoint,
levels=c("LRR", "OS", "LOE", "prodding", "other", "death"),
labels=c("LRR", "OS", "LRR", "other", "other", "other")),
ecotype = factor(ecotype))
# Remove the family column to run MCMCglmm
training_data <- dplyr::select(training_data, -family)
# Match data to phylogenetic tree
matchpos <- match(training_data$tip.label, tree$tip.label)
training_data$matchpos <- matchpos
training_data <- training_data %>% filter(is.na(matchpos) == F)
tree <- drop.tip(tree, tree$tip.label[-match(training_data$tip.label, tree$tip.label)])
# Force the tree to be ultrametric
tree<-force.ultrametric(tree, method="extend")
## ***************************************************************
## * Note: *
## * force.ultrametric does not include a formal method to *
## * ultrametricize a tree & should only be used to coerce *
## * a phylogeny that fails is.ultramtric due to rounding -- *
## * not as a substitute for formal rate-smoothing methods. *
## ***************************************************************
# Phylogenetic co-variance matrix
Ainv<-inverseA(tree)$Ainv
# Set paramaeter expanded prior
prior<- list(R = list(V=1, nu=0.001),
G = list(G1=list(V = 1, nu = 0.002, alpha.mu = 0, alpha.V = 1e4),
G2=list(V = 1, nu = 0.002, alpha.mu = 0, alpha.V = 1e4)))
# Fit model with all complete case predictors
model <- MCMCglmm(mean_UTL ~ acclimation_temp +
endpoint2 +
acclimated +
life_stage_tested +
ecotype,
random = ~ tip.label + # Phylogeny + species random effects
species,
ginverse = list(tip.label = Ainv),
pl = TRUE,
pr = TRUE,
nitt = 130000,
thin = 100,
burnin = 30000,
singular.ok = TRUE,
prior = prior,
verbose = FALSE,
data = training_data)
summary(model)
##
## Iterations = 30001:129901
## Thinning interval = 100
## Sample size = 1000
##
## DIC: 9724.977
##
## G-structure: ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 14.27 10.53 18.06 877.7
##
## ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 0.7721 0.3087 1.242 1000
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 1.952 1.835 2.068 1000
##
## Location effects: mean_UTL ~ acclimation_temp + endpoint2 + acclimated + life_stage_tested + ecotype
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## (Intercept) 31.47595 28.62384 35.11641 1000.0 <0.001 ***
## acclimation_temp 0.13329 0.12519 0.14182 914.8 <0.001 ***
## endpoint2OS 1.41665 1.22123 1.61176 1122.3 <0.001 ***
## endpoint2other 1.51790 1.30346 1.71090 1000.0 <0.001 ***
## acclimatedfield-fresh -0.81361 -1.38868 -0.21294 906.8 0.008 **
## life_stage_testedlarvae 1.35208 1.13264 1.59810 1000.0 <0.001 ***
## ecotypeArboreal -0.26937 -1.50087 1.08295 1000.0 0.692
## ecotypeFossorial 0.90306 -0.50444 2.37255 940.7 0.238
## ecotypeGround-dwelling -0.04639 -1.23625 1.05909 1101.6 0.934
## ecotypeSemi-aquatic 0.04990 -1.12342 1.15478 1000.0 0.948
## ecotypeStream-dwelling -0.72224 -1.92064 0.68292 1000.0 0.282
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Calculate proportion of non-residual variance explained by phylogeny
lambda <- model$VCV[,"tip.label"]/(model$VCV[,"tip.label"] + model$VCV[,"species"])
posterior.mode(lambda) # Lambda
## var1
## 0.9465116
HPDinterval(lambda) # Highest posterior density
## lower upper
## var1 0.904953 0.9840589
## attr(,"Probability")
## [1] 0.95
Sensitivity analyses
Changing biophysical model parameters
Here, we compared predictions of overheating risk for a high-risk species in a given location assuming different biophsyical parameters.
This code can be run locally, but note that the ectotherm model simulating pond parameters takes time to run (~30 min).
Terrestrial conditions
Standard parameters
Find the location and body mass of the species at highest risk
# Identify the location and species on which to do the sensitivity analysis
# (species most vulnerable warming)
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_current <- filter(pop_sub_current, tip.label == "Noblella myrmecoides") # Most high-risk species in terrestrial conditions
high_risk <- pop_sub_current %>%
slice_max(order_by = overheating_days, n = 1)
high_risk # The location -69.5, -9.5 is at highest risk for this species
## # A tibble: 1 × 18
## tip.label lon_adj lat_adj CTmax CTmax_se max_temp max_temp_se TSM TSM_se
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Noblella myr… -69.5 -9.5 32.9 0.605 29.4 1.01 3.38 0.605
## # ℹ 9 more variables: overheating_probability <dbl>,
## # overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>,
## # overheating_risk_strict <dbl>, consecutive_overheating_days <dbl>,
## # lon <dbl>, lat <dbl>
# Find body mass of this assemblage
presence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
data_for_imp <- readRDS(file = "RData/General_data/pre_data_for_imputation.rds")
presence_body_mass <- merge(presence, dplyr::select(data_for_imp, tip.label, body_mass),
by = "tip.label")
median_body_mass <- presence_body_mass %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass[median_body_mass$lon == -69.5 & median_body_mass$lat == -9.5, ] # 4.28 g
## # A tibble: 1 × 3
## lon lat median_mass
## <dbl> <dbl> <dbl>
## 1 -69.5 -9.5 4.28
Run the biophysical model
# Run the biophysical models using the parameters used in the paper
# Set parameters
dstart <- "01/01/2005"
dfinish <- "31/12/2015"
coords <- c(-69.5, -9.5)
# Run the microclimate model
micro_default <- NicheMapR::micro_ncep(loc = coords, dstart = dstart, dfinish = dfinish,
scenario = 4, minshade = 85, maxshade = 90, Usrhyt = 0.01, cap = 1, ERR = 1.5,
spatial = "E:/p_pottier/Climatic_data/data/NCEP_time", terra_source = "E:/p_pottier/Climatic_data/data/climatic_data_TerraClimate/data")
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2004 (need a bit of the previous year)
## reading weather input for 2005
## reading weather input for 2006
## reading weather input for 2007
## reading weather input for 2008
## reading weather input for 2009
## reading weather input for 2010
## reading weather input for 2011
## reading weather input for 2012
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 4017 days from 2005-01-01 to 2015-12-31 23:00:00 at site long -69.5 lat -9.5
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 133.26 2.46 359.25
# Run the ectotherm model
micro <- micro_default
ecto <- NicheMapR::ectotherm(live = 0, Ww_g = 4.28, shape = 4, pct_wet = 80)
environ <- as.data.frame(ecto$environ)
# Calculate daily temperature
daily_temp <- environ %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC), mean_temp = mean(TC), .groups = "drop")
# Create a function to calculate the rolling weekly temperature
calc_yearly_rolling_mean <- function(data) {
data$mean_weekly_temp <- zoo::rollapply(data$mean_temp, width = 7, FUN = mean,
align = "right", partial = TRUE, fill = NA)
data$max_weekly_temp <- zoo::rollapply(data$max_temp, width = 7, FUN = mean,
align = "right", partial = TRUE, fill = NA)
return(data)
}
# Calculate mean weekly temperature
daily_temp <- daily_temp %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days <- daily_temp %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Load imputed data
results_imputation <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
CTmax_data <- dplyr::select(results_imputation, CTmax = filled_mean_UTL5, lowerCI = lower_mean_UTL,
upperCI = upper_mean_UTL, acclimation_temp, tip.label, imputed) # Select relevant columns
original_data <- dplyr::filter(CTmax_data, imputed == "no") # Original experimental data
imputed_data <- dplyr::filter(CTmax_data, imputed == "yes") # Imputed data
# Calculate standard error of each observation
imputed_data <- imputed_data %>%
mutate(se = (upperCI - CTmax)/1.96)
# Group data by species
species_data <- imputed_data %>%
group_by(tip.label)
# Filter to the species of interest
species_data_n_myrc <- species_data %>%
dplyr::filter(tip.label=="Noblella myrmecoides")
# Run meta-analytic model
fit <- metafor::rma(yi = CTmax,
sei = se,
mod = ~acclimation_temp,
data = species_data_n_myrc)
prediction <- predict(fit, newmods = daily_temp_warmest_days$mean_weekly_temp)
daily_CTmax <- dplyr::select((cbind(daily_temp_warmest_days,
cbind(predicted_CTmax = prediction$pred,
predicted_CTmax_se = prediction$se))),
- max_weekly_temp)
# Calculate climate vulnerability metrics
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability<- daily_CTmax %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Save file
saveRDS(daily_vulnerability, file = "RData/Climate_vulnerability/Substrate/future4C/daily_vulnerability_sensitivity_analysis.rds")
# Set number of days
n_days <- 910
pop_vulnerability <- daily_vulnerability %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability <- pop_vulnerability %>% rename(max_temp = mean_max_temp)
pop_vulnerability
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 33.1 0.952 32.3 0.910 0.987 0.952 0.219
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
Smaller body size
Run the biophysical model
micro <- micro_default # Same microclimate model as above
# Run the ectotherm model
ecto_small <- NicheMapR::ectotherm(live= 0,
Ww_g = 0.5, # Small body mass
shape = 4,
pct_wet = 80)
environ_small <- as.data.frame(ecto_small$environ)
# Calculate daily temperature
daily_temp_small <- environ_small %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_small <- daily_temp_small %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_small_warmest_days <- daily_temp_small %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_small <- predict(fit, newmods = daily_temp_small_warmest_days$mean_weekly_temp)
daily_CTmax_small <- dplyr::select((cbind(daily_temp_small_warmest_days,
cbind(predicted_CTmax = prediction_small$pred,
predicted_CTmax_se = prediction_small$se))),
- max_weekly_temp)
###### Daily TSM and overheating risk ##########
daily_vulnerability_small <- daily_CTmax_small %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_small, file = "RData/Climate_vulnerability/Substrate/future4C/daily_vulnerability_small_body_size_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_small <- daily_vulnerability_small %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_small <- pop_vulnerability_small %>% rename(max_temp = mean_max_temp)
pop_vulnerability_small
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 33.1 0.935 32.0 0.903 1.27 0.935 0.163
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
Larger body size
Run the biophysical model
micro <- micro_default # Same microclimate model as above
# Run the ectotherm model
ecto_large <- NicheMapR::ectotherm(live= 0,
Ww_g = 50, # Large body mass
shape = 4,
pct_wet = 80)
environ_large <- as.data.frame(ecto_large$environ)
# Calculate daily temperature
daily_temp_large <- environ_large %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_large <- daily_temp_large %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_large_warmest_days <- daily_temp_large %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_large <- predict(fit, newmods = daily_temp_large_warmest_days$mean_weekly_temp)
daily_CTmax_large <- dplyr::select((cbind(daily_temp_large_warmest_days,
cbind(predicted_CTmax = prediction_large$pred,
predicted_CTmax_se = prediction_large$se))), -max_weekly_temp)
###### Daily TSM and overheating risk ##########
daily_vulnerability_large <- daily_CTmax_large %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_large, file = "RData/Climate_vulnerability/Substrate/future4C/daily_vulnerability_large_body_size_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_large <- daily_vulnerability_large %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_large <- pop_vulnerability_large %>% rename(max_temp = mean_max_temp)
pop_vulnerability_large
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 33.1 0.985 32.8 0.923 0.579 0.985 0.320
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
Underground conditions
Run the biophysical model
micro <- micro_default # Same microclimate model as above
ecto <- NicheMapR::ectotherm(live = 0, Ww_g = 4.28, shape = 4, pct_wet = 80) # Same ectotherm model as previously
environ <- as.data.frame(ecto$environ)
dummy_burrow <- dplyr::select(environ, DOY, YEAR) # Create dummy variable to store results at different depths
soil_temp <- as.data.frame(micro$soil) # Extract soil temperatures at different depths
environ_burrow <- cbind(dummy_burrow, dplyr::select(soil_temp, D2.5cm, D5cm, D10cm,
D15cm, D20cm)) # Get soil depths up to 20 cm
environ_burrow <- pivot_longer(environ_burrow, cols = D2.5cm:D20cm, names_to = "DEPTH",
names_prefix = "D", values_to = "TC") # Pivot longer
# Calculate daily temperature
daily_temp_burrow <- environ_burrow %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY, DEPTH) %>%
dplyr::summarize(max_temp = max(TC), mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_burrow <- daily_temp_burrow %>%
dplyr::group_by(YEAR, DEPTH) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_burrow_warmest_days <- daily_temp_burrow %>%
dplyr::group_by(YEAR, DEPTH) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_burrow <- predict(fit, newmods = daily_temp_burrow_warmest_days$mean_weekly_temp)
daily_CTmax_burrow <- dplyr::select((cbind(daily_temp_burrow_warmest_days,
cbind(predicted_CTmax = prediction_burrow$pred,
predicted_CTmax_se = prediction_burrow$se))), -max_weekly_temp)
# Calculate climate vulnerability metrics
daily_vulnerability_burrow <- daily_CTmax_burrow %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_burrow, file = "RData/Climate_vulnerability/Substrate/future4C/daily_vulnerability_burrow_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_burrow <- daily_vulnerability_burrow %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(DEPTH) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_burrow <- pop_vulnerability_burrow %>% rename(max_temp = mean_max_temp)
pop_vulnerability_burrow
## # A tibble: 5 × 12
## DEPTH CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 10cm 33.5 2.11 31.5 0.575 2.11 2.11 0.0378
## 2 15cm 33.5 2.18 31.1 0.520 2.57 2.18 0.0130
## 3 2.5cm 33.4 1.96 32.6 0.782 0.938 1.96 0.228
## 4 20cm 33.5 2.23 30.8 0.479 2.86 2.23 0.00547
## 5 5cm 33.5 2.02 32.1 0.683 1.47 2.02 0.118
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
Open habitats
Run the biophysical model
# Run the microclimate model with reduced shade
micro_open <- NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=4,
minshade=50, # Reduced shade (50%)
maxshade=90,
Usrhyt = 0.01,
cap = 1,
ERR = 1.5,
spatial = 'E:/p_pottier/Climatic_data/data/NCEP_time',
terra_source = 'E:/p_pottier/Climatic_data/data/climatic_data_TerraClimate/data')
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2004 (need a bit of the previous year)
## reading weather input for 2005
## reading weather input for 2006
## reading weather input for 2007
## reading weather input for 2008
## reading weather input for 2009
## reading weather input for 2010
## reading weather input for 2011
## reading weather input for 2012
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 4017 days from 2005-01-01 to 2015-12-31 23:00:00 at site long -69.5 lat -9.5
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 124.30 1.80 307.69
# Run the ectotherm model
micro <- micro_open
ecto_open <- NicheMapR::ectotherm(live= 0,
Ww_g = 4.28,
shape = 4,
pct_wet = 80)
environ_open <- as.data.frame(ecto_open$environ)
# Calculate daily temperature
daily_temp_open<- environ_open %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_open <- daily_temp_open %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_open_warmest_days <- daily_temp_open %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_open <- predict(fit, newmods = daily_temp_open_warmest_days$mean_weekly_temp)
daily_CTmax_open <- dplyr::select((cbind(daily_temp_open_warmest_days,
cbind(predicted_CTmax = prediction_open$pred,
predicted_CTmax_se = prediction_open$se))), -max_weekly_temp)
# Calculate climate vulnerability metrics
daily_vulnerability_open <- daily_CTmax_open %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_open, file = "RData/Climate_vulnerability/Substrate/future4C/daily_vulnerability_open_habitat_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_open <- daily_vulnerability_open %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_open <- pop_vulnerability_open %>% rename(max_temp = mean_max_temp)
pop_vulnerability_open
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 33.2 1.15 35.2 1.06 -1.76 1.15 0.919
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
Compare the results
# Open habitats and burrows
habitat_selection <- ggplot() + geom_density(data = daily_vulnerability_open, aes(x = daily_TSM),
alpha = 0.6, fill = "red") + geom_density(data = filter(daily_vulnerability_burrow,
DEPTH == "2.5cm"), aes(x = daily_TSM), fill = "gold", alpha = 0.7) + geom_density(data = filter(daily_vulnerability_burrow,
DEPTH == "5cm"), aes(x = daily_TSM), fill = "#BA9E49", alpha = 0.7) + geom_density(data = filter(daily_vulnerability_burrow,
DEPTH == "10cm"), aes(x = daily_TSM), fill = "darkorange", alpha = 0.7) + geom_density(data = filter(daily_vulnerability_burrow,
DEPTH == "15cm"), aes(x = daily_TSM), fill = "#F1AF79", alpha = 0.7) + geom_density(data = filter(daily_vulnerability_burrow,
DEPTH == "20cm"), aes(x = daily_TSM), fill = "#995C51", alpha = 0.7) + geom_density(data = daily_vulnerability,
aes(x = daily_TSM), alpha = 0.6, fill = "black") + geom_vline(xintercept = 0,
colour = "black", lwd = 1, alpha = 0.75) + xlim(-6.5, 5) + ylim(0, 1.1) + xlab("Daily TSM") +
ylab("Density") + theme_classic() + theme(text = element_text(color = "black"),
axis.title.x = element_text(size = 50, margin = margin(t = 40, r = 0, b = 0,
l = 0)), axis.title.y = element_text(size = 50, margin = margin(t = 0, r = 40,
b = 0, l = 0)), axis.text.x = element_text(size = 40, margin = margin(t = 20,
r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40, margin = margin(t = 0,
r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA, size = 2))
# Body size
body_size <- ggplot() + geom_density(data = daily_vulnerability_small, aes(x = daily_TSM),
alpha = 0.5, fill = "#49BAAE") + geom_density(data = daily_vulnerability_large,
aes(x = daily_TSM), alpha = 0.5, fill = "#BA4989") + geom_density(data = daily_vulnerability,
aes(x = daily_TSM), alpha = 0.6, fill = "black") + geom_vline(xintercept = 0,
colour = "black", lwd = 1, alpha = 0.75) + xlim(-5, 5) + xlab("") + ylab("Density") +
theme_classic() + theme(text = element_text(color = "black"), axis.title.x = element_text(size = 50,
margin = margin(t = 40, r = 0, b = 0, l = 0)), axis.title.y = element_text(size = 50,
margin = margin(t = 0, r = 40, b = 0, l = 0)), axis.text.x = element_text(size = 40,
margin = margin(t = 20, r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40,
margin = margin(t = 0, r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 2))
terrestrial_parameters <- body_size/habitat_selection
terrestrial_parameters
ggsave(terrestrial_parameters, file = "fig/Figure_S9.png", height = 20, width = 16,
dpi = 500)
Aquatic conditions
Standard parameters
Run the biophysical model
micro <- micro_default # Same microclimate model as before
micro$metout[, 13] <- 0 # Make sure the pond stays in the shade
ecto_pond <- ectotherm(container=1, # container model
conth=1500, # shallow pond of 1.5m depth
contw=12000,# pond of 12m width
contype=1, # container sunk into the ground like a pond
rainmult = 1000000000, # rainfall multiplier, to keep the pond wet
continit = 1500, # Initial container water level (1.5m)
conthole = 0, # Daily loss of height (mm) due to hole in container (e.g. infiltration)
contwet=100, # 100% of container surface area acting as free water exchanger
contonly=1)
environ_pond <- as.data.frame(ecto_pond$environ)
# Calculate daily temperature
daily_temp_pond <- environ_pond %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_pond <- daily_temp_pond %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days_pond <- daily_temp_pond %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_pond <- predict(fit, newmods = daily_temp_warmest_days_pond$mean_weekly_temp)
daily_CTmax_pond <- dplyr::select((cbind(daily_temp_warmest_days_pond,
cbind(predicted_CTmax = prediction_pond$pred,
predicted_CTmax_se = prediction_pond$se))),
- max_weekly_temp)
# Calculate climate vulnerability metrics
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_pond <- daily_CTmax_pond %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_pond, file = "RData/Climate_vulnerability/Pond/future4C/daily_vulnerability_pond_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_pond <- daily_vulnerability_pond %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_pond <- pop_vulnerability_pond %>% rename(max_temp = mean_max_temp)
pop_vulnerability_pond
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 33.3 1.49 29.4 0.577 4.11 1.49 0.000287
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
Shallower pond
Run the biophysical model
micro <- micro_default # Same microclimate model as before
micro$metout[, 13] <- 0 # Make sure the pond stays in the shade
ecto_pond_shallow <- ectotherm(container=1, # container model
conth=50, # shallow pond of 50 cm depth
contw=12000,# pond of 12m width
contype=1, # container sunk into the ground like a pond
rainmult = 1000000000, # rainfall multiplier, to keep the pond wet
continit = 1500, # Initial container water level (1.5m)
conthole = 0, # Daily loss of height (mm) due to hole in container (e.g. infiltration)
contwet=100, # 100% of container surface area acting as free water exchanger
contonly=1)
environ_pond_shallow <- as.data.frame(ecto_pond_shallow$environ)
# Calculate daily temperature
daily_temp_pond_shallow <- environ_pond_shallow %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_pond_shallow <- daily_temp_pond_shallow %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days_pond_shallow <- daily_temp_pond_shallow %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_pond_shallow <- predict(fit, newmods = daily_temp_warmest_days_pond_shallow$mean_weekly_temp)
daily_CTmax_pond_shallow <- dplyr::select((cbind(daily_temp_warmest_days_pond_shallow, cbind(predicted_CTmax = prediction_pond_shallow$pred,
predicted_CTmax_se = prediction_pond_shallow$se))), -max_weekly_temp)
# Calculate climate vulnerability metrics
daily_vulnerability_pond_shallow <- daily_CTmax_pond_shallow %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_pond_shallow, file = "RData/Climate_vulnerability/Pond/future4C/daily_vulnerability_shallow_pond_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_pond_shallow <- daily_vulnerability_pond_shallow %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_pond_shallow <- pop_vulnerability_pond_shallow %>% rename(max_temp = mean_max_temp)
pop_vulnerability_pond_shallow
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 33.1 0.887 31.5 0.960 1.83 0.887 0.0932
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
Deeper pond
Run the biophysical model
micro <- micro_default # Same microclimate model as before
micro$metout[, 13] <- 0 # Make sure the pond stays in the shade
ecto_pond_deep <- ectotherm(container=1, # container model
conth=3000, # deep pond of 3 meters depth
contw=12000,# pond of 12m width
contype=1, # container sunk into the ground like a pond
rainmult = 1000000000, # rainfall multiplier, to keep the pond wet
continit = 1500, # Initial container water level (1.5m)
conthole = 0, # Daily loss of height (mm) due to hole in container (e.g. infiltration)
contwet=100, # 100% of container surface area acting as free water exchanger
contonly=1)
environ_pond_deep <- as.data.frame(ecto_pond_deep$environ)
# Calculate daily temperature
daily_temp_pond_deep <- environ_pond_deep %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_pond_deep <- daily_temp_pond_deep %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days_pond_deep <- daily_temp_pond_deep %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_pond_deep <- predict(fit, newmods = daily_temp_warmest_days_pond_deep$mean_weekly_temp)
daily_CTmax_pond_deep <- dplyr::select((cbind(daily_temp_warmest_days_pond_deep,
cbind(predicted_CTmax = prediction_pond_deep$pred,
predicted_CTmax_se = prediction_pond_deep$se))), -max_weekly_temp)
# Calculate climate vulnerability metrics
daily_vulnerability_pond_deep <- daily_CTmax_pond_deep %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_pond_deep, file = "RData/Climate_vulnerability/Pond/future4C/daily_vulnerability_deep_pond_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_pond_deep <- daily_vulnerability_pond_deep %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_pond_deep <- pop_vulnerability_pond_deep %>% rename(max_temp = mean_max_temp)
pop_vulnerability_pond_deep
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 33.4 1.58 29.3 0.551 4.27 1.58 0.000109
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
Compare the results
# Pond depth
aquatic_parameters <- ggplot() + geom_density(data = daily_vulnerability_pond_shallow,
aes(x = daily_TSM), alpha = 0.5, fill = "lightblue") + geom_density(data = daily_vulnerability_pond_deep,
aes(x = daily_TSM), alpha = 0.5, fill = "darkblue") + geom_density(data = daily_vulnerability_pond,
aes(x = daily_TSM), alpha = 0.6, fill = "black") + geom_vline(xintercept = 0,
colour = "black", lwd = 1, alpha = 0.75) + xlim(-5, 6) + xlab("Daily TSM") +
ylab("Density") + theme_classic() + theme(text = element_text(color = "black"),
axis.title.x = element_text(size = 50, margin = margin(t = 40, r = 0, b = 0,
l = 0)), axis.title.y = element_text(size = 50, margin = margin(t = 0, r = 40,
b = 0, l = 0)), axis.text.x = element_text(size = 40, margin = margin(t = 20,
r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40, margin = margin(t = 0,
r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA, size = 2))
aquatic_parameters
ggsave(aquatic_parameters, file = "fig/Figure_S10.png", height = 10, width = 12,
dpi = 500)
Arboreal conditions
Standard conditions
Find the location and body mass of the species at highest risk
# Identify the location and species on which to do the sensitivity analysis
# (species most vulnerable warming)
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_current <- filter(pop_arb_current, tip.label == "Pristimantis ockendeni") # Most high-risk species in arboreal conditions
high_risk_arb <- pop_arb_current %>%
slice_max(order_by = overheating_days, n = 1)
high_risk_arb # The location -71.5, -4.5 is at highest risk for this species
## # A tibble: 1 × 18
## tip.label lon_adj lat_adj CTmax CTmax_se max_temp max_temp_se TSM TSM_se
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Pristimantis… -71.5 -4.5 32.5 0.597 28.7 0.778 3.70 0.597
## # ℹ 9 more variables: overheating_probability <dbl>,
## # overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>,
## # overheating_risk_strict <dbl>, consecutive_overheating_days <dbl>,
## # lon <dbl>, lat <dbl>
# Find body mass of this assemblage
presence_arb <- readRDS(file = "RData/General_data/species_coordinates_adjusted_arboreal.rds")
presence_body_mass_arb <- merge(presence_arb, dplyr::select(data_for_imp, tip.label,
body_mass), by = "tip.label")
median_body_mass_arb <- presence_body_mass_arb %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass_arb[median_body_mass_arb$lon == -71.5 & median_body_mass_arb$lat ==
-4.5, ] # 2.85 g
## # A tibble: 1 × 3
## lon lat median_mass
## <dbl> <dbl> <dbl>
## 1 -71.5 -4.5 2.85
Run the biophysical model
# Set coordinates
coords_arb <- c(-71.5, -4.5)
# Run the microclimate model
micro_arb <- NicheMapR::micro_ncep(loc = coords_arb,
dstart = dstart,
dfinish = dfinish,
scenario=4, # 4C of warming
minshade=85,
maxshade=90,
Usrhyt = 2, # 2 meters above ground
windfac = 0.2, # Reduce wind speed by 80% in dense vegetation
microclima.LAI = 0.9, # 90% of the radiation is diffused because of vegetation
ERR = 1.5,
spatial = 'E:/p_pottier/Climatic_data/data/NCEP_time',
terra_source = 'E:/p_pottier/Climatic_data/data/climatic_data_TerraClimate/data')
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2004 (need a bit of the previous year)
## reading weather input for 2005
## reading weather input for 2006
## reading weather input for 2007
## reading weather input for 2008
## reading weather input for 2009
## reading weather input for 2010
## reading weather input for 2011
## reading weather input for 2012
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 4017 days from 2005-01-01 to 2015-12-31 23:00:00 at site long -71.5 lat -4.5
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 167.91 1.03 272.58
# Run the ectotherm model
micro <- micro_arb
micro$metout[, 3] <- micro$metout[, 4] # Make the local height equal to reference height (2m)
micro$metout[, 5] <- micro$metout[, 6] # Make the local height equal to reference height (2m)
micro$metout[, 7] <- micro$metout[, 8] # Make the local height equal to reference height (2m)
ecto_arb <- NicheMapR::ectotherm(live= 0,
Ww_g = 2.85,
shape = 4,
pct_wet = 80)
environ_arb <- as.data.frame(ecto_arb$environ)
# Calculate daily temperature
daily_temp_arb <- environ_arb %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_arb <- daily_temp_arb %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days_arb <- daily_temp_arb %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Load imputed data
results_imputation <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
CTmax_data <- dplyr::select(results_imputation, CTmax = filled_mean_UTL5, lowerCI = lower_mean_UTL,
upperCI = upper_mean_UTL, acclimation_temp, tip.label, imputed) # Select relevant columns
original_data <- dplyr::filter(CTmax_data, imputed == "no") # Original experimental data
imputed_data <- dplyr::filter(CTmax_data, imputed == "yes") # Imputed data
# Calculate standard error of each observation
imputed_data <- imputed_data %>%
mutate(se = (upperCI - CTmax)/1.96)
# Group data by species
species_data <- imputed_data %>%
group_by(tip.label)
# Filter to the species of interest
species_data_p_ock <- species_data %>%
dplyr::filter(tip.label=="Pristimantis ockendeni")
# Generate predictions
fit_p_ock <- metafor::rma(yi = CTmax, sei = se, mod = ~acclimation_temp, data = species_data_p_ock)
prediction_arb <- predict(fit_p_ock, newmods = daily_temp_warmest_days_arb$mean_weekly_temp)
daily_CTmax_arb <- dplyr::select((cbind(daily_temp_warmest_days_arb,
cbind(predicted_CTmax = prediction_arb$pred,
predicted_CTmax_se = prediction_arb$se))), -max_weekly_temp)
# Calculate climate vulnerability metrics
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_arb <- daily_CTmax_arb %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_arb, file = "RData/Climate_vulnerability/Arboreal/future4C/daily_vulnerability_arboreal_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_arb <- daily_vulnerability_arb %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_arb <- pop_vulnerability_arb %>% rename(max_temp = mean_max_temp)
pop_vulnerability_arb
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 32.7 0.957 31.1 0.784 1.75 0.957 0.0835
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
Lower plant height
Run the biophysical model
# Run the microclimate model
micro_arb_short <- NicheMapR::micro_ncep(loc = coords_arb,
dstart = dstart,
dfinish = dfinish,
scenario=4,
minshade=85,
maxshade=90,
Usrhyt = 0.5, # 0.5 m above ground
windfac = 0.2, # Reduce wind speed by 80% in dense vegetation
microclima.LAI = 0.9, # 90% of the radiation is diffused because of vegetation
ERR = 1.5,
spatial = 'E:/p_pottier/Climatic_data/data/NCEP_time',
terra_source = 'E:/p_pottier/Climatic_data/data/climatic_data_TerraClimate/data')
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2004 (need a bit of the previous year)
## reading weather input for 2005
## reading weather input for 2006
## reading weather input for 2007
## reading weather input for 2008
## reading weather input for 2009
## reading weather input for 2010
## reading weather input for 2011
## reading weather input for 2012
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 4017 days from 2005-01-01 to 2015-12-31 23:00:00 at site long -71.5 lat -4.5
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 176.81 0.98 266.46
# Run the ectotherm model
micro <- micro_arb_short
micro$metout[, 3] <- micro$metout[, 4] # Make the local height equal to reference height (50 cm)
micro$metout[, 5] <- micro$metout[, 6] # Make the local height equal to reference height (50 cm)
micro$metout[, 7] <- micro$metout[, 8] # Make the local height equal to reference height (50 cm)
ecto_arb_short <- NicheMapR::ectotherm(live= 0,
Ww_g = 2.85,
shape = 4,
pct_wet = 80)
environ_arb_short <- as.data.frame(ecto_arb_short$environ)
# Calculate daily temperature
daily_temp_arb_short <- environ_arb_short %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_arb_short <- daily_temp_arb_short %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days_arb_short <- daily_temp_arb_short %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_arb_short <- predict(fit_p_ock, newmods = daily_temp_warmest_days_arb_short$mean_weekly_temp)
daily_CTmax_arb_short <- dplyr::select((cbind(daily_temp_warmest_days_arb_short,
cbind(predicted_CTmax = prediction_arb_short$pred,
predicted_CTmax_se = prediction_arb_short$se))), -max_weekly_temp)
# Calculate climate vulnerability metrics
daily_vulnerability_arb_short <- daily_CTmax_arb_short %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_arb_short, file = "RData/Climate_vulnerability/Arboreal/future4C/daily_vulnerability_short_height_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_arb_short <- daily_vulnerability_arb_short %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_arb_short <- pop_vulnerability_arb_short %>% rename(max_temp = mean_max_temp)
pop_vulnerability_arb_short
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 32.7 0.959 31.1 0.784 1.75 0.959 0.0835
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
Higher plant height
Run the biophysical model
# Run the microclimate model
micro_arb_tall <- NicheMapR::micro_ncep(loc = coords_arb,
dstart = dstart,
dfinish = dfinish,
scenario=4,
minshade=85,
maxshade=90,
Usrhyt = 5, # 5 meters above ground
Refhyt = 5,
windfac = 0.2, # Reduce wind speed by 80% in dense vegetation
microclima.LAI = 0.9, # 90% of the radiation is diffused because of vegetation
ERR = 1.5,
spatial = 'E:/p_pottier/Climatic_data/data/NCEP_time',
terra_source = 'E:/p_pottier/Climatic_data/data/climatic_data_TerraClimate/data')
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2004 (need a bit of the previous year)
## reading weather input for 2005
## reading weather input for 2006
## reading weather input for 2007
## reading weather input for 2008
## reading weather input for 2009
## reading weather input for 2010
## reading weather input for 2011
## reading weather input for 2012
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 4017 days from 2005-01-01 to 2015-12-31 23:00:00 at site long -71.5 lat -4.5
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 188.60 0.71 255.96
# Run the ectotherm model
micro <- micro_arb_tall
micro$metout[, 3] <- micro$metout[, 4] # Make the local height equal to reference height (5 m)
micro$metout[, 5] <- micro$metout[, 6] # Make the local height equal to reference height (5 m)
micro$metout[, 7] <- micro$metout[, 8] # Make the local height equal to reference height (5 m)
ecto_arb_tall <- NicheMapR::ectotherm(live= 0,
Ww_g = 2.85,
shape = 4,
pct_wet = 80)
environ_arb_tall <- as.data.frame(ecto_arb_tall$environ)
# Calculate daily temperature
daily_temp_arb_tall <- environ_arb_tall %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_arb_tall <- daily_temp_arb_tall %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days_arb_tall <- daily_temp_arb_tall %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_arb_tall <- predict(fit_p_ock, newmods = daily_temp_warmest_days_arb_tall$mean_weekly_temp)
daily_CTmax_arb_tall <- dplyr::select((cbind(daily_temp_warmest_days_arb_tall,
cbind(predicted_CTmax = prediction_arb_tall$pred,
predicted_CTmax_se = prediction_arb_tall$se))), -max_weekly_temp)
# Calculate climate vulnerability metrics
daily_vulnerability_arb_tall <- daily_CTmax_arb_tall %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_arb_tall, file = "RData/Climate_vulnerability/Arboreal/future4C/daily_vulnerability_arboreal_tall_height_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_arb_tall <- daily_vulnerability_arb_tall %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_arb_tall <- pop_vulnerability_arb_tall %>% rename(max_temp = mean_max_temp)
pop_vulnerability_arb_tall
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 32.7 0.969 31.1 0.784 1.73 0.969 0.0859
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
75% radiation diffused
Run the biophysical model
# Run the microclimate model
micro_arb_mid_diff <- NicheMapR::micro_ncep(loc = coords_arb,
dstart = dstart,
dfinish = dfinish,
scenario=4,
minshade=85,
maxshade=90,
Usrhyt = 2,
windfac = 0.2, # Reduce wind speed by 80% in dense vegetation
microclima.LAI = 0.75, # 75% of the radiation is diffused because of vegetation
ERR = 1.5,
spatial = 'E:/p_pottier/Climatic_data/data/NCEP_time',
terra_source = 'E:/p_pottier/Climatic_data/data/climatic_data_TerraClimate/data')
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2004 (need a bit of the previous year)
## reading weather input for 2005
## reading weather input for 2006
## reading weather input for 2007
## reading weather input for 2008
## reading weather input for 2009
## reading weather input for 2010
## reading weather input for 2011
## reading weather input for 2012
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 4017 days from 2005-01-01 to 2015-12-31 23:00:00 at site long -71.5 lat -4.5
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 187.44 0.64 252.30
# Run the ectotherm model
micro <- micro_arb_mid_diff
micro$metout[, 3] <- micro$metout[, 4] # Make the local height equal to reference height (2 m)
micro$metout[, 5] <- micro$metout[, 6] # Make the local height equal to reference height (2 m)
micro$metout[, 7] <- micro$metout[, 8] # Make the local height equal to reference height (2 m)
ecto_arb_mid_diff <- NicheMapR::ectotherm(live= 0,
Ww_g = 2.85,
shape = 4,
pct_wet = 80)
environ_arb_mid_diff <- as.data.frame(ecto_arb_mid_diff$environ)
# Calculate daily temperature
daily_temp_arb_mid_diff <- environ_arb_mid_diff %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_arb_mid_diff <- daily_temp_arb_mid_diff %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days_arb_mid_diff <- daily_temp_arb_mid_diff %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_arb_mid_diff <- predict(fit_p_ock, newmods = daily_temp_warmest_days_arb_mid_diff$mean_weekly_temp)
daily_CTmax_arb_mid_diff <- dplyr::select((cbind(daily_temp_warmest_days_arb_mid_diff,
cbind(predicted_CTmax = prediction_arb_mid_diff$pred,
predicted_CTmax_se = prediction_arb_mid_diff$se))), -max_weekly_temp)
# Calculate climate vulnerability metrics
daily_vulnerability_arb_mid_diff <- daily_CTmax_arb_mid_diff %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_arb_mid_diff, file = "RData/Climate_vulnerability/Arboreal/future4C/daily_vulnerability_arboreal_med_solar_diff_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_arb_mid_diff <- daily_vulnerability_arb_mid_diff %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_arb_mid_diff <- pop_vulnerability_arb_mid_diff %>% rename(max_temp = mean_max_temp)
pop_vulnerability_arb_mid_diff
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 32.7 0.969 31.2 0.787 1.68 0.969 0.0918
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
50% radiation diffused
Run the biophysical model
# Run the microclimate model
micro_arb_low_diff <- NicheMapR::micro_ncep(loc = coords_arb,
dstart = dstart,
dfinish = dfinish,
scenario=4,
minshade=85,
maxshade=90,
Usrhyt = 2,
windfac = 0.2, # Reduce wind speed by 80% in dense vegetation
microclima.LAI = 0.5, # 50% of the radiation is diffused because of vegetation
ERR = 1.5,
spatial = 'E:/p_pottier/Climatic_data/data/NCEP_time',
terra_source = 'E:/p_pottier/Climatic_data/data/climatic_data_TerraClimate/data')
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2004 (need a bit of the previous year)
## reading weather input for 2005
## reading weather input for 2006
## reading weather input for 2007
## reading weather input for 2008
## reading weather input for 2009
## reading weather input for 2010
## reading weather input for 2011
## reading weather input for 2012
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 4017 days from 2005-01-01 to 2015-12-31 23:00:00 at site long -71.5 lat -4.5
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 218.52 1.26 309.68
# Run the ectotherm model
micro <- micro_arb_low_diff
micro$metout[, 3] <- micro$metout[, 4] # Make the local height equal to reference height (2 m)
micro$metout[, 5] <- micro$metout[, 6] # Make the local height equal to reference height (2 m)
micro$metout[, 7] <- micro$metout[, 8] # Make the local height equal to reference height (2 m)
ecto_arb_low_diff <- NicheMapR::ectotherm(live= 0,
Ww_g = 2.85,
shape = 4,
pct_wet = 80)
environ_arb_low_diff <- as.data.frame(ecto_arb_low_diff$environ)
# Calculate daily temperature
daily_temp_arb_low_diff <- environ_arb_low_diff %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_arb_low_diff <- daily_temp_arb_low_diff %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days_arb_low_diff <- daily_temp_arb_low_diff %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_arb_low_diff <- predict(fit_p_ock, newmods = daily_temp_warmest_days_arb_low_diff$mean_weekly_temp)
daily_CTmax_arb_low_diff <- dplyr::select((cbind(daily_temp_warmest_days_arb_low_diff,
cbind(predicted_CTmax = prediction_arb_low_diff$pred,
predicted_CTmax_se = prediction_arb_low_diff$se))), -max_weekly_temp)
# Calculate climate vulnerability metrics
daily_vulnerability_arb_low_diff <- daily_CTmax_arb_low_diff %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_arb_low_diff, file = "RData/Climate_vulnerability/Arboreal/future4C/daily_vulnerability_arboreal_low_solar_diff_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_arb_low_diff <- daily_vulnerability_arb_low_diff %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_arb_low_diff <- pop_vulnerability_arb_low_diff %>% rename(max_temp = mean_max_temp)
pop_vulnerability_arb_low_diff
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 32.7 0.991 31.3 0.793 1.55 0.991 0.110
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
100% wind reduction
Run the biophysical model
# Run the microclimate model
micro_arb_no_wind <- NicheMapR::micro_ncep(loc = coords_arb,
dstart = dstart,
dfinish = dfinish,
scenario=4,
minshade=85,
maxshade=90,
Usrhyt = 2,
windfac = 0, # Reduce wind speed by 100% in vegetation
microclima.LAI = 0.9, # 90% of the radiation is diffused because of vegetation
ERR = 1.5,
spatial = 'E:/p_pottier/Climatic_data/data/NCEP_time',
terra_source = 'E:/p_pottier/Climatic_data/data/climatic_data_TerraClimate/data')
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2004 (need a bit of the previous year)
## reading weather input for 2005
## reading weather input for 2006
## reading weather input for 2007
## reading weather input for 2008
## reading weather input for 2009
## reading weather input for 2010
## reading weather input for 2011
## reading weather input for 2012
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 4017 days from 2005-01-01 to 2015-12-31 23:00:00 at site long -71.5 lat -4.5
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 190.46 0.58 264.68
# Run the ectotherm model
micro <- micro_arb_no_wind
micro$metout[, 3] <- micro$metout[, 4] # Make the local height equal to reference height (2 m)
micro$metout[, 5] <- micro$metout[, 6] # Make the local height equal to reference height (2 m)
micro$metout[, 7] <- micro$metout[, 8] # Make the local height equal to reference height (2 m)
ecto_arb_no_wind <- NicheMapR::ectotherm(live= 0,
Ww_g = 2.85,
shape = 4,
pct_wet = 80)
environ_arb_no_wind <- as.data.frame(ecto_arb_no_wind$environ)
# Calculate daily temperature
daily_temp_arb_no_wind <- environ_arb_no_wind %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_arb_no_wind <- daily_temp_arb_no_wind %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days_arb_no_wind <- daily_temp_arb_no_wind %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_arb_no_wind <- predict(fit_p_ock, newmods = daily_temp_warmest_days_arb_no_wind$mean_weekly_temp)
daily_CTmax_arb_no_wind <- dplyr::select((cbind(daily_temp_warmest_days_arb_no_wind,
cbind(predicted_CTmax = prediction_arb_no_wind$pred,
predicted_CTmax_se = prediction_arb_no_wind$se))), -max_weekly_temp)
# Calculate climate vulnerability metrics
daily_vulnerability_arb_no_wind<- daily_CTmax_arb_no_wind %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_arb_no_wind, file = "RData/Climate_vulnerability/Arboreal/future4C/daily_vulnerability_arboreal_no_wind_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_arb_no_wind <- daily_vulnerability_arb_no_wind %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_arb_no_wind <- pop_vulnerability_arb_no_wind %>% rename(max_temp = mean_max_temp)
pop_vulnerability_arb_no_wind
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 32.7 0.982 31.2 0.776 1.69 0.982 0.0901
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
50% wind reduction
Run the biophysical model
# Run the microclimate model
micro_arb_high_wind <- NicheMapR::micro_ncep(loc = coords_arb,
dstart = dstart,
dfinish = dfinish,
scenario=4,
minshade=85,
maxshade=90,
Usrhyt = 2,
windfac = 0.5, # Reduce wind speed by 50% in vegetation
microclima.LAI = 0.9, # 90% of the radiation is diffused because of vegetation
ERR = 1.5,
spatial = 'E:/p_pottier/Climatic_data/data/NCEP_time',
terra_source = 'E:/p_pottier/Climatic_data/data/climatic_data_TerraClimate/data')
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2004 (need a bit of the previous year)
## reading weather input for 2005
## reading weather input for 2006
## reading weather input for 2007
## reading weather input for 2008
## reading weather input for 2009
## reading weather input for 2010
## reading weather input for 2011
## reading weather input for 2012
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 4017 days from 2005-01-01 to 2015-12-31 23:00:00 at site long -71.5 lat -4.5
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 185.41 0.80 250.52
# Run the ectotherm model
micro <- micro_arb_high_wind
micro$metout[, 3] <- micro$metout[, 4] # Make the local height equal to reference height (2 m)
micro$metout[, 5] <- micro$metout[, 6] # Make the local height equal to reference height (2 m)
micro$metout[, 7] <- micro$metout[, 8] # Make the local height equal to reference height (2 m)
ecto_arb_high_wind <- NicheMapR::ectotherm(live= 0,
Ww_g = 2.85,
shape = 4,
pct_wet = 80)
environ_arb_high_wind <- as.data.frame(ecto_arb_high_wind$environ)
# Calculate daily temperature
daily_temp_arb_high_wind <- environ_arb_high_wind %>%
dplyr::mutate(YEAR = YEAR + 2004) %>%
dplyr::group_by(YEAR, DOY) %>%
dplyr::summarize(max_temp = max(TC),
mean_temp = mean(TC), .groups = "drop")
# Calculate mean weekly temperature
daily_temp_arb_high_wind <- daily_temp_arb_high_wind %>%
dplyr::group_by(YEAR) %>%
dplyr::group_modify(~calc_yearly_rolling_mean(.))
# Identify the warmest 91 days (3 months) of each year
daily_temp_warmest_days_arb_high_wind <- daily_temp_arb_high_wind %>%
dplyr::group_by(YEAR) %>%
dplyr::top_n(91, max_temp) %>%
dplyr::filter(YEAR > 2005)
Calculate climate vulnerability
# Generate predictions
prediction_arb_high_wind <- predict(fit_p_ock, newmods = daily_temp_warmest_days_arb_high_wind$mean_weekly_temp)
daily_CTmax_arb_high_wind <- dplyr::select((cbind(daily_temp_warmest_days_arb_high_wind,
cbind(predicted_CTmax = prediction_arb_high_wind$pred,
predicted_CTmax_se = prediction_arb_high_wind$se))), -max_weekly_temp)
# Calculate climate vulnerability metrics
daily_vulnerability_arb_high_wind <- daily_CTmax_arb_high_wind %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
saveRDS(daily_vulnerability_arb_high_wind, file = "RData/Climate_vulnerability/Arboreal/future4C/daily_vulnerability_arboreal_high_wind_sensitivity_analysis.rds")
# Aggregate to local species occurrences
pop_vulnerability_arb_high_wind <- daily_vulnerability_arb_high_wind %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_arb_high_wind <- pop_vulnerability_arb_high_wind %>% rename(max_temp = mean_max_temp)
pop_vulnerability_arb_high_wind
## # A tibble: 1 × 11
## CTmax CTmax_se max_temp max_temp_se TSM TSM_se overheating_probability
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 32.7 0.922 31.0 0.788 1.87 0.922 0.0706
## # ℹ 4 more variables: overheating_probability_se <dbl>, overheating_days <dbl>,
## # overheating_days_se <dbl>, overheating_risk <dbl>
Compare the results
# Plant height
plant_height <- ggplot() + geom_density(data = daily_vulnerability_arb_tall, aes(x = daily_TSM),
alpha = 0.5, fill = "darkgreen") + geom_density(data = daily_vulnerability_arb_short,
aes(x = daily_TSM), alpha = 0.5, fill = "lightgreen") + geom_density(data = daily_vulnerability_arb,
aes(x = daily_TSM), alpha = 0.6, fill = "black") + geom_vline(xintercept = 0,
colour = "black", lwd = 1, alpha = 0.75) + xlim(-5, 5) + xlab("") + ylab("Density") +
theme_classic() + theme(text = element_text(color = "black"), axis.title.x = element_text(size = 50,
margin = margin(t = 40, r = 0, b = 0, l = 0)), axis.title.y = element_text(size = 50,
margin = margin(t = 0, r = 40, b = 0, l = 0)), axis.text.x = element_text(size = 40,
margin = margin(t = 20, r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40,
margin = margin(t = 0, r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 2))
# Diffusion of solar radiation
plant_solar_rad <- ggplot() + geom_density(data = daily_vulnerability_arb_low_diff,
aes(x = daily_TSM), alpha = 0.5, fill = "#cc4778") + geom_density(data = daily_vulnerability_arb_mid_diff,
aes(x = daily_TSM), alpha = 0.5, fill = "#7e03a8") + geom_density(data = daily_vulnerability_arb,
aes(x = daily_TSM), alpha = 0.6, fill = "black") + geom_vline(xintercept = 0,
colour = "black", lwd = 1, alpha = 0.75) + xlim(-5, 5) + xlab("") + ylab("Density") +
theme_classic() + theme(text = element_text(color = "black"), axis.title.x = element_text(size = 50,
margin = margin(t = 40, r = 0, b = 0, l = 0)), axis.title.y = element_text(size = 50,
margin = margin(t = 0, r = 40, b = 0, l = 0)), axis.text.x = element_text(size = 40,
margin = margin(t = 20, r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40,
margin = margin(t = 0, r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 2))
# Wind reduction
plant_wind_reduc <- ggplot() + geom_density(data = daily_vulnerability_arb_no_wind,
aes(x = daily_TSM), alpha = 0.5, fill = "#BA4953") + geom_density(data = daily_vulnerability_arb_high_wind,
aes(x = daily_TSM), alpha = 0.5, fill = "#49BAAE") + geom_density(data = daily_vulnerability_arb,
aes(x = daily_TSM), alpha = 0.6, fill = "black") + geom_vline(xintercept = 0,
colour = "black", lwd = 1, alpha = 0.75) + xlim(-5, 5) + xlab("Daily TSM") +
ylab("Density") + theme_classic() + theme(text = element_text(color = "black"),
axis.title.x = element_text(size = 50, margin = margin(t = 40, r = 0, b = 0,
l = 0)), axis.title.y = element_text(size = 50, margin = margin(t = 0, r = 40,
b = 0, l = 0)), axis.text.x = element_text(size = 40, margin = margin(t = 20,
r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40, margin = margin(t = 0,
r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA, size = 2))
arboreal_parameters <- plant_height/plant_solar_rad/plant_wind_reduc
arboreal_parameters
ggsave(arboreal_parameters, file = "fig/Figure_S11.png", height = 30, width = 18,
dpi = 500)
Validation of operative body temperature estimates
Here, we provide a brief validation of operative body temperatures predicted from our models. As a case in point, we compare our estimates to field body temperatures of 11 species of frogs in Mexico (taken from Lara-Resendiz & Luja, 2018, Revista Mexicana de Biodiversidad)
Prepare data
# Get Tb measurements from the study (Table 1)
data <- data.frame(Species = c("Agalychnis dacnicolor", "Craugastor occidentalis",
"Hyla eximia", "Incilius mazatlanensis", "Leptodactylus melanonotus", "Lithobates catesbeianus",
"Lithobates forreri", "Plectrohyla bistincta", "Smilisca baudinii", "Smilisca fodiens",
"Tlalocohyla smithii"), Tb = c("21.7±1.97 (17.2-29.8)", "20.5±2.29 (18.2-25.8)",
"22.8±1.12 (20.4-24)", "24.4±1.48 (22.5-26.6)", "24.6±3.36 (21.5-33.3)", "24.8±0.88 (23.4-25.8)",
"23.9±1.84 (20.9-27.7)", "22.5±3.09 (15.1-29.9)", "23.4±2.29 (20.8-29)", "22.7±1.07 (21.4-24)",
"21.3±2.03 (14.5-25.7)"))
# Extract the mean and range of body temperatures
data$Tb_mean <- as.numeric(sub("\\±.*", "", data$Tb))
data$Tb_range <- gsub(".*\\((.*)\\).*", "\\1", data$Tb)
range_split <- strsplit(as.character(data$Tb_range), "-")
data$Min <- sapply(range_split, function(x) as.numeric(x[1]))
data$Max <- sapply(range_split, function(x) as.numeric(x[2]))
data <- data %>%
dplyr::select(Species, Mean = Tb_mean, Min, Max)
# Species at the first site
data_Tepic <- filter(data, Species == "Agalychnis dacnicolor" | Species == "Hyla eximia" |
Species == "Incilius mazatlanensis" | Species == "Leptodactylus melanonotus" |
Species == "Lithobates catesbeianus" | Species == "Lithobates forreri" | Species ==
"Smilisca baudinii" | Species == "Smilisca fodiens" | Species == "Tlalocohyla smithii")
# Species at the second site
data_CD <- filter(data, Species == "Craugastor occidentalis" | Species == "Lithobates forreri" |
Species == "Plectrohyla bistincta" | Species == "Smilisca baudinii" | Species ==
"Tlalocohyla smithii")
*** Compare body temperatures at the first site
# Set parameters
dstart <- "01/01/2013"
dfinish <- "31/12/2015" # Wide range of dates, but will only select June to October 2013/2015
coords<- c(-104.85, 21.48) # Tepic, most sampled site
# Run the microclimate model
micro_valid <- NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=0,
minshade=85,
maxshade=90,
Usrhyt = 0.01,
cap = 1,
ERR = 1.5,
spatial = 'E:/p_pottier/Climatic_data/data/NCEP_time')
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2012 (need a bit of the previous year)
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 1095 days from 2013-01-01 to 2015-12-31 23:00:00 at site long -104.85 lat 21.48
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 59.27 0.48 114.59
micro <- micro_valid
# Find body mass of the closest location
presence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
data_for_imp <- readRDS(file = "RData/General_data/pre_data_for_imputation.rds")
presence_body_mass <- merge(presence, dplyr::select(data_for_imp, tip.label,
body_mass), by = "tip.label")
median_body_mass <- presence_body_mass %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass[median_body_mass$lon == -104.5 & median_body_mass$lat == 21.5,] # 24.9 g
## # A tibble: 1 × 3
## lon lat median_mass
## <dbl> <dbl> <dbl>
## 1 -104. 21.5 24.9
# Run the ectotherm model
ecto <- NicheMapR::ectotherm(live= 0,
Ww_g = 24.9,
shape = 4,
pct_wet = 80)
environ <- as.data.frame(ecto$environ)
environ_2013 <- filter(environ,
YEAR == "1" &
DAY > 152 & DAY < 304 &
(TIME < 2 | TIME > 17)) # June to October 2013; between 18h and 0:30h
environ_2015 <- filter(environ,
YEAR == "3" &
DAY > 882 & DAY < 1034 &
(TIME < 2 | TIME > 17)) # June to October 2015; between 18h and 0:30h
stats_2013 <- environ_2013 %>%
summarise(
Min = min(TC, na.rm = TRUE),
Max = max(TC, na.rm = TRUE),
Mean = mean(TC, na.rm = TRUE),
sd = sd(TC, na.rm = TRUE)
)
stats_2015 <- environ_2015 %>%
summarise(
Min = min(TC, na.rm = TRUE),
Max = max(TC, na.rm = TRUE),
Mean = mean(TC, na.rm = TRUE),
sd = sd(TC, na.rm = TRUE)
)
stats_2013
## Min Max Mean sd
## 1 17.95255 27.69047 23.1765 1.636191
stats_2015 # Virtually the same
## Min Max Mean sd
## 1 17.85327 27.89148 23.78714 1.701461
x_limits <- c(0.99, 1.01) # Define plot margins
# Space out species equally
num_points <- nrow(data_Tepic)
x_values <- seq(from = 0.991, to = 1.009, length.out = num_points)
Tb_jittered <- data_Tepic %>%
mutate(x_jitter = x_values)
first_site <-
ggplot() +
geom_rect(data = stats_2013, # Add a "ribbon" to represent the range
aes(xmin = x_limits[1], xmax = x_limits[2],
ymin = Min, ymax = Max),
fill = "grey80", alpha = 0.5) +
geom_segment(data = stats_2013, # Add a line for the Mean
aes(x = x_limits[1], xend = x_limits[2],
y = Mean, yend = Mean),
color = "black", size = 1.5) +
geom_rect(data = stats_2013, # Add SD for the Mean
aes(xmin = x_limits[1], xmax = x_limits[2],
ymin = Mean - sd, ymax = Mean + sd),
fill = "grey60", alpha = 0.5) +
geom_pointrange(data = Tb_jittered, # Add body temperature data
aes(x = x_jitter, y = Mean,
ymin = Min, ymax = Max, col = Species),
size = 1.5, linewidth = 1.3) +
scale_x_continuous(name = "", labels = NULL, breaks = NULL) +
theme_classic() +
xlab("") +
ylab("Temperature (°C)") +
theme_classic() +
theme(text = element_text(color = "black"),
axis.title.y = element_text(size = 40, margin = margin(t = 0, r = 30, b = 0, l = 0)),
axis.text.y = element_text(size = 30, margin = margin(t = 0, r = 20, b = 0, l = 0)),
legend.text = element_text(size = 15, face = "italic"),
legend.title = element_text(size = 18),
panel.border = element_rect(fill = NA, size = 2))
first_site
*** Compare body temperatures at the second site
coords <- c(-105.03, 21.45) # El Cuarenteño
# Run the microclimate model
micro_valid_CD <- NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=0,
minshade=85,
maxshade=90,
Usrhyt = 0.01,
cap = 1,
ERR = 1.5,
spatial = 'E:/p_pottier/Climatic_data/data/NCEP_time')
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2012 (need a bit of the previous year)
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 1095 days from 2013-01-01 to 2015-12-31 23:00:00 at site long -105.03 lat 21.45
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 39.52 0.45 91.06
micro <- micro_valid_CD
# Run the ectotherm model
ecto_CD <- NicheMapR::ectotherm(live= 0,
Ww_g = 24.9,
shape = 4,
pct_wet = 80)
environ_CD <- as.data.frame(ecto$environ)
environ_2013_CD <- filter(environ_CD,
YEAR == "1" &
DAY > 152 & DAY < 304 &
(TIME < 2 | TIME > 17)) # June to October 2013
environ_2015_CD <- filter(environ,
YEAR == "3" &
DAY > 882 & DAY < 1034 &
(TIME < 2 | TIME > 17)) # June to October 2015
stats_2013_CD <- environ_2013_CD %>%
summarise(
Min = min(TC, na.rm = TRUE),
Max = max(TC, na.rm = TRUE),
Mean = mean(TC, na.rm = TRUE),
sd = sd(TC, na.rm = TRUE)
)
stats_2015_CD <- environ_2015_CD %>%
summarise(
Min = min(TC, na.rm = TRUE),
Max = max(TC, na.rm = TRUE),
Mean = mean(TC, na.rm = TRUE),
sd = sd(TC, na.rm = TRUE)
)
stats_2013_CD
## Min Max Mean sd
## 1 17.95255 27.69047 23.1765 1.636191
stats_2015_CD # Virtually the same
## Min Max Mean sd
## 1 17.85327 27.89148 23.78714 1.701461
# Space out species equally
num_points <- nrow(data_CD)
x_values <- seq(from = 0.991, to = 1.009, length.out = num_points)
Tb_jittered_CD <- data_CD %>%
mutate(x_jitter = x_values)
second_site <-
ggplot() +
geom_rect(data = stats_2013_CD, # Add a "ribbon" to represent the range
aes(xmin = x_limits[1], xmax = x_limits[2],
ymin = Min, ymax = Max),
fill = "grey80", alpha = 0.5) +
geom_segment(data = stats_2013_CD, # Add a line for the Mean
aes(x = x_limits[1], xend = x_limits[2],
y = Mean, yend = Mean), color = "black", size = 1.5) +
geom_rect(data = stats_2013_CD, # Add SD for the Mean
aes(xmin = x_limits[1], xmax = x_limits[2],
ymin = Mean - sd, ymax = Mean + sd),
fill = "grey60", alpha = 0.5) +
geom_pointrange(data = Tb_jittered_CD, # Add body temperature
aes(x = x_jitter, y = Mean,
ymin = Min, ymax = Max,
col = Species),
size = 1.5, linewidth = 1.3) +
scale_x_continuous(name = "", labels = NULL, breaks = NULL) +
theme_classic() +
xlab("") +
ylab("Temperature (°C)") +
theme_classic() +
theme(text = element_text(color = "black"),
axis.title.y = element_text(size = 40, margin = margin(t = 0, r = 30, b = 0, l = 0)),
axis.text.y = element_text(size = 30, margin = margin(t = 0, r = 20, b = 0, l = 0)),
legend.text = element_text(size = 15, face = "italic"),
legend.title = element_text(size = 18),
panel.border = element_rect(fill = NA, size = 2))
second_site
Final plot
validation_OBT <- first_site/second_site
validation_OBT
ggsave(validation_OBT, file = "fig/Figure_S12.png", height = 15, width = 11, dpi = 500)
Alternative climate vulnerability metrics
Acclimation to the maximum weekly temperature
Vegetated substrate
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Substrate/Calculating_climate_vulnerability_metrics_substrate.R and the resources used in pbs/Climate_vulnerability/Substrate/Calculating_climate_vulnerability_metrics_substrate.pbs
Current climate
daily_CTmax_max_current <- readRDS(file="RData/Climate_vulnerability/Substrate/current/daily_CTmax_substrate_max_acc_current.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_max_current <- daily_CTmax_max_current %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_max_current <- daily_vulnerability_max_current %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_max_current)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_max_current <- daily_vulnerability_max_current %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_max_current <- pop_vulnerability_max_current %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_max_current)
## Calculate number of consecutive overheating days
consecutive_overheating_days_current <- daily_consecutive_max_current %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_max_current)
pop_vulnerability_max_current <- pop_vulnerability_max_current %>%
left_join(consecutive_overheating_days_current, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_current)
## Add original coordinates
pop_vulnerability_max_current <- pop_vulnerability_max_current %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_max_current <- left_join(pop_vulnerability_max_current, distinct_coord, by="lon_lat")
pop_vulnerability_max_current <- pop_vulnerability_max_current %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_max_current, file="RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_max_acc_current.rds")
######## Community-level patterns ################
community_vulnerability_max_current <- pop_vulnerability_max_current %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_max_current)
saveRDS(community_vulnerability_max_current, file="RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_max_acc_current.rds")
Future climate (+2C)
daily_CTmax_max_2C <- readRDS(file="RData/Climate_vulnerability/Substrate/future2C/daily_CTmax_substrate_max_acc_future2C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_max_2C <- daily_CTmax_max_2C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_max_2C <- daily_vulnerability_max_2C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_max_2C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_max_2C <- daily_vulnerability_max_2C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_max_2C <- pop_vulnerability_max_2C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_max_2C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_2C <- daily_consecutive_max_2C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_max_2C)
pop_vulnerability_max_2C <- pop_vulnerability_max_2C %>%
left_join(consecutive_overheating_days_2C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_2C)
## Add original coordinates
pop_vulnerability_max_2C <- pop_vulnerability_max_2C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_max_2C <- left_join(pop_vulnerability_max_2C, distinct_coord, by="lon_lat")
pop_vulnerability_max_2C <- pop_vulnerability_max_2C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_max_2C, file="RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_max_acc_future2C.rds")
######## Community-level patterns ################
community_vulnerability_max_2C <- pop_vulnerability_max_2C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_max_2C)
saveRDS(community_vulnerability_max_2C, file="RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_max_acc_future2C.rds")
Future climate (+4C)
daily_CTmax_max_4C <- readRDS(file="RData/Climate_vulnerability/Substrate/future4C/daily_CTmax_substrate_max_acc_future4C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_max_4C <- daily_CTmax_max_4C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_max_4C <- daily_vulnerability_max_4C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_max_4C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_max_4C <- daily_vulnerability_max_4C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_max_4C <- pop_vulnerability_max_4C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_max_4C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_4C <- daily_consecutive_max_4C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_max_4C)
pop_vulnerability_max_4C <- pop_vulnerability_max_4C %>%
left_join(consecutive_overheating_days_4C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_4C)
## Add original coordinates
pop_vulnerability_max_4C <- pop_vulnerability_max_4C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_max_4C <- left_join(pop_vulnerability_max_4C, distinct_coord, by="lon_lat")
pop_vulnerability_max_4C <- pop_vulnerability_max_4C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_max_4C, file="RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_max_acc_future4C.rds")
######## Community-level patterns ################
community_vulnerability_max_4C <- pop_vulnerability_max_4C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_max_4C)
saveRDS(community_vulnerability_max_4C, file="RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_max_acc_future4C.rds")
Clip grid cells to match land masses
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Substrate/Clipping_grid_cells_substrate.R and the resources used in pbs/Climate_vulnerability/Substrate/Clipping_grid_cells_substrate.pbs
community_df_max_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_max_acc_current.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_max_current", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_max_current), function(i) {
row <- community_df_max_current[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_max_acc_current_clipped_cells.rds")
################################# Do the same for the future climate
################################# #########################
community_df_max_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_max_acc_future2C.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_max_future2C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_max_future2C), function(i) {
row <- community_df_max_future2C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_max_acc_future2C_clipped_cells.rds")
################
community_df_max_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_max_acc_future4C.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_max_future4C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_max_future4C), function(i) {
row <- community_df_max_future4C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_max_acc_future4C_clipped_cells.rds")
Pond or wetland
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Pond/Calculating_climate_vulnerability_metrics_pond.R and the resources used in pbs/Climate_vulnerability/Pond/Calculating_climate_vulnerability_metrics_pond.pbs
Current climate
daily_CTmax_max_current <- readRDS(file="RData/Climate_vulnerability/Pond/current/daily_CTmax_pond_max_acc_current.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_max_current <- daily_CTmax_max_current %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_max_current <- daily_vulnerability_max_current %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_max_current)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_max_current <- daily_vulnerability_max_current %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_max_current <- pop_vulnerability_max_current %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_max_current)
## Calculate number of consecutive overheating days
consecutive_overheating_days_current <- daily_consecutive_max_current %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_max_current)
pop_vulnerability_max_current <- pop_vulnerability_max_current %>%
left_join(consecutive_overheating_days_current, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_current)
## Add original coordinates
pop_vulnerability_max_current <- pop_vulnerability_max_current %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_max_current <- left_join(pop_vulnerability_max_current, distinct_coord, by="lon_lat")
pop_vulnerability_max_current <- pop_vulnerability_max_current %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_max_current, file="RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_max_acc_current.rds")
######## Community-level patterns ################
community_vulnerability_max_current <- pop_vulnerability_max_current %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_max_current)
saveRDS(community_vulnerability_max_current, file="RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_max_acc_current.rds")
Future climate (+2C)
daily_CTmax_max_2C <- readRDS(file="RData/Climate_vulnerability/Pond/future2C/daily_CTmax_pond_max_acc_future2C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_max_2C <- daily_CTmax_max_2C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_max_2C <- daily_vulnerability_max_2C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_max_2C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_max_2C <- daily_vulnerability_max_2C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_max_2C <- pop_vulnerability_max_2C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_max_2C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_2C <- daily_consecutive_max_2C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_max_2C)
pop_vulnerability_max_2C <- pop_vulnerability_max_2C %>%
left_join(consecutive_overheating_days_2C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_2C)
## Add original coordinates
pop_vulnerability_max_2C <- pop_vulnerability_max_2C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_max_2C <- left_join(pop_vulnerability_max_2C, distinct_coord, by="lon_lat")
pop_vulnerability_max_2C <- pop_vulnerability_max_2C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_max_2C, file="RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_max_acc_future2C.rds")
######## Community-level patterns ################
community_vulnerability_max_2C <- pop_vulnerability_max_2C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_max_2C)
saveRDS(community_vulnerability_max_2C, file="RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_max_acc_future2C.rds")
Future climate (+4C)
daily_CTmax_max_4C <- readRDS(file="RData/Climate_vulnerability/Pond/future4C/daily_CTmax_pond_max_acc_future4C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_max_4C <- daily_CTmax_max_4C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_max_4C <- daily_vulnerability_max_4C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_max_4C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_max_4C <- daily_vulnerability_max_4C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_max_4C <- pop_vulnerability_max_4C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_max_4C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_4C <- daily_consecutive_max_4C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_max_4C)
pop_vulnerability_max_4C <- pop_vulnerability_max_4C %>%
left_join(consecutive_overheating_days_4C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_4C)
## Add original coordinates
pop_vulnerability_max_4C <- pop_vulnerability_max_4C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_max_4C <- left_join(pop_vulnerability_max_4C, distinct_coord, by="lon_lat")
pop_vulnerability_max_4C <- pop_vulnerability_max_4C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_max_4C, file="RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_max_acc_future4C.rds")
######## Community-level patterns ################
community_vulnerability_max_4C <- pop_vulnerability_max_4C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_max_4C)
saveRDS(community_vulnerability_max_4C, file="RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_max_acc_future4C.rds")
Clip grid cells to match land masses
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Pond/Clipping_grid_cells_pond.R and the resources used in pbs/Climate_vulnerability/Pond/Clipping_grid_cells_pond.pbs
community_df_max_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_max_acc_current.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_max_current", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_max_current), function(i) {
row <- community_df_max_current[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_max_acc_current_clipped_cells.rds")
################################# Do the same for the future climate
################################# #########################
community_df_max_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_max_acc_future2C.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_max_future2C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_max_future2C), function(i) {
row <- community_df_max_future2C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_max_acc_future2C_clipped_cells.rds")
################
community_df_max_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_max_acc_future4C.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_max_future4C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_max_future4C), function(i) {
row <- community_df_max_future4C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_max_acc_future4C_clipped_cells.rds")
Above-ground vegetation
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Arboreal/Calculating_climate_vulnerability_metrics_arboreal.R and the resources used in pbs/Climate_vulnerability/Arboreal/Calculating_climate_vulnerability_metrics_arboreal.pbs
Current climate
daily_CTmax_max_current <- readRDS(file="RData/Climate_vulnerability/Arboreal/current/daily_CTmax_arboreal_max_acc_current.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_max_current <- daily_CTmax_max_current %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_max_current <- daily_vulnerability_max_current %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_max_current)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_max_current <- daily_vulnerability_max_current %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_max_current <- pop_vulnerability_max_current %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_max_current)
## Calculate number of consecutive overheating days
consecutive_overheating_days_current <- daily_consecutive_max_current %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_max_current)
pop_vulnerability_max_current <- pop_vulnerability_max_current %>%
left_join(consecutive_overheating_days_current, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_current)
## Add original coordinates
pop_vulnerability_max_current <- pop_vulnerability_max_current %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_max_current <- left_join(pop_vulnerability_max_current, distinct_coord, by="lon_lat")
pop_vulnerability_max_current <- pop_vulnerability_max_current %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_max_current, file="RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_max_acc_current.rds")
######## Community-level patterns ################
community_vulnerability_max_current <- pop_vulnerability_max_current %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_max_current)
saveRDS(community_vulnerability_max_current, file="RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_max_acc_current.rds")
Future climate (+2C)
daily_CTmax_max_2C <- readRDS(file="RData/Climate_vulnerability/Arboreal/future2C/daily_CTmax_arboreal_max_acc_future2C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_max_2C <- daily_CTmax_max_2C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_max_2C <- daily_vulnerability_max_2C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_max_2C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_max_2C <- daily_vulnerability_max_2C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_max_2C <- pop_vulnerability_max_2C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_max_2C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_2C <- daily_consecutive_max_2C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_max_2C)
pop_vulnerability_max_2C <- pop_vulnerability_max_2C %>%
left_join(consecutive_overheating_days_2C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_2C)
## Add original coordinates
pop_vulnerability_max_2C <- pop_vulnerability_max_2C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_max_2C <- left_join(pop_vulnerability_max_2C, distinct_coord, by="lon_lat")
pop_vulnerability_max_2C <- pop_vulnerability_max_2C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_max_2C, file="RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_max_acc_future2C.rds")
######## Community-level patterns ################
community_vulnerability_max_2C <- pop_vulnerability_max_2C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_max_2C)
saveRDS(community_vulnerability_max_2C, file="RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_max_acc_future2C.rds")
Future climate (+4C)
daily_CTmax_max_4C <- readRDS(file="RData/Climate_vulnerability/Arboreal/future4C/daily_CTmax_arboreal_max_acc_future4C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_max_4C <- daily_CTmax_max_4C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_max_4C <- daily_vulnerability_max_4C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_max_4C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_max_4C <- daily_vulnerability_max_4C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_max_4C <- pop_vulnerability_max_4C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_max_4C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_4C <- daily_consecutive_max_4C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_max_4C)
pop_vulnerability_max_4C <- pop_vulnerability_max_4C %>%
left_join(consecutive_overheating_days_4C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_4C)
## Add original coordinates
pop_vulnerability_max_4C <- pop_vulnerability_max_4C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_max_4C <- left_join(pop_vulnerability_max_4C, distinct_coord, by="lon_lat")
pop_vulnerability_max_4C <- pop_vulnerability_max_4C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_max_4C, file="RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_max_acc_future4C.rds")
######## Community-level patterns ################
community_vulnerability_max_4C <- pop_vulnerability_max_4C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_max_4C)
saveRDS(community_vulnerability_max_4C, file="RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_max_acc_future4C.rds")
Clip grid cells to match land masses
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Arboreal/Clipping_grid_cells_arboreal.R and the resources used in pbs/Climate_vulnerability/Arboreal/Clipping_grid_cells_arboreal.pbs
community_df_max_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_max_acc_current.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_max_current", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_max_current), function(i) {
row <- community_df_max_current[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_max_acc_current_clipped_cells.rds")
################################# Do the same for the future climate
################################# #########################
community_df_max_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_max_acc_future2C.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_max_future2C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_max_future2C), function(i) {
row <- community_df_max_future2C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_max_acc_future2C_clipped_cells.rds")
################
community_df_max_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_max_acc_future4C.rds")
# Create land polygon
world_sf <- ne_countries(scale = "large", returnclass = "sf")
world_sf$geometry <- st_make_valid(world_sf$geometry)
land_polygon <- st_union(world_sf)
# Loop to create the clipped grid cells and keep the geometry column
create_grid_cell_polygon <- function(lon, lat, dx = 0.5, dy = 0.5) {
cell_polygon <- st_polygon(list(matrix(c(lon - dx, lat - dy, lon + dx, lat -
dy, lon + dx, lat + dy, lon - dx, lat + dy, lon - dx, lat - dy), ncol = 2,
byrow = TRUE)))
cell_sf <- st_sf(geometry = st_sfc(cell_polygon))
st_set_crs(cell_sf, st_crs(land_polygon))
}
cl <- makeCluster(16)
clusterExport(cl, c("community_df_max_future4C", "land_polygon", "create_grid_cell_polygon"))
clusterEvalQ(cl, {
library(tidyverse)
library(sf)
library(rnaturalearth)
library(rnaturalearthhires)
library(lwgeom)
library(ggspatial)
})
clipped_grid_cells_list <- parLapply(cl, 1:nrow(community_df_max_future4C), function(i) {
row <- community_df_max_future4C[i, ]
cell_polygon <- create_grid_cell_polygon(row$lon, row$lat)
clipped_cell <- st_intersection(cell_polygon, land_polygon)
if (nrow(clipped_cell) > 0) {
# check that clipped_cell is not an empty sf data frame
clipped_cell$lon <- row$lon
clipped_cell$lat <- row$lat
clipped_cell$community_CTmax <- row$community_CTmax
clipped_cell$community_CTmax_se <- row$community_CTmax_se
clipped_cell$community_max_temp <- row$community_max_temp
clipped_cell$community_max_temp_se <- row$community_max_temp_se
clipped_cell$community_TSM <- row$community_TSM
clipped_cell$community_TSM_se <- row$community_TSM_se
clipped_cell$n_species <- row$n_species
clipped_cell$n_species_overheating <- row$n_species_overheating
clipped_cell$proportion_species_overheating <- row$proportion_species_overheating
clipped_cell$proportion_species_overheating_se <- row$proportion_species_overheating_se
clipped_cell$n_species_overheating_strict <- row$n_species_overheating_strict
clipped_cell$proportion_species_overheating_strict <- row$proportion_species_overheating_strict
clipped_cell$proportion_species_overheating_se_strict <- row$proportion_species_overheating_se_strict
return(clipped_cell)
} else {
return(NULL)
}
})
# Stop the cluster
stopCluster(cl)
# Create a list of clipped grid cells
clipped_grid_cells_list <- Filter(Negate(is.null), clipped_grid_cells_list)
# Merge the list of clipped grid cells into a single sf data frame
clipped_grid_cells <- do.call(rbind, clipped_grid_cells_list)
saveRDS(clipped_grid_cells, file = "RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_max_acc_future4C_clipped_cells.rds")
Including larger uncertainty in overheating probability
Here, we restrict the standard deviation of simulated CTmax distributions to the “biological range” of CTmax, that is, the standard deviation of all CTmax estimates across species (s.e. range from different microhabitats: 1.84 - 2.17).
Vegetated substrate
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Substrate/Calculating_climate_vulnerability_metrics_substrate_large_se.R and the resources used in pbs/Climate_vulnerability/Substrate/Calculating_climate_vulnerability_metrics_substrate_large_se.pbs
Current climate
daily_CTmax_mean_current <- readRDS(file="RData/Climate_vulnerability/Substrate/current/daily_CTmax_substrate_mean_acc_current.rds")
# Assign a maximum se for observations with very large error.
# This is capped to the "biological range" of CTmax, defined as the standard deviation of CTmax estimates across species.
# Note that this may overestimate overheating probabilities in some cases.
cap_se <- sd(daily_CTmax_mean_current$predicted_CTmax)
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_current <- daily_CTmax_mean_current %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_current <- daily_vulnerability_mean_current %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_current)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_current <- daily_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_current)
## Calculate number of consecutive overheating days
consecutive_overheating_days_current <- daily_consecutive_mean_current %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_current)
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
left_join(consecutive_overheating_days_current, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_current)
## Add original coordinates
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_current <- left_join(pop_vulnerability_mean_current, distinct_coord, by="lon_lat")
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_current, file="RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current_large_se.rds")
######## Community-level patterns ################
community_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_current)
saveRDS(community_vulnerability_mean_current, file="RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_large_se.rds")
Future climate (+2C)
daily_CTmax_mean_2C <- readRDS(file="RData/Climate_vulnerability/Substrate/future2C/daily_CTmax_substrate_mean_acc_future2C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to the "biological range" of CTmax, defined as the standard deviation of CTmax estimates across species.
# Note that this may overestimate overheating probabilities in some cases.
cap_se <- sd(daily_CTmax_mean_2C$predicted_CTmax)
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_2C <- daily_CTmax_mean_2C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_2C <- daily_vulnerability_mean_2C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_2C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_2C <- daily_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_2C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_2C <- daily_consecutive_mean_2C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_2C)
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
left_join(consecutive_overheating_days_2C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_2C)
## Add original coordinates
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_2C <- left_join(pop_vulnerability_mean_2C, distinct_coord, by="lon_lat")
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_2C, file="RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C_large_se.rds")
######## Community-level patterns ################
community_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_2C)
saveRDS(community_vulnerability_mean_2C, file="RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_large_se.rds")
Future climate (+4C)
daily_CTmax_mean_4C <- readRDS(file="RData/Climate_vulnerability/Substrate/future4C/daily_CTmax_substrate_mean_acc_future4C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to the "biological range" of CTmax, defined as the standard deviation of CTmax estimates across species.
# Note that this may overestimate overheating probabilities in some cases.
cap_se <- sd(daily_CTmax_mean_4C$predicted_CTmax)
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_4C <- daily_CTmax_mean_4C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_4C <- daily_vulnerability_mean_4C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_4C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_4C <- daily_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_4C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_4C <- daily_consecutive_mean_4C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_4C)
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
left_join(consecutive_overheating_days_4C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_4C)
## Add original coordinates
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_4C <- left_join(pop_vulnerability_mean_4C, distinct_coord, by="lon_lat")
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_4C, file="RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C_large_se.rds")
######## Community-level patterns ################
community_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_4C)
saveRDS(community_vulnerability_mean_4C, file="RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_large_se.rds")
Pond or wetland
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Pond/Calculating_climate_vulnerability_metrics_pond_sensitivity_large_se.R and the resources used in pbs/Climate_vulnerability/Pond/Calculating_climate_vulnerability_metrics_pond_large_se.pbs
Current climate
daily_CTmax_mean_current <- readRDS(file="RData/Climate_vulnerability/Pond/current/daily_CTmax_pond_mean_acc_current.rds")
# Assign a maximum se for observations with very large error.
# This is capped to the "biological range" of CTmax, defined as the standard deviation of CTmax estimates across species.
# Note that this may overestimate overheating probabilities in some cases.
cap_se <- sd(daily_CTmax_mean_current$predicted_CTmax)
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_current <- daily_CTmax_mean_current %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_current <- daily_vulnerability_mean_current %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_current)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_current <- daily_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_current)
## Calculate number of consecutive overheating days
consecutive_overheating_days_current <- daily_consecutive_mean_current %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_current)
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
left_join(consecutive_overheating_days_current, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_current)
## Add original coordinates
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_current <- left_join(pop_vulnerability_mean_current, distinct_coord, by="lon_lat")
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_current, file="RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current_large_se.rds")
######## Community-level patterns ################
community_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_current)
saveRDS(community_vulnerability_mean_current, file="RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current_large_se.rds")
Future climate (+2C)
daily_CTmax_mean_2C <- readRDS(file="RData/Climate_vulnerability/Pond/future2C/daily_CTmax_pond_mean_acc_future2C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to the "biological range" of CTmax, defined as the standard deviation of CTmax estimates across species.
# Note that this may overestimate overheating probabilities in some cases.
cap_se <- sd(daily_CTmax_mean_2C$predicted_CTmax)
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_2C <- daily_CTmax_mean_2C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_2C <- daily_vulnerability_mean_2C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_2C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_2C <- daily_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_2C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_2C <- daily_consecutive_mean_2C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_2C)
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
left_join(consecutive_overheating_days_2C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_2C)
## Add original coordinates
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_2C <- left_join(pop_vulnerability_mean_2C, distinct_coord, by="lon_lat")
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_2C, file="RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C_large_se.rds")
######## Community-level patterns ################
community_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_2C)
saveRDS(community_vulnerability_mean_2C, file="RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C_large_se.rds")
Future climate (+4C)
daily_CTmax_mean_4C <- readRDS(file="RData/Climate_vulnerability/Pond/future4C/daily_CTmax_pond_mean_acc_future4C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to the "biological range" of CTmax, defined as the standard deviation of CTmax estimates across species.
# Note that this may overestimate overheating probabilities in some cases.
cap_se <- sd(daily_CTmax_mean_4C$predicted_CTmax)
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_4C <- daily_CTmax_mean_4C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_4C <- daily_vulnerability_mean_4C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_4C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_4C <- daily_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_4C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_4C <- daily_consecutive_mean_4C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_4C)
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
left_join(consecutive_overheating_days_4C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_4C)
## Add original coordinates
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_4C <- left_join(pop_vulnerability_mean_4C, distinct_coord, by="lon_lat")
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_4C, file="RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C_large_se.rds")
######## Community-level patterns ################
community_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_4C)
saveRDS(community_vulnerability_mean_4C, file="RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C_large_se.rds")
Above-ground vegetation
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Arboreal/Calculating_climate_vulnerability_metrics_arboreal_large_se.R and the resources used in pbs/Climate_vulnerability/Arboreal/Calculating_climate_vulnerability_metrics_arboreal_large_se.pbs
Current climate
daily_CTmax_mean_current <- readRDS(file="RData/Climate_vulnerability/Arboreal/current/daily_CTmax_arboreal_mean_acc_current.rds")
# Assign a maximum se for observations with very large error.
# This is capped to the "biological range" of CTmax, defined as the standard deviation of CTmax estimates across species.
# Note that this may overestimate overheating probabilities in some cases.
cap_se <- sd(daily_CTmax_mean_current$predicted_CTmax)
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_current <- daily_CTmax_mean_current %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_current <- daily_vulnerability_mean_current %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_current)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_current <- daily_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_current)
## Calculate number of consecutive overheating days
consecutive_overheating_days_current <- daily_consecutive_mean_current %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_current)
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
left_join(consecutive_overheating_days_current, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_current)
## Add original coordinates
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_current <- left_join(pop_vulnerability_mean_current, distinct_coord, by="lon_lat")
pop_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_current, file="RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current_large_se.rds")
######## Community-level patterns ################
community_vulnerability_mean_current <- pop_vulnerability_mean_current %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_current)
saveRDS(community_vulnerability_mean_current, file="RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_large_se.rds")
Future climate (+2C)
daily_CTmax_mean_2C <- readRDS(file="RData/Climate_vulnerability/Arboreal/future2C/daily_CTmax_arboreal_mean_acc_future2C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to the "biological range" of CTmax, defined as the standard deviation of CTmax estimates across species.
# Note that this may overestimate overheating probabilities in some cases.
cap_se <- sd(daily_CTmax_mean_2C$predicted_CTmax)
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_2C <- daily_CTmax_mean_2C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_2C <- daily_vulnerability_mean_2C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_2C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_2C <- daily_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_2C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_2C <- daily_consecutive_mean_2C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_2C)
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
left_join(consecutive_overheating_days_2C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_2C)
## Add original coordinates
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_2C <- left_join(pop_vulnerability_mean_2C, distinct_coord, by="lon_lat")
pop_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_2C, file="RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C_large_se.rds")
######## Community-level patterns ################
community_vulnerability_mean_2C <- pop_vulnerability_mean_2C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_2C)
saveRDS(community_vulnerability_mean_2C, file="RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_large_se.rds")
Future climate (+4C)
daily_CTmax_mean_4C <- readRDS(file="RData/Climate_vulnerability/Arboreal/future4C/daily_CTmax_arboreal_mean_acc_future4C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to the "biological range" of CTmax, defined as the standard deviation of CTmax estimates across species.
# Note that this may overestimate overheating probabilities in some cases.
cap_se <- sd(daily_CTmax_mean_4C$predicted_CTmax)
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
###### Daily TSM and overheating risk ##########
daily_vulnerability_mean_4C <- daily_CTmax_mean_4C %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob>0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp, # calculate TSM
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Number of consecutive days of overheating
daily_consecutive_mean_4C <- daily_vulnerability_mean_4C %>%
# Arrange by day and year
group_by(tip.label, lon, lat, YEAR) %>%
arrange(DOY) %>%
# Calculate consecutive days of overheating
mutate(consecutive_overheating_day = {
rle_run <- rle(overheating_day)
rep(rle_run$lengths * rle_run$values, times = rle_run$lengths)
})
# Set number of days
n_days <- 910
rm(daily_CTmax_mean_4C)
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_4C <- daily_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
# Mean max temp and SE
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop'
) %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
lower_CI = overheating_days - (1.96 * overheating_days_se),
overheating_risk_strict = ifelse(lower_CI > 0, 1, 0) # Conservative estimates when 95% CI don't overlap with zero
) %>%
ungroup() %>%
dplyr::select(-lower_CI)
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>% rename(max_temp = mean_max_temp)
rm(daily_vulnerability_mean_4C)
## Calculate number of consecutive overheating days
consecutive_overheating_days_4C <- daily_consecutive_mean_4C %>%
group_by(tip.label, lon, lat) %>%
summarise(consecutive_overheating_days = max(consecutive_overheating_day),
.groups = 'drop')
rm(daily_consecutive_mean_4C)
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
left_join(consecutive_overheating_days_4C, by = c("tip.label", "lon", "lat"))
rm(consecutive_overheating_days_4C)
## Add original coordinates
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_4C <- left_join(pop_vulnerability_mean_4C, distinct_coord, by="lon_lat")
pop_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_4C, file="RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C_large_se.rds")
######## Community-level patterns ################
community_vulnerability_mean_4C <- pop_vulnerability_mean_4C %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# Conservative metrics for sensitivity analysis
n_species_overheating_strict = sum(overheating_risk_strict),
proportion_species_overheating_strict = if_else(n() == 1, first(overheating_risk_strict), mean(overheating_risk_strict)),
proportion_species_overheating_se_strict = if_else(n() == 1, 0, sd(overheating_risk_strict)),
.groups = 'drop'
)
rm(pop_vulnerability_mean_4C)
saveRDS(community_vulnerability_mean_4C, file="RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_large_se.rds")
Removing outliers or not taking averages for TSM
Here, we either remove body temperatures falling outside the 5% and 95% percentiles (i.e., potential outlier values), and also calculate the maximum operative body temperature predicted across all dates for sensitivity analyses.
Vegetated substrate
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Substrate/Calculating_climate_vulnerability_metrics_substrate_sensitivity_analysis.R and the resources used in pbs/Climate_vulnerability/Substrate/Calculating_climate_vulnerability_metrics_substrate_sensitivity_analysis.pbs
Current climate
daily_CTmax_mean_current <- readRDS(file="RData/Climate_vulnerability/Substrate/current/daily_CTmax_substrate_mean_acc_current.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
# Calculate 5% and 95% percentile for each group
daily_percentiles_mean_current_sens <- daily_CTmax_mean_current %>%
group_by(tip.label, lon, lat) %>%
summarise(p5_max_temp = quantile(max_temp, 0.05),
p95_max_temp = quantile(max_temp, 0.95))
# Filter data within 5% to 95% percentile range
daily_filtered_mean_current_sens <- daily_CTmax_mean_current %>%
inner_join(daily_percentiles_mean_current_sens, by = c("tip.label", "lon", "lat")) %>%
filter(max_temp >= p5_max_temp & max_temp <= p95_max_temp)
# Daily TSM and overheating risk
daily_vulnerability_mean_current_sens <- daily_filtered_mean_current_sens %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob > 0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp,
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Set number of days
n_days <- 910
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_current_sens <- daily_vulnerability_mean_current_sens %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop') %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0) # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>% rename(max_temp = mean_max_temp)
# Create a dataframe with only the 95th percentile of max_temp for each population
pop_data_95_mean_current_sens <- daily_filtered_mean_current_sens %>%
group_by(tip.label, lon, lat) %>%
slice_max(order_by = max_temp, n = 1) %>%
ungroup()
# Calculate TSM as the difference with the 95th percentile maximum temperature
pop_vulnerability_mean_current_sens_95 <- pop_data_95_mean_current_sens %>%
rowwise() %>%
mutate(TSM_95 = predicted_CTmax - max_temp,
TSM_95_se = predicted_CTmax_se,
CTmax_95 = predicted_CTmax,
CTmax_95_se = predicted_CTmax_se,
max_temp_95 = max_temp,
overheating_result_95 = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_95 = overheating_result_95$prob_overheating,
overheating_risk_95 = ifelse(overheating_probability_95 > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_95)
# Combine data frames
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
left_join(dplyr::select(pop_vulnerability_mean_current_sens_95,
tip.label,
lon,
lat,
TSM_95,
TSM_95_se,
CTmax_95,
CTmax_95_se,
max_temp_95,
overheating_probability_95,
overheating_risk_95),
by = c("tip.label", "lon", "lat"))
rm(pop_vulnerability_mean_current_sens_95)
# Create a dataframe with only the max_temp for each population (minimum TSM)
pop_data_extreme_mean_current_sens <- daily_CTmax_mean_current %>%
group_by(tip.label, lon, lat) %>%
filter(max_temp == max(max_temp)) %>%
ungroup()
# Calculate TSM as the difference with the maximum temperature (most extreme TSM)
pop_vulnerability_extreme_mean_current_sens <- pop_data_extreme_mean_current_sens %>%
rowwise() %>%
mutate(TSM_extreme = predicted_CTmax - max_temp,
TSM_extreme_se = predicted_CTmax_se,
CTmax_extreme = predicted_CTmax,
CTmax_extreme_se = predicted_CTmax_se,
max_temp_extreme = max_temp,
overheating_result_extreme = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_extreme = overheating_result_extreme$prob_overheating,
overheating_risk_extreme = ifelse(overheating_probability_extreme > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_extreme)
# Join datasets
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
left_join(dplyr::select(pop_vulnerability_extreme_mean_current_sens,
tip.label,
lon,
lat,
TSM_extreme,
TSM_extreme_se,
CTmax_extreme,
CTmax_extreme_se,
max_temp_extreme,
overheating_probability_extreme,
overheating_risk_extreme),
by = c("tip.label", "lon", "lat"))
## Add original coordinates
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_current_sens <- left_join(pop_vulnerability_mean_current_sens , distinct_coord, by="lon_lat")
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_current_sens, file="RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current_sensitivity_analysis.rds")
######## Community-level patterns ################
community_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2),
TSM_extreme_weights = 1/(TSM_extreme_se^2),
TSM_95_weights = 1/(TSM_95_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# TSM calculated as the difference with the maximum body temperature
community_TSM_extreme = if_else(n() == 1, first(TSM_extreme), sum(TSM_extreme * TSM_extreme_weights)/sum(TSM_extreme_weights)),
community_TSM_extreme_se = if_else(n() == 1, first(TSM_extreme_se), sqrt(sum(TSM_extreme_weights) * (n() - 1) / (((sum(TSM_extreme_weights)^2) - (sum(TSM_extreme_weights^2)))))),
# TSM calculated as the difference with the 95th percentile body temperature
community_TSM_95 = if_else(n() == 1, first(TSM_95), sum(TSM_95 * TSM_95_weights)/sum(TSM_95_weights)),
community_TSM_95_se = if_else(n() == 1, first(TSM_95_se), sqrt(sum(TSM_95_weights) * (n() - 1) / (((sum(TSM_95_weights)^2) - (sum(TSM_95_weights^2)))))),
.groups = 'drop'
)
saveRDS(community_vulnerability_mean_current_sens, file="RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_sensitivity_analysis.rds")
Future climate (+2C)
daily_CTmax_mean_2C <- readRDS(file="RData/Climate_vulnerability/Substrate/future2C/daily_CTmax_substrate_mean_acc_future2C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
# Calculate 5% and 95% percentile for each group
daily_percentiles_mean_2C_sens <- daily_CTmax_mean_2C %>%
group_by(tip.label, lon, lat) %>%
summarise(p5_max_temp = quantile(max_temp, 0.05),
p95_max_temp = quantile(max_temp, 0.95))
# Filter data within 5% to 95% percentile range
daily_filtered_mean_2C_sens <- daily_CTmax_mean_2C %>%
inner_join(daily_percentiles_mean_2C_sens, by = c("tip.label", "lon", "lat")) %>%
filter(max_temp >= p5_max_temp & max_temp <= p95_max_temp)
# Daily TSM and overheating risk
daily_vulnerability_mean_2C_sens <- daily_filtered_mean_2C_sens %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob > 0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp,
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Set number of days
n_days <- 910
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_2C_sens <- daily_vulnerability_mean_2C_sens %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop') %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0) # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>% rename(max_temp = mean_max_temp)
# Create a dataframe with only the 95th percentile of max_temp for each population
pop_data_95_mean_2C_sens <- daily_filtered_mean_2C_sens %>%
group_by(tip.label, lon, lat) %>%
slice_max(order_by = max_temp, n = 1) %>%
ungroup()
# Calculate TSM as the difference with the 95th percentile maximum temperature
pop_vulnerability_mean_2C_sens_95 <- pop_data_95_mean_2C_sens %>%
rowwise() %>%
mutate(TSM_95 = predicted_CTmax - max_temp,
TSM_95_se = predicted_CTmax_se,
CTmax_95 = predicted_CTmax,
CTmax_95_se = predicted_CTmax_se,
max_temp_95 = max_temp,
overheating_result_95 = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_95 = overheating_result_95$prob_overheating,
overheating_risk_95 = ifelse(overheating_probability_95 > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_95)
# Combine data frames
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
left_join(dplyr::select(pop_vulnerability_mean_2C_sens_95,
tip.label,
lon,
lat,
TSM_95,
TSM_95_se,
CTmax_95,
CTmax_95_se,
max_temp_95,
overheating_probability_95,
overheating_risk_95),
by = c("tip.label", "lon", "lat"))
rm(pop_vulnerability_mean_2C_sens_95)
# Create a dataframe with only the max_temp for each population (minimum TSM)
pop_data_extreme_mean_2C_sens <- daily_CTmax_mean_2C %>%
group_by(tip.label, lon, lat) %>%
filter(max_temp == max(max_temp)) %>%
ungroup()
# Calculate TSM as the difference with the maximum temperature (most extreme TSM)
pop_vulnerability_extreme_mean_2C_sens <- pop_data_extreme_mean_2C_sens %>%
rowwise() %>%
mutate(TSM_extreme = predicted_CTmax - max_temp,
TSM_extreme_se = predicted_CTmax_se,
CTmax_extreme = predicted_CTmax,
CTmax_extreme_se = predicted_CTmax_se,
max_temp_extreme = max_temp,
overheating_result_extreme = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_extreme = overheating_result_extreme$prob_overheating,
overheating_risk_extreme = ifelse(overheating_probability_extreme > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_extreme)
# Join datasets
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
left_join(dplyr::select(pop_vulnerability_extreme_mean_2C_sens,
tip.label,
lon,
lat,
TSM_extreme,
TSM_extreme_se,
CTmax_extreme,
CTmax_extreme_se,
max_temp_extreme,
overheating_probability_extreme,
overheating_risk_extreme),
by = c("tip.label", "lon", "lat"))
## Add original coordinates
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_2C_sens <- left_join(pop_vulnerability_mean_2C_sens , distinct_coord, by="lon_lat")
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_2C_sens, file="RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C_sensitivity_analysis.rds")
######## Community-level patterns ################
community_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2),
TSM_extreme_weights = 1/(TSM_extreme_se^2),
TSM_95_weights = 1/(TSM_95_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# TSM calculated as the difference with the maximum body temperature
community_TSM_extreme = if_else(n() == 1, first(TSM_extreme), sum(TSM_extreme * TSM_extreme_weights)/sum(TSM_extreme_weights)),
community_TSM_extreme_se = if_else(n() == 1, first(TSM_extreme_se), sqrt(sum(TSM_extreme_weights) * (n() - 1) / (((sum(TSM_extreme_weights)^2) - (sum(TSM_extreme_weights^2)))))),
# TSM calculated as the difference with the 95th percentile body temperature
community_TSM_95 = if_else(n() == 1, first(TSM_95), sum(TSM_95 * TSM_95_weights)/sum(TSM_95_weights)),
community_TSM_95_se = if_else(n() == 1, first(TSM_95_se), sqrt(sum(TSM_95_weights) * (n() - 1) / (((sum(TSM_95_weights)^2) - (sum(TSM_95_weights^2)))))),
.groups = 'drop'
)
saveRDS(community_vulnerability_mean_2C_sens, file="RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_sensitivity_analysis.rds")
Future climate (+4C)
daily_CTmax_mean_4C <- readRDS(file="RData/Climate_vulnerability/Substrate/future4C/daily_CTmax_substrate_mean_acc_future4C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
# Calculate 5% and 95% percentile for each group
daily_percentiles_mean_4C_sens <- daily_CTmax_mean_4C %>%
group_by(tip.label, lon, lat) %>%
summarise(p5_max_temp = quantile(max_temp, 0.05),
p95_max_temp = quantile(max_temp, 0.95))
# Filter data within 5% to 95% percentile range
daily_filtered_mean_4C_sens <- daily_CTmax_mean_4C %>%
inner_join(daily_percentiles_mean_4C_sens, by = c("tip.label", "lon", "lat")) %>%
filter(max_temp >= p5_max_temp & max_temp <= p95_max_temp)
# Daily TSM and overheating risk
daily_vulnerability_mean_4C_sens <- daily_filtered_mean_4C_sens %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob > 0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp,
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Set number of days
n_days <- 910
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_4C_sens <- daily_vulnerability_mean_4C_sens %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop') %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0) # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>% rename(max_temp = mean_max_temp)
# Create a dataframe with only the 95th percentile of max_temp for each population
pop_data_95_mean_4C_sens <- daily_filtered_mean_4C_sens %>%
group_by(tip.label, lon, lat) %>%
slice_max(order_by = max_temp, n = 1) %>%
ungroup()
# Calculate TSM as the difference with the 95th percentile maximum temperature
pop_vulnerability_mean_4C_sens_95 <- pop_data_95_mean_4C_sens %>%
rowwise() %>%
mutate(TSM_95 = predicted_CTmax - max_temp,
TSM_95_se = predicted_CTmax_se,
CTmax_95 = predicted_CTmax,
CTmax_95_se = predicted_CTmax_se,
max_temp_95 = max_temp,
overheating_result_95 = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_95 = overheating_result_95$prob_overheating,
overheating_risk_95 = ifelse(overheating_probability_95 > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_95)
# Combine data frames
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
left_join(dplyr::select(pop_vulnerability_mean_4C_sens_95,
tip.label,
lon,
lat,
TSM_95,
TSM_95_se,
CTmax_95,
CTmax_95_se,
max_temp_95,
overheating_probability_95,
overheating_risk_95),
by = c("tip.label", "lon", "lat"))
rm(pop_vulnerability_mean_4C_sens_95)
# Create a dataframe with only the max_temp for each population (minimum TSM)
pop_data_extreme_mean_4C_sens <- daily_CTmax_mean_4C %>%
group_by(tip.label, lon, lat) %>%
filter(max_temp == max(max_temp)) %>%
ungroup()
# Calculate TSM as the difference with the maximum temperature (most extreme TSM)
pop_vulnerability_extreme_mean_4C_sens <- pop_data_extreme_mean_4C_sens %>%
rowwise() %>%
mutate(TSM_extreme = predicted_CTmax - max_temp,
TSM_extreme_se = predicted_CTmax_se,
CTmax_extreme = predicted_CTmax,
CTmax_extreme_se = predicted_CTmax_se,
max_temp_extreme = max_temp,
overheating_result_extreme = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_extreme = overheating_result_extreme$prob_overheating,
overheating_risk_extreme = ifelse(overheating_probability_extreme > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_extreme)
# Join datasets
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
left_join(dplyr::select(pop_vulnerability_extreme_mean_4C_sens,
tip.label,
lon,
lat,
TSM_extreme,
TSM_extreme_se,
CTmax_extreme,
CTmax_extreme_se,
max_temp_extreme,
overheating_probability_extreme,
overheating_risk_extreme),
by = c("tip.label", "lon", "lat"))
## Add original coordinates
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_4C_sens <- left_join(pop_vulnerability_mean_4C_sens , distinct_coord, by="lon_lat")
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_4C_sens, file="RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C_sensitivity_analysis.rds")
######## Community-level patterns ################
community_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2),
TSM_extreme_weights = 1/(TSM_extreme_se^2),
TSM_95_weights = 1/(TSM_95_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# TSM calculated as the difference with the maximum body temperature
community_TSM_extreme = if_else(n() == 1, first(TSM_extreme), sum(TSM_extreme * TSM_extreme_weights)/sum(TSM_extreme_weights)),
community_TSM_extreme_se = if_else(n() == 1, first(TSM_extreme_se), sqrt(sum(TSM_extreme_weights) * (n() - 1) / (((sum(TSM_extreme_weights)^2) - (sum(TSM_extreme_weights^2)))))),
# TSM calculated as the difference with the 95th percentile body temperature
community_TSM_95 = if_else(n() == 1, first(TSM_95), sum(TSM_95 * TSM_95_weights)/sum(TSM_95_weights)),
community_TSM_95_se = if_else(n() == 1, first(TSM_95_se), sqrt(sum(TSM_95_weights) * (n() - 1) / (((sum(TSM_95_weights)^2) - (sum(TSM_95_weights^2)))))),
.groups = 'drop'
)
saveRDS(community_vulnerability_mean_4C_sens, file="RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_sensitivity_analysis.rds")
Pond or wetland
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Pond/Calculating_climate_vulnerability_metrics_pond_sensitivity_analysis.R and the resources used in pbs/Climate_vulnerability/Pond/Calculating_climate_vulnerability_metrics_pond_sensitivity_analysis.pbs
Current climate
daily_CTmax_mean_current <- readRDS(file="RData/Climate_vulnerability/Pond/current/daily_CTmax_pond_mean_acc_current.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
# Calculate 5% and 95% percentile for each group
daily_percentiles_mean_current_sens <- daily_CTmax_mean_current %>%
group_by(tip.label, lon, lat) %>%
summarise(p5_max_temp = quantile(max_temp, 0.05),
p95_max_temp = quantile(max_temp, 0.95))
# Filter data within 5% to 95% percentile range
daily_filtered_mean_current_sens <- daily_CTmax_mean_current %>%
inner_join(daily_percentiles_mean_current_sens, by = c("tip.label", "lon", "lat")) %>%
filter(max_temp >= p5_max_temp & max_temp <= p95_max_temp)
# Daily TSM and overheating risk
daily_vulnerability_mean_current_sens <- daily_filtered_mean_current_sens %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob > 0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp,
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Set number of days
n_days <- 910
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_current_sens <- daily_vulnerability_mean_current_sens %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop') %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0) # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>% rename(max_temp = mean_max_temp)
# Create a dataframe with only the 95th percentile of max_temp for each population
pop_data_95_mean_current_sens <- daily_filtered_mean_current_sens %>%
group_by(tip.label, lon, lat) %>%
slice_max(order_by = max_temp, n = 1) %>%
ungroup()
# Calculate TSM as the difference with the 95th percentile maximum temperature
pop_vulnerability_mean_current_sens_95 <- pop_data_95_mean_current_sens %>%
rowwise() %>%
mutate(TSM_95 = predicted_CTmax - max_temp,
TSM_95_se = predicted_CTmax_se,
CTmax_95 = predicted_CTmax,
CTmax_95_se = predicted_CTmax_se,
max_temp_95 = max_temp,
overheating_result_95 = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_95 = overheating_result_95$prob_overheating,
overheating_risk_95 = ifelse(overheating_probability_95 > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_95)
# Combine data frames
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
left_join(dplyr::select(pop_vulnerability_mean_current_sens_95,
tip.label,
lon,
lat,
TSM_95,
TSM_95_se,
CTmax_95,
CTmax_95_se,
max_temp_95,
overheating_probability_95,
overheating_risk_95),
by = c("tip.label", "lon", "lat"))
rm(pop_vulnerability_mean_current_sens_95)
# Create a dataframe with only the max_temp for each population (minimum TSM)
pop_data_extreme_mean_current_sens <- daily_CTmax_mean_current %>%
group_by(tip.label, lon, lat) %>%
filter(max_temp == max(max_temp)) %>%
ungroup()
# Calculate TSM as the difference with the maximum temperature (most extreme TSM)
pop_vulnerability_extreme_mean_current_sens <- pop_data_extreme_mean_current_sens %>%
rowwise() %>%
mutate(TSM_extreme = predicted_CTmax - max_temp,
TSM_extreme_se = predicted_CTmax_se,
CTmax_extreme = predicted_CTmax,
CTmax_extreme_se = predicted_CTmax_se,
max_temp_extreme = max_temp,
overheating_result_extreme = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_extreme = overheating_result_extreme$prob_overheating,
overheating_risk_extreme = ifelse(overheating_probability_extreme > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_extreme)
# Join datasets
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
left_join(dplyr::select(pop_vulnerability_extreme_mean_current_sens,
tip.label,
lon,
lat,
TSM_extreme,
TSM_extreme_se,
CTmax_extreme,
CTmax_extreme_se,
max_temp_extreme,
overheating_probability_extreme,
overheating_risk_extreme),
by = c("tip.label", "lon", "lat"))
## Add original coordinates
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_current_sens <- left_join(pop_vulnerability_mean_current_sens , distinct_coord, by="lon_lat")
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_current_sens, file="RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current_sensitivity_analysis.rds")
######## Community-level patterns ################
community_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2),
TSM_extreme_weights = 1/(TSM_extreme_se^2),
TSM_95_weights = 1/(TSM_95_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# TSM calculated as the difference with the maximum body temperature
community_TSM_extreme = if_else(n() == 1, first(TSM_extreme), sum(TSM_extreme * TSM_extreme_weights)/sum(TSM_extreme_weights)),
community_TSM_extreme_se = if_else(n() == 1, first(TSM_extreme_se), sqrt(sum(TSM_extreme_weights) * (n() - 1) / (((sum(TSM_extreme_weights)^2) - (sum(TSM_extreme_weights^2)))))),
# TSM calculated as the difference with the 95th percentile body temperature
community_TSM_95 = if_else(n() == 1, first(TSM_95), sum(TSM_95 * TSM_95_weights)/sum(TSM_95_weights)),
community_TSM_95_se = if_else(n() == 1, first(TSM_95_se), sqrt(sum(TSM_95_weights) * (n() - 1) / (((sum(TSM_95_weights)^2) - (sum(TSM_95_weights^2)))))),
.groups = 'drop'
)
saveRDS(community_vulnerability_mean_current_sens, file="RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current_sensitivity_analysis.rds")
Future climate (+2C)
daily_CTmax_mean_2C <- readRDS(file="RData/Climate_vulnerability/Pond/future2C/daily_CTmax_pond_mean_acc_future2C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
# Calculate 5% and 95% percentile for each group
daily_percentiles_mean_2C_sens <- daily_CTmax_mean_2C %>%
group_by(tip.label, lon, lat) %>%
summarise(p5_max_temp = quantile(max_temp, 0.05),
p95_max_temp = quantile(max_temp, 0.95))
# Filter data within 5% to 95% percentile range
daily_filtered_mean_2C_sens <- daily_CTmax_mean_2C %>%
inner_join(daily_percentiles_mean_2C_sens, by = c("tip.label", "lon", "lat")) %>%
filter(max_temp >= p5_max_temp & max_temp <= p95_max_temp)
# Daily TSM and overheating risk
daily_vulnerability_mean_2C_sens <- daily_filtered_mean_2C_sens %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob > 0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp,
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Set number of days
n_days <- 910
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_2C_sens <- daily_vulnerability_mean_2C_sens %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop') %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0) # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>% rename(max_temp = mean_max_temp)
# Create a dataframe with only the 95th percentile of max_temp for each population
pop_data_95_mean_2C_sens <- daily_filtered_mean_2C_sens %>%
group_by(tip.label, lon, lat) %>%
slice_max(order_by = max_temp, n = 1) %>%
ungroup()
# Calculate TSM as the difference with the 95th percentile maximum temperature
pop_vulnerability_mean_2C_sens_95 <- pop_data_95_mean_2C_sens %>%
rowwise() %>%
mutate(TSM_95 = predicted_CTmax - max_temp,
TSM_95_se = predicted_CTmax_se,
CTmax_95 = predicted_CTmax,
CTmax_95_se = predicted_CTmax_se,
max_temp_95 = max_temp,
overheating_result_95 = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_95 = overheating_result_95$prob_overheating,
overheating_risk_95 = ifelse(overheating_probability_95 > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_95)
# Combine data frames
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
left_join(dplyr::select(pop_vulnerability_mean_2C_sens_95,
tip.label,
lon,
lat,
TSM_95,
TSM_95_se,
CTmax_95,
CTmax_95_se,
max_temp_95,
overheating_probability_95,
overheating_risk_95),
by = c("tip.label", "lon", "lat"))
rm(pop_vulnerability_mean_2C_sens_95)
# Create a dataframe with only the max_temp for each population (minimum TSM)
pop_data_extreme_mean_2C_sens <- daily_CTmax_mean_2C %>%
group_by(tip.label, lon, lat) %>%
filter(max_temp == max(max_temp)) %>%
ungroup()
# Calculate TSM as the difference with the maximum temperature (most extreme TSM)
pop_vulnerability_extreme_mean_2C_sens <- pop_data_extreme_mean_2C_sens %>%
rowwise() %>%
mutate(TSM_extreme = predicted_CTmax - max_temp,
TSM_extreme_se = predicted_CTmax_se,
CTmax_extreme = predicted_CTmax,
CTmax_extreme_se = predicted_CTmax_se,
max_temp_extreme = max_temp,
overheating_result_extreme = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_extreme = overheating_result_extreme$prob_overheating,
overheating_risk_extreme = ifelse(overheating_probability_extreme > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_extreme)
# Join datasets
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
left_join(dplyr::select(pop_vulnerability_extreme_mean_2C_sens,
tip.label,
lon,
lat,
TSM_extreme,
TSM_extreme_se,
CTmax_extreme,
CTmax_extreme_se,
max_temp_extreme,
overheating_probability_extreme,
overheating_risk_extreme),
by = c("tip.label", "lon", "lat"))
## Add original coordinates
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_2C_sens <- left_join(pop_vulnerability_mean_2C_sens , distinct_coord, by="lon_lat")
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_2C_sens, file="RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C_sensitivity_analysis.rds")
######## Community-level patterns ################
community_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2),
TSM_extreme_weights = 1/(TSM_extreme_se^2),
TSM_95_weights = 1/(TSM_95_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# TSM calculated as the difference with the maximum body temperature
community_TSM_extreme = if_else(n() == 1, first(TSM_extreme), sum(TSM_extreme * TSM_extreme_weights)/sum(TSM_extreme_weights)),
community_TSM_extreme_se = if_else(n() == 1, first(TSM_extreme_se), sqrt(sum(TSM_extreme_weights) * (n() - 1) / (((sum(TSM_extreme_weights)^2) - (sum(TSM_extreme_weights^2)))))),
# TSM calculated as the difference with the 95th percentile body temperature
community_TSM_95 = if_else(n() == 1, first(TSM_95), sum(TSM_95 * TSM_95_weights)/sum(TSM_95_weights)),
community_TSM_95_se = if_else(n() == 1, first(TSM_95_se), sqrt(sum(TSM_95_weights) * (n() - 1) / (((sum(TSM_95_weights)^2) - (sum(TSM_95_weights^2)))))),
.groups = 'drop'
)
saveRDS(community_vulnerability_mean_2C_sens, file="RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C_sensitivity_analysis.rds")
Future climate (+4C)
daily_CTmax_mean_4C <- readRDS(file="RData/Climate_vulnerability/Pond/future4C/daily_CTmax_pond_mean_acc_future4C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
# Calculate 5% and 95% percentile for each group
daily_percentiles_mean_4C_sens <- daily_CTmax_mean_4C %>%
group_by(tip.label, lon, lat) %>%
summarise(p5_max_temp = quantile(max_temp, 0.05),
p95_max_temp = quantile(max_temp, 0.95))
# Filter data within 5% to 95% percentile range
daily_filtered_mean_4C_sens <- daily_CTmax_mean_4C %>%
inner_join(daily_percentiles_mean_4C_sens, by = c("tip.label", "lon", "lat")) %>%
filter(max_temp >= p5_max_temp & max_temp <= p95_max_temp)
# Daily TSM and overheating risk
daily_vulnerability_mean_4C_sens <- daily_filtered_mean_4C_sens %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob > 0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp,
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Set number of days
n_days <- 910
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_4C_sens <- daily_vulnerability_mean_4C_sens %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop') %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0), # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>% rename(max_temp = mean_max_temp)
# Create a dataframe with only the 95th percentile of max_temp for each population
pop_data_95_mean_4C_sens <- daily_filtered_mean_4C_sens %>%
group_by(tip.label, lon, lat) %>%
slice_max(order_by = max_temp, n = 1) %>%
ungroup()
# Calculate TSM as the difference with the 95th percentile maximum temperature
pop_vulnerability_mean_4C_sens_95 <- pop_data_95_mean_4C_sens %>%
rowwise() %>%
mutate(TSM_95 = predicted_CTmax - max_temp,
TSM_95_se = predicted_CTmax_se,
CTmax_95 = predicted_CTmax,
CTmax_95_se = predicted_CTmax_se,
max_temp_95 = max_temp,
overheating_result_95 = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_95 = overheating_result_95$prob_overheating,
overheating_risk_95 = ifelse(overheating_probability_95 > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_95)
# Combine data frames
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
left_join(dplyr::select(pop_vulnerability_mean_4C_sens_95,
tip.label,
lon,
lat,
TSM_95,
TSM_95_se,
CTmax_95,
CTmax_95_se,
max_temp_95,
overheating_probability_95,
overheating_risk_95),
by = c("tip.label", "lon", "lat"))
rm(pop_vulnerability_mean_4C_sens_95)
# Create a dataframe with only the max_temp for each population (minimum TSM)
pop_data_extreme_mean_4C_sens <- daily_CTmax_mean_4C %>%
group_by(tip.label, lon, lat) %>%
filter(max_temp == max(max_temp)) %>%
ungroup()
# Calculate TSM as the difference with the maximum temperature (most extreme TSM)
pop_vulnerability_extreme_mean_4C_sens <- pop_data_extreme_mean_4C_sens %>%
rowwise() %>%
mutate(TSM_extreme = predicted_CTmax - max_temp,
TSM_extreme_se = predicted_CTmax_se,
CTmax_extreme = predicted_CTmax,
CTmax_extreme_se = predicted_CTmax_se,
max_temp_extreme = max_temp,
overheating_result_extreme = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_extreme = overheating_result_extreme$prob_overheating,
overheating_risk_extreme = ifelse(overheating_probability_extreme > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_extreme)
# Join datasets
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
left_join(dplyr::select(pop_vulnerability_extreme_mean_4C_sens,
tip.label,
lon,
lat,
TSM_extreme,
TSM_extreme_se,
CTmax_extreme,
CTmax_extreme_se,
max_temp_extreme,
overheating_probability_extreme,
overheating_risk_extreme),
by = c("tip.label", "lon", "lat"))
## Add original coordinates
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_4C_sens <- left_join(pop_vulnerability_mean_4C_sens , distinct_coord, by="lon_lat")
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_4C_sens, file="RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C_sensitivity_analysis.rds")
######## Community-level patterns ################
community_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2),
TSM_extreme_weights = 1/(TSM_extreme_se^2),
TSM_95_weights = 1/(TSM_95_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# TSM calculated as the difference with the maximum body temperature
community_TSM_extreme = if_else(n() == 1, first(TSM_extreme), sum(TSM_extreme * TSM_extreme_weights)/sum(TSM_extreme_weights)),
community_TSM_extreme_se = if_else(n() == 1, first(TSM_extreme_se), sqrt(sum(TSM_extreme_weights) * (n() - 1) / (((sum(TSM_extreme_weights)^2) - (sum(TSM_extreme_weights^2)))))),
# TSM calculated as the difference with the 95th percentile body temperature
community_TSM_95 = if_else(n() == 1, first(TSM_95), sum(TSM_95 * TSM_95_weights)/sum(TSM_95_weights)),
community_TSM_95_se = if_else(n() == 1, first(TSM_95_se), sqrt(sum(TSM_95_weights) * (n() - 1) / (((sum(TSM_95_weights)^2) - (sum(TSM_95_weights^2)))))),
.groups = 'drop'
)
saveRDS(community_vulnerability_mean_4C_sens, file="RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C_sensitivity_analysis.rds")
Above-ground vegetation
This code ran on an HPC environment, where the original code can be found in R/Climate_vulnerability/Arboreal/Calculating_climate_vulnerability_metrics_arboreal_sensitivity_analysis.R and the resources used in pbs/Climate_vulnerability/Arboreal/Calculating_climate_vulnerability_metrics_arboreal_sensitivity_analysis.pbs
Current climate
daily_CTmax_mean_current <- readRDS(file="RData/Climate_vulnerability/Arboreal/current/daily_CTmax_arboreal_mean_acc_current.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
# Calculate 5% and 95% percentile for each group
daily_percentiles_mean_current_sens <- daily_CTmax_mean_current %>%
group_by(tip.label, lon, lat) %>%
summarise(p5_max_temp = quantile(max_temp, 0.05),
p95_max_temp = quantile(max_temp, 0.95))
# Filter data within 5% to 95% percentile range
daily_filtered_mean_current_sens <- daily_CTmax_mean_current %>%
inner_join(daily_percentiles_mean_current_sens, by = c("tip.label", "lon", "lat")) %>%
filter(max_temp >= p5_max_temp & max_temp <= p95_max_temp)
# Daily TSM and overheating risk
daily_vulnerability_mean_current_sens <- daily_filtered_mean_current_sens %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob > 0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp,
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Set number of days
n_days <- 910
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_current_sens <- daily_vulnerability_mean_current_sens %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop') %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0) # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>% rename(max_temp = mean_max_temp)
# Create a dataframe with only the 95th percentile of max_temp for each population
pop_data_95_mean_current_sens <- daily_filtered_mean_current_sens %>%
group_by(tip.label, lon, lat) %>%
slice_max(order_by = max_temp, n = 1) %>%
ungroup()
# Calculate TSM as the difference with the 95th percentile maximum temperature
pop_vulnerability_mean_current_sens_95 <- pop_data_95_mean_current_sens %>%
rowwise() %>%
mutate(TSM_95 = predicted_CTmax - max_temp,
TSM_95_se = predicted_CTmax_se,
CTmax_95 = predicted_CTmax,
CTmax_95_se = predicted_CTmax_se,
max_temp_95 = max_temp,
overheating_result_95 = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_95 = overheating_result_95$prob_overheating,
overheating_risk_95 = ifelse(overheating_probability_95 > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_95)
# Combine data frames
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
left_join(dplyr::select(pop_vulnerability_mean_current_sens_95,
tip.label,
lon,
lat,
TSM_95,
TSM_95_se,
CTmax_95,
CTmax_95_se,
max_temp_95,
overheating_probability_95,
overheating_risk_95),
by = c("tip.label", "lon", "lat"))
rm(pop_vulnerability_mean_current_sens_95)
# Create a dataframe with only the max_temp for each population (minimum TSM)
pop_data_extreme_mean_current_sens <- daily_CTmax_mean_current %>%
group_by(tip.label, lon, lat) %>%
filter(max_temp == max(max_temp)) %>%
ungroup()
# Calculate TSM as the difference with the maximum temperature (most extreme TSM)
pop_vulnerability_extreme_mean_current_sens <- pop_data_extreme_mean_current_sens %>%
rowwise() %>%
mutate(TSM_extreme = predicted_CTmax - max_temp,
TSM_extreme_se = predicted_CTmax_se,
CTmax_extreme = predicted_CTmax,
CTmax_extreme_se = predicted_CTmax_se,
max_temp_extreme = max_temp,
overheating_result_extreme = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_extreme = overheating_result_extreme$prob_overheating,
overheating_risk_extreme = ifelse(overheating_probability_extreme > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_extreme)
# Join datasets
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
left_join(dplyr::select(pop_vulnerability_extreme_mean_current_sens,
tip.label,
lon,
lat,
TSM_extreme,
TSM_extreme_se,
CTmax_extreme,
CTmax_extreme_se,
max_temp_extreme,
overheating_probability_extreme,
overheating_risk_extreme),
by = c("tip.label", "lon", "lat"))
## Add original coordinates
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_current_sens <- left_join(pop_vulnerability_mean_current_sens , distinct_coord, by="lon_lat")
pop_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_current_sens, file="RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current_sensitivity_analysis.rds")
######## Community-level patterns ################
community_vulnerability_mean_current_sens <- pop_vulnerability_mean_current_sens %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2),
TSM_extreme_weights = 1/(TSM_extreme_se^2),
TSM_95_weights = 1/(TSM_95_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# TSM calculated as the difference with the maximum body temperature
community_TSM_extreme = if_else(n() == 1, first(TSM_extreme), sum(TSM_extreme * TSM_extreme_weights)/sum(TSM_extreme_weights)),
community_TSM_extreme_se = if_else(n() == 1, first(TSM_extreme_se), sqrt(sum(TSM_extreme_weights) * (n() - 1) / (((sum(TSM_extreme_weights)^2) - (sum(TSM_extreme_weights^2)))))),
# TSM calculated as the difference with the 95th percentile body temperature
community_TSM_95 = if_else(n() == 1, first(TSM_95), sum(TSM_95 * TSM_95_weights)/sum(TSM_95_weights)),
community_TSM_95_se = if_else(n() == 1, first(TSM_95_se), sqrt(sum(TSM_95_weights) * (n() - 1) / (((sum(TSM_95_weights)^2) - (sum(TSM_95_weights^2)))))),
.groups = 'drop'
)
saveRDS(community_vulnerability_mean_current_sens, file="RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_sensitivity_analysis.rds")
Future climate (+2C)
daily_CTmax_mean_2C <- readRDS(file="RData/Climate_vulnerability/Arboreal/future2C/daily_CTmax_arboreal_mean_acc_future2C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
# Calculate 5% and 95% percentile for each group
daily_percentiles_mean_2C_sens <- daily_CTmax_mean_2C %>%
group_by(tip.label, lon, lat) %>%
summarise(p5_max_temp = quantile(max_temp, 0.05),
p95_max_temp = quantile(max_temp, 0.95))
# Filter data within 5% to 95% percentile range
daily_filtered_mean_2C_sens <- daily_CTmax_mean_2C %>%
inner_join(daily_percentiles_mean_2C_sens, by = c("tip.label", "lon", "lat")) %>%
filter(max_temp >= p5_max_temp & max_temp <= p95_max_temp)
# Daily TSM and overheating risk
daily_vulnerability_mean_2C_sens <- daily_filtered_mean_2C_sens %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob > 0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp,
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Set number of days
n_days <- 910
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_2C_sens <- daily_vulnerability_mean_2C_sens %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop') %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0) # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>% rename(max_temp = mean_max_temp)
# Create a dataframe with only the 95th percentile of max_temp for each population
pop_data_95_mean_2C_sens <- daily_filtered_mean_2C_sens %>%
group_by(tip.label, lon, lat) %>%
slice_max(order_by = max_temp, n = 1) %>%
ungroup()
# Calculate TSM as the difference with the 95th percentile maximum temperature
pop_vulnerability_mean_2C_sens_95 <- pop_data_95_mean_2C_sens %>%
rowwise() %>%
mutate(TSM_95 = predicted_CTmax - max_temp,
TSM_95_se = predicted_CTmax_se,
CTmax_95 = predicted_CTmax,
CTmax_95_se = predicted_CTmax_se,
max_temp_95 = max_temp,
overheating_result_95 = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_95 = overheating_result_95$prob_overheating,
overheating_risk_95 = ifelse(overheating_probability_95 > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_95)
# Combine data frames
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
left_join(dplyr::select(pop_vulnerability_mean_2C_sens_95,
tip.label,
lon,
lat,
TSM_95,
TSM_95_se,
CTmax_95,
CTmax_95_se,
max_temp_95,
overheating_probability_95,
overheating_risk_95),
by = c("tip.label", "lon", "lat"))
rm(pop_vulnerability_mean_2C_sens_95)
# Create a dataframe with only the max_temp for each population (minimum TSM)
pop_data_extreme_mean_2C_sens <- daily_CTmax_mean_2C %>%
group_by(tip.label, lon, lat) %>%
filter(max_temp == max(max_temp)) %>%
ungroup()
# Calculate TSM as the difference with the maximum temperature (most extreme TSM)
pop_vulnerability_extreme_mean_2C_sens <- pop_data_extreme_mean_2C_sens %>%
rowwise() %>%
mutate(TSM_extreme = predicted_CTmax - max_temp,
TSM_extreme_se = predicted_CTmax_se,
CTmax_extreme = predicted_CTmax,
CTmax_extreme_se = predicted_CTmax_se,
max_temp_extreme = max_temp,
overheating_result_extreme = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_extreme = overheating_result_extreme$prob_overheating,
overheating_risk_extreme = ifelse(overheating_probability_extreme > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_extreme)
# Join datasets
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
left_join(dplyr::select(pop_vulnerability_extreme_mean_2C_sens,
tip.label,
lon,
lat,
TSM_extreme,
TSM_extreme_se,
CTmax_extreme,
CTmax_extreme_se,
max_temp_extreme,
overheating_probability_extreme,
overheating_risk_extreme),
by = c("tip.label", "lon", "lat"))
## Add original coordinates
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_2C_sens <- left_join(pop_vulnerability_mean_2C_sens , distinct_coord, by="lon_lat")
pop_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_2C_sens, file="RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C_sensitivity_analysis.rds")
######## Community-level patterns ################
community_vulnerability_mean_2C_sens <- pop_vulnerability_mean_2C_sens %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2),
TSM_extreme_weights = 1/(TSM_extreme_se^2),
TSM_95_weights = 1/(TSM_95_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# TSM calculated as the difference with the maximum body temperature
community_TSM_extreme = if_else(n() == 1, first(TSM_extreme), sum(TSM_extreme * TSM_extreme_weights)/sum(TSM_extreme_weights)),
community_TSM_extreme_se = if_else(n() == 1, first(TSM_extreme_se), sqrt(sum(TSM_extreme_weights) * (n() - 1) / (((sum(TSM_extreme_weights)^2) - (sum(TSM_extreme_weights^2)))))),
# TSM calculated as the difference with the 95th percentile body temperature
community_TSM_95 = if_else(n() == 1, first(TSM_95), sum(TSM_95 * TSM_95_weights)/sum(TSM_95_weights)),
community_TSM_95_se = if_else(n() == 1, first(TSM_95_se), sqrt(sum(TSM_95_weights) * (n() - 1) / (((sum(TSM_95_weights)^2) - (sum(TSM_95_weights^2)))))),
.groups = 'drop'
)
saveRDS(community_vulnerability_mean_2C_sens, file="RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_sensitivity_analysis.rds")
Future climate (+4C)
daily_CTmax_mean_4C <- readRDS(file="RData/Climate_vulnerability/Arboreal/future4C/daily_CTmax_arboreal_mean_acc_future4C.rds")
# Assign a maximum se for observations with very large error.
# This is capped to avoid large uncertainty to overestimate overheating probabilities
# A SD of 1 simulates values within ~3 degrees of the mean CTmax
cap_se <- 1
# Function to calculate overheating probability and SE
calculate_overheating_probability <- function(predicted_CTmax, predicted_CTmax_se, max_temp) {
capped_se <- min(predicted_CTmax_se, cap_se) # Take the predicted SE if under the capped SE
prob_overheating <- pnorm(max_temp, mean = predicted_CTmax, sd = capped_se) # Probability that max temp exceeds CTmax distribution
return(list(prob_overheating = prob_overheating))
}
# Calculate 5% and 95% percentile for each group
daily_percentiles_mean_4C_sens <- daily_CTmax_mean_4C %>%
group_by(tip.label, lon, lat) %>%
summarise(p5_max_temp = quantile(max_temp, 0.05),
p95_max_temp = quantile(max_temp, 0.95))
# Filter data within 5% to 95% percentile range
daily_filtered_mean_4C_sens <- daily_CTmax_mean_4C %>%
inner_join(daily_percentiles_mean_4C_sens, by = c("tip.label", "lon", "lat")) %>%
filter(max_temp >= p5_max_temp & max_temp <= p95_max_temp)
# Daily TSM and overheating risk
daily_vulnerability_mean_4C_sens <- daily_filtered_mean_4C_sens %>%
rowwise() %>%
mutate(overheating_result = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)), # Apply function
overheating_prob = overheating_result$prob_overheating, # retrieve overheating probability
overheating_day = ifelse(overheating_prob > 0.5, 1, 0), # Consider overheating day when overheating probability > 0.5
daily_TSM = predicted_CTmax - max_temp,
daily_TSM_se = predicted_CTmax_se) %>%
ungroup() %>%
dplyr::select(-overheating_result)
# Set number of days
n_days <- 910
########## Climate vulnerability metrics at the population-level ###########
pop_vulnerability_mean_4C_sens <- daily_vulnerability_mean_4C_sens %>%
mutate(TSM_weights = 1/(daily_TSM_se^2),
CTmax_weights = 1/(predicted_CTmax_se^2)) %>%
group_by(tip.label, lon, lat) %>%
summarise(
# Mean CTmax and maximum temperature (weighted average and SE)
CTmax = sum(predicted_CTmax * CTmax_weights)/sum(CTmax_weights),
CTmax_se = sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2))))),
mean_max_temp = mean(max_temp),
max_temp_se = sd(max_temp),
# Mean TSM (weighted average and SE)
TSM = sum(daily_TSM * TSM_weights)/sum(TSM_weights),
TSM_se = sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2))))),
# Combine daily overheating probabilities for each population
overheating_probability = mean(overheating_prob),
overheating_probability_se = sqrt(overheating_probability * (1 - overheating_probability)),
.groups = 'drop') %>%
rowwise() %>%
mutate(
overheating_days = n_days * overheating_probability,
overheating_days_se = sqrt(n_days * overheating_probability * (1 - overheating_probability)), # SE in overheating days
overheating_risk = ifelse(overheating_days >= 1, 1, 0) # Overheating risk when overheating days >= 1
) %>%
ungroup()
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>% rename(max_temp = mean_max_temp)
# Create a dataframe with only the 95th percentile of max_temp for each population
pop_data_95_mean_4C_sens <- daily_filtered_mean_4C_sens %>%
group_by(tip.label, lon, lat) %>%
slice_max(order_by = max_temp, n = 1) %>%
ungroup()
# Calculate TSM as the difference with the 95th percentile maximum temperature
pop_vulnerability_mean_4C_sens_95 <- pop_data_95_mean_4C_sens %>%
rowwise() %>%
mutate(TSM_95 = predicted_CTmax - max_temp,
TSM_95_se = predicted_CTmax_se,
CTmax_95 = predicted_CTmax,
CTmax_95_se = predicted_CTmax_se,
max_temp_95 = max_temp,
overheating_result_95 = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_95 = overheating_result_95$prob_overheating,
overheating_risk_95 = ifelse(overheating_probability_95 > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_95)
# Combine data frames
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
left_join(dplyr::select(pop_vulnerability_mean_4C_sens_95,
tip.label,
lon,
lat,
TSM_95,
TSM_95_se,
CTmax_95,
CTmax_95_se,
max_temp_95,
overheating_probability_95,
overheating_risk_95),
by = c("tip.label", "lon", "lat"))
rm(pop_vulnerability_mean_4C_sens_95)
# Create a dataframe with only the max_temp for each population (minimum TSM)
pop_data_extreme_mean_4C_sens <- daily_CTmax_mean_4C %>%
group_by(tip.label, lon, lat) %>%
filter(max_temp == max(max_temp)) %>%
ungroup()
# Calculate TSM as the difference with the maximum temperature (most extreme TSM)
pop_vulnerability_extreme_mean_4C_sens <- pop_data_extreme_mean_4C_sens %>%
rowwise() %>%
mutate(TSM_extreme = predicted_CTmax - max_temp,
TSM_extreme_se = predicted_CTmax_se,
CTmax_extreme = predicted_CTmax,
CTmax_extreme_se = predicted_CTmax_se,
max_temp_extreme = max_temp,
overheating_result_extreme = list(calculate_overheating_probability(predicted_CTmax, predicted_CTmax_se, max_temp)),
overheating_probability_extreme = overheating_result_extreme$prob_overheating,
overheating_risk_extreme = ifelse(overheating_probability_extreme > 0.5, 1, 0)) %>%
ungroup() %>%
dplyr::select(-overheating_result_extreme)
# Join datasets
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
left_join(dplyr::select(pop_vulnerability_extreme_mean_4C_sens,
tip.label,
lon,
lat,
TSM_extreme,
TSM_extreme_se,
CTmax_extreme,
CTmax_extreme_se,
max_temp_extreme,
overheating_probability_extreme,
overheating_risk_extreme),
by = c("tip.label", "lon", "lat"))
## Add original coordinates
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
rename(lon_adj = lon, lat_adj = lat) %>%
mutate(lon_lat = paste(lon_adj, lat_adj))
distinct_coord <- readRDS("RData/General_data/distinct_coordinates_adjusted_arboreal.rds")
distinct_coord <- distinct_coord %>%
dplyr::select(lon_adj = lon, lat_adj = lat, lon = x, lat = y) %>%
mutate(lon_lat = paste(lon_adj, lat_adj)) %>%
dplyr::select(-lon_adj, -lat_adj)
pop_vulnerability_mean_4C_sens <- left_join(pop_vulnerability_mean_4C_sens , distinct_coord, by="lon_lat")
pop_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
dplyr::select(-lon_lat)
saveRDS(pop_vulnerability_mean_4C_sens, file="RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C_sensitivity_analysis.rds")
######## Community-level patterns ################
community_vulnerability_mean_4C_sens <- pop_vulnerability_mean_4C_sens %>%
mutate(TSM_weights = 1/(TSM_se^2),
CTmax_weights = 1/(CTmax_se^2),
TSM_extreme_weights = 1/(TSM_extreme_se^2),
TSM_95_weights = 1/(TSM_95_se^2)) %>%
group_by(lon, lat) %>%
summarise(# ifelse statement is used here because in some locations, only one species is present.
# Mean CTmax and maximum temperature at the community-level (weighted average and SE)
community_CTmax = if_else(n() == 1, first(CTmax), sum(CTmax * CTmax_weights)/sum(CTmax_weights)),
community_CTmax_se = if_else(n() == 1, first(CTmax_se), sqrt(sum(CTmax_weights) * (n() - 1) / (((sum(CTmax_weights)^2) - (sum(CTmax_weights^2)))))),
community_max_temp = first(max_temp),
community_max_temp_se = first(max_temp_se),
# Mean TSM (weighted average and SE)
community_TSM = if_else(n() == 1, first(TSM), sum(TSM * TSM_weights)/sum(TSM_weights)),
community_TSM_se = if_else(n() == 1, first(TSM_se), sqrt(sum(TSM_weights) * (n() - 1) / (((sum(TSM_weights)^2) - (sum(TSM_weights^2)))))),
# Number of species
n_species = n_distinct(tip.label),
# Number of species overheating
n_species_overheating = sum(overheating_risk),
# Proportion of species overheating
proportion_species_overheating = if_else(n() == 1, first(overheating_risk), mean(overheating_risk)),
proportion_species_overheating_se = if_else(n() == 1, 0, sd(overheating_risk)),
# TSM calculated as the difference with the maximum body temperature
community_TSM_extreme = if_else(n() == 1, first(TSM_extreme), sum(TSM_extreme * TSM_extreme_weights)/sum(TSM_extreme_weights)),
community_TSM_extreme_se = if_else(n() == 1, first(TSM_extreme_se), sqrt(sum(TSM_extreme_weights) * (n() - 1) / (((sum(TSM_extreme_weights)^2) - (sum(TSM_extreme_weights^2)))))),
# TSM calculated as the difference with the 95th percentile body temperature
community_TSM_95 = if_else(n() == 1, first(TSM_95), sum(TSM_95 * TSM_95_weights)/sum(TSM_95_weights)),
community_TSM_95_se = if_else(n() == 1, first(TSM_95_se), sqrt(sum(TSM_95_weights) * (n() - 1) / (((sum(TSM_95_weights)^2) - (sum(TSM_95_weights^2)))))),
.groups = 'drop'
)
saveRDS(community_vulnerability_mean_4C_sens, file="RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_sensitivity_analysis.rds")
Thermal safety margin
Only the code and outputs of population-level models are presented here. Community-level models were also fitted, and the outputs can be found in the RData/Models/TSM/sensitivity_analyses/ folder.
Acclimation to the maximum weekly body temperature
Here, animals were acclimated daily to the weekly maximum body temperature experienced, as opposed to the weekly mean body temperature.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_TSM_sensitivity_analysis_max_acc.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_TSM_sensitivity_analysis_max_acc.pbs
Generalized additive mixed models
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_max_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_max_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_max_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_max_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_max_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_max_acc_future4C.rds")
## Pond
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_max_acc_current.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_max_acc_future2C.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_max_acc_future4C.rds")
# Function to run population-level TSM models in parallel
run_TSM_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(TSM ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, weights = 1/(data$TSM_se^2), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
TSM = NA, TSM_se = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$TSM_pred <- pred$fit
new_data$TSM_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = TSM_pred + 1.96 * TSM_pred_se, lower = TSM_pred -
1.96 * TSM_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model summaries and predictions
saveRDS(summary_gam, file = paste0("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_",
habitat_scenario, "_max_acc.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_",
habitat_scenario, "_max_acc.rds"))
saveRDS(new_data, file = paste0("RData/Models/TSM/sensitivity_analyses/predictions_pop_lat_TSM_",
habitat_scenario, "_max_acc.rds"))
}
# Create a list of datasets
dataset_list <- list(pond_current = pop_pond_current, pond_future2C = pop_pond_future2C,
pond_future4C = pop_pond_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C, arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
# Run function
results_pop <- future_lapply(names(dataset_list), function(x) {
run_TSM_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_substrate_current_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 922112.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-11.1195 -0.5370 -0.1926 0.1091 25.4767 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.174 1.474 "
## [12] " genus (Intercept) 8.364 2.892 "
## [13] " Xr s(lat) 1121.291 33.486 "
## [14] " Residual 5.747 2.397 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 13.6267 0.1428 95.4"
## [20] "Xs(lat)Fx1 -4.4629 0.3882 -11.5"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_substrate_current_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x26cae898>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 13.6267 0.1428 95.4 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 5026 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0687 "
## [22] "lmer.REML = 9.2211e+05 Scale est. = 5.7469 n = 203853"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_substrate_future2C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 939714.3"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-10.153 -0.492 -0.156 0.149 35.516 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 1.846 1.359 "
## [12] " genus (Intercept) 7.540 2.746 "
## [13] " Xr s(lat) 885.564 29.758 "
## [14] " Residual 6.141 2.478 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 12.9398 0.1358 95.31"
## [20] "Xs(lat)Fx1 -5.6366 0.4042 -13.94"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_substrate_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xb88f870>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 12.9398 0.1358 95.31 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.991 8.991 4872 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0684 "
## [22] "lmer.REML = 9.3971e+05 Scale est. = 6.141 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_substrate_future4C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 886728.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-10.4763 -0.4341 -0.0683 0.3382 24.4812 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 1.610 1.269 "
## [12] " genus (Intercept) 5.262 2.294 "
## [13] " Xr s(lat) 689.193 26.252 "
## [14] " Residual 6.052 2.460 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 11.2939 0.1146 98.51"
## [20] "Xs(lat)Fx1 -7.6797 0.3933 -19.53"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_substrate_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe2c1450>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 11.2939 0.1146 98.51 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.989 8.989 4921 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0318 "
## [22] "lmer.REML = 8.8673e+05 Scale est. = 6.052 n = 203853"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_pond_current_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 998876.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-11.6065 -0.5920 -0.2422 0.0654 27.7115 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.912 2.216 "
## [12] " genus (Intercept) 11.272 3.357 "
## [13] " Xr s(lat) 1558.235 39.474 "
## [14] " Residual 9.705 3.115 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 15.6747 0.1692 92.66"
## [20] "Xs(lat)Fx1 -5.5179 0.4668 -11.82"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_pond_current_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xbfe6138>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 15.6747 0.1692 92.66 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 3731 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0251 "
## [22] "lmer.REML = 9.9888e+05 Scale est. = 9.7047 n = 204808"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_pond_future2C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1005149"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-12.5069 -0.5308 -0.1899 0.1052 29.4534 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.339 2.083 "
## [12] " genus (Intercept) 10.360 3.219 "
## [13] " Xr s(lat) 1724.213 41.524 "
## [14] " Residual 8.671 2.945 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 14.7092 0.1621 90.74"
## [20] "Xs(lat)Fx1 -7.1553 0.4609 -15.52"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_pond_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe2bd840>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 14.7092 0.1621 90.74 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.994 8.994 4182 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0334 "
## [22] "lmer.REML = 1.0051e+06 Scale est. = 8.6712 n = 204808"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_pond_future4C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 967319.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-12.6008 -0.4124 -0.0469 0.2878 29.0700 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 3.455 1.859 "
## [12] " genus (Intercept) 8.086 2.844 "
## [13] " Xr s(lat) 1759.980 41.952 "
## [14] " Residual 8.319 2.884 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 12.8948 0.1437 89.74"
## [20] "Xs(lat)Fx1 -9.9509 0.4632 -21.48"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_pond_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x26cbd318>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 12.8948 0.1437 89.74 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.994 8.994 4142 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0896 "
## [22] "lmer.REML = 9.6732e+05 Scale est. = 8.3188 n = 204808"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_arboreal_current_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 239873.8"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-7.3842 -0.6029 -0.2297 0.1051 22.2414 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 1.988 1.410 "
## [12] " genus (Intercept) 6.175 2.485 "
## [13] " Xr s(lat) 3730.536 61.078 "
## [14] " Residual 5.147 2.269 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 13.4310 0.2068 64.94"
## [20] "Xs(lat)Fx1 9.2699 0.7894 11.74"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.011 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_arboreal_current_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2a186c60>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 13.4310 0.2068 64.94 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.984 8.984 1472 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0759 "
## [22] "lmer.REML = 2.3987e+05 Scale est. = 5.1466 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_arboreal_future2C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 239549.2"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-7.6039 -0.5594 -0.1852 0.1444 20.2494 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 1.675 1.294 "
## [12] " genus (Intercept) 5.597 2.366 "
## [13] " Xr s(lat) 3837.392 61.947 "
## [14] " Residual 4.590 2.143 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 12.7445 0.1969 64.71"
## [20] "Xs(lat)Fx1 10.2443 0.7622 13.44"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.011 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_arboreal_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x60c5dd38>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 12.7445 0.1969 64.71 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.986 8.986 1499 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0869 "
## [22] "lmer.REML = 2.3955e+05 Scale est. = 4.5905 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_arboreal_future4C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 233046.7"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-7.2007 -0.4499 -0.0605 0.3013 17.6358 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 1.445 1.202 "
## [12] " genus (Intercept) 4.358 2.088 "
## [13] " Xr s(lat) 2893.592 53.792 "
## [14] " Residual 4.873 2.207 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 11.2630 0.1757 64.11"
## [20] "Xs(lat)Fx1 7.0628 0.7865 8.98"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.012 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_arboreal_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2215bcb8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 11.2630 0.1757 64.11 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.98 8.98 1075 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0375 "
## [22] "lmer.REML = 2.3305e+05 Scale est. = 4.8728 n = 56210"
Bayesian linear mixed models
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
pop_pond_current %>% mutate(habitat_scenario = "pond_current"),
pop_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
pop_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
all_data$species <- all_data$tip.label
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
# Run models with MCMCglmm
prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G3 = list(V = 1, fix = 1)))
set.seed(123)
# Intercept-less model, variation between microhabitat and climate scenarios
model_MCMC <- MCMCglmm(TSM ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(TSM_se):units, # Genus, species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC, file = "RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_max_acc.rds")
saveRDS(predictions, file = "RData/Models/TSM/sensitivity_analyses/predictions_MCMCglmm_TSM_max_acc.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_MCMC_contrast <- MCMCglmm(TSM ~ relevel(habitat_scenario, ref = "substrate_current"), # substrate_current as the reference level
random = ~ species + tip.label + idh(TSM_se):units,
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
saveRDS(model_MCMC_contrast, file = "RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_contrast_max_acc.rds")
Model summaries
Overall means
model_MCMC_TSM <- readRDS("RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_max_acc.rds")
summary(model_MCMC_TSM)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5342335
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 1.417 1.296 1.547 683.3
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 13.11 12.19 14.35 520.2
##
## ~idh(TSM_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## TSM_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 1.626 1.621 1.632 1045
##
## Location effects: TSM ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 12.707 9.874 15.812 1000 <0.001
## habitat_scenarioarboreal_future2C 12.151 9.317 15.259 1000 <0.001
## habitat_scenarioarboreal_future4C 11.048 8.221 14.146 1000 <0.001
## habitat_scenariopond_current 13.617 10.790 16.723 1000 <0.001
## habitat_scenariopond_future2C 12.861 10.037 15.966 1000 <0.001
## habitat_scenariopond_future4C 11.721 8.896 14.815 1000 <0.001
## habitat_scenariosubstrate_current 12.364 9.544 15.472 1000 <0.001
## habitat_scenariosubstrate_future2C 11.744 8.918 14.849 1000 <0.001
## habitat_scenariosubstrate_future4C 10.495 7.671 13.603 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariopond_current ***
## habitat_scenariopond_future2C ***
## habitat_scenariopond_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Contrasts
model_MCMC_TSM_contrast <- readRDS("RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_contrast_max_acc.rds")
summary(model_MCMC_TSM_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5342399
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 1.418 1.303 1.534 747.4
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 13.19 12.25 14.31 560.1
##
## ~idh(TSM_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## TSM_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 1.626 1.62 1.631 1070
##
## Location effects: TSM ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 12.3350
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.3435
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.2125
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.3164
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1.2529
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.4966
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C -0.6434
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.6198
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -1.8685
## l-95% CI
## (Intercept) 3.1597
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.3276
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.2296
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.3336
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1.2417
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.4859
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C -0.6544
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.6298
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -1.8803
## u-95% CI
## (Intercept) 20.9744
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.3612
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.1976
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.2991
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1.2641
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.5076
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C -0.6329
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.6089
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -1.8578
## eff.samp
## (Intercept) 702.6
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 901.3
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 941.8
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 832.0
## pMCMC
## (Intercept) 0.026
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) *
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model diagnostics
plot(model_MCMC_TSM)
Not averaging TSM (maximum temperature)
Here, we calculated TSM as the difference between the maximum hourly body temperature experienced and the corresponding CTmax.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_TSM_sensitivity_analysis_no_averaging_max_temp.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_TSM_sensitivity_analysis_no_averaging_max_temp.pbs
Generalized additive mixed models
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current_sensitivity_analysis.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C_sensitivity_analysis.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C_sensitivity_analysis.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current_sensitivity_analysis.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C_sensitivity_analysis.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C_sensitivity_analysis.rds")
## Pond
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current_sensitivity_analysis.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C_sensitivity_analysis.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C_sensitivity_analysis.rds")
# Function to run population-level TSM models in parallel with the maximum
# hourly body temperature (TSM_extreme)
run_TSM_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(TSM_extreme ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, weights = 1/(data$TSM_extreme_se^2), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
TSM_extreme = NA, TSM_extreme_se = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$TSM_pred <- pred$fit
new_data$TSM_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = TSM_pred + 1.96 * TSM_pred_se, lower = TSM_pred -
1.96 * TSM_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model summaries and predictions
saveRDS(summary_gam, file = paste0("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_",
habitat_scenario, "_max_temp.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_",
habitat_scenario, "_max_temp.rds"))
saveRDS(new_data, file = paste0("RData/Models/TSM/sensitivity_analyses/predictions_pop_lat_TSM_",
habitat_scenario, "_max_temp.rds"))
}
# Create a list of datasets
dataset_list <- list(pond_current = pop_pond_current, pond_future2C = pop_pond_future2C,
pond_future4C = pop_pond_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C, arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
options(future.globals.maxSize = 1e+26)
# Run function
results_pop <- future_lapply(names(dataset_list), function(x) {
run_TSM_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_substrate_current_max_temp.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1053328"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-8.6106 -0.5885 -0.1273 0.3239 17.9677 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 3.088 1.757 "
## [12] " genus (Intercept) 7.344 2.710 "
## [13] " Xr s(lat) 1978.771 44.483 "
## [14] " Residual 17.383 4.169 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 8.6122 0.1386 62.16"
## [20] "Xs(lat)Fx1 -11.9234 0.6244 -19.09"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.015 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_substrate_current_max_temp.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_extreme ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x25a549d8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 8.6122 0.1386 62.16 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.991 8.991 1391 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0544 "
## [22] "lmer.REML = 1.0533e+06 Scale est. = 17.383 n = 203853"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_substrate_future2C_max_temp.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1066933"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-9.0866 -0.5982 -0.1519 0.2954 18.2691 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.885 1.699 "
## [12] " genus (Intercept) 7.947 2.819 "
## [13] " Xr s(lat) 1736.696 41.674 "
## [14] " Residual 15.639 3.955 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 8.1324 0.1430 56.86"
## [20] "Xs(lat)Fx1 -12.4029 0.6034 -20.55"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.013 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_substrate_future2C_max_temp.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_extreme ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x13a99030>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 8.132 0.143 56.86 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.99 8.99 1431 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.151 "
## [22] "lmer.REML = 1.0669e+06 Scale est. = 15.639 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_substrate_future4C_max_temp.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1057248"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-10.0022 -0.5825 -0.1659 0.2767 23.6853 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.649 1.628 "
## [12] " genus (Intercept) 7.565 2.750 "
## [13] " Xr s(lat) 1334.691 36.533 "
## [14] " Residual 12.323 3.510 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 6.7436 0.1394 48.38"
## [20] "Xs(lat)Fx1 -13.2317 0.5392 -24.54"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.011 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_substrate_future4C_max_temp.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_extreme ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xfddfdd0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 6.7436 0.1394 48.38 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.989 8.989 1603 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.256 "
## [22] "lmer.REML = 1.0572e+06 Scale est. = 12.323 n = 203853"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_pond_current_max_temp.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1010048"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-12.2808 -0.5509 -0.1949 0.1461 26.5520 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.326 2.080 "
## [12] " genus (Intercept) 10.636 3.261 "
## [13] " Xr s(lat) 1682.898 41.023 "
## [14] " Residual 9.443 3.073 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 13.9194 0.1641 84.83"
## [20] "Xs(lat)Fx1 -8.2266 0.4873 -16.88"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_pond_current_max_temp.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_extreme ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x143b6678>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 13.9194 0.1641 84.83 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 3320 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.227 "
## [22] "lmer.REML = 1.01e+06 Scale est. = 9.4432 n = 204808"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_pond_future2C_max_temp.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1009034"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-12.4004 -0.4701 -0.1119 0.2341 27.2069 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 3.859 1.964 "
## [12] " genus (Intercept) 8.946 2.991 "
## [13] " Xr s(lat) 1894.695 43.528 "
## [14] " Residual 9.379 3.062 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 12.6950 0.1514 83.85"
## [20] "Xs(lat)Fx1 -11.3493 0.4916 -23.09"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_pond_future2C_max_temp.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_extreme ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xfdda5e8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 12.6950 0.1514 83.85 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.994 8.994 3283 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.156 "
## [22] "lmer.REML = 1.009e+06 Scale est. = 9.3787 n = 204808"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_pond_future4C_max_temp.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 947540.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-11.6774 -0.3829 0.0175 0.4204 28.3540 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 3.024 1.739 "
## [12] " genus (Intercept) 6.280 2.506 "
## [13] " Xr s(lat) 1831.190 42.792 "
## [14] " Residual 9.651 3.107 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 10.6143 0.1279 82.99"
## [20] "Xs(lat)Fx1 -15.0898 0.4886 -30.88"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.012 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_pond_future4C_max_temp.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_extreme ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x25a7b030>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 10.6143 0.1279 82.99 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.994 8.994 2481 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0545 "
## [22] "lmer.REML = 9.4754e+05 Scale est. = 9.6509 n = 204808"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_arboreal_current_max_temp.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 282134.7"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-7.6790 -0.6287 -0.1086 0.3817 10.8616 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.727 1.651 "
## [12] " genus (Intercept) 5.107 2.260 "
## [13] " Xr s(lat) 7335.666 85.649 "
## [14] " Residual 19.428 4.408 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 9.4108 0.1996 47.149"
## [20] "Xs(lat)Fx1 10.1683 1.3973 7.277"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.016 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_arboreal_current_max_temp.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_extreme ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2f1ab630>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 9.4108 0.1996 47.15 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.976 8.976 506.1 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0225 "
## [22] "lmer.REML = 2.8213e+05 Scale est. = 19.428 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_arboreal_future2C_max_temp.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 282511.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-7.5960 -0.6495 -0.1301 0.3655 10.2045 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.578 1.606 "
## [12] " genus (Intercept) 4.964 2.228 "
## [13] " Xr s(lat) 7220.158 84.972 "
## [14] " Residual 15.496 3.937 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 8.8660 0.1964 45.15"
## [20] "Xs(lat)Fx1 10.4976 1.3007 8.07"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.016 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_arboreal_future2C_max_temp.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_extreme ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2d4f1f30>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 8.8660 0.1964 45.15 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.979 8.979 504.9 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.00306 "
## [22] "lmer.REML = 2.8251e+05 Scale est. = 15.496 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_arboreal_future4C_max_temp.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 285377.7"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-6.5453 -0.6502 -0.1695 0.3028 15.3437 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.397 1.548 "
## [12] " genus (Intercept) 4.662 2.159 "
## [13] " Xr s(lat) 4852.165 69.657 "
## [14] " Residual 11.717 3.423 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 7.7717 0.1911 40.658"
## [20] "Xs(lat)Fx1 5.2177 1.1833 4.409"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.016 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_arboreal_future4C_max_temp.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_extreme ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2f18bdd8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 7.7717 0.1911 40.66 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.973 8.973 403.4 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0454 "
## [22] "lmer.REML = 2.8538e+05 Scale est. = 11.717 n = 56210"
Bayesian linear mixed models
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
pop_pond_current %>% mutate(habitat_scenario = "pond_current"),
pop_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
pop_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
all_data$species <- all_data$tip.label
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
# Run models with MCMCglmm
prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G3 = list(V = 1, fix = 1)))
set.seed(123)
# Intercept-less model, variation between microhabitat and climate scenarios
model_MCMC <- MCMCglmm(TSM_extreme ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(TSM_extreme_se):units, # Genus, species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
predictions <- data.frame(emmeans(model_MCMC,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC, file = "RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_max_temp.rds")
saveRDS(predictions, file = "RData/Models/TSM/sensitivity_analyses/predictions_MCMCglmm_TSM_max_temp.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_MCMC_contrast <- MCMCglmm(TSM_extreme ~ relevel(habitat_scenario, ref = "substrate_current"), # substrate_current as the reference level
random = ~ species + tip.label + idh(TSM_extreme_se):units,
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
saveRDS(model_MCMC_contrast, file = "RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_contrast_max_temp.rds")
Model summaries
Overall means
model_MCMC_TSM <- readRDS("RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_max_temp.rds")
summary(model_MCMC_TSM)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 6287561
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 1.464 1.32 1.585 643.3
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 11.37 10.45 12.52 444.4
##
## ~idh(TSM_extreme_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## TSM_extreme_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 3.443 3.431 3.453 1022
##
## Location effects: TSM_extreme ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 7.562 4.832 10.154 1000 <0.001
## habitat_scenarioarboreal_future2C 6.950 4.223 9.552 1000 <0.001
## habitat_scenarioarboreal_future4C 5.754 3.038 8.352 1000 <0.001
## habitat_scenariopond_current 12.173 9.448 14.787 1000 <0.001
## habitat_scenariopond_future2C 11.345 8.614 13.959 1000 <0.001
## habitat_scenariopond_future4C 9.989 7.267 12.595 1000 <0.001
## habitat_scenariosubstrate_current 6.796 4.073 9.397 1000 <0.001
## habitat_scenariosubstrate_future2C 6.162 3.438 8.773 1000 <0.001
## habitat_scenariosubstrate_future4C 4.831 2.112 7.435 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariopond_current ***
## habitat_scenariopond_future2C ***
## habitat_scenariopond_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Contrasts
model_MCMC_TSM_contrast <- readRDS("RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_contrast_max_temp.rds")
summary(model_MCMC_TSM_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 6287634
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 1.469 1.347 1.598 524.5
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 11.38 10.33 12.32 483.5
##
## ~idh(TSM_extreme_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## TSM_extreme_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 3.443 3.431 3.453 1033
##
## Location effects: TSM_extreme ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 6.7762
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.7670
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.1553
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.0411
## relevel(habitat_scenario, ref = "substrate_current")pond_current 5.3775
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 4.5492
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 3.1930
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.6338
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -1.9648
## l-95% CI
## (Intercept) 2.5497
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.7420
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.1312
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.0634
## relevel(habitat_scenario, ref = "substrate_current")pond_current 5.3634
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 4.5342
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 3.1787
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.6496
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -1.9792
## u-95% CI
## (Intercept) 11.1058
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.7949
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.1791
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.0193
## relevel(habitat_scenario, ref = "substrate_current")pond_current 5.3941
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 4.5643
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 3.2104
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.6190
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -1.9490
## eff.samp
## (Intercept) 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 906.5
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1267.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1289.8
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1052.5
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1117.2
## pMCMC
## (Intercept) 0.002
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) **
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model diagnostics
plot(model_MCMC_TSM)
Not averaging TSM (95th percentile temperature)
Here, we calculated TSM as the difference between the 95th percentile hourly body temperature experienced and the corresponding CTmax.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_TSM_sensitivity_analysis_no_averaging_95th_percentile.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_TSM_sensitivity_analysis_no_averaging_95th_percentile.pbs
Generalized additive mixed models
## Here, we will calculate TSM based on the difference between the 95th
## percentile hourly operative body temperature and the predicted CTmax at this
## time point This is to contrast with the use of average values (mean maximum
## temperature of the warmest quarter).
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current_sensitivity_analysis.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C_sensitivity_analysis.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C_sensitivity_analysis.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current_sensitivity_analysis.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C_sensitivity_analysis.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C_sensitivity_analysis.rds")
## Pond
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current_sensitivity_analysis.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C_sensitivity_analysis.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C_sensitivity_analysis.rds")
# Function to run population-level TSM models in parallel with the maximum
# hourly body temperature (TSM_95)
run_TSM_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(TSM_95 ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, weights = 1/(data$TSM_95_se^2), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
TSM_95 = NA, TSM_95_se = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$TSM_pred <- pred$fit
new_data$TSM_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = TSM_pred + 1.96 * TSM_pred_se, lower = TSM_pred -
1.96 * TSM_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model summaries and predictions
saveRDS(summary_gam, file = paste0("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_",
habitat_scenario, "_95th_percentile.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_",
habitat_scenario, "_95th_percentile.rds"))
saveRDS(new_data, file = paste0("RData/Models/TSM/sensitivity_analyses/predictions_pop_lat_TSM_",
habitat_scenario, "_95th_percentile.rds"))
}
# Create a list of datasets
dataset_list <- list(pond_current = pop_pond_current, pond_future2C = pop_pond_future2C,
pond_future4C = pop_pond_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C, arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
options(future.globals.maxSize = 1e+26)
# Run function
results_pop <- future_lapply(names(dataset_list), function(x) {
run_TSM_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_substrate_current_95th_percentile.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 914674.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-9.2242 -0.5863 -0.2059 0.1723 22.9679 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.459 1.568 "
## [12] " genus (Intercept) 7.339 2.709 "
## [13] " Xr s(lat) 1285.478 35.854 "
## [14] " Residual 8.955 2.993 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 11.4099 0.1353 84.34"
## [20] "Xs(lat)Fx1 -6.9383 0.4324 -16.05"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.011 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_substrate_current_95th_percentile.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_95 ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x23c67b98>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 11.4099 0.1353 84.34 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 2694 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.104 "
## [22] "lmer.REML = 9.1467e+05 Scale est. = 8.9553 n = 203853"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_substrate_future2C_95th_percentile.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 945852.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-9.0654 -0.5904 -0.2280 0.1507 23.5300 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.299 1.516 "
## [12] " genus (Intercept) 7.808 2.794 "
## [13] " Xr s(lat) 844.065 29.053 "
## [14] " Residual 8.773 2.962 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 10.8620 0.1390 78.17"
## [20] "Xs(lat)Fx1 -7.7342 0.4457 -17.35"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.011 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_substrate_future2C_95th_percentile.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_95 ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x11cb0030>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 10.862 0.139 78.17 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.988 8.988 2605 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.218 "
## [22] "lmer.REML = 9.4585e+05 Scale est. = 8.7726 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_substrate_future4C_95th_percentile.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 978053.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-10.0526 -0.5727 -0.2171 0.1931 25.6486 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.215 1.488 "
## [12] " genus (Intercept) 7.295 2.701 "
## [13] " Xr s(lat) 948.054 30.790 "
## [14] " Residual 8.359 2.891 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 9.3396 0.1350 69.19"
## [20] "Xs(lat)Fx1 -11.1026 0.4457 -24.91"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_substrate_future4C_95th_percentile.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_95 ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xdff6dd0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 9.340 0.135 69.19 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.989 8.989 2660 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.306 "
## [22] "lmer.REML = 9.7805e+05 Scale est. = 8.3589 n = 203853"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_pond_current_95th_percentile.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1008119"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-12.1228 -0.5628 -0.2092 0.1221 27.0813 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.462 2.112 "
## [12] " genus (Intercept) 10.488 3.238 "
## [13] " Xr s(lat) 1655.905 40.693 "
## [14] " Residual 9.212 3.035 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 14.7258 0.1633 90.17"
## [20] "Xs(lat)Fx1 -8.3085 0.4820 -17.24"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_pond_current_95th_percentile.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_95 ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x125cd678>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 14.7258 0.1633 90.17 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 3604 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.176 "
## [22] "lmer.REML = 1.0081e+06 Scale est. = 9.2118 n = 204808"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_pond_future2C_95th_percentile.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1008500"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-12.3923 -0.4854 -0.1292 0.2060 27.0432 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 3.994 1.999 "
## [12] " genus (Intercept) 8.988 2.998 "
## [13] " Xr s(lat) 2055.897 45.342 "
## [14] " Residual 9.097 3.016 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 13.5259 0.1520 89.02"
## [20] "Xs(lat)Fx1 -11.9607 0.4883 -24.50"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_pond_future2C_95th_percentile.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_95 ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xdff15e8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 13.526 0.152 89.02 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.994 8.994 3672 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.12 "
## [22] "lmer.REML = 1.0085e+06 Scale est. = 9.0969 n = 204808"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_pond_future4C_95th_percentile.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 946024.8"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-11.7166 -0.3907 -0.0007 0.3905 27.7234 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 3.137 1.771 "
## [12] " genus (Intercept) 6.449 2.539 "
## [13] " Xr s(lat) 2075.437 45.557 "
## [14] " Residual 9.209 3.035 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 11.4417 0.1296 88.28"
## [20] "Xs(lat)Fx1 -15.5664 0.4819 -32.30"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.012 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_pond_future4C_95th_percentile.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_95 ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x23c8e1f0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 11.4417 0.1296 88.28 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.995 8.995 2957 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0306 "
## [22] "lmer.REML = 9.4602e+05 Scale est. = 9.2085 n = 204808"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_arboreal_current_95th_percentile.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 233195.3"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-5.3566 -0.6146 -0.1983 0.2001 17.6327 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 1.914 1.383 "
## [12] " genus (Intercept) 5.553 2.357 "
## [13] " Xr s(lat) 3985.719 63.133 "
## [14] " Residual 8.100 2.846 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 11.7904 0.1965 59.990"
## [20] "Xs(lat)Fx1 8.8999 0.9010 9.878"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.012 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_arboreal_current_95th_percentile.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_95 ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2d3c2630>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 11.7904 0.1965 59.99 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.982 8.982 958.8 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.03 "
## [22] "lmer.REML = 2.332e+05 Scale est. = 8.0996 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_arboreal_future2C_95th_percentile.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 235414.1"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-6.9723 -0.6399 -0.2250 0.1958 16.0587 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 1.840 1.356 "
## [12] " genus (Intercept) 5.458 2.336 "
## [13] " Xr s(lat) 4212.238 64.902 "
## [14] " Residual 6.748 2.598 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 11.2108 0.1950 57.48"
## [20] "Xs(lat)Fx1 9.2079 0.8355 11.02"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.011 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_arboreal_future2C_95th_percentile.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_95 ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2b708f30>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 11.211 0.195 57.48 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.985 8.985 960 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.061 "
## [22] "lmer.REML = 2.3541e+05 Scale est. = 6.7481 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_arboreal_future4C_95th_percentile.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 251721.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-7.4532 -0.6380 -0.2371 0.1989 18.2209 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 1.858 1.363 "
## [12] " genus (Intercept) 5.022 2.241 "
## [13] " Xr s(lat) 3269.482 57.179 "
## [14] " Residual 6.536 2.556 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 9.9421 0.1896 52.433"
## [20] "Xs(lat)Fx1 6.6410 0.8752 7.588"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.012 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_arboreal_future4C_95th_percentile.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM_95 ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2d3a2dd8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 9.9421 0.1896 52.43 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.978 8.978 692.6 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.114 "
## [22] "lmer.REML = 2.5172e+05 Scale est. = 6.5355 n = 56210"
Bayesian linear mixed models
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
pop_pond_current %>% mutate(habitat_scenario = "pond_current"),
pop_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
pop_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
all_data$species <- all_data$tip.label
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
# Run models with MCMCglmm
prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G3 = list(V = 1, fix = 1)))
set.seed(123)
# Intercept-less model, variation between microhabitat and climate scenarios
model_MCMC <- MCMCglmm(TSM_95 ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(TSM_95_se):units, # Genus, species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC, file = "RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_95th_percentile.rds")
saveRDS(predictions, file = "RData/Models/TSM/sensitivity_analyses/predictions_MCMCglmm_TSM_95th_percentile.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_MCMC_contrast <- MCMCglmm(TSM_95 ~ relevel(habitat_scenario, ref = "substrate_current"), # substrate_current as the reference level
random = ~ species + tip.label + idh(TSM_95_se):units,
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
saveRDS(model_MCMC_contrast, file = "RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_contrast_95th_percentile.rds")
Model summaries
Overall means
model_MCMC_TSM <- readRDS("RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_95th_percentile.rds")
summary(model_MCMC_TSM)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5774225
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 1.296 1.185 1.423 667.1
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 11.02 10.11 12.02 485.5
##
## ~idh(TSM_95_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## TSM_95_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 2.216 2.208 2.223 998.4
##
## Location effects: TSM_95 ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 10.540 7.880 13.199 1000 <0.001
## habitat_scenarioarboreal_future2C 9.832 7.230 12.562 1000 <0.001
## habitat_scenarioarboreal_future4C 8.270 5.611 10.948 1000 <0.001
## habitat_scenariopond_current 12.691 10.036 15.374 1000 <0.001
## habitat_scenariopond_future2C 11.864 9.184 14.533 1000 <0.001
## habitat_scenariopond_future4C 10.553 7.880 13.214 1000 <0.001
## habitat_scenariosubstrate_current 9.853 7.185 12.523 1000 <0.001
## habitat_scenariosubstrate_future2C 9.077 6.401 11.746 1000 <0.001
## habitat_scenariosubstrate_future4C 7.419 4.749 10.090 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariopond_current ***
## habitat_scenariopond_future2C ***
## habitat_scenariopond_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Contrasts
model_MCMC_TSM_contrast <- readRDS("RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_contrast_95th_percentile.rds")
summary(model_MCMC_TSM_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5774291
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 1.3 1.184 1.405 653.4
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 11.04 10.09 11.93 528.5
##
## ~idh(TSM_95_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## TSM_95_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 2.216 2.208 2.223 1044
##
## Location effects: TSM_95 ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 9.6687503
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.6867972
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.0209172
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.5826836
## relevel(habitat_scenario, ref = "substrate_current")pond_current 2.8377278
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 2.0104723
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.6993051
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.7769529
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -2.4344531
## l-95% CI
## (Intercept) 4.5197817
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.6653024
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.0428482
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.6010613
## relevel(habitat_scenario, ref = "substrate_current")pond_current 2.8224506
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1.9976859
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.6848314
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.7911516
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -2.4474413
## u-95% CI
## (Intercept) 15.0415117
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.7125448
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.0001118
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.5628207
## relevel(habitat_scenario, ref = "substrate_current")pond_current 2.8492689
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 2.0236020
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.7119613
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.7644726
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -2.4218480
## eff.samp
## (Intercept) 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1392.9
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 996.4
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 983.9
## pMCMC
## (Intercept) 0.002
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.058
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) **
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C .
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model diagnostics
plot(model_MCMC_TSM)
Without outliers
Here, we excluded that fell below the 5th percentile or above the 95th percentile maximum operative body temperature for each population. While these may not be true outlier values, this is equivalent to analyses performed in previous studies (e.g., Pinky et al., 2019. Nature)
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_TSM_sensitivity_analysis_outliers.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_TSM_sensitivity_analysis_outliers.pbs
Generalized additive mixed models
## These datasets are excluding 'outlier' values, i.e., values that are below
## the 5th and above the 95th percentile operative body temperature for each
## population. These analyses were performed to echo previous work trimming
## outlier values (e.g., Pinsky et al., 2019. Nature)
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current_sensitivity_analysis.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C_sensitivity_analysis.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C_sensitivity_analysis.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current_sensitivity_analysis.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C_sensitivity_analysis.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C_sensitivity_analysis.rds")
## Pond
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current_sensitivity_analysis.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C_sensitivity_analysis.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C_sensitivity_analysis.rds")
# Function to run population-level TSM models in parallel
run_TSM_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(TSM ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, weights = 1/(data$TSM_se^2), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
TSM = NA, TSM_se = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$TSM_pred <- pred$fit
new_data$TSM_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = TSM_pred + 1.96 * TSM_pred_se, lower = TSM_pred -
1.96 * TSM_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model summaries and predictions
saveRDS(summary_gam, file = paste0("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_",
habitat_scenario, "_without_outliers.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_",
habitat_scenario, "_without_outliers.rds"))
saveRDS(new_data, file = paste0("RData/Models/TSM/sensitivity_analyses/predictions_pop_lat_TSM_",
habitat_scenario, "_without_outliers.rds"))
}
# Create a list of datasets
dataset_list <- list(pond_current = pop_pond_current, pond_future2C = pop_pond_future2C,
pond_future4C = pop_pond_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C, arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
options(future.globals.maxSize = 1e+26)
# Run function
results_pop <- future_lapply(names(dataset_list), function(x) {
run_TSM_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_substrate_current_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 888066.8"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-9.5651 -0.6141 -0.2354 0.1261 24.8145 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.530 1.591 "
## [12] " genus (Intercept) 7.698 2.775 "
## [13] " Xr s(lat) 1010.177 31.783 "
## [14] " Residual 8.462 2.909 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 13.2926 0.1381 96.28"
## [20] "Xs(lat)Fx1 -4.5724 0.4050 -11.29"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_substrate_current_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x24fb6738>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 13.2926 0.1381 96.28 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.992 8.992 3844 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0347 "
## [22] "lmer.REML = 8.8807e+05 Scale est. = 8.462 n = 203853"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_substrate_future2C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 920918.2"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-9.584 -0.614 -0.256 0.100 37.282 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.460 1.568 "
## [12] " genus (Intercept) 7.833 2.799 "
## [13] " Xr s(lat) 846.547 29.095 "
## [14] " Residual 8.219 2.867 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 12.7054 0.1392 91.24"
## [20] "Xs(lat)Fx1 -5.2197 0.4193 -12.45"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_substrate_future2C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x12fdd9b0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 12.7054 0.1392 91.24 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.99 8.99 3581 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0423 "
## [22] "lmer.REML = 9.2092e+05 Scale est. = 8.2193 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_substrate_future4C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 945639.1"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-10.4651 -0.6096 -0.2588 0.1257 23.9700 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.195 1.482 "
## [12] " genus (Intercept) 7.546 2.747 "
## [13] " Xr s(lat) 778.607 27.904 "
## [14] " Residual 6.998 2.645 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 11.3391 0.1366 83.02"
## [20] "Xs(lat)Fx1 -7.1813 0.4128 -17.39"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_substrate_future4C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xf325080>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 11.3391 0.1366 83.02 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.989 8.989 4098 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.149 "
## [22] "lmer.REML = 9.4564e+05 Scale est. = 6.9981 n = 203853"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_pond_current_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 999101.3"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-11.5022 -0.5959 -0.2460 0.0682 27.4434 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.970 2.229 "
## [12] " genus (Intercept) 11.345 3.368 "
## [13] " Xr s(lat) 1546.070 39.320 "
## [14] " Residual 9.878 3.143 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 15.7513 0.1697 92.79"
## [20] "Xs(lat)Fx1 -4.9830 0.4680 -10.65"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_pond_current_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x138fb0f8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 15.7513 0.1697 92.79 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 3797 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0285 "
## [22] "lmer.REML = 9.991e+05 Scale est. = 9.8785 n = 204808"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_pond_future2C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1009284"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-12.3582 -0.5402 -0.1972 0.1061 29.0216 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.444 2.108 "
## [12] " genus (Intercept) 10.533 3.245 "
## [13] " Xr s(lat) 1724.026 41.521 "
## [14] " Residual 8.881 2.980 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 14.7790 0.1635 90.38"
## [20] "Xs(lat)Fx1 -6.6605 0.4642 -14.35"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_pond_future2C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xf31f898>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 14.7790 0.1635 90.38 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.994 8.994 4241 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0297 "
## [22] "lmer.REML = 1.0093e+06 Scale est. = 8.8814 n = 204808"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_pond_future4C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 975478.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-12.4124 -0.4206 -0.0549 0.2819 28.3892 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 3.593 1.896 "
## [12] " genus (Intercept) 8.318 2.884 "
## [13] " Xr s(lat) 1798.218 42.405 "
## [14] " Residual 8.594 2.932 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 12.9209 0.1458 88.59"
## [20] "Xs(lat)Fx1 -9.7316 0.4695 -20.73"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_pond_future4C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x23c7f950>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 12.9209 0.1458 88.59 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.994 8.994 4146 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0775 "
## [22] "lmer.REML = 9.7548e+05 Scale est. = 8.5943 n = 204808"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_arboreal_current_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 227929.3"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-4.7601 -0.6317 -0.2154 0.1469 19.9851 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.102 1.450 "
## [12] " genus (Intercept) 5.846 2.418 "
## [13] " Xr s(lat) 2773.763 52.667 "
## [14] " Residual 7.900 2.811 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 13.1500 0.2015 65.25"
## [20] "Xs(lat)Fx1 8.3040 0.8285 10.02"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.011 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_arboreal_current_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2e6f9c50>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 13.1500 0.2015 65.25 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.977 8.977 1214 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.00321 "
## [22] "lmer.REML = 2.2793e+05 Scale est. = 7.9003 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_arboreal_future2C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 229320.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-5.8827 -0.6554 -0.2429 0.1420 18.6811 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 1.964 1.401 "
## [12] " genus (Intercept) 5.721 2.392 "
## [13] " Xr s(lat) 3252.895 57.034 "
## [14] " Residual 6.460 2.542 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 12.5445 0.1990 63.04"
## [20] "Xs(lat)Fx1 9.2566 0.7953 11.64"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.011 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_arboreal_future2C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2ca40550>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 12.544 0.199 63.04 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.982 8.982 1219 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0353 "
## [22] "lmer.REML = 2.2932e+05 Scale est. = 6.4601 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_MER_pop_lat_TSM_arboreal_future4C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 242182.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-7.3338 -0.6658 -0.2733 0.1366 17.0779 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 1.876 1.370 "
## [12] " genus (Intercept) 5.441 2.333 "
## [13] " Xr s(lat) 3025.223 55.002 "
## [14] " Residual 5.603 2.367 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 11.3439 0.1953 58.079"
## [20] "Xs(lat)Fx1 7.3683 0.8100 9.096"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.012 "
# Generalized additive model
print(readRDS("RData/Models/TSM/sensitivity_analyses/summary_GAM_pop_lat_TSM_arboreal_future4C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "TSM ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2e6da3f8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 11.3439 0.1953 58.08 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.979 8.979 1042 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0907 "
## [22] "lmer.REML = 2.4218e+05 Scale est. = 5.6034 n = 56210"
Bayesian linear mixed models
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
pop_pond_current %>% mutate(habitat_scenario = "pond_current"),
pop_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
pop_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
all_data$species <- all_data$tip.label
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
# Run models with MCMCglmm
prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G3 = list(V = 1, fix = 1)))
set.seed(123)
# Intercept-less model, variation between microhabitat and climate scenarios
model_MCMC <- MCMCglmm(TSM ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(TSM_se):units, # Genus, species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC, file = "RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_without_outliers.rds")
saveRDS(new_data, file = "RData/Models/TSM/sensitivity_analyses/predictions_MCMCglmm_TSM_without_outliers.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_MCMC_contrast <- MCMCglmm(TSM ~ relevel(habitat_scenario, ref = "substrate_current"), # substrate_current as the reference level
random = ~ species + tip.label + idh(TSM_se):units,
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
saveRDS(model_MCMC_contrast, file = "RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_contrast_without_outliers.rds")
Model summaries
Overall means
model_MCMC_TSM <- readRDS("RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_without_outliers.rds")
summary(model_MCMC_TSM)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5635481
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 1.296 1.171 1.409 672.7
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 12.07 11.03 13.09 509.9
##
## ~idh(TSM_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## TSM_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 1.959 1.952 1.966 1013
##
## Location effects: TSM ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 12.366 9.461 15.056 1000 <0.001
## habitat_scenarioarboreal_future2C 11.636 8.712 14.318 1000 <0.001
## habitat_scenarioarboreal_future4C 10.170 7.257 12.848 1000 <0.001
## habitat_scenariopond_current 13.658 10.736 16.351 1000 <0.001
## habitat_scenariopond_future2C 12.862 10.073 15.683 1000 <0.001
## habitat_scenariopond_future4C 11.673 8.753 14.363 1000 <0.001
## habitat_scenariosubstrate_current 11.865 8.951 14.549 1000 <0.001
## habitat_scenariosubstrate_future2C 11.061 8.139 13.754 1000 <0.001
## habitat_scenariosubstrate_future4C 9.512 6.596 12.199 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariopond_current ***
## habitat_scenariopond_future2C ***
## habitat_scenariopond_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Contrasts
model_MCMC_TSM_contrast <- readRDS("RData/Models/TSM/sensitivity_analyses/model_MCMCglmm_TSM_contrast_without_outliers.rds")
summary(model_MCMC_TSM_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5635581
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 1.299 1.184 1.403 655.3
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 12.1 11.08 13.03 549.3
##
## ~idh(TSM_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## TSM_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 1.959 1.952 1.965 1043
##
## Location effects: TSM ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 11.8452
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.5021
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.2275
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.6946
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1.7936
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.9972
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C -0.1921
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.8040
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -2.3526
## l-95% CI
## (Intercept) 5.2777
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.4801
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.2501
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.7138
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1.7793
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.9855
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C -0.2056
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.8184
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -2.3662
## u-95% CI
## (Intercept) 18.2752
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.5267
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.2068
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C -1.6764
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1.8056
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1.0108
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C -0.1803
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C -0.7914
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C -2.3406
## eff.samp
## (Intercept) 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1092.9
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1010.2
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 960.2
## pMCMC
## (Intercept) 0.002
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) **
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model diagnostics
plot(model_MCMC_TSM)
CTmax
Only the code and outputs of population-level models are presented here. Community-level models were also fitted, and the outputs can be found in the RData/Models/CTmax/sensitivity_analyses/ folder.
Acclimation to the maximum weekly body temperature
Here, animals were acclimated daily to the weekly maximum body temperature experienced, as opposed to the weekly mean body temperature.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_CTmax_sensitivity_analysis_max_acc.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_CTmax_sensitivity_analysis_max_acc.pbs
Generalized additive mixed models
# Load population-level data Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_max_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_max_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_max_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_max_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_max_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_max_acc_future4C.rds")
## Pond
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_max_acc_current.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_max_acc_future2C.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_max_acc_future4C.rds")
# Function to run population-level CTmax models in parallel
run_CTmax_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(CTmax ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, weights = 1/(data$CTmax_se^2), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
CTmax = NA, CTmax_se = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$CTmax_pred <- pred$fit
new_data$CTmax_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = CTmax_pred + 1.96 * CTmax_pred_se, lower = CTmax_pred -
1.96 * CTmax_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model summaries and predictions
saveRDS(summary_gam, file = paste0("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_",
habitat_scenario, "_max_acc.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_",
habitat_scenario, "_max_acc.rds"))
saveRDS(new_data, file = paste0("RData/Models/CTmax/sensitivity_analyses/predictions_pop_lat_CTmax_",
habitat_scenario, "_max_acc.rds"))
}
# Create a list of datasets
dataset_list <- list(pond_current = pop_pond_current, pond_future2C = pop_pond_future2C,
pond_future4C = pop_pond_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C, arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
# Run function
results_pop <- future_lapply(names(dataset_list), function(x) {
run_CTmax_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_substrate_current_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 145855.3"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-28.1959 -0.0742 0.1888 0.5120 12.0263 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3264 0.5713 "
## [12] " genus (Intercept) 3.5541 1.8852 "
## [13] " Xr s(lat) 22.2229 4.7141 "
## [14] " Residual 0.1220 0.3493 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.24174 0.08916 417.675"
## [20] "Xs(lat)Fx1 0.51955 0.05808 8.945"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.002 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_substrate_current_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x284f99e8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.24174 0.08916 417.7 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.992 8.992 4489 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.167 "
## [22] "lmer.REML = 1.4586e+05 Scale est. = 0.12201 n = 203853"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_substrate_future2C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 150804.2"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-39.597 -0.102 0.147 0.455 11.490 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3194 0.5652 "
## [12] " genus (Intercept) 3.5465 1.8832 "
## [13] " Xr s(lat) 16.8489 4.1047 "
## [14] " Residual 0.1221 0.3495 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.32558 0.08905 419.2"
## [20] "Xs(lat)Fx1 0.64687 0.05879 11.0"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.002 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_substrate_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd0f9210>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.32558 0.08905 419.2 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.99 8.99 4557 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.177 "
## [22] "lmer.REML = 1.508e+05 Scale est. = 0.12214 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_substrate_future4C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 86736.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-28.0428 -0.2891 0.0479 0.3815 12.3741 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3155 0.5617 "
## [12] " genus (Intercept) 3.5774 1.8914 "
## [13] " Xr s(lat) 11.7133 3.4225 "
## [14] " Residual 0.1134 0.3367 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.52906 0.08937 419.91"
## [20] "Xs(lat)Fx1 0.84097 0.05557 15.13"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.002 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_substrate_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xfaa9888>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.52906 0.08937 419.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.987 8.987 5387 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.127 "
## [22] "lmer.REML = 86737 Scale est. = 0.11337 n = 203853"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_pond_current_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 237239.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-28.3032 -0.0718 0.2387 0.5901 11.4589 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3948 0.6284 "
## [12] " genus (Intercept) 3.7151 1.9275 "
## [13] " Xr s(lat) 36.4692 6.0390 "
## [14] " Residual 0.2284 0.4779 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 36.98809 0.09113 405.88"
## [20] "Xs(lat)Fx1 0.81410 0.07288 11.17"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_pond_current_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd81bcd8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 36.98809 0.09113 405.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 3587 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.178 "
## [22] "lmer.REML = 2.3724e+05 Scale est. = 0.2284 n = 204808"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_pond_future2C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 242615.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-29.1301 -0.1111 0.1846 0.5284 12.0763 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3848 0.6203 "
## [12] " genus (Intercept) 3.6955 1.9224 "
## [13] " Xr s(lat) 40.3516 6.3523 "
## [14] " Residual 0.2028 0.4503 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.13631 0.09086 408.7"
## [20] "Xs(lat)Fx1 1.07033 0.07184 14.9"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_pond_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xfaa3dc8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.13631 0.09086 408.7 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 4046 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.185 "
## [22] "lmer.REML = 2.4262e+05 Scale est. = 0.20281 n = 204808"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_pond_future4C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 204765.6"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-28.7462 -0.2903 0.0396 0.4077 12.1767 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3698 0.6081 "
## [12] " genus (Intercept) 3.6941 1.9220 "
## [13] " Xr s(lat) 41.1924 6.4181 "
## [14] " Residual 0.1938 0.4402 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.40721 0.09077 412.12"
## [20] "Xs(lat)Fx1 1.51501 0.07242 20.92"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_pond_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x28508430>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.40721 0.09077 412.1 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.994 8.994 4028 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.146 "
## [22] "lmer.REML = 2.0477e+05 Scale est. = 0.19376 n = 204808"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_arboreal_current_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 29210.1"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-23.3072 -0.0839 0.2282 0.5900 7.1800 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.2732 0.5227 "
## [12] " genus (Intercept) 2.8518 1.6887 "
## [13] " Xr s(lat) 82.1227 9.0622 "
## [14] " Residual 0.1151 0.3392 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.8297 0.1312 288.41"
## [20] "Xs(lat)Fx1 -1.3361 0.1220 -10.95"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.002 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_arboreal_current_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2b9a5d80>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.8297 0.1312 288.4 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.983 8.983 1374 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0534 "
## [22] "lmer.REML = 29210 Scale est. = 0.11508 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_arboreal_future2C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 24778.2"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-22.0796 -0.1093 0.1853 0.5347 7.8168 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.26910 0.5188 "
## [12] " genus (Intercept) 2.83840 1.6848 "
## [13] " Xr s(lat) 81.09473 9.0053 "
## [14] " Residual 0.09492 0.3081 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.9245 0.1308 289.87"
## [20] "Xs(lat)Fx1 -1.4802 0.1134 -13.05"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.002 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_arboreal_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x624eb620>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.9245 0.1308 289.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.985 8.985 1497 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0516 "
## [22] "lmer.REML = 24778 Scale est. = 0.094922 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_arboreal_future4C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 11546.1"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-19.7202 -0.2421 0.0602 0.4096 8.0137 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.26823 0.5179 "
## [12] " genus (Intercept) 2.82743 1.6815 "
## [13] " Xr s(lat) 50.93832 7.1371 "
## [14] " Residual 0.08873 0.2979 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 38.1153 0.1305 291.966"
## [20] "Xs(lat)Fx1 -0.9161 0.1102 -8.315"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.002 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_arboreal_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x33ae0bd0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 38.1153 0.1305 292 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.978 8.978 1306 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0313 "
## [22] "lmer.REML = 11546 Scale est. = 0.088733 n = 56210"
Bayesian linear mixed models
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
pop_pond_current %>% mutate(habitat_scenario = "pond_current"),
pop_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
pop_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
split_names <- strsplit(as.character(all_data$tip.label), ' ')
all_data$genus <- sapply(split_names, `[`, 1)
all_data$species <- sapply(split_names, `[`, 2)
all_data$species <- all_data$tip.label
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
# Run models with MCMCglmm
prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000)))
set.seed(123)
# Intercept-less model, variation between microhabitat and climate scenarios
# Had to remove phylogenetic effects and weights because this model failed to estimate variance components. Only a nested genus/species structure was kept.
model_MCMC <- MCMCglmm(CTmax ~ habitat_scenario - 1, # No intercept
random = ~ species + genus:species,
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC, file = "RData/Models/CTmax/sensitivity_analyses/model_MCMCglmm_CTmax_max_acc.rds")
saveRDS(predictions, file = "RData/Models/CTmax/sensitivity_analyses/predictions_MCMCglmm_CTmax_max_acc.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
# Had to remove phylogenetic effects and weights because this model failed to estimate variance components. Only a nested genus/species structure was kept.
model_MCMC_contrast <- MCMCglmm(CTmax ~ relevel(habitat_scenario, ref = "substrate_current"), # substrate_current as the reference level
random = ~ genus + genus:species,
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
saveRDS(model_MCMC_contrast, file = "RData/Models/CTmax/sensitivity_analyses/model_MCMCglmm_CTmax_contrast_max_acc.rds")
Model summaries
Overall means
model_MCMC_CTmax <- readRDS("RData/Models/CTmax/sensitivity_analyses/model_MCMCglmm_CTmax_max_acc.rds")
summary(model_MCMC_CTmax)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 186563.5
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 0.3401 0.0668 1.031 3.175
##
## ~genus:species
##
## post.mean l-95% CI u-95% CI eff.samp
## genus:species 3.802 3.046 4.174 8.466
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.06668 0.06653 0.06685 859.4
##
## Location effects: CTmax ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 37.16 37.11 37.22 1000 <0.001
## habitat_scenarioarboreal_future2C 37.25 37.20 37.31 1000 <0.001
## habitat_scenarioarboreal_future4C 37.42 37.36 37.47 1000 <0.001
## habitat_scenariopond_current 37.07 37.02 37.13 1000 <0.001
## habitat_scenariopond_future2C 37.21 37.16 37.26 1000 <0.001
## habitat_scenariopond_future4C 37.43 37.38 37.49 1000 <0.001
## habitat_scenariosubstrate_current 37.21 37.15 37.26 1000 <0.001
## habitat_scenariosubstrate_future2C 37.30 37.24 37.35 1000 <0.001
## habitat_scenariosubstrate_future4C 37.48 37.43 37.54 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariopond_current ***
## habitat_scenariopond_future2C ***
## habitat_scenariopond_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Contrasts
model_MCMC_CTmax_contrast <- readRDS("RData/Models/CTmax/sensitivity_analyses/model_MCMCglmm_CTmax_contrast_max_acc.rds")
summary(model_MCMC_CTmax_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 186512.1
##
## G-structure: ~genus
##
## post.mean l-95% CI u-95% CI eff.samp
## genus 4.226 3.538 4.994 1000
##
## ~genus:species
##
## post.mean l-95% CI u-95% CI eff.samp
## genus:species 0.381 0.3671 0.396 1000
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.06668 0.06652 0.06684 1000
##
## Location effects: CTmax ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 37.349660
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.044077
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.041063
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.213323
## relevel(habitat_scenario, ref = "substrate_current")pond_current -0.135549
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.003152
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.226240
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.088995
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.278367
## l-95% CI
## (Intercept) 36.487134
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.046449
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.038402
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.210913
## relevel(habitat_scenario, ref = "substrate_current")pond_current -0.137012
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.001490
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.224606
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.087458
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.276787
## u-95% CI
## (Intercept) 38.041915
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.041484
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.043321
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.215736
## relevel(habitat_scenario, ref = "substrate_current")pond_current -0.133956
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.004656
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.227762
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.090779
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.279846
## eff.samp
## (Intercept) 1180.4
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 885.9
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1000.0
## pMCMC
## (Intercept) <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model diagnostics
plot(model_MCMC_CTmax)
Without outliers
Here, we excluded that fell below the 5th percentile or above the 95th percentile maximum operative body temperature for each population. While these may not be true outlier values, this is equivalent to analyses performed in previous studies (e.g., Pinky et al., 2019. Nature)
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_CTmax_sensitivity_analysis_outliers.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_CTmax_sensitivity_analysis_outliers.pbs
Generalized additive mixed models
# Load population-level data Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current_sensitivity_analysis.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C_sensitivity_analysis.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C_sensitivity_analysis.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current_sensitivity_analysis.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C_sensitivity_analysis.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C_sensitivity_analysis.rds")
## Pond
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current_sensitivity_analysis.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C_sensitivity_analysis.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C_sensitivity_analysis.rds")
# Function to run population-level CTmax models in parallel
run_CTmax_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(CTmax ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, weights = 1/(data$CTmax_se^2), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
CTmax = NA, CTmax_se = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$CTmax_pred <- pred$fit
new_data$CTmax_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = CTmax_pred + 1.96 * CTmax_pred_se, lower = CTmax_pred -
1.96 * CTmax_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model summaries and predictions
saveRDS(summary_gam, file = paste0("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_",
habitat_scenario, "_without_outliers.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_",
habitat_scenario, "_without_outliers.rds"))
saveRDS(new_data, file = paste0("RData/Models/CTmax/sensitivity_analyses/predictions_pop_lat_CTmax_",
habitat_scenario, "_without_outliers.rds"))
}
# Create a list of datasets
dataset_list <- list(pond_current = pop_pond_current, pond_future2C = pop_pond_future2C,
pond_future4C = pop_pond_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C, arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
options(future.globals.maxSize = 1e+26)
# Run function
results_pop <- future_lapply(names(dataset_list), function(x) {
run_CTmax_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_substrate_current_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 190372.2"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-27.9825 -0.0832 0.2468 0.6009 9.1328 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3768 0.6139 "
## [12] " genus (Intercept) 3.6659 1.9146 "
## [13] " Xr s(lat) 28.5283 5.3412 "
## [14] " Residual 0.2659 0.5157 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 36.85921 0.09074 406.202"
## [20] "Xs(lat)Fx1 0.61367 0.07371 8.325"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_substrate_current_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x240c25a8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 36.85921 0.09074 406.2 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.991 8.991 3086 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.125 "
## [22] "lmer.REML = 1.9037e+05 Scale est. = 0.26595 n = 203853"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_substrate_future2C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 198876.7"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-37.553 -0.057 0.259 0.600 8.911 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3671 0.6059 "
## [12] " genus (Intercept) 3.6342 1.9064 "
## [13] " Xr s(lat) 24.8322 4.9832 "
## [14] " Residual 0.2288 0.4783 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 36.95614 0.09033 409.14"
## [20] "Xs(lat)Fx1 0.74398 0.07203 10.33"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_substrate_future2C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x1201e2a0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 36.95614 0.09033 409.1 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.99 8.99 3170 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.138 "
## [22] "lmer.REML = 1.9888e+05 Scale est. = 0.22876 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_substrate_future4C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 188744.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-29.0961 -0.0593 0.2417 0.5782 9.7548 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3528 0.5940 "
## [12] " genus (Intercept) 3.6109 1.9002 "
## [13] " Xr s(lat) 20.6591 4.5452 "
## [14] " Residual 0.1634 0.4043 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.13505 0.08998 412.70"
## [20] "Xs(lat)Fx1 0.88913 0.06508 13.66"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_substrate_future4C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe3dc630>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.13505 0.08998 412.7 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.99 8.99 3764 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.157 "
## [22] "lmer.REML = 1.8874e+05 Scale est. = 0.16342 n = 203853"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_pond_current_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 238533.7"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-28.3826 -0.0741 0.2430 0.5952 11.4248 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3963 0.6295 "
## [12] " genus (Intercept) 3.7186 1.9284 "
## [13] " Xr s(lat) 36.3089 6.0257 "
## [14] " Residual 0.2338 0.4835 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 36.96787 0.09118 405.44"
## [20] "Xs(lat)Fx1 0.74873 0.07326 10.22"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_pond_current_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x129f7858>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 36.96787 0.09118 405.4 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 3632 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.179 "
## [22] "lmer.REML = 2.3853e+05 Scale est. = 0.23377 n = 204808"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_pond_future2C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 247452.7"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-28.6678 -0.1107 0.1921 0.5383 11.9086 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3873 0.6223 "
## [12] " genus (Intercept) 3.6998 1.9235 "
## [13] " Xr s(lat) 40.4386 6.3591 "
## [14] " Residual 0.2085 0.4567 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.11766 0.09093 408.21"
## [20] "Xs(lat)Fx1 1.01069 0.07247 13.95"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_pond_future2C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe3d8d68>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.11766 0.09093 408.2 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.993 8.993 4089 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.186 "
## [22] "lmer.REML = 2.4745e+05 Scale est. = 0.20853 n = 204808"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_pond_future4C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 213172"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-28.4379 -0.2835 0.0481 0.4144 11.9786 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3729 0.6107 "
## [12] " genus (Intercept) 3.6981 1.9230 "
## [13] " Xr s(lat) 42.3561 6.5082 "
## [14] " Residual 0.2006 0.4479 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.39530 0.09084 411.68"
## [20] "Xs(lat)Fx1 1.50161 0.07344 20.45"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_pond_future4C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x22d8b7c0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.39530 0.09084 411.7 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.994 8.994 4032 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.149 "
## [22] "lmer.REML = 2.1317e+05 Scale est. = 0.20057 n = 204808"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_arboreal_current_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 40962.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-18.4092 -0.0966 0.2467 0.5922 4.3746 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3143 0.5606 "
## [12] " genus (Intercept) 2.9910 1.7294 "
## [13] " Xr s(lat) 81.5440 9.0302 "
## [14] " Residual 0.2715 0.5211 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.4866 0.1346 278.453"
## [20] "Xs(lat)Fx1 -1.1917 0.1591 -7.491"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_arboreal_current_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2d803ba0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.4866 0.1346 278.5 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.972 8.972 956.5 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0573 "
## [22] "lmer.REML = 40962 Scale est. = 0.27155 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_arboreal_future2C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 39784.6"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.9531 -0.0848 0.2547 0.6105 5.3869 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.3070 0.5541 "
## [12] " genus (Intercept) 2.9703 1.7235 "
## [13] " Xr s(lat) 84.2044 9.1763 "
## [14] " Residual 0.2117 0.4601 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.5912 0.1341 280.311"
## [20] "Xs(lat)Fx1 -1.3298 0.1489 -8.928"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_arboreal_future2C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2bb4a4a0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.5912 0.1341 280.3 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.976 8.976 1047 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0576 "
## [22] "lmer.REML = 39785 Scale est. = 0.21166 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_MER_pop_lat_CTmax_arboreal_future4C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 41649.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.6255 -0.0664 0.2577 0.6184 7.4162 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 0.2995 0.5473 "
## [12] " genus (Intercept) 2.9346 1.7131 "
## [13] " Xr s(lat) 68.1036 8.2525 "
## [14] " Residual 0.1502 0.3876 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 37.7623 0.1333 283.341"
## [20] "Xs(lat)Fx1 -0.9951 0.1373 -7.249"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.003 "
# Generalized additive model
print(readRDS("RData/Models/CTmax/sensitivity_analyses/summary_GAM_pop_lat_CTmax_arboreal_future4C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "CTmax ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2d7e4348>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 37.7623 0.1333 283.3 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.974 8.974 1113 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0593 "
## [22] "lmer.REML = 41649 Scale est. = 0.1502 n = 56210"
Bayesian linear mixed models
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
pop_pond_current %>% mutate(habitat_scenario = "pond_current"),
pop_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
pop_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
all_data$species <- all_data$tip.label
split_names <- strsplit(as.character(all_data$tip.label), ' ')
all_data$genus <- sapply(split_names, `[`, 1)
all_data$species <- sapply(split_names, `[`, 2)
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
# Run models with MCMCglmm
prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G3 = list(V = 1, fix = 1)))
set.seed(123)
# Intercept-less model, variation between microhabitat and climate scenarios
model_MCMC <- MCMCglmm(CTmax ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(CTmax_se):units, # Species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC, file = "RData/Models/CTmax/sensitivity_analyses/model_MCMCglmm_CTmax_without_outliers.rds")
saveRDS(predictions, file = "RData/Models/CTmax/sensitivity_analyses/predictions_MCMCglmm_CTmax_without_outliers.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
# Had to remove phylogenetic effects and weights because this model failed to estimate variance components. Only a nested genus/species structure was kept.
prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000)))
model_MCMC_contrast <- MCMCglmm(CTmax ~ relevel(habitat_scenario, ref = "substrate_current"), # substrate_current as the reference level
random = ~ genus + genus:species,
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
saveRDS(model_MCMC_contrast, file = "RData/Models/CTmax/sensitivity_analyses/model_MCMCglmm_CTmax_contrast_without_outliers.rds")
Model summaries
Overall means
model_MCMC_CTmax <- readRDS("RData/Models/CTmax/sensitivity_analyses/model_MCMCglmm_CTmax_without_outliers.rds")
summary(model_MCMC_CTmax)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: -1547953
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 0.06298 0.05202 0.07487 298.4
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 3.117 2.747 3.624 809.8
##
## ~idh(CTmax_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## CTmax_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.007208 0.007008 0.007405 30.79
##
## Location effects: CTmax ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 35.14 11.40 60.36 1000 0.012
## habitat_scenarioarboreal_future2C 35.21 11.48 60.45 1000 0.012
## habitat_scenarioarboreal_future4C 35.34 11.61 60.56 1000 0.012
## habitat_scenariopond_current 35.29 11.56 60.51 1000 0.012
## habitat_scenariopond_future2C 35.38 11.65 60.60 1000 0.012
## habitat_scenariopond_future4C 35.52 11.78 60.74 1000 0.008
## habitat_scenariosubstrate_current 35.13 11.40 60.36 1000 0.012
## habitat_scenariosubstrate_future2C 35.22 11.49 60.44 1000 0.012
## habitat_scenariosubstrate_future4C 35.35 11.62 60.58 1000 0.012
##
## habitat_scenarioarboreal_current *
## habitat_scenarioarboreal_future2C *
## habitat_scenarioarboreal_future4C *
## habitat_scenariopond_current *
## habitat_scenariopond_future2C *
## habitat_scenariopond_future4C **
## habitat_scenariosubstrate_current *
## habitat_scenariosubstrate_future2C *
## habitat_scenariosubstrate_future4C *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Contrasts
model_MCMC_CTmax_contrast <- readRDS("RData/Models/CTmax/sensitivity_analyses/model_MCMCglmm_CTmax_contrast_without_outliers.rds")
summary(model_MCMC_CTmax_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 409342.6
##
## G-structure: ~genus
##
## post.mean l-95% CI u-95% CI eff.samp
## genus 4.254 3.626 4.983 1000
##
## ~genus:species
##
## post.mean l-95% CI u-95% CI eff.samp
## genus:species 0.4009 0.3847 0.4168 1000
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.07823 0.07804 0.07842 967.3
##
## Location effects: CTmax ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 37.002878
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.012685
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.095559
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.271939
## relevel(habitat_scenario, ref = "substrate_current")pond_current 0.186822
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.329548
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.558544
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.111172
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.295211
## l-95% CI
## (Intercept) 36.285105
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.015080
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.093063
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.269057
## relevel(habitat_scenario, ref = "substrate_current")pond_current 0.185173
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.327919
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.556832
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.109456
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.293576
## u-95% CI
## (Intercept) 37.690524
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.009916
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.098505
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.274578
## relevel(habitat_scenario, ref = "substrate_current")pond_current 0.188518
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 0.331278
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 0.560082
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.112630
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.296905
## eff.samp
## (Intercept) 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 752.1
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1000.0
## pMCMC
## (Intercept) <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model diagnostics
plot(model_MCMC_CTmax)
Maximum operative body temperature
Only the code and outputs of population-level models are presented here. Community-level models were also fitted, and the outputs can be found in the RData/Models/max_temp/sensitivity_analyses/ folder.
Acclimation to the maximum weekly body temperature
Here, animals were acclimated daily to the weekly maximum body temperature experienced, as opposed to the weekly mean body temperature.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_max_temp_sensitivity_analysis_max_acc.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_max_temp_sensitivity_analysis_max_acc.pbs
Generalized additive mixed models
# Load population-level data Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_max_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_max_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_max_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_max_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_max_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_max_acc_future4C.rds")
## Pond
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_max_acc_current.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_max_acc_future2C.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_max_acc_future4C.rds")
# Function to run population-level max_temp models in parallel
run_max_temp_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(max_temp ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, weights = 1/(data$max_temp_se^2), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
max_temp = NA, max_temp_se = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$max_temp_pred <- pred$fit
new_data$max_temp_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = max_temp_pred + 1.96 * max_temp_pred_se,
lower = max_temp_pred - 1.96 * max_temp_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model summaries and predictions
saveRDS(summary_gam, file = paste0("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_",
habitat_scenario, "_max_acc.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_",
habitat_scenario, "_max_acc.rds"))
saveRDS(new_data, file = paste0("RData/Models/max_temp/sensitivity_analyses/predictions_pop_lat_max_temp_",
habitat_scenario, "_max_acc.rds"))
}
# Create a list of datasets
dataset_list <- list(pond_current = pop_pond_current, pond_future2C = pop_pond_future2C,
pond_future4C = pop_pond_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C, arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
# Run function
results_pop <- future_lapply(names(dataset_list), function(x) {
run_max_temp_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_substrate_current_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 970523.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-15.1972 -0.2173 0.1027 0.4365 5.1313 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.244 1.498 "
## [12] " genus (Intercept) 3.243 1.801 "
## [13] " Xr s(lat) 514.222 22.676 "
## [14] " Residual 6.884 2.624 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 23.91799 0.09766 244.915"
## [20] "Xs(lat)Fx1 1.84149 0.35746 5.152"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_substrate_current_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x27faca88>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 23.91799 0.09766 244.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.986 8.986 7027 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.62 "
## [22] "lmer.REML = 9.7052e+05 Scale est. = 6.8838 n = 203853"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_substrate_future2C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1014454"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.3780 -0.1976 0.0962 0.3968 4.4059 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.376 1.542 "
## [12] " genus (Intercept) 3.078 1.754 "
## [13] " Xr s(lat) 499.461 22.349 "
## [14] " Residual 8.259 2.874 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 24.74313 0.09687 255.439"
## [20] "Xs(lat)Fx1 1.36874 0.39258 3.487"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_substrate_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xcb841c0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 24.74313 0.09687 255.4 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.982 8.982 6463 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.575 "
## [22] "lmer.REML = 1.0145e+06 Scale est. = 8.2586 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_substrate_future4C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1041554"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.5708 -0.2237 0.0911 0.3813 4.2896 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.090 1.446 "
## [12] " genus (Intercept) 2.963 1.721 "
## [13] " Xr s(lat) 500.779 22.378 "
## [14] " Residual 9.580 3.095 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 26.47169 0.09524 277.95"
## [20] "Xs(lat)Fx1 3.01508 0.41474 7.27"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_substrate_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xf5b7230>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 26.47169 0.09524 278 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.98 8.98 6215 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.529 "
## [22] "lmer.REML = 1.0416e+06 Scale est. = 9.5802 n = 203853"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_pond_current_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1021784"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-19.9213 -0.2537 0.0951 0.3906 7.7988 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.648 2.156 "
## [12] " genus (Intercept) 7.104 2.665 "
## [13] " Xr s(lat) 452.827 21.280 "
## [14] " Residual 4.941 2.223 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 21.9278 0.1408 155.699"
## [20] "Xs(lat)Fx1 0.5651 0.3864 1.463"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_pond_current_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd2daa88>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 21.9278 0.1408 155.7 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.981 8.981 6281 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.513 "
## [22] "lmer.REML = 1.0218e+06 Scale est. = 4.941 n = 204808"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_pond_future2C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1022036"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-19.1205 -0.2647 0.0918 0.3875 7.5190 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.530 2.128 "
## [12] " genus (Intercept) 6.744 2.597 "
## [13] " Xr s(lat) 516.377 22.724 "
## [14] " Residual 5.046 2.246 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 23.0311 0.1377 167.21"
## [20] "Xs(lat)Fx1 1.8997 0.3885 4.89"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_pond_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xf5b3620>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 23.0311 0.1377 167.2 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.983 8.983 5598 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.519 "
## [22] "lmer.REML = 1.022e+06 Scale est. = 5.0461 n = 204808"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_pond_future4C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1017630"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.8425 -0.2984 0.0858 0.3993 6.9493 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.404 2.099 "
## [12] " genus (Intercept) 6.414 2.533 "
## [13] " Xr s(lat) 536.559 23.164 "
## [14] " Residual 5.180 2.276 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 24.8034 0.1348 184.01"
## [20] "Xs(lat)Fx1 2.8585 0.3900 7.33"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_pond_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x27fbb118>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 24.8034 0.1348 184 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.984 8.984 4899 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.506 "
## [22] "lmer.REML = 1.0176e+06 Scale est. = 5.1803 n = 204808"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_arboreal_current_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 218385.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-27.0679 -0.3346 0.0899 0.5178 5.1108 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.489 1.578 "
## [12] " genus (Intercept) 2.937 1.714 "
## [13] " Xr s(lat) 398.989 19.975 "
## [14] " Residual 2.041 1.429 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 2.491e+01 1.566e-01 159.037"
## [20] "Xs(lat)Fx1 8.231e-04 3.644e-01 0.002"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_arboreal_current_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2b4720e0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 24.9051 0.1566 159 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.958 8.958 2177 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0809 "
## [22] "lmer.REML = 2.1839e+05 Scale est. = 2.0412 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_arboreal_future2C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 218039.9"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-31.1293 -0.3508 0.0852 0.5182 5.5533 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.292 1.514 "
## [12] " genus (Intercept) 2.641 1.625 "
## [13] " Xr s(lat) 457.378 21.386 "
## [14] " Residual 1.985 1.409 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 25.6767 0.1494 171.915"
## [20] "Xs(lat)Fx1 -0.4224 0.3601 -1.173"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.008 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_arboreal_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x3fe70fa8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 25.6767 0.1494 171.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.964 8.964 2299 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.025 "
## [22] "lmer.REML = 2.1804e+05 Scale est. = 1.9852 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_arboreal_future4C_max_acc.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 223065.6"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-30.6825 -0.4150 0.0965 0.5336 4.7667 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.208 1.486 "
## [12] " genus (Intercept) 2.315 1.522 "
## [13] " Xr s(lat) 482.097 21.957 "
## [14] " Residual 2.227 1.492 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 27.1886 0.1424 190.9"
## [20] "Xs(lat)Fx1 1.8764 0.3753 5.0"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.008 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_arboreal_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x335ad110>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 27.1886 0.1424 190.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.963 8.963 1855 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0331 "
## [22] "lmer.REML = 2.2307e+05 Scale est. = 2.227 n = 56210"
Bayesian linear mixed models
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
pop_pond_current %>% mutate(habitat_scenario = "pond_current"),
pop_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
pop_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
all_data$species <- all_data$tip.label
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
plan(sequential)
# Run models with MCMCglmm
prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G3 = list(V = 1, fix = 1)))
set.seed(123)
# Intercept-less model, variation between microhabitat and climate scenarios
model_MCMC <- MCMCglmm(max_temp ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(max_temp_se):units, # Species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC, file = "RData/Models/max_temp/sensitivity_analyses/model_MCMCglmm_max_temp_max_acc.rds")
saveRDS(predictions, file = "RData/Models/max_temp/sensitivity_analyses/predictions_MCMCglmm_max_temp_max_acc.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_MCMC_contrast <- MCMCglmm(max_temp ~ relevel(habitat_scenario, ref = "substrate_current"), # substrate_current as the reference level
random = ~ species + tip.label + idh(max_temp_se):units,
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
saveRDS(model_MCMC_contrast, file = "RData/Models/max_temp/sensitivity_analyses/model_MCMCglmm_max_temp_contrast_max_acc.rds")
Overall means
model_MCMC_max_temp <- readRDS("RData/Models/max_temp/sensitivity_analyses/model_MCMCglmm_max_temp_max_acc.rds")
summary(model_MCMC_max_temp)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5936794
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 2.075 1.907 2.252 708.4
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 19.81 18.22 21.26 636.8
##
## ~idh(max_temp_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## max_temp_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 3.343 3.334 3.353 1000
##
## Location effects: max_temp ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 22.72 19.16 26.29 1000 <0.001
## habitat_scenarioarboreal_future2C 23.51 19.95 27.07 1000 <0.001
## habitat_scenarioarboreal_future4C 25.16 21.61 28.72 1000 <0.001
## habitat_scenariopond_current 21.54 17.99 25.11 1000 <0.001
## habitat_scenariopond_future2C 22.67 19.11 26.24 1000 <0.001
## habitat_scenariopond_future4C 24.50 20.94 28.07 1000 <0.001
## habitat_scenariosubstrate_current 23.20 19.64 26.77 1000 <0.001
## habitat_scenariosubstrate_future2C 24.05 20.50 27.62 1000 <0.001
## habitat_scenariosubstrate_future4C 25.83 22.27 29.40 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariopond_current ***
## habitat_scenariopond_future2C ***
## habitat_scenariopond_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Contrasts
model_MCMC_max_temp_contrast <- readRDS("RData/Models/max_temp/sensitivity_analyses/model_MCMCglmm_max_temp_contrast_max_acc.rds")
summary(model_MCMC_max_temp_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5936783
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 2.072 1.905 2.252 677.7
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 19.91 18.41 21.64 566.9
##
## ~idh(max_temp_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## max_temp_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 3.343 3.334 3.353 1000
##
## Location effects: max_temp ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 23.1623
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.4780
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.3133
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.9616
## relevel(habitat_scenario, ref = "substrate_current")pond_current -1.6561
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C -0.5244
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1.3018
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.8587
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.6309
## l-95% CI
## (Intercept) 15.3956
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.4981
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.2943
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.9414
## relevel(habitat_scenario, ref = "substrate_current")pond_current -1.6681
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C -0.5358
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1.2880
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.8464
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.6184
## u-95% CI
## (Intercept) 29.2021
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.4606
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.3322
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.9800
## relevel(habitat_scenario, ref = "substrate_current")pond_current -1.6421
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C -0.5104
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1.3136
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.8713
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.6444
## eff.samp
## (Intercept) 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 880.5
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 898.7
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 833.3
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 916.9
## pMCMC
## (Intercept) <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model diagnostics
plot(model_MCMC_max_temp)
Without outliers
Here, we excluded that fell below the 5th percentile or above the 95th percentile maximum operative body temperature for each population. While these may not be true outlier values, this is equivalent to analyses performed in previous studies (e.g., Pinky et al., 2019. Nature)
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_max_temp_sensitivity_analysis_outliers.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_max_temp_sensitivity_analysis_outliers.pbs
Generalized additive mixed models
# Load population-level data Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current_sensitivity_analysis.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C_sensitivity_analysis.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C_sensitivity_analysis.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current_sensitivity_analysis.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C_sensitivity_analysis.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C_sensitivity_analysis.rds")
## Pond
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current_sensitivity_analysis.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C_sensitivity_analysis.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C_sensitivity_analysis.rds")
# Function to run population-level max_temp models in parallel
run_max_temp_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(max_temp ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, weights = 1/(data$max_temp_se^2), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
max_temp = NA, max_temp_se = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$max_temp_pred <- pred$fit
new_data$max_temp_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = max_temp_pred + 1.96 * max_temp_pred_se,
lower = max_temp_pred - 1.96 * max_temp_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model summaries and predictions
saveRDS(summary_gam, file = paste0("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_",
habitat_scenario, "_without_outliers.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_",
habitat_scenario, "_without_outliers.rds"))
saveRDS(new_data, file = paste0("RData/Models/max_temp/sensitivity_analyses/predictions_pop_lat_max_temp_",
habitat_scenario, "_without_outliers.rds"))
}
# Create a list of datasets
dataset_list <- list(pond_current = pop_pond_current, pond_future2C = pop_pond_future2C,
pond_future4C = pop_pond_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C, arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
options(future.globals.maxSize = 1e+26)
# Run function
results_pop <- future_lapply(names(dataset_list), function(x) {
run_max_temp_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_substrate_current_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 994754.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-16.2443 -0.1979 0.1024 0.4184 4.9093 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.248 1.499 "
## [12] " genus (Intercept) 3.301 1.817 "
## [13] " Xr s(lat) 522.150 22.851 "
## [14] " Residual 5.920 2.433 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 23.83541 0.09873 241.417"
## [20] "Xs(lat)Fx1 1.82523 0.37318 4.891"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_substrate_current_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x255a4c48>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 23.83541 0.09873 241.4 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.984 8.984 6662 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.603 "
## [22] "lmer.REML = 9.9475e+05 Scale est. = 5.9204 n = 203853"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_substrate_future2C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1039976"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-18.6325 -0.1796 0.0956 0.3786 4.3476 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.424 1.557 "
## [12] " genus (Intercept) 3.129 1.769 "
## [13] " Xr s(lat) 534.589 23.121 "
## [14] " Residual 7.154 2.675 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 24.66246 0.09809 251.435"
## [20] "Xs(lat)Fx1 1.04946 0.41186 2.548"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.009 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_substrate_future2C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x134fac30>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 24.66246 0.09809 251.4 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.981 8.981 6155 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.557 "
## [22] "lmer.REML = 1.04e+06 Scale est. = 7.1542 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_substrate_future4C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1064212"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.8606 -0.2076 0.0883 0.3625 4.5081 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.101 1.450 "
## [12] " genus (Intercept) 3.043 1.744 "
## [13] " Xr s(lat) 507.301 22.523 "
## [14] " Residual 8.271 2.876 "
## [15] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 26.40272 0.09674 272.935"
## [20] "Xs(lat)Fx1 2.71928 0.43267 6.285"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.010 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_substrate_future4C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xf8b8410>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 26.40272 0.09674 272.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.978 8.978 5976 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.512 "
## [22] "lmer.REML = 1.0642e+06 Scale est. = 8.2707 n = 203853"
Pond or wetland
Current climate
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_pond_current_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1028590"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-20.5749 -0.2487 0.0937 0.3849 8.2314 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.677 2.163 "
## [12] " genus (Intercept) 7.199 2.683 "
## [13] " Xr s(lat) 471.086 21.705 "
## [14] " Residual 4.143 2.036 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 21.9168 0.1418 154.592"
## [20] "Xs(lat)Fx1 0.1691 0.3889 0.435"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_pond_current_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x13ed41e8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 21.9168 0.1418 154.6 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.981 8.981 6141 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.508 "
## [22] "lmer.REML = 1.0286e+06 Scale est. = 4.1433 n = 204808"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_pond_future2C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1029479"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-19.0802 -0.2601 0.0894 0.3809 7.9788 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.553 2.134 "
## [12] " genus (Intercept) 6.833 2.614 "
## [13] " Xr s(lat) 542.577 23.293 "
## [14] " Residual 4.255 2.063 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 23.0215 0.1387 166.040"
## [20] "Xs(lat)Fx1 1.5118 0.3909 3.868"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_pond_future2C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xf8b4b48>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 23.0215 0.1387 166 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.984 8.984 5457 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.514 "
## [22] "lmer.REML = 1.0295e+06 Scale est. = 4.2553 n = 204808"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_pond_future4C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 1024666"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-17.7047 -0.2943 0.0833 0.3921 7.3585 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 4.434 2.106 "
## [12] " genus (Intercept) 6.505 2.551 "
## [13] " Xr s(lat) 566.508 23.801 "
## [14] " Residual 4.371 2.091 "
## [15] "Number of obs: 204808, groups: species:genus, 5203; genus, 467; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 24.7931 0.1358 182.619"
## [20] "Xs(lat)Fx1 2.4680 0.3913 6.307"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_pond_future4C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2426de60>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 24.7931 0.1358 182.6 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.985 8.985 4787 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.501 "
## [22] "lmer.REML = 1.0247e+06 Scale est. = 4.3714 n = 204808"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_arboreal_current_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 220977.5"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-30.2793 -0.3179 0.0985 0.5252 4.8536 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.505 1.583 "
## [12] " genus (Intercept) 2.971 1.724 "
## [13] " Xr s(lat) 373.995 19.339 "
## [14] " Residual 1.581 1.257 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 2.483e+01 1.574e-01 157.753"
## [20] "Xs(lat)Fx1 3.246e-04 3.589e-01 0.001"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_arboreal_current_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2ecf9980>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 24.8336 0.1574 157.8 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.956 8.956 2255 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0678 "
## [22] "lmer.REML = 2.2098e+05 Scale est. = 1.5808 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_arboreal_future2C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 220781"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-34.436 -0.335 0.093 0.521 5.854 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.306 1.518 "
## [12] " genus (Intercept) 2.675 1.635 "
## [13] " Xr s(lat) 437.190 20.909 "
## [14] " Residual 1.547 1.244 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 25.6090 0.1502 170.46"
## [20] "Xs(lat)Fx1 -0.5476 0.3557 -1.54"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.007 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_arboreal_future2C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2ecb1e40>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 25.6090 0.1502 170.5 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.963 8.963 2411 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.00789 "
## [22] "lmer.REML = 2.2078e+05 Scale est. = 1.547 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_MER_pop_lat_max_temp_arboreal_future4C_without_outliers.rds"))
## [1] "Linear mixed model fit by REML ['lmerMod']"
## [2] ""
## [3] "REML criterion at convergence: 225039.4"
## [4] ""
## [5] "Scaled residuals: "
## [6] " Min 1Q Median 3Q Max "
## [7] "-33.901 -0.403 0.097 0.528 4.901 "
## [8] ""
## [9] "Random effects:"
## [10] " Groups Name Variance Std.Dev."
## [11] " species:genus (Intercept) 2.225 1.492 "
## [12] " genus (Intercept) 2.329 1.526 "
## [13] " Xr s(lat) 464.959 21.563 "
## [14] " Residual 1.747 1.322 "
## [15] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error t value"
## [19] "X(Intercept) 27.1337 0.1430 189.730"
## [20] "Xs(lat)Fx1 1.8718 0.3717 5.036"
## [21] ""
## [22] "Correlation of Fixed Effects:"
## [23] " X(Int)"
## [24] "Xs(lat)Fx1 0.008 "
# Generalized additive model
print(readRDS("RData/Models/max_temp/sensitivity_analyses/summary_GAM_pop_lat_max_temp_arboreal_future4C_without_outliers.rds"))
## [1] ""
## [2] "Family: gaussian "
## [3] "Link function: identity "
## [4] ""
## [5] "Formula:"
## [6] "max_temp ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x2ecda128>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error t value Pr(>|t|) "
## [11] "(Intercept) 27.134 0.143 189.7 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df F p-value "
## [17] "s(lat) 8.962 8.962 1916 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.0446 "
## [22] "lmer.REML = 2.2504e+05 Scale est. = 1.7474 n = 56210"
Bayesian linear mixed models
all_data <- bind_rows(
pop_sub_current %>% mutate(habitat_scenario = "substrate_current"),
pop_sub_future2C %>% mutate(habitat_scenario = "substrate_future2C"),
pop_sub_future4C %>% mutate(habitat_scenario = "substrate_future4C"),
pop_arb_current %>% mutate(habitat_scenario = "arboreal_current"),
pop_arb_future2C %>% mutate(habitat_scenario = "arboreal_future2C"),
pop_arb_future4C %>% mutate(habitat_scenario = "arboreal_future4C"),
pop_pond_current %>% mutate(habitat_scenario = "pond_current"),
pop_pond_future2C %>% mutate(habitat_scenario = "pond_future2C"),
pop_pond_future4C %>% mutate(habitat_scenario = "pond_future4C")
)
all_data$species <- all_data$tip.label
# Match phylogeny to dataset
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
tree <- drop.tip(tree, tree$tip.label[-match(all_data$tip.label, tree$tip.label)])
tree <- force.ultrametric(tree, method="extend") # Force the tree to be ultrametric
Ainv<-inverseA(tree)$Ainv
all_data <- as.data.frame(all_data)
plan(sequential)
# Run models with MCMCglmm
prior <- list(R = list(V = 1, nu = 0.002),
G = list(G1 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G2 = list(V = 1, nu = 0.002,
alpha.mu = 0,
alpha.V = 1000),
G3 = list(V = 1, fix = 1)))
set.seed(123)
# Intercept-less model, variation between microhabitat and climate scenarios
model_MCMC <- MCMCglmm(max_temp ~ habitat_scenario - 1, # No intercept
random = ~ species + tip.label + idh(max_temp_se):units, # Species, phylogenetic relatedness, and weights
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
# Get predictions
predictions <- data.frame(emmeans(model_MCMC,
by="habitat_scenario",
specs="habitat_scenario",
data=all_data,
type="response"))
predictions <- predictions %>% rename(prediction = emmean)
# Save model summaries and predictions
saveRDS(model_MCMC, file = "RData/Models/max_temp/sensitivity_analyses/model_MCMCglmm_max_temp_without_outliers.rds")
saveRDS(predictions, file = "RData/Models/max_temp/sensitivity_analyses/predictions_MCMCglmm_max_temp_without_outliers.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_MCMC_contrast <- MCMCglmm(max_temp ~ relevel(habitat_scenario, ref = "substrate_current"), # substrate_current as the reference level
random = ~ species + tip.label + idh(max_temp_se):units,
ginverse=list(tip.label = Ainv),
singular.ok=TRUE,
prior = prior,
verbose=FALSE,
data = all_data)
saveRDS(model_MCMC_contrast, file = "RData/Models/max_temp/sensitivity_analyses/model_MCMCglmm_max_temp_contrast_without_outliers.rds")
Model summaries
Overall means
model_MCMC_max_temp <- readRDS("RData/Models/max_temp/sensitivity_analyses/model_MCMCglmm_max_temp_without_outliers.rds")
summary(model_MCMC_max_temp)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5971991
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 2.079 1.909 2.252 710.8
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 19.73 18.14 21.18 636.6
##
## ~idh(max_temp_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## max_temp_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 3.659 3.649 3.669 1000
##
## Location effects: max_temp ~ habitat_scenario - 1
##
## post.mean l-95% CI u-95% CI eff.samp pMCMC
## habitat_scenarioarboreal_current 22.67 19.23 26.29 1000 <0.001
## habitat_scenarioarboreal_future2C 23.47 20.02 27.09 1000 <0.001
## habitat_scenarioarboreal_future4C 25.13 21.69 28.73 1000 <0.001
## habitat_scenariopond_current 21.52 18.08 25.13 1000 <0.001
## habitat_scenariopond_future2C 22.66 19.22 26.26 1000 <0.001
## habitat_scenariopond_future4C 24.50 21.07 28.10 1000 <0.001
## habitat_scenariosubstrate_current 23.14 19.70 26.75 1000 <0.001
## habitat_scenariosubstrate_future2C 24.02 20.58 27.63 1000 <0.001
## habitat_scenariosubstrate_future4C 25.81 22.37 29.42 1000 <0.001
##
## habitat_scenarioarboreal_current ***
## habitat_scenarioarboreal_future2C ***
## habitat_scenarioarboreal_future4C ***
## habitat_scenariopond_current ***
## habitat_scenariopond_future2C ***
## habitat_scenariopond_future4C ***
## habitat_scenariosubstrate_current ***
## habitat_scenariosubstrate_future2C ***
## habitat_scenariosubstrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Contrasts
model_MCMC_max_temp_contrast <- readRDS("RData/Models/max_temp/sensitivity_analyses/model_MCMCglmm_max_temp_contrast_without_outliers.rds")
summary(model_MCMC_max_temp_contrast)
##
## Iterations = 3001:12991
## Thinning interval = 10
## Sample size = 1000
##
## DIC: 5971985
##
## G-structure: ~species
##
## post.mean l-95% CI u-95% CI eff.samp
## species 2.077 1.909 2.254 682.3
##
## ~tip.label
##
## post.mean l-95% CI u-95% CI eff.samp
## tip.label 19.83 18.46 21.69 568.8
##
## ~idh(max_temp_se):units
##
## post.mean l-95% CI u-95% CI eff.samp
## max_temp_se.units 1 1 1 0
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 3.659 3.649 3.669 1000
##
## Location effects: max_temp ~ relevel(habitat_scenario, ref = "substrate_current")
##
## post.mean
## (Intercept) 23.0784
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.4657
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.3321
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.9926
## relevel(habitat_scenario, ref = "substrate_current")pond_current -1.6221
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C -0.4838
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1.3552
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.8755
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.6714
## l-95% CI
## (Intercept) 16.1167
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.4843
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.3121
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.9729
## relevel(habitat_scenario, ref = "substrate_current")pond_current -1.6348
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C -0.4963
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1.3410
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.8629
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.6585
## u-95% CI
## (Intercept) 29.4740
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.4469
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.3501
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 2.0113
## relevel(habitat_scenario, ref = "substrate_current")pond_current -1.6093
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C -0.4712
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 1.3666
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.8874
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.6835
## eff.samp
## (Intercept) 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 884.3
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 899.9
## relevel(habitat_scenario, ref = "substrate_current")pond_current 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C 833.2
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1000.0
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1036.6
## pMCMC
## (Intercept) <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_current <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <0.001
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <0.001
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_current ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")pond_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model diagnostics
plot(model_MCMC_max_temp)
Overheating risk
Acclimation to the maximum weekly body temperature
Here, animals were acclimated daily to the weekly maximum body temperature experienced, as opposed to the weekly mean body temperature.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_overheating_risk_sensitivity_analysis_max_acc.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_overheating_risk_sensitivity_analysis_max_acc.pbs
Generalized additive mixed models
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_max_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_max_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_max_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_max_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_max_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_max_acc_future4C.rds")
## We do not load pond data because none of the species overheat in water
## bodies
# Function to run population-level overheating_risk models in parallel
run_overheating_risk_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(overheating_risk ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, family = binomial(), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
overheating_risk = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$overheating_risk_pred <- pred$fit
new_data$overheating_risk_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = overheating_risk_pred + 1.96 * overheating_risk_pred_se,
lower = overheating_risk_pred - 1.96 * overheating_risk_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_",
habitat_scenario, "_max_acc.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_",
habitat_scenario, "_max_acc.rds"))
saveRDS(new_data, file = paste0("RData/Models/overheating_risk/sensitivity_analyses/predictions_pop_lat_overheating_risk_",
habitat_scenario, "_max_acc.rds"))
}
# Create a list of all the datasets
dataset_list <- list(arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C)
# Set up parallel processing
plan(multicore(workers = 2))
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_overheating_risk_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_substrate_current_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 3701.7 3752.9 -1845.9 3691.7 203849 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.368 -0.001 -0.001 0.000 36.612 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 101.508 10.075 "
## [15] " genus (Intercept) 2.253 1.501 "
## [16] " Xr s(lat) 2397.285 48.962 "
## [17] "Number of obs: 203854, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -15.3828 0.5424 -28.361 <2e-16 ***"
## [22] "Xs(lat)Fx1 -5.5270 3.1784 -1.739 0.0821 . "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.008 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_substrate_current_max_acc.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xc46b618>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -15.383 1.144 -13.44 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.057 7.057 129.2 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -3.41e-05 "
## [22] "glmer.ML = 3099.7 Scale est. = 1 n = 203854"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_substrate_future2C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 5820.6 5871.7 -2905.3 5810.6 203848 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-2.3504 -0.0011 -0.0007 -0.0003 26.1469 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 99.833 9.992 "
## [15] " genus (Intercept) 2.117 1.455 "
## [16] " Xr s(lat) 1667.621 40.837 "
## [17] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -15.0977 0.4932 -30.613 <2e-16 ***"
## [22] "Xs(lat)Fx1 -1.2612 3.7371 -0.337 0.736 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 -0.055"
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_substrate_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xef30ea0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -15.0977 0.9251 -16.32 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.425 7.425 221.3 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -3.65e-05 "
## [22] "glmer.ML = 4962.7 Scale est. = 1 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_substrate_future4C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 14790.1 14841.3 -7390.1 14780.1 203848 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-4.279 -0.005 -0.001 -0.001 46.836 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 102.469 10.123 "
## [15] " genus (Intercept) 1.195 1.093 "
## [16] " Xr s(lat) 457.128 21.381 "
## [17] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -13.608 0.350 -38.883 <2e-16 ***"
## [22] "Xs(lat)Fx1 2.962 1.854 1.597 0.11 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 -0.010"
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_substrate_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x27aa27d0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -13.6076 0.5819 -23.38 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.866 7.866 618.6 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -3.58e-05 "
## [22] "glmer.ML = 12806 Scale est. = 1 n = 203853"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_arboreal_current_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 644.5 689.2 -317.3 634.5 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.7042 -0.0013 -0.0006 -0.0001 17.8545 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 7.065 2.658 "
## [15] " genus (Intercept) 38.123 6.174 "
## [16] " Xr s(lat) 1610.794 40.135 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -20.034461 0.001077 -18607 <2e-16 ***"
## [22] "Xs(lat)Fx1 -4.011487 0.001077 -3726 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 -0.001"
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_arboreal_current_max_acc.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xc98c0a0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -20.034 3.916 -5.116 3.13e-07 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 2.34 2.34 27.62 3.55e-06 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -3.97e-05 "
## [22] "glmer.ML = 542.98 Scale est. = 1 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_arboreal_future2C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1098.1 1142.8 -544.1 1088.1 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.0685 -0.0005 -0.0003 0.0000 15.8219 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 171.327 13.089 "
## [15] " genus (Intercept) 6.089 2.468 "
## [16] " Xr s(lat) 3097.487 55.655 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -21.625 1.637 -13.210 <2e-16 ***"
## [22] "Xs(lat)Fx1 -1.613 5.012 -0.322 0.748 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.227 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_arboreal_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xee6c970>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -21.625 4.465 -4.843 1.28e-06 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 3.367 3.367 40.2 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -5.96e-05 "
## [22] "glmer.ML = 956.31 Scale est. = 1 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_arboreal_future4C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 2592.5 2637.2 -1291.3 2582.5 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.4180 -0.0011 -0.0008 -0.0001 13.3765 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 150.584 12.271 "
## [15] " genus (Intercept) 3.428 1.851 "
## [16] " Xr s(lat) 6280.149 79.247 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -17.7872 0.9018 -19.724 <2e-16 ***"
## [22] "Xs(lat)Fx1 3.1894 3.2065 0.995 0.32 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.164 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_arboreal_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe458ce0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -17.787 2.558 -6.953 3.58e-12 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 4.941 4.941 114.6 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -8.71e-05 "
## [22] "glmer.ML = 2302.8 Scale est. = 1 n = 56210"
Linear mixed models
all_data <- bind_rows(pop_sub_current %>%
mutate(habitat_scenario = "substrate_current"), pop_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), pop_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), pop_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), pop_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), pop_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
# Load training data for taxonomic information
training_data <- readRDS("RData/General_data/pre_data_for_imputation.rds")
training_data <- dplyr::select(training_data, tip.label, family)
all_data <- distinct(left_join(all_data, training_data, by = "tip.label"))
split_names <- strsplit(as.character(all_data$tip.label), " ")
all_data$genus <- sapply(split_names, `[`, 1)
all_data$species <- sapply(split_names, `[`, 2)
all_data <- as.data.frame(all_data)
set.seed(123)
# Run model
model_risk <- glmer(overheating_risk ~ habitat_scenario - 1 + (1 | genus/species),
family = "binomial", control = glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb")),
data = all_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_risk, terms = "habitat_scenario", type = "random",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model and predictions
saveRDS(model_risk, file = "RData/Models/overheating_risk/sensitivity_analyses/model_lme4_overheating_risk_max_acc.rds")
saveRDS(predictions, file = "RData/Models/overheating_risk/sensitivity_analyses/predictions_lme4_overheating_risk_max_acc.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_risk_contrast <- glmer(overheating_risk ~ relevel(habitat_scenario, ref = "substrate_current") +
(1 | genus/species), family = "binomial", control = glmerControl(optimizer = "optimx",
optCtrl = list(method = "nlminb")), data = all_data)
saveRDS(model_risk_contrast, file = "RData/Models/overheating_risk/sensitivity_analyses/model_lme4_overheating_risk_contrast_max_acc.rds")
Model summaries
Overall means
# Model summary
model_overheating_risk <- readRDS("RData/Models/overheating_risk/sensitivity_analyses/model_lme4_overheating_risk_max_acc.rds")
summary(model_overheating_risk)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: overheating_risk ~ habitat_scenario - 1 + (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## AIC BIC logLik deviance df.resid
## 29567.6 29660.2 -14775.8 29551.6 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.918 -0.002 -0.001 -0.001 45.624
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 81.5706 9.0316
## genus (Intercept) 0.4659 0.6826
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -15.6418 0.4959 -31.55 <2e-16 ***
## habitat_scenarioarboreal_future2C -14.8025 0.4842 -30.57 <2e-16 ***
## habitat_scenarioarboreal_future4C -13.2896 0.4779 -27.81 <2e-16 ***
## habitat_scenariosubstrate_current -14.7069 0.4783 -30.75 <2e-16 ***
## habitat_scenariosubstrate_future2C -14.0563 0.4774 -29.44 <2e-16 ***
## habitat_scenariosubstrate_future4C -12.4522 0.4743 -26.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.960
## hbtt_scnrr_4C 0.968 0.981
## hbtt_scnrs_ 0.967 0.980 0.988
## hbtt_scnrs_2C 0.969 0.982 0.990 0.992
## hbtt_scnrs_4C 0.970 0.983 0.991 0.994 0.996
# Predictions
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/predictions_lme4_overheating_risk_max_acc.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 1.610156e-07 0.4958600 6.092438e-08 4.255441e-07
## 2 arboreal_future2C 3.727044e-07 0.4842092 1.442796e-07 9.627729e-07
## 3 arboreal_future4C 1.691918e-06 0.4778910 6.631293e-07 4.316779e-06
## 4 substrate_current 4.100781e-07 0.4783021 1.605962e-07 1.047123e-06
## 5 substrate_future2C 7.859973e-07 0.4774354 3.083383e-07 2.003615e-06
## 6 substrate_future4C 3.908934e-06 0.4742619 1.543003e-06 9.902576e-06
Contrasts
model_overheating_risk_contrast <- readRDS("RData/Models/overheating_risk/sensitivity_analyses/model_lme4_overheating_risk_contrast_max_acc.rds")
summary(model_overheating_risk_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## overheating_risk ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## AIC BIC logLik deviance df.resid
## 29567.6 29660.2 -14775.8 29551.6 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.918 -0.002 -0.001 -0.001 45.624
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 81.5711 9.0317
## genus (Intercept) 0.4659 0.6826
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate
## (Intercept) -14.70695
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.93485
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.09556
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.41727
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.65061
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.25468
## Std. Error
## (Intercept) 0.50246
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.12532
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.09642
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.07400
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.05950
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.05369
## z value
## (Intercept) -29.270
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -7.460
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.991
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 19.152
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 10.934
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 41.993
## Pr(>|z|)
## (Intercept) < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 8.68e-14
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.322
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C < 2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.032
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.042 0.241
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.058 0.305
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.074 0.291
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.089 0.312
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.397
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.379
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.408
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.496
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.545
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.695
## optimizer (optimx) convergence code: 0 (OK)
## unable to evaluate scaled gradient
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Uncertain estimates
Here, we capped the distribution of simulated CTmax estimates to the “biological range”, that is, the standard deviation of all CTmax estimats across species (s.e. range across habitats: 1.84-2.17).
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_overheating_risk_sensitivity_analysis_large_se.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_overheating_risk_sensitivity_analysis_large_se.pbs
Generalized additive mixed models
# Load population-level data Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current_large_se.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C_large_se.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C_large_se.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current_large_se.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C_large_se.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C_large_se.rds")
# Function to run population-level overheating_risk models in parallel
run_overheating_risk_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(overheating_risk ~ s(lat, bs = "tp"), random = ~(1 | genus/species),
data = data, family = binomial(), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
overheating_risk = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$overheating_risk_pred <- pred$fit
new_data$overheating_risk_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = overheating_risk_pred + 1.96 * overheating_risk_pred_se,
lower = overheating_risk_pred - 1.96 * overheating_risk_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_",
habitat_scenario, "_large_se.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_",
habitat_scenario, "_large_se.rds"))
saveRDS(new_data, file = paste0("RData/Models/overheating_risk/sensitivity_analyses/predictions_pop_lat_overheating_risk_",
habitat_scenario, "_large_se.rds"))
}
# Create a list of all the datasets
dataset_list <- list(arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C)
# Run in parallel
plan(multicore(workers = 2))
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_overheating_risk_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_substrate_current_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 13134.4 13185.6 -6562.2 13124.4 203849 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-2.346 -0.013 -0.004 -0.002 36.093 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 10.75 3.279 "
## [15] " genus (Intercept) 27.06 5.202 "
## [16] " Xr s(lat) 2401.27 49.003 "
## [17] "Number of obs: 203854, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -12.1521 0.4389 -27.69 <2e-16 ***"
## [22] "Xs(lat)Fx1 19.4681 1.6442 11.84 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.012 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_substrate_current_large_se.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd152b28>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -12.1521 0.5221 -23.27 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.13 8.13 289.1 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -5.21e-06 "
## [22] "glmer.ML = 10870 Scale est. = 1 n = 203854"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_substrate_future2C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 18342.4 18393.6 -9166.2 18332.4 203848 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-3.997 -0.028 -0.009 -0.004 34.761 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 7.769 2.787 "
## [15] " genus (Intercept) 25.511 5.051 "
## [16] " Xr s(lat) 2213.285 47.046 "
## [17] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -10.7965 0.4248 -25.415 < 2e-16 ***"
## [22] "Xs(lat)Fx1 22.6735 3.5351 6.414 1.42e-10 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.043 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_substrate_future2C_large_se.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xfc2dd60>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -10.7965 0.4311 -25.05 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.298 8.298 443.3 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 1.7e-05 "
## [22] "glmer.ML = 15319 Scale est. = 1 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_substrate_future4C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 45494.1 45545.2 -22742.0 45484.1 203848 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-11.156 -0.096 -0.024 -0.009 45.889 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 6.587 2.566 "
## [15] " genus (Intercept) 19.040 4.363 "
## [16] " Xr s(lat) 1118.540 33.445 "
## [17] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -7.868e+00 1.214e-04 -64809 <2e-16 ***"
## [22] "Xs(lat)Fx1 1.659e+01 8.652e-05 191762 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.000 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_substrate_future4C_large_se.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x27da4e40>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -7.868 0.280 -28.1 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.65 8.65 3111 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.000337 "
## [22] "glmer.ML = 40037 Scale est. = 1 n = 203853"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_arboreal_current_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1849.5 1894.1 -919.7 1839.5 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.9316 -0.0016 -0.0004 -0.0001 19.5060 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 17.91 4.232 "
## [15] " genus (Intercept) 162.23 12.737 "
## [16] " Xr s(lat) 146071.72 382.193 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -34.189 1.754 -19.49 <2e-16 ***"
## [22] "Xs(lat)Fx1 -54.681 1.381 -39.59 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.081 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_arboreal_current_large_se.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xda1f890>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -34.189 6.642 -5.148 2.64e-07 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.618 5.618 122.8 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -9.94e-05 "
## [22] "glmer.ML = 1584.6 Scale est. = 1 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_arboreal_future2C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 2333.0 2377.7 -1161.5 2323.0 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.9333 -0.0039 -0.0005 -0.0001 17.1610 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 12.84 3.584 "
## [15] " genus (Intercept) 303.02 17.408 "
## [16] " Xr s(lat) 247157.81 497.150 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -42.4092 0.9078 -46.71 <2e-16 ***"
## [22] "Xs(lat)Fx1 -95.1064 2.8268 -33.64 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 -0.117"
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_arboreal_future2C_large_se.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xfbe2300>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -42.409 7.465 -5.681 1.34e-08 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.802 5.802 157.2 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.000103 "
## [22] "glmer.ML = 1965.6 Scale est. = 1 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_arboreal_future4C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 4949.4 4994.1 -2469.7 4939.4 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-2.264 -0.002 -0.001 0.000 46.184 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 1.974e+02 14.05 "
## [15] " genus (Intercept) 1.664e+00 1.29 "
## [16] " Xr s(lat) 2.643e+05 514.06 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -1.829e+01 6.313e-04 -28964 <2e-16 ***"
## [22] "Xs(lat)Fx1 -1.221e+02 6.120e-04 -199453 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.256 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_arboreal_future4C_large_se.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x1311f2e0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -18.285 1.441 -12.69 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.794 7.794 234.8 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -0.000137 "
## [22] "glmer.ML = 4066.6 Scale est. = 1 n = 56210"
Linear mixed models
all_data <- bind_rows(pop_sub_current %>%
mutate(habitat_scenario = "substrate_current"), pop_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), pop_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), pop_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), pop_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), pop_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
# Load training data for taxonomic information
training_data <- readRDS("RData/General_data/pre_data_for_imputation.rds")
training_data <- dplyr::select(training_data, tip.label, family)
all_data <- distinct(left_join(all_data, training_data, by = "tip.label"))
split_names <- strsplit(as.character(all_data$tip.label), " ")
all_data$genus <- sapply(split_names, `[`, 1)
all_data$species <- sapply(split_names, `[`, 2)
all_data <- as.data.frame(all_data)
set.seed(123)
# Run model
model_risk <- glmer(overheating_risk ~ habitat_scenario - 1 + (1 | genus/species),
family = "binomial", control = glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb")),
data = all_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_risk, terms = "habitat_scenario", type = "random",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model and predictions
saveRDS(model_risk, file = "RData/Models/overheating_risk/sensitivity_analyses/model_lme4_overheating_risk_large_se.rds")
saveRDS(predictions, file = "RData/Models/overheating_risk/sensitivity_analyses/predictions_lme4_overheating_risk_large_se.rds")
#### Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
# Run model
model_risk_contrast <- glmer(overheating_risk ~ relevel(habitat_scenario, ref = "substrate_current") +
(1 | genus/species), family = "binomial", control = glmerControl(optimizer = "optimx",
optCtrl = list(method = "nlminb")), data = all_data)
# Save model
saveRDS(model_risk_contrast, file = "RData/Models/overheating_risk/sensitivity_analyses/model_lme4_overheating_risk_contrast_large_se.rds")
Model summaries
Overall means
# Model summary
model_overheating_risk <- readRDS("RData/Models/overheating_risk/sensitivity_analyses/model_lme4_overheating_risk_large_se.rds")
summary(model_overheating_risk)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: overheating_risk ~ habitat_scenario - 1 + (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## AIC BIC logLik deviance df.resid
## 90485.7 90578.2 -45234.8 90469.7 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.746 -0.051 -0.013 -0.005 51.912
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 7.539 2.746
## genus (Intercept) 13.856 3.722
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -10.9196 0.6984 -15.63 <2e-16 ***
## habitat_scenarioarboreal_future2C -10.5035 0.7049 -14.90 <2e-16 ***
## habitat_scenarioarboreal_future4C -9.1584 0.6953 -13.17 <2e-16 ***
## habitat_scenariosubstrate_current -9.6894 0.6896 -14.05 <2e-16 ***
## habitat_scenariosubstrate_future2C -9.0441 0.6876 -13.15 <2e-16 ***
## habitat_scenariosubstrate_future4C -7.1405 0.6836 -10.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.994
## hbtt_scnrr_4C 0.995 0.996
## hbtt_scnrs_ 0.996 0.996 0.997
## hbtt_scnrs_2C 0.996 0.997 0.998 0.999
## hbtt_scnrs_4C 0.996 0.997 0.998 0.999 0.999
# Predictions
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/predictions_lme4_overheating_risk_large_se.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 1.809897e-05 0.6984369 4.604146e-06 0.0000711445
## 2 arboreal_future2C 2.743895e-05 0.7049310 6.891885e-06 0.0001092371
## 3 arboreal_future4C 1.053213e-04 0.6952511 2.696196e-05 0.0004113221
## 4 substrate_current 6.193364e-05 0.6896438 1.602953e-05 0.0002392630
## 5 substrate_future2C 1.180714e-04 0.6876270 3.068128e-05 0.0004542634
## 6 substrate_future4C 7.916939e-04 0.6835597 2.074742e-04 0.0030160363
Contrasts
model_overheating_risk_contrast <- readRDS("RData/Models/overheating_risk/sensitivity_analyses/model_lme4_overheating_risk_contrast_large_se.rds")
summary(model_overheating_risk_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## overheating_risk ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## AIC BIC logLik deviance df.resid
## 90485.7 90578.2 -45234.8 90469.7 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.746 -0.051 -0.013 -0.005 51.911
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 7.539 2.746
## genus (Intercept) 13.856 3.722
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate
## (Intercept) -9.68936
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -1.23024
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.81416
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.53098
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.64527
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.54882
## Std. Error
## (Intercept) 0.25390
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.06400
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.05911
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.04973
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.03078
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.02906
## z value
## (Intercept) -38.16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -19.22
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -13.77
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 10.68
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 20.97
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 87.71
## Pr(>|z|)
## (Intercept) <2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.024
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.045 0.278
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.048 0.285
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.074 0.258
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.123 0.244
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.311
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.284
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.273
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.350
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.362
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.650
Strict estimates
Here, we classified an overheating event only when 95% confidence intervals did not overlap with zero.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_overheating_risk_sensitivity_analysis_strict_estimates.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_overheating_risk_sensitivity_analysis_strict_estimates.pbs
Generalized additive mixed models
# Load population-level data Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
## We do not load pond data because none of the species overheat in water
## bodies
# Function to run population-level overheating_risk models in parallel
run_overheating_risk_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(overheating_risk_strict ~ s(lat, bs = "tp"), random = ~(1 |
genus/species), data = data, family = binomial(), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
overheating_risk_strict = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$overheating_risk_pred <- pred$fit
new_data$overheating_risk_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = overheating_risk_pred + 1.96 * overheating_risk_pred_se,
lower = overheating_risk_pred - 1.96 * overheating_risk_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_strict_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_strict_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/overheating_risk/sensitivity_analyses/predictions_pop_lat_overheating_risk_strict_",
habitat_scenario, ".rds"))
}
# Create a list of all the datasets
dataset_list <- list(arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C)
# Run sequentially to reduce computational demands
plan(sequential)
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_overheating_risk_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_strict_substrate_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 445.7 496.9 -217.9 435.7 203849 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-3.439 0.000 0.000 0.000 12.591 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 666.16 25.810 "
## [15] " genus (Intercept) 44.94 6.703 "
## [16] " Xr s(lat) 7113.14 84.339 "
## [17] "Number of obs: 203854, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -34.633 1.855 -18.675 <2e-16 ***"
## [22] "Xs(lat)Fx1 23.173 2.614 8.865 <2e-16 ***"
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.148 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_strict_substrate_current.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe2932f0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -34.63 14.48 -2.391 0.0168 *"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 2.446 2.446 16.08 0.00043 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -1.2e-05 "
## [22] "glmer.ML = 353.27 Scale est. = 1 n = 203854"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_strict_substrate_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1170.0 1221.2 -580.0 1160.0 203848 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-3.171 0.000 0.000 0.000 38.512 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 306.17 17.498 "
## [15] " genus (Intercept) 12.16 3.486 "
## [16] " Xr s(lat) 10926.91 104.532 "
## [17] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -27.838 1.262 -22.055 <2e-16 ***"
## [22] "Xs(lat)Fx1 1.283 2.222 0.577 0.564 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 -0.068"
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_strict_substrate_future2C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x14df9088>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -27.838 4.505 -6.18 6.42e-10 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 4.216 4.216 71.97 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -2.05e-05 "
## [22] "glmer.ML = 962.26 Scale est. = 1 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_strict_substrate_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 7287.7 7338.8 -3638.8 7277.7 203848 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-3.9298 -0.0008 -0.0004 -0.0003 24.7282 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 149.237 12.216 "
## [15] " genus (Intercept) 2.223 1.491 "
## [16] " Xr s(lat) 920.691 30.343 "
## [17] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -15.6467 0.4495 -34.813 < 2e-16 ***"
## [22] "Xs(lat)Fx1 6.8896 2.6389 2.611 0.00903 ** "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.046 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_strict_substrate_future4C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x12c01c60>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -15.6467 0.9921 -15.77 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.594 7.594 364.1 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -3.66e-05 "
## [22] "glmer.ML = 6167.8 Scale est. = 1 n = 203853"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_strict_arboreal_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 85.5 130.2 -37.8 75.5 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.2519 -0.0002 -0.0001 -0.0001 5.8028 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 137.82 11.740 "
## [15] " genus (Intercept) 15.88 3.985 "
## [16] " Xr s(lat) 0.00 0.000 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -17.848 3.864 -4.620 3.85e-06 ***"
## [22] "Xs(lat)Fx1 -1.146 1.446 -0.792 0.428 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.378 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_strict_arboreal_current.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xdf6f530>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -17.848 8.519 -2.095 0.0362 *"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value"
## [17] "s(lat) 1 1 0.532 0.466"
## [18] ""
## [19] "R-sq.(adj) = -1.78e-05 "
## [20] "glmer.ML = 60.336 Scale est. = 1 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_strict_arboreal_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 151.4 196.1 -70.7 141.4 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.5508 -0.0002 -0.0001 -0.0001 5.7212 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 165.86 12.879 "
## [15] " genus (Intercept) 16.33 4.041 "
## [16] " Xr s(lat) 0.00 0.000 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -17.9391 3.7416 -4.795 1.63e-06 ***"
## [22] "Xs(lat)Fx1 -0.9363 0.9616 -0.974 0.33 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.215 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_strict_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xbbdd790>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -17.939 9.265 -1.936 0.0528 ."
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value"
## [17] "s(lat) 1 1 0.89 0.346"
## [18] ""
## [19] "R-sq.(adj) = -1.78e-05 "
## [20] "glmer.ML = 124.57 Scale est. = 1 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_MER_pop_lat_overheating_risk_strict_arboreal_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1216.9 1261.6 -603.4 1206.9 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.1930 -0.0003 -0.0002 0.0000 6.2139 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 8.394 2.897 "
## [15] " genus (Intercept) 107.348 10.361 "
## [16] " Xr s(lat) 6292.572 79.326 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -24.242 2.363 -10.257 <2e-16 ***"
## [22] "Xs(lat)Fx1 -9.226 5.506 -1.676 0.0938 . "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.254 "
# Generalized additive model
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/summary_GAM_pop_lat_overheating_risk_strict_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "overheating_risk_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xeebd3e0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -24.242 7.727 -3.137 0.0017 **"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 2.726 2.726 67.6 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -4.83e-05 "
## [22] "glmer.ML = 1085.9 Scale est. = 1 n = 56210"
Linear mixed models
all_data <- bind_rows(pop_sub_current %>%
mutate(habitat_scenario = "substrate_current"), pop_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), pop_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), pop_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), pop_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), pop_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
# Load training data for taxonomic information
training_data <- readRDS("RData/General_data/pre_data_for_imputation.rds")
training_data <- dplyr::select(training_data, tip.label, family)
all_data <- distinct(left_join(all_data, training_data, by = "tip.label"))
split_names <- strsplit(as.character(all_data$tip.label), " ")
all_data$genus <- sapply(split_names, `[`, 1)
all_data$species <- sapply(split_names, `[`, 2)
all_data <- as.data.frame(all_data)
set.seed(123)
# Run model
model_risk <- glmer(overheating_risk_strict ~ habitat_scenario - 1 + (1 | genus/species),
family = "binomial", control = glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb")),
data = all_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_risk, terms = "habitat_scenario", type = "random",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model and predictions
saveRDS(model_risk, file = "RData/Models/overheating_risk/sensitivity_analyses/model_lme4_overheating_risk_strict.rds")
saveRDS(predictions, file = "RData/Models/overheating_risk/sensitivity_analyses/predictions_lme4_overheating_risk_strict.rds")
#### Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
# Run model
model_risk_contrast <- glmer(overheating_risk ~ relevel(habitat_scenario, ref = "substrate_current") +
(1 | genus/species), family = "binomial", control = glmerControl(optimizer = "optimx",
optCtrl = list(method = "nlminb")), data = all_data)
# Save model
saveRDS(model_risk_contrast, file = "RData/Models/overheating_risk/sensitivity_analyses/model_lme4_overheating_risk_contrast_strict.rds")
Model summaries
Overall means
# Model summary
model_overheating_risk <- readRDS("RData/Models/overheating_risk/sensitivity_analyses/model_lme4_overheating_risk_strict.rds")
summary(model_overheating_risk)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: overheating_risk_strict ~ habitat_scenario - 1 + (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## AIC BIC logLik deviance df.resid
## 11175.4 11267.9 -5579.7 11159.4 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.623 -0.001 0.000 0.000 42.784
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 102.4743 10.1230
## genus (Intercept) 0.9632 0.9814
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -18.5911 0.4907 -37.89 <2e-16 ***
## habitat_scenarioarboreal_future2C -17.4748 0.3882 -45.01 <2e-16 ***
## habitat_scenarioarboreal_future4C -14.6345 0.3385 -43.24 <2e-16 ***
## habitat_scenariosubstrate_current -17.3393 0.3486 -49.74 <2e-16 ***
## habitat_scenariosubstrate_future2C -16.2389 0.3385 -47.97 <2e-16 ***
## habitat_scenariosubstrate_future4C -13.5638 0.3300 -41.10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.535
## hbtt_scnrr_4C 0.635 0.809
## hbtt_scnrs_ 0.603 0.767 0.906
## hbtt_scnrs_2C 0.628 0.798 0.943 0.914
## hbtt_scnrs_4C 0.641 0.815 0.963 0.927 0.965
# Predictions
print(readRDS("RData/Models/overheating_risk/sensitivity_analyses/predictions_lme4_overheating_risk_strict.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 8.432919e-09 0.4907030 3.223226e-09 2.206303e-08
## 2 arboreal_future2C 2.574975e-08 0.3882067 1.203181e-08 5.510805e-08
## 3 arboreal_future4C 4.408666e-07 0.3384592 2.270964e-07 8.558626e-07
## 4 substrate_current 2.948686e-08 0.3486067 1.488998e-08 5.839330e-08
## 5 substrate_future2C 8.862341e-08 0.3385445 4.564349e-08 1.720751e-07
## 6 substrate_future4C 1.286225e-06 0.3299985 6.736308e-07 2.455906e-06
Contrasts
model_overheating_risk_contrast <- readRDS("RData/Models/overheating_risk/sensitivity_analyses/model_lme4_overheating_risk_contrast_strict.rds")
summary(model_overheating_risk_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## overheating_risk ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))
##
## AIC BIC logLik deviance df.resid
## 42530.0 42622.5 -21257.0 42514.0 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.622 -0.014 -0.002 -0.001 48.777
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 69.6531 8.3458
## genus (Intercept) 0.3059 0.5531
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate
## (Intercept) -13.81696
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.73922
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.02065
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.31597
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.65985
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.20877
## Std. Error
## (Intercept) 0.27087
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.09717
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.07987
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.06421
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.04859
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.04395
## z value
## (Intercept) -51.010
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -7.608
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.259
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 20.493
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 13.579
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 50.254
## Pr(>|z|)
## (Intercept) < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 2.79e-14
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.796
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C < 2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.065
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.077 0.263
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.088 0.315
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.102 0.303
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.131 0.319
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.384
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.371
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.392
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.461
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.500
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.690
Overheating days
Acclimation to the maximum weekly body temperature
Here, animals were acclimated daily to the weekly maximum body temperature experienced, as opposed to the weekly mean body temperature.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_overheating_days_sensitivity_analysis_max_acc.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_overheating_days_sensitivity_analysis_max_acc.pbs
Generalized additive mixed models
# Load population-level data
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_max_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_max_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_max_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_max_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_max_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_max_acc_future4C.rds")
## We do not load pond data because none of the species overheat in water bodies
# Function to run population-level overheating_days models in parallel
run_overheating_days_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), ' ')
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
dataset$overheating_days <- round(dataset$overheating_days)
data <- dataset
# Run model
model <- gamm4::gamm4(overheating_days ~ s(lat, bs = "tp"),
data = data, # Did not run with random effects
family = poisson(),
REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(
lat = seq(min(data$lat), max(data$lat), length = 1000),
overheating_days = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$overheating_days_pred <- pred$fit
new_data$overheating_days_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data,
upper = overheating_days_pred + 1.96 * overheating_days_pred_se,
lower = overheating_days_pred - 1.96 * overheating_days_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_", habitat_scenario, "_max_acc.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_", habitat_scenario, "_max_acc.rds"))
saveRDS(new_data, file = paste0("RData/Models/overheating_days/sensitivity_analyses/predictions_pop_lat_overheating_days_", habitat_scenario, "_max_acc.rds"))
}
# Create a list of all the datasets
dataset_list <- list(
arboreal_current = pop_arb_current,
arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C,
substrate_current = pop_sub_current,
substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C
)
# Set up parallel processing
plan(multicore(workers=2))
# Run function
results <- future_lapply(
names(dataset_list),
function(x) {run_overheating_days_analysis(dataset_list[[x]], x)},
future.packages = c("gamm4", "mgcv", "dplyr")
)
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_substrate_current_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 19902.1 19932.8 -9948.1 19896.1 203851 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.162 -0.116 -0.074 -0.039 114.127 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 904.9 30.08 "
## [15] "Number of obs: 203854, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -5.33758 0.04222 -126.425 <2e-16 ***"
## [20] "Xs(lat)Fx1 7.33028 0.88326 8.299 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.012"
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_substrate_current_max_acc.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xc0d1910>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -5.3376 0.0423 -126.2 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.436 8.436 1042 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.00376 "
## [22] "glmer.ML = 17123 Scale est. = 1 n = 203854"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_substrate_future2C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 34342.6 34373.3 -17168.3 34336.6 203850 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.224 -0.157 -0.095 -0.054 141.703 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 1201 34.66 "
## [15] "Number of obs: 203853, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -4.73765 0.03141 -150.84 <2e-16 ***"
## [20] "Xs(lat)Fx1 9.88070 0.80950 12.21 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.026"
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_substrate_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x10451bd8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -4.73765 0.03159 -150 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.593 8.593 2005 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.00468 "
## [22] "glmer.ML = 29877 Scale est. = 1 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_substrate_future4C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] "164977.5 165008.2 -82485.8 164971.5 203850 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.500 -0.404 -0.210 -0.114 257.582 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 2489 49.89 "
## [15] "Number of obs: 203853, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -3.13970 0.01446 -217.12 <2e-16 ***"
## [20] "Xs(lat)Fx1 22.00773 0.35008 62.86 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.046"
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_substrate_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xebc1620>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -3.13970 0.01505 -208.7 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.925 8.925 9784 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.00379 "
## [22] "glmer.ML = 1.5252e+05 Scale est. = 1 n = 203853"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_arboreal_current_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 3506.2 3533.0 -1750.1 3500.2 56207 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.146 -0.095 -0.038 -0.022 66.999 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 42713 206.7 "
## [15] "Number of obs: 56210, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -11.522 1.330 -8.66 <2e-16 ***"
## [20] "Xs(lat)Fx1 -18.342 1.547 -11.86 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.037"
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_arboreal_current_max_acc.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xc522538>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -11.522 2.648 -4.351 1.36e-05 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.739 5.739 214.5 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.00653 "
## [22] "glmer.ML = 2892.7 Scale est. = 1 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_arboreal_future2C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 5804.5 5831.3 -2899.2 5798.5 56207 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.199 -0.131 -0.048 -0.020 50.138 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 58479 241.8 "
## [15] "Number of obs: 56210, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -12.261 1.113 -11.02 <2e-16 ***"
## [20] "Xs(lat)Fx1 -41.165 1.298 -31.72 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.045"
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_arboreal_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x104798f0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -12.261 2.959 -4.143 3.43e-05 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.846 5.846 380.9 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.00839 "
## [22] "glmer.ML = 4855.4 Scale est. = 1 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_arboreal_future4C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 24997.9 25024.7 -12495.9 24991.9 56207 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.433 -0.282 -0.123 -0.044 124.828 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 314967 561.2 "
## [15] "Number of obs: 56210, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -5.91015 0.06077 -97.25 <2e-16 ***"
## [20] "Xs(lat)Fx1 -197.40931 0.82733 -238.61 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.150 "
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_arboreal_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x125ea4d8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -5.9101 0.4132 -14.3 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.632 8.632 1864 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.00605 "
## [22] "glmer.ML = 22466 Scale est. = 1 n = 56210"
Linear mixed models
all_data <- bind_rows(pop_sub_current %>%
mutate(habitat_scenario = "substrate_current"), pop_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), pop_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), pop_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), pop_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), pop_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
# Load training data for taxonomic information
training_data <- readRDS("RData/General_data/pre_data_for_imputation.rds")
training_data <- dplyr::select(training_data, tip.label, family)
all_data <- distinct(left_join(all_data, training_data, by = "tip.label"))
split_names <- strsplit(as.character(all_data$tip.label), " ")
all_data$genus <- sapply(split_names, `[`, 1)
all_data$species <- sapply(split_names, `[`, 2)
all_data$overheating_days <- round(all_data$overheating_days)
all_data <- as.data.frame(all_data)
set.seed(123)
# Run model Note that this model fails if we add an observation-level random
# effect
model_days <- glmer(overheating_days ~ habitat_scenario - 1 + (1 | genus/species),
family = "poisson", control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_days, terms = "habitat_scenario", type = "simulate",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model and predictions
saveRDS(model_days, file = "RData/Models/overheating_days/sensitivity_analyses/model_lme4_overheating_days_max_acc.rds")
saveRDS(predictions, file = "RData/Models/overheating_days/sensitivity_analyses/predictions_lme4_overheating_days_max_acc.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_days_contrast <- glmer(overheating_days ~ relevel(habitat_scenario, ref = "substrate_current") +
(1 | genus/species), family = "poisson", control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun = 1e+09)), data = all_data)
saveRDS(model_days_contrast, file = "RData/Models/overheating_days/sensitivity_analyses/model_lme4_overheating_days_contrast_max_acc.rds")
Model summaries
Overall means
# Model summary
model_overheating_days <- readRDS("RData/Models/overheating_days/sensitivity_analyses/model_lme4_overheating_days_max_acc.rds")
summary(model_overheating_days)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: overheating_days ~ habitat_scenario - 1 + (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 100864.9 100957.5 -50424.5 100848.9 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.080 -0.037 -0.003 -0.001 87.818
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 64.8573 8.0534
## genus (Intercept) 0.2616 0.5115
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -14.2460 0.3477 -40.97 <2e-16 ***
## habitat_scenarioarboreal_future2C -13.6453 0.3456 -39.48 <2e-16 ***
## habitat_scenarioarboreal_future4C -12.0414 0.3435 -35.05 <2e-16 ***
## habitat_scenariosubstrate_current -13.5700 0.3437 -39.48 <2e-16 ***
## habitat_scenariosubstrate_future2C -12.9451 0.3433 -37.71 <2e-16 ***
## habitat_scenariosubstrate_future4C -11.2541 0.3429 -32.82 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.979
## hbtt_scnrr_4C 0.985 0.991
## hbtt_scnrs_ 0.984 0.990 0.996
## hbtt_scnrs_2C 0.985 0.991 0.997 0.996
## hbtt_scnrs_4C 0.986 0.992 0.998 0.997 0.998
## optimizer (bobyqa) convergence code: 0 (OK)
## unable to evaluate scaled gradient
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
# Predictions
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/predictions_lme4_overheating_days_max_acc.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 0.005498666 0.01871166 0.000000e+00 0.03150240
## 2 arboreal_future2C 0.010008308 0.02622641 0.000000e+00 0.06091754
## 3 arboreal_future4C 0.049771571 0.06257812 5.797456e-03 0.16715487
## 4 substrate_current 0.008670887 0.02832957 9.688306e-06 0.05198242
## 5 substrate_future2C 0.016189362 0.03993918 7.498050e-04 0.08495202
## 6 substrate_future4C 0.087825325 0.09656397 1.978362e-02 0.29340799
Contrasts
model_overheating_days_contrast <- readRDS("RData/Models/overheating_days/sensitivity_analyses/model_lme4_overheating_days_contrast_max_acc.rds")
summary(model_overheating_days_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula:
## overheating_days ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 100863.0 100955.6 -50423.5 100847.0 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.080 -0.037 -0.004 -0.001 87.825
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 57.4615 7.5803
## genus (Intercept) 0.1881 0.4337
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate
## (Intercept) -13.15799
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.67223
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.07374
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.53071
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.62623
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.31662
## Std. Error
## (Intercept) 0.15738
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.06147
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.04878
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.03146
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.02923
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.02472
## z value
## (Intercept) -83.607
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -10.937
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -1.512
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 48.653
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 21.424
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 93.700
## Pr(>|z|)
## (Intercept) <2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.131
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.023
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.032 0.209
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.063 0.324
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.071 0.303
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.082 0.359
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.411
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.386
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.457
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.601
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.712
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.767
Uncertain estimates
Here, we capped the distribution of simulated CTmax estimates to the “biological range”, that is, the standard deviation of all CTmax estimats across species (s.e. range across habitats: 1.84-2.17).
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_overheating_days_sensitivity_analysis_strict_estimates.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_overheating_days_sensitivity_analysis_strict_estimates.pbs
Generalized additive mixed models
# Load population-level data
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current_large_se.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C_large_se.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C_large_se.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current_large_se.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C_large_se.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C_large_se.rds")
# Function to run population-level overheating_days models in parallel
run_overheating_days_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), ' ')
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
dataset$overheating_days <- round(dataset$overheating_days)
data <- dataset
# Run model
model <- gamm4::gamm4(overheating_days ~ s(lat, bs = "tp"),
data = data, # Did not run with random effects
family = poisson(),
REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(
lat = seq(min(data$lat), max(data$lat), length = 1000),
overheating_days = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$overheating_days_pred <- pred$fit
new_data$overheating_days_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data,
upper = overheating_days_pred + 1.96 * overheating_days_pred_se,
lower = overheating_days_pred - 1.96 * overheating_days_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_", habitat_scenario, "_large_se.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_", habitat_scenario, "_large_se.rds"))
saveRDS(new_data, file = paste0("RData/Models/overheating_days/sensitivity_analyses/predictions_pop_lat_overheating_days_", habitat_scenario, "_large_se.rds"))
}
# Create a list of all the datasets
dataset_list <- list(
arboreal_current = pop_arb_current,
arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C,
substrate_current = pop_sub_current,
substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C
)
# Run in parallel
plan(multicore(workers=2))
# Run function
results <- future_lapply(
names(dataset_list),
function(x) {run_overheating_days_analysis(dataset_list[[x]], x)},
future.packages = c("gamm4", "mgcv", "dplyr")
)
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_substrate_current_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] "115881.1 115911.8 -57937.6 115875.1 203851 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.464 -0.312 -0.199 -0.111 133.524 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 24460 156.4 "
## [15] "Number of obs: 203854, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -3.61613 0.02288 -158.0 <2e-16 ***"
## [20] "Xs(lat)Fx1 85.67589 0.32942 260.1 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.055"
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_substrate_current_large_se.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd1990f8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -3.616 0.033 -109.6 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.956 8.956 8220 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.00823 "
## [22] "glmer.ML = 1.0259e+05 Scale est. = 1 n = 203854"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_substrate_future2C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] "162415.8 162446.5 -81204.9 162409.8 203850 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.536 -0.376 -0.261 -0.153 162.364 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 19196 138.6 "
## [15] "Number of obs: 203853, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -3.14639 0.01842 -170.8 <2e-16 ***"
## [20] "Xs(lat)Fx1 77.66747 0.32015 242.6 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.069"
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_substrate_future2C_large_se.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x114bcac8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -3.14639 0.02788 -112.9 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.961 8.961 10150 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.00714 "
## [22] "glmer.ML = 1.4393e+05 Scale est. = 1 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_substrate_future4C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 630551.0 630581.6 -315272.5 630545.0 203850 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -1.01 -0.75 -0.60 -0.44 419.25 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 22055 148.5 "
## [15] "Number of obs: 203853, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -1.586341 0.008987 -176.5 <2e-16 ***"
## [20] "Xs(lat)Fx1 83.254237 0.178676 466.0 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.092"
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_substrate_future4C_large_se.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe171518>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -1.58634 0.01266 -125.3 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.996 8.996 23137 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.00521 "
## [22] "glmer.ML = 5.7947e+05 Scale est. = 1 n = 203853"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_arboreal_current_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 10541.3 10568.1 -5267.7 10535.3 56207 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.288 -0.194 -0.070 -0.034 130.583 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 80509 283.7 "
## [15] "Number of obs: 56210, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -11.5214 0.9559 -12.05 <2e-16 ***"
## [20] "Xs(lat)Fx1 -30.1984 1.3309 -22.69 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.313"
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_arboreal_current_large_se.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd9f7440>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -11.521 2.972 -3.877 0.000106 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 6.051 6.051 784.6 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.015 "
## [22] "glmer.ML = 8846 Scale est. = 1 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_arboreal_future2C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 15513.6 15540.4 -7753.8 15507.6 56207 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.358 -0.208 -0.089 -0.045 69.440 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 95349 308.8 "
## [15] "Number of obs: 56210, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -7.9900 0.5766 -13.86 <2e-16 ***"
## [20] "Xs(lat)Fx1 12.6144 0.8222 15.34 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.013"
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_arboreal_future2C_large_se.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x115aa788>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -7.990 2.855 -2.798 0.00514 **"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 6.298 6.298 1248 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0169 "
## [22] "glmer.ML = 13171 Scale est. = 1 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_overheating_days_arboreal_future4C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 77351.1 77378.0 -38672.6 77345.1 56207 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.822 -0.496 -0.229 -0.125 165.241 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 897657 947.4 "
## [15] "Number of obs: 56210, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -6.1628 0.1965 -31.36 <2e-16 ***"
## [20] "Xs(lat)Fx1 -306.7558 0.6639 -462.08 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.001 "
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_overheating_days_arboreal_future4C_large_se.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x1376f580>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -6.1628 0.2677 -23.02 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.915 8.915 7289 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0118 "
## [22] "glmer.ML = 71613 Scale est. = 1 n = 56210"
Linear mixed models
all_data <- bind_rows(pop_sub_current %>%
mutate(habitat_scenario = "substrate_current"), pop_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), pop_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), pop_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), pop_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), pop_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
# Load training data for taxonomic information
training_data <- readRDS("RData/General_data/pre_data_for_imputation.rds")
training_data <- dplyr::select(training_data, tip.label, family)
all_data <- distinct(left_join(all_data, training_data, by = "tip.label"))
split_names <- strsplit(as.character(all_data$tip.label), " ")
all_data$genus <- sapply(split_names, `[`, 1)
all_data$species <- sapply(split_names, `[`, 2)
all_data$overheating_days <- round(all_data$overheating_days)
all_data <- as.data.frame(all_data)
set.seed(123)
# Run model
model_days <- glmer(overheating_days ~ habitat_scenario - 1 + (1 | genus/species),
family = "poisson", control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05)),
data = all_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_days, terms = "habitat_scenario", type = "simulate",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model and predictions
saveRDS(model_days, file = "RData/Models/overheating_days/sensitivity_analyses/model_lme4_overheating_days_large_se.rds")
saveRDS(predictions, file = "RData/Models/overheating_days/sensitivity_analyses/predictions_lme4_overheating_days_large_se.rds")
#### Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_days_contrast <- glmer(overheating_days ~ relevel(habitat_scenario, ref = "substrate_current") +
(1 | genus/species), family = "poisson", control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun = 2e+05)), data = all_data)
# Save model
saveRDS(model_days_contrast, file = "RData/Models/overheating_days/sensitivity_analyses/model_lme4_overheating_days_contrast_large_se.rds")
Model summaries
Overall means
# Model summary
model_overheating_days <- readRDS("RData/Models/overheating_days/sensitivity_analyses/model_lme4_overheating_days_large_se.rds")
summary(model_overheating_days)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: overheating_days ~ habitat_scenario - 1 + (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
##
## AIC BIC logLik deviance df.resid
## 353715.1 353807.7 -176849.6 353699.1 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -7.757 -0.119 -0.036 -0.013 116.125
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 5.126 2.264
## genus (Intercept) 10.810 3.288
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -8.78303 0.08972 -97.89 <2e-16 ***
## habitat_scenarioarboreal_future2C -8.33161 0.08824 -94.42 <2e-16 ***
## habitat_scenarioarboreal_future4C -6.61641 0.08574 -77.17 <2e-16 ***
## habitat_scenariosubstrate_current -7.50610 0.08568 -87.61 <2e-16 ***
## habitat_scenariosubstrate_future2C -7.11985 0.08557 -83.20 <2e-16 ***
## habitat_scenariosubstrate_future4C -5.63146 0.08538 -65.96 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.913
## hbtt_scnrr_4C 0.939 0.958
## hbtt_scnrs_ 0.940 0.959 0.987
## hbtt_scnrs_2C 0.941 0.960 0.989 0.992
## hbtt_scnrs_4C 0.944 0.963 0.991 0.994 0.996
## optimizer (bobyqa) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00293739 (tol = 0.002, component 1)
# Predictions
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/predictions_lme4_overheating_days_large_se.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 0.02077671 0.04627302 0.000000000 0.1079345
## 2 arboreal_future2C 0.03266344 0.05930896 0.000000000 0.1542724
## 3 arboreal_future4C 0.18160059 0.14768843 0.045337573 0.4675765
## 4 substrate_current 0.06750145 0.11069186 0.007180139 0.3050997
## 5 substrate_future2C 0.09934247 0.13535109 0.015693662 0.3870997
## 6 substrate_future4C 0.44006150 0.29049445 0.160420867 1.0852381
Contrasts
model_overheating_days_contrast <- readRDS("RData/Models/overheating_days/sensitivity_analyses/model_lme4_overheating_days_contrast_large_se.rds")
summary(model_overheating_days_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula:
## overheating_days ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
##
## AIC BIC logLik deviance df.resid
## 353715.1 353807.7 -176849.6 353699.1 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -7.757 -0.119 -0.036 -0.013 116.125
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 5.127 2.264
## genus (Intercept) 10.826 3.290
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate
## (Intercept) -7.509992
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -1.276933
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.825492
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.889697
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.386253
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1.874651
## Std. Error
## (Intercept) 0.146079
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.030592
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.025095
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.013700
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.011029
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.009127
## z value
## (Intercept) -51.41
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -41.74
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -32.90
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 64.94
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 35.02
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 205.40
## Pr(>|z|)
## (Intercept) <2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current <2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C <2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C <2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C <2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C <2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.023
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.013 0.116
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.030 0.211
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.039 0.210
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.040 0.254
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.262
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.261
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.314
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.476
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.575
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.717
## optimizer (bobyqa) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00569692 (tol = 0.002, component 1)
Consecutive overheating days
Here, we specifically quantified the consecutive number of overheating events populations were predicted to experience.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_consecutive_overheating_days.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_consecutive_overheating_days.pbs
Generalized additive mixed models
# Load population-level data Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
## We do not load pond data because none of the species overheat in water
## bodies
# Function to run population-level consecutive_overheating_days models in
# parallel
run_consecutive_overheating_days_analysis <- function(dataset, habitat_scenario) {
split_names <- strsplit(as.character(dataset$tip.label), " ")
dataset$genus <- sapply(split_names, `[`, 1)
dataset$species <- sapply(split_names, `[`, 2)
data <- dataset
# Run model
model <- gamm4::gamm4(consecutive_overheating_days ~ s(lat, bs = "tp"), random = ~(1 |
genus/species), data = data, family = poisson(), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
consecutive_overheating_days = NA, genus = NA, species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$consecutive_overheating_days_pred <- pred$fit
new_data$consecutive_overheating_days_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = consecutive_overheating_days_pred + 1.96 *
consecutive_overheating_days_pred_se, lower = consecutive_overheating_days_pred -
1.96 * consecutive_overheating_days_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_consecutive_overheating_days_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_consecutive_overheating_days_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/overheating_days/sensitivity_analyses/predictions_pop_lat_consecutive_overheating_days_",
habitat_scenario, ".rds"))
}
# Create a list of all the datasets
dataset_list <- list(arboreal_current = pop_arb_current, arboreal_future2C = pop_arb_future2C,
arboreal_future4C = pop_arb_future4C, substrate_current = pop_sub_current, substrate_future2C = pop_sub_future2C,
substrate_future4C = pop_sub_future4C)
# Run sequentially to reduce memory demands
plan(sequential)
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_consecutive_overheating_days_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_consecutive_overheating_days_substrate_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 10567.1 10618.2 -5278.6 10557.1 203849 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.084 -0.006 -0.002 -0.001 36.700 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 62.790 7.924 "
## [15] " genus (Intercept) 1.174 1.084 "
## [16] " Xr s(lat) 1095.464 33.098 "
## [17] "Number of obs: 203854, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -13.026 0.397 -32.81 < 2e-16 ***"
## [22] "Xs(lat)Fx1 4.930 1.654 2.98 0.00288 ** "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 -0.015"
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_consecutive_overheating_days_substrate_current.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "consecutive_overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe343b50>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -13.0257 0.5234 -24.89 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.002 8.002 344.5 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -4.23e-05 "
## [22] "glmer.ML = 6097.7 Scale est. = 1 n = 203854"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_consecutive_overheating_days_substrate_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 16165.6 16216.7 -8077.8 16155.6 203848 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.4659 -0.0430 -0.0043 -0.0024 22.1602 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 44.0781 6.6391 "
## [15] " genus (Intercept) 0.5247 0.7244 "
## [16] " Xr s(lat) 790.3078 28.1124 "
## [17] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -11.4747 0.3336 -34.401 <2e-16 ***"
## [22] "Xs(lat)Fx1 4.3013 2.1272 2.022 0.0432 * "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.031 "
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_consecutive_overheating_days_substrate_future2C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "consecutive_overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd9c6350>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -11.4747 0.3496 -32.82 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.081 8.081 560.4 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -4.36e-05 "
## [22] "glmer.ML = 9476.5 Scale est. = 1 n = 203853"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_consecutive_overheating_days_substrate_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 31422.8 31473.9 -15706.4 31412.8 203848 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-2.2471 -0.0914 -0.0403 -0.0176 28.4693 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 3.666 1.915 "
## [15] " genus (Intercept) 8.657 2.942 "
## [16] " Xr s(lat) 443.697 21.064 "
## [17] "Number of obs: 203853, groups: species:genus, 5177; genus, 464; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -7.8885767 0.0001768 -44616.15 <2e-16 ***"
## [22] "Xs(lat)Fx1 2.1689940 4.5142451 0.48 0.631 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.002 "
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_consecutive_overheating_days_substrate_future4C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "consecutive_overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x1261dc90>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -7.8886 0.2285 -34.52 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.427 8.427 1254 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.000199 "
## [22] "glmer.ML = 18308 Scale est. = 1 n = 203853"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_consecutive_overheating_days_arboreal_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1900.3 1945.0 -945.2 1890.3 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.6999 -0.0013 -0.0009 -0.0002 13.3971 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 111.028 10.537 "
## [15] " genus (Intercept) 2.784 1.669 "
## [16] " Xr s(lat) 3067.634 55.386 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -15.9803 0.9147 -17.471 <2e-16 ***"
## [22] "Xs(lat)Fx1 3.9938 3.4993 1.141 0.254 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.179 "
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_consecutive_overheating_days_arboreal_current.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "consecutive_overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xbd25658>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -15.980 2.298 -6.955 3.53e-12 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 4.506 4.506 61.62 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -7.89e-05 "
## [22] "glmer.ML = 1085.8 Scale est. = 1 n = 56210"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_consecutive_overheating_days_arboreal_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 2877.3 2922.0 -1433.6 2867.3 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.750 -0.002 -0.001 0.000 140.558 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 99.646 9.982 "
## [15] " genus (Intercept) 1.805 1.344 "
## [16] " Xr s(lat) 1928.291 43.912 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -15.0245 0.7542 -19.922 <2e-16 ***"
## [22] "Xs(lat)Fx1 4.6891 3.1243 1.501 0.133 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.197 "
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_consecutive_overheating_days_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "consecutive_overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xc4ca6e8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -15.024 1.752 -8.577 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 4.447 4.447 81.28 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -7.6e-05 "
## [22] "glmer.ML = 1605.6 Scale est. = 1 n = 56210"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_MER_pop_lat_consecutive_overheating_days_arboreal_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 5934.9 5979.6 -2962.4 5924.9 56205 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.931 -0.062 -0.008 -0.004 80.227 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " species:genus (Intercept) 35.9172 5.9931 "
## [15] " genus (Intercept) 0.3581 0.5984 "
## [16] " Xr s(lat) 1457.8449 38.1817 "
## [17] "Number of obs: 56210, groups: species:genus, 1771; genus, 174; Xr, 8"
## [18] ""
## [19] "Fixed effects:"
## [20] " Estimate Std. Error z value Pr(>|z|) "
## [21] "X(Intercept) -10.9443 0.5265 -20.787 <2e-16 ***"
## [22] "Xs(lat)Fx1 -1.1617 4.7325 -0.245 0.806 "
## [23] "---"
## [24] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [25] ""
## [26] "Correlation of Fixed Effects:"
## [27] " X(Int)"
## [28] "Xs(lat)Fx1 0.077 "
# Generalized additive model
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/summary_GAM_pop_lat_consecutive_overheating_days_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "consecutive_overheating_days ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x1261e710>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -10.9443 0.5671 -19.3 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.985 5.985 190.2 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = -4.95e-05 "
## [22] "glmer.ML = 3302.8 Scale est. = 1 n = 56210"
Linear mixed models
all_data <- bind_rows(pop_sub_current %>%
mutate(habitat_scenario = "substrate_current"), pop_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), pop_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), pop_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), pop_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), pop_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
# Load training data for taxonomic information
training_data <- readRDS("RData/General_data/pre_data_for_imputation.rds")
training_data <- dplyr::select(training_data, tip.label, family)
all_data <- distinct(left_join(all_data, training_data, by = "tip.label"))
split_names <- strsplit(as.character(all_data$tip.label), " ")
all_data$genus <- sapply(split_names, `[`, 1)
all_data$species <- sapply(split_names, `[`, 2)
all_data <- as.data.frame(all_data)
set.seed(123)
# Run model Note that this model fails if we add an observation-level random
# effect
model_days <- glmer(consecutive_overheating_days ~ habitat_scenario - 1 + (1 | genus/species),
family = "poisson", control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_days, terms = "habitat_scenario", type = "simulate",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model summaries and predictions
saveRDS(model_days, file = "RData/Models/overheating_days/sensitivity_analyses/model_lme4_consecutive_overheating_days.rds")
saveRDS(predictions, file = "RData/Models/overheating_days/sensitivity_analyses/predictions_lme4_consecutive_overheating_days.rds")
# Contrasts
all_data$habitat_scenario <- as.factor(all_data$habitat_scenario)
model_days_contrast <- glmer(consecutive_overheating_days ~ relevel(habitat_scenario,
ref = "substrate_current") + (1 | genus/species), family = "poisson", control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun = 1e+09)), data = all_data)
saveRDS(model_days_contrast, file = "RData/Models/overheating_days/sensitivity_analyses/model_lme4_consecutive_overheating_days_contrast.rds")
Model summaries
Overall means
# Model summary
model_consecutive_overheating_days <- readRDS("RData/Models/overheating_days/sensitivity_analyses/model_lme4_consecutive_overheating_days.rds")
summary(model_consecutive_overheating_days)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula:
## consecutive_overheating_days ~ habitat_scenario - 1 + (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 69438.1 69530.7 -34711.1 69422.1 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.137 -0.059 -0.005 -0.003 39.821
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 44.4123 6.6643
## genus (Intercept) 0.1269 0.3562
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -12.2565 0.1754 -69.86 <2e-16 ***
## habitat_scenarioarboreal_future2C -11.7922 0.1724 -68.42 <2e-16 ***
## habitat_scenarioarboreal_future4C -11.0017 0.1690 -65.10 <2e-16 ***
## habitat_scenariosubstrate_current -11.8071 0.1670 -70.71 <2e-16 ***
## habitat_scenariosubstrate_future2C -11.3683 0.1675 -67.89 <2e-16 ***
## habitat_scenariosubstrate_future4C -10.4993 0.1665 -63.07 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.906
## hbtt_scnrr_4C 0.925 0.945
## hbtt_scnrs_ 0.926 0.946 0.966
## hbtt_scnrs_2C 0.930 0.951 0.970 0.980
## hbtt_scnrs_4C 0.935 0.955 0.975 0.985 0.989
# Predictions
print(readRDS("RData/Models/overheating_days/sensitivity_analyses/predictions_lme4_consecutive_overheating_days.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 0.005058175 0.02749854 0 0.04777664
## 2 arboreal_future2C 0.008042768 0.03578911 0 0.07052482
## 3 arboreal_future4C 0.017733962 0.05502097 0 0.11259829
## 4 substrate_current 0.007285969 0.03835059 0 0.06515276
## 5 substrate_future2C 0.011307854 0.04856460 0 0.09458924
## 6 substrate_future4C 0.026949645 0.07643345 0 0.17518150
Contrasts
model_consecutive_overheating_days_contrast <- readRDS("RData/Models/overheating_days/sensitivity_analyses/model_lme4_consecutive_overheating_days_contrast.rds")
summary(model_consecutive_overheating_days_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula:
## consecutive_overheating_days ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | genus/species)
## Data: all_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 69438.1 69530.7 -34711.1 69422.1 780182
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.137 -0.059 -0.005 -0.003 39.821
##
## Random effects:
## Groups Name Variance Std.Dev.
## species:genus (Intercept) 44.4191 6.6648
## genus (Intercept) 0.1269 0.3563
## Number of obs: 780190, groups: species:genus, 5177; genus, 464
##
## Fixed effects:
## Estimate
## (Intercept) -11.80747
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.44937
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.01492
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.80538
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.43878
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1.30776
## Std. Error
## (Intercept) 0.23523
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.06623
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.05565
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.04362
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.03306
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.02909
## z value
## (Intercept) -50.195
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -6.785
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.268
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 18.464
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 13.273
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 44.949
## Pr(>|z|)
## (Intercept) < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 1.16e-11
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.789
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C < 2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.042
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.054 0.245
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.070 0.312
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.082 0.301
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.093 0.342
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.373
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.359
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.409
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.459
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.522
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.690
Number of species overheating
Acclimation to the maximum weekly body temperature
Here, animals were acclimated daily to the weekly maximum body temperature experienced, as opposed to the weekly mean body temperature.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_n_species_overheating_sensitivity_analysis_max_acc.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_n_species_overheating_sensitivity_analysis_max_acc.pbs
Generalized additive mixed models
# Load community-level data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_max_acc_current.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_max_acc_future2C.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_max_acc_future4C.rds")
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_max_acc_current.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_max_acc_future2C.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_max_acc_future4C.rds")
# Function to run models quantifying the number of species overheating in each
# community
run_community_n_species_overheating_analysis <- function(dataset, habitat_scenario) {
data <- dataset
# Run model
model <- gamm4::gamm4(n_species_overheating ~ s(lat, bs = "tp"), data = data,
family = poisson(), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
n_species_overheating = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$n_species_overheating_pred <- pred$fit
new_data$n_species_overheating_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = n_species_overheating_pred + 1.96 * n_species_overheating_pred_se,
lower = n_species_overheating_pred - 1.96 * n_species_overheating_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_lat_number_sp_overheating_",
habitat_scenario, "_max_acc.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_lat_number_sp_overheating_",
habitat_scenario, "_max_acc.rds"))
saveRDS(new_data, file = paste0("RData/Models/n_species_overheating/sensitivity_analyses/predictions_lat_number_sp_overheating_",
habitat_scenario, "_max_acc.rds"))
}
# Create a list of datasets
dataset_list <- list(arboreal_current = community_arb_current, arboreal_future2C = community_arb_future2C,
arboreal_future4C = community_arb_future4C, substrate_current = community_sub_current,
substrate_future2C = community_sub_future2C, substrate_future4C = community_sub_future4C)
# Set up parallel processing
plan(multicore(workers = 3))
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_community_n_species_overheating_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_lat_number_sp_overheating_substrate_current_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 4246.9 4269.6 -2120.5 4240.9 14088 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.569 -0.167 -0.047 -0.033 45.827 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 3219 56.73 "
## [15] "Number of obs: 14091, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -5.7355 0.2811 -20.402 <2e-16 ***"
## [20] "Xs(lat)Fx1 0.7937 4.8830 0.163 0.871 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.119"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_lat_number_sp_overheating_substrate_current_max_acc.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xa5ac168>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -5.7355 0.3067 -18.7 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.538 7.538 640.8 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0265 "
## [22] "glmer.ML = 3701.6 Scale est. = 1 n = 14091"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_lat_number_sp_overheating_substrate_future2C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 6761.3 6783.9 -3377.6 6755.3 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.724 -0.238 -0.082 -0.064 114.299 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 1100 33.17 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -4.5629 0.1774 -25.725 <2e-16 ***"
## [20] "Xs(lat)Fx1 1.4772 8.9050 0.166 0.868 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.418"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_lat_number_sp_overheating_substrate_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x92f7398>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -4.5629 0.1774 -25.72 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.655 7.655 1072 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0353 "
## [22] "glmer.ML = 5942.6 Scale est. = 1 n = 14090"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_lat_number_sp_overheating_substrate_future4C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 16909.5 16932.2 -8451.8 16903.5 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.047 -0.510 -0.264 -0.077 51.278 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 487.1 22.07 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -2.70074 0.06041 -44.705 < 2e-16 ***"
## [20] "Xs(lat)Fx1 10.04588 2.08636 4.815 1.47e-06 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.108"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_lat_number_sp_overheating_substrate_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xfd6d398>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -2.70074 0.06094 -44.31 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.632 8.632 2380 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0555 "
## [22] "glmer.ML = 14248 Scale est. = 1 n = 14090"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_lat_number_sp_overheating_arboreal_current_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 704.0 724.4 -349.0 698.0 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.3337 -0.0519 -0.0007 0.0000 21.2315 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 3142 56.06 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -20.526 8.105 -2.532 0.0113 *"
## [20] "Xs(lat)Fx1 -4.741 13.506 -0.351 0.7256 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.385 "
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_lat_number_sp_overheating_arboreal_current_max_acc.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x7c942e0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -20.53 10.74 -1.912 0.0559 ."
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 2.602 2.602 24.77 1.04e-05 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0316 "
## [22] "glmer.ML = 554.55 Scale est. = 1 n = 6614"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_lat_number_sp_overheating_arboreal_future2C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1345.3 1365.7 -669.6 1339.3 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.457 -0.095 -0.015 -0.001 38.033 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 1818 42.63 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -9.847 3.496 -2.816 0.00486 **"
## [20] "Xs(lat)Fx1 1.476 6.420 0.230 0.81811 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.313 "
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_lat_number_sp_overheating_arboreal_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xa59dd08>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -9.847 5.349 -1.841 0.0656 ."
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 3.918 3.918 133.3 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0443 "
## [22] "glmer.ML = 1106.1 Scale est. = 1 n = 6614"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_lat_number_sp_overheating_arboreal_future4C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 3309.0 3329.4 -1651.5 3303.0 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.7987 -0.2181 -0.0598 0.0000 20.3801 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 12885 113.5 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -16.379 2.304 -7.109 1.17e-12 ***"
## [20] "Xs(lat)Fx1 -17.604 2.736 -6.435 1.24e-10 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.019 "
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_lat_number_sp_overheating_arboreal_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x9b47c00>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -16.379 6.944 -2.359 0.0183 *"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.728 5.728 484.3 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0854 "
## [22] "glmer.ML = 2637.8 Scale est. = 1 n = 6614"
Linear mixed models
all_community_data <- bind_rows(community_sub_current %>%
mutate(habitat_scenario = "substrate_current"), community_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), community_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), community_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), community_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), community_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
all_community_data <- all_community_data %>%
mutate(obs = as.character(row_number()))
all_community_data <- as.data.frame(all_community_data)
set.seed(123)
# Intercept-less model
model_n_sp <- glmer(n_species_overheating ~ habitat_scenario - 1 + (1 | obs), family = "poisson",
control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_community_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_n_sp, terms = "habitat_scenario", type = "simulate",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model summaries and predictions
saveRDS(model_n_sp, file = "RData/Models/n_species_overheating/sensitivity_analyses/model_lme4_number_sp_overheating_max_acc.rds")
saveRDS(predictions, file = "RData/Models/n_species_overheating/sensitivity_analyses/predictions_lme4_number_sp_overheating_max_acc.rds")
# Contrast
all_community_data$habitat_scenario <- as.factor(all_community_data$habitat_scenario)
model_n_sp_contrast <- glmer(n_species_overheating ~ relevel(habitat_scenario, ref = "substrate_current") +
(1 | obs), family = "poisson", control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_community_data)
saveRDS(model_n_sp_contrast, file = "RData/Models/n_species_overheating/sensitivity_analyses/model_lme4_number_sp_overheating_contrast_max_acc.rds")
Model summaries
Overall means
model_n_sp <- readRDS("RData/Models/n_species_overheating/sensitivity_analyses/model_lme4_number_sp_overheating_max_acc.rds")
summary(model_n_sp)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: n_species_overheating ~ habitat_scenario - 1 + (1 | obs)
## Data: all_community_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 16494.9 16558.1 -8240.4 16480.9 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.018260 -0.013230 -0.010071 -0.008235 0.176696
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 61.34 7.832
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -10.1001 0.3312 -30.49 <2e-16 ***
## habitat_scenarioarboreal_future2C -9.6775 0.2792 -34.67 <2e-16 ***
## habitat_scenarioarboreal_future4C -8.6398 0.1795 -48.14 <2e-16 ***
## habitat_scenariosubstrate_current -9.5946 0.1930 -49.72 <2e-16 ***
## habitat_scenariosubstrate_future2C -9.1899 0.1643 -55.94 <2e-16 ***
## habitat_scenariosubstrate_future4C -7.9856 0.1147 -69.65 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.064
## hbtt_scnrr_4C 0.096 0.120
## hbtt_scnrs_ 0.091 0.114 0.172
## hbtt_scnrs_2C 0.107 0.133 0.201 0.191
## hbtt_scnrs_4C 0.154 0.192 0.289 0.275 0.321
# Predictions
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/predictions_lme4_number_sp_overheating_max_acc.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 0.01139583 0.01029020 0.0004535833 0.03220819
## 2 arboreal_future2C 0.02515014 0.01838379 0.0025703054 0.06214469
## 3 arboreal_future4C 0.08264167 0.05548052 0.0143596916 0.19430753
## 4 substrate_current 0.03622688 0.02145316 0.0089418778 0.07920304
## 5 substrate_future2C 0.06280582 0.03427338 0.0174556423 0.13137686
## 6 substrate_future4C 0.19927296 0.11325213 0.0517264017 0.42998581
Contrasts
model_n_sp_contrast <- readRDS("RData/Models/n_species_overheating/sensitivity_analyses/model_lme4_number_sp_overheating_contrast_max_acc.rds")
summary(model_n_sp_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula:
## n_species_overheating ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | obs)
## Data: all_community_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 16494.9 16558.1 -8240.4 16480.9 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.018260 -0.013230 -0.010071 -0.008236 0.176707
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 61.34 7.832
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate
## (Intercept) -9.59441
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.50633
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.08315
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.95460
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.40444
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1.60873
## Std. Error
## (Intercept) 0.19061
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.36943
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.32216
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.23653
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.22694
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.19326
## z value
## (Intercept) -50.335
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -1.371
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.258
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 4.036
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1.782
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 8.324
## Pr(>|z|)
## (Intercept) < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.1705
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.7963
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 5.44e-05
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.0747
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C < 2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C .
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.424
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.499 0.256
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.664 0.340
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.699 0.359
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.818 0.420
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.398
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.421
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.493
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.559
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.655
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.692
Uncertain estimates
Here, we capped the distribution of simulated CTmax estimates to the “biological range”, that is, the standard deviation of all CTmax estimats across species (s.e. range across habitats: 1.84-2.17).
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_n_species_overheating_sensitivity_analysis_large_se.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_n_species_overheating_sensitivity_analysis_large_se.pbs
Generalized additive mixed models
# Load community-level data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_large_se.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_large_se.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_large_se.rds")
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_large_se.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_large_se.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_large_se.rds")
# Function to run models quantifying the number of species overheating in each
# community
run_community_n_species_overheating_analysis <- function(dataset, habitat_scenario) {
data <- dataset
# Run model
model <- gamm4::gamm4(n_species_overheating ~ s(lat, bs = "tp"), data = data,
family = poisson(), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
n_species_overheating = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$n_species_overheating_pred <- pred$fit
new_data$n_species_overheating_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = n_species_overheating_pred + 1.96 * n_species_overheating_pred_se,
lower = n_species_overheating_pred - 1.96 * n_species_overheating_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_n_sp_overheating_",
habitat_scenario, "_large_se.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_n_sp_overheating_",
habitat_scenario, "_large_se.rds"))
saveRDS(new_data, file = paste0("RData/Models/n_species_overheating/sensitivity_analyses/predictions_community_lat_n_sp_overheating_",
habitat_scenario, "_large_se.rds"))
}
# Create a list of datasets
dataset_list <- list(arboreal_current = community_arb_current, arboreal_future2C = community_arb_future2C,
arboreal_future4C = community_arb_future4C, substrate_current = community_sub_current,
substrate_future2C = community_sub_future2C, substrate_future4C = community_sub_future4C)
# Set up parallel processing
plan(multicore(workers = 3))
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_community_n_species_overheating_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_n_sp_overheating_substrate_current_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 14866.9 14889.6 -7430.5 14860.9 14088 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.229 -0.350 -0.146 -0.043 54.384 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 302.4 17.39 "
## [15] "Number of obs: 14091, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -3.5628 0.1181 -30.156 < 2e-16 ***"
## [20] "Xs(lat)Fx1 7.4356 2.7936 2.662 0.00778 ** "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.028"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_n_sp_overheating_substrate_current_large_se.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x9d8c118>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -3.5628 0.1194 -29.83 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.912 7.912 3165 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0971 "
## [22] "glmer.ML = 12440 Scale est. = 1 n = 14091"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_n_sp_overheating_substrate_future2C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 20167.6 20190.3 -10080.8 20161.6 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.410 -0.453 -0.190 -0.047 56.227 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 411.7 20.29 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -3.10649 0.09956 -31.201 < 2e-16 ***"
## [20] "Xs(lat)Fx1 12.94131 4.35164 2.974 0.00294 ** "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.267"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_n_sp_overheating_substrate_future2C_large_se.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd597fc8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -3.10649 0.09805 -31.68 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.364 8.364 4126 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.107 "
## [22] "glmer.ML = 16829 Scale est. = 1 n = 14090"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_n_sp_overheating_substrate_future4C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 42673.1 42695.8 -21333.6 42667.1 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.7830 -0.9173 -0.1787 -0.0361 30.5305 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 2153 46.41 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -2.0233 0.0603 -33.56 <2e-16 ***"
## [20] "Xs(lat)Fx1 33.0983 2.1216 15.60 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.353"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_n_sp_overheating_substrate_future4C_large_se.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xec72990>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -2.02333 0.06436 -31.44 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.927 8.927 4802 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.124 "
## [22] "glmer.ML = 33976 Scale est. = 1 n = 14090"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_n_sp_overheating_arboreal_current_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 2589.8 2610.2 -1291.9 2583.8 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.7578 -0.1406 -0.0645 0.0000 24.4840 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 51368 226.6 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -35.73 14.30 -2.500 0.0124 *"
## [20] "Xs(lat)Fx1 -46.79 82.90 -0.564 0.5725 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.579 "
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_n_sp_overheating_arboreal_current_large_se.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd2400a8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -35.73 14.30 -2.499 0.0124 *"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.758 5.758 391.9 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0784 "
## [22] "glmer.ML = 2100.1 Scale est. = 1 n = 6614"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_n_sp_overheating_arboreal_future2C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 3299.4 3319.8 -1646.7 3293.4 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.8633 -0.1872 -0.0790 0.0000 20.7263 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 92849 304.7 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -49.977 1.210 -41.29 <2e-16 ***"
## [20] "Xs(lat)Fx1 -84.121 1.041 -80.83 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.185 "
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_n_sp_overheating_arboreal_future2C_large_se.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x9d5ed10>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -49.98 18.40 -2.716 0.00661 **"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.887 5.887 532.1 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0844 "
## [22] "glmer.ML = 2650.3 Scale est. = 1 n = 6614"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_n_sp_overheating_arboreal_future4C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 6592.9 6613.3 -3293.4 6586.9 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.1127 -0.3557 -0.2074 -0.0052 20.3349 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 248182 498.2 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -15.164 1.508 -10.06 <2e-16 ***"
## [20] "Xs(lat)Fx1 -198.051 2.945 -67.25 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.081"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_n_sp_overheating_arboreal_future4C_large_se.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd4905b8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -15.164 2.003 -7.571 3.69e-14 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.47 8.47 1328 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0972 "
## [22] "glmer.ML = 5309.8 Scale est. = 1 n = 6614"
Linear mixed models
all_community_data <- bind_rows(community_sub_current %>%
mutate(habitat_scenario = "substrate_current"), community_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), community_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), community_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), community_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), community_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
all_community_data <- all_community_data %>%
mutate(obs = as.character(row_number()))
all_community_data <- as.data.frame(all_community_data)
set.seed(123)
# Intercept-less model
model_n_sp <- glmer(n_species_overheating ~ habitat_scenario - 1 + (1 | obs), family = "poisson",
control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_community_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_n_sp, terms = "habitat_scenario", type = "simulate",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model summaries and predictions
saveRDS(model_n_sp, file = "RData/Models/n_species_overheating/sensitivity_analyses/model_lme4_number_sp_overheating_large_se.rds")
saveRDS(predictions, file = "RData/Models/n_species_overheating/sensitivity_analyses/predictions_lme4_number_sp_overheating_large_se.rds")
# Contrast
all_community_data$habitat_scenario <- as.factor(all_community_data$habitat_scenario)
model_n_sp_contrast <- glmer(n_species_overheating ~ relevel(habitat_scenario, ref = "substrate_current") +
(1 | obs), family = "poisson", control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_community_data)
saveRDS(model_n_sp_contrast, file = "RData/Models/n_species_overheating/sensitivity_analyses/model_lme4_number_sp_overheating_contrast_large_se.rds")
Model summaries
Overall means
model_n_sp_large_se <- readRDS("RData/Models/n_species_overheating/sensitivity_analyses/model_lme4_number_sp_overheating_large_se.rds")
summary(model_n_sp_large_se)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: n_species_overheating ~ habitat_scenario - 1 + (1 | obs)
## Data: all_community_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 53178.7 53241.9 -26582.3 53164.7 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.0544 -0.0320 -0.0274 -0.0203 0.2446
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 36.19 6.016
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -8.08053 0.16614 -48.64 <2e-16 ***
## habitat_scenarioarboreal_future2C -7.77967 0.14636 -53.15 <2e-16 ***
## habitat_scenarioarboreal_future4C -7.08235 0.11408 -62.08 <2e-16 ***
## habitat_scenariosubstrate_current -7.16722 0.08833 -81.14 <2e-16 ***
## habitat_scenariosubstrate_future2C -6.84713 0.08165 -83.86 <2e-16 ***
## habitat_scenariosubstrate_future4C -5.71584 0.07083 -80.70 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.102
## hbtt_scnrr_4C 0.132 0.149
## hbtt_scnrs_ 0.171 0.193 0.252
## hbtt_scnrs_2C 0.186 0.210 0.273 0.354
## hbtt_scnrs_4C 0.226 0.255 0.332 0.430 0.468
# Predictions
readRDS("RData/Models/n_species_overheating/sensitivity_analyses/predictions_lme4_number_sp_overheating_large_se.rds")
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 0.05967750 0.04389789 0.01057227 0.1392652
## 2 arboreal_future2C 0.08119822 0.05895920 0.01525930 0.1903689
## 3 arboreal_future4C 0.18172437 0.11845051 0.04278047 0.4052275
## 4 substrate_current 0.19846675 0.11488562 0.05817898 0.4146228
## 5 substrate_future2C 0.29441363 0.15943887 0.09145848 0.5967158
## 6 substrate_future4C 0.83881519 0.41051857 0.27138396 1.6457399
Contrasts
model_n_sp_large_se_contrast <- readRDS("RData/Models/n_species_overheating/sensitivity_analyses/model_lme4_number_sp_overheating_contrast_large_se.rds")
summary(model_n_sp_large_se_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula:
## n_species_overheating ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | obs)
## Data: all_community_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 53178.7 53241.9 -26582.3 53164.7 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.0544 -0.0320 -0.0274 -0.0203 0.2446
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 36.19 6.016
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate
## (Intercept) -7.16711
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.91338
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.61264
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.08482
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.32002
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1.45132
## Std. Error
## (Intercept) 0.08692
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.17573
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.15624
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.12425
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.09614
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.08537
## z value
## (Intercept) -82.458
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -5.198
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -3.921
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.683
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 3.329
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 17.001
## Pr(>|z|)
## (Intercept) < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 2.02e-07
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 8.81e-05
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.494829
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.000872
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C < 2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.344
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.381 0.194
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.472 0.240
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.611 0.312
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.669 0.351
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.266
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.346
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.389
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.428
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.481
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.626
Strict estimates
Here, we classified an overheating event only when 95% confidence intervals did not overlap with zero.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_n_species_overheating_sensitivity_analysis_strict_estimates.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_n_species_overheating_sensitivity_analysis_strict_estimates.pbs
Generalized additive mixed models
# Load community-level data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
# Function to run models quantifying the number of species overheating in each
# community
run_community_n_species_overheating_analysis <- function(dataset, habitat_scenario) {
data <- dataset
# Run model
model <- gamm4::gamm4(n_species_overheating_strict ~ s(lat, bs = "tp"), data = data,
family = poisson(), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
n_species_overheating_strict = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$n_species_overheating_pred <- pred$fit
new_data$n_species_overheating_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = n_species_overheating_pred + 1.96 * n_species_overheating_pred_se,
lower = n_species_overheating_pred - 1.96 * n_species_overheating_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_number_sp_overheating_strict_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_number_sp_overheating_strict_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/n_species_overheating/sensitivity_analyses/predictions_community_lat_number_sp_overheating_strict_",
habitat_scenario, ".rds"))
}
# Create a list of datasets
dataset_list <- list(arboreal_current = community_arb_current, arboreal_future2C = community_arb_future2C,
arboreal_future4C = community_arb_future4C, substrate_current = community_sub_current,
substrate_future2C = community_sub_future2C, substrate_future4C = community_sub_future4C)
# Set up parallel processing
plan(multicore(workers = 3))
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_community_n_species_overheating_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_number_sp_overheating_strict_substrate_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 716.4 739.0 -355.2 710.4 14088 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.312 -0.006 0.000 0.000 70.935 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 4459 66.78 "
## [15] "Number of obs: 14091, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -19.452 4.873 -3.992 6.56e-05 ***"
## [20] "Xs(lat)Fx1 9.664 4.072 2.373 0.0176 * "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.182 "
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_number_sp_overheating_strict_substrate_current.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xaaf43e8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|)"
## [11] "(Intercept) -19.45 17.87 -1.088 0.276"
## [12] ""
## [13] "Approximate significance of smooth terms:"
## [14] " edf Ref.df Chi.sq p-value "
## [15] "s(lat) 2.937 2.937 52.85 <2e-16 ***"
## [16] "---"
## [17] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [18] ""
## [19] "R-sq.(adj) = 0.0285 "
## [20] "glmer.ML = 568.09 Scale est. = 1 n = 14091"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_number_sp_overheating_strict_substrate_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1553.4 1576.1 -773.7 1547.4 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.484 -0.047 -0.006 0.000 106.991 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 4236 65.08 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -13.0237 1.7377 -7.495 6.65e-14 ***"
## [20] "Xs(lat)Fx1 0.7986 2.3508 0.340 0.734 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.015"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_number_sp_overheating_strict_substrate_future2C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe2377f0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -13.024 4.378 -2.975 0.00293 **"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.084 5.084 218.8 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0426 "
## [22] "glmer.ML = 1257.3 Scale est. = 1 n = 14090"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_number_sp_overheating_strict_substrate_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 9509.9 9532.5 -4751.9 9503.9 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.797 -0.349 -0.198 -0.023 62.672 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 2203 46.93 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -4.2362 0.1687 -25.106 < 2e-16 ***"
## [20] "Xs(lat)Fx1 27.1669 5.3046 5.121 3.03e-07 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.284"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_number_sp_overheating_strict_substrate_future4C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x1384d5a0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -4.2362 0.1727 -24.52 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.649 8.649 1172 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0492 "
## [22] "glmer.ML = 8014.1 Scale est. = 1 n = 14090"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_number_sp_overheating_strict_arboreal_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 103.9 124.3 -49.0 97.9 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.0968 -0.0136 -0.0002 0.0000 12.9639 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 5508 74.21 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -23.2856 13.1526 -1.770 0.0767 ."
## [20] "Xs(lat)Fx1 -0.5435 25.2009 -0.022 0.9828 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.351 "
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_number_sp_overheating_strict_arboreal_current.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xdedf7a0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|)"
## [11] "(Intercept) -23.29 15.21 -1.531 0.126"
## [12] ""
## [13] "Approximate significance of smooth terms:"
## [14] " edf Ref.df Chi.sq p-value"
## [15] "s(lat) 1.752 1.752 1.3 0.422"
## [16] ""
## [17] "R-sq.(adj) = 0.00674 "
## [18] "glmer.ML = 68.824 Scale est. = 1 n = 6614"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_number_sp_overheating_strict_arboreal_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 222.9 243.2 -108.4 216.9 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.2012 -0.0024 0.0000 0.0000 11.5111 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 21680 147.2 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -39.934 9.186 -4.347 1.38e-05 ***"
## [20] "Xs(lat)Fx1 -2.660 9.498 -0.280 0.779 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.006 "
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_number_sp_overheating_strict_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xaab9ca0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|)"
## [11] "(Intercept) -39.93 28.58 -1.397 0.162"
## [12] ""
## [13] "Approximate significance of smooth terms:"
## [14] " edf Ref.df Chi.sq p-value"
## [15] "s(lat) 1.922 1.922 1.584 0.428"
## [16] ""
## [17] "R-sq.(adj) = 0.0214 "
## [18] "glmer.ML = 158.89 Scale est. = 1 n = 6614"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_MER_community_lat_number_sp_overheating_strict_arboreal_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: poisson ( log )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1658.4 1678.8 -826.2 1652.4 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.6068 -0.0613 -0.0007 0.0000 14.9049 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 3817 61.78 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -21.332 4.850 -4.398 1.09e-05 ***"
## [20] "Xs(lat)Fx1 -6.616 7.536 -0.878 0.38 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.090"
# Generalized additive model
print(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/summary_GAM_community_lat_number_sp_overheating_strict_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: poisson "
## [3] "Link function: log "
## [4] ""
## [5] "Formula:"
## [6] "n_species_overheating_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe12fde0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -21.33 10.95 -1.949 0.0513 ."
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 2.861 2.861 109.3 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.065 "
## [22] "glmer.ML = 1341.3 Scale est. = 1 n = 6614"
Linear mixed models
# Run analyses with lme4 to estimate the mean number of species overheating in
# each microhabitat and scenario
all_community_data <- bind_rows(community_sub_current %>%
mutate(habitat_scenario = "substrate_current"), community_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), community_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), community_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), community_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), community_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
all_community_data <- all_community_data %>%
mutate(obs = as.character(row_number()))
all_community_data <- as.data.frame(all_community_data)
set.seed(123)
# Intercept-less model
model_n_sp <- glmer(n_species_overheating_strict ~ habitat_scenario - 1 + (1 | obs),
family = "poisson", control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_community_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_n_sp, terms = "habitat_scenario", type = "simulate",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model summaries and predictions
saveRDS(model_n_sp, file = "RData/Models/n_species_overheating/sensitivity_analyses/model_lme4_number_sp_overheating_strict.rds")
saveRDS(predictions, file = "RData/Models/n_species_overheating/sensitivity_analyses/predictions_lme4_number_sp_overheating_strict.rds")
# Contrast
all_community_data$habitat_scenario <- as.factor(all_community_data$habitat_scenario)
model_n_sp_contrast <- glmer(n_species_overheating ~ relevel(habitat_scenario, ref = "substrate_current") +
(1 | obs), family = "poisson", control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_community_data)
saveRDS(model_n_sp_contrast, file = "RData/Models/n_species_overheating/sensitivity_analyses/model_lme4_number_sp_overheating_contrast_strict.rds")
Model summaries
Overall means
model_n_sp_strict <- readRDS("RData/Models/n_species_overheating/sensitivity_analyses/model_lme4_number_sp_overheating_strict.rds")
summary(model_n_sp_strict)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: n_species_overheating_strict ~ habitat_scenario - 1 + (1 | obs)
## Data: all_community_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 7553.6 7616.9 -3769.8 7539.6 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.011703 -0.007796 -0.005328 -0.003787 0.181138
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 73.39 8.567
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -12.3257 0.8713 -14.15 <2e-16 ***
## habitat_scenarioarboreal_future2C -11.4395 0.5854 -19.54 <2e-16 ***
## habitat_scenarioarboreal_future4C -9.7038 0.2717 -35.72 <2e-16 ***
## habitat_scenariosubstrate_current -11.1514 0.3630 -30.72 <2e-16 ***
## habitat_scenariosubstrate_future2C -10.4676 0.2723 -38.44 <2e-16 ***
## habitat_scenariosubstrate_future4C -8.8858 0.1613 -55.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.019
## hbtt_scnrr_4C 0.044 0.073
## hbtt_scnrs_ 0.032 0.054 0.124
## hbtt_scnrs_2C 0.044 0.074 0.169 0.126
## hbtt_scnrs_4C 0.074 0.124 0.284 0.211 0.287
# Predictions
summary(readRDS("RData/Models/n_species_overheating/sensitivity_analyses/predictions_lme4_number_sp_overheating_strict.rds"))
## habitat_scenario prediction se
## arboreal_current :1 Min. :0.0008704 Min. :0.001098
## arboreal_future2C :1 1st Qu.:0.0034003 1st Qu.:0.003413
## arboreal_future4C :1 Median :0.0094288 Median :0.007419
## substrate_current :1 Mean :0.0263921 Mean :0.017401
## substrate_future2C:1 3rd Qu.:0.0314779 3rd Qu.:0.021490
## substrate_future4C:1 Max. :0.0984064 Max. :0.060211
## lower_CI upper_CI
## Min. :0.000e+00 Min. :0.003175
## 1st Qu.:5.322e-05 1st Qu.:0.010459
## Median :8.871e-04 Median :0.024629
## Mean :4.441e-03 Mean :0.062029
## 3rd Qu.:3.563e-03 3rd Qu.:0.075685
## Max. :2.064e-02 Max. :0.221304
Contrasts
model_n_sp_strict_contrast <- readRDS("RData/Models/n_species_overheating/sensitivity_analyses/model_lme4_number_sp_overheating_contrast_strict.rds")
summary(model_n_sp_strict_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula:
## n_species_overheating ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | obs)
## Data: all_community_data
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 22227.8 22291.0 -11106.9 22213.8 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.02314 -0.01565 -0.01330 -0.01045 0.18585
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 55.46 7.447
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate
## (Intercept) -9.1163
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.4640
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.0677
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.8149
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.4859
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1.6135
## Std. Error
## (Intercept) 0.1566
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.3006
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.2563
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.2024
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.1830
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.1586
## z value
## (Intercept) -58.229
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -1.544
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.264
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 4.026
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 2.655
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 10.176
## Pr(>|z|)
## (Intercept) < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.12266
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.79168
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 5.67e-05
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.00793
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C < 2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C **
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.415
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.482 0.248
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.623 0.322
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.692 0.358
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.798 0.413
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.372
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.413
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.477
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.536
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.619
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.688
Proportion of species overheating
Acclimation to the maximum weekly body temperature
Here, animals were acclimated daily to the weekly maximum body temperature experienced, as opposed to the weekly mean body temperature.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_prop_species_overheating_sensitivity_analysis_max_acc.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_prop_species_overheating_sensitivity_analysis_max_acc.pbs
Generalized additive mixed models
# Load community-level data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_max_acc_current.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_max_acc_future2C.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_max_acc_future4C.rds")
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_max_acc_current.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_max_acc_future2C.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_max_acc_future4C.rds")
# Function to run models estimating the mean overheating risk (i.e., proportion
# of species overheating)
run_community_proportion_overheating_analysis <- function(dataset, habitat_scenario) {
data <- dataset
# Run model
model <- gamm4::gamm4(proportion_species_overheating ~ s(lat, bs = "tp"), data = data,
weights = data$n_species, family = binomial(), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
proportion_species_overheating = NA, n_species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$overheating_risk_pred <- pred$fit
new_data$overheating_risk_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = overheating_risk_pred + 1.96 * overheating_risk_pred_se,
lower = overheating_risk_pred - 1.96 * overheating_risk_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_community_lat_proportion_sp_overheating_",
habitat_scenario, "_max_acc.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_community_lat_proportion_sp_overheating_",
habitat_scenario, "_max_acc.rds"))
saveRDS(new_data, file = paste0("RData/Models/prop_species_overheating/sensitivity_analyses/predictions_community_lat_proportion_sp_overheating_",
habitat_scenario, "_max_acc.rds"))
}
# Create a list of datasets
dataset_list <- list(arboreal_current = community_arb_current, arboreal_future2C = community_arb_future2C,
arboreal_future4C = community_arb_future4C, substrate_current = community_sub_current,
substrate_future2C = community_sub_future2C, substrate_future4C = community_sub_future4C)
# Set up parallel processing
plan(multicore(workers = 3))
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_community_proportion_overheating_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_lat_prop_sp_overheating_substrate_current_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 3747.8 3770.5 -1870.9 3741.8 14088 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.977 -0.121 -0.048 -0.024 121.194 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 3406 58.36 "
## [15] "Number of obs: 14091, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -8.0219 0.3028 -26.493 <2e-16 ***"
## [20] "Xs(lat)Fx1 0.5608 6.7522 0.083 0.934 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.138"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_lat_prop_sp_overheating_substrate_current_max_acc.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xddc6840>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -8.0219 0.3131 -25.62 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.551 7.551 266.5 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.017 "
## [22] "glmer.ML = 3220.7 Scale est. = 1 n = 14091"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_lat_prop_sp_overheating_substrate_future2C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 5853.5 5876.1 -2923.7 5847.5 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -1.248 -0.179 -0.083 -0.043 129.775 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 1112 33.35 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -6.8209 0.1677 -40.667 <2e-16 ***"
## [20] "Xs(lat)Fx1 1.8846 5.3069 0.355 0.722 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.247"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_lat_prop_sp_overheating_substrate_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xaa7ae10>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -6.8209 0.1766 -38.62 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 7.664 7.664 439.4 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0247 "
## [22] "glmer.ML = 5074.6 Scale est. = 1 n = 14090"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_lat_prop_sp_overheating_substrate_future4C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 14444.7 14467.4 -7219.4 14438.7 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.809 -0.419 -0.196 -0.078 55.196 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 410.2 20.25 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -4.93669 0.06125 -80.602 < 2e-16 ***"
## [20] "Xs(lat)Fx1 9.65786 2.79579 3.454 0.000551 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.145"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_lat_prop_sp_overheating_substrate_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x115917f8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -4.9367 0.0615 -80.27 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.533 8.533 1071 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0446 "
## [22] "glmer.ML = 11986 Scale est. = 1 n = 14090"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_lat_prop_sp_overheating_arboreal_current_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 536.3 556.7 -265.1 530.3 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.6223 -0.0377 -0.0006 0.0000 15.3169 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 2894 53.8 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -23.148 7.743 -2.990 0.00279 **"
## [20] "Xs(lat)Fx1 -5.986 12.590 -0.475 0.63449 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.306 "
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_lat_prop_sp_overheating_arboreal_current_max_acc.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x92f0a60>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -23.15 10.37 -2.232 0.0256 *"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 2.601 2.601 23.07 2.41e-05 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0668 "
## [22] "glmer.ML = 388.85 Scale est. = 1 n = 6614"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_lat_prop_sp_overheating_arboreal_future2C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 999.2 1019.6 -496.6 993.2 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.8368 -0.0775 -0.0104 -0.0006 30.7742 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 1844 42.94 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -11.4408 3.4131 -3.352 0.000802 ***"
## [20] "Xs(lat)Fx1 0.8913 9.2013 0.097 0.922835 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.382 "
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_lat_prop_sp_overheating_arboreal_future2C_max_acc.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xbd17410>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -11.441 5.406 -2.116 0.0343 *"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 3.914 3.914 110.2 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0914 "
## [22] "glmer.ML = 764.23 Scale est. = 1 n = 6614"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_lat_prop_sp_overheating_arboreal_future4C_max_acc.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 2359.8 2380.2 -1176.9 2353.8 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.4676 -0.1675 -0.0444 0.0000 25.8171 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 19642 140.1 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -21.940 3.781 -5.802 6.54e-09 ***"
## [20] "Xs(lat)Fx1 -29.835 3.467 -8.606 < 2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.310 "
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_lat_prop_sp_overheating_arboreal_future4C_max_acc.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xb2ca228>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -21.940 8.596 -2.552 0.0107 *"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.775 5.775 342.4 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.152 "
## [22] "glmer.ML = 1705.8 Scale est. = 1 n = 6614"
Linear mixed models
all_community_data <- bind_rows(community_sub_current %>%
mutate(habitat_scenario = "substrate_current"), community_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), community_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), community_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), community_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), community_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
all_community_data <- all_community_data %>%
mutate(obs = as.character(row_number()))
all_community_data <- as.data.frame(all_community_data)
set.seed(123)
# Intercept-less model
model_prop <- glmer(proportion_species_overheating ~ habitat_scenario - 1 + (1 |
obs), family = "binomial", weights = n_species, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun = 1e+09)), data = all_community_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_prop, terms = "habitat_scenario", type = "random",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model summaries and predictions
saveRDS(model_prop, file = "RData/Models/prop_species_overheating/sensitivity_analyses/model_lme4_prop_species_overheating_max_acc.rds")
saveRDS(predictions, file = "RData/Models/prop_species_overheating/sensitivity_analyses/predictions_lme4_prop_species_overheating_max_acc.rds")
# Contrast
all_community_data$habitat_scenario <- as.factor(all_community_data$habitat_scenario)
model_prop_contrast <- glmer(proportion_species_overheating ~ relevel(habitat_scenario,
ref = "substrate_current") + (1 | obs), family = "binomial", weights = n_species,
control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_community_data)
saveRDS(model_prop_contrast, file = "RData/Models/prop_species_overheating/sensitivity_analyses/model_lme4_prop_species_overheating_contrast_max_acc.rds")
Model summaries
Overall means
model_n_sp <- readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/model_lme4_prop_species_overheating_max_acc.rds")
summary(model_n_sp)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: proportion_species_overheating ~ habitat_scenario - 1 + (1 | obs)
## Data: all_community_data
## Weights: n_species
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 15507.3 15570.5 -7746.6 15493.3 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.08103 -0.01606 -0.00928 -0.00521 0.63320
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 42.34 6.507
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -11.7171 0.3201 -36.61 <2e-16 ***
## habitat_scenarioarboreal_future2C -11.2608 0.2657 -42.39 <2e-16 ***
## habitat_scenarioarboreal_future4C -10.1017 0.1780 -56.74 <2e-16 ***
## habitat_scenariosubstrate_current -11.6579 0.1835 -63.51 <2e-16 ***
## habitat_scenariosubstrate_future2C -11.2045 0.1588 -70.56 <2e-16 ***
## habitat_scenariosubstrate_future4C -9.8106 0.1195 -82.10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.088
## hbtt_scnrr_4C 0.132 0.160
## hbtt_scnrs_ 0.128 0.156 0.234
## hbtt_scnrs_2C 0.149 0.181 0.272 0.264
## hbtt_scnrs_4C 0.203 0.246 0.370 0.360 0.417
# Predictions
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/predictions_lme4_prop_species_overheating_max_acc.rds"))
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 8.152996e-06 0.3200699 4.353865e-06 1.526716e-05
## 2 arboreal_future2C 1.286760e-05 0.2656602 7.644860e-06 2.165829e-05
## 3 arboreal_future4C 4.100811e-05 0.1780290 2.892920e-05 5.813007e-05
## 4 substrate_current 8.650537e-06 0.1835489 6.036804e-06 1.239592e-05
## 5 substrate_future2C 1.361252e-05 0.1588019 9.971666e-06 1.858270e-05
## 6 substrate_future4C 5.486433e-05 0.1195021 4.340849e-05 6.934324e-05
Contrasts
model_n_sp_contrast <- readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/model_lme4_prop_species_overheating_contrast_max_acc.rds")
summary(model_n_sp_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## proportion_species_overheating ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | obs)
## Data: all_community_data
## Weights: n_species
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 15507.3 15570.5 -7746.6 15493.3 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.08102 -0.01606 -0.00928 -0.00521 0.63320
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 42.34 6.507
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate
## (Intercept) -11.65795
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.05933
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.39721
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.55619
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.45339
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1.84731
## Std. Error
## (Intercept) 0.18286
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.34937
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.29848
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.22318
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.20810
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.17889
## z value
## (Intercept) -63.753
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.170
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1.331
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 6.973
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 2.179
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 10.326
## Pr(>|z|)
## (Intercept) < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.8652
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.1833
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 3.11e-12
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.0294
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C < 2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C *
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.408
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.475 0.250
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.632 0.333
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.678 0.358
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.783 0.416
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.388
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.417
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.485
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.555
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.646
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.694
Uncertain estimates
Here, we capped the distribution of simulated CTmax estimates to the “biological range”, that is, the standard deviation of all CTmax estimats across species (s.e. range across habitats: 1.84-2.17).
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_prop_species_overheating_sensitivity_analysis_large_se.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_prop_species_overheating_sensitivity_analysis_large_se.pbs
Generalized additive mixed models
# Load community-level data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_large_se.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_large_se.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_large_se.rds")
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_large_se.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_large_se.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_large_se.rds")
# Function to run models estimating the mean overheating risk (i.e., proportion of species overheating)
run_community_proportion_overheating_analysis <- function(dataset, habitat_scenario) {
data <- dataset
# Run model
model <- gamm4::gamm4(proportion_species_overheating ~ s(lat, bs = "tp"),
data = data,
weights = data$n_species,
family = binomial(),
REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(
lat = seq(min(data$lat), max(data$lat), length = 1000),
proportion_species_overheating = NA,
n_species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$overheating_risk_pred <- pred$fit
new_data$overheating_risk_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data,
upper = overheating_risk_pred + 1.96 * overheating_risk_pred_se,
lower = overheating_risk_pred - 1.96 * overheating_risk_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_commu_lat_prop_sp_overheating_", habitat_scenario, "_large_se.rds"))
saveRDS(summary_mer, file = paste0("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_commu_lat_prop_sp_overheating_", habitat_scenario, "_large_se.rds"))
saveRDS(new_data, file = paste0("RData/Models/prop_species_overheating/sensitivity_analyses/predictions_commu_lat_prop_sp_overheating_", habitat_scenario, "_large_se.rds"))
}
# Create a list of datasets
dataset_list <- list(
arboreal_current = community_arb_current,
arboreal_future2C = community_arb_future2C,
arboreal_future4C = community_arb_future4C,
substrate_current = community_sub_current,
substrate_future2C = community_sub_future2C,
substrate_future4C = community_sub_future4C
)
# Set up parallel processing
plan(multicore(workers=3))
# Run function
results <- future_lapply(
names(dataset_list),
function(x) {run_community_proportion_overheating_analysis(dataset_list[[x]], x)},
future.packages = c("gamm4", "mgcv", "dplyr")
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_commu_lat_prop_sp_overheating_substrate_current_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 12711.3 12734.0 -6352.7 12705.3 14088 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-2.007 -0.322 -0.110 -0.042 31.857 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 752.9 27.44 "
## [15] "Number of obs: 14091, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -5.8330 0.1197 -48.726 < 2e-16 ***"
## [20] "Xs(lat)Fx1 15.5420 4.0031 3.883 0.000103 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.146"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_commu_lat_prop_sp_overheating_substrate_current_large_se.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x9e05970>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -5.8330 0.1211 -48.18 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.203 8.203 1281 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0559 "
## [22] "glmer.ML = 10409 Scale est. = 1 n = 14091"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_commu_lat_prop_sp_overheating_substrate_future2C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 17402.9 17425.6 -8698.4 17396.9 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-2.3307 -0.3917 -0.1445 -0.0449 29.3353 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 1906 43.66 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -5.4564 0.1138 -47.942 < 2e-16 ***"
## [20] "Xs(lat)Fx1 32.0749 8.2738 3.877 0.000106 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.531"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_commu_lat_prop_sp_overheating_substrate_future2C_large_se.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd6564d8>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -5.456 0.107 -51.01 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.652 8.652 1461 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0555 "
## [22] "glmer.ML = 14286 Scale est. = 1 n = 14090"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_commu_lat_prop_sp_overheating_substrate_future4C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 39815.5 39838.1 -19904.7 39809.5 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-3.638 -0.758 -0.169 -0.030 38.506 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 4317 65.71 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -4.39290 0.06298 -69.75 <2e-16 ***"
## [20] "Xs(lat)Fx1 48.99481 2.23300 21.94 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.373"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_commu_lat_prop_sp_overheating_substrate_future4C_large_se.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xf59c110>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -4.39290 0.07021 -62.57 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.948 8.948 1418 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.059 "
## [22] "glmer.ML = 32264 Scale est. = 1 n = 14090"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_commu_lat_prop_sp_overheating_arboreal_current_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1823.0 1843.4 -908.5 1817.0 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.3969 -0.1265 -0.0349 0.0000 17.7816 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 86921 294.8 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -48.486 2.167 -22.38 <2e-16 ***"
## [20] "Xs(lat)Fx1 -66.180 2.664 -24.84 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.334"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_commu_lat_prop_sp_overheating_arboreal_current_large_se.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd2de310>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -48.49 18.17 -2.668 0.00763 **"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.819 5.819 289.1 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.158 "
## [22] "glmer.ML = 1343.5 Scale est. = 1 n = 6614"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_commu_lat_prop_sp_overheating_arboreal_future2C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 2287.1 2307.4 -1140.5 2281.1 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.5769 -0.1699 -0.0371 0.0000 14.9548 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 146972 383.4 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -65.356 1.584 -41.26 <2e-16 ***"
## [20] "Xs(lat)Fx1 -119.579 1.196 -100.00 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.330 "
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_commu_lat_prop_sp_overheating_arboreal_future2C_large_se.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x9f411d0>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -65.36 22.62 -2.889 0.00387 **"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.933 5.933 367.1 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.166 "
## [22] "glmer.ML = 1654.8 Scale est. = 1 n = 6614"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_commu_lat_prop_sp_overheating_arboreal_future4C_large_se.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 4614.4 4634.8 -2304.2 4608.4 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-2.0319 -0.3270 -0.1433 -0.0099 26.8211 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 367955 606.6 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -19.878 1.941 -10.24 <2e-16 ***"
## [20] "Xs(lat)Fx1 -251.606 4.440 -56.66 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.079"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_commu_lat_prop_sp_overheating_arboreal_future4C_large_se.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xd535b00>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -19.878 2.288 -8.686 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.537 8.537 723.6 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.138 "
## [22] "glmer.ML = 3412.9 Scale est. = 1 n = 6614"
Linear mixed models
all_community_data <- bind_rows(community_sub_current %>%
mutate(habitat_scenario = "substrate_current"), community_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), community_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), community_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), community_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), community_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
all_community_data <- all_community_data %>%
mutate(obs = as.character(row_number()))
all_community_data <- as.data.frame(all_community_data)
set.seed(123)
# Intercept-less model
model_prop <- glmer(proportion_species_overheating ~ habitat_scenario - 1 + (1 |
obs), family = "binomial", weights = n_species, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun = 1e+09)), data = all_community_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_prop, terms = "habitat_scenario", type = "random",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model summaries and predictions
saveRDS(model_prop, file = "RData/Models/prop_species_overheating/sensitivity_analyses/model_lme4_prop_species_overheating_large_se.rds")
saveRDS(predictions, file = "RData/Models/prop_species_overheating/sensitivity_analyses/predictions_lme4_prop_species_overheating_large_se.rds")
###### Contrasts
all_community_data$habitat_scenario <- as.factor(all_community_data$habitat_scenario)
# Run model
model_prop_contrast <- glmer(proportion_species_overheating ~ relevel(habitat_scenario,
ref = "substrate_current") + (1 | obs), family = "binomial", weights = n_species,
control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_community_data)
# Save model
saveRDS(model_prop_contrast, file = "RData/Models/prop_species_overheating/sensitivity_analyses/model_lme4_prop_species_overheating_contrast_large_se.rds")
Model summaries
Overall means
model_n_sp_large_se <- readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/model_lme4_prop_species_overheating_large_se.rds")
summary(model_n_sp_large_se)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: proportion_species_overheating ~ habitat_scenario - 1 + (1 | obs)
## Data: all_community_data
## Weights: n_species
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 48645.4 48708.6 -24315.7 48631.4 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.24072 -0.05874 -0.03242 -0.01717 0.90020
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 19.78 4.448
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -9.22240 0.15276 -60.37 <2e-16 ***
## habitat_scenarioarboreal_future2C -8.87931 0.13806 -64.31 <2e-16 ***
## habitat_scenarioarboreal_future4C -8.00574 0.11265 -71.07 <2e-16 ***
## habitat_scenariosubstrate_current -8.64539 0.09159 -94.39 <2e-16 ***
## habitat_scenariosubstrate_future2C -8.22320 0.08751 -93.97 <2e-16 ***
## habitat_scenariosubstrate_future4C -6.60761 0.08255 -80.05 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.188
## hbtt_scnrr_4C 0.232 0.258
## hbtt_scnrs_ 0.289 0.322 0.397
## hbtt_scnrs_2C 0.308 0.342 0.422 0.526
## hbtt_scnrs_4C 0.347 0.386 0.476 0.593 0.631
# Predictions
readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/predictions_lme4_prop_species_overheating_large_se.rds")
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 9.879103e-05 0.15276366 7.323117e-05 0.0001332709
## 2 arboreal_future2C 1.392209e-04 0.13806292 1.062183e-04 0.0001824756
## 3 arboreal_future4C 3.334303e-04 0.11265114 2.673898e-04 0.0004157747
## 4 substrate_current 1.759056e-04 0.09159112 1.470042e-04 0.0002104879
## 5 substrate_future2C 2.682820e-04 0.08750893 2.260071e-04 0.0003184619
## 6 substrate_future4C 1.348234e-03 0.08254668 1.147067e-03 0.0015846240
Contrasts
model_n_sp_large_se_contrast <- readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/model_lme4_prop_species_overheating_contrast_large_se.rds")
summary(model_n_sp_large_se_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## proportion_species_overheating ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | obs)
## Data: all_community_data
## Weights: n_species
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 48645.4 48708.6 -24315.7 48631.4 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.24072 -0.05874 -0.03242 -0.01717 0.90019
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 19.78 4.448
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate
## (Intercept) -8.64542
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.57699
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -0.23386
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.63967
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.42221
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 2.03779
## Std. Error
## (Intercept) 0.09105
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.15362
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.13837
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.11341
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.08708
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.07873
## z value
## (Intercept) -94.951
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -3.756
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C -1.690
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 5.640
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 4.849
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 25.882
## Pr(>|z|)
## (Intercept) < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.000173
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.091009
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.70e-08
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 1.24e-06
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C < 2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C .
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.304
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.336 0.196
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.409 0.241
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.520 0.314
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.537 0.347
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.266
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.347
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.383
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.425
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.470
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.614
Strict estimates
Here, we classified an overheating event only when 95% confidence intervals did not overlap with zero.
This code ran on an HPC environment, where the original code can be found in R/Models/Sensitivity_analyses/Running_models_prop_species_overheating_sensitivity_analysis_strict_estimates.R and the resources used in pbs/Models/Sensitivity_analyses/Running_models_prop_species_overheating_sensitivity_analysis_strict_estimates.pbs
Generalized additive mixed models
# Load community-level data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C.rds")
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C.rds")
# Function to run models estimating the mean overheating risk (i.e., proportion
# of species overheating)
run_community_proportion_overheating_analysis <- function(dataset, habitat_scenario) {
data <- dataset
# Run model
model <- gamm4::gamm4(proportion_species_overheating_strict ~ s(lat, bs = "tp"),
data = data, weights = data$n_species, family = binomial(), REML = TRUE)
# Generate data set for predictions
new_data <- data.frame(lat = seq(min(data$lat), max(data$lat), length = 1000),
proportion_species_overheating_strict = NA, n_species = NA)
# Predict for each latitude value
pred <- predict(model$gam, newdata = new_data, type = "response", se.fit = TRUE)
new_data$overheating_risk_pred <- pred$fit
new_data$overheating_risk_pred_se <- pred$se.fit
# Calculate 95% confidence intervals
new_data <- mutate(new_data, upper = overheating_risk_pred + 1.96 * overheating_risk_pred_se,
lower = overheating_risk_pred - 1.96 * overheating_risk_pred_se)
# Model summaries
summary_gam <- capture.output(summary(model$gam)) # Generalised additive model
summary_mer <- capture.output(summary(model$mer)) # Mixed effect regression
# Save model and predictions
saveRDS(summary_gam, file = paste0("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_community_lat_prop_sp_overheating_strict_",
habitat_scenario, ".rds"))
saveRDS(summary_mer, file = paste0("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_community_lat_prop_sp_overheating_strict_",
habitat_scenario, ".rds"))
saveRDS(new_data, file = paste0("RData/Models/prop_species_overheating/sensitivity_analyses/predictions_community_lat_prop_sp_overheating_strict_",
habitat_scenario, ".rds"))
}
# Create a list of datasets
dataset_list <- list(arboreal_current = community_arb_current, arboreal_future2C = community_arb_future2C,
arboreal_future4C = community_arb_future4C, substrate_current = community_sub_current,
substrate_future2C = community_sub_future2C, substrate_future4C = community_sub_future4C)
# Set up parallel processing
plan(multicore(workers = 3))
# Run function
results <- future_lapply(names(dataset_list), function(x) {
run_community_proportion_overheating_analysis(dataset_list[[x]], x)
}, future.packages = c("gamm4", "mgcv", "dplyr"))
Model summaries
Vegetated substrate
Current climate
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_community_lat_prop_sp_overheating_strict_substrate_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 611.9 634.6 -303.0 605.9 14088 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.530 -0.004 0.000 0.000 69.410 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 4223 64.98 "
## [15] "Number of obs: 14091, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -20.981 7.622 -2.753 0.00591 **"
## [20] "Xs(lat)Fx1 9.505 9.332 1.019 0.30841 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.247 "
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_community_lat_prop_sp_overheating_strict_substrate_current.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xa9e7d70>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|)"
## [11] "(Intercept) -20.98 18.06 -1.161 0.245"
## [12] ""
## [13] "Approximate significance of smooth terms:"
## [14] " edf Ref.df Chi.sq p-value "
## [15] "s(lat) 2.852 2.852 44.5 6.8e-07 ***"
## [16] "---"
## [17] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [18] ""
## [19] "R-sq.(adj) = 0.0475 "
## [20] "glmer.ML = 465.39 Scale est. = 1 n = 14091"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_community_lat_prop_sp_overheating_strict_substrate_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1278.2 1300.9 -636.1 1272.2 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] " -0.825 -0.035 -0.004 0.000 107.154 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 4246 65.16 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -15.4350 2.6324 -5.864 4.53e-09 ***"
## [20] "Xs(lat)Fx1 -0.8089 5.1938 -0.156 0.876 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.098"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_community_lat_prop_sp_overheating_strict_substrate_future2C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe250940>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -15.435 4.468 -3.454 0.000552 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 5.061 5.061 143.7 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.069 "
## [22] "glmer.ML = 985.55 Scale est. = 1 n = 14090"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_community_lat_prop_sp_overheating_strict_substrate_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 8054.5 8077.2 -4024.3 8048.5 14087 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.364 -0.294 -0.120 -0.022 72.331 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 2411 49.1 "
## [15] "Number of obs: 14090, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -6.4870 0.1639 -39.572 <2e-16 ***"
## [20] "Xs(lat)Fx1 30.2281 3.1348 9.643 <2e-16 ***"
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 -0.164"
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_community_lat_prop_sp_overheating_strict_substrate_future4C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0x13888688>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -6.4870 0.1743 -37.21 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 8.619 8.619 660.4 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.0434 "
## [22] "glmer.ML = 6651.9 Scale est. = 1 n = 14090"
Above-ground vegetation
Current climate
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_community_lat_prop_sp_overheating_strict_arboreal_current.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 89.8 110.2 -41.9 83.8 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.1049 -0.0360 -0.0197 -0.0116 13.1537 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 0 0 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -9.2006 0.5270 -17.458 <2e-16 ***"
## [20] "Xs(lat)Fx1 -0.4470 0.6746 -0.663 0.508 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.697 "
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_community_lat_prop_sp_overheating_strict_arboreal_current.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xded8738>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -9.201 0.527 -17.46 <2e-16 ***"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value"
## [17] "s(lat) 1 1 0.439 0.508"
## [18] ""
## [19] "R-sq.(adj) = -0.000333 "
## [20] "glmer.ML = 69.982 Scale est. = 1 n = 6614"
Future climate (+2C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_community_lat_prop_sp_overheating_strict_arboreal_future2C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 178.7 199.1 -86.4 172.7 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-0.3629 -0.0018 0.0000 0.0000 7.8397 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 22391 149.6 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -43.234 13.529 -3.196 0.0014 **"
## [20] "Xs(lat)Fx1 -2.442 14.077 -0.173 0.8623 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.037 "
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_community_lat_prop_sp_overheating_strict_arboreal_future2C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xaa12598>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|)"
## [11] "(Intercept) -43.23 29.08 -1.487 0.137"
## [12] ""
## [13] "Approximate significance of smooth terms:"
## [14] " edf Ref.df Chi.sq p-value"
## [15] "s(lat) 1.917 1.917 1.559 0.431"
## [16] ""
## [17] "R-sq.(adj) = 0.0532 "
## [18] "glmer.ML = 115.12 Scale est. = 1 n = 6614"
Future climate (+4C)
# Mixed effect regression
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_MER_community_lat_prop_sp_overheating_strict_arboreal_future4C.rds"))
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace"
## [2] " Approximation) [glmerMod]"
## [3] " Family: binomial ( logit )"
## [4] ""
## [5] " AIC BIC logLik deviance df.resid "
## [6] " 1151.6 1172.0 -572.8 1145.6 6611 "
## [7] ""
## [8] "Scaled residuals: "
## [9] " Min 1Q Median 3Q Max "
## [10] "-1.0938 -0.0429 -0.0005 0.0000 13.9113 "
## [11] ""
## [12] "Random effects:"
## [13] " Groups Name Variance Std.Dev."
## [14] " Xr s(lat) 3833 61.91 "
## [15] "Number of obs: 6614, groups: Xr, 8"
## [16] ""
## [17] "Fixed effects:"
## [18] " Estimate Std. Error z value Pr(>|z|) "
## [19] "X(Intercept) -24.146 5.658 -4.267 1.98e-05 ***"
## [20] "Xs(lat)Fx1 -8.128 6.176 -1.316 0.188 "
## [21] "---"
## [22] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [23] ""
## [24] "Correlation of Fixed Effects:"
## [25] " X(Int)"
## [26] "Xs(lat)Fx1 0.122 "
# Generalized additive model
print(readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/summary_GAM_community_lat_prop_sp_overheating_strict_arboreal_future4C.rds"))
## [1] ""
## [2] "Family: binomial "
## [3] "Link function: logit "
## [4] ""
## [5] "Formula:"
## [6] "proportion_species_overheating_strict ~ s(lat, bs = \"tp\")"
## [7] "<environment: 0xe12ff68>"
## [8] ""
## [9] "Parametric coefficients:"
## [10] " Estimate Std. Error z value Pr(>|z|) "
## [11] "(Intercept) -24.15 11.05 -2.185 0.0289 *"
## [12] "---"
## [13] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [14] ""
## [15] "Approximate significance of smooth terms:"
## [16] " edf Ref.df Chi.sq p-value "
## [17] "s(lat) 2.875 2.875 100.5 <2e-16 ***"
## [18] "---"
## [19] "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1"
## [20] ""
## [21] "R-sq.(adj) = 0.145 "
## [22] "glmer.ML = 840.19 Scale est. = 1 n = 6614"
Linear mixed models
all_community_data <- bind_rows(community_sub_current %>%
mutate(habitat_scenario = "substrate_current"), community_sub_future2C %>%
mutate(habitat_scenario = "substrate_future2C"), community_sub_future4C %>%
mutate(habitat_scenario = "substrate_future4C"), community_arb_current %>%
mutate(habitat_scenario = "arboreal_current"), community_arb_future2C %>%
mutate(habitat_scenario = "arboreal_future2C"), community_arb_future4C %>%
mutate(habitat_scenario = "arboreal_future4C"))
all_community_data <- all_community_data %>%
mutate(obs = as.character(row_number()))
all_community_data <- as.data.frame(all_community_data)
set.seed(123)
# Intercept-less model
model_prop <- glmer(proportion_species_overheating_strict ~ habitat_scenario - 1 +
(1 | obs), family = "binomial", weights = n_species, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun = 1e+09)), data = all_community_data)
# Get predictions
predictions <- as.data.frame(ggpredict(model_prop, terms = "habitat_scenario", type = "random",
interval = "confidence", nsim = 1000))
predictions <- predictions %>%
rename(habitat_scenario = x, prediction = predicted, se = std.error, lower_CI = conf.low,
upper_CI = conf.high) %>%
dplyr::select(-group)
# Save model summaries and predictions
saveRDS(model_prop, file = "RData/Models/prop_species_overheating/sensitivity_analyses/model_lme4_prop_species_overheating_strict.rds")
saveRDS(predictions, file = "RData/Models/prop_species_overheating/sensitivity_analyses/predictions_lme4_prop_species_overheating_strict.rds")
###### Contrasts
all_community_data$habitat_scenario <- as.factor(all_community_data$habitat_scenario)
# Run model
model_prop_contrast <- glmer(proportion_species_overheating ~ relevel(habitat_scenario,
ref = "substrate_current") + (1 | obs), family = "binomial", weights = n_species,
control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09)),
data = all_community_data)
# Save model
saveRDS(model_prop_contrast, file = "RData/Models/prop_species_overheating/sensitivity_analyses/model_lme4_prop_species_overheating_contrast_strict.rds")
Model summaries
Overall means
model_n_sp_strict <- readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/model_lme4_prop_species_overheating_strict.rds")
summary(model_n_sp_strict)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: proportion_species_overheating_strict ~ habitat_scenario - 1 +
## (1 | obs)
## Data: all_community_data
## Weights: n_species
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 7134.6 7197.9 -3560.3 7120.6 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.05266 -0.00858 -0.00454 -0.00262 0.55801
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 50.44 7.102
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## habitat_scenarioarboreal_current -13.9494 0.8367 -16.67 <2e-16 ***
## habitat_scenarioarboreal_future2C -13.0627 0.5534 -23.61 <2e-16 ***
## habitat_scenarioarboreal_future4C -11.2535 0.2654 -42.40 <2e-16 ***
## habitat_scenariosubstrate_current -13.2738 0.3417 -38.84 <2e-16 ***
## habitat_scenariosubstrate_future2C -12.5746 0.2594 -48.48 <2e-16 ***
## habitat_scenariosubstrate_future4C -10.8107 0.1640 -65.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## hbtt_scnrr_ hbtt_scnrr_2C hbtt_scnrr_4C hbtt_scnrs_ hbtt_scnrs_2C
## hbtt_scnrr_2C 0.031
## hbtt_scnrr_4C 0.066 0.102
## hbtt_scnrs_ 0.051 0.079 0.168
## hbtt_scnrs_2C 0.067 0.104 0.221 0.171
## hbtt_scnrs_4C 0.109 0.168 0.356 0.276 0.363
# Predictions
readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/predictions_lme4_prop_species_overheating_strict.rds")
## habitat_scenario prediction se lower_CI upper_CI
## 1 arboreal_current 8.746715e-07 0.8367464 1.696702e-07 4.509031e-06
## 2 arboreal_future2C 2.122889e-06 0.5533989 7.175858e-07 6.280287e-06
## 3 arboreal_future4C 1.296141e-05 0.2654148 7.704295e-06 2.180569e-05
## 4 substrate_current 1.718946e-06 0.3417164 8.798183e-07 3.358389e-06
## 5 substrate_future2C 3.458650e-06 0.2593858 2.080260e-06 5.750362e-06
## 6 substrate_future4C 2.018227e-05 0.1640013 1.463438e-05 2.783331e-05
Contrasts
model_n_sp_strict_contrast <- readRDS("RData/Models/prop_species_overheating/sensitivity_analyses/model_lme4_prop_species_overheating_contrast_strict.rds")
summary(model_n_sp_strict_contrast)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## proportion_species_overheating ~ relevel(habitat_scenario, ref = "substrate_current") +
## (1 | obs)
## Data: all_community_data
## Weights: n_species
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+09))
##
## AIC BIC logLik deviance df.resid
## 20831.7 20895.0 -10408.9 20817.7 62106
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.09403 -0.01869 -0.01102 -0.00645 0.63761
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 42.25 6.5
## Number of obs: 62113, groups: obs, 62113
##
## Fixed effects:
## Estimate
## (Intercept) -11.31335
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.02249
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.41915
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 1.40769
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.53569
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 1.89604
## Std. Error
## (Intercept) 0.15758
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.29126
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.25333
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 0.20018
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.17698
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 0.15448
## z value
## (Intercept) -71.796
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current -0.077
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 1.655
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 7.032
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 3.027
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C 12.274
## Pr(>|z|)
## (Intercept) < 2e-16
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current 0.93845
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C 0.09802
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C 2.04e-12
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C 0.00247
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C < 2e-16
##
## (Intercept) ***
## relevel(habitat_scenario, ref = "substrate_current")arboreal_current
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future2C .
## relevel(habitat_scenario, ref = "substrate_current")arboreal_future4C ***
## relevel(habitat_scenario, ref = "substrate_current")substrate_future2C **
## relevel(habitat_scenario, ref = "substrate_current")substrate_future4C ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) rl(_,r="_")_
## rl(_,r="_")_ -0.409
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C -0.473 0.252
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C -0.602 0.322
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C -0.679 0.363
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C -0.768 0.416
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C 0.373
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.421
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.482
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C 0.537
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.615
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rl(_,r="_")_
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")r_4C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_2C
## rlvl(hbtt_scnr,r="sbstrt_crrnt")s_4C 0.694
Main figures
Note that cosmetic adjustments were made to all figures in Adobe Illustrator.
Figure 1
# Load data from Pottier et al. 2022
data <- read_csv("data/data_Pottier_et_al_2022.csv")
# Load one of the datasets for species richness
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current_clipped_cells.rds")
world <- ne_countries(scale = "large", returnclass = "sf")
world <- world %>%
filter(!grepl("Antarctica", name))
# Map
map_diversity <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_current,
aes(fill = log10(n_species)), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "viridis",
na.value = "gray1", name = "Species", breaks = c(0, log10(10), log10(50), log10(100),
log10(150)), labels = c(1, 10, 50, 100, 150), guide = guide_colorbar(barwidth = 2,
barheight = 10), begin = 0.1, end = 1) + ggnewscale::new_scale_fill() + geom_point(data = data,
aes(y = latitude, x = longitude), alpha = 0.85, size = 4, stroke = 1.5, shape = 21,
fill = "#CE5B97", col = "black") + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0.5, 0.5), "cm"), legend.position = c(0.02,
0.27), legend.justification = c(0, 0.5), legend.background = element_blank(),
text = element_text(color = "black"), legend.text = element_text(size = 15),
legend.title = element_text(size = 20), panel.border = element_rect(fill = NA,
size = 2))
# Density of points
community_pond_expanded <- community_pond_current %>%
uncount(n_species, .remove = FALSE)
density <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_density(data = data, aes(x = latitude), fill = "#CE5B97",
alpha = 0.5) + geom_density(data = community_pond_expanded, aes(x = lat), fill = "#21918c",
alpha = 0.5) + xlim(-55.00099, 72.00064) + ylab("Density") + coord_flip() + theme_classic() +
theme(axis.title.x = element_text(size = 25, margin = margin(t = 10, r = 0, b = 0,
l = 0)), axis.text.x = element_text(size = 20, colour = "black"), axis.text.y = element_text(size = 20,
colour = "black"), axis.title.y = element_blank(), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
panel.border = element_rect(fill = NA, size = 2))
map <- map_diversity + density + plot_layout(ncol = 2)
map
ggsave(map, file = "fig/Figure_1.svg", width = 20, height = 11, dpi = 500)
Fig. 1 | Contrast between the geographical locations at which experimental data were collected, and patterns in species richness. Pink points denote experimental data, while the color gradients refer to species richness calculated in 1 x 1 ° grid cells in the imputed data (n = 5,203 species). Density plots represent the distribution of experimental data (pink) and the number of species inhabiting these areas (blue) across latitudes. Dashed lines represent the equator and tropics.
Figure 2
# Load data
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
# Add species-level data to population-level dataset
species_data <- readRDS("RData/General_data/pre_data_for_imputation.rds")
species_data <- dplyr::select(species_data,
tip.label,
order,
imputed)
pop_sub_future4C <- distinct(left_join(pop_sub_future4C, species_data))
# Import tree from Jetz and Pyron (with slight modifications in species names)
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
# Calculate data summary
data_summary <- pop_sub_future4C %>%
group_by(tip.label) %>%
summarise(mean_CTmax = mean(CTmax),
mean_TSM = mean(TSM),
mean_overheating_days = mean(overheating_days),
log_overheating_days = log2(mean_overheating_days + 1))
# Add order of the species to the data summary
data_summary <- distinct(left_join(data_summary, dplyr::select(pop_sub_future4C, tip.label, order, imputed)))
# Flag species that were tested previously or full imputed
data_summary <- data_summary %>%
group_by(tip.label) %>%
filter(if(any(imputed=="no")) imputed == "no" else TRUE) %>%
ungroup()
# Prune tree
pruned_tree <- drop.tip(tree, tree$tip.label[-match(data_summary$tip.label, tree$tip.label)])
# Build tree skeleton
p1 <- ggtree(pruned_tree,
layout = "fan",
lwd = 0.05) +
xlim(0,800)
# Match data to the tree
p1 <- p1 %<+% data_summary
p2 <- p1 + geom_fruit(geom = geom_tile, # Heat map
mapping = aes(fill = order),
width=10,
offset=0.035,
alpha = 1)+
scale_fill_manual(values =c("gray60", "gray20"))
p3 <- p2 + ggnewscale::new_scale_fill() +
geom_fruit(geom = geom_tile, # Heat map
mapping = aes(fill = imputed),
width=20,
offset=0.075,
alpha = 1)+
scale_fill_manual(values =c("#CE5B97", "gray85"))
p4 <- p3 + ggnewscale::new_scale_fill()+
geom_fruit(geom = geom_tile, # Heat map
mapping = aes(fill = mean_CTmax),
width=55,
offset=0.15,
alpha = 1) +
scale_fill_viridis(option="viridis",
begin=0,
end=1,
name="CTmax")
p5 <- p4 + ggnewscale::new_scale_fill()+
geom_fruit(geom = geom_tile, # Heat map
mapping = aes(fill = mean_TSM),
width=55,
offset=0.2,
alpha = 1) +
scale_fill_viridis(option="inferno",
direction = -1,
begin=0,
end=0.9,
name="TSM")
p6 <- p5 +
geom_fruit(geom = geom_bar, # Bar plot
mapping = aes(x = log_overheating_days),
col = "#fb9b06",
fill = "#fb9b06",
size = 0.1,
stat = "identity",
orientation = "y",
axis.params = list(axis = "x", # Barplot parameters
text.angle = 0,
hjust = 0,
text.size = 1,
col="transparent"),
grid.params = list(alpha = 0.1),
offset = 0.11,
pwidth = 0.5,
alpha = 1)
p6
ggsave(p6, file="fig/Figure_2.svg", width=10, height=10, dpi=1000)
Fig. 2 | Phylogenetic coverage and taxonomic variation in climate vulnerability. Chronograms show heat tolerance limits (CTmax), thermal safety margins (TSM), and histograms the number of overheating events (days) averaged across each species’ distribution range. Pink bars refer to species with prior knowledge, while gray bars refer to entirely imputed species. This figure was constructed assuming ground-level microclimates occurring under 4°C of global warming above pre-industrial levels. Phylogeny is based on the consensus of 10,000 trees sampled from a posterior distribution (see Jetz & Pyron, 2018 for details).
Figure 3
Vegetated Substrate
world <- ne_countries(scale = "large", returnclass = "sf")
world <- world %>%
filter(!grepl("Antarctica", name))
# Substrate data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells.rds")
# Pond data
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current_clipped_cells.rds")
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C_clipped_cells.rds")
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C_clipped_cells.rds")
# Above-ground vegetation
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_clipped_cells.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_clipped_cells.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_clipped_cells.rds")
# Find limits for colours of the plot
tsm_min <- min(min(community_sub_current$community_TSM, na.rm = TRUE),
min(community_sub_future4C$community_TSM, na.rm = TRUE),
min(community_arb_current$community_TSM, na.rm = TRUE),
min(community_arb_future4C$community_TSM, na.rm = TRUE),
min(community_pond_current$community_TSM, na.rm = TRUE),
min(community_pond_future4C$community_TSM, na.rm = TRUE))
tsm_max <- max(max(community_sub_current$community_TSM, na.rm = TRUE),
max(community_sub_future4C$community_TSM, na.rm = TRUE),
max(community_arb_current$community_TSM, na.rm = TRUE),
max(community_arb_future4C$community_TSM, na.rm = TRUE),
max(community_pond_current$community_TSM, na.rm = TRUE),
max(community_pond_future4C$community_TSM, na.rm = TRUE))
# Current
map_sub_TSM_current <- ggplot() +
geom_hline(yintercept = 0,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_hline(yintercept = 23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_hline(yintercept = -23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_sf(data = world,
fill = "black",
col="black") +
geom_sf(data = community_sub_current,
aes(fill = community_TSM),
color = NA,
alpha = 1) +
coord_sf(ylim = c(-55.00099, 72.00064),
xlim = c(-166.82905, 178.56617)) +
scale_fill_viridis(option = "plasma",
name = "TSM",
na.value = "gray1",
direction = -1,
breaks = seq(0, 40, by = 5),
limits=c(tsm_min, tsm_max),
begin=0, end=1) +
theme_void() +
theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0.1, 0, 0), "cm"),
panel.border = element_rect(fill=NA, size = 2, colour = "#5DC8D9"))
# Future +4C
map_sub_TSM_future4C <- ggplot() +
geom_hline(yintercept = 0,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_hline(yintercept = 23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_hline(yintercept = -23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_sf(data = world,
fill = "black",
col="black") +
geom_sf(data = community_sub_future4C,
aes(fill = community_TSM),
color = NA,
alpha = 1) +
coord_sf(ylim = c(-55.00099, 72.00064),
xlim = c(-166.82905, 178.56617)) +
scale_fill_viridis(option = "plasma",
na.value = "gray1",
direction = -1,
breaks = seq(0, 40, by = 5),
limits=c(tsm_min, tsm_max),
begin=0, end=1) +
theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"),
legend.position = "none",
panel.border = element_rect(fill=NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_sub_current <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_current.rds")
pred_community_sub_future2C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_future2C.rds")
pred_community_sub_future4C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_future4C.rds")
lat_sub <- ggplot() +
geom_vline(xintercept = 0,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_vline(xintercept = 23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_vline(xintercept = -23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_point(data = community_sub_future4C,
aes(x = lat, y = community_TSM, size = 1/community_TSM_se),
alpha = 0.7,
fill = "#EF4187",
col = "transparent",
shape = 22,
stroke = 0.1) +
geom_point(data = community_sub_current,
aes(x = lat, y = community_TSM, size = 1/community_TSM_se),
alpha = 0.7,
fill = "#5DC8D9",
col = "transparent",
shape = 22,
stroke = 0.1) +
geom_line(data = pred_community_sub_current,
aes(x = lat, y = TSM_pred),
color = "black",
size = 1.05) + # black line
geom_line(data = pred_community_sub_current,
aes(x = lat, y = TSM_pred),
color = "#5DC8D9",
size = 0.75) + # model predictions
geom_line(data = pred_community_sub_future4C,
aes(x = lat, y = TSM_pred),
color = "black",
size = 1.05) + # black line
geom_line(data = pred_community_sub_future4C,
aes(x = lat, y = TSM_pred),
color = "#EF4187",
size = 0.75) + # model predictions
scale_size_continuous(range=c(0.001, 2.5),
guide = "none")+
xlim(-55.00099, 72.00064) +
ylim(0, 40)+
xlab("") +
ylab("") +
coord_flip() +
theme_classic() +
theme(axis.text.y = element_text(color = "black", size = 11),
aspect.ratio = 1,
plot.background = element_rect(fill = "transparent", colour=NA),
panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"),
text = element_text(color = "black"),
axis.title.x = element_blank(),
axis.text.x = element_text(color = "black", size = 11),
axis.line = element_line(color = "black"),
panel.border = element_rect(fill=NA, size = 2))
substrate_plot <- map_sub_TSM_current +
map_sub_TSM_future4C +
lat_sub +
plot_layout(ncol = 3)
Pond or wetland
# Current
map_pond_TSM_current <- ggplot() +
geom_hline(yintercept = 0,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_hline(yintercept = 23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_hline(yintercept = -23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_sf(data = world,
fill = "black",
col="black") +
geom_sf(data = community_pond_current,
aes(fill = community_TSM),
color = NA,
alpha = 1) +
coord_sf(ylim = c(-55.00099, 72.00064),
xlim = c(-166.82905, 178.56617)) +
scale_fill_viridis(option = "plasma",
name = "TSM",
na.value = "gray1",
direction = -1,
breaks = seq(0, 40, by = 5),
limits=c(tsm_min, tsm_max),
begin=0, end=1) +
theme_void() +
theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0.1, 0, 0), "cm"),
panel.border = element_rect(fill=NA, size = 2, colour = "#5DC8D9"))
# Future +4C
map_pond_TSM_future4C <- ggplot() +
geom_hline(yintercept = 0,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_hline(yintercept = 23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_hline(yintercept = -23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_sf(data = world,
fill = "black",
col="black") +
geom_sf(data = community_pond_future4C,
aes(fill = community_TSM),
color = NA,
alpha = 1) +
coord_sf(ylim = c(-55.00099, 72.00064),
xlim = c(-166.82905, 178.56617)) +
scale_fill_viridis(option = "plasma",
na.value = "gray1",
direction = -1,
breaks = seq(0, 40, by = 5),
limits=c(tsm_min, tsm_max),
begin=0, end=1) +
theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"),
legend.position = "none",
panel.border = element_rect(fill=NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_pond_current <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_pond_current.rds")
pred_community_pond_future2C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_pond_future2C.rds")
pred_community_pond_future4C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_pond_future4C.rds")
lat_pond <- ggplot() +
geom_vline(xintercept = 0,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_vline(xintercept = 23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_vline(xintercept = -23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_point(data = community_pond_future4C,
aes(x = lat, y = community_TSM, size=1/community_TSM_se),
alpha = 0.7,
fill = "#EF4187",
col = "transparent",
shape = 22,
stroke = 0.1) +
geom_point(data = community_pond_current,
aes(x = lat, y = community_TSM, size = 1/community_TSM_se),
alpha = 0.7,
fill = "#5DC8D9",
col = "transparent",
shape = 22,
stroke = 0.1) +
geom_line(data = pred_community_pond_current,
aes(x = lat, y = TSM_pred),
color = "black",
size = 1.05) + # black line
geom_line(data = pred_community_pond_current,
aes(x = lat, y = TSM_pred),
color = "#5DC8D9",
size = 0.75) + # model predictions
geom_line(data = pred_community_pond_future4C,
aes(x = lat, y = TSM_pred),
color = "black",
size = 1.05) + # black line
geom_line(data = pred_community_pond_future4C,
aes(x = lat, y = TSM_pred),
color = "#EF4187",
size = 0.75) + # model predictions
scale_size_continuous(range=c(0.001, 2.5),
guide = "none") +
xlim(-55.00099, 72.00064) +
ylim(0, 40)+
xlab("") +
ylab("") +
coord_flip() +
theme_classic() +
theme(axis.text.y = element_text(color = "black", size = 11),
aspect.ratio = 1,
plot.background = element_rect(fill = "transparent", colour=NA),
panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"),
text = element_text(color = "black"),
axis.title.x = element_blank(),
axis.text.x = element_text(color = "black", size = 11),
axis.line = element_line(color = "black"),
panel.border = element_rect(fill=NA, size = 2))
pond_plot <- (map_pond_TSM_current +
map_pond_TSM_future4C +
lat_pond +
plot_layout(ncol = 3))
Above-ground vegetation
# Current
map_arb_TSM_current <- ggplot() +
geom_hline(yintercept = 0,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_hline(yintercept = 23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_hline(yintercept = -23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_sf(data = world,
fill = "black",
col="black") +
geom_sf(data = community_arb_current,
aes(fill = community_TSM),
color = NA,
alpha = 1) +
coord_sf(ylim = c(-55.00099, 72.00064),
xlim = c(-166.82905, 178.56617)) +
scale_fill_viridis(option = "plasma",
name = "TSM",
na.value = "gray1",
direction = -1,
breaks = seq(0, 40, by = 5),
limits=c(tsm_min, tsm_max),
begin=0, end=1) +
theme_void() +
theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0.1, 0, 0), "cm"),
panel.border = element_rect(fill=NA, size = 2, colour = "#5DC8D9"))
# Future +4C
map_arb_TSM_future4C <- ggplot() +
geom_hline(yintercept = 0,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_hline(yintercept = 23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_hline(yintercept = -23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_sf(data = world,
fill = "black",
col="black") +
geom_sf(data = community_arb_future4C,
aes(fill = community_TSM),
color = NA,
alpha = 1) +
coord_sf(ylim = c(-55.00099, 72.00064),
xlim = c(-166.82905, 178.56617)) +
scale_fill_viridis(option = "plasma",
na.value = "gray1",
name = "TSM",
direction = -1,
breaks = seq(0, 40, by = 5),
limits=c(tsm_min, tsm_max),
begin=0, end=1) +
theme_void() +
theme(legend.position = "bottom",
legend.text = element_text(size = 11),
legend.title = element_text(size = 14),
legend.key.height = unit(0.5, "cm"),
legend.key.width = unit(1, "cm"),
plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"),
panel.border = element_rect(fill=NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_arb_current <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_arboreal_current.rds")
pred_community_arb_future2C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_arboreal_future2C.rds")
pred_community_arb_future4C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_arboreal_future4C.rds")
lat_arb <- ggplot() +
geom_vline(xintercept = 0,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_vline(xintercept = 23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_vline(xintercept = -23.43663,
colour = "gray",
linetype = "dashed",
size = 0.5) +
geom_point(data = community_arb_future4C,
aes(x = lat, y = community_TSM, size=1/community_TSM_se),
alpha = 0.7,
fill = "#EF4187",
col = "transparent",
shape = 22,
stroke = 0.1) +
geom_point(data = community_arb_current,
aes(x = lat, y = community_TSM, size=1/community_TSM_se),
alpha = 0.7,
fill = "#5DC8D9",
col = "transparent",
shape = 22,
stroke = 0.1) +
geom_line(data = pred_community_arb_current,
aes(x = lat, y = TSM_pred),
color = "black",
size = 1.05) + # black line
geom_line(data = pred_community_arb_current,
aes(x = lat, y = TSM_pred),
color = "#5DC8D9",
size = 0.75) + # model predictions
geom_line(data = pred_community_arb_future4C,
aes(x = lat, y = TSM_pred),
color = "black",
size = 1.05) + # black line
geom_line(data = pred_community_arb_future4C,
aes(x = lat, y = TSM_pred),
color = "#EF4187",
size = 0.75) + # model predictions
scale_size_continuous(range=c(0.001, 2.5),
guide = "none") +
xlim(-55.00099, 72.00064) +
ylim(0, 40)+
xlab("") +
ylab("Thermal safety margin") +
coord_flip() +
theme_classic() +
theme(axis.text.y = element_text(color = "black", size = 11),
aspect.ratio = 1,
plot.background = element_rect(fill = "transparent", colour=NA),
panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"),
text = element_text(color = "black"),
axis.title.x = element_text(size = 13),
axis.text.x = element_text(color = "black", size = 11),
axis.line = element_line(color = "black"),
legend.text = element_text(size = 15),
legend.title = element_text(size = 18),
legend.key.height = unit(0.6, "cm"),
legend.key.width = unit(0.5, "cm"),
panel.border = element_rect(fill=NA, size = 2))
arboreal_plot <- (map_arb_TSM_current +
map_arb_TSM_future4C +
lat_arb +
plot_layout(ncol = 3))
Final plot
figure3 <- (substrate_plot/pond_plot/arboreal_plot/plot_layout(ncol = 1))
figure3
ggsave("fig/Figure_3.svg", width = 14, height = 7, dpi = 500)
Fig. 3 | Community-level patterns in thermal safety margin for amphibians in terrestrial (top row), aquatic (middle row) or arboreal (bottom row) microhabitats. Thermal safety margins (TSM) were calculated as the mean difference between CTmax and the predicted operative body temperature in full shade during the warmest quarters of 2006-2015 in each community (1-degree grid cell). Black color depicts areas with no data. The right panel depicts latitudinal patterns in TSM in current climates (blue) or assuming 4°C of global warming above pre-industrial levels (pink), as predicted from generalized additive mixed models. Dashed lines represent the equator and tropics.
Figure 4
Load data
# Substrate data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells.rds")
# Pond data
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current_clipped_cells.rds")
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C_clipped_cells.rds")
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C_clipped_cells.rds")
# Above-ground vegetation
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_clipped_cells.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_clipped_cells.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_clipped_cells.rds")
# Upload high resolution Earth data
world <- ne_countries(scale = "large", returnclass = "sf")
world <- world %>%
filter(!grepl("Antarctica", name))
st_crs(world) <- st_crs(community_sub_current)
Vegetated Substrate
# Set colours
color_palette <- colorRampPalette(colors = c("#FAF218", "#EF4187", "#d90429"))
colors <- color_palette(100)
color_func <- colorRampPalette(c("gray65", colors))
color_palette <- color_func(100)
sp_min <- min(min(community_sub_current$n_species_overheating, na.rm = TRUE), min(community_sub_future4C$n_species_overheating,
na.rm = TRUE), min(community_pond_current$n_species_overheating, na.rm = TRUE),
min(community_pond_future4C$n_species_overheating, na.rm = TRUE), min(community_arb_current$n_species_overheating,
na.rm = TRUE), min(community_arb_future4C$n_species_overheating, na.rm = TRUE))
sp_max <- max(max(community_sub_current$n_species_overheating, na.rm = TRUE), max(community_sub_future4C$n_species_overheating,
na.rm = TRUE), max(community_pond_current$n_species_overheating, na.rm = TRUE),
max(community_pond_future4C$n_species_overheating, na.rm = TRUE), max(community_arb_current$n_species_overheating,
na.rm = TRUE), max(community_arb_future4C$n_species_overheating, na.rm = TRUE))
# Substrate (current)
map_sub_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_current,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Substrate (Future +4C)
map_sub_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future4C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
lat_sub <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = filter(community_sub_future4C, n_species_overheating >
0), aes(x = lat, y = n_species_overheating), alpha = 0.85, fill = "#EF4187",
col = "transparent", shape = 22, size = 1, stroke = 0.1) + geom_point(data = filter(community_sub_current,
n_species_overheating > 0), aes(x = lat, y = n_species_overheating), alpha = 0.85,
fill = "#5DC8D9", col = "transparent", shape = 22, size = 1, stroke = 0.1) +
xlim(-55.00099, 72.00064) + ylim(0, 38) + xlab("") + ylab("") + coord_flip() +
theme_classic() + theme(axis.text.y = element_text(color = "black", size = 11),
aspect.ratio = 1, plot.background = element_rect(fill = "transparent", colour = NA),
panel.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), text = element_text(color = "black"), axis.title.x = element_blank(),
axis.text.x = element_text(color = "black", size = 11), axis.line = element_line(color = "black"),
panel.border = element_rect(fill = NA, size = 2))
substrate_plot <- map_sub_TSM_current + map_sub_TSM_future4C + lat_sub + plot_layout(ncol = 3)
Pond or wetland
# Aquatic (current)
map_pond_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_current,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Aquatic (Future +4C)
map_pond_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_future4C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
lat_pond <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = filter(community_pond_future4C, n_species_overheating >
0), aes(x = lat, y = n_species_overheating), alpha = 0.85, fill = "#EF4187",
col = "transparent", shape = 22, size = 1, stroke = 0.1) + xlim(-55.00099, 72.00064) +
ylim(0, 38) + xlab("") + ylab("") + coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_blank(), axis.text.x = element_text(color = "black", size = 11),
axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
pond_plot <- map_pond_TSM_current + map_pond_TSM_future4C + lat_pond + plot_layout(ncol = 3)
Above-ground vegetation
# Current
map_arb_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_current,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +4C
map_arb_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future4C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(legend.position = "bottom", legend.text = element_text(size = 11),
legend.title = element_text(size = 14), legend.key.height = unit(0.5, "cm"),
legend.key.width = unit(1, "cm"), plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
lat_arb <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = filter(community_arb_future4C, n_species_overheating >
0), aes(x = lat, y = n_species_overheating), alpha = 0.85, fill = "#EF4187",
col = "transparent", shape = 22, size = 1, stroke = 0.1) + geom_point(data = filter(community_arb_current,
n_species_overheating > 0), aes(x = lat, y = n_species_overheating), alpha = 0.85,
fill = "#5DC8D9", col = "transparent", shape = 22, size = 1, stroke = 0.1) +
xlim(-55.00099, 72.00064) + ylim(0, 38) + xlab("") + ylab("Species overheating") +
coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(size = 13), axis.text.x = element_text(color = "black",
size = 11), axis.line = element_line(color = "black"), legend.text = element_text(size = 15),
legend.title = element_text(size = 18), legend.key.height = unit(0.6, "cm"),
legend.key.width = unit(0.5, "cm"), panel.border = element_rect(fill = NA, size = 2))
arboreal_plot <- map_arb_TSM_current + map_arb_TSM_future4C + lat_arb + plot_layout(ncol = 3)
Final plot
figure4 <- (substrate_plot/pond_plot/arboreal_plot/plot_layout(ncol = 1))
figure4
ggsave(figure4, file = "fig/Figure_4.svg", width = 14, height = 7, dpi = 500)
Fig. 4 | Number of species predicted to experience overheating events in terrestrial (top row), aquatic (middle row), and arboreal (bottom row) microhabitats. The number of species overheating was assessed as the sum of species overheating at least once in the period surveyed (warmest quarters of 2006-2015) in each community (1-degree grid cell). Black color depicts areas with no data, and gray color communities without species at risk. The right panel depicts latitudinal patterns in the number of species predicted to overheat in current climates (blue) or assuming 4°C of global warming above pre-industrial levels (pink). Dashed lines represent the equator and tropics. No species were predicted to experience overheating events in water bodies, and hence are not displayed.
Figure 5
Load data
# Vegetated substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
# Arboreal conditions
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
# Find limits for colours of the plot
days_min <- min(min(pop_sub_current$overheating_days, na.rm = TRUE), min(pop_sub_future4C$overheating_days,
na.rm = TRUE), min(pop_arb_current$overheating_days, na.rm = TRUE), min(pop_arb_future4C$overheating_days,
na.rm = TRUE))
days_max <- max(max(pop_sub_current$overheating_days, na.rm = TRUE), max(pop_sub_future4C$overheating_days,
na.rm = TRUE), max(pop_arb_current$overheating_days, na.rm = TRUE), max(pop_arb_future4C$overheating_days,
na.rm = TRUE))
Overheating days by latitude - Substrate
n_days_sub <- ggplot() + geom_point(data = filter(pop_sub_future4C, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_sub_future2C,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_sub_current, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_blank(),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Overheating days by latitude - Above-ground vegetation
n_days_arb <- ggplot() + geom_point(data = filter(pop_arb_future4C, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_arb_future2C,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_arb_current, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 35),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Overheating days by TSM - Substrate
days_TSM_sub <- ggplot() + geom_point(data = pop_sub_future4C, aes(x = TSM, y = overheating_days),
fill = "#EF4187", shape = 21, alpha = 0.85, size = 3.5) + geom_point(data = pop_sub_future2C,
aes(x = TSM, y = overheating_days), fill = "#FAA43A", shape = 21, alpha = 0.85,
size = 3.5) + geom_point(data = pop_sub_current, aes(x = TSM, y = overheating_days),
fill = "#5DC8D9", shape = 21, alpha = 0.85, size = 3.5) + ylim(-0.35, days_max +
0.35) + xlim(0, 18) + xlab("Thermal safety margin") + ylab("") + theme_classic() +
theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
text = element_text(color = "black"), axis.title.x = element_blank(), axis.title.y = element_blank(),
axis.text.x = element_text(color = "black", size = 25, margin = margin(t = 8,
r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black", size = 25,
margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Overheating days by TSM - Above-ground vegetation
days_TSM_arb <- ggplot() + geom_point(data = pop_arb_future4C, aes(x = TSM, y = overheating_days),
fill = "#EF4187", shape = 21, alpha = 0.85, size = 3.5) + geom_point(data = pop_arb_future2C,
aes(x = TSM, y = overheating_days), fill = "#FAA43A", shape = 21, alpha = 0.85,
size = 3.5) + geom_point(data = pop_arb_current, aes(x = TSM, y = overheating_days),
fill = "#5DC8D9", shape = 21, alpha = 0.85, size = 3.5) + ylim(-0.35, days_max +
0.35) + xlim(0, 18) + xlab("Thermal safety margin") + ylab("") + theme_classic() +
theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
text = element_text(color = "black"), axis.title.x = element_text(size = 35),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black",
size = 25, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Final plot
figure5 <- (n_days_sub | days_TSM_sub)/(n_days_arb | days_TSM_arb)
figure5
ggsave("fig/Figure_5.svg", width = 16, height = 12, dpi = 300)
Fig. 5 | Latitudinal variation in the number of overheating events in terrestrial (top row) and arboreal (bottom row) microhabitats as a function of latitude (left column) and thermal safety margin (right column). The number of overheating events (days) were calculated as the sum of overheating events (when daily maximum temperatures exceed CTmax) during the warmest quarters of 2006-2015 for each population. Blue points depict the number of overheating events in historical microclimates, while orange and pink points depict the number of overheating events assuming 2°C and 4°C of global warming above pre-industrial levels, respectively. For clarity, only the populations predicted to experience overheating events across latitudes are depicted (left column).
Extended Data figures
Extended data - Figure 2
# Load data that was used for the imputation
data_for_imp <- readRDS("RData/General_data/pre_data_for_imputation.rds")
# Load datasets from the cross-validation
first_crossV <- readRDS(file = "Rdata/Imputation/results/1st_cross_validation_5th_cycle.Rds") %>%
mutate(crossV = "1")
second_crossV <- readRDS(file = "Rdata/Imputation/results/2nd_cross_validation_5th_cycle.Rds") %>%
mutate(crossV = "2")
third_crossV <- readRDS(file = "Rdata/Imputation/results/3rd_cross_validation_5th_cycle.Rds") %>%
mutate(crossV = "3")
fourth_crossV <- readRDS(file = "Rdata/Imputation/results/4th_cross_validation_5th_cycle.Rds") %>%
mutate(crossV = "4")
fifth_crossV <- readRDS(file = "Rdata/Imputation/results/5th_cross_validation_5th_cycle.Rds") %>%
mutate(crossV = "5")
all_imputed_dat <- bind_rows(first_crossV, second_crossV, third_crossV, fourth_crossV,
fifth_crossV)
# Filter to data that was used for the cross-validation
imp_data <- all_imputed_dat[all_imputed_dat$dat_to_validate == "yes", ]
imp_data <- dplyr::filter(imp_data, is.na(tip.label) == FALSE)
# Add row number
row_n_imp <- data.frame(row_n = imp_data$row_n)
# Filter to original data
original_data <- data_for_imp[data_for_imp$row_n %in% row_n_imp$row_n, ]
original_data <- dplyr:::select(original_data, row_n, mean_UTL)
# Combine dataframes
data <- dplyr::left_join(original_data, imp_data, by = "row_n")
data <- rename(data, original_CTmax = mean_UTL.x, imputed_CTmax = filled_mean_UTL5)
# Remove observations that were cross-validated twice
duplicates <- data %>%
group_by(row_n) %>%
summarise(n = n()) %>%
filter(n > 1)
duplicates <- duplicates$row_n
data <- data[!(data$row_n %in% duplicates & data$crossV == "5"), ]
data %>%
summarise(mean = mean(original_CTmax), sd = sd(original_CTmax), n = n())
## mean sd n
## 1 36.18638 2.669832 375
data %>%
summarise(mean = mean(imputed_CTmax), sd = sd(imputed_CTmax), n = n())
## mean sd n
## 1 35.93433 2.543695 375
plot_crossV <- ggplot(data) + geom_density(aes(original_CTmax), fill = "#21918c",
alpha = 0.8) + geom_density(aes(imputed_CTmax), fill = "#CE5B97", alpha = 0.8) +
xlab("CTmax") + ylab("Density") + theme_classic() + theme(text = element_text(color = "black"),
axis.title.x = element_text(size = 60, margin = margin(t = 40, r = 0, b = 0,
l = 0)), axis.title.y = element_text(size = 60, margin = margin(t = 0, r = 40,
b = 0, l = 0)), axis.text.x = element_text(size = 50, margin = margin(t = 20,
r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 50, margin = margin(t = 0,
r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA, size = 2))
plot_crossV
ggsave(plot_crossV, file = "fig/Extended_data_figure_2a.svg", width = 18, height = 16,
dpi = 500)
Extended Data Fig. 2a | Probability density distributions of experimental CTmax (blue) and CTmax cross-validated using our data imputation procedure (pink).
plot_corr <- ggplot(data) + geom_abline(intercept = 0, slope = 1, linewidth = 1.25) +
geom_point(aes(x = imputed_CTmax, y = original_CTmax), fill = "#CE5B97", alpha = 0.8,
shape = 21, size = 10) + ylab("Experimental CTmax") + xlab("Imputed CTmax") +
xlim(27, 43.5) + ylim(27, 43.5) + geom_text(aes(x = 40, y = 29), label = "r = 0.86",
size = 20) + theme_classic() + theme(text = element_text(color = "black"), axis.title.x = element_text(size = 60,
margin = margin(t = 40, r = 0, b = 0, l = 0)), axis.title.y = element_text(size = 60,
margin = margin(t = 0, r = 40, b = 0, l = 0)), axis.text.x = element_text(size = 50,
margin = margin(t = 20, r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 50,
margin = margin(t = 0, r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 2))
plot_corr
ggsave(plot_corr, file = "fig/Extended_data_figure_2b.svg", width = 18, height = 16,
dpi = 500)
Extended Data Fig. 2b | Correlation between experimental CTmax and CTmax cross-validated using our data imputation procedure.
# Load imputed data
imputed_data <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
imputed_data <- filter(imputed_data, imputed=="yes")
# Calculate data summary
data_summary <- imputed_data %>%
mutate(SE = (upper_mean_UTL - filled_mean_UTL5)/1.96,
weights = 1/(SE^2)) %>%
group_by(tip.label) %>%
summarise(CTmax = (sum(filled_mean_UTL5 * weights)/sum(weights)),
SE = sqrt(sum(weights) * (n() - 1) / (((sum(weights)^2) - (sum(weights^2))))),
order = order)
# Calculate data summary for the training data
training_data <- readRDS("RData/General_data/training_data.rds")
data_summary_exp <- training_data %>%
group_by(tip.label) %>%
summarise(CTmax_exp = mean(mean_UTL),
order = order)
data_summary <- distinct(left_join(data_summary, data_summary_exp))
data_summary <- mutate(data_summary, tested = ifelse(is.na(CTmax_exp)== "FALSE", "tested", "not_tested"))
# Set colour
CTmax_min <- min(min(data_summary$CTmax, na.rm = TRUE))
CTmax_max <- max(max(data_summary$CTmax, na.rm = TRUE))
# Import tree from Jetz and Pyron (with slight modifications in species names)
tree <- readRDS("RData/General_data/tree_for_imputation.rds")
# Prune tree
pruned_tree <- drop.tip(tree, tree$tip.label[-match(data_summary$tip.label, tree$tip.label)])
# Build tree skeleton
p1 <- ggtree(pruned_tree,
layout = "fan",
lwd = 0.05) +
xlim(0,800)
# Match data to the tree
p1 <- p1 %<+% data_summary
p2 <- p1 + geom_fruit(geom = geom_tile, # Heat map
mapping = aes(fill = order),
width=10,
offset=0.035)+
scale_fill_manual(values =c("gray60", "gray20"))
p3 <- p2 + ggnewscale::new_scale_fill()+
geom_fruit(geom = geom_tile, # Heat map
mapping = aes(fill = tested),
width=55,
offset=0.15) +
scale_fill_manual(values = c("gray85", "#21918c"))
p4 <- p3 + ggnewscale::new_scale_fill()+
geom_fruit(geom = geom_tile, # Heat map
mapping = aes(fill = SE),
width=55,
offset=0.19) +
scale_fill_viridis(option="plasma",
begin=0,
end=1,
name="SE",
na.value = "gray85")
p4
ggsave(file="fig/Extended_data_figure_2c.svg", width=10, height=10, dpi=1000)
Extended Data Fig. 2c | Variation in the uncertainty (standard error, SE) of imputed CTmax predictions (outer chronogram) across studied (blue) and imputed (grey) species.
Extended data - Figure 3
# Load data
## Substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
## Pond
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C.rds")
## Arboreal
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
TSM
Vegetated substrate
# Load model predictions
pred_sub_current <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_substrate_current.rds")
pred_sub_future2C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_substrate_future2C.rds")
pred_sub_future4C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_substrate_future4C.rds")
pop_TSM_sub <- ggplot() + geom_point(data = pop_sub_future4C, aes(x = lat, y = TSM,
size = 1/TSM_se), col = "#EF4187", shape = 20, alpha = 0.85) + geom_point(data = pop_sub_future2C,
aes(x = lat, y = TSM, size = 1/TSM_se), col = "#FAA43A", shape = 20, alpha = 0.85) +
geom_point(data = pop_sub_current, aes(x = lat, y = TSM, size = 1/TSM_se), col = "#5DC8D9",
shape = 20, alpha = 0.85) + geom_ribbon(data = pred_sub_current, aes(x = lat,
ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") + geom_ribbon(data = pred_sub_future2C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#FAA43A", colour = "black") +
geom_ribbon(data = pred_sub_future4C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#EF4187", colour = "black") + scale_size_continuous(range = c(0.25,
3), guide = "none") + xlab("") + ylab("") + ylim(-10, 50) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), plot.margin = unit(c(0,
0.25, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 3))
Pond or wetland
# Load model predictions
pred_pond_current <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_pond_current.rds")
pred_pond_future2C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_pond_future2C.rds")
pred_pond_future4C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_pond_future4C.rds")
pop_TSM_pond <- ggplot() + geom_point(data = pop_pond_future4C, aes(x = lat, y = TSM,
size = 1/TSM_se), col = "#EF4187", shape = 20, alpha = 0.85) + geom_point(data = pop_pond_future2C,
aes(x = lat, y = TSM, size = 1/TSM_se), col = "#FAA43A", shape = 20, alpha = 0.85) +
geom_point(data = pop_pond_current, aes(x = lat, y = TSM, size = 1/TSM_se), col = "#5DC8D9",
shape = 20, alpha = 0.85) + geom_ribbon(data = pred_pond_current, aes(x = lat,
ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") + geom_ribbon(data = pred_pond_future2C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#FAA43A", colour = "black") +
geom_ribbon(data = pred_pond_future4C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#EF4187", colour = "black") + scale_size_continuous(range = c(0.25,
3), guide = "none") + xlab("") + ylab("Thermal safety margin") + ylim(-10, 50) +
scale_x_continuous(breaks = c(-50, -25, 0, 25, 50), limits = c(-55.00099, 72.00064)) +
theme_classic() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 45), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), plot.margin = unit(c(0,
0.25, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 3))
Above-ground vegetation
# Load model predictions
pred_arb_current <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_arboreal_current.rds")
pred_arb_future2C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_arboreal_future2C.rds")
pred_arb_future4C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_arboreal_future4C.rds")
pop_TSM_arb <- ggplot() + geom_point(data = pop_arb_future4C, aes(x = lat, y = TSM,
size = 1/TSM_se), col = "#EF4187", shape = 20, alpha = 0.85) + geom_point(data = pop_arb_future2C,
aes(x = lat, y = TSM, size = 1/TSM_se), col = "#FAA43A", shape = 20, alpha = 0.85) +
geom_point(data = pop_arb_current, aes(x = lat, y = TSM, size = 1/TSM_se), col = "#5DC8D9",
shape = 20, alpha = 0.85) + geom_ribbon(data = pred_arb_current, aes(x = lat,
ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") + geom_ribbon(data = pred_arb_future2C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#FAA43A", colour = "black") +
geom_ribbon(data = pred_arb_future4C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#EF4187", colour = "black") + scale_size_continuous(range = c(0.25,
3), guide = "none") + xlab("Latitude") + ylab("") + ylim(-10, 50) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 45),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), plot.margin = unit(c(0,
0.25, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 3))
All habitats
TSM <- pop_TSM_sub/pop_TSM_pond/pop_TSM_arb/plot_layout(ncol = 1)
CTmax
Vegetated substrate
# Load model predictions
pred_sub_current <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_substrate_current.rds")
pred_sub_future2C <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_substrate_future2C.rds")
pred_sub_future4C <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_substrate_future4C.rds")
pop_CTmax_sub <- ggplot() + geom_point(data = pop_sub_future4C, aes(x = lat, y = CTmax,
size = 1/CTmax_se), col = "#EF4187", shape = 20, alpha = 0.85) + geom_point(data = pop_sub_future2C,
aes(x = lat, y = CTmax, size = 1/CTmax_se), col = "#FAA43A", shape = 20, alpha = 0.85) +
geom_point(data = pop_sub_current, aes(x = lat, y = CTmax, size = 1/CTmax_se),
col = "#5DC8D9", shape = 20, alpha = 0.85) + geom_ribbon(data = pred_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_sub_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
scale_size_continuous(range = c(0.25, 3), guide = "none") + xlab("") + ylab("") +
ylim(-10, 50) + scale_x_continuous(breaks = c(-50, -25, 0, 25, 50), limits = c(-55.00099,
72.00064)) + theme_classic() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), plot.margin = unit(c(0,
0.25, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 3))
Pond or wetland
# Load model predictions
pred_pond_current <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_pond_current.rds")
pred_pond_future2C <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_pond_future2C.rds")
pred_pond_future4C <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_pond_future4C.rds")
pop_CTmax_pond <- ggplot() + geom_point(data = pop_pond_future4C, aes(x = lat, y = CTmax,
size = 1/CTmax_se), col = "#EF4187", shape = 20, alpha = 0.85) + geom_point(data = pop_pond_future2C,
aes(x = lat, y = CTmax, size = 1/CTmax_se), col = "#FAA43A", shape = 20, alpha = 0.85) +
geom_point(data = pop_pond_current, aes(x = lat, y = CTmax, size = 1/CTmax_se),
col = "#5DC8D9", shape = 20, alpha = 0.85) + geom_ribbon(data = pred_pond_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_pond_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_pond_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
scale_size_continuous(range = c(0.25, 3), guide = "none") + xlab("") + ylab("Critical thermal maximum") +
ylim(-10, 50) + scale_x_continuous(breaks = c(-50, -25, 0, 25, 50), limits = c(-55.00099,
72.00064)) + theme_classic() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 45), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), plot.margin = unit(c(0,
0.25, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 3))
Above-ground vegetation
# Load model predictions
pred_arb_current <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_arboreal_current.rds")
pred_arb_future2C <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_arboreal_future2C.rds")
pred_arb_future4C <- readRDS("RData/Models/CTmax/predictions_pop_lat_CTmax_arboreal_future4C.rds")
pop_CTmax_arb <- ggplot() + geom_point(data = pop_arb_future4C, aes(x = lat, y = CTmax,
size = 1/CTmax_se), col = "#EF4187", shape = 20, alpha = 0.85) + geom_point(data = pop_arb_future2C,
aes(x = lat, y = CTmax, size = 1/CTmax_se), col = "#FAA43A", shape = 20, alpha = 0.85) +
geom_point(data = pop_arb_current, aes(x = lat, y = CTmax, size = 1/CTmax_se),
col = "#5DC8D9", shape = 20, alpha = 0.85) + geom_ribbon(data = pred_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_arb_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
scale_size_continuous(range = c(0.25, 3), guide = "none") + xlab("Latitude") +
ylab("") + ylim(-10, 50) + scale_x_continuous(breaks = c(-50, -25, 0, 25, 50),
limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 45),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), plot.margin = unit(c(0,
0.25, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 3))
All habitats
CTmax <- pop_CTmax_sub/pop_CTmax_pond/pop_CTmax_arb/plot_layout(ncol = 1)
Operative body temperature
Vegetated substrate
# Load model predictions
pred_sub_current <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_substrate_current.rds")
pred_sub_future2C <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_substrate_future2C.rds")
pred_sub_future4C <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_substrate_future4C.rds")
pop_max_temp_sub <- ggplot() + geom_point(data = pop_sub_future4C, aes(x = lat, y = max_temp),
col = "#EF4187", shape = 20, alpha = 0.85, size = 2) + geom_point(data = pop_sub_future2C,
aes(x = lat, y = max_temp), col = "#FAA43A", shape = 20, alpha = 0.85, size = 2) +
geom_point(data = pop_sub_current, aes(x = lat, y = max_temp), col = "#5DC8D9",
shape = 20, alpha = 0.85, size = 2) + geom_ribbon(data = pred_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_sub_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("") + ylab("") + ylim(-10, 50) + scale_x_continuous(breaks = c(-50, -25,
0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Pond or wetland
# Load model predictions
pred_pond_current <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_pond_current.rds")
pred_pond_future2C <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_pond_future2C.rds")
pred_pond_future4C <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_pond_future4C.rds")
pop_max_temp_pond <- ggplot() + geom_point(data = pop_pond_future4C, aes(x = lat,
y = max_temp), col = "#EF4187", shape = 20, alpha = 0.85, size = 2) + geom_point(data = pop_pond_future2C,
aes(x = lat, y = max_temp), col = "#FAA43A", shape = 20, alpha = 0.85, size = 2) +
geom_point(data = pop_pond_current, aes(x = lat, y = max_temp), col = "#5DC8D9",
shape = 20, alpha = 0.85, size = 2) + geom_ribbon(data = pred_pond_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_pond_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_pond_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("") + ylab("Operative body temperature") + ylim(-10, 50) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 45), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Above-ground vegetation
# Load model predictions
pred_arb_current <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_arboreal_current.rds")
pred_arb_future2C <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_arboreal_future2C.rds")
pred_arb_future4C <- readRDS("RData/Models/max_temp/predictions_pop_lat_max_temp_arboreal_future4C.rds")
pop_max_temp_arb <- ggplot() + geom_point(data = pop_arb_future4C, aes(x = lat, y = max_temp),
col = "#EF4187", shape = 20, alpha = 0.85, size = 2) + geom_point(data = pop_arb_future2C,
aes(x = lat, y = max_temp), col = "#FAA43A", shape = 20, alpha = 0.85, size = 2) +
geom_point(data = pop_arb_current, aes(x = lat, y = max_temp), col = "#5DC8D9",
shape = 20, alpha = 0.85, size = 2) + geom_ribbon(data = pred_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black") +
geom_ribbon(data = pred_arb_future2C, aes(x = lat, ymin = lower, ymax = upper),
fill = "#FAA43A", colour = "black") + geom_ribbon(data = pred_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black") +
xlab("Latitude") + ylab("") + ylim(-10, 50) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 45),
axis.title.y = element_text(size = 30), axis.text.x = element_text(color = "black",
size = 20, margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 20, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
All habitats
body_temp <- pop_max_temp_sub/pop_max_temp_pond/pop_max_temp_arb/plot_layout(ncol = 1)
Combine TSM, CTmax and body temperature plots
all_traits <- (TSM | CTmax | body_temp)
all_traits
ggsave(all_traits, file = "fig/Extended_data_figure_3.svg", width = 30, height = 20,
dpi = 1000)
Extended Data Fig. 3 | Thermal safety margin, critical thermal maximum, and operative body temperatures in different microhabitats and climatic scenarios. Population-level mean thermal safety margins (TSM; left column), critical thermal maximum (CTmax; middle column) and operative body temperatures (right column) in terrestrial (top row), aquatic (middle row) and arboreal (bottom row) microhabitats are depicted in current microclimates (blue data points), or assuming 2°C and 4°C of global warming above pre-industrial levels (orange, and pink data points, respectively) across latitudes. Lines represent 95% confidence intervals of model predictions from generalized additive mixed models.
Extended data - Figure 4
Population-level patterns
# Vegetated substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
# Pond or wetland
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
# Filter substrate data to only arboreal species
pop_sub_current <- pop_sub_current[pop_sub_current$tip.label %in% pop_arb_current$tip.label,
]
pop_sub_future2C <- pop_sub_future2C[pop_sub_future2C$tip.label %in% pop_arb_future2C$tip.label,
]
pop_sub_future4C <- pop_sub_future4C[pop_sub_future4C$tip.label %in% pop_arb_future4C$tip.label,
]
Overheating days by latitude - Substrate
n_days_sub <- ggplot() + geom_point(data = filter(pop_sub_future4C, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_sub_future2C,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_sub_current, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, 154) + xlab("") +
ylab("") + theme_classic() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
text = element_text(color = "black"), axis.title.x = element_blank(), axis.title.y = element_blank(),
axis.text.x = element_text(color = "black", size = 25), axis.text.y = element_text(color = "black",
size = 25), panel.border = element_rect(fill = NA, size = 3))
Overheating days by latitude - Above-ground vegetation
n_days_arb <- ggplot() + geom_point(data = filter(pop_arb_future4C, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_arb_future2C,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_arb_current, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, 154) + xlab("Latitude") +
ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 35),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25),
axis.text.y = element_text(color = "black", size = 25), panel.border = element_rect(fill = NA,
size = 3))
Overheating days by TSM - Substrate
days_TSM_sub <- ggplot() + geom_point(data = pop_sub_future4C, aes(x = TSM, y = overheating_days),
fill = "#EF4187", shape = 21, alpha = 0.85, size = 3.5) + geom_point(data = pop_sub_future2C,
aes(x = TSM, y = overheating_days), fill = "#FAA43A", shape = 21, alpha = 0.85,
size = 3.5) + geom_point(data = pop_sub_current, aes(x = TSM, y = overheating_days),
fill = "#5DC8D9", shape = 21, alpha = 0.85, size = 3.5) + ylim(-0.35, 154) +
xlim(0, 18) + xlab("Thermal safety margin") + ylab("") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_blank(),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Overheating days by TSM - Above-ground vegetation
days_TSM_arb <- ggplot() + geom_point(data = pop_arb_future4C, aes(x = TSM, y = overheating_days),
fill = "#EF4187", shape = 21, alpha = 0.85, size = 3.5) + geom_point(data = pop_arb_future2C,
aes(x = TSM, y = overheating_days), fill = "#FAA43A", shape = 21, alpha = 0.85,
size = 3.5) + geom_point(data = pop_arb_current, aes(x = TSM, y = overheating_days),
fill = "#5DC8D9", shape = 21, alpha = 0.85, size = 3.5) + ylim(-0.35, 154) +
xlim(0, 18) + xlab("Thermal safety margin") + ylab("") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 35),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Combine plot
ext_fig4 <- (n_days_sub | days_TSM_sub)/(n_days_arb | days_TSM_arb)
ext_fig4
ggsave(ext_fig4, file = "fig/Extended_data_figure_4abcd.svg", width = 16, height = 12,
dpi = 500)
Community-level patterns
# Load data Substrate
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells_arboreal_sp.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells_arboreal_sp.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells_arboreal_sp.rds")
## Arboreal
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_clipped_cells.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_clipped_cells.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_clipped_cells.rds")
# Set colours
color_palette <- colorRampPalette(colors = c("#FAF218", "#EF4187", "#d90429"))
colors <- color_palette(100)
color_func <- colorRampPalette(c("gray65", colors))
color_palette <- color_func(100)
sp_min <- min(min(community_sub_current$n_species_overheating, na.rm = TRUE), min(community_sub_future4C$n_species_overheating,
na.rm = TRUE), min(community_arb_current$n_species_overheating, na.rm = TRUE),
min(community_arb_future4C$n_species_overheating, na.rm = TRUE))
sp_max <- max(max(community_sub_current$n_species_overheating, na.rm = TRUE), max(community_sub_future4C$n_species_overheating,
na.rm = TRUE), max(community_arb_current$n_species_overheating, na.rm = TRUE),
max(community_arb_future4C$n_species_overheating, na.rm = TRUE))
Extended Data Fig. 4a-d | Number of overheating events experienced by arboreal species across latitudes (left column) and in relation to thermal safety margins (right column) in terrestrial (top row) and arboreal microhabitats (bottom row). The number of overheating events were calculated as the sum of overheating events (when daily maximum temperatures exceed CTmax) during the warmest quarters of 2006-2015 for each population. Blue points depict the number of overheating events in historical microclimates, while orange and pink points depict the number of overheating events assuming 2°C and 4°C of global warming above pre-industrial levels, respectively. In the left column, only the populations predicted to overheat are displayed.
Vegetated substrate
# Current
map_sub_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_current,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", limits = c(0, sp_max)) + theme_void() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 2, colour = "#5DC8D9"))
# Future +4C
map_sub_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future4C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", limits = c(0, sp_max)) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#EF4187"))
lat_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = filter(community_sub_future4C, n_species_overheating >
0), aes(x = lat, y = n_species_overheating), alpha = 0.85, fill = "#EF4187",
col = "transparent", shape = 22, size = 1, stroke = 0.1) + geom_point(data = filter(community_sub_current,
n_species_overheating > 0), aes(x = lat, y = n_species_overheating), alpha = 0.85,
fill = "#5DC8D9", col = "transparent", shape = 22, size = 1, stroke = 0.1) +
xlim(-55.00099, 72.00064) + ylim(0, 14) + xlab("") + ylab("") + coord_flip() +
theme_classic() + theme(axis.text.y = element_text(color = "black", size = 11),
aspect.ratio = 1, plot.background = element_rect(fill = "transparent", colour = NA),
panel.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), text = element_text(color = "black"), axis.text.x = element_text(color = "black",
size = 10), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
substrate_plot <- (map_sub_TSM_current + map_sub_TSM_future4C + lat_all + plot_layout(ncol = 3))
Above-ground vegetation
# Current
map_arb_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_current,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", limits = c(0, sp_max)) + theme_void() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 2, colour = "#5DC8D9"))
# Future +4C
map_arb_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future4C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(0, sp_max)) + theme_void() +
theme(plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), legend.position = "bottom", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
lat_all_arb <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = filter(community_arb_future4C, n_species_overheating >
0), aes(x = lat, y = n_species_overheating), alpha = 0.85, fill = "#EF4187",
col = "transparent", shape = 22, size = 1, stroke = 0.1) + geom_point(data = filter(community_arb_current,
n_species_overheating > 0), aes(x = lat, y = n_species_overheating), alpha = 0.85,
fill = "#5DC8D9", col = "transparent", shape = 22, size = 1, stroke = 0.1) +
xlim(-55.00099, 72.00064) + ylim(0, 14) + xlab("") + ylab("Species overheating") +
coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(color = "black", size = 12), axis.text.x = element_text(color = "black",
size = 10), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
arboreal_plot <- (map_arb_TSM_current + map_arb_TSM_future4C + lat_all_arb + plot_layout(ncol = 3))
All habitats
all_habitats <- (substrate_plot/arboreal_plot/plot_layout(ncol = 1))
all_habitats
ggsave(all_habitats, file = "fig/Extended_data_figure_4ef.svg", width = 14, height = 5,
dpi = 500)
Extended Data Fig. 4e-f | Number of arboreal species predicted to experience overheating events terrestrial (top row) and arboreal (bottom row) microhabitats in each community. The number of species overheating was assessed as the sum of species overheating at least once in the period surveyed (warmest quarters of 2006-2015) in each community (1-degree grid cell). Black color depicts areas with no data, and gray color communities without species at risk. The right panel depicts latitudinal patterns in the number of species predicted to overheat in current climates (blue) or assuming 4°C of global warming above pre-industrial levels (pink). Dashed lines represent the equator and tropics. No species were predicted to experience overheating events in water bodies, and hence are not displayed.
Extended data - Figure 5
# Load data Substrate
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells.rds")
## Arboreal
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_clipped_cells.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_clipped_cells.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_clipped_cells.rds")
## Pond
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current_clipped_cells.rds")
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C_clipped_cells.rds")
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C_clipped_cells.rds")
Vegetated substrate
# Current
map_sub_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_current,
aes(fill = proportion_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Proportion of species overheating", limits = c(0,
1)) + theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +4C
map_sub_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future4C,
aes(fill = proportion_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Proportion of species overheating", limits = c(0,
1)) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
lat_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = filter(community_sub_future4C, proportion_species_overheating >
0), aes(x = lat, y = proportion_species_overheating), alpha = 0.85, fill = "#EF4187",
col = "transparent", shape = 22, size = 1, stroke = 0.1) + geom_point(data = filter(community_sub_current,
proportion_species_overheating > 0), aes(x = lat, y = proportion_species_overheating),
alpha = 0.85, fill = "#5DC8D9", col = "transparent", shape = 22, size = 1, stroke = 0.1) +
xlim(-55.00099, 72.00064) + ylim(-0.01, 1) + xlab("") + ylab("") + coord_flip() +
theme_classic() + theme(axis.text.y = element_text(color = "black", size = 11),
aspect.ratio = 1, plot.background = element_rect(fill = "transparent", colour = NA),
panel.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), text = element_text(color = "black"), axis.text.x = element_text(color = "black",
size = 10), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
substrate_plot <- (map_sub_TSM_current + map_sub_TSM_future4C + lat_all + plot_layout(ncol = 3))
Pond or wetland
# Current
map_pond_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_current,
aes(fill = proportion_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Proportion of species overheating", limits = c(0,
1)) + theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +4C
map_pond_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_future4C,
aes(fill = proportion_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Proportion of species overheating", limits = c(0,
1)) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
lat_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = filter(community_pond_future4C, proportion_species_overheating >
0), aes(x = lat, y = proportion_species_overheating), alpha = 0.85, fill = "#EF4187",
col = "transparent", shape = 22, size = 1, stroke = 0.1) + xlim(-55.00099, 72.00064) +
ylim(-0.01, 1) + xlab("") + ylab("") + coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.text.x = element_text(color = "black", size = 10), axis.line = element_line(color = "black"),
panel.border = element_rect(fill = NA, size = 2))
pond_plot <- (map_pond_TSM_current + map_pond_TSM_future4C + lat_all + plot_layout(ncol = 3))
Above-ground vegetation
# Current
map_arb_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_current,
aes(fill = proportion_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Proportion of species overheating", limits = c(0,
1)) + theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +4C
map_arb_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future4C,
aes(fill = proportion_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Proportion of species overheating", limits = c(0,
1)) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "bottom",
panel.border = element_rect(fill = NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
lat_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = filter(community_arb_future4C, proportion_species_overheating >
0), aes(x = lat, y = proportion_species_overheating), alpha = 0.85, fill = "#EF4187",
col = "transparent", shape = 22, size = 1, stroke = 0.1) + geom_point(data = filter(community_arb_current,
proportion_species_overheating > 0), aes(x = lat, y = proportion_species_overheating),
alpha = 0.85, fill = "#5DC8D9", col = "transparent", shape = 22, size = 1, stroke = 0.1) +
xlim(-55.00099, 72.00064) + ylim(-0.01, 1) + xlab("") + ylab("Proportion of species
overheating") +
coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(color = "black", size = 12), axis.text.x = element_text(color = "black",
size = 10), axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
arboreal_plot <- (map_arb_TSM_current + map_arb_TSM_future4C + lat_all + plot_layout(ncol = 3))
All habitats
all_habitats <- (substrate_plot/pond_plot/arboreal_plot/plot_layout(ncol = 1))
all_habitats
ggsave(all_habitats, file = "fig/Extended_data_figure_5.svg", width = 14, height = 7,
dpi = 500)
Extended Data Fig. 5 | Proportion of species predicted to experience overheating events in terrestrial (top row), aquatic (middle row) and arboreal (bottom row) microhabitats. The proportion of species overheating was assessed as the sum of species overheating at least once in the period surveyed (warmest quarters of 2006-2015) divided by the number of species in each community (1-degree grid cell). Black color depicts areas with no data, and gray color communities without species at risk. The right panel depicts latitudinal patterns in the proportion of species predicted to overheat in current climates (blue) or assuming 4°C of global warming above pre-industrial levels (pink). Dashed lines represent the equator and tropics. No species were predicted to experience overheating events in water bodies, and hence are not displayed.
Extended data - Figure 6
# Load current data
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
# Load sensitivity analysis data
pop_sub_future4C_sens <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C_sensitivity_analysis.rds")
# Load current model predictions
pred_sub_future4C <- readRDS("RData/Models/TSM/predictions_pop_lat_TSM_substrate_future4C.rds") # # Load model predictions after removing outliers (temperatures below the 5th and above the 95th percentile body temperatures)
pred_sub_future4C_no_outliers <- readRDS("RData/Models/TSM/sensitivity_analyses/predictions_pop_lat_TSM_substrate_future4C_without_outliers.rds")
# Load model predictions without averaging (taking TSM as the difference between the 95th percentile body temperature and the corresponding CTmax)
pred_sub_future4C_95th_perc <- readRDS("RData/Models/TSM/sensitivity_analyses/predictions_pop_lat_TSM_substrate_future4C_95th_percentile.rds")
# Load model predictions without averaging (taking TSM as the difference between the maximum hourly body temperature and the corresponding CTmax; i.e., lowest possible TSM)
pred_sub_future4C_max_temp <- readRDS("RData/Models/TSM/sensitivity_analyses/predictions_pop_lat_TSM_substrate_future4C_max_temp.rds")
# Find limit of the plot
tsm_max <- max(pop_sub_future4C$TSM)
tsm_min <- min(pop_sub_future4C_sens$TSM_extreme)
TSM_sensitivity <- ggplot()+
geom_point(data = pop_sub_future4C_sens,
aes(x = lat, y = TSM_extreme), # No averaging (lowest TSM)
colour="#bf0603",
shape = 20,
alpha=0.85,
size = 3) +
geom_point(data = pop_sub_future4C_sens,
aes(x = lat, y = TSM_95), # No averaging (95th percentile)
colour="#f4d58d",
shape = 20,
alpha=0.85,
size = 3) +
geom_point(data = pop_sub_future4C_sens,
aes(x = lat, y = TSM), # Without outliers
colour="#5DC8D9",
shape = 20,
alpha=0.85,
size = 3) +
geom_point(data = pop_sub_future4C,
aes(x = lat, y = TSM), # Current TSM used in analyses
colour="#adb5bd",
shape = 20,
alpha=0.85,
size = 3) +
geom_ribbon(data = pred_sub_future4C_max_temp,
aes(x = lat, ymin = lower, ymax = upper),
fill="#bf0603",
colour="black") +
geom_ribbon(data = pred_sub_future4C_95th_perc,
aes(x = lat, ymin = lower, ymax = upper),
fill="#f4d58d",
colour="black") +
geom_ribbon(data = pred_sub_future4C_no_outliers,
aes(x = lat, ymin = lower, ymax = upper),
fill="#5DC8D9",
colour="black") +
geom_ribbon(data = pred_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper),
fill="#adb5bd",
colour="black") +
geom_hline(yintercept = 0, linetype = "dashed", size = 1.5) +
xlab("Latitude") +
ylab("Thermal safety margin") +
ylim(tsm_min, tsm_max) +
scale_x_continuous(breaks = c(-50, -25, 0, 25, 50),
limits = c(-55.00099, 72.00064)) +
theme_classic() +
theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA),
panel.background = element_rect(fill = "transparent", colour = NA),
text = element_text(color = "black"),
axis.title.x = element_text(size = 30),
axis.title.y = element_text(size = 30),
axis.text.x = element_text(color = "black",
size = 20,
margin = margin(t = 8, r = 0, b = 0, l = 0)),
axis.text.y = element_text(color = "black",
size = 20,
margin = margin(t = 0, r = 10, b = 0, l = 0)),
panel.border = element_rect(fill=NA, size = 3))
TSM_sensitivity
ggsave("fig/Extended_data_figure_6.svg", width=16, height=11, dpi = 300)
Extended Data Fig. 6 | Variation in thermal safety margin calculated using different assumptions. Thermal safety margins (TSM) were calculated as the mean difference between CTmax and the predicted operative body temperature in full shade during the warmest quarters of 2006-2015 (grey colour), as the mean difference between CTmax and the predicted operative body temperature in full shade during the warmest quarters of 2006-2015 excluding body temperatures falling outside the 5% and 95% percentile temperatures (blue), as the difference between the 95% percentile operative body temperature and the corresponding CTmax (yellow), or as the difference between the maximum operative body temperature and the corresponding CTmax (red). Lines represented 95% confidence interval ranges predicted from generalized additive mixed models. This figure was constructed assuming ground-level microclimates occurring under 4°C of global warming above pre-industrial levels.
Extended data - Figure 7
Load data
# Vegetated substrate (acclimation to the mean weekly temperature)
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
# Arboreal conditions (acclimation to the mean weekly temperature)
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
# Vegetated substrate (acclimation to the max weekly temperature)
pop_sub_current_max <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_max_acc_current.rds")
pop_sub_future2C_max <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_max_acc_future2C.rds")
pop_sub_future4C_max <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_max_acc_future4C.rds")
# Arboreal conditions (acclimation to the max weekly temperature)
pop_arb_current_max <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_max_acc_current.rds")
pop_arb_future2C_max <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_max_acc_future2C.rds")
pop_arb_future4C_max <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_max_acc_future4C.rds")
# Find limits for colours of the plot
days_min <- min(min(pop_sub_current$overheating_days, na.rm = TRUE), min(pop_sub_future4C$overheating_days,
na.rm = TRUE), min(pop_arb_current$overheating_days, na.rm = TRUE), min(pop_arb_future4C$overheating_days,
na.rm = TRUE), min(pop_sub_current_max$overheating_days, na.rm = TRUE), min(pop_sub_future4C_max$overheating_days,
na.rm = TRUE), min(pop_arb_current_max$overheating_days, na.rm = TRUE), min(pop_arb_future4C_max$overheating_days,
na.rm = TRUE))
days_max <- max(max(pop_sub_current$overheating_days, na.rm = TRUE), max(pop_sub_future4C$overheating_days,
na.rm = TRUE), max(pop_arb_current$overheating_days, na.rm = TRUE), max(pop_arb_future4C$overheating_days,
na.rm = TRUE), max(pop_sub_current_max$overheating_days, na.rm = TRUE), max(pop_sub_future4C_max$overheating_days,
na.rm = TRUE), max(pop_arb_current_max$overheating_days, na.rm = TRUE), max(pop_arb_future4C_max$overheating_days,
na.rm = TRUE))
Acclimation to the mean weekly temperature - Substrate
n_days_sub <- ggplot() + geom_point(data = filter(pop_sub_future4C, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_sub_future2C,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_sub_current, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_blank(),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Acclimation to the max weekly temperature - Substrate
n_days_sub_max <- ggplot() + geom_point(data = filter(pop_sub_future4C_max, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_sub_future2C_max,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_sub_current_max, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_blank(),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Acclimation to the mean weekly temperature - Above-ground vegetation
n_days_arb <- ggplot() + geom_point(data = filter(pop_arb_future4C, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_arb_future2C,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_arb_current, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 35),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Acclimation to the max weekly temperature - Above-ground vegetation
n_days_arb_max <- ggplot() + geom_point(data = filter(pop_arb_future4C_max, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_arb_future2C_max,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_arb_current_max, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 35),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Combine plots
ext_fig_7 <- (n_days_sub | n_days_sub_max)/(n_days_arb | n_days_arb_max)
ext_fig_7
ggsave(ext_fig_7, file = "fig/Extended_data_figure_7.svg", width = 16, height = 12,
dpi = 500)
Extended Data Fig. 7 | Latitudinal variation in the number of overheating events when animals are acclimated to the mean (left column) or maximum weekly body temperature experienced in the seven days prior (right column) in terrestrial (top row) and arboreal (bottom row) microhabitats. The number of overheating events (days) were calculated as the sum of overheating events (when daily maximum temperatures exceed CTmax) during the warmest quarters of 2006-2015 for each population. Blue points depict the number of overheating events in historical microclimates, while orange and pink points depict the number of overheating events assuming 2°C and 4°C of global warming above pre-industrial levels, respectively. For clarity, only the populations predicted to experience overheating events across latitudes are depicted.
Extended data - Figure 8
Load data
# Vegetated substrate
pop_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current.rds")
pop_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C.rds")
pop_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C.rds")
# Arboreal conditions
pop_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current.rds")
pop_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C.rds")
pop_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C.rds")
# Aquatic conditions
pop_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current.rds")
pop_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C.rds")
pop_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C.rds")
# Vegetated substrate (large se used for estimating overheating probabilities)
pop_sub_current_se <- readRDS("RData/Climate_vulnerability/Substrate/current/population_vulnerability_substrate_mean_acc_current_large_se.rds")
pop_sub_future2C_se <- readRDS("RData/Climate_vulnerability/Substrate/future2C/population_vulnerability_substrate_mean_acc_future2C_large_se.rds")
pop_sub_future4C_se <- readRDS("RData/Climate_vulnerability/Substrate/future4C/population_vulnerability_substrate_mean_acc_future4C_large_se.rds")
# Arboreal conditions (large se used for estimating overheating probabilities)
pop_arb_current_se <- readRDS("RData/Climate_vulnerability/Arboreal/current/population_vulnerability_arboreal_mean_acc_current_large_se.rds")
pop_arb_future2C_se <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/population_vulnerability_arboreal_mean_acc_future2C_large_se.rds")
pop_arb_future4C_se <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/population_vulnerability_arboreal_mean_acc_future4C_large_se.rds")
# Aquatic conditions (large se used for estimating overheating probabilities)
pop_pond_current_se <- readRDS("RData/Climate_vulnerability/Pond/current/population_vulnerability_pond_mean_acc_current_large_se.rds")
pop_pond_future2C_se <- readRDS("RData/Climate_vulnerability/Pond/future2C/population_vulnerability_pond_mean_acc_future2C_large_se.rds")
pop_pond_future4C_se <- readRDS("RData/Climate_vulnerability/Pond/future4C/population_vulnerability_pond_mean_acc_future4C_large_se.rds")
# Find limits for colours of the plot
days_min <- 0
days_max <- max(max(pop_sub_future4C$overheating_days, na.rm = TRUE), max(pop_arb_future4C$overheating_days,
na.rm = TRUE), max(pop_pond_future4C$overheating_days, na.rm = TRUE), max(pop_sub_future4C_se$overheating_days,
na.rm = TRUE), max(pop_arb_future4C_se$overheating_days, na.rm = TRUE), max(pop_pond_future4C_se$overheating_days,
na.rm = TRUE))
Regular estimates - Substrate
n_days_sub <- ggplot() + geom_point(data = filter(pop_sub_future4C, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_sub_future2C,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_sub_current, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_blank(),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Estimates with large uncertainty - Substrate
n_days_sub_se <- ggplot() + geom_point(data = filter(pop_sub_future4C_se, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_sub_future2C_se,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_sub_current_se, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_blank(),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Strict estimates - Substrate
n_days_sub_strict <- ggplot() + geom_point(data = filter(pop_sub_future4C, overheating_risk_strict >
0), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_sub_future2C,
overheating_risk_strict > 0), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_sub_current, overheating_risk_strict >
0), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_blank(),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Regular estimates - Aquatic
n_days_pond <- ggplot() + geom_point(data = filter(pop_pond_future4C, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_pond_future2C,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_pond_current, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_blank(),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Estimates with large uncertainty - Aquatic
n_days_pond_se <- ggplot() + geom_point(data = filter(pop_pond_future4C_se, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_pond_future2C_se,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_pond_current_se, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_blank(),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Strict estimates - Aquatic
n_days_pond_strict <- ggplot() + geom_point(data = filter(pop_pond_future4C, overheating_risk_strict >
0), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_pond_future2C,
overheating_risk_strict > 0), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_pond_current, overheating_risk_strict >
0), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_blank(),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Regular estimates - Above-ground vegetation
n_days_arb <- ggplot() + geom_point(data = filter(pop_arb_future4C, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_arb_future2C,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_arb_current, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 35),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Estimates with large uncertainty - Above-ground vegetation
n_days_arb_se <- ggplot() + geom_point(data = filter(pop_arb_future4C_se, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_arb_future2C_se,
overheating_days >= 1), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_arb_current_se, overheating_days >=
1), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 35),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Strict estimates - Above-ground vegetation
n_days_arb_strict <- ggplot() + geom_point(data = filter(pop_arb_future4C, overheating_risk_strict >
0), aes(x = lat, y = overheating_days), fill = "#EF4187", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + geom_point(data = filter(pop_arb_future2C,
overheating_risk_strict > 0), aes(x = lat, y = overheating_days), fill = "#FAA43A",
shape = 21, alpha = 0.85, size = 3.5, position = position_jitter(width = 0.35,
height = 0.35)) + geom_point(data = filter(pop_arb_current, overheating_risk_strict >
0), aes(x = lat, y = overheating_days), fill = "#5DC8D9", shape = 21, alpha = 0.85,
size = 3.5, position = position_jitter(width = 0.35, height = 0.35)) + scale_x_continuous(breaks = c(-50,
-25, 0, 25, 50), limits = c(-55.00099, 72.00064)) + ylim(-0.35, days_max + 0.35) +
xlab("Latitude") + ylab("Number of overheating days") + theme_classic() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), text = element_text(color = "black"), axis.title.x = element_text(size = 35),
axis.title.y = element_blank(), axis.text.x = element_text(color = "black", size = 25,
margin = margin(t = 8, r = 0, b = 0, l = 0)), axis.text.y = element_text(color = "black",
size = 25, margin = margin(t = 0, r = 10, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 3))
Combine plots
ext_fig_8 <- (n_days_sub | n_days_sub_se | n_days_sub_strict)/(n_days_pond | n_days_pond_se |
n_days_pond_strict)/(n_days_arb | n_days_arb_se | n_days_arb_strict)
ext_fig_8
ggsave(ext_fig_8, file = "fig/Extended_data_figure_8.svg", width = 20, height = 13,
dpi = 500)
Extended Data Fig. 8 | Latitudinal variation in the number of overheating events using regular (left column) or conservative estimates (right column) in terrestrial (top row) and arboreal (bottom row) microhabitats. The number of overheating events (days) were calculated as the sum of overheating events (when daily maximum temperatures exceed CTmax) during the warmest quarters of 2006-2015 for each population. Conservative estimates are those where overheating events were counted only when operative body temperatures exceeded 50% of the predicted distribution of CTmax. Blue points depict the number of overheating events in historical microclimates, while orange and pink points depict the number of overheating events assuming 2°C and 4°C of global warming above pre-industrial levels, respectively. For clarity, only the populations predicted to experience overheating events across latitudes are depicted.
Extended data - Figure 9
Terrestrial biophysical models with different parameters
# Open habitats and burrows
habitat_selection <- ggplot() + geom_density(data = daily_vulnerability_open, aes(x = daily_TSM),
alpha = 0.6, fill = "red") + geom_density(data = filter(daily_vulnerability_burrow,
DEPTH == "2.5cm"), aes(x = daily_TSM), fill = "gold", alpha = 0.7) + geom_density(data = filter(daily_vulnerability_burrow,
DEPTH == "5cm"), aes(x = daily_TSM), fill = "#BA9E49", alpha = 0.7) + geom_density(data = filter(daily_vulnerability_burrow,
DEPTH == "10cm"), aes(x = daily_TSM), fill = "darkorange", alpha = 0.7) + geom_density(data = filter(daily_vulnerability_burrow,
DEPTH == "15cm"), aes(x = daily_TSM), fill = "#F1AF79", alpha = 0.7) + geom_density(data = filter(daily_vulnerability_burrow,
DEPTH == "20cm"), aes(x = daily_TSM), fill = "#995C51", alpha = 0.7) + geom_density(data = daily_vulnerability,
aes(x = daily_TSM), alpha = 0.6, fill = "black") + geom_vline(xintercept = 0,
colour = "black", lwd = 1, alpha = 0.75) + xlim(-6.5, 5) + ylim(0, 1.05) + xlab("Daily TSM") +
ylab("Density") + theme_classic() + theme(text = element_text(color = "black"),
axis.title.x = element_text(size = 50, margin = margin(t = 40, r = 0, b = 0,
l = 0)), axis.title.y = element_text(size = 50, margin = margin(t = 0, r = 40,
b = 0, l = 0)), axis.text.x = element_text(size = 40, margin = margin(t = 20,
r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40, margin = margin(t = 0,
r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA, size = 2))
# Body size
body_size <- ggplot() + geom_density(data = daily_vulnerability_small, aes(x = daily_TSM),
alpha = 0.5, fill = "#49BAAE") + geom_density(data = daily_vulnerability_large,
aes(x = daily_TSM), alpha = 0.5, fill = "#BA4989") + geom_density(data = daily_vulnerability,
aes(x = daily_TSM), alpha = 0.6, fill = "black") + geom_vline(xintercept = 0,
colour = "black", lwd = 1, alpha = 0.75) + xlim(-5, 5) + xlab("") + ylab("Density") +
theme_classic() + theme(text = element_text(color = "black"), axis.title.x = element_text(size = 50,
margin = margin(t = 40, r = 0, b = 0, l = 0)), axis.title.y = element_text(size = 50,
margin = margin(t = 0, r = 40, b = 0, l = 0)), axis.text.x = element_text(size = 40,
margin = margin(t = 20, r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40,
margin = margin(t = 0, r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 2))
terrestrial_parameters <- body_size/habitat_selection
terrestrial_parameters
Aquatic biophysical models with different parameters
aquatic_parameters <- ggplot() + geom_density(data = daily_vulnerability_pond_shallow,
aes(x = daily_TSM), alpha = 0.5, fill = "lightblue") + geom_density(data = daily_vulnerability_pond_deep,
aes(x = daily_TSM), alpha = 0.5, fill = "darkblue") + geom_density(data = daily_vulnerability_pond,
aes(x = daily_TSM), alpha = 0.6, fill = "black") + geom_vline(xintercept = 0,
colour = "black", lwd = 1, alpha = 0.75) + xlim(-5, 6) + xlab("") + ylab("Density") +
theme_classic() + theme(text = element_text(color = "black"), axis.title.x = element_text(size = 50,
margin = margin(t = 40, r = 0, b = 0, l = 0)), axis.title.y = element_text(size = 50,
margin = margin(t = 0, r = 40, b = 0, l = 0)), axis.text.x = element_text(size = 40,
margin = margin(t = 20, r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40,
margin = margin(t = 0, r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 2))
aquatic_parameters
Arboreal biophysical models with different parameters
# Plant height
plant_height <- ggplot() + geom_density(data = daily_vulnerability_arb_tall, aes(x = daily_TSM),
alpha = 0.5, fill = "darkgreen") + geom_density(data = daily_vulnerability_arb_short,
aes(x = daily_TSM), alpha = 0.5, fill = "lightgreen") + geom_density(data = daily_vulnerability_arb,
aes(x = daily_TSM), alpha = 0.6, fill = "black") + geom_vline(xintercept = 0,
colour = "black", lwd = 1, alpha = 0.75) + xlim(-5, 5) + xlab("") + ylab("") +
theme_classic() + theme(text = element_text(color = "black"), axis.title.x = element_text(size = 50,
margin = margin(t = 40, r = 0, b = 0, l = 0)), axis.title.y = element_text(size = 50,
margin = margin(t = 0, r = 40, b = 0, l = 0)), axis.text.x = element_text(size = 40,
margin = margin(t = 20, r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40,
margin = margin(t = 0, r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 2))
# Diffusion of solar radiation
plant_solar_rad <- ggplot() + geom_density(data = daily_vulnerability_arb_low_diff,
aes(x = daily_TSM), alpha = 0.5, fill = "#cc4778") + geom_density(data = daily_vulnerability_arb_mid_diff,
aes(x = daily_TSM), alpha = 0.5, fill = "#7e03a8") + geom_density(data = daily_vulnerability_arb,
aes(x = daily_TSM), alpha = 0.6, fill = "black") + geom_vline(xintercept = 0,
colour = "black", lwd = 1, alpha = 0.75) + xlim(-5, 5) + xlab("") + ylab("") +
theme_classic() + theme(text = element_text(color = "black"), axis.title.x = element_text(size = 50,
margin = margin(t = 40, r = 0, b = 0, l = 0)), axis.title.y = element_text(size = 50,
margin = margin(t = 0, r = 40, b = 0, l = 0)), axis.text.x = element_text(size = 40,
margin = margin(t = 20, r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40,
margin = margin(t = 0, r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 2))
# Wind reduction
plant_wind_reduc <- ggplot() + geom_density(data = daily_vulnerability_arb_no_wind,
aes(x = daily_TSM), alpha = 0.5, fill = "#BA4953") + geom_density(data = daily_vulnerability_arb_high_wind,
aes(x = daily_TSM), alpha = 0.5, fill = "#49BAAE") + geom_density(data = daily_vulnerability_arb,
aes(x = daily_TSM), alpha = 0.6, fill = "black") + geom_vline(xintercept = 0,
colour = "black", lwd = 1, alpha = 0.75) + xlim(-5, 5) + xlab("Daily TSM") +
ylab("") + theme_classic() + theme(text = element_text(color = "black"), axis.title.x = element_text(size = 50,
margin = margin(t = 40, r = 0, b = 0, l = 0)), axis.title.y = element_text(size = 50,
margin = margin(t = 0, r = 40, b = 0, l = 0)), axis.text.x = element_text(size = 40,
margin = margin(t = 20, r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40,
margin = margin(t = 0, r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA,
size = 2))
arboreal_parameters <- plant_height/plant_solar_rad/plant_wind_reduc
arboreal_parameters
All habitats
all_habitat_parameters <- (terrestrial_parameters/aquatic_parameters) | arboreal_parameters
all_habitat_parameters
ggsave(all_habitat_parameters, file = "fig/Extended_data_figure_9.svg", height = 30,
width = 25, dpi = 500)
Extended Data Fig. 9 |
Extended data - Figure 10
Here, we provide a brief validation of operative body temperatures predicted from our models. As a case in point, we compare our estimates to field body temperatures of 11 species of frogs in Mexico (taken from Lara-Resendiz & Luja, 2018, Revista Mexicana de Biodiversidad)
Prepare data
# Get Tb measurements from the study (Table 1)
data <- data.frame(Species = c("Agalychnis dacnicolor", "Craugastor occidentalis",
"Hyla eximia", "Incilius mazatlanensis", "Leptodactylus melanonotus", "Lithobates catesbeianus",
"Lithobates forreri", "Plectrohyla bistincta", "Smilisca baudinii", "Smilisca fodiens",
"Tlalocohyla smithii"), Tb = c("21.7±1.97 (17.2-29.8)", "20.5±2.29 (18.2-25.8)",
"22.8±1.12 (20.4-24)", "24.4±1.48 (22.5-26.6)", "24.6±3.36 (21.5-33.3)", "24.8±0.88 (23.4-25.8)",
"23.9±1.84 (20.9-27.7)", "22.5±3.09 (15.1-29.9)", "23.4±2.29 (20.8-29)", "22.7±1.07 (21.4-24)",
"21.3±2.03 (14.5-25.7)"))
# Extract the mean and range of body temperatures
data$Tb_mean <- as.numeric(sub("\\±.*", "", data$Tb))
data$Tb_range <- gsub(".*\\((.*)\\).*", "\\1", data$Tb)
range_split <- strsplit(as.character(data$Tb_range), "-")
data$Min <- sapply(range_split, function(x) as.numeric(x[1]))
data$Max <- sapply(range_split, function(x) as.numeric(x[2]))
data <- data %>%
dplyr::select(Species, Mean = Tb_mean, Min, Max)
# Species at the first site
data_Tepic <- filter(data, Species == "Agalychnis dacnicolor" | Species == "Hyla eximia" |
Species == "Incilius mazatlanensis" | Species == "Leptodactylus melanonotus" |
Species == "Lithobates catesbeianus" | Species == "Lithobates forreri" | Species ==
"Smilisca baudinii" | Species == "Smilisca fodiens" | Species == "Tlalocohyla smithii")
# Species at the second site
data_CD <- filter(data, Species == "Craugastor occidentalis" | Species == "Lithobates forreri" |
Species == "Plectrohyla bistincta" | Species == "Smilisca baudinii" | Species ==
"Tlalocohyla smithii")
Compare body temperatures at the first site
# Set parameters
dstart <- "01/01/2013"
dfinish <- "31/12/2015" # Wide range of dates, but will only select June to October 2013/2015
coords<- c(-104.85, 21.48) # Tepic, most sampled site
# Run the microclimate model
micro_valid <- NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=0,
minshade=85,
maxshade=90,
Usrhyt = 0.01,
cap = 1,
ERR = 1.5,
spatial = 'E:/p_pottier/Climatic_data/data/NCEP_time')
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2012 (need a bit of the previous year)
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 1095 days from 2013-01-01 to 2015-12-31 23:00:00 at site long -104.85 lat 21.48
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 105.83 1.36 160.36
micro <- micro_valid
# Find body mass of the closest location
presence <- readRDS(file = "RData/General_data/species_coordinates_adjusted.rds")
data_for_imp <- readRDS(file = "RData/General_data/pre_data_for_imputation.rds")
presence_body_mass <- merge(presence, dplyr::select(data_for_imp, tip.label,
body_mass), by = "tip.label")
median_body_mass <- presence_body_mass %>%
dplyr::group_by(lon, lat) %>%
dplyr::summarise(median_mass = median(body_mass, na.rm = TRUE)) %>%
dplyr::ungroup()
median_body_mass[median_body_mass$lon == -104.5 & median_body_mass$lat == 21.5,] # 24.9 g
## # A tibble: 1 × 3
## lon lat median_mass
## <dbl> <dbl> <dbl>
## 1 -104. 21.5 24.9
# Run the ectotherm model
ecto <- NicheMapR::ectotherm(live= 0,
Ww_g = 24.9,
shape = 4,
pct_wet = 80)
environ <- as.data.frame(ecto$environ)
environ_2013 <- filter(environ,
YEAR == "1" &
DAY > 152 & DAY < 304 &
(TIME < 2 | TIME > 17)) # June to October 2013; between 18h and 0:30h
environ_2015 <- filter(environ,
YEAR == "3" &
DAY > 882 & DAY < 1034 &
(TIME < 2 | TIME > 17)) # June to October 2015; between 18h and 0:30h
stats_2013 <- environ_2013 %>%
summarise(
Min = min(TC, na.rm = TRUE),
Max = max(TC, na.rm = TRUE),
Mean = mean(TC, na.rm = TRUE),
sd = sd(TC, na.rm = TRUE)
)
stats_2015 <- environ_2015 %>%
summarise(
Min = min(TC, na.rm = TRUE),
Max = max(TC, na.rm = TRUE),
Mean = mean(TC, na.rm = TRUE),
sd = sd(TC, na.rm = TRUE)
)
stats_2013
## Min Max Mean sd
## 1 17.95255 27.69047 23.1765 1.636191
stats_2015 # Virtually the same
## Min Max Mean sd
## 1 17.85327 27.89148 23.78714 1.701461
x_limits <- c(0.99, 1.01) # Define plot margins
# Space out species equally
num_points <- nrow(data_Tepic)
x_values <- seq(from = 0.991, to = 1.009, length.out = num_points)
Tb_jittered <- data_Tepic %>%
mutate(x_jitter = x_values)
first_site <-
ggplot() +
geom_rect(data = stats_2013, # Add a "ribbon" to represent the range
aes(xmin = x_limits[1], xmax = x_limits[2],
ymin = Min, ymax = Max),
fill = "grey80", alpha = 0.5) +
geom_segment(data = stats_2013, # Add a line for the Mean
aes(x = x_limits[1], xend = x_limits[2],
y = Mean, yend = Mean),
color = "black", size = 1.5) +
geom_rect(data = stats_2013, # Add SD for the Mean
aes(xmin = x_limits[1], xmax = x_limits[2],
ymin = Mean - sd, ymax = Mean + sd),
fill = "grey60", alpha = 0.5) +
geom_pointrange(data = Tb_jittered, # Add body temperature data
aes(x = x_jitter, y = Mean,
ymin = Min, ymax = Max, col = Species),
size = 1.5, linewidth = 1.3) +
scale_x_continuous(name = "", labels = NULL, breaks = NULL) +
theme_classic() +
xlab("") +
ylab("Temperature (°C)") +
theme_classic() +
theme(text = element_text(color = "black"),
axis.title.y = element_text(size = 40, margin = margin(t = 0, r = 30, b = 0, l = 0)),
axis.text.y = element_text(size = 30, margin = margin(t = 0, r = 20, b = 0, l = 0)),
legend.text = element_text(size = 15, face = "italic"),
legend.title = element_text(size = 18),
panel.border = element_rect(fill = NA, size = 2))
first_site
Compare body temperatures at the second site
coords <- c(-105.03, 21.45) # El Cuarenteño
# Run the microclimate model
micro_valid_CD <- NicheMapR::micro_ncep(loc = coords,
dstart = dstart,
dfinish = dfinish,
scenario=0,
minshade=85,
maxshade=90,
Usrhyt = 0.01,
cap = 1,
ERR = 1.5,
spatial = 'E:/p_pottier/Climatic_data/data/NCEP_time')
## downloading DEM via package elevatr
## extracting weather data locally from E:/p_pottier/Climatic_data/data/NCEP_time
## reading weather input for 2012 (need a bit of the previous year)
## reading weather input for 2013
## reading weather input for 2014
## reading weather input for 2015
## reading weather input for 2016 (need a bit of the next year)
## computing radiation and elevation effects with package microclima
## Downscaling radiation and wind speed
## Calculating meso-scale terrain effects
## running microclimate model for 1095 days from 2013-01-01 to 2015-12-31 23:00:00 at site long -105.03 lat 21.45
## Note: the output column `SOLR` in metout and shadmet is for unshaded solar radiation adjusted for slope, aspect and horizon angle
## user system elapsed
## 112.62 1.16 160.44
micro <- micro_valid_CD
# Run the ectotherm model
ecto_CD <- NicheMapR::ectotherm(live= 0,
Ww_g = 24.9,
shape = 4,
pct_wet = 80)
environ_CD <- as.data.frame(ecto$environ)
environ_2013_CD <- filter(environ_CD,
YEAR == "1" &
DAY > 152 & DAY < 304 &
(TIME < 2 | TIME > 17)) # June to October 2013
environ_2015_CD <- filter(environ,
YEAR == "3" &
DAY > 882 & DAY < 1034 &
(TIME < 2 | TIME > 17)) # June to October 2015
stats_2013_CD <- environ_2013_CD %>%
summarise(
Min = min(TC, na.rm = TRUE),
Max = max(TC, na.rm = TRUE),
Mean = mean(TC, na.rm = TRUE),
sd = sd(TC, na.rm = TRUE)
)
stats_2015_CD <- environ_2015_CD %>%
summarise(
Min = min(TC, na.rm = TRUE),
Max = max(TC, na.rm = TRUE),
Mean = mean(TC, na.rm = TRUE),
sd = sd(TC, na.rm = TRUE)
)
stats_2013_CD
## Min Max Mean sd
## 1 17.95255 27.69047 23.1765 1.636191
stats_2015_CD # Virtually the same
## Min Max Mean sd
## 1 17.85327 27.89148 23.78714 1.701461
# Space out species equally
num_points <- nrow(data_CD)
x_values <- seq(from = 0.991, to = 1.009, length.out = num_points)
Tb_jittered_CD <- data_CD %>%
mutate(x_jitter = x_values)
second_site <-
ggplot() +
geom_rect(data = stats_2013_CD, # Add a "ribbon" to represent the range
aes(xmin = x_limits[1], xmax = x_limits[2],
ymin = Min, ymax = Max),
fill = "grey80", alpha = 0.5) +
geom_segment(data = stats_2013_CD, # Add a line for the Mean
aes(x = x_limits[1], xend = x_limits[2],
y = Mean, yend = Mean), color = "black", size = 1.5) +
geom_rect(data = stats_2013_CD, # Add SD for the Mean
aes(xmin = x_limits[1], xmax = x_limits[2],
ymin = Mean - sd, ymax = Mean + sd),
fill = "grey60", alpha = 0.5) +
geom_pointrange(data = Tb_jittered_CD, # Add body temperature
aes(x = x_jitter, y = Mean,
ymin = Min, ymax = Max,
col = Species),
size = 1.5, linewidth = 1.3) +
scale_x_continuous(name = "", labels = NULL, breaks = NULL) +
theme_classic() +
xlab("") +
ylab("Temperature (°C)") +
theme_classic() +
theme(text = element_text(color = "black"),
axis.title.y = element_text(size = 40, margin = margin(t = 0, r = 30, b = 0, l = 0)),
axis.text.y = element_text(size = 30, margin = margin(t = 0, r = 20, b = 0, l = 0)),
legend.text = element_text(size = 15, face = "italic"),
legend.title = element_text(size = 18),
panel.border = element_rect(fill = NA, size = 2))
second_site
Final plot
validation_OBT <- first_site/second_site
validation_OBT
ggsave(validation_OBT, file = "fig/Extended_data_figure_10.svg", height = 15, width = 11,
dpi = 500)
Supplementary figures
Here, we list additional figures that were originally in the Supplementary materials, but subsequently removed (as per editorial policies). For transparency, these figures are presented here.
Fig. S1 - Imputation convergence
imputed_data <- readRDS("RData/Imputation/results/imputation_5th_cycle.Rds")
imputed_data <- filter(imputed_data, imputed == "yes")
imp_convergence <- ggplot(imputed_data) + geom_jitter(aes(x = 1, y = filled_mean_UTL1),
alpha = 0.5, size = 3, position = position_jitter(width = 0.2, height = 0), col = "#ede0d4") +
geom_jitter(aes(x = 2, y = filled_mean_UTL2), alpha = 0.5, size = 3, position = position_jitter(width = 0.2,
height = 0), col = "#c9ada7") + geom_jitter(aes(x = 3, y = filled_mean_UTL3),
alpha = 0.5, size = 3, position = position_jitter(width = 0.2, height = 0), col = "#9a8c98") +
geom_jitter(aes(x = 4, y = filled_mean_UTL4), alpha = 0.5, size = 3, position = position_jitter(width = 0.2,
height = 0), col = "#4a4e69") + geom_jitter(aes(x = 5, y = filled_mean_UTL5),
alpha = 0.5, size = 3, position = position_jitter(width = 0.2, height = 0), col = "#373760") +
geom_boxplot(aes(x = 1, y = filled_mean_UTL1), notch = TRUE, fill = NA, col = "black",
outlier.colour = NA, size = 1.25, na.rm = TRUE) + geom_boxplot(aes(x = 2,
y = filled_mean_UTL2), notch = TRUE, fill = NA, col = "black", outlier.colour = NA,
size = 1.25, na.rm = TRUE) + geom_boxplot(aes(x = 3, y = filled_mean_UTL3), notch = TRUE,
fill = NA, col = "black", outlier.colour = NA, size = 1.25, na.rm = TRUE) + geom_boxplot(aes(x = 4,
y = filled_mean_UTL4), notch = TRUE, fill = NA, col = "black", outlier.colour = NA,
size = 1.25, na.rm = TRUE) + geom_boxplot(aes(x = 5, y = filled_mean_UTL5), notch = TRUE,
fill = NA, col = "black", outlier.colour = NA, size = 1.25, na.rm = TRUE) + xlab("Imputation cycle") +
ylab("Predicted CTmax") + theme_classic() + theme(legend.position = "none", text = element_text(color = "black"),
axis.title.x = element_text(size = 45, margin = margin(t = 8, r = 0, b = 0, l = 0)),
axis.title.y = element_text(size = 45, margin = margin(t = 0, r = 0, b = 0, l = 8)),
axis.text.x = element_text(size = 25), axis.text.y = element_text(size = 25),
panel.border = element_rect(fill = NA, size = 2))
imp_convergence
ggsave(imp_convergence, file = "fig/Figure_S1.png", width = 18, height = 12, dpi = 500)
Fig. S1 | Predicted critical thermal maximum (CTmax) across imputation cycles. Boxplots depict median (horizontal line), interquartile ranges (boxes), and whiskers extend to 1.5 times the interquartile range.
Fig. S2 - Predictors of CTmax
# Load experimental dataset
training_data <- readRDS("RData/General_data/pre_data_for_imputation.rds") %>%
rename(CTmax = mean_UTL) %>%
filter(imputed == "no")
# Plot predictors used for the imputation
## Acclimation temperature
acc <- ggplot(training_data) + geom_smooth(aes(y = CTmax, x = acclimation_temp, group = tip.label),
method = "lm", se = FALSE, col = "gray35") + geom_point(aes(y = CTmax, x = acclimation_temp,
col = acclimation_temp), alpha = 0.5, size = 4, position = position_jitter(width = 0.1,
height = 0)) + scale_colour_viridis(option = "inferno", name = "Acclimation temperature") +
xlab("Acclimation temperature (°C)") + ylab("CTmax") + theme_classic() + theme(legend.position = "none",
text = element_text(color = "black"), axis.title.x = element_text(size = 25),
axis.title.y = element_text(size = 25), axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 15), panel.border = element_rect(fill = NA,
size = 2))
# Duration of acclimation
dur <- ggplot(training_data, aes(y = CTmax, x = log(acclimation_time), col = log(acclimation_time))) +
geom_point(alpha = 0.5, size = 4, position = position_jitter(width = 0.1, height = 0)) +
geom_smooth(method = "lm", se = FALSE, linewidth = 3, col = "gray35") + scale_colour_viridis(option = "magma",
name = "Acclimation time") + xlab("Acclimation time (days, log scale)") + ylab("") +
theme_classic() + theme(legend.position = "none", text = element_text(color = "black"),
axis.title.x = element_text(size = 25), axis.title.y = element_text(size = 25),
axis.text.x = element_text(size = 15), axis.text.y = element_text(size = 15),
panel.border = element_rect(fill = NA, size = 2))
# Ramping rate
ramp <- ggplot(training_data, aes(y = CTmax, x = ramping, col = ramping)) + geom_point(alpha = 0.5,
size = 4, position = position_jitter(width = 0.1, height = 0)) + geom_smooth(method = "lm",
se = FALSE, linewidth = 3, col = "gray35") + scale_colour_viridis(option = "plasma",
name = "Ramping rate") + xlab("Ramping rate (°C)") + ylab("") + theme_classic() +
theme(legend.position = "none", text = element_text(color = "black"), axis.title.x = element_text(size = 25),
axis.title.y = element_text(size = 25), axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 15), panel.border = element_rect(fill = NA,
size = 2))
## Endpoint
training_data <- mutate(training_data, endpoint = factor(endpoint, levels = c("LRR",
"OS", "LOE", "prodding", "other", "death"), labels = c("LRR", "OS", "LRR", "other",
"other", "other"))) # Reorder and regroup
endp <- ggplot(training_data, aes(y = CTmax, x = endpoint, col = endpoint)) + geom_jitter(alpha = 0.5,
size = 4, position = position_jitter(width = 0.25, height = 0)) + geom_boxplot(notch = TRUE,
fill = NA, col = "black", outlier.colour = NA, size = 1.25) + scale_colour_manual(values = c("#e9d8a6",
"#e09f3e", "#9e2a2b")) + xlab("Endpoint") + ylab("CTmax") + theme_classic() +
theme(legend.position = "none", text = element_text(color = "black"), axis.title.x = element_text(size = 25),
axis.title.y = element_text(size = 25), axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 15), panel.border = element_rect(fill = NA,
size = 2))
## Medium
training_data <- mutate(training_data, medium_test_temp = factor(medium_test_temp,
levels = c("body_water", "ambient"), labels = c("body/water", "ambient"))) # Reorder
medium <- ggplot(filter(training_data, is.na(medium_test_temp) == FALSE), aes(y = CTmax,
x = medium_test_temp, col = medium_test_temp), na.rm = TRUE) + geom_jitter(alpha = 0.5,
size = 4, position = position_jitter(width = 0.25, height = 0), na.rm = TRUE) +
geom_boxplot(notch = TRUE, fill = NA, col = "black", outlier.colour = NA, size = 1.25,
na.rm = TRUE) + scale_colour_manual(values = c("#84a59d", "#f28482")) + xlab("Temperature assayed") +
ylab("") + theme_classic() + theme(legend.position = "none", text = element_text(color = "black"),
axis.title.x = element_text(size = 25), axis.title.y = element_text(size = 25),
axis.text.x = element_text(size = 15), axis.text.y = element_text(size = 15),
panel.border = element_rect(fill = NA, size = 2))
## Life stage of the animals
training_data <- mutate(training_data, life_stage_tested = factor(life_stage_tested,
levels = c("larvae", "adults"), labels = c("larvae", "adults"))) # Reorder
lifestage <- ggplot(training_data, aes(y = CTmax, x = life_stage_tested, col = life_stage_tested),
na.rm = TRUE) + geom_jitter(alpha = 0.5, size = 4, position = position_jitter(width = 0.25,
height = 0), na.rm = TRUE) + geom_boxplot(notch = TRUE, fill = NA, col = "black",
outlier.colour = NA, size = 1.25, na.rm = TRUE) + scale_colour_manual(values = c("#e09f3e",
"#4f772d")) + xlab("Life stage") + ylab("") + theme_classic() + theme(legend.position = "none",
text = element_text(color = "black"), axis.title.x = element_text(size = 25),
axis.title.y = element_text(size = 25), axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 15), panel.border = element_rect(fill = NA,
size = 2))
# Ecotype
training_data$ecotype <- factor(training_data$ecotype, levels = c("Aquatic", "Stream-dwelling",
"Semi-aquatic", "Ground-dwelling", "Fossorial", "Arboreal"))
ecotype <- ggplot(training_data, aes(y = CTmax, x = ecotype, col = ecotype), na.rm = TRUE) +
geom_jitter(alpha = 0.5, size = 4, position = position_jitter(width = 0.25, height = 0),
na.rm = TRUE) + geom_boxplot(notch = TRUE, fill = NA, col = "black", outlier.colour = NA,
size = 1.25, na.rm = TRUE) + scale_colour_manual(values = c("#21918c", "#2c728e",
"#472d7b", "#F1AF79", "#995C51", "#28ae80")) + xlab("Ecotype") + ylab("CTmax") +
theme_classic() + theme(legend.position = "none", text = element_text(color = "black"),
axis.title.x = element_text(size = 25), axis.title.y = element_text(size = 25),
axis.text.x = element_text(size = 15), axis.text.y = element_text(size = 15),
panel.border = element_rect(fill = NA, size = 2))
all <- (acc + dur + ramp)/(endp + medium + lifestage)/ecotype
all
ggsave(all, file = "fig/Figure_S2.png", width = 20, height = 18, dpi = 500)
Fig. S2 | Correlations between critical thermal maximum (CTmax) and predictors used for the imputation. CTmax from the experimental dataset was plotted against acclimation temperature (a), acclimation time (b, log scale), ramping rate (c). Colours are proportional to the values of the continuous predictors and the line refers to predictions from a simple linear regression between CTmax and the predictors. Individual slopes for each species are depicted for species when CTmax was estimated at different acclimation temperatures (a). Depicted is also the variation in CTmax with different endpoints (d), media used to infer body temperature (e), life stages (f), and ecotypes (g). Boxplots depict median (horizontal line), interquartile ranges (boxes), and whiskers extend to 1.5 times the interquartile range. LRR: loss of righting response. OS: onset of spasms.
Fig. S3 - Variation in plasticity
# Load estimated intercepts and acclimation response ratios
species_ARR <- readRDS("RData/Climate_vulnerability/Pond/current/species_ARR_pond_current.rds")
# Display data
kable(species_ARR, "html") %>%
row_spec(0, background = "white", color = "black", bold = TRUE) %>%
kable_styling(fixed_thead = T, position = "left", full_width = F) %>%
scroll_box(width = "100%", height = "500px")
tip.label | intercept | intercept_se | slope | slope_se |
---|---|---|---|---|
Pleurodema thaul | 35.90767 | 1.4968582 | 0.1419952 | 0.0917530 |
Anaxyrus americanus | 37.17172 | 0.9556022 | 0.0914746 | 0.0490691 |
Dryophytes versicolor | 37.37297 | 3.0542887 | 0.1254332 | 0.1366829 |
Pseudacris crucifer | 34.91936 | 3.2099507 | 0.1241034 | 0.1449068 |
Rana cascadae | 32.07766 | 2.8450193 | 0.1268415 | 0.1560132 |
Rana luteiventris | 32.83118 | 2.8260619 | 0.1424495 | 0.1724273 |
Lithobates sphenocephalus | 35.78824 | 5.6650724 | 0.1288926 | 0.2199606 |
Hylomantis aspera | 35.23926 | 18.3796928 | 0.1341506 | 0.7236338 |
Alytes cisternasii | 32.92891 | 3.0861756 | 0.1669401 | 0.1446988 |
Alytes dickhilleni | 34.61466 | 4.6161589 | 0.1216522 | 0.2061491 |
Alytes obstetricans | 33.14787 | 3.0136465 | 0.1517981 | 0.1554486 |
Bufotes boulengeri | 36.30905 | 8.6350966 | 0.1379723 | 0.3649727 |
Barbarophryne brongersmai | 35.97622 | 4.1091377 | 0.1131505 | 0.1828543 |
Bufo bufo | 34.61728 | 1.4318987 | 0.1075313 | 0.0770052 |
Epidalea calamita | 34.97773 | 1.8687862 | 0.1512542 | 0.0998857 |
Ceratophrys aurita | 36.84152 | 13.6556746 | 0.1307139 | 0.5331869 |
Dendropsophus branneri | 36.33712 | 8.0488758 | 0.1098838 | 0.3085076 |
Dendropsophus elegans | 35.91089 | 8.3460092 | 0.1185909 | 0.3258930 |
Dendropsophus haddadi | 34.78968 | 13.9032440 | 0.1064546 | 0.5473902 |
Dendropsophus novaisi | 37.59220 | 7.4331543 | 0.1240432 | 0.2940948 |
Discoglossus galganoi | 32.71215 | 4.8703373 | 0.1739762 | 0.2327465 |
Discoglossus pictus | 34.11433 | 8.4205481 | 0.1508807 | 0.3563427 |
Discoglossus scovazzi | 33.81670 | 7.8268129 | 0.1495117 | 0.3518580 |
Hyla arborea | 35.46782 | 2.4402588 | 0.1429389 | 0.1263647 |
Hyla meridionalis | 35.00066 | 2.4975613 | 0.1225487 | 0.1153174 |
Boana albomarginata | 37.05342 | 9.8182168 | 0.1319985 | 0.3822931 |
Boana faber | 37.74968 | 4.0566618 | 0.1220565 | 0.1558899 |
Leptodactylus fuscus | 38.64980 | 15.5496516 | 0.1353399 | 0.5705433 |
Leptodactylus latrans | 37.49833 | 5.9607367 | 0.1211408 | 0.2236524 |
Pelobates cultripes | 35.05683 | 3.0873347 | 0.1446740 | 0.1473795 |
Pelodytes ibericus | 33.60718 | 2.2699440 | 0.0913140 | 0.1033273 |
Pelodytes punctatus | 33.57987 | 2.7660345 | 0.1154146 | 0.1360515 |
Phasmahyla spectabilis | 34.85572 | 10.4742114 | 0.1276487 | 0.4072916 |
Phyllodytes luteolus | 36.47355 | 12.7425672 | 0.1279742 | 0.5008105 |
Phyllodytes melanomystax | 37.24333 | 16.7241585 | 0.1330341 | 0.6591738 |
Pithecopus rohdei | 36.82828 | 11.2799193 | 0.1360178 | 0.4346870 |
Physalaemus camacan | 36.32224 | 20.4784728 | 0.1339034 | 0.8018721 |
Physalaemus erikae | 36.63712 | 19.8677707 | 0.1345101 | 0.7786767 |
Pipa carvalhoi | 36.01514 | 17.8179208 | 0.1395476 | 0.6933710 |
Pleurodeles waltl | 33.56475 | 4.6485278 | 0.1364741 | 0.2145150 |
Pelophylax perezi | 35.45840 | 4.7071927 | 0.1399468 | 0.2227183 |
Rana temporaria | 33.25867 | 0.7437576 | 0.1314276 | 0.0418929 |
Rhinella crucifer | 36.91400 | 13.5789891 | 0.1325925 | 0.5298529 |
Rhinella hoogmoedi | 36.01245 | 15.7363110 | 0.1226459 | 0.6116361 |
Rhinella diptycha | 37.67846 | 7.1037589 | 0.1255264 | 0.2574013 |
Salamandra salamandra | 31.92020 | 3.0745371 | 0.1309795 | 0.1508895 |
Ololygon agilis | 38.07360 | 19.4875879 | 0.1284396 | 0.7608263 |
Scinax eurydice | 37.70814 | 11.8918001 | 0.1287549 | 0.4578202 |
Sphaenorhynchus prasinus | 37.22559 | 14.0899427 | 0.1273486 | 0.5514213 |
Trachycephalus mesophaeus | 37.07261 | 12.3070037 | 0.1251925 | 0.4848371 |
Triturus pygmaeus | 33.90250 | 5.6450539 | 0.1313584 | 0.2636277 |
Desmognathus carolinensis | 31.90158 | 7.5792690 | 0.1233274 | 0.2895605 |
Desmognathus fuscus | 32.21470 | 1.7904952 | 0.1418146 | 0.0775668 |
Desmognathus monticola | 32.07484 | 5.1014552 | 0.1263172 | 0.2019459 |
Desmognathus ochrophaeus | 31.27907 | 2.4019815 | 0.1265893 | 0.1082744 |
Desmognathus ocoee | 31.91811 | 9.0663088 | 0.1252681 | 0.3374157 |
Desmognathus orestes | 31.99354 | 8.5763637 | 0.1252990 | 0.3331097 |
Plethodon cinereus | 32.90209 | 1.8679561 | 0.1128909 | 0.0918481 |
Plethodon hubrichti | 31.66814 | 5.1070949 | 0.1183808 | 0.2044553 |
Plethodon richmondi | 31.96018 | 5.7113536 | 0.1237528 | 0.2253615 |
Plethodon virginia | 31.86418 | 6.3878034 | 0.1227377 | 0.2561231 |
Plethodon cylindraceus | 31.55514 | 2.6132503 | 0.1116987 | 0.1090486 |
Plethodon glutinosus | 32.11147 | 2.6036651 | 0.1157815 | 0.1057241 |
Plethodon montanus | 31.63822 | 7.2028220 | 0.1222038 | 0.2800241 |
Plethodon teyahalee | 31.93891 | 7.6708146 | 0.1234175 | 0.2882602 |
Plethodon punctatus | 31.69873 | 5.9842884 | 0.1237999 | 0.2428210 |
Plethodon wehrlei | 31.97423 | 4.9338506 | 0.1272147 | 0.2047725 |
Rhinella spinulosa | 36.77510 | 1.6792336 | 0.0839307 | 0.1031322 |
Bryophryne cophites | 26.70259 | 3.0079874 | 0.1497181 | 0.2011119 |
Bryophryne hanssaueri | 24.73739 | 3.2455593 | 0.1445457 | 0.2145290 |
Bryophryne nubilosus | 25.65551 | 2.8955671 | 0.1468640 | 0.1937736 |
Noblella myrmecoides | 29.17549 | 13.8297552 | 0.1445667 | 0.5297371 |
Noblella pygmaea | 26.23381 | 3.0214653 | 0.1404028 | 0.2005598 |
Oreobates cruralis | 32.63153 | 11.5208401 | 0.1485885 | 0.5415513 |
Pristimantis buccinator | 31.23264 | 12.4973642 | 0.1331129 | 0.5412214 |
Pristimantis carvalhoi | 29.91050 | 16.2550269 | 0.1366556 | 0.5975981 |
Pristimantis danae | 28.63742 | 9.1868209 | 0.1394979 | 0.4784075 |
Pristimantis lindae | 27.67285 | 4.2325748 | 0.1374622 | 0.2859249 |
Pristimantis ockendeni | 29.07599 | 14.0152912 | 0.1335453 | 0.5412334 |
Pristimantis platydactylus | 28.88496 | 12.0374648 | 0.1378684 | 0.6353338 |
Pristimantis salaputium | 28.72880 | 3.1989424 | 0.1420520 | 0.2115826 |
Pristimantis toftae | 29.47045 | 12.5175212 | 0.1428816 | 0.5548656 |
Psychrophrynella usurpator | 27.47295 | 3.1758567 | 0.1445062 | 0.2132946 |
Eurycea nana | 34.62224 | 10.8515253 | 0.1231991 | 0.4040657 |
Aneides ferreus | 31.15977 | 5.7447453 | 0.1267984 | 0.3131427 |
Ensatina eschscholtzii | 30.54211 | 6.8673734 | 0.1259896 | 0.3625886 |
Plethodon dunni | 31.18135 | 5.7547071 | 0.1258671 | 0.3171349 |
Plethodon vehiculum | 30.87583 | 4.7451189 | 0.1256419 | 0.2777759 |
Rhyacotriton olympicus | 27.63918 | 4.4272095 | 0.1371720 | 0.2669584 |
Agalychnis dacnicolor | 32.21004 | 13.4220497 | 0.1668800 | 0.5269765 |
Anaxyrus boreas | 35.37909 | 1.3685809 | 0.1060820 | 0.0839189 |
Anaxyrus canorus | 35.12555 | 4.1644123 | 0.1332097 | 0.2284401 |
Anaxyrus cognatus | 37.74822 | 2.7076482 | 0.1351643 | 0.1264390 |
Anaxyrus compactilis | 35.50241 | 8.0925766 | 0.1204651 | 0.3482736 |
Anaxyrus retiformis | 37.51842 | 5.5736821 | 0.1319652 | 0.2316246 |
Anaxyrus exsul | 35.33852 | 4.1627347 | 0.1113743 | 0.2074005 |
Anaxyrus fowleri | 35.24840 | 3.3335841 | 0.1393498 | 0.1370017 |
Anaxyrus nelsoni | 35.47392 | 4.1072399 | 0.0997265 | 0.2087943 |
Dendrobates auratus | 32.37270 | 21.7199292 | 0.1397169 | 0.8078943 |
Incilius alvarius | 36.49633 | 4.6698208 | 0.1392618 | 0.1993624 |
Incilius canaliferus | 36.22440 | 13.4962497 | 0.1177060 | 0.4974011 |
Incilius marmoreus | 36.72723 | 9.9300228 | 0.1423793 | 0.3747158 |
Incilius mazatlanensis | 36.72131 | 7.5022253 | 0.1317468 | 0.2936653 |
Leptodactylus melanonotus | 35.79088 | 12.3049591 | 0.1354684 | 0.4624952 |
Lithobates catesbeianus | 34.98783 | 2.3630041 | 0.0779649 | 0.1044071 |
Lithobates palmipes | 33.89274 | 13.6682895 | 0.1299539 | 0.4977325 |
Lithobates palustris | 30.89755 | 2.7310802 | 0.1267352 | 0.1182065 |
Lithobates pipiens | 32.58702 | 0.7462146 | 0.1773336 | 0.0384003 |
Lithobates sylvaticus | 32.03755 | 0.5918826 | 0.1483915 | 0.0349865 |
Lithobates warszewitschii | 31.31035 | 19.0644512 | 0.1262679 | 0.7048592 |
Pseudacris cadaverina | 31.92663 | 6.0174258 | 0.1715263 | 0.2799594 |
Pseudacris regilla | 33.61363 | 1.5293991 | 0.1155792 | 0.0919788 |
Rana boylii | 31.63922 | 4.3222790 | 0.1310769 | 0.2281221 |
Lithobates clamitans | 33.41402 | 1.8323922 | 0.1509304 | 0.0821521 |
Rana pretiosa | 32.53709 | 3.1877356 | 0.1279934 | 0.1757095 |
Rhaebo haematiticus | 34.76432 | 13.9456366 | 0.1302363 | 0.5329895 |
Rhinella marina | 36.84045 | 2.9077570 | 0.1491506 | 0.1070747 |
Scaphiopus holbrookii | 30.26072 | 4.1736591 | 0.1941850 | 0.1661914 |
Smilisca fodiens | 35.24641 | 6.1814436 | 0.1754397 | 0.2498349 |
Smilisca baudinii | 36.15278 | 11.7692333 | 0.1487184 | 0.4502001 |
Spea hammondii | 34.64317 | 3.1144172 | 0.1429053 | 0.1554243 |
Tlalocohyla smithii | 36.64299 | 11.2312276 | 0.1739553 | 0.4420024 |
Adelotus brevis | 31.91534 | 10.0038436 | 0.1465029 | 0.4296026 |
Assa darlingtoni | 31.10420 | 12.1461689 | 0.1562575 | 0.5207402 |
Cophixalus ornatus | 30.95022 | 8.6003614 | 0.1381921 | 0.3325436 |
Crinia parinsignifera | 32.98110 | 6.2121160 | 0.1548452 | 0.2840692 |
Crinia signifera | 32.98573 | 2.0934469 | 0.1332107 | 0.1019387 |
Geocrinia laevis | 31.03966 | 4.1411135 | 0.1719357 | 0.2412690 |
Geocrinia victoriana | 31.59138 | 2.8832335 | 0.1781639 | 0.1539253 |
Limnodynastes dorsalis | 32.86558 | 2.9247113 | 0.1491678 | 0.1412983 |
Limnodynastes fletcheri | 29.63963 | 7.5362132 | 0.1745970 | 0.3318408 |
Limnodynastes peronii | 32.21026 | 2.5415572 | 0.1845834 | 0.1155415 |
Limnodynastes salmini | 32.76633 | 7.1728659 | 0.1469080 | 0.3054585 |
Limnodynastes tasmaniensis | 32.58545 | 3.5149936 | 0.1648466 | 0.1549739 |
Litoria aurea | 33.46141 | 3.4581957 | 0.1327104 | 0.1680405 |
Litoria bicolor | 35.98738 | 10.4689601 | 0.1766691 | 0.3799321 |
Cyclorana brevipes | 36.58744 | 7.3740156 | 0.1411053 | 0.2957682 |
Litoria caerulea | 35.09641 | 3.1440472 | 0.1659396 | 0.1243468 |
Litoria chloris | 36.36788 | 4.4903733 | 0.1207016 | 0.1927979 |
Litoria citropa | 31.39531 | 4.2940795 | 0.1247556 | 0.2111795 |
Litoria ewingii | 33.00333 | 2.0509106 | 0.0968506 | 0.1146215 |
Litoria fallax | 36.51312 | 3.4798735 | 0.1267154 | 0.1477013 |
Litoria freycineti | 33.04389 | 8.7525171 | 0.1629739 | 0.3863970 |
Litoria gracilenta | 35.95938 | 2.9342908 | 0.1066263 | 0.1204283 |
Litoria lesueurii | 31.99473 | 2.5686918 | 0.1387758 | 0.1266606 |
Litoria peronii | 34.15075 | 3.2466334 | 0.1407803 | 0.1475272 |
Litoria phyllochroa | 31.19378 | 5.6810297 | 0.1402817 | 0.2558809 |
Litoria rothii | 34.31159 | 6.4267948 | 0.1798600 | 0.2368473 |
Litoria rubella | 35.78480 | 3.4554432 | 0.1599977 | 0.1373021 |
Litoria verreauxii | 31.00342 | 2.9865697 | 0.1469790 | 0.1443763 |
Mixophyes fasciolatus | 29.39715 | 6.0470434 | 0.1308217 | 0.2615626 |
Neobatrachus pictus | 30.60911 | 4.7448920 | 0.1505485 | 0.2301309 |
Philoria frosti | 27.45344 | 2.6593773 | 0.1288291 | 0.1355863 |
Philoria loveridgei | 29.83052 | 9.1528030 | 0.1535991 | 0.3919913 |
Philoria sphagnicolus | 28.21748 | 10.1398282 | 0.1704582 | 0.4433988 |
Pseudophryne bibronii | 33.39529 | 2.8232694 | 0.1509215 | 0.1369985 |
Pseudophryne corroboree | 29.95901 | 3.2041108 | 0.2156861 | 0.1677196 |
Pseudophryne dendyi | 34.48447 | 6.0859968 | 0.1381492 | 0.3118419 |
Dicamptodon tenebrosus | 28.17619 | 6.6784953 | 0.1360270 | 0.3653086 |
Rhyacotriton variegatus | 26.38422 | 5.8523707 | 0.1437428 | 0.3225512 |
Buergeria japonica | 38.20828 | 9.3704908 | 0.1541821 | 0.3416879 |
Eleutherodactylus coqui | 36.31050 | 11.8820506 | 0.1762884 | 0.4562115 |
Eleutherodactylus portoricensis | 34.73325 | 21.4735869 | 0.1217940 | 0.7970227 |
Ascaphus truei | 28.60808 | 2.9974450 | 0.1473752 | 0.1840779 |
Ambystoma jeffersonianum | 33.92129 | 1.1796412 | 0.1184082 | 0.0528307 |
Ambystoma tigrinum | 34.39242 | 1.4877056 | 0.1285672 | 0.0687734 |
Pseudacris triseriata | 36.02640 | 0.8914264 | 0.0818421 | 0.0403610 |
Anaxyrus woodhousii | 37.66817 | 1.6114378 | 0.0952896 | 0.0732470 |
Gastrophryne carolinensis | 37.11722 | 2.2654925 | 0.1325774 | 0.0866698 |
Fejervarya cancrivora | 37.32253 | 20.4261160 | 0.1313539 | 0.7337612 |
Ceratophrys cranwelli | 37.81002 | 10.0227642 | 0.1312649 | 0.3784074 |
Dermatonotus muelleri | 38.54105 | 14.0967514 | 0.1394330 | 0.5211526 |
Elachistocleis bicolor | 36.84878 | 6.1546992 | 0.1353074 | 0.2423385 |
Boana raniceps | 38.06152 | 10.4971606 | 0.1384480 | 0.3801402 |
Lepidobatrachus llanensis | 39.34535 | 9.5149285 | 0.1379822 | 0.3750165 |
Leptodactylus bufonius | 38.77449 | 8.3672087 | 0.1341124 | 0.3152022 |
Leptodactylus latinasus | 38.27009 | 5.8183790 | 0.1320783 | 0.2302662 |
Leptodactylus podicipinus | 37.87559 | 14.4799374 | 0.1402565 | 0.5219127 |
Phyllomedusa sauvagii | 37.67543 | 9.6019536 | 0.1343727 | 0.3604422 |
Physalaemus albonotatus | 36.59699 | 9.9170749 | 0.1390884 | 0.3632352 |
Lysapsus limellum | 37.64544 | 9.1483241 | 0.1280850 | 0.3382767 |
Pseudis platensis | 37.75647 | 11.2255465 | 0.1300566 | 0.4085919 |
Scinax acuminatus | 38.75717 | 10.3115539 | 0.1293263 | 0.3744487 |
Scinax nasicus | 37.95959 | 8.0911223 | 0.1278548 | 0.3059548 |
Crossodactylus schmidti | 32.77616 | 10.5435216 | 0.1341895 | 0.3912888 |
Dendropsophus minutus | 34.72222 | 7.4978651 | 0.0722797 | 0.2777232 |
Boana curupi | 34.73464 | 11.2013633 | 0.1223155 | 0.4111194 |
Limnomedusa macroglossa | 35.88779 | 6.7262789 | 0.1385921 | 0.2725921 |
Melanophryniscus devincenzii | 34.86807 | 8.2427217 | 0.1346833 | 0.3338350 |
Melanophryniscus krauczuki | 35.35608 | 10.3083216 | 0.1335857 | 0.3820430 |
Phyllomedusa tetraploidea | 37.56040 | 9.3741969 | 0.1338808 | 0.3508478 |
Rhinella ornata | 36.49696 | 6.2650174 | 0.1331049 | 0.2407876 |
Scinax fuscovarius | 37.61067 | 10.2358998 | 0.1275453 | 0.3815967 |
Alytes muletensis | 34.21688 | 7.9365090 | 0.1373381 | 0.3400058 |
Lissotriton boscai | 34.10608 | 6.3592929 | 0.1354845 | 0.3060497 |
Pelophylax lessonae | 34.60030 | 3.6109739 | 0.1325715 | 0.1869427 |
Rana arvalis | 31.88324 | 1.3440480 | 0.1263218 | 0.0762326 |
Rana iberica | 32.45930 | 3.2263097 | 0.1104507 | 0.1632883 |
Triturus cristatus | 33.81386 | 3.4883609 | 0.1367414 | 0.1882583 |
Acris crepitans | 40.09492 | 1.8287392 | 0.0485946 | 0.0720471 |
Necturus maculosus | 31.75270 | 1.3357826 | 0.1259081 | 0.0605515 |
Ambystoma maculatum | 34.91646 | 2.9041412 | 0.1089694 | 0.1323105 |
Hyperolius tuberilinguis | 36.07376 | 14.8917055 | 0.1212065 | 0.5890562 |
Hyperolius viridiflavus | 39.06977 | 9.2697090 | 0.0749002 | 0.3723930 |
Triturus dobrogicus | 34.00271 | 3.2914769 | 0.1381718 | 0.1646092 |
Eleutherodactylus richmondi | 32.57754 | 39.3787565 | 0.1291711 | 1.4599971 |
Lithobates virgatipes | 34.79505 | 3.8395145 | 0.1292643 | 0.1534824 |
Ambystoma macrodactylum | 32.60164 | 1.8390732 | 0.1175102 | 0.1147252 |
Aneides aeneus | 30.95585 | 8.1932833 | 0.1251327 | 0.3229445 |
Eurycea longicauda | 35.02888 | 3.7933869 | 0.0626395 | 0.1574310 |
Eurycea lucifuga | 34.63830 | 3.6741607 | 0.0689443 | 0.1469518 |
Notophthalmus viridescens | 34.89463 | 0.7531419 | 0.1814518 | 0.0334014 |
Ambystoma opacum | 34.85929 | 2.9830361 | 0.1145548 | 0.1183904 |
Ambystoma mabeei | 34.43831 | 4.9438114 | 0.1291223 | 0.1963845 |
Ambystoma talpoideum | 34.47394 | 8.4275926 | 0.1293395 | 0.3122923 |
Ambystoma laterale | 33.86765 | 2.7412634 | 0.1228391 | 0.1458573 |
Taricha granulosa | 33.49126 | 3.9048929 | 0.1365402 | 0.2511301 |
Amphiuma tridactylum | 33.90365 | 10.9727406 | 0.1261646 | 0.4006385 |
Desmognathus quadramaculatus | 30.18392 | 5.0116277 | 0.1347364 | 0.1947823 |
Plethodon jordani | 32.25698 | 4.2062091 | 0.1282402 | 0.1604490 |
Hemidactylium scutatum | 33.38379 | 5.6270616 | 0.1233687 | 0.2444489 |
Gyrinophilus porphyriticus | 32.03470 | 5.4674750 | 0.1108568 | 0.2321687 |
Pseudotriton montanus | 33.49504 | 6.9134445 | 0.1154531 | 0.2684086 |
Eurycea quadridigitata | 34.69269 | 8.7711484 | 0.1152250 | 0.3240464 |
Cryptobranchus alleganiensis | 32.70015 | 2.4149966 | 0.1205661 | 0.0995114 |
Dryophytes andersonii | 37.59761 | 4.6404496 | 0.1403212 | 0.1830401 |
Osteopilus septentrionalis | 35.67680 | 11.4377573 | 0.1278421 | 0.4153134 |
Acris gryllus | 37.31159 | 8.0327112 | 0.1151088 | 0.2972578 |
Dryophytes cinereus | 36.81852 | 6.5173686 | 0.1385377 | 0.2461396 |
Dryophytes squirellus | 35.77479 | 9.2334835 | 0.1249346 | 0.3424816 |
Cyclorana alboguttata | 36.65889 | 10.1018142 | 0.1418270 | 0.3996545 |
Cyclorana australis | 36.72582 | 11.6545415 | 0.1405814 | 0.4283080 |
Litoria eucnemis | 32.58559 | 19.7648495 | 0.1312137 | 0.7297794 |
Litoria nasuta | 33.18227 | 12.8569767 | 0.1316665 | 0.4770837 |
Litoria nigrofrenata | 34.83169 | 16.6318799 | 0.1393916 | 0.5999016 |
Litoria pearsoniana | 31.36166 | 8.4588587 | 0.1392071 | 0.3706182 |
Neobatrachus sudelli | 30.33585 | 6.3276999 | 0.1610945 | 0.2770086 |
Pseudophryne major | 31.49809 | 10.8357712 | 0.1524089 | 0.4417851 |
Pseudophryne semimarmorata | 31.80583 | 5.9154740 | 0.1519834 | 0.3253112 |
Uperoleia laevigata | 31.22234 | 8.3358806 | 0.1437851 | 0.3647188 |
Uperoleia rugosa | 31.97367 | 8.9650806 | 0.1528784 | 0.3833756 |
Platyplectrum ornatum | 35.98971 | 6.2551289 | 0.1785995 | 0.2427903 |
Eurycea bislineata | 33.87822 | 1.2697053 | 0.1027152 | 0.0621476 |
Plethodon ouachitae | 32.10273 | 5.8705926 | 0.1235682 | 0.2209510 |
Lithobates berlandieri | 36.79609 | 7.4917476 | 0.1267671 | 0.3119510 |
Dryophytes chrysoscelis | 38.00793 | 4.0087859 | 0.1152905 | 0.1735754 |
Rhinella granulosa | 37.82245 | 7.2093286 | 0.1506642 | 0.2657099 |
Pleurodema bufoninum | 35.79825 | 2.2795403 | 0.1193099 | 0.1544833 |
Alsodes gargola | 31.46361 | 2.8668143 | 0.1217670 | 0.1807451 |
Anaxyrus terrestris | 36.15789 | 2.9195681 | 0.1138981 | 0.1072395 |
Xenopus laevis | 32.94557 | 2.6576173 | 0.1383514 | 0.1178029 |
Eleutherodactylus cundalli | 33.03194 | 36.0029414 | 0.1329940 | 1.3062070 |
Eleutherodactylus gossei | 32.77041 | 34.7071136 | 0.1170241 | 1.2600756 |
Eleutherodactylus johnstonei | 35.34416 | 16.7535730 | 0.1320435 | 0.6364972 |
Eleutherodactylus planirostris | 35.50404 | 15.6554686 | 0.1479865 | 0.5697575 |
Odontophrynus occidentalis | 32.01959 | 3.0741075 | 0.1509751 | 0.1501935 |
Rhinella arenarum | 36.83196 | 3.2410565 | 0.1053951 | 0.1458827 |
Melanophryniscus rubriventris | 33.41002 | 7.7579801 | 0.1201093 | 0.3981939 |
Kaloula kalingensis | 33.27966 | 24.8123773 | 0.1317459 | 0.8906992 |
Occidozyga laevis | 33.33221 | 28.0718552 | 0.1279565 | 1.0113107 |
Philautus surdus | 32.03380 | 29.3905791 | 0.1263874 | 1.0590492 |
Platymantis banahao | 31.92813 | 23.9522192 | 0.1385645 | 0.8733605 |
Platymantis corrugatus | 31.29564 | 29.5635217 | 0.1346269 | 1.0660484 |
Platymantis dorsalis | 30.81432 | 34.2458209 | 0.1318600 | 1.2381518 |
Platymantis luzonensis | 31.66845 | 34.5725059 | 0.1385819 | 1.2448622 |
Sanguirana luzonensis | 32.51587 | 25.2378911 | 0.1329160 | 0.9050631 |
Hylarana erythraea | 32.49387 | 19.2677775 | 0.1315926 | 0.6872791 |
Limnonectes woodworthi | 34.11164 | 31.3681914 | 0.1240071 | 1.1261051 |
Platymantis montanus | 31.39919 | 22.4055001 | 0.1355109 | 0.8064588 |
Kaloula walteri | 33.77540 | 27.9842009 | 0.1428703 | 1.0085508 |
Physalaemus cuvieri | 34.91222 | 6.1098230 | 0.1325461 | 0.2242250 |
Pleurodema diplolister | 38.63260 | 5.5369857 | 0.1374842 | 0.2113209 |
Rhinella icterica | 37.15915 | 3.6409673 | 0.1329886 | 0.1394009 |
Rana chensinensis | 31.11038 | 1.8506335 | 0.1467677 | 0.0893644 |
Batrachuperus tibetanus | 31.83790 | 4.9414162 | 0.1317089 | 0.2784241 |
Batrachuperus yenyuanensis | 31.25527 | 9.9207581 | 0.1319309 | 0.4888598 |
Paramesotriton chinensis | 33.83186 | 9.1517601 | 0.1357275 | 0.3409739 |
Tylototriton kweichowensis | 33.75427 | 11.7534203 | 0.1341059 | 0.5013229 |
Quasipaa spinosa | 40.90802 | 7.0160903 | 0.1431462 | 0.2632096 |
Pseudotriton ruber | 32.77218 | 5.4165694 | 0.1142044 | 0.2203067 |
Scaphiopus couchii | 35.37886 | 4.1171028 | 0.1535052 | 0.1725881 |
Leptodactylus mystacinus | 38.34201 | 9.6993963 | 0.1311239 | 0.3791203 |
Pelophylax saharicus | 35.23388 | 9.1849030 | 0.1360483 | 0.3959768 |
Bufotes viridis | 35.91465 | 3.9201107 | 0.1320976 | 0.1959403 |
Leptodactylus albilabris | 34.86532 | 20.5068737 | 0.1196700 | 0.7559496 |
Aplastodiscus ibirapitanga | 36.24157 | 17.8375037 | 0.1315123 | 0.7022669 |
Aplastodiscus sibilatus | 34.59024 | 15.3764665 | 0.1277686 | 0.6133786 |
Aplastodiscus weygoldti | 35.01054 | 12.5387152 | 0.1243410 | 0.4894652 |
Ceratophrys joazeirensis | 37.66166 | 13.3339207 | 0.1281378 | 0.5202602 |
Phyllomedusa burmeisteri | 38.02514 | 11.4839922 | 0.1423121 | 0.4464460 |
Physalaemus cicada | 35.61035 | 11.8180707 | 0.1373315 | 0.4657086 |
Proceratophrys schirchi | 35.07616 | 17.1223913 | 0.1378430 | 0.6686164 |
Physalaemus signifer | 37.51504 | 15.3120342 | 0.1325745 | 0.5979565 |
Scinax alter | 37.73443 | 13.1673778 | 0.1251735 | 0.5202877 |
Stereocyclops incrassatus | 36.53194 | 16.9488922 | 0.1379128 | 0.6639400 |
Scinax pachycrus | 37.99501 | 14.1499495 | 0.1277623 | 0.5567946 |
Gabohyla pauloalvini | 37.22576 | 18.6530002 | 0.1251870 | 0.7300249 |
Dendropsophus sanborni | 35.53476 | 9.3517677 | 0.1231605 | 0.3676516 |
Boana albopunctata | 35.65948 | 12.9959503 | 0.1173953 | 0.4790018 |
Boana pulchella | 34.51224 | 4.5011381 | 0.1203295 | 0.1850671 |
Scinax uruguayus | 36.70591 | 4.9293859 | 0.1141760 | 0.1972055 |
Leptodactylus gracilis | 37.24712 | 8.1966646 | 0.1328845 | 0.3303090 |
Odontophrynus americanus | 35.32737 | 5.8540691 | 0.1464466 | 0.2346533 |
Ololygon aromothyella | 37.70005 | 12.1984375 | 0.1290977 | 0.4522051 |
Phyllomedusa iheringii | 37.36712 | 3.8151065 | 0.1240612 | 0.1628297 |
Physalaemus gracilis | 35.63592 | 4.7443052 | 0.1224137 | 0.1908778 |
Physalaemus henselii | 34.49212 | 4.0667762 | 0.1083173 | 0.1670750 |
Physalaemus riograndensis | 37.90734 | 9.0585595 | 0.1355549 | 0.3610913 |
Pseudis minuta | 36.31666 | 4.4533447 | 0.1102303 | 0.1808001 |
Pseudopaludicola falcipes | 37.09572 | 11.0082315 | 0.1352730 | 0.4312673 |
Rhinella dorbignyi | 36.69807 | 6.7803217 | 0.1276916 | 0.2909403 |
Scinax granulatus | 37.05197 | 8.5475004 | 0.1250713 | 0.3454127 |
Scinax squalirostris | 37.99786 | 10.7132064 | 0.1285257 | 0.4159500 |
Gastrotheca pseustes | 34.79926 | 3.3373357 | 0.1007766 | 0.1415829 |
Gastrotheca riobambae | 35.44378 | 2.6660986 | 0.1175301 | 0.1261569 |
Agalychnis spurrelli | 36.94061 | 6.7432450 | 0.1527273 | 0.2579657 |
Boana geographica | 36.91832 | 6.2669011 | 0.1430783 | 0.2311900 |
Smilisca phaeota | 36.76117 | 6.3919994 | 0.1474125 | 0.2424009 |
Boana crepitans | 36.87646 | 8.6838146 | 0.1090146 | 0.3282811 |
Boana semilineata | 36.71193 | 9.8058724 | 0.1214357 | 0.3815155 |
Leptodactylus troglodytes | 37.70078 | 12.2790740 | 0.1349928 | 0.4635892 |
Physalaemus crombiei | 37.74129 | 15.8438124 | 0.1357552 | 0.6205202 |
Pithecopus nordestinus | 36.93523 | 10.4592646 | 0.1355698 | 0.4053558 |
Scinax x-signatus | 38.02416 | 12.4752840 | 0.1294922 | 0.4537159 |
Trachycephalus atlas | 37.63317 | 8.8551553 | 0.1335052 | 0.3519818 |
Agalychnis hulli | 35.84437 | 17.5575752 | 0.1421333 | 0.6771627 |
Allobates insperatus | 33.94459 | 16.4381344 | 0.1404480 | 0.6346450 |
Allobates zaparo | 34.58866 | 15.9720322 | 0.1341842 | 0.6196941 |
Atelopus elegans | 33.07710 | 9.9784587 | 0.1288160 | 0.4195556 |
Atelopus spumarius | 33.36409 | 22.0896181 | 0.1299274 | 0.7954695 |
Boana boans | 36.86326 | 16.7159480 | 0.1307887 | 0.6088735 |
Boana cinerascens | 36.37692 | 15.5506307 | 0.1313267 | 0.5607729 |
Boana fasciata | 36.44485 | 20.8703240 | 0.1261314 | 0.7561467 |
Boana lanciformis | 37.31167 | 13.6271577 | 0.1484445 | 0.4961304 |
Boana pellucens | 37.11919 | 11.5558499 | 0.1300659 | 0.4734882 |
Chiasmocleis ventrimaculata | 35.54454 | 19.7000582 | 0.1388993 | 0.7793272 |
Chimerella mariaelenae | 34.15983 | 8.7615844 | 0.1321940 | 0.3662215 |
Cruziohyla calcarifer | 36.16971 | 19.0738848 | 0.1424958 | 0.7628452 |
Dendropsophus bifurcus | 37.26774 | 17.0447853 | 0.1259601 | 0.6401093 |
Dendropsophus bokermanni | 35.97660 | 22.1389189 | 0.1215854 | 0.8185853 |
Dendropsophus brevifrons | 35.74029 | 15.9966236 | 0.1210312 | 0.5863426 |
Dendropsophus carnifex | 36.44208 | 5.0670802 | 0.1288830 | 0.2493030 |
Dendropsophus ebraccatus | 37.72514 | 13.0925151 | 0.1305459 | 0.4986442 |
Dendropsophus marmoratus | 37.63966 | 20.2879131 | 0.1287028 | 0.7311458 |
Dendropsophus parviceps | 35.86126 | 20.2233579 | 0.1221267 | 0.7327706 |
Dendropsophus sarayacuensis | 36.77383 | 13.5668930 | 0.1214954 | 0.4939026 |
Dendropsophus triangulum | 37.13498 | 15.6460837 | 0.1184125 | 0.5666817 |
Engystomops coloradorum | 36.58316 | 7.7815661 | 0.1294375 | 0.3377967 |
Engystomops guayaco | 36.48918 | 9.7452974 | 0.1302980 | 0.3837839 |
Engystomops petersi | 35.67082 | 13.0254991 | 0.1322863 | 0.4954118 |
Engystomops randi | 37.07417 | 10.8775615 | 0.1362801 | 0.4520530 |
Epipedobates anthonyi | 34.56060 | 4.2020361 | 0.1451780 | 0.1740421 |
Epipedobates boulengeri | 35.05421 | 11.1267512 | 0.1382626 | 0.4530946 |
Epipedobates espinosai | 34.78491 | 13.4642250 | 0.1327288 | 0.5053362 |
Epipedobates machalilla | 35.04932 | 9.0768196 | 0.1393055 | 0.3751468 |
Epipedobates tricolor | 34.89604 | 7.3379972 | 0.1343050 | 0.3011955 |
Espadarana callistomma | 33.20965 | 13.4907341 | 0.1388461 | 0.5403309 |
Espadarana prosoblepon | 32.50357 | 9.9643329 | 0.0826525 | 0.3845727 |
Gastrotheca lateonota | 34.57027 | 9.4886554 | 0.1299536 | 0.4154239 |
Gastrotheca litonedis | 34.77106 | 7.6610457 | 0.1304998 | 0.3555916 |
Hyloscirtus alytolylax | 33.74647 | 10.3133698 | 0.1284278 | 0.4209250 |
Hyloscirtus lindae | 33.32656 | 9.0817821 | 0.1262004 | 0.3771023 |
Hyloscirtus phyllognathus | 34.25477 | 9.4258254 | 0.1313580 | 0.4206969 |
Hyloxalus bocagei | 34.09311 | 11.7800157 | 0.1412941 | 0.4806715 |
Hyloxalus elachyhistus | 32.98280 | 15.6663978 | 0.1361408 | 0.6642536 |
Colostethus jacobuspetersi | 30.53724 | 5.5654316 | 0.1256346 | 0.2769279 |
Hyloxalus maculosus | 33.48969 | 10.8054622 | 0.1356817 | 0.4509721 |
Hyloxalus nexipus | 33.53705 | 12.8977856 | 0.1411288 | 0.5398966 |
Hyloxalus pulchellus | 31.53619 | 12.8924363 | 0.1316912 | 0.5516327 |
Hyloxalus toachi | 33.70892 | 10.4435403 | 0.1370672 | 0.4469094 |
Hyloxalus vertebralis | 32.03762 | 10.0082614 | 0.1352692 | 0.4196539 |
Leptodactylus labrosus | 36.25969 | 13.3714264 | 0.1298902 | 0.5481166 |
Leptodactylus rhodomystax | 35.80443 | 19.6099393 | 0.1266547 | 0.7035120 |
Leptodactylus ventrimaculatus | 35.97225 | 10.6855210 | 0.1293890 | 0.4238892 |
Leptodactylus wagneri | 36.14684 | 16.8663898 | 0.1243738 | 0.6436862 |
Osteocephalus mutabor | 35.84502 | 11.2507568 | 0.1221176 | 0.4530401 |
Phyllomedusa coelestis | 37.14370 | 16.9645000 | 0.1379726 | 0.6698584 |
Phyllomedusa vaillantii | 36.70918 | 15.4689647 | 0.1389365 | 0.5557441 |
Lithobates bwana | 34.37513 | 11.6957552 | 0.1389692 | 0.4704499 |
Lithobates vaillanti | 34.88632 | 17.2976428 | 0.1401843 | 0.6600671 |
Rhinella margaritifera | 35.72005 | 12.6552292 | 0.1167276 | 0.4622606 |
Scinax elaeochroa | 36.90757 | 21.6644918 | 0.1267652 | 0.8109837 |
Scinax garbei | 36.57811 | 19.2984564 | 0.1243511 | 0.6990507 |
Scinax quinquefasciatus | 38.10032 | 12.7426519 | 0.1261394 | 0.5136522 |
Scinax ruber | 37.38576 | 11.9797490 | 0.1240679 | 0.4325272 |
Eleutherodactylus antillensis | 39.84469 | 31.1562860 | 0.2074894 | 1.1465045 |
Eleutherodactylus brittoni | 33.97998 | 36.4281384 | 0.0936755 | 1.3493097 |
Eleutherodactylus wightmanae | 35.08720 | 30.6327505 | 0.1246027 | 1.1362676 |
Plethodon yonahlossee | 31.99571 | 5.5356724 | 0.1203781 | 0.2158428 |
Plethodon caddoensis | 32.52509 | 6.0048499 | 0.1210234 | 0.2237491 |
Plethodon dorsalis | 31.14106 | 7.0939645 | 0.1231865 | 0.2754046 |
Eurycea multiplicata | 35.29046 | 5.5789261 | 0.0923948 | 0.2182359 |
Plethodon serratus | 32.08807 | 6.9692184 | 0.1223185 | 0.2701675 |
Adenomera andreae | 34.65016 | 19.8495923 | 0.1207805 | 0.7176132 |
Allobates conspicuus | 33.05201 | 20.2153465 | 0.1298142 | 0.7545555 |
Allobates femoralis | 35.76609 | 19.0531374 | 0.1532516 | 0.6874322 |
Allobates trilineatus | 32.38898 | 19.4758602 | 0.1241443 | 0.7695610 |
Ameerega hahneli | 34.87428 | 19.2989992 | 0.1392685 | 0.6919355 |
Ameerega trivittata | 35.08190 | 20.2279073 | 0.1467246 | 0.7268737 |
Chiasmocleis bassleri | 35.73983 | 19.9829625 | 0.1339145 | 0.7132882 |
Ctenophryne geayi | 36.28575 | 19.5443420 | 0.1410027 | 0.7112951 |
Dendropsophus koechlini | 36.36041 | 17.7516225 | 0.1329053 | 0.6691826 |
Dendropsophus leucophyllatus | 37.27329 | 18.5071389 | 0.1312714 | 0.6666759 |
Dendropsophus schubarti | 35.16455 | 18.9547886 | 0.1190446 | 0.6973872 |
Edalorhina perezi | 36.28423 | 18.2449638 | 0.1308065 | 0.6647651 |
Engystomops freibergi | 35.53396 | 17.3524756 | 0.1219516 | 0.6371524 |
Hamptophryne boliviana | 36.30525 | 20.7335299 | 0.1351112 | 0.7493332 |
Boana punctata | 36.93842 | 15.2330094 | 0.1377188 | 0.5572430 |
Leptodactylus bolivianus | 35.71466 | 20.5149165 | 0.1237567 | 0.7456278 |
Leptodactylus didymus | 35.41066 | 16.4395312 | 0.1213713 | 0.7372448 |
Leptodactylus leptodactyloides | 36.14050 | 18.3938871 | 0.1281492 | 0.6629116 |
Leptodactylus petersii | 36.35015 | 17.5258808 | 0.1263186 | 0.6268164 |
Lithodytes lineatus | 36.20001 | 19.0647513 | 0.1325848 | 0.6947641 |
Oreobates quixensis | 33.10891 | 17.6188957 | 0.1664060 | 0.6438333 |
Osteocephalus buckleyi | 36.08096 | 20.2336657 | 0.1349008 | 0.7370392 |
Phyllomedusa camba | 37.63045 | 15.1538985 | 0.1428968 | 0.5648873 |
Pristimantis fenestratus | 31.35547 | 17.8433763 | 0.1432215 | 0.6375118 |
Ranitomeya sirensis | 34.72916 | 16.3712952 | 0.1506547 | 0.7397430 |
Scarthyla goinorum | 35.46039 | 18.1555330 | 0.1145509 | 0.6457283 |
Scinax ictericus | 37.21921 | 21.4807690 | 0.1262205 | 0.9269441 |
Sphaenorhynchus lacteus | 37.85198 | 19.9921156 | 0.1311824 | 0.7227151 |
Leptodactylus lithonaetes | 36.98472 | 15.4510149 | 0.1514773 | 0.5525890 |
Chiropterotriton multidentatus | 31.26475 | 6.0028860 | 0.1222220 | 0.2586117 |
Bufo bankorensis | 35.56948 | 5.7767231 | 0.1566579 | 0.2091798 |
Odorrana swinhoana | 32.45261 | 19.1247487 | 0.1364150 | 0.6953413 |
Kurixalus eiffingeri | 32.69997 | 12.2894191 | 0.1028447 | 0.4447803 |
Fejervarya limnocharis | 36.80688 | 5.7534787 | 0.1254149 | 0.2158818 |
Hylarana latouchii | 34.73251 | 9.3596051 | 0.1345240 | 0.3410991 |
Rana longicrus | 33.23651 | 16.5423759 | 0.1323306 | 0.6035160 |
Rana sauteri | 31.83992 | 19.1654726 | 0.1317941 | 0.6961106 |
Kaloula pulchra | 36.29268 | 6.5902624 | 0.1731697 | 0.2383341 |
Batrachyla taeniata | 34.00455 | 1.6683514 | 0.1091738 | 0.1126937 |
Atelopus limosus | 34.06267 | 23.8008976 | 0.1356618 | 0.8722778 |
Physalaemus nattereri | 37.71244 | 6.5977471 | 0.1348520 | 0.2419743 |
Boana pardalis | 38.07937 | 8.0850765 | 0.1364192 | 0.3140255 |
Hylorina sylvatica | 32.95919 | 3.3644839 | 0.1328401 | 0.2369259 |
Craugastor crassidigitus | 33.88668 | 23.1609538 | 0.1358378 | 0.8597226 |
Craugastor fitzingeri | 34.59417 | 19.1867051 | 0.1442309 | 0.7157156 |
Dendropsophus anceps | 35.37279 | 10.3874111 | 0.1205514 | 0.4034062 |
Dendropsophus decipiens | 34.67701 | 12.1544764 | 0.1114419 | 0.4664445 |
Alytes maurus | 34.22058 | 8.5504907 | 0.1419431 | 0.3846693 |
Bufo gargarizans | 34.40812 | 1.9213489 | 0.1411800 | 0.0908227 |
Pseudacris feriarum | 35.41802 | 5.7263248 | 0.1250849 | 0.2231041 |
Cophixalus aenigma | 28.12543 | 13.5322046 | 0.1423999 | 0.5063692 |
Cophixalus bombiens | 31.14672 | 15.6303478 | 0.1439942 | 0.5811071 |
Cophixalus concinnus | 28.77287 | 12.8486771 | 0.1409551 | 0.4802522 |
Cophixalus exiguus | 32.91085 | 14.6947925 | 0.1487390 | 0.5337749 |
Cophixalus hosmeri | 30.61092 | 14.1419269 | 0.1471042 | 0.5281092 |
Cophixalus infacetus | 32.43335 | 17.7911809 | 0.1463361 | 0.6837361 |
Cophixalus mcdonaldi | 31.14597 | 11.2581993 | 0.1429628 | 0.4455380 |
Cophixalus monticola | 30.15332 | 14.3794489 | 0.1418168 | 0.5376343 |
Cophixalus neglectus | 30.15729 | 18.6832545 | 0.1448550 | 0.7472612 |
Cophixalus saxatilis | 32.19438 | 13.9897850 | 0.1487174 | 0.5078909 |
Craugastor rhodopis | 31.62385 | 12.1089501 | 0.1336858 | 0.4902416 |
Rheohyla miotympanum | 36.31561 | 12.9831485 | 0.1306760 | 0.5320724 |
Engystomops pustulosus | 36.30104 | 6.1937275 | 0.1468198 | 0.2320241 |
Craugastor loki | 32.42587 | 8.8905521 | 0.1320943 | 0.3328506 |
Pleurodema brachyops | 38.59158 | 12.0302096 | 0.1573112 | 0.4459004 |
Pristimantis frater | 30.73729 | 12.8370273 | 0.1285885 | 0.5375634 |
Pristimantis medemi | 31.50748 | 17.8107510 | 0.1455362 | 0.7287983 |
Pristimantis taeniatus | 32.86541 | 15.1973238 | 0.1488610 | 0.5771638 |
Pristimantis fallax | 32.36195 | 16.8607977 | 0.1506951 | 0.7085255 |
Pristimantis w-nigrum | 32.26499 | 13.2799844 | 0.1604242 | 0.5433993 |
Pristimantis bicolor | 32.25870 | 18.3232803 | 0.1451603 | 0.7667730 |
Pristimantis bogotensis | 32.08614 | 10.4578354 | 0.1400834 | 0.4510933 |
Pristimantis savagei | 30.24743 | 18.4527802 | 0.1394652 | 0.7588160 |
Pristimantis renjiforum | 33.12582 | 18.7757760 | 0.1383669 | 0.7998374 |
Pristimantis conspicillatus | 31.93100 | 19.3279089 | 0.1405764 | 0.7242452 |
Pristimantis elegans | 32.13891 | 10.2760100 | 0.1391916 | 0.4402823 |
Pristimantis nervicus | 32.49752 | 15.4326814 | 0.1390076 | 0.6639109 |
Eurycea sosorum | 33.82483 | 9.6247304 | 0.0969221 | 0.3576186 |
Duttaphrynus melanostictus | 35.37124 | 9.3047391 | 0.1344155 | 0.3411658 |
Limnonectes blythii | 33.52474 | 20.2279058 | 0.1279579 | 0.7134996 |
Limnonectes malesianus | 33.87734 | 21.4122666 | 0.1279963 | 0.7533289 |
Nyctixalus pictus | 33.62010 | 24.0844152 | 0.1322157 | 0.8607765 |
Polypedates leucomystax | 35.40683 | 19.4718675 | 0.1352311 | 0.7125531 |
Microhyla butleri | 34.71235 | 15.1200224 | 0.1402786 | 0.5571824 |
Microhyla heymonsi | 36.59422 | 15.5112200 | 0.1447279 | 0.5646290 |
Microhyla mantheyi | 33.55581 | 21.6092877 | 0.1360796 | 0.7575153 |
Pseudis paradoxa | 37.77251 | 14.5719362 | 0.1245937 | 0.5275504 |
Anaxyrus punctatus | 37.28466 | 4.9168091 | 0.1293904 | 0.2156454 |
Craugastor longirostris | 36.31172 | 18.1619050 | 0.1441543 | 0.7020346 |
Pristimantis achatinus | 34.61531 | 13.1697466 | 0.1498401 | 0.5238302 |
Pristimantis latidiscus | 33.27723 | 19.5615145 | 0.1450631 | 0.7676233 |
Pristimantis laticlavius | 31.67845 | 9.8006337 | 0.1432213 | 0.4272497 |
Pristimantis incomptus | 31.49632 | 10.2265411 | 0.1422970 | 0.4421868 |
Pristimantis quaquaversus | 31.56357 | 14.7593372 | 0.1452524 | 0.5910952 |
Pristimantis crenunguis | 30.87098 | 9.9561726 | 0.1446881 | 0.4317986 |
Pristimantis trachyblepharis | 30.21793 | 12.5085250 | 0.1373349 | 0.5209421 |
Pristimantis actites | 31.48284 | 9.0749079 | 0.1390777 | 0.3918722 |
Pristimantis unistrigatus | 32.42753 | 7.2587580 | 0.1433203 | 0.3242432 |
Pristimantis vertebralis | 28.61296 | 8.5455981 | 0.1389958 | 0.3798749 |
Pristimantis riveti | 31.71116 | 12.5755184 | 0.1440930 | 0.5668911 |
Pristimantis phoxocephalus | 29.11756 | 8.8250174 | 0.1395150 | 0.3804169 |
Pristimantis pycnodermis | 31.21826 | 9.5217024 | 0.1424704 | 0.4095413 |
Pristimantis curtipes | 31.48554 | 9.9298012 | 0.1402477 | 0.4422142 |
Pleurodema marmoratum | 34.11738 | 6.2184942 | 0.1295535 | 0.3762044 |
Microhyla fissipes | 35.74556 | 7.6932754 | 0.1365291 | 0.2899093 |
Hoplobatrachus rugulosus | 38.70076 | 14.3792039 | 0.1419918 | 0.5278267 |
Microhyla ornata | 36.15122 | 8.9141705 | 0.1471349 | 0.3318942 |
Rana dybowskii | 27.48359 | 1.6451739 | 0.1030049 | 0.0871131 |
Hyperolius marmoratus | 41.01820 | 4.3041378 | 0.2079399 | 0.1765936 |
Oophaga pumilio | 29.81233 | 16.0856858 | 0.1151173 | 0.6012899 |
Odontophrynus barrioi | 34.62070 | 4.1065931 | 0.1479946 | 0.2018624 |
Pleurodema nebulosum | 36.98184 | 5.7986323 | 0.1375285 | 0.2852390 |
Pleurodema tucumanum | 37.21321 | 6.2037682 | 0.1323888 | 0.2681083 |
Desmognathus brimleyorum | 32.40243 | 8.0125689 | 0.1270742 | 0.2986658 |
Ambystoma californiense | 34.08800 | 7.8010906 | 0.1223616 | 0.3915001 |
Ambystoma mavortium | 33.89635 | 5.4109834 | 0.1232949 | 0.2650791 |
Batrachuperus karlschmidti | 30.64659 | 7.4796180 | 0.1341000 | 0.4479413 |
Batrachuperus londongensis | 30.50442 | 11.2102842 | 0.1341546 | 0.5383008 |
Batrachuperus pinchonii | 31.44109 | 8.8260055 | 0.1307414 | 0.4756909 |
Liua shihi | 31.10349 | 12.5303648 | 0.1341216 | 0.4989493 |
Liua tsinpaensis | 31.06816 | 10.4086499 | 0.1355559 | 0.4592655 |
Pseudohynobius flavomaculatus | 30.75546 | 15.4703492 | 0.1368695 | 0.5927038 |
Pseudohynobius kuankuoshuiensis | 31.04559 | 20.3094689 | 0.1357769 | 0.8024141 |
Pseudohynobius shuichengensis | 30.79754 | 18.0792175 | 0.1340304 | 0.7712110 |
Pseudohynobius puxiongensis | 30.82670 | 16.4183418 | 0.1375821 | 0.7854088 |
Hynobius abei | 30.49769 | 12.2965933 | 0.1356243 | 0.4973077 |
Hynobius lichenatus | 30.73622 | 10.1917846 | 0.1369758 | 0.4323137 |
Hynobius tokyoensis | 30.67489 | 11.7382560 | 0.1367335 | 0.4706414 |
Hynobius nigrescens | 30.53368 | 10.0761629 | 0.1349505 | 0.4202248 |
Hynobius takedai | 30.70928 | 9.8104647 | 0.1365622 | 0.4239986 |
Hynobius stejnegeri | 30.74945 | 14.8590176 | 0.1367228 | 0.5709296 |
Hynobius amjiensis | 30.71464 | 11.9913934 | 0.1353108 | 0.4428365 |
Hynobius chinensis | 30.71969 | 11.0398376 | 0.1360455 | 0.4505146 |
Hynobius guabangshanensis | 30.66685 | 23.5276583 | 0.1350072 | 0.8489041 |
Hynobius maoershanensis | 30.64347 | 19.1462931 | 0.1357441 | 0.7154024 |
Hynobius yiwuensis | 30.76008 | 14.6375133 | 0.1340303 | 0.5469888 |
Hynobius hidamontanus | 30.60222 | 9.3149957 | 0.1353178 | 0.4074523 |
Hynobius katoi | 30.77728 | 13.9288430 | 0.1337531 | 0.5473697 |
Hynobius naevius | 30.44969 | 15.1297963 | 0.1345739 | 0.5913775 |
Hynobius dunni | 30.65102 | 16.3707111 | 0.1366338 | 0.6265392 |
Hynobius nebulosus | 30.67083 | 13.5177025 | 0.1386055 | 0.5307393 |
Hynobius tsuensis | 30.65512 | 13.0685721 | 0.1362849 | 0.5133373 |
Hynobius okiensis | 30.46744 | 11.7772649 | 0.1335379 | 0.4707558 |
Hynobius leechii | 30.38638 | 7.7408997 | 0.1374037 | 0.3518578 |
Hynobius yangi | 30.74625 | 11.2052490 | 0.1337609 | 0.4682474 |
Hynobius quelpaertensis | 30.72215 | 10.2389272 | 0.1369450 | 0.4228601 |
Hynobius turkestanicus | 30.67778 | 7.5769380 | 0.1353492 | 0.4931962 |
Hynobius arisanensis | 30.37658 | 37.9728790 | 0.1367191 | 1.3736466 |
Hynobius sonani | 30.44121 | 34.6841917 | 0.1375569 | 1.2576967 |
Hynobius formosanus | 30.44837 | 29.9607650 | 0.1357983 | 1.1080957 |
Hynobius boulengeri | 30.73057 | 14.5496067 | 0.1364301 | 0.5649662 |
Hynobius kimurae | 31.49229 | 11.2396658 | 0.1358163 | 0.4571324 |
Hynobius retardatus | 30.71250 | 8.4984148 | 0.1356605 | 0.4327785 |
Pachyhynobius shangchengensis | 30.97503 | 14.8734032 | 0.1363908 | 0.5333558 |
Salamandrella keyserlingii | 30.88068 | 5.0286169 | 0.1348573 | 0.3196623 |
Ranodon sibiricus | 30.25731 | 8.3046883 | 0.1345034 | 0.5508509 |
Onychodactylus fischeri | 31.70963 | 11.4501276 | 0.1328235 | 0.5338727 |
Onychodactylus japonicus | 31.72963 | 17.4393062 | 0.1328329 | 0.6996913 |
Andrias japonicus | 32.06936 | 15.0367928 | 0.1284768 | 0.5949036 |
Andrias davidianus | 32.90436 | 16.2650047 | 0.1279828 | 0.6352520 |
Siren intermedia | 32.03656 | 23.8382565 | 0.1309385 | 0.8943095 |
Siren lacertina | 32.17471 | 23.0164659 | 0.1327166 | 0.8598806 |
Pseudobranchus striatus | 32.01936 | 34.3477732 | 0.1309484 | 1.2442807 |
Pseudobranchus axanthus | 32.15028 | 42.3464181 | 0.1308479 | 1.5104747 |
Chioglossa lusitanica | 33.29848 | 15.2518502 | 0.1343753 | 0.7848602 |
Mertensiella caucasica | 33.21515 | 10.7109947 | 0.1354821 | 0.5459939 |
Lyciasalamandra antalyana | 32.40243 | 13.9500558 | 0.1366049 | 0.5824283 |
Lyciasalamandra helverseni | 32.36080 | 20.8720863 | 0.1360216 | 0.8607517 |
Lyciasalamandra fazilae | 32.40875 | 13.1815002 | 0.1339058 | 0.5786232 |
Lyciasalamandra flavimembris | 32.27943 | 14.2721930 | 0.1389711 | 0.5970138 |
Lyciasalamandra atifi | 32.24300 | 12.3149642 | 0.1382568 | 0.5340517 |
Lyciasalamandra luschani | 32.28495 | 11.9957010 | 0.1372193 | 0.5277007 |
Salamandra algira | 32.38302 | 11.6133978 | 0.1390955 | 0.5040257 |
Salamandra infraimmaculata | 32.16805 | 10.1478279 | 0.1391480 | 0.4582350 |
Salamandra corsica | 32.21785 | 10.4380956 | 0.1368745 | 0.4375236 |
Salamandra lanzai | 32.26716 | 7.0780020 | 0.1352901 | 0.3497992 |
Salamandra atra | 32.22615 | 5.8391256 | 0.1342051 | 0.2955551 |
Calotriton arnoldi | 33.12200 | 13.1391374 | 0.1354935 | 0.5777992 |
Calotriton asper | 33.91979 | 8.7213724 | 0.1364886 | 0.4238993 |
Triturus carnifex | 34.16912 | 6.6064247 | 0.1339638 | 0.3204145 |
Triturus karelinii | 34.13699 | 6.7697749 | 0.1368373 | 0.3401071 |
Triturus marmoratus | 34.08574 | 7.5241507 | 0.1326368 | 0.3783076 |
Neurergus crocatus | 33.90220 | 12.6362573 | 0.1380420 | 0.5938622 |
Neurergus kaiseri | 33.89288 | 14.0894598 | 0.1381165 | 0.6037200 |
Neurergus strauchii | 33.97061 | 11.0474380 | 0.1369343 | 0.5450603 |
Ommatotriton ophryticus | 33.73633 | 8.8641315 | 0.1367067 | 0.4469247 |
Ommatotriton vittatus | 33.88021 | 16.6955088 | 0.1374960 | 0.7026157 |
Lissotriton helveticus | 34.02893 | 7.7273086 | 0.1350480 | 0.4190697 |
Lissotriton italicus | 33.98332 | 10.0159541 | 0.1357079 | 0.4214111 |
Lissotriton montandoni | 33.76779 | 4.8004968 | 0.1320433 | 0.2478373 |
Lissotriton vulgaris | 33.96899 | 6.1081251 | 0.1359628 | 0.4067436 |
Ichthyosaura alpestris | 33.73193 | 7.5236742 | 0.1366478 | 0.3839833 |
Cynops ensicauda | 34.02365 | 35.1669684 | 0.1363645 | 1.2809177 |
Cynops pyrrhogaster | 34.01787 | 11.1667146 | 0.1349227 | 0.4503527 |
Laotriton laoensis | 33.92406 | 22.4795548 | 0.1340717 | 0.8290478 |
Pachytriton brevipes | 33.96047 | 16.9733560 | 0.1330793 | 0.6357693 |
Paramesotriton caudopunctatus | 33.79567 | 16.6808203 | 0.1352111 | 0.6200444 |
Paramesotriton deloustali | 33.78610 | 18.3931040 | 0.1346938 | 0.7025355 |
Paramesotriton fuzhongensis | 33.88422 | 16.3394845 | 0.1359692 | 0.5906686 |
Paramesotriton hongkongensis | 33.62524 | 23.1678069 | 0.1354974 | 0.8293314 |
Euproctus montanus | 33.63953 | 12.5071033 | 0.1366891 | 0.5222454 |
Euproctus platycephalus | 33.77891 | 13.6732766 | 0.1351713 | 0.5629785 |
Notophthalmus meridionalis | 34.89036 | 23.3841998 | 0.1354032 | 0.9185094 |
Notophthalmus perstriatus | 34.93538 | 18.6426789 | 0.1376509 | 0.6758152 |
Taricha torosa | 33.61512 | 11.5851173 | 0.1369894 | 0.5845840 |
Taricha rivularis | 33.66739 | 12.2376307 | 0.1368843 | 0.6755586 |
Echinotriton andersoni | 33.51272 | 36.7955820 | 0.1355455 | 1.3415668 |
Echinotriton chinhaiensis | 33.71924 | 15.7627107 | 0.1352863 | 0.5973383 |
Tylototriton asperrimus | 33.45637 | 22.0400314 | 0.1347812 | 0.8219103 |
Tylototriton notialis | 33.46644 | 26.5141027 | 0.1342082 | 0.9462252 |
Tylototriton hainanensis | 33.49042 | 39.0489347 | 0.1332379 | 1.3976060 |
Tylototriton wenxianensis | 33.54965 | 12.0100599 | 0.1315564 | 0.5077694 |
Tylototriton vietnamensis | 33.77347 | 21.1549088 | 0.1333026 | 0.7665829 |
Tylototriton shanjing | 33.50214 | 16.3893963 | 0.1339166 | 0.7367820 |
Tylototriton verrucosus | 33.78934 | 19.1530569 | 0.1320581 | 0.8295233 |
Pleurodeles poireti | 33.45716 | 11.8889289 | 0.1356879 | 0.4807881 |
Salamandrina perspicillata | 33.33051 | 9.0770399 | 0.1362843 | 0.4137340 |
Salamandrina terdigitata | 33.30186 | 14.1885303 | 0.1375561 | 0.5781181 |
Ambystoma altamirani | 33.29857 | 9.4064529 | 0.1227514 | 0.4632531 |
Ambystoma amblycephalum | 34.24511 | 15.7578915 | 0.1247365 | 0.7042737 |
Ambystoma lermaense | 34.11683 | 13.6782378 | 0.1236195 | 0.6131111 |
Ambystoma andersoni | 33.51877 | 12.8721003 | 0.1281269 | 0.5727922 |
Ambystoma mexicanum | 34.31735 | 9.6521504 | 0.1266998 | 0.4552944 |
Ambystoma rosaceum | 34.38571 | 10.7498222 | 0.1270151 | 0.4495329 |
Ambystoma dumerilii | 34.34006 | 14.2255388 | 0.1243099 | 0.6354994 |
Ambystoma ordinarium | 34.16735 | 14.6440150 | 0.1239705 | 0.6326163 |
Ambystoma annulatum | 35.02609 | 6.9568376 | 0.1240880 | 0.2784965 |
Ambystoma bishopi | 34.04761 | 14.5940933 | 0.1245842 | 0.5196798 |
Ambystoma cingulatum | 35.02077 | 14.8094644 | 0.1233339 | 0.5424819 |
Ambystoma barbouri | 34.23880 | 9.9449650 | 0.1232005 | 0.3874320 |
Ambystoma texanum | 34.40005 | 10.3894775 | 0.1242690 | 0.4059289 |
Ambystoma flavipiperatum | 34.08040 | 18.2288193 | 0.1232737 | 0.7462354 |
Ambystoma gracile | 33.87794 | 5.1667211 | 0.1250665 | 0.3171579 |
Ambystoma granulosum | 34.15190 | 15.8633091 | 0.1261140 | 0.7024886 |
Ambystoma leorae | 34.11775 | 12.5441792 | 0.1247283 | 0.5680981 |
Ambystoma taylori | 34.15021 | 10.2612810 | 0.1238336 | 0.4766545 |
Ambystoma silvense | 33.31849 | 9.9843353 | 0.1255840 | 0.4313137 |
Ambystoma rivulare | 34.52187 | 12.1561504 | 0.1214480 | 0.5533229 |
Ambystoma velasci | 33.92154 | 14.7073979 | 0.1257905 | 0.6238437 |
Dicamptodon ensatus | 29.06861 | 13.1798740 | 0.1374339 | 0.7048267 |
Dicamptodon aterrimus | 29.01722 | 6.6164380 | 0.1378488 | 0.3780612 |
Dicamptodon copei | 29.05049 | 8.0640322 | 0.1371717 | 0.4667919 |
Necturus punctatus | 31.80630 | 10.3280932 | 0.1287307 | 0.4026699 |
Necturus lewisi | 31.79039 | 7.0604238 | 0.1310469 | 0.2819973 |
Necturus beyeri | 31.71140 | 14.4898356 | 0.1318239 | 0.5222395 |
Necturus alabamensis | 31.73837 | 12.1573003 | 0.1301301 | 0.4393504 |
Rhyacotriton kezeri | 28.14413 | 8.8862142 | 0.1371375 | 0.4883957 |
Rhyacotriton cascadae | 28.16118 | 8.8889235 | 0.1362376 | 0.4915142 |
Amphiuma pholeter | 33.47551 | 20.5749743 | 0.1246467 | 0.7328381 |
Amphiuma means | 33.44040 | 16.1567605 | 0.1213527 | 0.5965102 |
Aneides vagrans | 31.25734 | 9.3746835 | 0.1273085 | 0.5775994 |
Aneides flavipunctatus | 31.27246 | 12.0253628 | 0.1245383 | 0.6747683 |
Aneides lugubris | 31.20745 | 14.4762805 | 0.1224873 | 0.7326539 |
Aneides hardii | 31.27918 | 10.5610748 | 0.1243078 | 0.4909234 |
Desmognathus abditus | 31.96916 | 11.3543141 | 0.1257547 | 0.4326139 |
Desmognathus welteri | 31.96433 | 10.0761131 | 0.1283603 | 0.3897247 |
Desmognathus apalachicolae | 31.96778 | 13.0842953 | 0.1263009 | 0.4683053 |
Desmognathus auriculatus | 31.87974 | 7.3118586 | 0.1279551 | 0.2899367 |
Desmognathus santeetlah | 31.89972 | 11.2025906 | 0.1259068 | 0.4192348 |
Desmognathus imitator | 31.92766 | 11.4988529 | 0.1267315 | 0.4338333 |
Desmognathus aeneus | 31.70610 | 13.7405510 | 0.1260155 | 0.4983610 |
Desmognathus folkertsi | 31.27510 | 12.3268813 | 0.1263018 | 0.4584972 |
Desmognathus marmoratus | 31.29829 | 12.6480799 | 0.1277179 | 0.4779198 |
Desmognathus wrighti | 31.41782 | 13.1624103 | 0.1276158 | 0.5011380 |
Phaeognathus hubrichti | 31.47247 | 20.3380877 | 0.1247251 | 0.7195900 |
Plethodon albagula | 31.91582 | 9.4256764 | 0.1253351 | 0.3678227 |
Plethodon sequoyah | 32.00763 | 10.3683913 | 0.1221347 | 0.3831725 |
Plethodon kisatchie | 31.99676 | 11.1414980 | 0.1226802 | 0.4058635 |
Plethodon kiamichi | 31.92430 | 10.5342040 | 0.1243300 | 0.3930793 |
Plethodon amplus | 31.82088 | 10.0599037 | 0.1254268 | 0.3792102 |
Plethodon meridianus | 31.81754 | 9.7561320 | 0.1251175 | 0.3659866 |
Plethodon metcalfi | 31.81681 | 10.5549013 | 0.1222540 | 0.3985473 |
Plethodon aureolus | 31.90622 | 9.2987283 | 0.1243347 | 0.3508432 |
Plethodon cheoah | 31.88507 | 10.3550302 | 0.1254781 | 0.3938599 |
Plethodon shermani | 31.91953 | 9.6651010 | 0.1210337 | 0.3661640 |
Plethodon fourchensis | 32.00837 | 10.5998594 | 0.1237957 | 0.3968356 |
Plethodon kentucki | 32.00257 | 9.0602869 | 0.1254503 | 0.3594969 |
Plethodon petraeus | 31.92171 | 11.3588955 | 0.1229151 | 0.4248010 |
Plethodon angusticlavius | 31.71449 | 7.6902063 | 0.1239121 | 0.3028233 |
Plethodon ventralis | 31.45361 | 11.4416768 | 0.1232368 | 0.4270030 |
Plethodon welleri | 31.67048 | 10.8767313 | 0.1258705 | 0.4182339 |
Plethodon websteri | 31.88089 | 14.5720385 | 0.1225273 | 0.5241342 |
Plethodon shenandoah | 32.19997 | 8.1460089 | 0.1228530 | 0.3259209 |
Plethodon electromorphus | 31.95433 | 6.0770520 | 0.1256187 | 0.2537725 |
Plethodon nettingi | 31.97708 | 8.0504155 | 0.1234894 | 0.3307486 |
Plethodon hoffmani | 31.96429 | 6.4041573 | 0.1231300 | 0.2886482 |
Plethodon sherando | 31.97704 | 9.3640482 | 0.1235793 | 0.3681270 |
Plethodon asupak | 31.30883 | 12.4190758 | 0.1258753 | 0.6623358 |
Plethodon elongatus | 31.44887 | 11.5034696 | 0.1243653 | 0.6159507 |
Plethodon stormi | 31.40626 | 10.8463366 | 0.1261817 | 0.5753655 |
Plethodon idahoensis | 31.68302 | 6.7819629 | 0.1233595 | 0.3877092 |
Plethodon vandykei | 31.47947 | 8.6927006 | 0.1218053 | 0.5002256 |
Plethodon larselli | 31.40337 | 8.3140893 | 0.1248482 | 0.4573971 |
Plethodon neomexicanus | 31.35090 | 8.4460723 | 0.1259067 | 0.4351228 |
Hydromantes brunus | 31.57055 | 14.5507030 | 0.1256025 | 0.7924925 |
Hydromantes platycephalus | 31.58842 | 12.6687133 | 0.1248078 | 0.6615079 |
Hydromantes shastae | 31.58728 | 13.2171173 | 0.1239961 | 0.7037080 |
Karsenia koreana | 31.61242 | 14.3843820 | 0.1261234 | 0.5960138 |
Eurycea junaluska | 34.04846 | 10.9144264 | 0.1123841 | 0.4115936 |
Eurycea cirrigera | 34.09875 | 7.6567257 | 0.1077117 | 0.2955207 |
Eurycea wilderae | 34.10814 | 10.8771303 | 0.1087171 | 0.4102182 |
Eurycea guttolineata | 34.33334 | 9.3321633 | 0.1076537 | 0.3563235 |
Eurycea chisholmensis | 34.09367 | 15.8785487 | 0.1116993 | 0.5915914 |
Eurycea tonkawae | 34.17668 | 13.9877040 | 0.1095350 | 0.5206468 |
Eurycea naufragia | 34.18901 | 13.4357519 | 0.1114468 | 0.4975072 |
Eurycea tridentifera | 34.13831 | 17.6916812 | 0.1102591 | 0.6694034 |
Eurycea pterophila | 34.17322 | 16.0785147 | 0.1109265 | 0.6033881 |
Eurycea troglodytes | 34.19313 | 18.3461068 | 0.1095041 | 0.6973339 |
Eurycea waterlooensis | 34.09651 | 13.2438909 | 0.1122203 | 0.4888025 |
Eurycea tynerensis | 34.20947 | 7.2095250 | 0.1078525 | 0.2931531 |
Urspelerpes brucei | 34.31257 | 11.8189921 | 0.1142154 | 0.4392921 |
Stereochilus marginatus | 32.72033 | 7.9875206 | 0.1175385 | 0.3140362 |
Batrachoseps gregarius | 32.21430 | 14.2126056 | 0.1194103 | 0.7345412 |
Batrachoseps nigriventris | 32.23854 | 16.0045519 | 0.1205506 | 0.7705137 |
Batrachoseps stebbinsi | 32.24159 | 13.5616499 | 0.1198362 | 0.6935682 |
Batrachoseps simatus | 32.20864 | 12.3195142 | 0.1190511 | 0.6854904 |
Batrachoseps kawia | 32.19962 | 10.2450831 | 0.1208971 | 0.6412445 |
Batrachoseps relictus | 32.18946 | 13.5694973 | 0.1175611 | 0.7500328 |
Batrachoseps diabolicus | 32.26996 | 17.6362582 | 0.1192425 | 0.8620515 |
Batrachoseps regius | 32.23450 | 18.6690939 | 0.1194778 | 0.8630113 |
Batrachoseps gabrieli | 32.31850 | 13.3529022 | 0.1159342 | 0.6562995 |
Batrachoseps gavilanensis | 32.24050 | 16.3545323 | 0.1191635 | 0.8187124 |
Batrachoseps incognitus | 32.28068 | 18.8633563 | 0.1198935 | 0.9639366 |
Batrachoseps minor | 32.20986 | 17.8521138 | 0.1195006 | 0.8859637 |
Batrachoseps major | 32.30070 | 16.8578065 | 0.1179415 | 0.7865252 |
Batrachoseps pacificus | 32.26916 | 15.7598789 | 0.1181209 | 0.8050158 |
Batrachoseps luciae | 32.22508 | 18.1402511 | 0.1192654 | 0.9267602 |
Batrachoseps robustus | 32.21937 | 14.2937106 | 0.1215410 | 0.7339153 |
Batrachoseps attenuatus | 32.27125 | 15.7764698 | 0.1191629 | 0.8226890 |
Batrachoseps campi | 32.34415 | 13.7234994 | 0.1205916 | 0.7512857 |
Batrachoseps wrighti | 32.34658 | 10.7947584 | 0.1198992 | 0.5883531 |
Bolitoglossa adspersa | 32.18719 | 28.0596380 | 0.1210211 | 1.1990370 |
Bolitoglossa medemi | 31.97705 | 41.4229793 | 0.1225699 | 1.5563853 |
Bolitoglossa alberchi | 32.12215 | 27.4980530 | 0.1194473 | 0.9964234 |
Bolitoglossa altamazonica | 32.02497 | 36.5131741 | 0.1222613 | 1.3548147 |
Bolitoglossa peruviana | 32.10381 | 39.5578055 | 0.1194531 | 1.6311321 |
Bolitoglossa palmata | 32.09099 | 17.7224290 | 0.1188099 | 0.7692825 |
Bolitoglossa alvaradoi | 32.08612 | 33.3598837 | 0.1212691 | 1.3265743 |
Bolitoglossa dofleini | 32.28265 | 31.5361419 | 0.1202047 | 1.1910497 |
Bolitoglossa anthracina | 32.20218 | 49.0897900 | 0.1221572 | 1.7509235 |
Bolitoglossa biseriata | 32.06921 | 38.0033664 | 0.1207242 | 1.4627860 |
Bolitoglossa sima | 32.11936 | 24.9241747 | 0.1180578 | 1.0295916 |
Bolitoglossa borburata | 32.25033 | 36.2329316 | 0.1213557 | 1.3504699 |
Bolitoglossa bramei | 32.31616 | 37.5044916 | 0.1197011 | 1.5396740 |
Bolitoglossa pesrubra | 32.34402 | 22.1406488 | 0.1175052 | 1.2894709 |
Bolitoglossa capitana | 32.29017 | 38.3691243 | 0.1171797 | 1.5307424 |
Bolitoglossa carri | 32.08081 | 20.7163326 | 0.1209707 | 0.8537026 |
Bolitoglossa oresbia | 32.06759 | 20.8578521 | 0.1199959 | 0.8593628 |
Bolitoglossa celaque | 32.26051 | 26.6047599 | 0.1197832 | 1.0154184 |
Bolitoglossa synoria | 32.10817 | 34.6589874 | 0.1193040 | 1.2633894 |
Bolitoglossa heiroreias | 32.19718 | 29.8250312 | 0.1207319 | 1.0879368 |
Bolitoglossa cerroensis | 32.11797 | 22.6333843 | 0.1220499 | 1.3173677 |
Bolitoglossa epimela | 32.03562 | 28.8830461 | 0.1205277 | 1.2838210 |
Bolitoglossa marmorea | 32.04044 | 53.7135231 | 0.1217735 | 1.9145034 |
Bolitoglossa chica | 32.03550 | 30.8582243 | 0.1221039 | 1.2524587 |
Bolitoglossa colonnea | 32.07314 | 47.3603206 | 0.1215314 | 1.7994711 |
Bolitoglossa nigrescens | 32.28014 | 29.3189428 | 0.1210323 | 1.2989163 |
Bolitoglossa compacta | 32.13067 | 50.3297674 | 0.1188913 | 1.7980182 |
Bolitoglossa robusta | 32.30729 | 39.9700194 | 0.1218887 | 1.5260614 |
Bolitoglossa schizodactyla | 32.08365 | 42.0565854 | 0.1212779 | 1.5867561 |
Bolitoglossa conanti | 32.01187 | 29.4537065 | 0.1227822 | 1.1140799 |
Bolitoglossa diaphora | 32.09277 | 44.7197598 | 0.1200772 | 1.7551524 |
Bolitoglossa dunni | 32.09046 | 39.6796094 | 0.1201151 | 1.5533024 |
Bolitoglossa copia | 32.24707 | 48.3223050 | 0.1206438 | 1.7346439 |
Bolitoglossa cuchumatana | 32.24843 | 20.8044937 | 0.1207591 | 0.8296313 |
Bolitoglossa helmrichi | 32.11767 | 26.2960455 | 0.1185172 | 0.9977071 |
Bolitoglossa cuna | 32.07445 | 46.7587828 | 0.1226559 | 1.6791644 |
Bolitoglossa suchitanensis | 32.03939 | 29.3970836 | 0.1198968 | 1.0697957 |
Bolitoglossa morio | 32.07360 | 26.4561254 | 0.1196983 | 1.0500478 |
Bolitoglossa flavimembris | 32.15005 | 24.8635025 | 0.1208872 | 0.9698189 |
Bolitoglossa decora | 32.06122 | 51.4824875 | 0.1193583 | 1.9418622 |
Bolitoglossa digitigrada | 32.25227 | 21.2915627 | 0.1197652 | 1.3646765 |
Bolitoglossa diminuta | 32.12972 | 20.6457498 | 0.1228287 | 1.2019858 |
Bolitoglossa engelhardti | 32.04964 | 23.8033281 | 0.1185010 | 0.9485045 |
Bolitoglossa equatoriana | 32.00645 | 36.7137714 | 0.1202591 | 1.4310499 |
Bolitoglossa paraensis | 32.07397 | 43.8861597 | 0.1193228 | 1.5722553 |
Bolitoglossa flaviventris | 32.17310 | 27.5158342 | 0.1193095 | 1.0724778 |
Bolitoglossa franklini | 32.05006 | 24.5087423 | 0.1237187 | 0.9557349 |
Bolitoglossa lincolni | 32.06610 | 24.7988358 | 0.1220006 | 0.9567480 |
Bolitoglossa gomezi | 32.05383 | 35.0451598 | 0.1197175 | 1.5464692 |
Bolitoglossa gracilis | 32.06118 | 33.1718126 | 0.1175089 | 1.4723288 |
Bolitoglossa subpalmata | 32.01808 | 30.7898387 | 0.1189756 | 1.2715565 |
Bolitoglossa tica | 32.01405 | 28.2057049 | 0.1171088 | 1.2482575 |
Bolitoglossa guaramacalensis | 32.33234 | 32.4600877 | 0.1192014 | 1.2072452 |
Bolitoglossa hartwegi | 32.25959 | 31.4533683 | 0.1199560 | 1.1421811 |
Bolitoglossa hermosa | 32.15223 | 26.5502049 | 0.1175057 | 1.0875213 |
Bolitoglossa riletti | 32.12881 | 24.9297818 | 0.1202011 | 0.9788674 |
Bolitoglossa zapoteca | 32.27882 | 27.3254564 | 0.1176921 | 0.9881319 |
Bolitoglossa hiemalis | 32.11126 | 36.2328515 | 0.1217018 | 1.4968595 |
Bolitoglossa hypacra | 32.22127 | 38.3544766 | 0.1196198 | 1.4640130 |
Bolitoglossa indio | 32.27507 | 40.0059101 | 0.1229459 | 1.4290655 |
Bolitoglossa insularis | 32.09380 | 28.8580133 | 0.1181863 | 1.0477474 |
Bolitoglossa jacksoni | 32.13891 | 17.6834644 | 0.1211707 | 0.7809337 |
Bolitoglossa nicefori | 32.01067 | 29.3896748 | 0.1200502 | 1.2414103 |
Bolitoglossa lignicolor | 32.04933 | 39.2139048 | 0.1213365 | 1.5291089 |
Bolitoglossa longissima | 32.06494 | 34.1915513 | 0.1223273 | 1.2845589 |
Bolitoglossa porrasorum | 32.09871 | 42.6741557 | 0.1184677 | 1.6174647 |
Bolitoglossa lozanoi | 32.11469 | 29.5211766 | 0.1199866 | 1.2144233 |
Bolitoglossa macrinii | 32.22414 | 28.2449345 | 0.1211942 | 1.0438047 |
Bolitoglossa oaxacensis | 32.20104 | 25.1854896 | 0.1200354 | 0.9587351 |
Bolitoglossa magnifica | 32.28515 | 51.5786483 | 0.1205163 | 1.8367623 |
Bolitoglossa meliana | 32.25600 | 24.5650980 | 0.1214352 | 0.9838953 |
Bolitoglossa mexicana | 32.08156 | 30.6872882 | 0.1213421 | 1.1444185 |
Bolitoglossa odonnelli | 32.11516 | 32.0449084 | 0.1191938 | 1.2217660 |
Bolitoglossa minutula | 32.11225 | 42.2578105 | 0.1196592 | 1.7340058 |
Bolitoglossa sooyorum | 32.05662 | 22.3985503 | 0.1215570 | 1.3035425 |
Bolitoglossa mombachoensis | 32.14530 | 30.1424558 | 0.1187399 | 1.0967248 |
Bolitoglossa striatula | 32.06719 | 33.2774514 | 0.1215557 | 1.2453111 |
Bolitoglossa mulleri | 32.18465 | 20.7488399 | 0.1216089 | 0.8059430 |
Bolitoglossa yucatana | 32.25888 | 37.5207754 | 0.1219498 | 1.3504317 |
Bolitoglossa orestes | 32.27513 | 30.6428711 | 0.1194931 | 1.1569954 |
Bolitoglossa rufescens | 32.02233 | 24.6468961 | 0.1219158 | 0.9300370 |
Bolitoglossa obscura | 32.23925 | 20.3187523 | 0.1192775 | 1.1817765 |
Bolitoglossa occidentalis | 32.13011 | 28.0831942 | 0.1191711 | 1.0449692 |
Bolitoglossa pandi | 32.20819 | 38.3011852 | 0.1215807 | 1.5163903 |
Bolitoglossa phalarosoma | 32.17938 | 29.6604567 | 0.1220973 | 1.2563033 |
Bolitoglossa platydactyla | 32.15362 | 26.0694345 | 0.1198346 | 1.0245041 |
Bolitoglossa ramosi | 32.10174 | 34.5785689 | 0.1198468 | 1.4324049 |
Bolitoglossa rostrata | 32.07739 | 25.7781144 | 0.1204008 | 0.9884973 |
Bolitoglossa salvinii | 32.10399 | 29.7202505 | 0.1208936 | 1.1081603 |
Bolitoglossa savagei | 32.06037 | 31.4735478 | 0.1197169 | 1.1585241 |
Bolitoglossa silverstonei | 32.03907 | 38.7627477 | 0.1214802 | 1.4987863 |
Bolitoglossa sombra | 32.15994 | 58.6425369 | 0.1200045 | 2.0959836 |
Bolitoglossa stuarti | 32.02463 | 26.7085771 | 0.1198559 | 1.0228628 |
Bolitoglossa tatamae | 32.06958 | 37.9892962 | 0.1226775 | 1.5126924 |
Bolitoglossa taylori | 32.06566 | 41.9931609 | 0.1203129 | 1.5368640 |
Bolitoglossa vallecula | 32.16599 | 28.2975150 | 0.1204742 | 1.2182565 |
Bolitoglossa veracrucis | 32.02455 | 29.0567255 | 0.1211374 | 1.0528685 |
Bolitoglossa walkeri | 32.03411 | 30.1980379 | 0.1218796 | 1.2730322 |
Ixalotriton niger | 32.17896 | 31.3721581 | 0.1228503 | 1.1319377 |
Ixalotriton parvus | 32.11128 | 30.1943565 | 0.1175581 | 1.0738695 |
Parvimolge townsendi | 32.23410 | 23.1314123 | 0.1188530 | 0.9190280 |
Pseudoeurycea ahuitzotl | 32.33058 | 27.9624132 | 0.1212682 | 1.1526411 |
Pseudoeurycea altamontana | 32.22911 | 16.3666529 | 0.1179063 | 0.7737358 |
Pseudoeurycea robertsi | 32.26202 | 14.7091792 | 0.1208924 | 0.7241191 |
Pseudoeurycea longicauda | 32.25696 | 23.7548421 | 0.1197769 | 0.9932661 |
Pseudoeurycea tenchalli | 32.26774 | 23.7369033 | 0.1189658 | 0.9298722 |
Pseudoeurycea cochranae | 32.26417 | 23.0405971 | 0.1208565 | 0.9137941 |
Pseudoeurycea gadovii | 32.23552 | 19.9007019 | 0.1184760 | 0.8716138 |
Pseudoeurycea melanomolga | 32.20647 | 14.1664115 | 0.1208971 | 0.6502887 |
Pseudoeurycea amuzga | 32.15132 | 30.7129064 | 0.1217824 | 1.1971375 |
Pseudoeurycea aquatica | 32.38218 | 16.6735178 | 0.1196276 | 0.7330113 |
Pseudoeurycea aurantia | 32.35488 | 15.9792545 | 0.1187154 | 0.7089815 |
Pseudoeurycea juarezi | 32.33810 | 22.1045205 | 0.1190861 | 0.8816108 |
Pseudoeurycea saltator | 32.14108 | 14.9291224 | 0.1214892 | 0.6582604 |
Pseudoeurycea ruficauda | 32.10977 | 19.9339607 | 0.1177907 | 0.8010113 |
Pseudoeurycea goebeli | 32.26153 | 32.4543346 | 0.1207166 | 1.1910862 |
Pseudoeurycea rex | 32.23915 | 24.1375061 | 0.1200639 | 0.9632042 |
Pseudoeurycea conanti | 32.15877 | 20.9029150 | 0.1200081 | 0.8406253 |
Pseudoeurycea mystax | 32.19002 | 20.7040279 | 0.1187828 | 0.8241514 |
Pseudoeurycea obesa | 32.15197 | 27.1457013 | 0.1220649 | 0.9990911 |
Pseudoeurycea werleri | 32.24825 | 22.9975694 | 0.1206395 | 0.8914851 |
Pseudoeurycea firscheini | 32.16178 | 23.4703680 | 0.1193466 | 0.9381259 |
Pseudoeurycea leprosa | 32.23799 | 21.3951429 | 0.1188030 | 0.9100352 |
Pseudoeurycea nigromaculata | 32.08913 | 26.2747466 | 0.1204180 | 1.0113152 |
Pseudoeurycea lynchi | 32.20588 | 21.9467713 | 0.1225541 | 0.8944504 |
Pseudoeurycea lineola | 32.29658 | 24.5731974 | 0.1192179 | 0.9862732 |
Pseudoeurycea mixcoatl | 32.22888 | 24.9228820 | 0.1201512 | 0.9768483 |
Pseudoeurycea mixteca | 32.29283 | 22.8084263 | 0.1183499 | 0.9270970 |
Pseudoeurycea orchileucos | 32.25731 | 15.4807795 | 0.1225337 | 0.6807336 |
Pseudoeurycea orchimelas | 32.23785 | 26.8429735 | 0.1196739 | 0.9824744 |
Pseudoeurycea papenfussi | 32.17175 | 15.1525992 | 0.1220428 | 0.6644830 |
Pseudoeurycea smithi | 32.18657 | 15.8973615 | 0.1195709 | 0.7005734 |
Pseudoeurycea tlahcuiloh | 32.25143 | 26.9053122 | 0.1200774 | 1.1074839 |
Pseudoeurycea tlilicxitl | 32.19692 | 14.6748636 | 0.1229203 | 0.6952976 |
Bradytriton silus | 32.13376 | 23.1177267 | 0.1225246 | 0.9059689 |
Oedipina alfaroi | 32.06490 | 34.7403160 | 0.1226273 | 1.4286744 |
Oedipina alleni | 32.16922 | 35.8299814 | 0.1187775 | 1.4333614 |
Oedipina savagei | 32.12815 | 41.9789297 | 0.1201521 | 1.6407034 |
Oedipina altura | 32.17136 | 21.4054865 | 0.1186488 | 1.2448455 |
Oedipina carablanca | 32.17761 | 36.8173638 | 0.1215222 | 1.3227629 |
Oedipina elongata | 32.11877 | 34.7620752 | 0.1199328 | 1.2879308 |
Oedipina collaris | 32.12827 | 36.1893399 | 0.1186419 | 1.4399414 |
Oedipina complex | 32.11815 | 37.5925731 | 0.1216175 | 1.4572881 |
Oedipina maritima | 32.21167 | 52.1263495 | 0.1194556 | 1.8463005 |
Oedipina parvipes | 32.23822 | 49.8546970 | 0.1169975 | 1.8447339 |
Oedipina cyclocauda | 32.18479 | 35.4288900 | 0.1202245 | 1.3757565 |
Oedipina pseudouniformis | 32.17680 | 28.0652177 | 0.1218156 | 1.2472963 |
Oedipina gephyra | 32.19680 | 37.4435661 | 0.1188809 | 1.4272320 |
Oedipina tomasi | 32.12371 | 40.2652999 | 0.1201142 | 1.5804075 |
Oedipina gracilis | 32.15794 | 32.7022285 | 0.1202246 | 1.3008780 |
Oedipina pacificensis | 32.99953 | 40.0498979 | 0.1225503 | 1.6029702 |
Oedipina uniformis | 32.12445 | 36.4271772 | 0.1178328 | 1.3851516 |
Oedipina grandis | 33.14425 | 55.3085298 | 0.1213902 | 1.9711834 |
Oedipina poelzi | 32.21552 | 33.7645942 | 0.1202159 | 1.3379858 |
Oedipina ignea | 32.14436 | 26.3727795 | 0.1220259 | 1.0178613 |
Oedipina paucidentata | 32.21549 | 19.8524849 | 0.1198818 | 1.1551481 |
Oedipina stenopodia | 32.09441 | 32.3804448 | 0.1238241 | 1.1865906 |
Oedipina taylori | 32.13964 | 33.9089531 | 0.1192412 | 1.2200683 |
Nototriton abscondens | 32.21858 | 30.3815282 | 0.1202375 | 1.2066824 |
Nototriton gamezi | 32.22033 | 34.2513890 | 0.1196567 | 1.2344479 |
Nototriton picadoi | 32.18345 | 32.6869490 | 0.1207742 | 1.3466141 |
Nototriton guanacaste | 32.23518 | 42.0124640 | 0.1178152 | 1.5709391 |
Nototriton saslaya | 32.22262 | 28.7225459 | 0.1190831 | 1.0633557 |
Nototriton barbouri | 32.24496 | 33.3310102 | 0.1217336 | 1.2722996 |
Nototriton brodiei | 32.25514 | 37.7102997 | 0.1192471 | 1.4787764 |
Nototriton stuarti | 32.28868 | 44.3393274 | 0.1206057 | 1.7421364 |
Nototriton limnospectator | 32.21970 | 22.7614054 | 0.1193087 | 0.8993029 |
Nototriton lignicola | 32.21842 | 31.4280893 | 0.1198924 | 1.2218606 |
Nototriton major | 32.19916 | 21.2198548 | 0.1208539 | 1.2324558 |
Nototriton richardi | 32.23270 | 35.8756833 | 0.1181778 | 1.2866855 |
Nototriton tapanti | 32.18646 | 31.7894386 | 0.1195529 | 1.4120174 |
Dendrotriton bromeliacius | 32.03331 | 24.5174100 | 0.1205123 | 0.9835584 |
Dendrotriton megarhinus | 32.03547 | 27.1413800 | 0.1214589 | 0.9920824 |
Dendrotriton xolocalcae | 31.96444 | 20.7869530 | 0.1231301 | 0.8234371 |
Dendrotriton sanctibarbarus | 32.06036 | 26.0288128 | 0.1206092 | 0.9981740 |
Dendrotriton chujorum | 32.01262 | 18.7078993 | 0.1226609 | 0.8253737 |
Dendrotriton cuchumatanus | 31.98094 | 19.2174818 | 0.1217220 | 0.8462579 |
Dendrotriton kekchiorum | 32.03719 | 21.8912824 | 0.1204577 | 0.8658252 |
Dendrotriton rabbi | 32.02662 | 19.3051620 | 0.1212368 | 0.8502090 |
Nyctanolis pernix | 32.11120 | 20.3139736 | 0.1219835 | 0.8111905 |
Chiropterotriton arboreus | 31.52653 | 15.7912704 | 0.1212906 | 0.7044128 |
Chiropterotriton cracens | 31.38139 | 18.3142630 | 0.1239478 | 0.7653606 |
Chiropterotriton terrestris | 31.73957 | 14.8903560 | 0.1234633 | 0.6630485 |
Chiropterotriton priscus | 31.84987 | 18.1849997 | 0.1234352 | 0.7693180 |
Chiropterotriton chiropterus | 31.62023 | 18.5156856 | 0.1240128 | 0.7775073 |
Chiropterotriton chondrostega | 31.84039 | 17.1307361 | 0.1211983 | 0.7458602 |
Chiropterotriton magnipes | 31.81319 | 22.6404830 | 0.1206349 | 0.9133477 |
Chiropterotriton dimidiatus | 31.98974 | 18.6656573 | 0.1207247 | 0.8283702 |
Chiropterotriton orculus | 31.93671 | 17.2116296 | 0.1188469 | 0.7591900 |
Chiropterotriton lavae | 31.82193 | 17.5010959 | 0.1193627 | 0.7442123 |
Cryptotriton alvarezdeltoroi | 32.04704 | 29.0511496 | 0.1209782 | 1.0400850 |
Cryptotriton monzoni | 31.87460 | 28.1470746 | 0.1202308 | 1.0235805 |
Cryptotriton nasalis | 31.78894 | 38.0243940 | 0.1218449 | 1.4935927 |
Cryptotriton sierraminensis | 31.95525 | 29.1298616 | 0.1203670 | 1.0871431 |
Cryptotriton veraepacis | 31.86400 | 20.1882498 | 0.1212077 | 0.7954811 |
Thorius adelos | 31.96366 | 16.3894126 | 0.1182449 | 0.7201184 |
Thorius arboreus | 31.87441 | 15.3008078 | 0.1232337 | 0.6744795 |
Thorius macdougalli | 31.97976 | 15.4567409 | 0.1227282 | 0.6819096 |
Thorius aureus | 32.12893 | 14.9295990 | 0.1217012 | 0.6618887 |
Thorius boreas | 32.08869 | 14.7908309 | 0.1221399 | 0.6509431 |
Thorius grandis | 32.13409 | 24.5933653 | 0.1191207 | 1.0097971 |
Thorius omiltemi | 32.15970 | 23.1138708 | 0.1199876 | 0.9056809 |
Thorius pulmonaris | 32.10635 | 14.7059923 | 0.1205667 | 0.6463042 |
Thorius minutissimus | 32.07844 | 27.2332227 | 0.1208142 | 0.9831097 |
Thorius narisovalis | 32.11297 | 18.4535988 | 0.1192105 | 0.7640313 |
Thorius papaloae | 32.19182 | 14.4002483 | 0.1203869 | 0.6291798 |
Thorius dubitus | 32.13946 | 21.8206642 | 0.1205270 | 0.8703762 |
Thorius troglodytes | 33.09991 | 17.2026285 | 0.1194897 | 0.7397272 |
Thorius insperatus | 32.13739 | 14.8757347 | 0.1233152 | 0.6520869 |
Thorius minydemus | 32.05115 | 19.5722142 | 0.1242522 | 0.8257276 |
Thorius spilogaster | 33.03959 | 24.1565462 | 0.1206739 | 0.9654236 |
Thorius pennatulus | 32.09369 | 23.2159201 | 0.1227480 | 0.9300935 |
Thorius smithi | 32.10360 | 16.4850762 | 0.1214831 | 0.7239705 |
Thorius infernalis | 32.34051 | 25.0047348 | 0.1206891 | 1.0295876 |
Thorius magnipes | 31.95877 | 23.0255757 | 0.1205263 | 0.9148655 |
Thorius schmidti | 32.10991 | 22.8545983 | 0.1190127 | 0.9107680 |
Thorius narismagnus | 33.05132 | 26.9129477 | 0.1217673 | 0.9859692 |
Thorius lunaris | 32.12597 | 22.5397567 | 0.1214699 | 0.8920372 |
Thorius munificus | 32.09601 | 13.8552563 | 0.1182131 | 0.6384118 |
Ascaphus montanus | 28.97264 | 6.2564332 | 0.1460927 | 0.3595713 |
Leiopelma hochstetteri | 32.08346 | 26.1102547 | 0.1426869 | 1.3468694 |
Leiopelma archeyi | 31.76564 | 27.7784050 | 0.1439268 | 1.4337262 |
Leiopelma pakeka | 31.85256 | 22.9457122 | 0.1404519 | 1.3437171 |
Leiopelma hamiltoni | 31.80769 | 24.3830378 | 0.1426587 | 1.3063055 |
Barbourula kalimantanensis | 33.49586 | 66.4005260 | 0.1385489 | 2.2629339 |
Barbourula busuangensis | 33.59937 | 93.7756207 | 0.1404869 | 3.3730500 |
Bombina orientalis | 33.68084 | 15.6811575 | 0.1421954 | 0.7248239 |
Bombina bombina | 33.58513 | 12.9608479 | 0.1392382 | 0.6521283 |
Bombina variegata | 33.58455 | 14.0301664 | 0.1417764 | 0.6876636 |
Bombina lichuanensis | 33.57097 | 24.3874252 | 0.1410157 | 1.0201520 |
Latonia nigriventer | 33.75781 | 26.2373110 | 0.1479887 | 1.1111786 |
Discoglossus montalentii | 32.95831 | 12.5746486 | 0.1471813 | 0.5233624 |
Discoglossus sardus | 34.16632 | 9.8126711 | 0.1469425 | 0.4076984 |
Rhinophrynus dorsalis | 33.41399 | 50.8728189 | 0.1380629 | 1.8934289 |
Hymenochirus boettgeri | 33.54604 | 50.6853709 | 0.1377751 | 1.8354695 |
Hymenochirus feae | 33.48970 | 51.4216826 | 0.1411129 | 1.8280620 |
Hymenochirus boulengeri | 33.52438 | 53.6553041 | 0.1428822 | 1.9587949 |
Hymenochirus curtipes | 33.61323 | 51.2116920 | 0.1384247 | 1.8149355 |
Pseudhymenochirus merlini | 33.54442 | 43.9332435 | 0.1401369 | 1.5941640 |
Xenopus amieti | 33.11071 | 35.6160357 | 0.1396567 | 1.3464257 |
Xenopus longipes | 33.09789 | 28.3484523 | 0.1402487 | 1.0928026 |
Xenopus boumbaensis | 32.28491 | 38.6090371 | 0.1431696 | 1.4161173 |
Xenopus itombwensis | 33.05725 | 27.5403770 | 0.1422555 | 1.1215259 |
Xenopus wittei | 33.02530 | 27.7761344 | 0.1397267 | 1.1808249 |
Xenopus andrei | 33.05702 | 34.7038358 | 0.1422925 | 1.2741324 |
Xenopus fraseri | 33.08040 | 38.6261580 | 0.1402284 | 1.3603352 |
Xenopus pygmaeus | 33.13474 | 31.2085418 | 0.1363748 | 1.1285949 |
Xenopus gilli | 32.86208 | 13.0502287 | 0.1408143 | 0.6256691 |
Xenopus petersii | 33.06516 | 20.4539630 | 0.1404488 | 0.8034244 |
Xenopus victorianus | 33.05835 | 19.5249848 | 0.1410226 | 0.8271642 |
Xenopus lenduensis | 33.03203 | 28.6326973 | 0.1409832 | 1.1136297 |
Xenopus vestitus | 33.04799 | 31.6223228 | 0.1403583 | 1.3590130 |
Xenopus borealis | 33.24072 | 23.1998378 | 0.1387575 | 1.0676909 |
Xenopus clivii | 33.06502 | 23.4948597 | 0.1404004 | 1.0384355 |
Xenopus largeni | 33.11440 | 22.7224884 | 0.1412370 | 1.0829291 |
Xenopus ruwenzoriensis | 33.17345 | 28.9638934 | 0.1411940 | 1.1896956 |
Xenopus muelleri | 33.12956 | 24.8226433 | 0.1379490 | 1.0200748 |
Xenopus epitropicalis | 33.35656 | 41.6856479 | 0.1405116 | 1.5113939 |
Xenopus tropicalis | 33.30357 | 39.3259342 | 0.1417505 | 1.4167156 |
Pipa arrabali | 34.77597 | 48.7717531 | 0.1371156 | 1.7515180 |
Pipa myersi | 34.72659 | 49.2161348 | 0.1356413 | 1.7499478 |
Pipa parva | 34.78109 | 48.6341878 | 0.1352697 | 1.8275400 |
Pipa pipa | 34.81802 | 46.2821603 | 0.1351955 | 1.6753763 |
Pipa aspera | 34.78740 | 49.8174892 | 0.1377512 | 1.8065842 |
Pipa snethlageae | 34.69430 | 48.4567839 | 0.1391983 | 1.6903805 |
Scaphiopus hurterii | 32.43079 | 15.8333172 | 0.1529022 | 0.5891593 |
Spea multiplicata | 33.28488 | 14.3466669 | 0.1416889 | 0.6390097 |
Spea bombifrons | 33.57123 | 8.0095698 | 0.1439993 | 0.3692159 |
Spea intermontana | 33.60420 | 7.3340454 | 0.1443775 | 0.4111268 |
Pelodytes caucasicus | 33.49831 | 10.0920373 | 0.1311749 | 0.5021195 |
Oreolalax chuanbeiensis | 33.94855 | 13.0426378 | 0.1367425 | 0.6914585 |
Oreolalax nanjiangensis | 33.35744 | 14.7703085 | 0.1365208 | 0.7272513 |
Oreolalax omeimontis | 33.88773 | 21.3312132 | 0.1375552 | 0.9895310 |
Oreolalax popei | 33.91594 | 15.0720821 | 0.1390546 | 0.7630783 |
Oreolalax multipunctatus | 33.90356 | 15.5381068 | 0.1383045 | 0.7949623 |
Oreolalax granulosus | 33.30563 | 27.9020661 | 0.1358122 | 1.2159365 |
Oreolalax jingdongensis | 33.38461 | 26.1892270 | 0.1367777 | 1.1700194 |
Oreolalax liangbeiensis | 33.99005 | 21.1997570 | 0.1374390 | 1.0128936 |
Oreolalax major | 34.00884 | 16.4492895 | 0.1370385 | 0.8259878 |
Oreolalax rugosus | 34.19637 | 23.9715849 | 0.1371522 | 1.1583151 |
Oreolalax xiangchengensis | 33.37722 | 17.6510953 | 0.1354391 | 1.0623875 |
Oreolalax puxiongensis | 34.20569 | 21.5708010 | 0.1360825 | 1.0309979 |
Oreolalax lichuanensis | 33.91195 | 23.0225177 | 0.1383892 | 0.9060612 |
Oreolalax pingii | 33.91427 | 21.4805865 | 0.1393552 | 1.0202669 |
Oreolalax schmidti | 33.98458 | 15.6186481 | 0.1343791 | 0.7875141 |
Oreolalax rhodostigmatus | 33.96600 | 22.4934829 | 0.1360428 | 0.8961386 |
Scutiger adungensis | 33.25994 | 19.5829776 | 0.1390513 | 1.1237059 |
Scutiger boulengeri | 33.35358 | 9.8397146 | 0.1361228 | 0.7644444 |
Scutiger muliensis | 33.32935 | 19.6357731 | 0.1357327 | 1.1077072 |
Scutiger tuberculatus | 33.32917 | 22.7992951 | 0.1367932 | 1.0927070 |
Scutiger mammatus | 33.34114 | 9.6559984 | 0.1375671 | 0.7708011 |
Scutiger brevipes | 33.25058 | 14.1677753 | 0.1398694 | 0.9235677 |
Scutiger chintingensis | 33.23115 | 21.8313880 | 0.1389682 | 1.0156155 |
Scutiger glandulatus | 33.91028 | 12.7952589 | 0.1388831 | 0.8272539 |
Scutiger gongshanensis | 34.24497 | 23.5102568 | 0.1360869 | 1.2569825 |
Scutiger jiulongensis | 34.20205 | 16.0431822 | 0.1355115 | 0.8910164 |
Scutiger liupanensis | 33.30062 | 13.2811955 | 0.1358048 | 0.6490044 |
Scutiger nepalensis | 33.36433 | 12.3316624 | 0.1383020 | 0.7352340 |
Scutiger ningshanensis | 33.27653 | 14.5802683 | 0.1392034 | 0.6150369 |
Scutiger nyingchiensis | 33.36554 | 10.9877754 | 0.1371612 | 0.7527914 |
Scutiger pingwuensis | 33.28986 | 14.2987653 | 0.1354988 | 0.7179078 |
Scutiger sikimmensis | 33.20323 | 15.8170708 | 0.1400927 | 0.8938121 |
Leptobrachella baluensis | 33.83633 | 49.6147950 | 0.1353487 | 1.8273484 |
Leptobrachella brevicrus | 33.25644 | 59.9584053 | 0.1388087 | 2.1923704 |
Leptobrachella mjobergi | 33.91896 | 95.9380056 | 0.1336444 | 3.5109824 |
Leptobrachella natunae | 33.27625 | 93.7483212 | 0.1360340 | 3.4025075 |
Leptobrachella palmata | 33.21769 | 61.2476085 | 0.1354528 | 2.1467843 |
Leptobrachella parva | 33.91179 | 58.2006895 | 0.1368474 | 2.1012509 |
Leptobrachella serasanae | 33.93907 | 55.1736475 | 0.1336577 | 1.9737635 |
Leptobrachium abbotti | 33.78129 | 57.9978801 | 0.1347966 | 2.0757830 |
Leptobrachium gunungense | 33.86752 | 73.9581849 | 0.1350533 | 2.7193410 |
Leptobrachium montanum | 33.80983 | 51.8198461 | 0.1370109 | 1.8626866 |
Leptobrachium hasseltii | 33.83185 | 57.6548166 | 0.1368392 | 2.0738559 |
Leptobrachium smithi | 33.83040 | 39.5128594 | 0.1385490 | 1.4130211 |
Leptobrachium hendricksoni | 33.88849 | 56.7578852 | 0.1355499 | 2.0009487 |
Leptobrachium nigrops | 33.89288 | 59.8788161 | 0.1349185 | 2.0913821 |
Leptobrachium ailaonicum | 34.04050 | 30.5156570 | 0.1356162 | 1.2871235 |
Leptobrachium boringii | 33.95529 | 20.4425183 | 0.1364726 | 0.8876903 |
Leptobrachium leishanense | 33.92404 | 28.8519606 | 0.1362061 | 1.1047185 |
Leptobrachium liui | 33.99744 | 29.9871710 | 0.1350492 | 1.0877219 |
Leptobrachium chapaense | 33.96191 | 31.7628977 | 0.1361050 | 1.2834975 |
Leptobrachium huashen | 33.98643 | 30.5961920 | 0.1359169 | 1.3068972 |
Leptobrachium promustache | 33.27716 | 32.7290309 | 0.1362921 | 1.2678175 |
Leptobrachium banae | 33.86302 | 41.3876218 | 0.1374291 | 1.4702561 |
Leptobrachium buchardi | 33.90162 | 41.5280173 | 0.1365952 | 1.4434675 |
Leptobrachium ngoclinhense | 33.87113 | 38.5447733 | 0.1362279 | 1.3799092 |
Leptobrachium hainanense | 33.93797 | 58.7938190 | 0.1351618 | 2.0876170 |
Leptobrachium mouhoti | 33.93905 | 38.8085882 | 0.1369114 | 1.3677652 |
Leptobrachium pullum | 33.91717 | 40.0130302 | 0.1354882 | 1.4137438 |
Leptobrachium xanthops | 33.28147 | 37.3117368 | 0.1366901 | 1.3467077 |
Leptobrachium xanthospilum | 33.37486 | 38.3564833 | 0.1352235 | 1.4056925 |
Leptobrachium leucops | 33.94387 | 41.1529014 | 0.1366820 | 1.4424530 |
Megophrys kobayashii | 33.83937 | 63.8928434 | 0.1374753 | 2.3197847 |
Megophrys ligayae | 33.78802 | 74.3024761 | 0.1399633 | 2.6690659 |
Megophrys montana | 33.74090 | 58.0902578 | 0.1384977 | 2.1127014 |
Megophrys nasuta | 33.72021 | 51.5741343 | 0.1387367 | 1.8204753 |
Megophrys stejnegeri | 33.79993 | 65.8216805 | 0.1379905 | 2.3849119 |
Pelobates fuscus | 34.78530 | 6.2183795 | 0.1325109 | 0.3207071 |
Pelobates syriacus | 35.79125 | 10.2054024 | 0.1348433 | 0.4936942 |
Pelobates varaldii | 35.93296 | 12.4653301 | 0.1353471 | 0.5430791 |
Hadromophryne natalensis | 32.72321 | 28.9313748 | 0.1404905 | 1.2824623 |
Heleophryne hewitti | 33.22472 | 26.3944353 | 0.1402630 | 1.2319351 |
Heleophryne orientalis | 32.67351 | 22.4039345 | 0.1384791 | 1.0332410 |
Heleophryne purcelli | 32.62157 | 22.6918365 | 0.1401641 | 1.0772449 |
Heleophryne regis | 32.59569 | 24.4249365 | 0.1391650 | 1.1401547 |
Heleophryne rosei | 32.60900 | 21.4461660 | 0.1375451 | 1.0311061 |
Philoria pughi | 27.69165 | 11.9671506 | 0.1604626 | 0.5130614 |
Philoria kundagungan | 29.63839 | 14.6197818 | 0.1535130 | 0.6245505 |
Philoria richmondensis | 29.64601 | 13.3377824 | 0.1558264 | 0.5685179 |
Limnodynastes convexiusculus | 32.35353 | 23.8686671 | 0.1488531 | 0.8661003 |
Limnodynastes lignarius | 32.26443 | 24.4480834 | 0.1501117 | 0.8628967 |
Limnodynastes depressus | 31.19459 | 21.9130147 | 0.1538065 | 0.7749052 |
Limnodynastes terraereginae | 32.54637 | 11.4206330 | 0.1500380 | 0.4631590 |
Limnodynastes dumerilii | 32.18741 | 8.4670315 | 0.1509716 | 0.4116415 |
Limnodynastes interioris | 32.42892 | 8.2324402 | 0.1524721 | 0.3791103 |
Lechriodus aganoposis | 34.35927 | 29.1700112 | 0.1475754 | 1.0901542 |
Lechriodus melanopyga | 34.45023 | 28.8661310 | 0.1467782 | 1.0590147 |
Lechriodus fletcheri | 34.04257 | 15.6393674 | 0.1473670 | 0.6932693 |
Lechriodus platyceps | 33.96509 | 34.0754468 | 0.1480239 | 1.2607898 |
Platyplectrum spenceri | 33.40746 | 14.2093749 | 0.1515199 | 0.5807311 |
Heleioporus albopunctatus | 32.37199 | 12.0040163 | 0.1493112 | 0.5661891 |
Heleioporus barycragus | 32.33806 | 11.9844081 | 0.1516104 | 0.5784232 |
Heleioporus australiacus | 32.34015 | 12.8205797 | 0.1513701 | 0.6314620 |
Heleioporus eyrei | 32.25051 | 12.4352725 | 0.1527813 | 0.6025632 |
Heleioporus inornatus | 32.32602 | 13.8095495 | 0.1505766 | 0.6915094 |
Heleioporus psammophilus | 32.26480 | 12.4259655 | 0.1516708 | 0.5972637 |
Neobatrachus albipes | 31.10019 | 11.2896394 | 0.1504678 | 0.5452931 |
Neobatrachus kunapalari | 31.01728 | 11.7351232 | 0.1547836 | 0.5517201 |
Neobatrachus aquilonius | 30.62775 | 18.5798687 | 0.1533687 | 0.6889143 |
Neobatrachus wilsmorei | 30.65494 | 12.2406336 | 0.1559234 | 0.5295943 |
Neobatrachus sutor | 30.53298 | 11.6495753 | 0.1538431 | 0.5098417 |
Neobatrachus fulvus | 30.44474 | 14.4124799 | 0.1547219 | 0.5661810 |
Neobatrachus pelobatoides | 30.52877 | 10.3205250 | 0.1535438 | 0.4951488 |
Notaden bennettii | 31.73549 | 17.8219837 | 0.1491792 | 0.7517379 |
Notaden melanoscaphus | 31.61382 | 29.0421425 | 0.1522987 | 1.0457771 |
Notaden weigeli | 32.60758 | 40.6288688 | 0.1535004 | 1.4444641 |
Notaden nichollsi | 32.63629 | 18.6008861 | 0.1505233 | 0.7427969 |
Arenophryne rotunda | 33.31622 | 15.5554428 | 0.1540311 | 0.6380568 |
Metacrinia nichollsi | 32.29471 | 14.5255951 | 0.1517190 | 0.7565627 |
Myobatrachus gouldii | 33.19628 | 11.0000518 | 0.1543084 | 0.5298496 |
Pseudophryne australis | 33.60166 | 10.9525805 | 0.1493136 | 0.5130128 |
Pseudophryne occidentalis | 33.10970 | 7.7439600 | 0.1482636 | 0.3553619 |
Pseudophryne coriacea | 32.41650 | 15.0642645 | 0.1543406 | 0.6593069 |
Pseudophryne covacevichae | 32.46796 | 21.6110235 | 0.1521211 | 0.8537488 |
Pseudophryne guentheri | 31.69878 | 8.5264247 | 0.1539993 | 0.4036654 |
Pseudophryne douglasi | 32.14984 | 13.9390251 | 0.1528061 | 0.5467278 |
Pseudophryne pengilleyi | 31.85647 | 8.7296227 | 0.1490354 | 0.4459444 |
Pseudophryne raveni | 32.40062 | 18.1347742 | 0.1498878 | 0.7455906 |
Spicospina flammocaerulea | 32.15297 | 15.1190904 | 0.1505548 | 0.8037124 |
Uperoleia altissima | 31.78200 | 23.1376042 | 0.1521842 | 0.8820915 |
Uperoleia littlejohni | 31.79939 | 16.6765346 | 0.1525828 | 0.6450852 |
Uperoleia orientalis | 31.83026 | 20.8751943 | 0.1508560 | 0.7474626 |
Uperoleia arenicola | 31.84630 | 29.0884952 | 0.1509933 | 1.0189409 |
Uperoleia borealis | 31.82772 | 23.9350211 | 0.1487893 | 0.8599475 |
Uperoleia crassa | 32.03650 | 31.0180905 | 0.1527525 | 1.1034444 |
Uperoleia inundata | 31.83355 | 24.0381417 | 0.1496428 | 0.8542408 |
Uperoleia russelli | 31.81683 | 14.5465654 | 0.1520055 | 0.5872373 |
Uperoleia talpa | 31.81097 | 26.7083696 | 0.1537724 | 0.9618824 |
Uperoleia aspera | 31.77498 | 30.3771610 | 0.1537533 | 1.0811835 |
Uperoleia lithomoda | 31.67564 | 26.2819277 | 0.1534966 | 0.9522545 |
Uperoleia trachyderma | 31.74591 | 19.7776263 | 0.1537263 | 0.7329469 |
Uperoleia minima | 31.79944 | 33.0782808 | 0.1515336 | 1.1758473 |
Uperoleia glandulosa | 31.83369 | 21.6325614 | 0.1499340 | 0.8161732 |
Uperoleia martini | 31.77113 | 10.6982442 | 0.1521979 | 0.5549978 |
Uperoleia daviesae | 31.82712 | 38.9437971 | 0.1516260 | 1.3776027 |
Uperoleia micromeles | 31.74953 | 17.1681738 | 0.1522202 | 0.6763622 |
Uperoleia mjobergii | 31.70919 | 27.0721921 | 0.1517483 | 0.9694165 |
Uperoleia mimula | 31.68008 | 24.2400014 | 0.1527992 | 0.9022532 |
Uperoleia fusca | 31.35173 | 13.4350025 | 0.1517611 | 0.5690566 |
Uperoleia tyleri | 31.42461 | 9.7066516 | 0.1514492 | 0.4746902 |
Geocrinia alba | 31.51761 | 10.8359944 | 0.1537951 | 0.5367814 |
Geocrinia vitellina | 31.43975 | 10.5463470 | 0.1567875 | 0.5240363 |
Geocrinia lutea | 31.51082 | 10.8827361 | 0.1544337 | 0.5771489 |
Geocrinia rosea | 31.52655 | 10.9526634 | 0.1540623 | 0.5669283 |
Geocrinia leai | 31.37690 | 9.4163385 | 0.1569533 | 0.4752380 |
Paracrinia haswelli | 31.24775 | 12.8055676 | 0.1522302 | 0.6273890 |
Crinia bilingua | 32.77953 | 29.6140534 | 0.1489521 | 1.0560059 |
Crinia remota | 32.43576 | 24.1533024 | 0.1497294 | 0.8715714 |
Crinia deserticola | 32.56661 | 17.0087610 | 0.1488748 | 0.6567377 |
Crinia riparia | 32.02333 | 8.3494856 | 0.1497101 | 0.3841423 |
Crinia georgiana | 32.58088 | 9.7204239 | 0.1497837 | 0.4788702 |
Crinia glauerti | 32.53605 | 10.3260107 | 0.1504754 | 0.5196363 |
Crinia insignifera | 32.63942 | 9.8334136 | 0.1485666 | 0.4698144 |
Crinia pseudinsignifera | 32.61145 | 10.5620456 | 0.1502801 | 0.5131670 |
Crinia subinsignifera | 32.66954 | 10.8630909 | 0.1483391 | 0.5478036 |
Crinia sloanei | 32.60560 | 8.9569274 | 0.1495604 | 0.4088892 |
Crinia tinnula | 32.71089 | 15.7561273 | 0.1493139 | 0.6805636 |
Crinia nimbus | 32.26508 | 12.4373688 | 0.1506357 | 0.7599121 |
Crinia tasmaniensis | 32.41664 | 12.2366758 | 0.1518395 | 0.7322987 |
Taudactylus eungellensis | 31.19975 | 23.4810043 | 0.1510491 | 0.9144386 |
Taudactylus liemi | 32.00694 | 25.7240806 | 0.1499512 | 1.0011667 |
Taudactylus pleione | 31.86168 | 26.7184909 | 0.1529868 | 1.0910354 |
Mixophyes balbus | 29.35625 | 13.8348850 | 0.1518678 | 0.6444908 |
Mixophyes carbinensis | 29.36536 | 21.0044950 | 0.1509324 | 0.7784203 |
Mixophyes coggeri | 30.04161 | 22.8207545 | 0.1488278 | 0.8786322 |
Mixophyes schevilli | 29.40297 | 23.4680501 | 0.1507254 | 0.8923012 |
Mixophyes fleayi | 30.29478 | 15.9432889 | 0.1494814 | 0.6706036 |
Mixophyes iteratus | 29.10621 | 12.4540379 | 0.1497982 | 0.5493268 |
Mixophyes hihihorlo | 30.17006 | 28.6242781 | 0.1491986 | 1.0335515 |
Calyptocephalella gayi | 32.76931 | 14.7221429 | 0.1462785 | 0.7967895 |
Telmatobufo bullocki | 31.98411 | 14.1526123 | 0.1452695 | 0.7674661 |
Telmatobufo venustus | 31.99194 | 9.1192573 | 0.1440762 | 0.5333209 |
Telmatobufo australis | 31.96365 | 12.1565166 | 0.1447255 | 0.7215533 |
Adelphobates castaneoticus | 32.52613 | 36.1813040 | 0.1402239 | 1.2919694 |
Adelphobates galactonotus | 32.47708 | 33.7224730 | 0.1368818 | 1.1963524 |
Adelphobates quinquevittatus | 32.58536 | 28.4517348 | 0.1393846 | 0.9894034 |
Dendrobates truncatus | 32.42408 | 26.4903727 | 0.1378890 | 1.0142341 |
Dendrobates leucomelas | 32.48789 | 29.2550526 | 0.1392458 | 1.0812849 |
Dendrobates tinctorius | 32.46923 | 37.2939006 | 0.1376621 | 1.3486844 |
Dendrobates nubeculosus | 32.50448 | 32.9262360 | 0.1377873 | 1.2068040 |
Oophaga vicentei | 30.26714 | 30.6700789 | 0.1383846 | 1.1237145 |
Oophaga sylvatica | 30.54779 | 19.0218053 | 0.1438852 | 0.7778117 |
Oophaga occultator | 30.53470 | 31.9804239 | 0.1408268 | 1.2398687 |
Oophaga granulifera | 31.12353 | 31.8299402 | 0.1378314 | 1.2442999 |
Minyobates steyermarki | 32.61545 | 39.2672480 | 0.1390488 | 1.4237931 |
Andinobates altobueyensis | 33.72299 | 37.4918290 | 0.1351327 | 1.3996815 |
Andinobates bombetes | 33.74252 | 28.5473072 | 0.1355131 | 1.2089969 |
Andinobates tolimensis | 33.74935 | 27.9742724 | 0.1359374 | 1.2006972 |
Andinobates virolinensis | 33.77799 | 27.7756904 | 0.1338104 | 1.1522526 |
Andinobates opisthomelas | 33.76416 | 29.0123210 | 0.1357596 | 1.1677202 |
Andinobates claudiae | 33.68838 | 47.2376309 | 0.1350841 | 1.6904020 |
Andinobates minutus | 33.69177 | 36.7844063 | 0.1344143 | 1.3805425 |
Andinobates daleswansoni | 33.62908 | 31.5632974 | 0.1353506 | 1.2999933 |
Andinobates dorisswansonae | 33.66541 | 26.6303296 | 0.1378532 | 1.1379820 |
Andinobates fulguritus | 33.78161 | 34.7686361 | 0.1348176 | 1.3191034 |
Ranitomeya amazonica | 33.78390 | 39.7270745 | 0.1354979 | 1.4153124 |
Ranitomeya benedicta | 33.89813 | 34.0788905 | 0.1383006 | 1.3319340 |
Ranitomeya fantastica | 33.73414 | 31.0857315 | 0.1365724 | 1.2575145 |
Ranitomeya summersi | 33.90463 | 31.0333776 | 0.1350343 | 1.2801409 |
Ranitomeya reticulata | 33.84225 | 33.0822752 | 0.1377052 | 1.2054635 |
Ranitomeya uakarii | 33.87888 | 34.9870390 | 0.1376079 | 1.3755078 |
Ranitomeya ventrimaculata | 33.77968 | 33.5256195 | 0.1349195 | 1.1922524 |
Ranitomeya variabilis | 33.71469 | 33.1081470 | 0.1341630 | 1.3488828 |
Ranitomeya flavovittata | 33.91502 | 35.8995826 | 0.1377562 | 1.2476003 |
Ranitomeya vanzolinii | 33.93441 | 36.8734658 | 0.1348969 | 1.4701167 |
Ranitomeya imitator | 33.89377 | 31.6275362 | 0.1359649 | 1.2526171 |
Excidobates captivus | 32.85541 | 26.0343979 | 0.1361899 | 1.0413917 |
Excidobates mysteriosus | 33.27632 | 23.9906007 | 0.1367837 | 1.0664900 |
Phyllobates aurotaenia | 33.29188 | 35.3212504 | 0.1359551 | 1.3679706 |
Phyllobates terribilis | 33.22713 | 45.3210922 | 0.1405636 | 1.7391777 |
Phyllobates bicolor | 33.24539 | 34.8568964 | 0.1362698 | 1.3891290 |
Phyllobates lugubris | 33.28640 | 38.5869785 | 0.1380274 | 1.4534538 |
Phyllobates vittatus | 32.67858 | 35.1176553 | 0.1373579 | 1.4651826 |
Hyloxalus aeruginosus | 32.88447 | 17.3208947 | 0.1355863 | 0.8341770 |
Hyloxalus anthracinus | 33.44920 | 13.7972765 | 0.1344972 | 0.6632808 |
Hyloxalus awa | 33.73935 | 18.4578842 | 0.1348008 | 0.7657477 |
Hyloxalus azureiventris | 33.51428 | 39.1737496 | 0.1368601 | 1.5926116 |
Hyloxalus chlorocraspedus | 33.36944 | 45.4999126 | 0.1347488 | 1.7416094 |
Hyloxalus betancuri | 32.92791 | 33.5409047 | 0.1336273 | 1.2950190 |
Hyloxalus sauli | 34.26132 | 27.2638700 | 0.1346090 | 1.0921539 |
Hyloxalus borjai | 32.87161 | 20.7785305 | 0.1369718 | 0.9345060 |
Hyloxalus breviquartus | 33.44001 | 27.0239026 | 0.1381076 | 1.1258202 |
Hyloxalus cevallosi | 33.45757 | 31.3635620 | 0.1352806 | 1.2250502 |
Hyloxalus chocoensis | 33.51592 | 35.7929579 | 0.1386592 | 1.3943264 |
Hyloxalus craspedoceps | 32.78090 | 38.4549169 | 0.1390802 | 1.5853893 |
Hyloxalus delatorreae | 32.79924 | 15.5075229 | 0.1379498 | 0.7448741 |
Hyloxalus eleutherodactylus | 32.91183 | 32.7878873 | 0.1361076 | 1.3503679 |
Hyloxalus exasperatus | 33.56451 | 17.1734054 | 0.1398111 | 0.7385697 |
Hyloxalus excisus | 33.72016 | 19.2168759 | 0.1394473 | 0.8651671 |
Hyloxalus faciopunctulatus | 33.58320 | 32.6792442 | 0.1354138 | 1.1135162 |
Hyloxalus fallax | 33.55962 | 21.1488936 | 0.1362522 | 0.8370777 |
Hyloxalus fascianigrus | 33.54709 | 37.1862424 | 0.1375833 | 1.4875269 |
Hyloxalus fuliginosus | 32.92748 | 26.2851398 | 0.1361410 | 1.0989847 |
Hyloxalus idiomelus | 32.97973 | 22.6459608 | 0.1353557 | 1.0449470 |
Hyloxalus infraguttatus | 33.56885 | 22.1264116 | 0.1386883 | 0.8974516 |
Hyloxalus insulatus | 32.86588 | 28.2024622 | 0.1391123 | 1.2586345 |
Hyloxalus lehmanni | 33.50826 | 24.2647789 | 0.1358353 | 1.0137610 |
Hyloxalus leucophaeus | 32.88466 | 34.9192710 | 0.1359714 | 1.5380019 |
Hyloxalus sordidatus | 32.85322 | 26.8518080 | 0.1364656 | 1.1706166 |
Hyloxalus littoralis | 33.69823 | 22.7715883 | 0.1341245 | 1.0674036 |
Hyloxalus mittermeieri | 32.86751 | 18.3390159 | 0.1356726 | 0.8838066 |
Hyloxalus mystax | 32.94556 | 22.5022294 | 0.1345663 | 0.8691843 |
Hyloxalus parcus | 32.94214 | 25.8092178 | 0.1362618 | 1.0306515 |
Hyloxalus patitae | 32.97769 | 34.7551374 | 0.1351327 | 1.5220865 |
Hyloxalus pinguis | 33.49766 | 19.1406890 | 0.1368205 | 0.8330088 |
Hyloxalus pulcherrimus | 32.80928 | 29.7700687 | 0.1353310 | 1.3987920 |
Hyloxalus pumilus | 32.89017 | 24.0094358 | 0.1365543 | 0.9245605 |
Hyloxalus ramosi | 33.57896 | 26.9553099 | 0.1353423 | 1.1245699 |
Hyloxalus ruizi | 33.51852 | 34.8803119 | 0.1358944 | 1.3940887 |
Hyloxalus saltuarius | 33.64360 | 35.8122904 | 0.1363967 | 1.4025206 |
Hyloxalus shuar | 33.54267 | 21.5212515 | 0.1374808 | 0.8951507 |
Hyloxalus spilotogaster | 33.46263 | 33.3934108 | 0.1368163 | 1.3767363 |
Hyloxalus subpunctatus | 33.53203 | 23.1102447 | 0.1354184 | 0.9907767 |
Hyloxalus sylvaticus | 32.90927 | 26.4503827 | 0.1349136 | 1.1546945 |
Hyloxalus utcubambensis | 33.47217 | 29.4980305 | 0.1362998 | 1.3405240 |
Hyloxalus vergeli | 33.72176 | 25.1586088 | 0.1341527 | 1.0928979 |
Ameerega rubriventris | 34.59820 | 26.3664665 | 0.1370407 | 1.1074835 |
Ameerega macero | 34.61553 | 29.1808011 | 0.1368733 | 1.2527233 |
Ameerega bassleri | 34.57498 | 25.8930758 | 0.1361887 | 1.0867761 |
Ameerega berohoka | 34.65675 | 20.5629344 | 0.1363197 | 0.7345843 |
Ameerega bilinguis | 34.53437 | 27.5580583 | 0.1399388 | 1.0307112 |
Ameerega boliviana | 34.65901 | 24.6615822 | 0.1356918 | 1.2201354 |
Ameerega braccata | 34.64154 | 20.0774675 | 0.1363617 | 0.7097286 |
Ameerega flavopicta | 33.96110 | 20.0249381 | 0.1394184 | 0.7398230 |
Ameerega cainarachi | 34.03474 | 35.0258522 | 0.1383833 | 1.4261403 |
Ameerega smaragdina | 34.65465 | 19.1996550 | 0.1368532 | 0.9009666 |
Ameerega petersi | 34.66901 | 29.7345429 | 0.1368408 | 1.2081427 |
Ameerega picta | 34.73957 | 26.1353157 | 0.1366663 | 0.9427087 |
Ameerega parvula | 34.57977 | 23.4424896 | 0.1372731 | 0.8822664 |
Ameerega pongoensis | 33.97379 | 31.6360501 | 0.1370110 | 1.2628236 |
Ameerega planipaleae | 34.00338 | 21.5670122 | 0.1380433 | 1.0112024 |
Ameerega pulchripecta | 34.72921 | 33.4704257 | 0.1356517 | 1.2176432 |
Ameerega simulans | 34.62826 | 22.1349629 | 0.1373729 | 1.0706564 |
Ameerega yungicola | 34.62929 | 21.6211909 | 0.1359788 | 1.0653661 |
Ameerega silverstonei | 34.57702 | 25.8740114 | 0.1339299 | 1.0744732 |
Colostethus agilis | 32.98323 | 32.2956214 | 0.1403433 | 1.3189626 |
Colostethus furviventris | 33.75576 | 34.5217784 | 0.1377337 | 1.3334067 |
Colostethus imbricolus | 33.20036 | 35.3457327 | 0.1334167 | 1.3448445 |
Colostethus inguinalis | 33.09863 | 40.2171572 | 0.1358856 | 1.5337214 |
Colostethus panamansis | 33.14070 | 42.8937930 | 0.1372789 | 1.5726646 |
Colostethus latinasus | 32.96207 | 36.2261494 | 0.1391362 | 1.3725631 |
Colostethus pratti | 33.67024 | 38.9514393 | 0.1375539 | 1.4333078 |
Colostethus lynchi | 33.08869 | 35.9663968 | 0.1380635 | 1.3776673 |
Colostethus mertensi | 33.06853 | 26.7698547 | 0.1367887 | 1.1678677 |
Colostethus poecilonotus | 33.03304 | 16.4232350 | 0.1371164 | 0.7916649 |
Colostethus ruthveni | 33.70730 | 34.3601505 | 0.1358534 | 1.2725743 |
Colostethus thorntoni | 33.02103 | 24.7185552 | 0.1402223 | 1.0408692 |
Colostethus ucumari | 33.00472 | 24.8346556 | 0.1379107 | 1.1622410 |
Epipedobates narinensis | 34.84432 | 22.4734439 | 0.1366026 | 0.8757235 |
Silverstoneia erasmios | 34.38519 | 29.1215527 | 0.1370932 | 1.1585587 |
Silverstoneia flotator | 34.41038 | 36.1465423 | 0.1338417 | 1.3458640 |
Silverstoneia nubicola | 34.39444 | 34.3638034 | 0.1373756 | 1.2938899 |
Allobates algorei | 33.65820 | 28.7828507 | 0.1365996 | 1.1613770 |
Allobates bromelicola | 33.70228 | 36.2212973 | 0.1373332 | 1.3377345 |
Allobates brunneus | 33.67760 | 37.9391900 | 0.1382943 | 1.3368926 |
Allobates crombiei | 33.60929 | 33.6139521 | 0.1359963 | 1.1902323 |
Allobates caeruleodactylus | 33.65102 | 34.2627246 | 0.1392536 | 1.1870453 |
Allobates caribe | 33.67935 | 36.0741967 | 0.1371425 | 1.3275728 |
Allobates chalcopis | 33.74600 | 61.7018424 | 0.1387882 | 2.2585003 |
Allobates subfolionidificans | 33.19891 | 25.0578808 | 0.1395969 | 0.8440346 |
Allobates fratisenescus | 33.59855 | 25.4231596 | 0.1381588 | 1.0366765 |
Allobates fuscellus | 33.70404 | 39.6486664 | 0.1372967 | 1.3617814 |
Allobates gasconi | 33.59142 | 38.3169771 | 0.1385248 | 1.3320341 |
Allobates marchesianus | 33.71287 | 35.1901202 | 0.1381992 | 1.2393532 |
Allobates goianus | 33.68852 | 22.8414266 | 0.1367623 | 0.8592085 |
Allobates granti | 33.72422 | 32.5636250 | 0.1348581 | 1.1788464 |
Allobates ornatus | 33.71208 | 32.4187514 | 0.1376664 | 1.3350540 |
Allobates humilis | 33.62512 | 30.6596059 | 0.1359526 | 1.1387514 |
Allobates pittieri | 33.58396 | 33.9030047 | 0.1379413 | 1.2764535 |
Allobates juanii | 33.66919 | 23.2146337 | 0.1363787 | 0.9895292 |
Allobates kingsburyi | 33.69581 | 17.3527637 | 0.1374319 | 0.7566010 |
Allobates mandelorum | 33.73795 | 33.5503278 | 0.1373906 | 1.2300933 |
Allobates masniger | 33.69967 | 34.8191948 | 0.1386886 | 1.2396106 |
Allobates nidicola | 33.64438 | 36.6173366 | 0.1378529 | 1.2698077 |
Allobates melanolaemus | 33.70482 | 36.4543937 | 0.1351298 | 1.2485196 |
Allobates myersi | 33.70175 | 34.6849773 | 0.1383265 | 1.2183960 |
Allobates niputidea | 33.74472 | 35.1443041 | 0.1366388 | 1.3282701 |
Allobates olfersioides | 33.58313 | 28.3215737 | 0.1339898 | 1.1080785 |
Allobates paleovarzensis | 33.73724 | 36.8205823 | 0.1370984 | 1.2819757 |
Allobates sumtuosus | 33.66843 | 40.3322501 | 0.1381805 | 1.4550645 |
Allobates sanmartini | 33.80081 | 32.1083281 | 0.1378941 | 1.1978523 |
Allobates talamancae | 33.72983 | 36.9136044 | 0.1346086 | 1.4030861 |
Allobates vanzolinius | 33.68322 | 36.4672444 | 0.1386580 | 1.2462144 |
Allobates wayuu | 33.64701 | 56.1377579 | 0.1371744 | 2.0825195 |
Allobates undulatus | 33.62688 | 46.4785206 | 0.1364640 | 1.7226095 |
Anomaloglossus ayarzaguenai | 32.96299 | 34.9645722 | 0.1384420 | 1.3644080 |
Anomaloglossus baeobatrachus | 33.58032 | 41.9630904 | 0.1408243 | 1.5106107 |
Anomaloglossus beebei | 33.45546 | 36.7356277 | 0.1379128 | 1.3650473 |
Anomaloglossus roraima | 33.64667 | 38.8849901 | 0.1384749 | 1.4583680 |
Anomaloglossus breweri | 33.90377 | 33.2930336 | 0.1376062 | 1.2805951 |
Anomaloglossus degranvillei | 33.03986 | 38.8496724 | 0.1397113 | 1.3906826 |
Anomaloglossus kaiei | 33.72206 | 41.0197805 | 0.1373245 | 1.5229920 |
Anomaloglossus guanayensis | 33.07008 | 47.6581294 | 0.1378408 | 1.7654450 |
Anomaloglossus murisipanensis | 33.61705 | 34.9814360 | 0.1390968 | 1.3452970 |
Anomaloglossus parimae | 33.04270 | 44.3158123 | 0.1393886 | 1.6893535 |
Anomaloglossus parkerae | 33.61086 | 30.1454516 | 0.1379784 | 1.1675979 |
Anomaloglossus praderioi | 33.69341 | 37.9515900 | 0.1391931 | 1.4230273 |
Anomaloglossus rufulus | 33.65602 | 31.1114246 | 0.1378569 | 1.2130326 |
Anomaloglossus shrevei | 33.00643 | 40.6024836 | 0.1394350 | 1.5653484 |
Anomaloglossus stepheni | 33.76292 | 38.4621572 | 0.1367262 | 1.3412255 |
Anomaloglossus tamacuarensis | 33.06206 | 40.3179431 | 0.1374799 | 1.4782996 |
Anomaloglossus tepuyensis | 33.05474 | 34.1356820 | 0.1372437 | 1.3012949 |
Anomaloglossus triunfo | 33.04239 | 32.9709488 | 0.1369343 | 1.2517303 |
Anomaloglossus wothuja | 33.06022 | 48.6278002 | 0.1365632 | 1.7418673 |
Rheobates palmatus | 32.93729 | 31.5921645 | 0.1358024 | 1.3116345 |
Rheobates pseudopalmatus | 32.94280 | 36.6635765 | 0.1385402 | 1.4556184 |
Aromobates saltuensis | 33.01299 | 28.4500143 | 0.1371021 | 1.1459923 |
Aromobates capurinensis | 33.07791 | 38.0171955 | 0.1400838 | 1.4809026 |
Aromobates duranti | 33.07278 | 33.5953860 | 0.1373818 | 1.3073589 |
Aromobates mayorgai | 33.05274 | 33.1650909 | 0.1374297 | 1.2568228 |
Aromobates meridensis | 33.11573 | 32.7026662 | 0.1379369 | 1.2735632 |
Aromobates molinarii | 33.00182 | 35.3778619 | 0.1385730 | 1.3746095 |
Aromobates orostoma | 33.09727 | 33.0470968 | 0.1372046 | 1.2845250 |
Mannophryne caquetio | 32.99925 | 39.0799171 | 0.1380198 | 1.4658980 |
Mannophryne collaris | 33.08048 | 35.9486989 | 0.1358510 | 1.3968582 |
Mannophryne herminae | 32.96209 | 36.8119392 | 0.1366669 | 1.3643826 |
Mannophryne larandina | 33.67018 | 37.3420901 | 0.1361121 | 1.3906161 |
Mannophryne yustizi | 32.94941 | 33.5949455 | 0.1363210 | 1.3191484 |
Mannophryne lamarcai | 33.01195 | 36.1367653 | 0.1389959 | 1.3577055 |
Mannophryne cordilleriana | 33.00906 | 38.4963817 | 0.1376541 | 1.4268097 |
Mannophryne leonardoi | 32.98762 | 34.4632631 | 0.1357195 | 1.2724384 |
Mannophryne trinitatis | 33.10309 | 68.5730452 | 0.1368626 | 2.5951802 |
Mannophryne venezuelensis | 33.05261 | 44.9465678 | 0.1366131 | 1.6737233 |
Mannophryne neblina | 32.96258 | 42.6625980 | 0.1382336 | 1.5722287 |
Mannophryne oblitterata | 33.03643 | 34.5609619 | 0.1380946 | 1.3008446 |
Mannophryne olmonae | 33.08333 | 94.1369510 | 0.1353728 | 3.5264366 |
Mannophryne riveroi | 33.10264 | 47.0149977 | 0.1365858 | 1.7623233 |
Mannophryne speeri | 32.97910 | 30.2461490 | 0.1387428 | 1.1852763 |
Mannophryne trujillensis | 32.98150 | 35.9921985 | 0.1371511 | 1.3368640 |
Cryptobatrachus boulengeri | 33.66676 | 35.1850233 | 0.1366205 | 1.2939343 |
Cryptobatrachus fuhrmanni | 33.74201 | 33.0727893 | 0.1333313 | 1.3580929 |
Hemiphractus bubalus | 34.22827 | 31.9441306 | 0.1314969 | 1.3087934 |
Hemiphractus proboscideus | 34.17918 | 39.4040026 | 0.1324877 | 1.4392726 |
Hemiphractus fasciatus | 34.28512 | 32.9351096 | 0.1334216 | 1.3221244 |
Hemiphractus johnsoni | 34.21444 | 27.1404067 | 0.1317994 | 1.1973924 |
Hemiphractus scutatus | 34.16400 | 38.7997576 | 0.1318557 | 1.4503625 |
Hemiphractus helioi | 34.26844 | 36.2863111 | 0.1330162 | 1.6028138 |
Flectonotus fitzgeraldi | 34.10088 | 57.3206503 | 0.1306492 | 2.1409662 |
Flectonotus pygmaeus | 34.08095 | 40.4822672 | 0.1339550 | 1.5550654 |
Stefania ackawaio | 34.08386 | 41.6758147 | 0.1331532 | 1.5532746 |
Stefania marahuaquensis | 34.23736 | 35.6804466 | 0.1338820 | 1.3764149 |
Stefania ayangannae | 34.03543 | 37.6539858 | 0.1316300 | 1.3993803 |
Stefania coxi | 34.12350 | 39.1022307 | 0.1325371 | 1.4546663 |
Stefania riveroi | 34.23898 | 40.8558366 | 0.1309428 | 1.5358726 |
Stefania riae | 34.13665 | 35.0839663 | 0.1329381 | 1.3608106 |
Stefania oculosa | 34.19814 | 33.4799752 | 0.1337005 | 1.3082664 |
Stefania breweri | 34.21609 | 45.3449456 | 0.1317543 | 1.5980490 |
Stefania goini | 34.32170 | 37.2852913 | 0.1350790 | 1.4336905 |
Stefania evansi | 33.61997 | 40.6906276 | 0.1333057 | 1.5000317 |
Stefania scalae | 33.63136 | 36.1344093 | 0.1318275 | 1.3766776 |
Stefania tamacuarina | 33.67274 | 44.9054728 | 0.1320995 | 1.6405485 |
Stefania roraimae | 34.18611 | 40.0808836 | 0.1352937 | 1.5034286 |
Stefania woodleyi | 33.62505 | 44.1753280 | 0.1345090 | 1.6278114 |
Stefania percristata | 34.06346 | 35.2645697 | 0.1340645 | 1.3731597 |
Stefania schuberti | 34.21739 | 31.8872184 | 0.1346255 | 1.2227231 |
Stefania ginesi | 34.17710 | 32.4808825 | 0.1332191 | 1.2676907 |
Stefania satelles | 34.25686 | 30.7628802 | 0.1327621 | 1.1941754 |
Fritziana fissilis | 34.16099 | 25.4290431 | 0.1313816 | 0.9789718 |
Fritziana ohausi | 34.28470 | 26.4650978 | 0.1291585 | 1.0219132 |
Fritziana goeldii | 34.14857 | 24.7268690 | 0.1342002 | 0.9517192 |
Gastrotheca abdita | 34.51552 | 34.6545764 | 0.1299871 | 1.4288581 |
Gastrotheca andaquiensis | 34.56584 | 23.5809943 | 0.1281272 | 0.9898232 |
Gastrotheca albolineata | 34.57962 | 25.6352730 | 0.1298539 | 0.9873758 |
Gastrotheca ernestoi | 34.66122 | 24.3174161 | 0.1312579 | 0.9276907 |
Gastrotheca fulvorufa | 34.49178 | 29.4431550 | 0.1312102 | 1.1429041 |
Gastrotheca microdiscus | 34.60941 | 25.5402561 | 0.1309193 | 0.9953408 |
Gastrotheca bufona | 34.67515 | 27.0417716 | 0.1291942 | 1.1087082 |
Gastrotheca orophylax | 34.67111 | 17.0220437 | 0.1321581 | 0.7419172 |
Gastrotheca plumbea | 34.74530 | 13.4528106 | 0.1307451 | 0.5776861 |
Gastrotheca monticola | 34.61704 | 21.1744789 | 0.1300415 | 0.9649301 |
Gastrotheca antoniiochoai | 34.09274 | 5.7276409 | 0.1287888 | 0.3883122 |
Gastrotheca excubitor | 34.52338 | 8.7065442 | 0.1293675 | 0.4998297 |
Gastrotheca ochoai | 34.55610 | 6.7128728 | 0.1276579 | 0.4095321 |
Gastrotheca rebeccae | 34.57305 | 10.5338478 | 0.1300334 | 0.6137367 |
Gastrotheca christiani | 34.47775 | 11.6920974 | 0.1300104 | 0.5061076 |
Gastrotheca lauzuricae | 34.52446 | 10.5371604 | 0.1276594 | 0.7249293 |
Gastrotheca chrysosticta | 34.50692 | 13.7222597 | 0.1285002 | 0.6038999 |
Gastrotheca gracilis | 34.56504 | 10.8165197 | 0.1283245 | 0.5145499 |
Gastrotheca griswoldi | 34.64950 | 15.2889359 | 0.1289115 | 0.8658442 |
Gastrotheca marsupiata | 34.62355 | 11.2556627 | 0.1252733 | 0.6542410 |
Gastrotheca peruana | 34.65060 | 12.9704776 | 0.1309823 | 0.6725602 |
Gastrotheca zeugocystis | 34.71925 | 7.7139149 | 0.1295110 | 0.4890067 |
Gastrotheca argenteovirens | 34.50982 | 23.3043458 | 0.1310027 | 0.9621841 |
Gastrotheca trachyceps | 35.03534 | 15.1678023 | 0.1278924 | 0.6588496 |
Gastrotheca aureomaculata | 35.03696 | 20.8021639 | 0.1300020 | 0.8638971 |
Gastrotheca ruizi | 34.94694 | 23.1779787 | 0.1307120 | 0.9464769 |
Gastrotheca dunni | 34.97256 | 15.2805881 | 0.1294114 | 0.6839024 |
Gastrotheca nicefori | 34.97905 | 23.6373251 | 0.1286049 | 0.9487338 |
Gastrotheca ovifera | 34.85726 | 32.2830048 | 0.1299070 | 1.2048624 |
Gastrotheca phalarosa | 34.95434 | 25.6549950 | 0.1275888 | 1.1265608 |
Gastrotheca atympana | 34.73194 | 20.7954446 | 0.1316460 | 1.0842008 |
Gastrotheca testudinea | 34.69487 | 22.7867574 | 0.1341781 | 1.0865989 |
Gastrotheca pacchamama | 34.82379 | 16.1404324 | 0.1332817 | 0.9029973 |
Gastrotheca carinaceps | 34.55792 | 23.9112349 | 0.1318031 | 1.1215633 |
Gastrotheca cornuta | 34.58276 | 29.4483830 | 0.1319376 | 1.1470594 |
Gastrotheca dendronastes | 34.60016 | 32.7404202 | 0.1303671 | 1.3235572 |
Gastrotheca helenae | 34.72906 | 20.7255119 | 0.1305414 | 0.9227873 |
Gastrotheca longipes | 34.72895 | 27.3742739 | 0.1304180 | 1.1128383 |
Gastrotheca guentheri | 34.66014 | 30.7428117 | 0.1284365 | 1.2183656 |
Gastrotheca weinlandii | 34.61154 | 24.2510485 | 0.1304663 | 0.9991158 |
Gastrotheca flamma | 34.59701 | 26.6631112 | 0.1297532 | 1.0583976 |
Gastrotheca walkeri | 34.52942 | 32.5493440 | 0.1318676 | 1.2174994 |
Gastrotheca espeletia | 34.62116 | 28.3031275 | 0.1294402 | 1.1932873 |
Gastrotheca galeata | 34.78753 | 28.2192200 | 0.1298139 | 1.2341526 |
Gastrotheca ossilaginis | 34.60371 | 35.4511880 | 0.1289539 | 1.5601059 |
Gastrotheca piperata | 34.62996 | 22.7151537 | 0.1314472 | 1.2239941 |
Gastrotheca psychrophila | 34.76084 | 20.4800341 | 0.1296127 | 0.9040243 |
Gastrotheca stictopleura | 34.55268 | 20.3249337 | 0.1314575 | 1.0048639 |
Gastrotheca splendens | 34.49187 | 29.5261524 | 0.1327770 | 1.3090819 |
Gastrotheca williamsoni | 34.22110 | 37.1849974 | 0.1267121 | 1.3805588 |
Gastrotheca fissipes | 34.59296 | 30.2933894 | 0.1305928 | 1.1902523 |
Ceuthomantis aracamuni | 32.97257 | 43.1753157 | 0.1336323 | 1.5898698 |
Ceuthomantis cavernibardus | 33.38327 | 45.3885499 | 0.1373008 | 1.6606742 |
Ceuthomantis duellmani | 33.40053 | 38.8911786 | 0.1381000 | 1.5143239 |
Brachycephalus alipioi | 33.30038 | 35.6460847 | 0.1378796 | 1.3754189 |
Brachycephalus hermogenesi | 33.33264 | 21.9299348 | 0.1369150 | 0.8396983 |
Brachycephalus nodoterga | 33.32197 | 21.9903606 | 0.1366643 | 0.8398567 |
Brachycephalus vertebralis | 33.30704 | 26.6640836 | 0.1382490 | 1.0291822 |
Brachycephalus ephippium | 33.28044 | 33.5853700 | 0.1354015 | 1.3091142 |
Brachycephalus brunneus | 33.29685 | 17.9410911 | 0.1379066 | 0.7441361 |
Brachycephalus izecksohni | 33.28797 | 19.0624504 | 0.1368802 | 0.7746389 |
Brachycephalus ferruginus | 33.34646 | 19.0020529 | 0.1348666 | 0.7849402 |
Brachycephalus pernix | 33.33639 | 17.6287230 | 0.1364256 | 0.7307519 |
Brachycephalus pombali | 33.35256 | 18.4599459 | 0.1364535 | 0.7654852 |
Brachycephalus didactylus | 33.30648 | 29.5435096 | 0.1368015 | 1.1383836 |
Ischnocnema bolbodactyla | 33.30903 | 24.1973731 | 0.1373578 | 0.9335292 |
Ischnocnema octavioi | 33.29301 | 28.3181084 | 0.1358354 | 1.0834051 |
Ischnocnema verrucosa | 33.21203 | 29.0420044 | 0.1385755 | 1.1257596 |
Ischnocnema juipoca | 33.23612 | 25.4961078 | 0.1357755 | 0.9767278 |
Ischnocnema spanios | 33.26558 | 23.4379964 | 0.1386399 | 0.9334098 |
Ischnocnema holti | 33.25279 | 25.8471110 | 0.1378891 | 0.9674667 |
Ischnocnema lactea | 33.22066 | 23.7263086 | 0.1389881 | 0.9122168 |
Ischnocnema epipeda | 33.26854 | 38.6397859 | 0.1369340 | 1.4982539 |
Ischnocnema erythromera | 33.36710 | 27.7880672 | 0.1369651 | 1.0448100 |
Ischnocnema guentheri | 33.40207 | 23.3775271 | 0.1363155 | 0.9032156 |
Ischnocnema henselii | 33.39599 | 20.3412054 | 0.1359400 | 0.7974926 |
Ischnocnema izecksohni | 33.31401 | 21.9277052 | 0.1363505 | 0.8676826 |
Ischnocnema nasuta | 33.14609 | 27.7318004 | 0.1349741 | 1.0733742 |
Ischnocnema oea | 33.38717 | 33.7076064 | 0.1370350 | 1.3066510 |
Ischnocnema gehrti | 33.33749 | 19.4576635 | 0.1361501 | 0.7551562 |
Ischnocnema gualteri | 33.35102 | 29.8814599 | 0.1379621 | 1.1247292 |
Ischnocnema hoehnei | 33.22889 | 25.0216474 | 0.1382141 | 0.9681161 |
Ischnocnema venancioi | 33.30172 | 28.7115378 | 0.1376060 | 1.0880819 |
Ischnocnema parva | 33.13100 | 30.8469202 | 0.1387158 | 1.1806635 |
Ischnocnema sambaqui | 33.32814 | 18.4136921 | 0.1379980 | 0.7632770 |
Ischnocnema manezinho | 33.32807 | 18.4417656 | 0.1380127 | 0.7467580 |
Ischnocnema nigriventris | 33.23786 | 19.7955615 | 0.1384111 | 0.7674988 |
Ischnocnema paranaensis | 33.24821 | 17.9959975 | 0.1353770 | 0.7476307 |
Ischnocnema penaxavantinho | 33.22492 | 23.5917040 | 0.1380943 | 0.9004356 |
Ischnocnema pusilla | 33.29682 | 26.1145356 | 0.1364954 | 1.0072161 |
Ischnocnema randorum | 33.34734 | 27.3671130 | 0.1390678 | 1.1145228 |
Adelophryne adiastola | 33.51711 | 41.0170086 | 0.1394791 | 1.4183359 |
Adelophryne gutturosa | 33.40044 | 47.6839116 | 0.1373160 | 1.7410893 |
Adelophryne patamona | 33.53229 | 40.6185118 | 0.1376247 | 1.5080327 |
Adelophryne baturitensis | 33.65920 | 38.6176856 | 0.1369892 | 1.4646804 |
Adelophryne maranguapensis | 33.69841 | 36.8580353 | 0.1366468 | 1.3810891 |
Adelophryne pachydactyla | 33.50738 | 31.1655777 | 0.1386930 | 1.2392251 |
Phyzelaphryne miriamae | 33.55165 | 41.0660959 | 0.1343612 | 1.4202560 |
Diasporus anthrax | 33.67504 | 33.7682123 | 0.1396770 | 1.3826545 |
Diasporus diastema | 33.70274 | 41.6231071 | 0.1383534 | 1.5414118 |
Diasporus hylaeformis | 33.74170 | 36.9207273 | 0.1370314 | 1.4151089 |
Diasporus quidditus | 33.72092 | 45.0857364 | 0.1390029 | 1.6991083 |
Diasporus gularis | 33.77150 | 30.8193147 | 0.1377158 | 1.2143280 |
Diasporus tigrillo | 33.77030 | 22.6838548 | 0.1375616 | 1.3273238 |
Diasporus tinker | 33.71304 | 37.5128454 | 0.1380057 | 1.4460792 |
Diasporus ventrimaculatus | 33.78389 | 32.4957492 | 0.1372176 | 1.4420366 |
Diasporus vocator | 33.93977 | 46.1882315 | 0.1356614 | 1.7785940 |
Eleutherodactylus abbotti | 34.19560 | 76.6903959 | 0.1365821 | 2.7889798 |
Eleutherodactylus audanti | 34.16644 | 77.1753849 | 0.1375711 | 2.7867941 |
Eleutherodactylus parabates | 34.09474 | 88.5348797 | 0.1393630 | 3.2397076 |
Eleutherodactylus haitianus | 34.13218 | 70.9711829 | 0.1395964 | 2.6212815 |
Eleutherodactylus pituinus | 34.11873 | 58.7716689 | 0.1396248 | 2.1396545 |
Eleutherodactylus acmonis | 34.19226 | 68.8355138 | 0.1374399 | 2.4966305 |
Eleutherodactylus bresslerae | 34.19291 | 73.3345262 | 0.1376827 | 2.6645703 |
Eleutherodactylus ricordii | 34.20682 | 84.8754567 | 0.1375104 | 3.0639713 |
Eleutherodactylus grahami | 34.17072 | 65.9577534 | 0.1337917 | 2.3367003 |
Eleutherodactylus rhodesi | 34.15481 | 72.2981788 | 0.1365707 | 2.6189534 |
Eleutherodactylus weinlandi | 34.08702 | 69.0443312 | 0.1363177 | 2.5263881 |
Eleutherodactylus pictissimus | 34.14206 | 79.2793811 | 0.1376412 | 2.8696176 |
Eleutherodactylus lentus | 34.05680 | 53.2739932 | 0.1401181 | 1.9690445 |
Eleutherodactylus monensis | 34.04805 | 66.0321282 | 0.1378764 | 2.4457745 |
Eleutherodactylus probolaeus | 34.15993 | 67.8098791 | 0.1360203 | 2.4805456 |
Eleutherodactylus adelus | 35.00125 | 50.7105258 | 0.1347276 | 1.8521599 |
Eleutherodactylus pezopetrus | 35.02178 | 60.2130758 | 0.1354191 | 2.1768813 |
Eleutherodactylus blairhedgesi | 35.12605 | 45.5610486 | 0.1332077 | 1.6694588 |
Eleutherodactylus thomasi | 35.06192 | 46.3695412 | 0.1373782 | 1.6894973 |
Eleutherodactylus pinarensis | 35.05453 | 46.2616557 | 0.1378305 | 1.6854971 |
Eleutherodactylus casparii | 35.25627 | 42.6612580 | 0.1365266 | 1.5426426 |
Eleutherodactylus guanahacabibes | 35.20926 | 49.3305295 | 0.1338452 | 1.7957194 |
Eleutherodactylus simulans | 34.53639 | 59.9065679 | 0.1373206 | 2.1782425 |
Eleutherodactylus tonyi | 35.13255 | 65.9300254 | 0.1352619 | 2.4035457 |
Eleutherodactylus rogersi | 35.17356 | 41.2410770 | 0.1365616 | 1.4960274 |
Eleutherodactylus goini | 35.05567 | 50.0245958 | 0.1372652 | 1.8235221 |
Eleutherodactylus albipes | 34.25515 | 89.0547297 | 0.1361641 | 3.2248712 |
Eleutherodactylus maestrensis | 34.31022 | 82.0000166 | 0.1383002 | 2.9733476 |
Eleutherodactylus dimidiatus | 34.39340 | 67.7981098 | 0.1358391 | 2.4629411 |
Eleutherodactylus emiliae | 34.37713 | 60.0904067 | 0.1371572 | 2.1681272 |
Eleutherodactylus albolabris | 33.97423 | 26.3211598 | 0.1388343 | 1.0210543 |
Eleutherodactylus alcoae | 34.31604 | 76.2243584 | 0.1380236 | 2.7662471 |
Eleutherodactylus armstrongi | 34.09719 | 82.4847890 | 0.1384037 | 2.9951535 |
Eleutherodactylus leoncei | 34.26328 | 75.4079093 | 0.1367890 | 2.7339106 |
Eleutherodactylus alticola | 33.01581 | 64.1673574 | 0.1364158 | 2.3134977 |
Eleutherodactylus nubicola | 32.91943 | 60.5942750 | 0.1388863 | 2.1852605 |
Eleutherodactylus fuscus | 32.93249 | 65.7719544 | 0.1369169 | 2.3927812 |
Eleutherodactylus junori | 32.91370 | 66.9993406 | 0.1377689 | 2.4397747 |
Eleutherodactylus andrewsi | 32.34757 | 62.3412039 | 0.1365716 | 2.2471612 |
Eleutherodactylus griphus | 33.01608 | 64.4844062 | 0.1379762 | 2.3493329 |
Eleutherodactylus glaucoreius | 33.00645 | 58.0348725 | 0.1358199 | 2.1056670 |
Eleutherodactylus pantoni | 33.02377 | 60.0508929 | 0.1379543 | 2.1778367 |
Eleutherodactylus pentasyringos | 32.94606 | 62.2621595 | 0.1366010 | 2.2559140 |
Eleutherodactylus jamaicensis | 32.91497 | 60.6383508 | 0.1348369 | 2.2015530 |
Eleutherodactylus luteolus | 33.05118 | 71.6617032 | 0.1362047 | 2.6061372 |
Eleutherodactylus cavernicola | 33.06467 | 62.9254586 | 0.1390614 | 2.2906738 |
Eleutherodactylus grabhami | 33.11560 | 71.0286030 | 0.1396835 | 2.5823776 |
Eleutherodactylus sisyphodemus | 33.09827 | 72.8593840 | 0.1325106 | 2.6547135 |
Eleutherodactylus gundlachi | 33.17635 | 62.9231090 | 0.1375119 | 2.2795873 |
Eleutherodactylus amadeus | 34.17544 | 78.7505189 | 0.1366999 | 2.8301177 |
Eleutherodactylus caribe | 34.25552 | 79.9929763 | 0.1363638 | 2.9063685 |
Eleutherodactylus eunaster | 34.04570 | 82.2038964 | 0.1370432 | 2.9543053 |
Eleutherodactylus corona | 34.08537 | 86.1442198 | 0.1358549 | 3.1295750 |
Eleutherodactylus heminota | 34.09124 | 81.7574523 | 0.1369530 | 2.9516617 |
Eleutherodactylus bakeri | 34.06073 | 90.9191653 | 0.1395704 | 3.2685873 |
Eleutherodactylus dolomedes | 34.11448 | 80.9629672 | 0.1365374 | 2.9427826 |
Eleutherodactylus glaphycompus | 34.25005 | 73.1409879 | 0.1373582 | 2.6278011 |
Eleutherodactylus thorectes | 34.25213 | 79.5321115 | 0.1389329 | 2.8581871 |
Eleutherodactylus jugans | 34.22544 | 78.6783529 | 0.1380853 | 2.8524280 |
Eleutherodactylus apostates | 34.30705 | 74.6156796 | 0.1375506 | 2.6810590 |
Eleutherodactylus oxyrhyncus | 34.25715 | 76.5579788 | 0.1368193 | 2.7510020 |
Eleutherodactylus furcyensis | 34.23949 | 72.5807486 | 0.1358931 | 2.6338532 |
Eleutherodactylus rufifemoralis | 34.32642 | 85.1537818 | 0.1346393 | 3.1166851 |
Eleutherodactylus amplinympha | 34.76564 | 52.1956501 | 0.1338745 | 1.9738637 |
Eleutherodactylus martinicensis | 34.85868 | 51.4943363 | 0.1353800 | 1.9032658 |
Eleutherodactylus barlagnei | 34.27277 | 57.0767847 | 0.1342250 | 2.1318203 |
Eleutherodactylus pinchoni | 34.79571 | 53.5232982 | 0.1369495 | 1.9968022 |
Eleutherodactylus angustidigitorum | 34.14822 | 27.0714068 | 0.1371818 | 1.1124768 |
Eleutherodactylus cochranae | 35.68667 | 49.5503530 | 0.1363806 | 1.8255627 |
Eleutherodactylus hedricki | 35.66892 | 51.2594000 | 0.1364973 | 1.9062659 |
Eleutherodactylus schwartzi | 35.88839 | 37.4983447 | 0.1359282 | 1.3721762 |
Eleutherodactylus gryllus | 35.80298 | 45.4362578 | 0.1353052 | 1.6898124 |
Eleutherodactylus cooki | 35.66715 | 50.1059489 | 0.1383177 | 1.8607483 |
Eleutherodactylus locustus | 35.72672 | 48.7952098 | 0.1369479 | 1.8107139 |
Eleutherodactylus atkinsi | 34.20496 | 61.3529731 | 0.1396300 | 2.2282589 |
Eleutherodactylus intermedius | 34.14569 | 76.7429418 | 0.1364265 | 2.7683350 |
Eleutherodactylus varleyi | 33.97955 | 60.5291451 | 0.1381717 | 2.1979228 |
Eleutherodactylus cubanus | 34.25196 | 83.8538130 | 0.1376569 | 3.0369511 |
Eleutherodactylus iberia | 34.23556 | 70.6299507 | 0.1356487 | 2.5659451 |
Eleutherodactylus jaumei | 34.23933 | 81.4395315 | 0.1372243 | 2.9454155 |
Eleutherodactylus limbatus | 34.21400 | 63.5897961 | 0.1360122 | 2.3146804 |
Eleutherodactylus orientalis | 34.24879 | 71.0477500 | 0.1354361 | 2.5834101 |
Eleutherodactylus etheridgei | 34.24604 | 76.1399093 | 0.1350517 | 2.7300512 |
Eleutherodactylus auriculatoides | 34.03494 | 74.2596300 | 0.1378354 | 2.7512876 |
Eleutherodactylus montanus | 34.05452 | 68.5798744 | 0.1377232 | 2.5420409 |
Eleutherodactylus patriciae | 34.28123 | 78.8339374 | 0.1372248 | 2.9123482 |
Eleutherodactylus fowleri | 33.99833 | 73.8635469 | 0.1384583 | 2.6766726 |
Eleutherodactylus lamprotes | 33.95746 | 82.6089315 | 0.1405603 | 2.9690275 |
Eleutherodactylus guantanamera | 34.03666 | 73.1280078 | 0.1373866 | 2.6343551 |
Eleutherodactylus ionthus | 34.01713 | 75.8185078 | 0.1362259 | 2.7385903 |
Eleutherodactylus varians | 34.03409 | 62.2930736 | 0.1377147 | 2.2630922 |
Eleutherodactylus leberi | 34.21908 | 79.1819752 | 0.1348272 | 2.8712580 |
Eleutherodactylus melacara | 34.16367 | 78.4648292 | 0.1353888 | 2.8444056 |
Eleutherodactylus sommeri | 34.10231 | 85.2992348 | 0.1363152 | 3.1151709 |
Eleutherodactylus wetmorei | 34.07305 | 78.0828198 | 0.1377044 | 2.8192740 |
Eleutherodactylus auriculatus | 34.05710 | 60.2108549 | 0.1356870 | 2.1878314 |
Eleutherodactylus principalis | 34.04368 | 73.6854526 | 0.1355340 | 2.6718759 |
Eleutherodactylus glamyrus | 34.05442 | 78.0962873 | 0.1387500 | 2.8216037 |
Eleutherodactylus bartonsmithi | 34.07341 | 66.6496879 | 0.1384803 | 2.4157121 |
Eleutherodactylus mariposa | 34.13386 | 73.2025927 | 0.1361783 | 2.6461370 |
Eleutherodactylus ronaldi | 34.07737 | 84.6018135 | 0.1362627 | 3.0618915 |
Eleutherodactylus eileenae | 34.09105 | 61.9684009 | 0.1381573 | 2.2532410 |
Eleutherodactylus ruthae | 34.15409 | 75.9627480 | 0.1337257 | 2.7851547 |
Eleutherodactylus hypostenor | 35.14163 | 86.7553606 | 0.1348429 | 3.1671040 |
Eleutherodactylus parapelates | 35.14228 | 78.7809204 | 0.1370150 | 2.8307548 |
Eleutherodactylus chlorophenax | 34.16898 | 78.7717883 | 0.1394919 | 2.8314935 |
Eleutherodactylus nortoni | 34.06726 | 93.0397171 | 0.1356821 | 3.3592794 |
Eleutherodactylus inoptatus | 34.13071 | 70.9958686 | 0.1386482 | 2.5929060 |
Eleutherodactylus brevirostris | 34.22747 | 86.9732385 | 0.1380891 | 3.1257339 |
Eleutherodactylus ventrilineatus | 34.21584 | 82.3612534 | 0.1356437 | 2.9601442 |
Eleutherodactylus glandulifer | 33.50925 | 81.6321217 | 0.1353736 | 2.9325431 |
Eleutherodactylus sciagraphus | 34.18256 | 80.6766765 | 0.1351904 | 2.9297432 |
Eleutherodactylus counouspeus | 34.23031 | 79.5408552 | 0.1358981 | 2.8583363 |
Eleutherodactylus cuneatus | 34.13848 | 80.7052337 | 0.1377659 | 2.9215853 |
Eleutherodactylus turquinensis | 33.47824 | 75.3679691 | 0.1351991 | 2.7338769 |
Eleutherodactylus cystignathoides | 34.11010 | 26.2224468 | 0.1374746 | 1.0701787 |
Eleutherodactylus nitidus | 34.26001 | 24.0342524 | 0.1366349 | 0.9814810 |
Eleutherodactylus pipilans | 34.16562 | 28.3393238 | 0.1373181 | 1.0603717 |
Eleutherodactylus marnockii | 34.22803 | 19.7703772 | 0.1408141 | 0.7985254 |
Eleutherodactylus symingtoni | 34.14253 | 56.1196473 | 0.1379990 | 2.0450244 |
Eleutherodactylus zeus | 34.11312 | 58.2242646 | 0.1357702 | 2.1230366 |
Eleutherodactylus dennisi | 34.14548 | 25.7218422 | 0.1380123 | 1.0678177 |
Eleutherodactylus dilatus | 34.16681 | 23.9285533 | 0.1373832 | 0.9388503 |
Eleutherodactylus diplasius | 33.87868 | 78.6098878 | 0.1391345 | 2.8252608 |
Eleutherodactylus flavescens | 34.16800 | 70.6613606 | 0.1376350 | 2.6038762 |
Eleutherodactylus grandis | 34.09815 | 14.3228542 | 0.1366509 | 0.7057085 |
Eleutherodactylus greyi | 34.10643 | 60.6691924 | 0.1379047 | 2.2004891 |
Eleutherodactylus guttilatus | 34.27201 | 20.9816579 | 0.1358491 | 0.9137672 |
Eleutherodactylus interorbitalis | 34.25566 | 17.1918329 | 0.1376943 | 0.6891302 |
Eleutherodactylus juanariveroi | 34.04331 | 71.6911179 | 0.1373299 | 2.6545609 |
Eleutherodactylus klinikowskii | 34.04589 | 63.9685225 | 0.1364940 | 2.3323114 |
Eleutherodactylus zugi | 34.18544 | 55.0671308 | 0.1377547 | 2.0071290 |
Eleutherodactylus paralius | 34.25252 | 73.6385599 | 0.1374949 | 2.7080984 |
Eleutherodactylus leprus | 34.13239 | 25.1702035 | 0.1351682 | 0.9452428 |
Eleutherodactylus longipes | 34.24932 | 20.7187645 | 0.1351860 | 0.8674530 |
Eleutherodactylus maurus | 34.06991 | 20.1831657 | 0.1388656 | 0.8498321 |
Eleutherodactylus michaelschmidi | 34.16529 | 77.8572012 | 0.1355058 | 2.8211181 |
Eleutherodactylus minutus | 34.26385 | 70.3165984 | 0.1339219 | 2.6066321 |
Eleutherodactylus poolei | 34.14585 | 72.8558017 | 0.1362629 | 2.6413594 |
Eleutherodactylus modestus | 34.12113 | 28.6223621 | 0.1410178 | 1.0855799 |
Eleutherodactylus notidodes | 34.24065 | 89.3138355 | 0.1376222 | 3.2704390 |
Eleutherodactylus pallidus | 34.28849 | 24.7443954 | 0.1357858 | 0.9686514 |
Eleutherodactylus paulsoni | 34.16458 | 75.6123631 | 0.1370396 | 2.7193591 |
Eleutherodactylus unicolor | 33.45074 | 57.1274136 | 0.1383278 | 2.1231752 |
Eleutherodactylus verruculatus | 33.43880 | 33.4774865 | 0.1390113 | 1.2981615 |
Eleutherodactylus riparius | 34.19333 | 64.6715284 | 0.1356640 | 2.3528637 |
Eleutherodactylus rivularis | 33.49852 | 82.6897142 | 0.1392230 | 2.9968552 |
Eleutherodactylus rubrimaculatus | 34.06339 | 25.4110221 | 0.1372637 | 0.9615723 |
Eleutherodactylus rufescens | 34.19602 | 31.9847543 | 0.1367656 | 1.2834953 |
Eleutherodactylus saxatilis | 34.14346 | 17.2655143 | 0.1376637 | 0.7117833 |
Eleutherodactylus semipalmatus | 33.59104 | 77.4961810 | 0.1375850 | 2.8152207 |
Eleutherodactylus syristes | 34.19424 | 23.5073865 | 0.1326690 | 0.9140743 |
Eleutherodactylus teretistes | 34.29862 | 27.0413894 | 0.1337991 | 1.0350234 |
Eleutherodactylus tetajulia | 34.16412 | 71.8157804 | 0.1346562 | 2.6102357 |
Eleutherodactylus toa | 33.61037 | 78.4808731 | 0.1374701 | 2.8445490 |
Eleutherodactylus verrucipes | 34.19577 | 22.5662590 | 0.1385539 | 0.9647845 |
Eleutherodactylus warreni | 34.26238 | 72.3930523 | 0.1374461 | 2.6281541 |
Craugastor stadelmani | 32.54460 | 44.8317663 | 0.1379641 | 1.7006892 |
Craugastor alfredi | 32.85835 | 31.3930176 | 0.1391476 | 1.1571501 |
Craugastor amniscola | 32.36895 | 23.5775582 | 0.1380888 | 0.9138948 |
Craugastor batrachylus | 33.03946 | 28.7285461 | 0.1377177 | 1.2026252 |
Craugastor cuaquero | 33.04162 | 37.0803480 | 0.1385456 | 1.3381668 |
Craugastor melanostictus | 33.02351 | 39.4236727 | 0.1398068 | 1.4886887 |
Craugastor emcelae | 32.97345 | 56.6851125 | 0.1404182 | 2.0235056 |
Craugastor angelicus | 32.52642 | 38.2053963 | 0.1370338 | 1.3775607 |
Craugastor rugulosus | 32.31670 | 28.5446470 | 0.1383769 | 1.0793734 |
Craugastor ranoides | 32.39132 | 40.5159959 | 0.1350330 | 1.4782330 |
Craugastor fleischmanni | 32.37784 | 35.9455317 | 0.1398375 | 1.2965041 |
Craugastor rupinius | 32.93959 | 29.2822312 | 0.1376742 | 1.0977649 |
Craugastor obesus | 32.44713 | 52.9833879 | 0.1377967 | 1.8905620 |
Craugastor megacephalus | 32.93500 | 39.5198393 | 0.1373078 | 1.4683340 |
Craugastor aphanus | 33.13679 | 38.6882175 | 0.1388923 | 1.5178784 |
Craugastor augusti | 33.04495 | 20.8096166 | 0.1350989 | 0.8618718 |
Craugastor tarahumaraensis | 33.01960 | 16.3792391 | 0.1383896 | 0.6748367 |
Craugastor polymniae | 32.89774 | 15.7222882 | 0.1394241 | 0.6929358 |
Craugastor aurilegulus | 32.40371 | 48.7612518 | 0.1370779 | 1.8535727 |
Craugastor azueroensis | 32.52390 | 61.4918045 | 0.1372537 | 2.3356449 |
Craugastor vocalis | 32.98812 | 20.9623035 | 0.1385180 | 0.8382171 |
Craugastor berkenbuschii | 32.43783 | 25.6806058 | 0.1389558 | 1.0130943 |
Craugastor vulcani | 32.39074 | 28.4365141 | 0.1380027 | 1.0396822 |
Craugastor bocourti | 32.92133 | 25.3243751 | 0.1372032 | 0.9699198 |
Craugastor spatulatus | 33.04887 | 22.9400257 | 0.1380450 | 0.9137511 |
Craugastor stuarti | 32.34121 | 27.1460077 | 0.1387208 | 1.0443087 |
Craugastor uno | 33.02721 | 29.1827040 | 0.1395668 | 1.1249821 |
Craugastor xucanebi | 33.03407 | 24.4639064 | 0.1385753 | 0.9570893 |
Craugastor bransfordii | 33.09500 | 34.9150158 | 0.1363967 | 1.3044643 |
Craugastor polyptychus | 33.09647 | 34.5327202 | 0.1370455 | 1.4202570 |
Craugastor underwoodi | 33.07727 | 37.6030536 | 0.1363851 | 1.4603536 |
Craugastor lauraster | 32.98463 | 32.4477726 | 0.1405734 | 1.2090412 |
Craugastor stejnegerianus | 33.01010 | 41.5224498 | 0.1388932 | 1.7338913 |
Craugastor persimilis | 33.13160 | 34.0726449 | 0.1378908 | 1.3984726 |
Craugastor brocchi | 32.47756 | 26.1601030 | 0.1379676 | 1.0268556 |
Craugastor gollmeri | 33.04251 | 43.4232567 | 0.1388766 | 1.6201393 |
Craugastor chac | 33.00962 | 33.7352821 | 0.1382157 | 1.2739807 |
Craugastor lineatus | 32.97425 | 25.1022669 | 0.1423376 | 0.9548249 |
Craugastor laticeps | 33.01585 | 32.0847510 | 0.1387118 | 1.1922721 |
Craugastor mimus | 33.02388 | 35.2997130 | 0.1391593 | 1.3264720 |
Craugastor noblei | 33.06979 | 36.4392593 | 0.1402555 | 1.3586909 |
Craugastor campbelli | 32.90334 | 38.7923000 | 0.1397026 | 1.5224498 |
Craugastor decoratus | 32.88711 | 23.5181324 | 0.1393569 | 0.9584475 |
Craugastor charadra | 32.43189 | 29.9327514 | 0.1360710 | 1.1348674 |
Craugastor opimus | 32.98083 | 43.9830088 | 0.1381550 | 1.6604917 |
Craugastor chingopetaca | 33.09325 | 34.9026178 | 0.1385504 | 1.2594097 |
Craugastor hobartsmithi | 33.09049 | 25.1657294 | 0.1356426 | 0.9948942 |
Craugastor pelorus | 32.43279 | 34.3136805 | 0.1405464 | 1.2262817 |
Craugastor coffeus | 32.99070 | 36.8212510 | 0.1355017 | 1.4089640 |
Craugastor pozo | 33.01953 | 26.3277944 | 0.1374691 | 0.9618698 |
Craugastor talamancae | 33.68696 | 33.0203920 | 0.1373429 | 1.2264611 |
Craugastor raniformis | 33.86502 | 27.9913133 | 0.1374773 | 1.0694514 |
Craugastor taurus | 32.22367 | 53.9575559 | 0.1377025 | 1.9683146 |
Craugastor cyanochthebius | 32.92284 | 44.4367521 | 0.1374627 | 1.7441489 |
Craugastor silvicola | 33.14492 | 29.1285717 | 0.1346024 | 1.0352862 |
Craugastor escoces | 32.44561 | 43.4481788 | 0.1359770 | 1.5670803 |
Craugastor nefrens | 33.04722 | 42.3447755 | 0.1360166 | 1.6630943 |
Craugastor podiciferus | 33.01987 | 33.9969288 | 0.1380213 | 1.3200426 |
Craugastor glaucus | 33.12726 | 34.4469264 | 0.1371570 | 1.2684859 |
Craugastor monnichorum | 33.05331 | 50.9654457 | 0.1393656 | 1.8818193 |
Craugastor greggi | 32.52343 | 19.4123964 | 0.1371735 | 0.8095799 |
Craugastor guerreroensis | 33.11791 | 21.8409880 | 0.1338076 | 0.8566576 |
Craugastor montanus | 33.03742 | 24.9624916 | 0.1363767 | 0.9282526 |
Craugastor gulosus | 33.01284 | 37.7253758 | 0.1405307 | 1.5472147 |
Craugastor laevissimus | 32.45304 | 34.6010495 | 0.1393995 | 1.2984763 |
Craugastor inachus | 32.48136 | 32.1334212 | 0.1383839 | 1.1813018 |
Craugastor mexicanus | 32.40634 | 23.3418758 | 0.1408477 | 0.9369822 |
Craugastor omiltemanus | 32.48007 | 25.4847283 | 0.1392213 | 0.9967778 |
Craugastor rugosus | 32.55895 | 34.4811323 | 0.1385017 | 1.3788806 |
Craugastor tabasarae | 34.91731 | 40.4133754 | 0.1351445 | 1.5147262 |
Craugastor rayo | 34.46486 | 18.2233854 | 0.1362573 | 1.0584899 |
Craugastor matudai | 33.04772 | 24.1811164 | 0.1350177 | 0.9222646 |
Craugastor yucatanensis | 33.07091 | 48.7303341 | 0.1356898 | 1.7572805 |
Craugastor megalotympanum | 33.08394 | 27.5424818 | 0.1401974 | 1.0085666 |
Craugastor rivulus | 32.57216 | 24.5437395 | 0.1348465 | 0.9834539 |
Craugastor milesi | 32.42644 | 36.4114977 | 0.1381337 | 1.4278034 |
Craugastor sandersoni | 32.45310 | 41.9619112 | 0.1363635 | 1.5846957 |
Craugastor occidentalis | 33.00712 | 23.2594663 | 0.1378412 | 0.9228384 |
Craugastor palenque | 32.45036 | 25.4639851 | 0.1383190 | 0.9617506 |
Craugastor pygmaeus | 33.08485 | 26.7490052 | 0.1367078 | 1.0271019 |
Craugastor pechorum | 32.49705 | 51.0783966 | 0.1393804 | 1.9324618 |
Craugastor rostralis | 33.06383 | 30.6416837 | 0.1377206 | 1.1567857 |
Craugastor sabrinus | 33.04590 | 38.5898198 | 0.1375365 | 1.4434965 |
Craugastor psephosypharus | 32.99635 | 32.9182797 | 0.1395676 | 1.2408720 |
Craugastor taylori | 33.01306 | 33.1837623 | 0.1396888 | 1.1747134 |
Craugastor emleni | 33.06084 | 24.9537659 | 0.1377288 | 0.9757055 |
Craugastor daryi | 32.11286 | 23.8949959 | 0.1364409 | 0.9380682 |
Haddadus aramunha | 32.14352 | 20.5280869 | 0.1419641 | 0.8286955 |
Haddadus plicifer | 32.23821 | 37.1005038 | 0.1365546 | 1.4350708 |
Haddadus binotatus | 32.19703 | 25.2466605 | 0.1412767 | 0.9762676 |
Atopophrynus syntomopus | 30.40407 | 26.2409352 | 0.1435007 | 1.1374410 |
Lynchius flavomaculatus | 31.05335 | 20.3001025 | 0.1410373 | 0.8840710 |
Lynchius parkeri | 31.06531 | 29.5991143 | 0.1422289 | 1.2930717 |
Lynchius nebulanastes | 31.00911 | 30.5155513 | 0.1420281 | 1.3317674 |
Lynchius simmonsi | 31.00131 | 23.6212170 | 0.1416692 | 0.9130420 |
Oreobates choristolemma | 30.63426 | 20.4929917 | 0.1435685 | 1.0252949 |
Oreobates sanderi | 30.49013 | 18.4007066 | 0.1445349 | 0.9651658 |
Oreobates sanctaecrucis | 30.72970 | 26.0937158 | 0.1443957 | 1.1676830 |
Oreobates discoidalis | 31.26671 | 12.2145187 | 0.1426223 | 0.6057706 |
Oreobates ibischi | 31.20331 | 21.8903035 | 0.1432378 | 1.0031578 |
Oreobates madidi | 31.57724 | 26.0250394 | 0.1397522 | 1.2381649 |
Oreobates crepitans | 31.02233 | 24.3533452 | 0.1439698 | 0.8633323 |
Oreobates heterodactylus | 31.00478 | 24.5159946 | 0.1419569 | 0.8648747 |
Oreobates zongoensis | 30.98797 | 18.1487598 | 0.1414221 | 1.0068208 |
Oreobates ayacucho | 30.05873 | 8.6003057 | 0.1442044 | 0.4629368 |
Oreobates pereger | 30.11452 | 15.9480006 | 0.1448353 | 0.9484073 |
Oreobates lehri | 28.86025 | 12.1998367 | 0.1480912 | 0.6823610 |
Oreobates saxatilis | 32.58474 | 20.7626925 | 0.1421630 | 0.9864399 |
Oreobates lundbergi | 30.96600 | 23.9341056 | 0.1403660 | 1.1244708 |
Phrynopus auriculatus | 30.94564 | 21.7371775 | 0.1458508 | 1.0165771 |
Phrynopus barthlenae | 31.02695 | 20.5312930 | 0.1417058 | 1.0664669 |
Phrynopus horstpauli | 30.83386 | 18.8120775 | 0.1448950 | 0.9603277 |
Phrynopus bracki | 30.99864 | 24.8311009 | 0.1434229 | 1.1669239 |
Phrynopus bufoides | 31.00962 | 27.2046414 | 0.1430047 | 1.2775163 |
Phrynopus dagmarae | 31.09069 | 21.1616454 | 0.1428701 | 1.0570421 |
Phrynopus heimorum | 31.11492 | 13.7647467 | 0.1435079 | 0.7864765 |
Phrynopus juninensis | 31.10100 | 21.1436886 | 0.1404008 | 1.2392884 |
Phrynopus kauneorum | 31.12668 | 17.3581274 | 0.1425808 | 0.8806904 |
Phrynopus kotosh | 31.10345 | 10.1806788 | 0.1409672 | 0.6415663 |
Phrynopus miroslawae | 31.08431 | 24.3708998 | 0.1438048 | 1.1481364 |
Phrynopus montium | 31.08734 | 24.3510930 | 0.1449391 | 1.4289828 |
Phrynopus nicoleae | 31.04121 | 24.2113104 | 0.1425874 | 1.1371319 |
Phrynopus oblivius | 31.07902 | 22.3814578 | 0.1440299 | 1.3120083 |
Phrynopus paucari | 30.94626 | 26.5086479 | 0.1435683 | 1.2423607 |
Phrynopus peruanus | 31.05001 | 24.2558208 | 0.1410505 | 1.4208783 |
Phrynopus pesantesi | 30.98881 | 24.6460823 | 0.1429989 | 1.1554234 |
Phrynopus tautzorum | 31.09016 | 19.6199269 | 0.1432684 | 1.0166757 |
Phrynopus thompsoni | 31.05169 | 26.7655932 | 0.1422638 | 1.1888917 |
Phrynopus tribulosus | 30.99638 | 25.0626384 | 0.1419077 | 1.1764501 |
Pristimantis aaptus | 30.95994 | 37.2030331 | 0.1428969 | 1.2672434 |
Pristimantis acatallelus | 31.02705 | 32.1152779 | 0.1400274 | 1.2964490 |
Pristimantis acerus | 31.02550 | 12.3832311 | 0.1399670 | 0.5831368 |
Pristimantis lymani | 33.58544 | 23.3295034 | 0.1369500 | 0.9756402 |
Pristimantis achuar | 31.05306 | 33.6155247 | 0.1432525 | 1.2956451 |
Pristimantis actinolaimus | 30.96865 | 31.3553826 | 0.1441149 | 1.3595317 |
Pristimantis acuminatus | 30.95901 | 29.5025306 | 0.1406255 | 1.1589599 |
Pristimantis acutirostris | 30.93173 | 24.5787460 | 0.1410068 | 1.1036814 |
Pristimantis adiastolus | 31.11892 | 25.1628478 | 0.1405954 | 1.1866906 |
Pristimantis aemulatus | 30.97097 | 39.9816661 | 0.1428983 | 1.5111978 |
Pristimantis affinis | 30.97316 | 26.7545320 | 0.1432875 | 1.1499077 |
Pristimantis alalocophus | 30.87875 | 24.8399306 | 0.1422200 | 1.0967516 |
Pristimantis albertus | 31.10975 | 21.0345578 | 0.1432981 | 1.0955798 |
Pristimantis altae | 31.10450 | 36.9209426 | 0.1412287 | 1.4076376 |
Pristimantis pardalis | 31.11355 | 49.3030010 | 0.1411488 | 1.8671264 |
Pristimantis altamazonicus | 31.16287 | 35.3392159 | 0.1417507 | 1.3012572 |
Pristimantis altamnis | 31.03799 | 26.2958542 | 0.1408640 | 1.0981102 |
Pristimantis kichwarum | 31.19753 | 24.2103057 | 0.1424735 | 0.9810199 |
Pristimantis amydrotus | 31.02993 | 40.4142411 | 0.1387836 | 1.6497648 |
Pristimantis anemerus | 31.03599 | 28.2176326 | 0.1424342 | 1.2369122 |
Pristimantis angustilineatus | 31.05913 | 35.1433965 | 0.1413532 | 1.4390497 |
Pristimantis brevifrons | 31.01253 | 27.6516291 | 0.1426514 | 1.1544845 |
Pristimantis aniptopalmatus | 31.15142 | 23.7081778 | 0.1429563 | 1.1116588 |
Pristimantis anolirex | 31.07175 | 27.3743792 | 0.1410377 | 1.1675032 |
Pristimantis lutitus | 31.09801 | 28.2869077 | 0.1404867 | 1.1990568 |
Pristimantis merostictus | 30.99038 | 29.5944726 | 0.1424692 | 1.2853439 |
Pristimantis apiculatus | 31.04317 | 19.9597526 | 0.1425599 | 0.8760373 |
Pristimantis appendiculatus | 31.06541 | 19.0155735 | 0.1428780 | 0.8409400 |
Pristimantis aquilonaris | 31.17808 | 30.9646073 | 0.1435307 | 1.3229092 |
Pristimantis ardalonychus | 31.06247 | 24.7398071 | 0.1417702 | 1.1003935 |
Pristimantis atrabracus | 31.10902 | 33.1005603 | 0.1406093 | 1.3656788 |
Pristimantis atratus | 31.00365 | 20.2336312 | 0.1396026 | 0.8712450 |
Pristimantis aurantiguttatus | 30.99009 | 41.5982567 | 0.1409746 | 1.5897359 |
Pristimantis aureolineatus | 30.92176 | 32.7261235 | 0.1424466 | 1.2300623 |
Pristimantis aureoventris | 30.87043 | 32.3252216 | 0.1442124 | 1.2086975 |
Pristimantis jester | 30.94281 | 34.6005518 | 0.1393975 | 1.2835393 |
Pristimantis avicuporum | 31.07202 | 30.6938180 | 0.1427237 | 1.2625471 |
Pristimantis avius | 31.02279 | 36.0548125 | 0.1390048 | 1.3170407 |
Pristimantis bacchus | 31.03811 | 24.9611577 | 0.1432617 | 1.1041283 |
Pristimantis baiotis | 31.03474 | 39.4088515 | 0.1413999 | 1.4918856 |
Pristimantis balionotus | 30.81574 | 21.0365375 | 0.1424633 | 0.9274955 |
Pristimantis bambu | 30.92799 | 13.8593682 | 0.1410047 | 0.6659163 |
Pristimantis simonbolivari | 31.14823 | 15.5351711 | 0.1409164 | 0.6925558 |
Pristimantis baryecuus | 30.96588 | 17.9520077 | 0.1425589 | 0.7708194 |
Pristimantis batrachites | 31.03453 | 24.3496435 | 0.1411403 | 1.0884552 |
Pristimantis bearsei | 30.57383 | 37.5718450 | 0.1402095 | 1.5500493 |
Pristimantis bellator | 30.92736 | 28.4994290 | 0.1421808 | 1.2129472 |
Pristimantis bellona | 30.91696 | 40.2918659 | 0.1421661 | 1.5200168 |
Pristimantis bicumulus | 31.10025 | 37.4609995 | 0.1409600 | 1.4060560 |
Pristimantis bipunctatus | 31.19477 | 29.7655853 | 0.1399146 | 1.4733341 |
Pristimantis boulengeri | 30.95917 | 30.9816412 | 0.1432564 | 1.2956178 |
Pristimantis simoterus | 31.18782 | 26.8643573 | 0.1414538 | 1.1897259 |
Pristimantis chloronotus | 30.99825 | 21.0683397 | 0.1419105 | 0.9168338 |
Pristimantis bromeliaceus | 30.86549 | 23.0566865 | 0.1414344 | 1.0024918 |
Pristimantis buckleyi | 29.41748 | 21.5701118 | 0.1440273 | 0.8922839 |
Pristimantis cabrerai | 30.94467 | 26.6444778 | 0.1429298 | 1.0920688 |
Pristimantis cacao | 31.16323 | 19.5951888 | 0.1411689 | 0.8499632 |
Pristimantis caeruleonotus | 31.03145 | 29.6069015 | 0.1415763 | 1.2329962 |
Pristimantis cajamarcensis | 31.00148 | 28.4707168 | 0.1426197 | 1.2252203 |
Pristimantis calcaratus | 31.19696 | 34.6535559 | 0.1432507 | 1.4097169 |
Pristimantis calcarulatus | 30.87311 | 16.7416286 | 0.1414114 | 0.7196606 |
Pristimantis cantitans | 31.08417 | 37.2044163 | 0.1398356 | 1.3770015 |
Pristimantis capitonis | 31.20890 | 25.3271254 | 0.1412860 | 1.0547215 |
Pristimantis caprifer | 31.03352 | 35.0222419 | 0.1410470 | 1.3993003 |
Pristimantis carlossanchezi | 30.98460 | 30.9783634 | 0.1397317 | 1.2808453 |
Pristimantis carmelitae | 31.15569 | 30.4831321 | 0.1413436 | 1.0786346 |
Pristimantis carranguerorum | 31.25381 | 21.8134727 | 0.1380979 | 0.9600976 |
Pristimantis lynchi | 31.15393 | 25.0259858 | 0.1405114 | 1.1141361 |
Pristimantis caryophyllaceus | 31.24009 | 36.9405566 | 0.1384617 | 1.3786685 |
Pristimantis celator | 30.89284 | 20.6153495 | 0.1415571 | 0.8718425 |
Pristimantis cerasinus | 31.06272 | 38.3138345 | 0.1421030 | 1.4245649 |
Pristimantis ceuthospilus | 30.99335 | 34.5828807 | 0.1431215 | 1.4589830 |
Pristimantis chalceus | 31.09815 | 30.7954614 | 0.1431853 | 1.2228797 |
Pristimantis charlottevillensis | 31.15658 | 79.0619032 | 0.1430672 | 2.9625604 |
Pristimantis chiastonotus | 31.11341 | 40.7042320 | 0.1420649 | 1.4782386 |
Pristimantis chimu | 30.93309 | 45.6842114 | 0.1437884 | 1.8647202 |
Pristimantis chrysops | 30.95494 | 34.9657504 | 0.1410602 | 1.4219056 |
Pristimantis citriogaster | 30.62897 | 25.6361752 | 0.1393321 | 1.0759542 |
Pristimantis malkini | 31.22066 | 34.0979980 | 0.1418956 | 1.2427784 |
Pristimantis colodactylus | 31.02357 | 22.5702050 | 0.1410491 | 0.9621669 |
Pristimantis colomai | 32.93913 | 18.6425875 | 0.1407217 | 0.7931583 |
Pristimantis colonensis | 31.00632 | 28.8610059 | 0.1431424 | 1.1933034 |
Pristimantis colostichos | 31.04084 | 33.5923418 | 0.1421005 | 1.3069882 |
Pristimantis condor | 31.01457 | 21.1184165 | 0.1388079 | 0.8965223 |
Pristimantis paramerus | 31.15880 | 35.0137152 | 0.1408077 | 1.3229796 |
Pristimantis cordovae | 31.16194 | 20.0028159 | 0.1436338 | 0.9589794 |
Pristimantis corniger | 31.02328 | 36.3688192 | 0.1433105 | 1.4424695 |
Pristimantis coronatus | 31.03566 | 31.6592002 | 0.1422709 | 1.3499494 |
Pristimantis corrugatus | 30.97727 | 24.3656389 | 0.1434329 | 1.1305623 |
Pristimantis cosnipatae | 30.95193 | 7.6168291 | 0.1411423 | 0.5180947 |
Pristimantis cremnobates | 30.44370 | 26.7569728 | 0.1463648 | 1.1228828 |
Pristimantis labiosus | 31.17826 | 21.9126590 | 0.1422062 | 0.8931156 |
Pristimantis cristinae | 30.88459 | 29.2485436 | 0.1414059 | 1.0757136 |
Pristimantis croceoinguinis | 31.06083 | 30.8948159 | 0.1420859 | 1.1830624 |
Pristimantis crucifer | 31.14937 | 27.8871191 | 0.1420879 | 1.1570619 |
Pristimantis cruciocularis | 31.10232 | 32.6326170 | 0.1438612 | 1.5287425 |
Pristimantis cruentus | 31.08236 | 43.2159564 | 0.1412237 | 1.6058982 |
Pristimantis cryophilius | 31.15515 | 17.0449637 | 0.1409967 | 0.7169602 |
Pristimantis cryptomelas | 31.16007 | 21.7266719 | 0.1420954 | 0.9377878 |
Pristimantis cuentasi | 31.01403 | 25.8834269 | 0.1424709 | 0.9643038 |
Pristimantis cuneirostris | 30.96409 | 29.8044873 | 0.1433572 | 1.2272826 |
Pristimantis gentryi | 31.40691 | 11.8101416 | 0.1422761 | 0.5176634 |
Pristimantis truebae | 31.23313 | 11.3262511 | 0.1431146 | 0.5034856 |
Pristimantis degener | 30.89072 | 23.0006242 | 0.1437536 | 0.9928935 |
Pristimantis deinops | 31.01503 | 31.8307929 | 0.1408342 | 1.2933234 |
Pristimantis delicatus | 30.97379 | 33.6232031 | 0.1389803 | 1.1903973 |
Pristimantis delius | 31.12685 | 31.7619861 | 0.1409002 | 1.1603182 |
Pristimantis dendrobatoides | 30.95337 | 38.8781100 | 0.1446995 | 1.4416745 |
Pristimantis devillei | 30.93010 | 15.2608702 | 0.1420018 | 0.6951410 |
Pristimantis surdus | 31.10737 | 13.1757987 | 0.1411520 | 0.6420217 |
Pristimantis diadematus | 30.87864 | 33.9074858 | 0.1454086 | 1.3609584 |
Pristimantis diaphonus | 30.95767 | 35.2797427 | 0.1448384 | 1.4094873 |
Pristimantis diogenes | 30.59947 | 31.6922415 | 0.1387077 | 1.3001261 |
Pristimantis dissimulatus | 30.96219 | 10.6822216 | 0.1393313 | 0.5288955 |
Pristimantis divnae | 30.89074 | 21.7218139 | 0.1425388 | 1.1306351 |
Pristimantis dorsopictus | 31.01974 | 22.1717376 | 0.1406153 | 1.0261234 |
Pristimantis duellmani | 31.03791 | 24.0969444 | 0.1416439 | 1.0391486 |
Pristimantis quinquagesimus | 31.02702 | 20.1027963 | 0.1394137 | 0.8516707 |
Pristimantis duende | 31.12746 | 38.2836313 | 0.1420369 | 1.5812650 |
Pristimantis dundeei | 30.98373 | 32.0687946 | 0.1421031 | 1.2073473 |
Pristimantis epacrus | 31.13871 | 34.4603154 | 0.1430720 | 1.3692084 |
Pristimantis eremitus | 31.05696 | 19.8995859 | 0.1388207 | 0.8727069 |
Pristimantis eriphus | 30.88579 | 18.0022558 | 0.1433050 | 0.7859408 |
Pristimantis ernesti | 30.96070 | 27.8789449 | 0.1428195 | 1.1666442 |
Pristimantis erythropleura | 30.95855 | 33.2708610 | 0.1402391 | 1.3678111 |
Pristimantis esmeraldas | 31.00188 | 31.1101486 | 0.1412322 | 1.2529121 |
Pristimantis eugeniae | 31.01564 | 17.3497239 | 0.1407453 | 0.7705952 |
Pristimantis euphronides | 31.10420 | 55.4705066 | 0.1425644 | 1.9878044 |
Pristimantis shrevei | 31.03947 | 62.6456620 | 0.1388183 | 2.3031677 |
Pristimantis eurydactylus | 30.89513 | 37.3792488 | 0.1412482 | 1.3321057 |
Pristimantis exoristus | 31.11290 | 32.5521196 | 0.1396677 | 1.3071759 |
Pristimantis factiosus | 31.02638 | 29.0847804 | 0.1417635 | 1.2248051 |
Pristimantis fasciatus | 31.11034 | 30.9478806 | 0.1417463 | 1.1414593 |
Pristimantis fetosus | 30.98010 | 28.0848159 | 0.1414207 | 1.2142406 |
Pristimantis floridus | 30.97654 | 10.7545091 | 0.1422311 | 0.5384819 |
Pristimantis gaigei | 31.11979 | 39.2503184 | 0.1396281 | 1.5303223 |
Pristimantis galdi | 30.89531 | 23.7534747 | 0.1421262 | 1.0024282 |
Pristimantis ganonotus | 31.04577 | 11.4329810 | 0.1415401 | 0.5615751 |
Pristimantis gladiator | 32.09258 | 19.8547177 | 0.1407485 | 0.8669631 |
Pristimantis glandulosus | 31.12857 | 16.1265285 | 0.1430663 | 0.7313217 |
Pristimantis inusitatus | 30.97910 | 15.8326305 | 0.1423543 | 0.7186755 |
Pristimantis gracilis | 31.03441 | 33.0100886 | 0.1363854 | 1.3977053 |
Pristimantis grandiceps | 30.98616 | 25.0017438 | 0.1411065 | 1.1079352 |
Pristimantis gutturalis | 31.03603 | 43.8059575 | 0.1434507 | 1.5865285 |
Pristimantis hectus | 31.03819 | 19.2007100 | 0.1431320 | 0.8401856 |
Pristimantis helvolus | 30.94958 | 26.9358098 | 0.1431268 | 1.1387968 |
Pristimantis hernandezi | 30.90182 | 25.2623794 | 0.1432197 | 1.0338119 |
Pristimantis huicundo | 31.01221 | 22.8578875 | 0.1430645 | 1.0129607 |
Pristimantis hybotragus | 30.96826 | 35.5914915 | 0.1409165 | 1.4197549 |
Pristimantis ignicolor | 30.95864 | 15.8921168 | 0.1421994 | 0.7204050 |
Pristimantis illotus | 31.00542 | 18.1408776 | 0.1413864 | 0.8149204 |
Pristimantis imitatrix | 31.17198 | 35.8426560 | 0.1429683 | 1.5922203 |
Pristimantis incanus | 31.10567 | 17.7980146 | 0.1427471 | 0.8087484 |
Pristimantis infraguttatus | 30.87681 | 16.8190598 | 0.1431446 | 0.8131664 |
Pristimantis inguinalis | 30.97935 | 33.9561596 | 0.1428909 | 1.2313619 |
Pristimantis insignitus | 31.12924 | 29.2764024 | 0.1436091 | 1.0798418 |
Pristimantis ixalus | 30.49587 | 35.3385936 | 0.1418652 | 1.4322975 |
Pristimantis jaimei | 31.00442 | 27.9871144 | 0.1403284 | 1.1458831 |
Pristimantis johannesdei | 31.03024 | 36.1278311 | 0.1405464 | 1.4223960 |
Pristimantis jorgevelosai | 30.41636 | 27.7473935 | 0.1429881 | 1.1724203 |
Pristimantis juanchoi | 31.08469 | 33.9087260 | 0.1405530 | 1.3806122 |
Pristimantis palmeri | 31.08964 | 29.6292785 | 0.1427813 | 1.2298588 |
Pristimantis jubatus | 31.01363 | 28.4354079 | 0.1404870 | 1.1682270 |
Pristimantis kareliae | 30.62263 | 31.4207196 | 0.1420042 | 1.1652421 |
Pristimantis katoptroides | 30.98854 | 20.6591759 | 0.1401472 | 0.8655198 |
Pristimantis lacrimosus | 31.02499 | 35.2857229 | 0.1400527 | 1.4349018 |
Pristimantis lanthanites | 31.15526 | 36.2419637 | 0.1413025 | 1.3310129 |
Pristimantis thectopternus | 30.96342 | 27.5176553 | 0.1387615 | 1.1506663 |
Pristimantis lasalleorum | 30.99091 | 38.1523427 | 0.1412322 | 1.4455790 |
Pristimantis lemur | 30.94577 | 29.5296102 | 0.1426418 | 1.2089632 |
Pristimantis leoni | 31.17578 | 20.4060313 | 0.1410074 | 0.8917304 |
Pristimantis leptolophus | 30.99297 | 32.8452337 | 0.1415071 | 1.3396492 |
Pristimantis leucopus | 30.94169 | 22.3285497 | 0.1424323 | 0.9692936 |
Pristimantis librarius | 29.52542 | 24.7320189 | 0.1429483 | 0.9607851 |
Pristimantis lichenoides | 30.56387 | 27.7422474 | 0.1416321 | 1.2033160 |
Pristimantis lirellus | 30.85436 | 25.3456675 | 0.1393980 | 1.0699250 |
Pristimantis lividus | 30.92449 | 16.0975712 | 0.1421044 | 0.7362307 |
Pristimantis llojsintuta | 31.06710 | 24.8913510 | 0.1395217 | 1.2775557 |
Pristimantis loustes | 31.03870 | 22.8780460 | 0.1418456 | 0.9787711 |
Pristimantis lucasi | 30.95016 | 22.3386536 | 0.1431706 | 1.0447456 |
Pristimantis luscombei | 30.99602 | 31.9487270 | 0.1432344 | 1.2146376 |
Pristimantis luteolateralis | 30.94180 | 10.9410833 | 0.1400919 | 0.5452063 |
Pristimantis walkeri | 31.05436 | 20.7722034 | 0.1419659 | 0.8629004 |
Pristimantis lythrodes | 31.06595 | 41.5520988 | 0.1408350 | 1.4174492 |
Pristimantis maculosus | 30.88284 | 22.1050325 | 0.1458932 | 1.0201969 |
Pristimantis marahuaka | 31.09973 | 36.0792122 | 0.1406780 | 1.3917722 |
Pristimantis marmoratus | 31.15084 | 37.1581950 | 0.1431021 | 1.3582951 |
Pristimantis pulvinatus | 30.99623 | 32.0297065 | 0.1408281 | 1.1998580 |
Pristimantis mars | 31.13492 | 29.9757437 | 0.1410705 | 1.2998724 |
Pristimantis martiae | 31.14181 | 33.9794823 | 0.1428153 | 1.2430232 |
Pristimantis megalops | 31.28653 | 28.5724611 | 0.1393332 | 1.0535391 |
Pristimantis melanogaster | 31.11472 | 29.9788783 | 0.1411899 | 1.3623086 |
Pristimantis melanoproctus | 30.89197 | 24.7123419 | 0.1402746 | 1.0987402 |
Pristimantis memorans | 30.57459 | 38.7427324 | 0.1426958 | 1.4201082 |
Pristimantis mendax | 30.97976 | 25.3237794 | 0.1400269 | 1.2093054 |
Pristimantis meridionalis | 30.97244 | 15.3689050 | 0.1430115 | 0.7427748 |
Pristimantis metabates | 30.50830 | 27.8598748 | 0.1416548 | 1.1114250 |
Pristimantis minutulus | 30.92100 | 30.5944178 | 0.1395620 | 1.3868822 |
Pristimantis miyatai | 30.98044 | 24.7035167 | 0.1426732 | 1.0581394 |
Pristimantis mnionaetes | 30.99009 | 23.2522444 | 0.1417250 | 1.0267805 |
Pristimantis modipeplus | 31.00112 | 14.5615419 | 0.1393807 | 0.6449877 |
Pristimantis molybrignus | 30.92677 | 31.0381219 | 0.1409734 | 1.2670585 |
Pristimantis mondolfii | 30.98396 | 24.5716902 | 0.1410532 | 1.0927788 |
Pristimantis moro | 31.04167 | 40.6527797 | 0.1401642 | 1.4894951 |
Pristimantis muricatus | 30.99879 | 19.3788663 | 0.1418374 | 0.8340209 |
Pristimantis muscosus | 30.47629 | 27.5694699 | 0.1393743 | 1.1638503 |
Pristimantis museosus | 30.85969 | 47.6611803 | 0.1424272 | 1.7378639 |
Pristimantis myersi | 31.10556 | 26.0797398 | 0.1419671 | 1.0869093 |
Pristimantis myops | 31.09031 | 38.7731987 | 0.1435862 | 1.5991370 |
Pristimantis nephophilus | 31.00351 | 27.5857737 | 0.1405419 | 1.1682081 |
Pristimantis nicefori | 30.95316 | 24.4018390 | 0.1419596 | 1.0582320 |
Pristimantis nigrogriseus | 30.56277 | 18.0240662 | 0.1405156 | 0.7865081 |
Pristimantis nyctophylax | 30.99949 | 15.6362817 | 0.1427595 | 0.6716046 |
Pristimantis subsigillatus | 31.04304 | 28.9475421 | 0.1397987 | 1.1571046 |
Pristimantis obmutescens | 30.94886 | 27.4318754 | 0.1422884 | 1.1432767 |
Pristimantis ocellatus | 30.94326 | 29.2316722 | 0.1419846 | 1.2047933 |
Pristimantis ocreatus | 32.16620 | 24.6420530 | 0.1418018 | 1.1112376 |
Pristimantis thymelensis | 31.21232 | 20.4512962 | 0.1419016 | 0.9122795 |
Pristimantis pyrrhomerus | 31.22721 | 19.9091226 | 0.1405021 | 0.8555781 |
Pristimantis olivaceus | 31.03730 | 26.1817107 | 0.1396743 | 1.2909148 |
Pristimantis orcesi | 30.95721 | 13.1145989 | 0.1441066 | 0.6231991 |
Pristimantis orcus | 31.01646 | 35.0385029 | 0.1407863 | 1.3142737 |
Pristimantis orestes | 31.09210 | 18.4353512 | 0.1433152 | 0.7741260 |
Pristimantis ornatissimus | 31.12050 | 20.0956209 | 0.1425152 | 0.8658250 |
Pristimantis ornatus | 31.09393 | 24.0478056 | 0.1404676 | 1.1306961 |
Pristimantis orpacobates | 31.02967 | 33.3363512 | 0.1423085 | 1.3467948 |
Pristimantis orphnolaimus | 30.98756 | 33.0610276 | 0.1427460 | 1.2607054 |
Pristimantis ortizi | 31.05697 | 21.6701433 | 0.1421378 | 0.9749166 |
Pristimantis padrecarlosi | 30.48498 | 30.8618487 | 0.1383178 | 1.2806937 |
Pristimantis paisa | 30.54892 | 23.5428405 | 0.1424895 | 1.0840128 |
Pristimantis pardalinus | 31.13152 | 24.5383503 | 0.1427251 | 1.4377926 |
Pristimantis parectatus | 30.96102 | 25.7633283 | 0.1433979 | 1.1350445 |
Pristimantis parvillus | 31.17982 | 23.2446669 | 0.1411135 | 0.9405880 |
Pristimantis pastazensis | 31.08526 | 15.0864337 | 0.1396667 | 0.6723420 |
Pristimantis pataikos | 30.96814 | 24.4920676 | 0.1394702 | 1.1278775 |
Pristimantis paulodutrai | 31.04842 | 24.7864975 | 0.1398485 | 0.9781370 |
Pristimantis paululus | 31.14335 | 25.8415530 | 0.1410945 | 1.0429326 |
Pristimantis pecki | 30.86925 | 23.6925658 | 0.1420322 | 0.9757362 |
Pristimantis pedimontanus | 31.17358 | 30.0254388 | 0.1418013 | 1.1746082 |
Pristimantis penelopus | 30.98589 | 31.4197683 | 0.1433690 | 1.2376760 |
Pristimantis peraticus | 31.20949 | 35.4678967 | 0.1423991 | 1.4100212 |
Pristimantis percnopterus | 30.95001 | 29.5502153 | 0.1414836 | 1.2552033 |
Pristimantis percultus | 30.94087 | 21.9192782 | 0.1400704 | 0.9623358 |
Pristimantis permixtus | 30.96150 | 29.9036583 | 0.1423132 | 1.2551718 |
Pristimantis uranobates | 30.54872 | 25.7850434 | 0.1399484 | 1.1182820 |
Pristimantis peruvianus | 31.16337 | 35.1613759 | 0.1382450 | 1.2881087 |
Pristimantis petersi | 31.11697 | 24.7322169 | 0.1430740 | 1.0363554 |
Pristimantis petrobardus | 30.99813 | 34.8430202 | 0.1423793 | 1.5259349 |
Pristimantis phalaroinguinis | 31.02674 | 39.8946293 | 0.1419069 | 1.6276096 |
Pristimantis phalarus | 30.93226 | 40.9695158 | 0.1413561 | 1.6929737 |
Pristimantis philipi | 31.03378 | 27.3652477 | 0.1418737 | 1.0141438 |
Pristimantis piceus | 31.07969 | 27.4780217 | 0.1426077 | 1.1613276 |
Pristimantis pinguis | 31.10027 | 34.6462867 | 0.1431135 | 1.5509297 |
Pristimantis pirrensis | 31.02866 | 36.4143273 | 0.1411202 | 1.3784711 |
Pristimantis platychilus | 30.97487 | 31.3591842 | 0.1444373 | 1.2511241 |
Pristimantis pleurostriatus | 30.91447 | 29.8297626 | 0.1408134 | 1.1603466 |
Pristimantis polemistes | 30.61866 | 40.3445245 | 0.1412440 | 1.5262871 |
Pristimantis polychrus | 31.02767 | 30.0960965 | 0.1419844 | 1.2054404 |
Pristimantis prolatus | 31.01668 | 20.5522148 | 0.1423454 | 0.8786745 |
Pristimantis proserpens | 31.03421 | 20.9047080 | 0.1388187 | 0.9012766 |
Pristimantis pruinatus | 31.05500 | 42.0822268 | 0.1412989 | 1.5544402 |
Pristimantis pseudoacuminatus | 31.12590 | 34.8864740 | 0.1401397 | 1.3565517 |
Pristimantis pteridophilus | 30.86879 | 12.4784324 | 0.1441286 | 0.6109418 |
Pristimantis ptochus | 30.99640 | 34.0689748 | 0.1388606 | 1.3936774 |
Pristimantis zophus | 30.94868 | 27.5019361 | 0.1397991 | 1.1073337 |
Pristimantis pugnax | 30.47241 | 29.9969420 | 0.1404515 | 1.2399931 |
Pristimantis quantus | 30.98312 | 36.2395981 | 0.1419822 | 1.5027146 |
Pristimantis racemus | 31.04980 | 30.0880680 | 0.1425358 | 1.2590947 |
Pristimantis ramagii | 31.05375 | 28.6680858 | 0.1436519 | 1.1204309 |
Pristimantis repens | 31.02180 | 30.2625146 | 0.1401814 | 1.2364915 |
Pristimantis restrepoi | 31.14422 | 33.5623603 | 0.1399311 | 1.3463781 |
Pristimantis reticulatus | 30.99040 | 35.0464910 | 0.1415182 | 1.2914588 |
Pristimantis rhabdocnemus | 31.03103 | 24.7378210 | 0.1385865 | 1.1587276 |
Pristimantis rhabdolaemus | 30.92747 | 18.4053309 | 0.1430371 | 1.0340326 |
Pristimantis rhodoplichus | 31.16764 | 30.5367960 | 0.1392635 | 1.3016393 |
Pristimantis rhodostichus | 30.96886 | 26.3299548 | 0.1402941 | 1.0948365 |
Pristimantis ridens | 30.99763 | 41.5837228 | 0.1430745 | 1.5524930 |
Pristimantis rivasi | 31.21831 | 33.9846475 | 0.1415384 | 1.2667887 |
Pristimantis riveroi | 30.92312 | 34.4652495 | 0.1414861 | 1.2781512 |
Pristimantis versicolor | 31.42295 | 19.5516500 | 0.1388369 | 0.8198424 |
Pristimantis rosadoi | 30.99328 | 22.0879682 | 0.1427403 | 0.9157437 |
Pristimantis roseus | 30.52836 | 36.2713502 | 0.1437693 | 1.3911811 |
Pristimantis rozei | 31.01680 | 39.7664240 | 0.1373163 | 1.4634694 |
Pristimantis rubicundus | 30.90412 | 16.8638550 | 0.1424053 | 0.7343336 |
Pristimantis ruedai | 30.54214 | 33.2981122 | 0.1409599 | 1.3368777 |
Pristimantis rufioculis | 30.99144 | 29.8754013 | 0.1402570 | 1.2689262 |
Pristimantis ruidus | 30.87723 | 28.8857227 | 0.1425415 | 1.0710738 |
Pristimantis ruthveni | 31.19762 | 27.6191251 | 0.1424867 | 1.0178320 |
Pristimantis saltissimus | 30.96813 | 35.7762609 | 0.1375490 | 1.3274306 |
Pristimantis samaipatae | 30.97920 | 31.1765705 | 0.1407612 | 1.3964413 |
Pristimantis sanctaemartae | 30.85661 | 28.2367332 | 0.1441712 | 1.0418106 |
Pristimantis sanguineus | 30.98081 | 33.5913789 | 0.1436832 | 1.3372392 |
Pristimantis satagius | 31.08973 | 39.6979813 | 0.1420466 | 1.5012303 |
Pristimantis schultei | 31.04123 | 26.2972190 | 0.1399164 | 1.1798861 |
Pristimantis scitulus | 30.89022 | 18.5430376 | 0.1410441 | 1.1873176 |
Pristimantis scoloblepharus | 30.37945 | 25.5260604 | 0.1424168 | 1.1274270 |
Pristimantis scolodiscus | 31.02411 | 26.1583929 | 0.1429243 | 1.1030193 |
Pristimantis scopaeus | 30.91041 | 25.7972223 | 0.1424425 | 1.1472714 |
Pristimantis seorsus | 30.98178 | 47.3745814 | 0.1427000 | 2.3061583 |
Pristimantis serendipitus | 31.06410 | 23.2633857 | 0.1438600 | 1.0354008 |
Pristimantis signifer | 31.08860 | 39.0486327 | 0.1426785 | 1.6137226 |
Pristimantis silverstonei | 31.06195 | 36.4513936 | 0.1419594 | 1.4542824 |
Pristimantis simonsii | 31.04819 | 32.0209609 | 0.1408939 | 1.4323920 |
Pristimantis simoteriscus | 31.13892 | 25.4689256 | 0.1398859 | 1.1893082 |
Pristimantis siopelus | 30.85026 | 38.7212530 | 0.1436912 | 1.5601065 |
Pristimantis skydmainos | 30.98755 | 34.4289783 | 0.1407689 | 1.4345369 |
Pristimantis sobetes | 30.89730 | 10.8251927 | 0.1444545 | 0.5424297 |
Pristimantis spectabilis | 31.04663 | 25.1600341 | 0.1414419 | 1.1859598 |
Pristimantis spilogaster | 30.94591 | 32.9770680 | 0.1436661 | 1.3381266 |
Pristimantis spinosus | 30.99944 | 16.2417290 | 0.1428378 | 0.6972266 |
Pristimantis stenodiscus | 31.07251 | 35.2668011 | 0.1422943 | 1.2952023 |
Pristimantis sternothylax | 30.95866 | 32.7328081 | 0.1418117 | 1.3534177 |
Pristimantis stictoboubonus | 31.08280 | 32.4137441 | 0.1429509 | 1.4256550 |
Pristimantis stictogaster | 31.26460 | 24.9480628 | 0.1416979 | 1.1703742 |
Pristimantis suetus | 30.97820 | 25.1537636 | 0.1415244 | 1.0492079 |
Pristimantis sulculus | 31.03502 | 41.2071863 | 0.1424858 | 1.6599008 |
Pristimantis supernatis | 30.38250 | 27.4479094 | 0.1422440 | 1.1640589 |
Pristimantis susaguae | 30.88780 | 30.4476306 | 0.1436859 | 1.2856409 |
Pristimantis taciturnus | 30.40151 | 22.5335381 | 0.1441158 | 0.9785597 |
Pristimantis yukpa | 32.55746 | 24.1231741 | 0.1385697 | 0.9112438 |
Pristimantis tamsitti | 31.10146 | 32.5721074 | 0.1394898 | 1.2956865 |
Pristimantis tantanti | 30.94483 | 42.3491186 | 0.1435596 | 1.9075121 |
Pristimantis tanyrhynchus | 31.02337 | 41.6188034 | 0.1459125 | 2.0253399 |
Pristimantis tayrona | 31.06285 | 31.2994848 | 0.1418545 | 1.1549187 |
Pristimantis telefericus | 31.19927 | 27.9885284 | 0.1416909 | 1.0903882 |
Pristimantis tenebrionis | 30.99324 | 22.7475794 | 0.1426276 | 0.9372821 |
Pristimantis thymalopsoides | 30.97237 | 10.3808888 | 0.1435540 | 0.5188797 |
Pristimantis torrenticola | 31.01695 | 28.8436363 | 0.1419078 | 1.2521610 |
Pristimantis tribulosus | 30.97391 | 31.9106293 | 0.1414754 | 1.3833169 |
Pristimantis tubernasus | 31.00483 | 29.4958275 | 0.1422894 | 1.1656341 |
Pristimantis turik | 30.97903 | 31.0461470 | 0.1437846 | 1.1183692 |
Pristimantis turpinorum | 31.05377 | 91.3204466 | 0.1407496 | 3.4215602 |
Pristimantis turumiquirensis | 31.07634 | 38.6896189 | 0.1417143 | 1.4255265 |
Pristimantis uisae | 30.93802 | 26.3068015 | 0.1404259 | 1.1239710 |
Pristimantis urichi | 31.20113 | 61.4565628 | 0.1440819 | 2.3181679 |
Pristimantis variabilis | 30.95869 | 35.6481018 | 0.1424229 | 1.3216277 |
Pristimantis veletis | 30.96942 | 29.3768716 | 0.1429881 | 1.2721732 |
Pristimantis ventriguttatus | 31.05523 | 44.6782600 | 0.1422234 | 1.8216824 |
Pristimantis ventrimarmoratus | 31.03863 | 29.1816350 | 0.1432615 | 1.2175494 |
Pristimantis verecundus | 31.01718 | 22.7997633 | 0.1419316 | 1.0007582 |
Pristimantis vicarius | 31.16592 | 31.7754836 | 0.1384869 | 1.3167770 |
Pristimantis vidua | 31.17648 | 14.2408757 | 0.1408012 | 0.6604716 |
Pristimantis viejas | 31.10940 | 35.1952321 | 0.1405209 | 1.3858712 |
Pristimantis vilarsi | 31.12640 | 37.2334883 | 0.1407786 | 1.3339770 |
Pristimantis vilcabambae | 31.19602 | 41.4015047 | 0.1415052 | 2.0130128 |
Pristimantis vinhai | 31.12242 | 25.8692048 | 0.1430886 | 1.0241214 |
Pristimantis viridicans | 31.17356 | 28.0927504 | 0.1431327 | 1.1428555 |
Pristimantis viridis | 30.88892 | 38.9709360 | 0.1419723 | 1.4875418 |
Pristimantis wagteri | 31.22214 | 29.5078329 | 0.1418191 | 1.3394063 |
Pristimantis waoranii | 30.95652 | 38.0958077 | 0.1428619 | 1.4690242 |
Pristimantis wiensi | 30.88954 | 28.3655121 | 0.1409499 | 1.2401467 |
Pristimantis xeniolum | 31.02246 | 33.6941104 | 0.1414176 | 1.3907970 |
Pristimantis xestus | 31.04127 | 39.3914174 | 0.1404471 | 1.5157500 |
Pristimantis xylochobates | 30.97269 | 34.6848787 | 0.1438149 | 1.4329821 |
Pristimantis yaviensis | 31.13343 | 33.9921211 | 0.1388608 | 1.2550159 |
Pristimantis yustizi | 31.00409 | 28.0476600 | 0.1435642 | 1.1013728 |
Pristimantis zeuctotylus | 31.06773 | 38.6334764 | 0.1411715 | 1.3971515 |
Pristimantis zimmermanae | 31.20215 | 34.2278168 | 0.1424212 | 1.1976894 |
Pristimantis zoilae | 31.07241 | 25.8954192 | 0.1413943 | 1.0743381 |
Dischidodactylus colonnelloi | 29.74155 | 30.8703075 | 0.1448719 | 1.1878822 |
Dischidodactylus duidensis | 29.90281 | 35.4053376 | 0.1435711 | 1.3635790 |
Geobatrachus walkeri | 29.84019 | 30.3138705 | 0.1427746 | 1.1181233 |
Niceforonia adenobrachia | 29.87077 | 24.9120149 | 0.1430067 | 1.1695673 |
Niceforonia nana | 29.93929 | 27.0819074 | 0.1445564 | 1.1521140 |
Strabomantis anatipes | 29.23740 | 28.9460745 | 0.1426928 | 1.1812103 |
Strabomantis ingeri | 29.84504 | 30.0653342 | 0.1444690 | 1.2733725 |
Strabomantis cheiroplethus | 29.23801 | 40.6758501 | 0.1455520 | 1.5894479 |
Strabomantis anomalus | 29.24815 | 35.9188515 | 0.1417881 | 1.4136362 |
Strabomantis bufoniformis | 29.21992 | 39.8614863 | 0.1453446 | 1.5188789 |
Strabomantis cadenai | 29.90465 | 38.5093787 | 0.1445026 | 1.4583771 |
Strabomantis ruizi | 29.89065 | 37.5370451 | 0.1434772 | 1.5286478 |
Strabomantis helonotus | 29.99954 | 16.0279693 | 0.1432090 | 0.7229732 |
Strabomantis zygodactylus | 29.41606 | 38.2636596 | 0.1420161 | 1.4927472 |
Strabomantis cornutus | 29.90696 | 25.0424044 | 0.1437065 | 1.0411542 |
Strabomantis laticorpus | 29.94447 | 38.7313240 | 0.1434167 | 1.3764923 |
Strabomantis biporcatus | 29.96997 | 37.5653163 | 0.1435798 | 1.3910374 |
Strabomantis cerastes | 29.93989 | 37.0092946 | 0.1423630 | 1.5048930 |
Strabomantis necopinus | 29.88907 | 24.1951147 | 0.1428273 | 1.0604300 |
Strabomantis sulcatus | 29.91077 | 35.3412344 | 0.1446140 | 1.3158555 |
Barycholos pulcher | 28.79422 | 22.8095685 | 0.1470936 | 0.9044686 |
Barycholos ternetzi | 28.68012 | 25.5851096 | 0.1480911 | 0.9386009 |
Noblella heyeri | 29.01416 | 23.5237046 | 0.1439845 | 1.0127522 |
Noblella lochites | 28.96411 | 27.0173966 | 0.1459307 | 1.0833723 |
Noblella lynchi | 28.74718 | 32.1515731 | 0.1459776 | 1.3722798 |
Noblella ritarasquinae | 28.82412 | 20.4614312 | 0.1450143 | 1.1038921 |
Noblella carrascoicola | 28.78725 | 21.0469598 | 0.1441390 | 1.1326133 |
Noblella coloma | 28.77911 | 9.9057673 | 0.1456369 | 0.4926721 |
Noblella duellmani | 28.71363 | 23.4573231 | 0.1456906 | 1.0983695 |
Bryophryne bustamantei | 26.60975 | 13.0464913 | 0.1521829 | 0.7013680 |
Bryophryne zonalis | 26.66583 | 6.5073402 | 0.1489830 | 0.4048702 |
Euparkerella brasiliensis | 28.76907 | 25.4585616 | 0.1443181 | 0.9588340 |
Euparkerella cochranae | 28.81875 | 27.3426448 | 0.1417638 | 1.0475478 |
Euparkerella tridactyla | 28.76712 | 31.9229835 | 0.1460796 | 1.2388806 |
Euparkerella robusta | 28.79471 | 35.5500151 | 0.1426558 | 1.4203507 |
Holoaden bradei | 28.75090 | 23.0015136 | 0.1459631 | 0.8644424 |
Holoaden pholeter | 28.73927 | 23.9808557 | 0.1449454 | 0.8919926 |
Holoaden luederwaldti | 28.79675 | 22.2710348 | 0.1453019 | 0.8635545 |
Psychrophrynella bagrecito | 28.47030 | 7.6683419 | 0.1477262 | 0.4710627 |
Ceratophrys testudo | 36.79448 | 12.5892948 | 0.1294958 | 0.5625136 |
Ceratophrys calcarata | 37.71563 | 29.9213878 | 0.1306390 | 1.0997181 |
Ceratophrys cornuta | 36.71653 | 33.4218218 | 0.1331219 | 1.2116541 |
Ceratophrys stolzmanni | 37.70877 | 20.5614047 | 0.1301364 | 0.8397476 |
Ceratophrys ornata | 37.77087 | 8.0353426 | 0.1267859 | 0.3511068 |
Chacophrys pierottii | 38.07281 | 16.9679853 | 0.1280263 | 0.6721132 |
Lepidobatrachus asper | 37.47809 | 15.0414316 | 0.1289875 | 0.5634447 |
Lepidobatrachus laevis | 37.51986 | 16.1196060 | 0.1289666 | 0.5973382 |
Insuetophrynus acarpicus | 33.83549 | 10.1114811 | 0.1320892 | 0.5647997 |
Rhinoderma darwinii | 34.42020 | 8.4885805 | 0.1319995 | 0.5506988 |
Rhinoderma rufum | 34.41090 | 14.1063158 | 0.1312037 | 0.7221340 |
Telmatobius arequipensis | 34.66308 | 11.7285360 | 0.1329023 | 0.7477356 |
Telmatobius oxycephalus | 34.63942 | 16.3229382 | 0.1340871 | 0.8980337 |
Telmatobius sanborni | 34.73773 | 21.2165792 | 0.1330462 | 1.2988733 |
Telmatobius verrucosus | 34.65678 | 25.9555200 | 0.1327813 | 1.3855662 |
Telmatobius atacamensis | 34.55270 | 10.8900981 | 0.1319866 | 0.7496478 |
Telmatobius ignavus | 34.59028 | 35.0948030 | 0.1335104 | 1.5369616 |
Telmatobius atahualpai | 34.70419 | 26.8943991 | 0.1319562 | 1.3173212 |
Telmatobius rimac | 34.75774 | 24.1389553 | 0.1283266 | 1.2681115 |
Telmatobius yuracare | 34.56443 | 39.0527171 | 0.1356199 | 1.7297011 |
Telmatobius simonsi | 34.61906 | 27.2821549 | 0.1319229 | 1.3566826 |
Telmatobius brevipes | 34.71546 | 22.1351107 | 0.1293928 | 1.0999859 |
Telmatobius colanensis | 33.70486 | 35.1712204 | 0.1357734 | 1.4529040 |
Telmatobius brevirostris | 34.70112 | 23.4735871 | 0.1340476 | 1.1730307 |
Telmatobius carrillae | 34.67065 | 14.1355751 | 0.1313056 | 0.8690727 |
Telmatobius peruvianus | 34.64273 | 10.8204129 | 0.1337382 | 0.7361577 |
Telmatobius hockingi | 33.80141 | 13.3636187 | 0.1327139 | 0.7644904 |
Telmatobius chusmisensis | 33.85149 | 11.7761023 | 0.1321257 | 0.7416641 |
Telmatobius intermedius | 34.69791 | 19.7768738 | 0.1316179 | 1.2962607 |
Telmatobius scrocchii | 34.62945 | 15.6321810 | 0.1326299 | 0.7424888 |
Telmatobius contrerasi | 33.89042 | 10.8989015 | 0.1320430 | 0.5140180 |
Telmatobius philippii | 34.69283 | 6.0106151 | 0.1307274 | 0.5767083 |
Telmatobius culeus | 34.54217 | 16.2800182 | 0.1320651 | 0.9988798 |
Telmatobius gigas | 33.79863 | 13.9437135 | 0.1333855 | 0.8863709 |
Telmatobius hintoni | 34.57949 | 22.9998124 | 0.1335229 | 1.2532377 |
Telmatobius huayra | 34.58479 | 10.4513398 | 0.1323496 | 0.7052357 |
Telmatobius zapahuirensis | 34.64117 | 8.9078332 | 0.1321290 | 0.5250326 |
Telmatobius dankoi | 34.58644 | 13.6696395 | 0.1326362 | 0.9306192 |
Telmatobius vilamensis | 34.69893 | 13.1325514 | 0.1324396 | 0.8934568 |
Telmatobius degener | 34.56807 | 28.8520380 | 0.1336764 | 1.2803406 |
Telmatobius fronteriensis | 33.77814 | 8.1448506 | 0.1314647 | 0.6754697 |
Telmatobius schreiteri | 34.51829 | 13.4149906 | 0.1338666 | 0.6573820 |
Telmatobius halli | 34.74289 | 5.7731376 | 0.1307878 | 0.5621666 |
Telmatobius jelskii | 34.66788 | 13.1387238 | 0.1319360 | 0.7879927 |
Telmatobius hauthali | 34.65375 | 5.9141444 | 0.1341665 | 0.4672283 |
Telmatobius necopinus | 33.90055 | 19.0730176 | 0.1323916 | 0.9179413 |
Telmatobius hypselocephalus | 34.62748 | 11.4581677 | 0.1309177 | 0.7895836 |
Telmatobius mayoloi | 34.57327 | 21.4243544 | 0.1358135 | 0.9740227 |
Telmatobius platycephalus | 34.49522 | 14.1934119 | 0.1334609 | 0.9052351 |
Telmatobius latirostris | 34.66668 | 39.4240321 | 0.1308527 | 1.7212200 |
Telmatobius timens | 34.66383 | 16.0434680 | 0.1312002 | 0.9738447 |
Telmatobius marmoratus | 34.65960 | 12.1862336 | 0.1326062 | 0.7712763 |
Telmatobius stephani | 34.59154 | 16.4196090 | 0.1309627 | 0.7813183 |
Telmatobius niger | 34.58312 | 19.7923450 | 0.1362756 | 0.8428839 |
Telmatobius pefauri | 33.67388 | 8.7938029 | 0.1338766 | 0.5259015 |
Telmatobius punctatus | 34.54418 | 21.0255468 | 0.1352885 | 1.0776961 |
Telmatobius pinguiculus | 34.54978 | 12.2220735 | 0.1322846 | 0.6231694 |
Telmatobius pisanoi | 34.56154 | 6.2354584 | 0.1312654 | 0.4216268 |
Telmatobius thompsoni | 34.66865 | 31.0705354 | 0.1335804 | 1.3737733 |
Telmatobius truebae | 34.64204 | 35.8516899 | 0.1329205 | 1.6489196 |
Cycloramphus acangatan | 34.12301 | 21.6349533 | 0.1335735 | 0.8209827 |
Cycloramphus valae | 33.50463 | 16.9667079 | 0.1317982 | 0.6851981 |
Cycloramphus eleutherodactylus | 34.03766 | 21.2664114 | 0.1341898 | 0.8142754 |
Cycloramphus juimirim | 33.46189 | 21.2050638 | 0.1339627 | 0.8002706 |
Cycloramphus asper | 33.57773 | 17.8178319 | 0.1349373 | 0.7245525 |
Cycloramphus izecksohni | 33.53925 | 18.5282720 | 0.1354966 | 0.7473979 |
Cycloramphus bolitoglossus | 34.13196 | 18.2337843 | 0.1358806 | 0.7253940 |
Cycloramphus granulosus | 33.50223 | 24.3637207 | 0.1344150 | 0.9497888 |
Cycloramphus boraceiensis | 33.56138 | 27.5805190 | 0.1348102 | 1.0631708 |
Cycloramphus brasiliensis | 33.56526 | 27.2649647 | 0.1347321 | 1.0266068 |
Cycloramphus diringshofeni | 34.20279 | 18.7078672 | 0.1352356 | 0.7476095 |
Cycloramphus organensis | 34.14389 | 25.6001728 | 0.1332857 | 0.9743229 |
Zachaenus carvalhoi | 34.13853 | 36.2444704 | 0.1359304 | 1.4046595 |
Zachaenus parvulus | 34.09740 | 31.0236825 | 0.1338144 | 1.2019479 |
Cycloramphus carvalhoi | 34.15596 | 25.3284932 | 0.1344062 | 0.9466716 |
Cycloramphus stejnegeri | 34.20689 | 25.0442978 | 0.1319044 | 0.9416714 |
Cycloramphus catarinensis | 34.11660 | 19.3080578 | 0.1334979 | 0.7765676 |
Cycloramphus faustoi | 33.51151 | 24.6110986 | 0.1346158 | 1.0035638 |
Cycloramphus cedrensis | 33.55917 | 18.4372829 | 0.1345789 | 0.7373661 |
Cycloramphus lutzorum | 33.52594 | 19.4661935 | 0.1333052 | 0.7568050 |
Cycloramphus semipalmatus | 33.51292 | 20.7729623 | 0.1345247 | 0.8052103 |
Cycloramphus dubius | 33.48138 | 19.2039047 | 0.1342796 | 0.7366764 |
Cycloramphus duseni | 33.54028 | 17.2132126 | 0.1337542 | 0.7063795 |
Cycloramphus migueli | 34.15050 | 33.8958246 | 0.1331605 | 1.3338345 |
Cycloramphus rhyakonastes | 33.45096 | 17.0250230 | 0.1337780 | 0.6949129 |
Cycloramphus mirandaribeiroi | 33.54921 | 17.1865192 | 0.1335203 | 0.7137500 |
Cycloramphus ohausi | 33.54305 | 25.0778105 | 0.1351217 | 0.9435750 |
Cycloramphus bandeirensis | 33.64941 | 30.9880660 | 0.1316952 | 1.2000347 |
Cycloramphus fuliginosus | 33.55294 | 34.2914633 | 0.1307345 | 1.3343813 |
Thoropa lutzi | 33.65193 | 33.8151049 | 0.1325176 | 1.2990627 |
Thoropa megatympanum | 33.62663 | 21.4759799 | 0.1313875 | 0.8452134 |
Thoropa miliaris | 33.61804 | 26.8397553 | 0.1324745 | 1.0469858 |
Thoropa petropolitana | 33.62222 | 28.5760550 | 0.1343982 | 1.1072662 |
Thoropa saxatilis | 33.66718 | 17.0913060 | 0.1302905 | 0.6842781 |
Atelognathus ceii | 33.79099 | 4.2604501 | 0.1324595 | 0.3419694 |
Atelognathus solitarius | 33.60786 | 5.4256441 | 0.1348514 | 0.3492398 |
Atelognathus patagonicus | 33.90485 | 6.3085395 | 0.1325440 | 0.3564903 |
Atelognathus nitoi | 33.93817 | 6.2375667 | 0.1318028 | 0.3863246 |
Atelognathus praebasalticus | 33.66939 | 7.0367074 | 0.1354662 | 0.3954727 |
Atelognathus salai | 33.90844 | 4.1258330 | 0.1331864 | 0.3237586 |
Atelognathus reverberii | 33.95265 | 7.2730845 | 0.1336527 | 0.4377798 |
Batrachyla antartandica | 33.59883 | 4.0081742 | 0.1329361 | 0.2879331 |
Batrachyla nibaldoi | 33.54891 | 2.7578507 | 0.1327929 | 0.2678902 |
Batrachyla fitzroya | 33.56875 | 4.6930384 | 0.1349649 | 0.2961448 |
Batrachyla leptopus | 33.49616 | 5.9522479 | 0.1370922 | 0.4019248 |
Chaltenobatrachus grandisonae | 33.08801 | 3.2564232 | 0.1334558 | 0.3311840 |
Crossodactylus aeneus | 33.03931 | 19.3980863 | 0.1325571 | 0.7471191 |
Crossodactylus dantei | 33.07561 | 36.5151546 | 0.1312715 | 1.4185454 |
Crossodactylus gaudichaudii | 33.00234 | 21.2012612 | 0.1345407 | 0.8187714 |
Crossodactylus grandis | 32.99339 | 21.1473391 | 0.1344911 | 0.7887769 |
Crossodactylus bokermanni | 32.99551 | 16.1472118 | 0.1328247 | 0.6539075 |
Crossodactylus lutzorum | 33.00105 | 25.1715950 | 0.1326672 | 1.0119094 |
Crossodactylus caramaschii | 32.96558 | 16.2066705 | 0.1327531 | 0.6169999 |
Crossodactylus cyclospinus | 33.63075 | 23.5619804 | 0.1344478 | 0.9239673 |
Crossodactylus trachystomus | 32.99812 | 17.1069889 | 0.1355959 | 0.6795105 |
Crossodactylus dispar | 33.07296 | 19.8449613 | 0.1348048 | 0.7693472 |
Hylodes amnicola | 33.26054 | 25.1951568 | 0.1329818 | 0.9596823 |
Hylodes mertensi | 33.13434 | 20.8070055 | 0.1341468 | 0.8060029 |
Hylodes asper | 33.18229 | 21.3591567 | 0.1353130 | 0.8292778 |
Hylodes meridionalis | 33.21663 | 16.1572754 | 0.1341140 | 0.6618359 |
Hylodes babax | 33.23440 | 31.5711243 | 0.1379123 | 1.2213458 |
Hylodes vanzolinii | 33.25446 | 32.0644809 | 0.1332977 | 1.2414066 |
Hylodes cardosoi | 33.22776 | 17.8819083 | 0.1346555 | 0.6991830 |
Hylodes charadranaetes | 33.24967 | 26.4071192 | 0.1346674 | 0.9903258 |
Hylodes dactylocinus | 33.12486 | 19.8216317 | 0.1332626 | 0.7406102 |
Hylodes perplicatus | 33.15274 | 17.6525428 | 0.1322037 | 0.7161140 |
Hylodes fredi | 33.30878 | 24.5281065 | 0.1304366 | 0.9774280 |
Hylodes pipilans | 33.25016 | 26.5077883 | 0.1345352 | 0.9893390 |
Hylodes glaber | 33.17275 | 24.2238513 | 0.1341457 | 0.9065383 |
Hylodes lateristrigatus | 33.19856 | 26.0610939 | 0.1360003 | 1.0116100 |
Hylodes heyeri | 33.15231 | 18.5530664 | 0.1356004 | 0.7223787 |
Hylodes regius | 33.13088 | 20.9581048 | 0.1356388 | 0.7912548 |
Hylodes magalhaesi | 33.20012 | 21.2253273 | 0.1362685 | 0.8110364 |
Hylodes ornatus | 33.16573 | 22.4364833 | 0.1342891 | 0.8663419 |
Hylodes sazimai | 33.16375 | 23.0436813 | 0.1325119 | 0.8863607 |
Hylodes uai | 33.10539 | 18.5518362 | 0.1346628 | 0.7322748 |
Hylodes otavioi | 33.25009 | 19.0276260 | 0.1362875 | 0.7758962 |
Hylodes phyllodes | 33.23579 | 22.4995719 | 0.1339317 | 0.8661196 |
Hylodes nasus | 33.30200 | 24.3117269 | 0.1332004 | 0.9420113 |
Megaelosia apuana | 33.23314 | 35.5487469 | 0.1325719 | 1.3726256 |
Megaelosia boticariana | 33.19707 | 18.5348761 | 0.1356496 | 0.7200281 |
Megaelosia bocainensis | 33.21438 | 25.0557720 | 0.1343462 | 0.9370434 |
Megaelosia lutzae | 33.25773 | 23.5638712 | 0.1327781 | 0.8818992 |
Megaelosia goeldii | 33.18083 | 27.4775029 | 0.1338668 | 1.0539028 |
Megaelosia jordanensis | 33.79370 | 21.5187628 | 0.1332010 | 0.8224678 |
Megaelosia massarti | 33.22356 | 21.5867717 | 0.1350110 | 0.8568488 |
Alsodes australis | 31.39514 | 4.2016182 | 0.1355631 | 0.3762410 |
Alsodes verrucosus | 32.19784 | 5.6692131 | 0.1358589 | 0.3426585 |
Alsodes monticola | 31.36293 | 5.8989446 | 0.1357136 | 0.5092634 |
Alsodes valdiviensis | 32.19046 | 6.8029304 | 0.1378034 | 0.3905143 |
Alsodes barrioi | 31.10564 | 6.1060052 | 0.1353818 | 0.3382625 |
Alsodes norae | 31.92911 | 5.9453398 | 0.1371442 | 0.3293470 |
Alsodes kaweshkari | 31.97485 | 2.6963586 | 0.1369013 | 0.3407571 |
Alsodes igneus | 31.12352 | 5.5897085 | 0.1366191 | 0.3182264 |
Alsodes pehuenche | 31.07655 | 2.8902746 | 0.1343183 | 0.2114210 |
Alsodes hugoi | 31.23788 | 3.3154068 | 0.1369974 | 0.2188243 |
Alsodes tumultuosus | 31.24015 | 7.1153953 | 0.1367095 | 0.3769423 |
Alsodes montanus | 31.23196 | 6.1115248 | 0.1379114 | 0.3516474 |
Alsodes vittatus | 31.35911 | 4.8671479 | 0.1365626 | 0.2900594 |
Alsodes nodosus | 31.76241 | 8.5791622 | 0.1329496 | 0.4468066 |
Alsodes vanzolinii | 31.74138 | 9.9543427 | 0.1360826 | 0.5550421 |
Eupsophus insularis | 32.79304 | 7.7904031 | 0.1360533 | 0.4376135 |
Eupsophus roseus | 32.71224 | 7.6123335 | 0.1348966 | 0.4286785 |
Eupsophus calcaratus | 32.74084 | 5.4939991 | 0.1328178 | 0.4247834 |
Eupsophus emiliopugini | 32.13768 | 5.9912373 | 0.1325728 | 0.4194907 |
Eupsophus vertebralis | 32.11695 | 7.0178534 | 0.1360022 | 0.4072087 |
Agalychnis annae | 35.47595 | 21.7307647 | 0.1377952 | 0.8552259 |
Agalychnis moreletii | 35.49295 | 18.6119169 | 0.1390192 | 0.7043014 |
Agalychnis callidryas | 35.46635 | 24.6658990 | 0.1378682 | 0.9136052 |
Agalychnis saltator | 35.53590 | 24.9487564 | 0.1392233 | 0.9612892 |
Agalychnis lemur | 35.42286 | 36.0530176 | 0.1381264 | 1.3621485 |
Hylomantis granulosa | 35.51649 | 21.7888801 | 0.1338314 | 0.8543579 |
Phasmahyla cochranae | 35.26789 | 16.2494800 | 0.1400592 | 0.6240021 |
Phasmahyla exilis | 35.25150 | 25.6349160 | 0.1376125 | 0.9991345 |
Phasmahyla timbo | 34.85490 | 20.4312450 | 0.1387339 | 0.8216759 |
Phasmahyla guttata | 35.24952 | 16.8384604 | 0.1378225 | 0.6523626 |
Phasmahyla jandaia | 34.79290 | 15.1642315 | 0.1348960 | 0.5942568 |
Phyllomedusa araguari | 36.78356 | 16.3478947 | 0.1345944 | 0.6264157 |
Phyllomedusa venusta | 36.67512 | 24.0391666 | 0.1328591 | 0.9051186 |
Phyllomedusa bahiana | 37.46621 | 15.6093130 | 0.1323714 | 0.6202348 |
Phyllomedusa distincta | 37.45942 | 11.0313647 | 0.1351765 | 0.4342228 |
Phyllomedusa boliviana | 37.24130 | 21.3919988 | 0.1351453 | 0.7998789 |
Phyllomedusa neildi | 37.33844 | 36.9711490 | 0.1354774 | 1.3970832 |
Phyllomedusa trinitatis | 37.39728 | 23.1154661 | 0.1341718 | 0.8651376 |
Phyllomedusa tarsius | 37.37684 | 25.3369124 | 0.1366957 | 0.9159539 |
Phyllomedusa bicolor | 36.79756 | 27.4327153 | 0.1360620 | 0.9839575 |
Cruziohyla craspedopus | 36.04068 | 26.1267109 | 0.1331726 | 0.9381570 |
Phrynomedusa appendiculata | 35.77274 | 15.0669657 | 0.1374314 | 0.6082185 |
Phrynomedusa bokermanni | 35.23619 | 16.6763554 | 0.1349133 | 0.6405881 |
Phrynomedusa marginata | 35.81030 | 26.7517034 | 0.1331679 | 1.0349627 |
Phrynomedusa vanzolinii | 35.25220 | 21.6983404 | 0.1371892 | 0.8355787 |
Cyclorana novaehollandiae | 36.62636 | 11.6760214 | 0.1363513 | 0.4630402 |
Cyclorana cryptotis | 36.40147 | 18.0697052 | 0.1375290 | 0.6527935 |
Cyclorana cultripes | 36.51184 | 12.2815609 | 0.1374808 | 0.4870637 |
Cyclorana vagitus | 35.52266 | 20.4505835 | 0.1373674 | 0.7350059 |
Cyclorana longipes | 36.36642 | 19.5243469 | 0.1387786 | 0.7044470 |
Cyclorana maculosa | 36.46326 | 16.0148025 | 0.1350608 | 0.5934515 |
Cyclorana maini | 36.46833 | 11.5163360 | 0.1346441 | 0.4785642 |
Cyclorana manya | 35.50570 | 19.8376449 | 0.1368140 | 0.7206911 |
Cyclorana verrucosa | 35.50926 | 12.3910915 | 0.1333482 | 0.5159383 |
Cyclorana platycephala | 36.45699 | 11.7447001 | 0.1328896 | 0.4871091 |
Litoria dahlii | 35.63756 | 21.9273141 | 0.1372429 | 0.7838874 |
Litoria adelaidensis | 34.56871 | 12.9613984 | 0.1341716 | 0.6278135 |
Litoria chloronota | 34.88285 | 46.0113504 | 0.1382960 | 1.6553817 |
Litoria albolabris | 35.87275 | 30.7547785 | 0.1382209 | 1.1857489 |
Litoria amboinensis | 34.28117 | 25.3710899 | 0.1396543 | 0.9324738 |
Litoria darlingtoni | 34.33866 | 19.0481028 | 0.1397804 | 0.7324970 |
Litoria tyleri | 34.44840 | 11.5604450 | 0.1397056 | 0.5225625 |
Litoria andiirrmalin | 33.06679 | 24.1191675 | 0.1414683 | 0.8771848 |
Litoria booroolongensis | 32.54526 | 9.5025834 | 0.1413699 | 0.4348241 |
Litoria jungguy | 32.52507 | 17.2176598 | 0.1389910 | 0.6530966 |
Litoria wilcoxii | 32.41874 | 12.4185176 | 0.1408122 | 0.5177384 |
Litoria angiana | 33.89547 | 30.7483950 | 0.1354555 | 1.1516082 |
Litoria modica | 33.91796 | 32.2630302 | 0.1386312 | 1.2003862 |
Litoria micromembrana | 33.92882 | 32.9276142 | 0.1355646 | 1.2331947 |
Litoria arfakiana | 34.33398 | 33.5531152 | 0.1384407 | 1.2463831 |
Litoria wollastoni | 34.41827 | 32.2387701 | 0.1364934 | 1.2080966 |
Litoria aruensis | 34.41840 | 53.0065734 | 0.1374050 | 1.9761438 |
Litoria auae | 34.42847 | 28.5941703 | 0.1390678 | 1.0456826 |
Litoria cyclorhyncha | 33.92190 | 8.7270222 | 0.1359640 | 0.4328572 |
Litoria moorei | 33.90328 | 9.7643759 | 0.1386557 | 0.4737825 |
Litoria raniformis | 33.97392 | 8.2958497 | 0.1363918 | 0.4483297 |
Litoria nudidigita | 31.94183 | 7.7004185 | 0.1429406 | 0.3930123 |
Litoria daviesae | 31.91986 | 10.8165756 | 0.1398442 | 0.4879416 |
Litoria subglandulosa | 31.80385 | 11.4648456 | 0.1407635 | 0.5002891 |
Litoria spenceri | 31.70601 | 6.4917917 | 0.1402190 | 0.3314426 |
Litoria becki | 33.78152 | 36.0183304 | 0.1369968 | 1.3585991 |
Litoria biakensis | 34.31695 | 36.5353790 | 0.1358574 | 1.3348660 |
Litoria bibonius | 34.27108 | 50.1959080 | 0.1387285 | 1.8328126 |
Litoria brevipalmata | 34.57752 | 18.4237001 | 0.1343379 | 0.8018960 |
Nyctimystes avocalis | 33.85325 | 45.9892241 | 0.1379688 | 1.6800082 |
Nyctimystes montanus | 33.88460 | 41.4931738 | 0.1356912 | 1.4894596 |
Nyctimystes granti | 33.98304 | 38.7761886 | 0.1361292 | 1.4339137 |
Nyctimystes oktediensis | 34.35186 | 32.2549028 | 0.1366004 | 1.1786519 |
Nyctimystes cheesmani | 33.91736 | 29.8069769 | 0.1356161 | 1.1343102 |
Nyctimystes disruptus | 33.88131 | 32.1929471 | 0.1386057 | 1.2366929 |
Nyctimystes daymani | 33.80714 | 37.5985390 | 0.1393249 | 1.3568406 |
Nyctimystes obsoletus | 33.79340 | 34.1908306 | 0.1380862 | 1.3017244 |
Nyctimystes gularis | 33.89493 | 29.1709682 | 0.1351875 | 1.0584922 |
Nyctimystes fluviatilis | 33.90823 | 37.9991063 | 0.1365274 | 1.4148124 |
Nyctimystes foricula | 33.86420 | 29.9356382 | 0.1389367 | 1.1272608 |
Nyctimystes semipalmatus | 33.89322 | 31.1146108 | 0.1376987 | 1.1678932 |
Nyctimystes kuduki | 33.91309 | 27.3844895 | 0.1357435 | 1.0262793 |
Nyctimystes humeralis | 33.94722 | 31.5532902 | 0.1344753 | 1.1829709 |
Nyctimystes zweifeli | 33.89966 | 33.4669902 | 0.1375929 | 1.2448100 |
Nyctimystes trachydermis | 33.96424 | 32.9371019 | 0.1349677 | 1.2117463 |
Nyctimystes kubori | 33.85603 | 33.0439511 | 0.1362131 | 1.2392769 |
Nyctimystes narinosus | 33.82928 | 28.3817989 | 0.1394475 | 1.0955891 |
Nyctimystes papua | 33.91715 | 33.8437386 | 0.1380027 | 1.2427070 |
Nyctimystes pulcher | 33.96124 | 31.7299571 | 0.1370853 | 1.1897238 |
Nyctimystes perimetri | 33.88310 | 51.1329156 | 0.1376957 | 1.8650627 |
Nyctimystes persimilis | 33.86861 | 40.2270704 | 0.1387029 | 1.4556658 |
Litoria vocivincens | 34.54076 | 30.4691024 | 0.1373203 | 1.1116980 |
Litoria brongersmai | 33.91654 | 34.7519021 | 0.1370514 | 1.3485671 |
Litoria bulmeri | 33.97262 | 31.9206708 | 0.1364831 | 1.1716787 |
Litoria burrowsi | 34.40313 | 10.4576515 | 0.1371166 | 0.6423641 |
Litoria rivicola | 33.99323 | 40.7957838 | 0.1363307 | 1.4920107 |
Litoria gilleni | 35.29913 | 8.2436143 | 0.1375664 | 0.3463059 |
Litoria splendida | 35.32556 | 18.3940177 | 0.1363003 | 0.6570168 |
Litoria cavernicola | 35.33586 | 19.3313320 | 0.1344013 | 0.6989115 |
Litoria xanthomera | 35.74034 | 14.3805445 | 0.1339717 | 0.5513774 |
Litoria kumae | 35.50268 | 22.2849718 | 0.1335262 | 0.8605660 |
Litoria capitula | 34.38833 | 49.4674988 | 0.1374311 | 1.7997341 |
Litoria chrisdahli | 34.40004 | 53.5842201 | 0.1381011 | 2.0561371 |
Litoria christianbergmanni | 34.46719 | 43.1693380 | 0.1384740 | 1.5769720 |
Litoria congenita | 35.40031 | 27.6691851 | 0.1372389 | 1.0126055 |
Litoria dentata | 35.40423 | 13.9174755 | 0.1393712 | 0.6176792 |
Litoria electrica | 35.61147 | 13.7327723 | 0.1373122 | 0.5291707 |
Litoria contrastens | 34.64045 | 31.0332057 | 0.1380672 | 1.1656807 |
Litoria cooloolensis | 34.43370 | 20.0091681 | 0.1376102 | 0.8358511 |
Litoria coplandi | 34.49964 | 21.4511751 | 0.1405612 | 0.7759248 |
Litoria watjulumensis | 34.66101 | 23.0631251 | 0.1376811 | 0.8318037 |
Litoria dayi | 33.95445 | 23.5317299 | 0.1387405 | 0.8995317 |
Litoria nannotis | 34.01955 | 23.8994366 | 0.1358748 | 0.9123804 |
Litoria rheocola | 34.46527 | 25.2886636 | 0.1367399 | 0.9594076 |
Litoria dorsalis | 34.43132 | 29.3182761 | 0.1350157 | 1.0724705 |
Litoria microbelos | 34.60495 | 27.2932412 | 0.1375245 | 0.9788371 |
Litoria longirostris | 34.38518 | 26.6484283 | 0.1361397 | 0.9603987 |
Litoria meiriana | 34.80546 | 27.9504552 | 0.1367451 | 0.9925733 |
Litoria dorsivena | 33.96933 | 37.2269162 | 0.1354863 | 1.3989288 |
Litoria dux | 34.34950 | 34.0099804 | 0.1383026 | 1.3207053 |
Litoria infrafrenata | 34.25473 | 38.2743269 | 0.1408580 | 1.3995550 |
Litoria elkeae | 34.28429 | 40.0043951 | 0.1372282 | 1.4923684 |
Litoria exophthalmia | 33.83282 | 31.2394706 | 0.1358261 | 1.1810704 |
Litoria genimaculata | 33.69161 | 36.5967994 | 0.1400485 | 1.3574537 |
Litoria everetti | 34.42237 | 43.0347525 | 0.1355075 | 1.5634242 |
Litoria littlejohni | 32.03423 | 9.9147732 | 0.1366586 | 0.4714633 |
Litoria paraewingi | 31.80644 | 6.8696885 | 0.1392745 | 0.3419022 |
Litoria revelata | 31.95735 | 10.9141180 | 0.1378464 | 0.4779377 |
Litoria jervisiensis | 32.24358 | 9.7053279 | 0.1408213 | 0.4707773 |
Litoria olongburensis | 35.64970 | 15.0922804 | 0.1314272 | 0.6405639 |
Litoria flavescens | 34.27629 | 46.5780852 | 0.1371099 | 1.6807672 |
Litoria latopalmata | 33.32841 | 11.9282491 | 0.1430788 | 0.4899689 |
Litoria tornieri | 33.42798 | 20.9821733 | 0.1421217 | 0.7456327 |
Litoria inermis | 33.45651 | 18.7539399 | 0.1401776 | 0.6989206 |
Litoria pallida | 33.44624 | 19.4673420 | 0.1390279 | 0.7134374 |
Litoria fuscula | 33.93755 | 25.7570502 | 0.1400799 | 1.0725603 |
Litoria graminea | 34.37358 | 28.8906251 | 0.1352862 | 1.0641404 |
Litoria havina | 34.28958 | 37.9247290 | 0.1376408 | 1.3697513 |
Litoria multiplica | 33.90346 | 30.1344680 | 0.1383382 | 1.1580794 |
Litoria hilli | 34.50591 | 52.3961127 | 0.1373465 | 1.9118585 |
Litoria humboldtorum | 34.43073 | 55.0213647 | 0.1369179 | 2.0487354 |
Litoria hunti | 34.26085 | 42.8781883 | 0.1379234 | 1.5902385 |
Litoria impura | 34.36548 | 36.0175244 | 0.1386799 | 1.3170243 |
Litoria thesaurensis | 34.35765 | 40.0562098 | 0.1374701 | 1.4641767 |
Litoria iris | 34.39136 | 30.8227994 | 0.1366960 | 1.1630343 |
Litoria majikthise | 34.35603 | 36.1587230 | 0.1359901 | 1.3002362 |
Litoria pronimia | 34.46236 | 28.7833054 | 0.1355963 | 1.1003130 |
Litoria spartacus | 34.50042 | 28.2560440 | 0.1351854 | 1.0379625 |
Litoria leucova | 33.95164 | 32.7222252 | 0.1351515 | 1.1786638 |
Litoria longicrus | 34.33817 | 49.4808081 | 0.1363212 | 1.7972594 |
Litoria lorica | 33.76113 | 21.0218235 | 0.1411879 | 0.7870691 |
Litoria louisiadensis | 33.86261 | 59.2685304 | 0.1370633 | 2.1519637 |
Litoria lutea | 34.38152 | 53.7744025 | 0.1378593 | 1.9329296 |
Litoria macki | 33.98095 | 25.4410098 | 0.1368840 | 1.0597930 |
Litoria mareku | 34.33430 | 41.2857838 | 0.1386902 | 1.4727284 |
Litoria megalops | 33.95849 | 25.8038685 | 0.1380934 | 1.0730146 |
Litoria mucro | 34.38009 | 40.5241305 | 0.1369829 | 1.4999837 |
Litoria multicolor | 34.43905 | 42.9149028 | 0.1360904 | 1.5351112 |
Litoria myola | 33.84474 | 20.7563156 | 0.1356030 | 0.7774444 |
Litoria mystax | 34.47550 | 33.1045349 | 0.1377497 | 1.3110890 |
Litoria napaea | 33.99120 | 31.6134145 | 0.1368258 | 1.2230782 |
Litoria nigropunctata | 34.47245 | 35.9168761 | 0.1367859 | 1.3344141 |
Litoria prora | 34.43259 | 32.5798781 | 0.1370245 | 1.1720574 |
Litoria obtusirostris | 34.35535 | 56.9416670 | 0.1389100 | 2.1172412 |
Litoria oenicolen | 33.90378 | 31.6607464 | 0.1354217 | 1.1883628 |
Litoria ollauro | 34.48269 | 39.1036916 | 0.1352771 | 1.4128959 |
Litoria personata | 34.52800 | 23.9717226 | 0.1389277 | 0.8381001 |
Litoria pratti | 34.02126 | 40.8346460 | 0.1370433 | 1.4656320 |
Litoria purpureolata | 34.48590 | 36.5252845 | 0.1345970 | 1.3943708 |
Litoria pygmaea | 34.37449 | 34.7643120 | 0.1356451 | 1.2791899 |
Litoria quadrilineata | 34.46674 | 41.2564129 | 0.1379536 | 1.5031164 |
Litoria rara | 34.42414 | 47.3062222 | 0.1383436 | 1.7785869 |
Litoria richardsi | 34.40021 | 29.0652929 | 0.1340893 | 1.1095474 |
Litoria rubrops | 34.47745 | 52.8612424 | 0.1359437 | 1.9123655 |
Litoria sanguinolenta | 34.34622 | 36.6838166 | 0.1373189 | 1.3251363 |
Litoria scabra | 33.93824 | 27.3811981 | 0.1377052 | 1.1417792 |
Litoria singadanae | 34.35055 | 36.5439047 | 0.1364680 | 1.4207738 |
Litoria spinifera | 33.99348 | 29.0820642 | 0.1392352 | 1.1245569 |
Litoria staccato | 34.62259 | 29.2903588 | 0.1361268 | 1.0424061 |
Litoria timida | 34.45432 | 31.6376686 | 0.1376413 | 1.1327788 |
Litoria umarensis | 34.20532 | 44.0800556 | 0.1403844 | 1.5751367 |
Litoria umbonata | 34.46287 | 32.1501885 | 0.1337076 | 1.2444563 |
Litoria vagabunda | 34.32877 | 52.6112532 | 0.1385369 | 1.9248896 |
Litoria verae | 34.37421 | 37.4788258 | 0.1388088 | 1.3378527 |
Litoria wapogaensis | 33.95359 | 26.9601978 | 0.1357371 | 1.1204543 |
Litoria wisselensis | 34.82594 | 33.1411966 | 0.1373963 | 1.2866762 |
Aplastodiscus albofrenatus | 35.33240 | 20.3250798 | 0.1307744 | 0.7795935 |
Aplastodiscus arildae | 35.18881 | 16.3001585 | 0.1302993 | 0.6301407 |
Aplastodiscus eugenioi | 35.27582 | 17.9723730 | 0.1338066 | 0.7000611 |
Aplastodiscus albosignatus | 35.78877 | 18.6115691 | 0.1298782 | 0.7304514 |
Aplastodiscus callipygius | 35.67863 | 18.2155470 | 0.1320354 | 0.7049619 |
Aplastodiscus cavicola | 35.76235 | 23.1318426 | 0.1297349 | 0.8972836 |
Aplastodiscus leucopygius | 35.77449 | 19.8871301 | 0.1272130 | 0.7619592 |
Aplastodiscus cochranae | 35.62193 | 15.0797830 | 0.1331663 | 0.6107997 |
Aplastodiscus perviridis | 35.71998 | 18.0896407 | 0.1289706 | 0.6902654 |
Aplastodiscus flumineus | 35.67362 | 24.6001390 | 0.1287063 | 0.9261954 |
Aplastodiscus ehrhardti | 35.67202 | 15.0550427 | 0.1309081 | 0.6122547 |
Aplastodiscus musicus | 35.68463 | 20.2298984 | 0.1282314 | 0.7620841 |
Bokermannohyla ahenea | 36.07138 | 22.3887675 | 0.1253062 | 0.8387458 |
Bokermannohyla alvarengai | 35.51556 | 19.6206311 | 0.1308643 | 0.7670183 |
Bokermannohyla astartea | 35.94180 | 20.4598305 | 0.1288613 | 0.7864081 |
Bokermannohyla circumdata | 35.90272 | 20.4954888 | 0.1285404 | 0.7957107 |
Bokermannohyla hylax | 35.40984 | 19.8133410 | 0.1313214 | 0.7855217 |
Bokermannohyla caramaschii | 36.06320 | 23.7575152 | 0.1288822 | 0.9212416 |
Bokermannohyla carvalhoi | 35.59383 | 25.9286051 | 0.1304673 | 1.0019757 |
Bokermannohyla diamantina | 35.56467 | 18.6156746 | 0.1276306 | 0.7303353 |
Bokermannohyla feioi | 36.06267 | 22.8319546 | 0.1287303 | 0.8806784 |
Bokermannohyla gouveai | 36.03101 | 24.1414306 | 0.1289058 | 0.9046368 |
Bokermannohyla ibitiguara | 35.61096 | 20.0721323 | 0.1278937 | 0.7750212 |
Bokermannohyla ibitipoca | 36.13045 | 23.8379573 | 0.1283928 | 0.9140955 |
Bokermannohyla itapoty | 35.64710 | 20.0857575 | 0.1280698 | 0.7962547 |
Bokermannohyla izecksohni | 35.57566 | 21.5395889 | 0.1294244 | 0.8079637 |
Bokermannohyla langei | 35.55492 | 14.8146572 | 0.1298984 | 0.6116591 |
Bokermannohyla lucianae | 35.99929 | 32.8489254 | 0.1302390 | 1.2841420 |
Bokermannohyla luctuosa | 35.61299 | 18.2444494 | 0.1284547 | 0.6945208 |
Bokermannohyla martinsi | 35.64902 | 19.7081358 | 0.1280637 | 0.7750122 |
Bokermannohyla nanuzae | 35.47203 | 18.6930612 | 0.1283204 | 0.7439832 |
Bokermannohyla oxente | 35.59029 | 19.9776932 | 0.1283076 | 0.7959585 |
Bokermannohyla pseudopseudis | 35.60257 | 23.4504348 | 0.1270604 | 0.8674198 |
Bokermannohyla ravida | 35.57673 | 21.8507392 | 0.1265930 | 0.8450101 |
Bokermannohyla sagarana | 35.46541 | 20.2508751 | 0.1285067 | 0.7971357 |
Bokermannohyla saxicola | 35.52226 | 18.5452902 | 0.1310319 | 0.7171447 |
Bokermannohyla sazimai | 35.56909 | 21.8580124 | 0.1290888 | 0.8386992 |
Bokermannohyla vulcaniae | 35.60033 | 19.0340956 | 0.1282447 | 0.7257257 |
Hyloscirtus albopunctulatus | 35.12230 | 29.7363726 | 0.1292869 | 1.1072201 |
Hyloscirtus simmonsi | 33.99949 | 25.5839380 | 0.1305199 | 1.0407144 |
Hyloscirtus armatus | 34.64187 | 25.2381312 | 0.1324225 | 1.3094483 |
Hyloscirtus charazani | 34.70742 | 16.7384078 | 0.1293086 | 0.9712474 |
Hyloscirtus bogotensis | 34.70741 | 29.4720155 | 0.1311527 | 1.2384526 |
Hyloscirtus callipeza | 34.81613 | 25.4691696 | 0.1308195 | 1.0479139 |
Hyloscirtus caucanus | 34.74606 | 25.9672947 | 0.1314196 | 1.0727838 |
Hyloscirtus colymba | 34.77521 | 44.6069812 | 0.1310816 | 1.6312194 |
Hyloscirtus pacha | 34.69278 | 17.6373318 | 0.1307139 | 0.7535529 |
Hyloscirtus staufferorum | 34.60247 | 21.6908443 | 0.1297649 | 0.9026940 |
Hyloscirtus psarolaimus | 34.65811 | 14.9433319 | 0.1331065 | 0.6851455 |
Hyloscirtus ptychodactylus | 34.70486 | 15.0665752 | 0.1305090 | 0.6493997 |
Hyloscirtus larinopygion | 35.15042 | 22.0085923 | 0.1285779 | 0.9737390 |
Hyloscirtus denticulentus | 34.75396 | 23.8254929 | 0.1311317 | 1.0369854 |
Hyloscirtus jahni | 34.70482 | 30.2780590 | 0.1328984 | 1.1422981 |
Hyloscirtus lascinius | 35.28913 | 27.3940692 | 0.1276584 | 1.0634048 |
Hyloscirtus palmeri | 34.73932 | 30.5531491 | 0.1284372 | 1.2060454 |
Hyloscirtus lynchi | 34.61581 | 24.0277616 | 0.1295506 | 1.0868809 |
Hyloscirtus pantostictus | 34.70244 | 18.7244558 | 0.1323430 | 0.8405147 |
Hyloscirtus piceigularis | 34.63632 | 34.2525242 | 0.1304538 | 1.3761607 |
Hyloscirtus platydactylus | 34.69989 | 30.9067338 | 0.1303817 | 1.1720610 |
Hyloscirtus sarampiona | 34.62299 | 18.9659027 | 0.1302610 | 0.8262349 |
Hyloscirtus tapichalaca | 34.65990 | 30.7870405 | 0.1315416 | 1.2780611 |
Hyloscirtus torrenticola | 34.77631 | 24.6636654 | 0.1319696 | 1.0146415 |
Myersiohyla inparquesi | 35.86779 | 37.8353963 | 0.1285346 | 1.4542093 |
Myersiohyla loveridgei | 35.92467 | 36.2201647 | 0.1289176 | 1.3916432 |
Myersiohyla aromatica | 35.85684 | 34.4519857 | 0.1275184 | 1.3274508 |
Dendropsophus acreanus | 36.18855 | 32.0866876 | 0.1242998 | 1.1736457 |
Dendropsophus amicorum | 36.07928 | 27.3603620 | 0.1230869 | 1.0324181 |
Dendropsophus anataliasiasi | 36.11750 | 24.4693837 | 0.1238478 | 0.8702360 |
Dendropsophus aperomeus | 36.01973 | 20.3014066 | 0.1254132 | 0.9137795 |
Dendropsophus haraldschultzi | 36.05439 | 32.5699599 | 0.1245656 | 1.1538842 |
Dendropsophus araguaya | 36.15145 | 20.3380103 | 0.1238158 | 0.7240167 |
Dendropsophus battersbyi | 36.11607 | 33.2612121 | 0.1234282 | 1.2774821 |
Dendropsophus berthalutzae | 36.07595 | 21.3302249 | 0.1223425 | 0.8272814 |
Dendropsophus bipunctatus | 36.03257 | 28.4391004 | 0.1231013 | 1.1126774 |
Dendropsophus bogerti | 36.05560 | 23.6519502 | 0.1231974 | 0.9596930 |
Dendropsophus timbeba | 36.13977 | 33.4837718 | 0.1226164 | 1.1923797 |
Dendropsophus yaracuyanus | 36.13586 | 26.3141496 | 0.1216315 | 0.9886954 |
Dendropsophus cachimbo | 36.01816 | 28.6745568 | 0.1237980 | 1.0372220 |
Dendropsophus meridensis | 35.97408 | 19.1978523 | 0.1238004 | 0.7289553 |
Dendropsophus cerradensis | 36.02560 | 21.7879492 | 0.1254101 | 0.7672028 |
Dendropsophus columbianus | 35.98783 | 23.8575497 | 0.1235225 | 1.0177715 |
Dendropsophus gaucheri | 36.03876 | 37.7857130 | 0.1246711 | 1.3827138 |
Dendropsophus cruzi | 36.02306 | 21.6343626 | 0.1228821 | 0.7868631 |
Dendropsophus miyatai | 36.08560 | 31.4709480 | 0.1239774 | 1.1163378 |
Dendropsophus delarivai | 36.08994 | 27.9153749 | 0.1247030 | 1.3014303 |
Dendropsophus robertmertensi | 36.02487 | 26.7353389 | 0.1266181 | 0.9782746 |
Dendropsophus sartori | 36.07689 | 24.1668918 | 0.1252171 | 0.9286314 |
Dendropsophus dutrai | 36.06977 | 28.8124607 | 0.1232015 | 1.1256798 |
Dendropsophus elianeae | 36.04104 | 20.8794898 | 0.1238974 | 0.7557221 |
Dendropsophus garagoensis | 36.09001 | 16.3057829 | 0.1260465 | 0.7542740 |
Dendropsophus giesleri | 36.11374 | 23.1493018 | 0.1251230 | 0.8932843 |
Dendropsophus oliveirai | 36.03967 | 22.8038557 | 0.1260836 | 0.8952594 |
Dendropsophus gryllatus | 36.06762 | 24.9380309 | 0.1250600 | 0.9405408 |
Dendropsophus jimi | 36.10953 | 16.5012451 | 0.1214886 | 0.6267661 |
Dendropsophus joannae | 36.10004 | 29.2219141 | 0.1242635 | 1.1195722 |
Dendropsophus juliani | 35.66632 | 25.9732748 | 0.1277859 | 0.9171136 |
Dendropsophus minusculus | 35.73028 | 26.0590521 | 0.1225644 | 0.9710849 |
Dendropsophus rubicundulus | 35.70116 | 19.7915509 | 0.1238339 | 0.7167989 |
Dendropsophus tritaeniatus | 35.64413 | 25.4814765 | 0.1258088 | 0.9253715 |
Dendropsophus leali | 36.04682 | 31.6739856 | 0.1239677 | 1.1437316 |
Dendropsophus minimus | 36.08628 | 35.3134371 | 0.1259283 | 1.2734360 |
Dendropsophus meridianus | 36.85214 | 19.9202910 | 0.1225206 | 0.7615189 |
Dendropsophus limai | 36.08216 | 15.6166906 | 0.1229719 | 0.5991290 |
Dendropsophus luteoocellatus | 36.03197 | 25.9179713 | 0.1251967 | 0.9694633 |
Dendropsophus melanargyreus | 36.89654 | 23.1584752 | 0.1228259 | 0.8267914 |
Dendropsophus seniculus | 36.71052 | 18.9293016 | 0.1228402 | 0.7338620 |
Dendropsophus mathiassoni | 36.07086 | 26.6123490 | 0.1217639 | 1.0281608 |
Dendropsophus microcephalus | 36.01692 | 32.7127516 | 0.1261844 | 1.1780278 |
Dendropsophus phlebodes | 36.04030 | 35.9961770 | 0.1230212 | 1.3363461 |
Dendropsophus rhodopeplus | 35.95224 | 30.8370318 | 0.1272645 | 1.1599976 |
Dendropsophus microps | 36.09094 | 21.7920173 | 0.1237755 | 0.8561194 |
Dendropsophus nahdereri | 36.04618 | 13.7793390 | 0.1227479 | 0.5564025 |
Dendropsophus nanus | 36.07027 | 23.7810963 | 0.1256010 | 0.8689221 |
Dendropsophus walfordi | 36.12327 | 30.5552987 | 0.1241167 | 1.0748362 |
Dendropsophus riveroi | 36.08500 | 29.0111371 | 0.1252634 | 1.0507804 |
Dendropsophus reichlei | 36.18218 | 29.7206588 | 0.1234288 | 1.2296603 |
Dendropsophus padreluna | 36.15527 | 31.8598550 | 0.1233229 | 1.2592411 |
Dendropsophus pauiniensis | 36.01703 | 31.3680963 | 0.1240364 | 1.0758182 |
Dendropsophus praestans | 36.01742 | 18.5435692 | 0.1231229 | 0.7878785 |
Dendropsophus pseudomeridianus | 36.04716 | 22.3805163 | 0.1237927 | 0.8515267 |
Dendropsophus rhea | 36.15376 | 18.7787081 | 0.1215142 | 0.7118680 |
Dendropsophus rossalleni | 35.99282 | 33.8524670 | 0.1264913 | 1.2294194 |
Dendropsophus ruschii | 35.57986 | 27.3552364 | 0.1251641 | 1.0530949 |
Dendropsophus soaresi | 35.96477 | 24.0961566 | 0.1248126 | 0.9018840 |
Dendropsophus stingi | 35.98018 | 20.6431575 | 0.1238243 | 0.9090066 |
Dendropsophus studerae | 36.07498 | 25.8776510 | 0.1251041 | 1.0113299 |
Dendropsophus subocularis | 36.07090 | 32.3280049 | 0.1238494 | 1.2373128 |
Dendropsophus tintinnabulum | 36.05999 | 29.7469538 | 0.1216924 | 1.0365114 |
Dendropsophus virolinensis | 36.06626 | 20.7034061 | 0.1233165 | 0.9276185 |
Dendropsophus werneri | 36.04193 | 15.0839799 | 0.1239788 | 0.5934441 |
Dendropsophus xapuriensis | 36.00131 | 34.0019069 | 0.1243003 | 1.2107159 |
Xenohyla eugenioi | 36.09163 | 20.6659664 | 0.1225269 | 0.8151871 |
Xenohyla truncata | 36.15373 | 27.1266433 | 0.1242621 | 1.0508772 |
Lysapsus caraya | 37.49673 | 20.3035152 | 0.1230542 | 0.7209548 |
Lysapsus laevis | 37.13526 | 28.4058534 | 0.1275284 | 1.0967342 |
Pseudis bolbodactyla | 37.39067 | 17.8542790 | 0.1245552 | 0.6758156 |
Pseudis fusca | 37.31971 | 15.9711309 | 0.1268182 | 0.6240809 |
Pseudis tocantins | 37.39707 | 18.4122779 | 0.1251603 | 0.6600416 |
Pseudis cardosoi | 36.48704 | 10.3617898 | 0.1263417 | 0.4149430 |
Scarthyla vigilans | 35.55531 | 26.9025742 | 0.1289407 | 1.0056342 |
Scinax altae | 37.28313 | 50.5623916 | 0.1270889 | 1.8321075 |
Scinax auratus | 37.23595 | 31.0215705 | 0.1240500 | 1.2153146 |
Scinax baumgardneri | 37.27187 | 35.1553125 | 0.1252595 | 1.3004644 |
Scinax blairi | 37.48959 | 30.6291268 | 0.1236650 | 1.1556848 |
Scinax boesemani | 37.31603 | 38.5292075 | 0.1269832 | 1.3736310 |
Scinax parkeri | 37.52481 | 29.5266844 | 0.1246339 | 1.0801206 |
Scinax boulengeri | 37.41123 | 32.8445099 | 0.1234203 | 1.2149956 |
Scinax sugillatus | 37.40679 | 25.8506468 | 0.1236863 | 1.0348867 |
Scinax cabralensis | 37.19207 | 17.3360187 | 0.1261003 | 0.6790775 |
Scinax caldarum | 37.38856 | 20.7164910 | 0.1254622 | 0.7938904 |
Scinax crospedospilus | 37.29257 | 23.5907806 | 0.1255119 | 0.9111811 |
Scinax camposseabrai | 37.28560 | 19.6986231 | 0.1280473 | 0.7840392 |
Scinax cardosoi | 37.32709 | 25.6406240 | 0.1246497 | 0.9846302 |
Scinax castroviejoi | 36.54622 | 14.7800341 | 0.1267195 | 0.6976126 |
Scinax chiquitanus | 37.19378 | 26.3552140 | 0.1259775 | 1.0265368 |
Scinax funereus | 37.25128 | 29.6162447 | 0.1264295 | 1.1188718 |
Scinax oreites | 37.24678 | 19.0291850 | 0.1257351 | 0.8715794 |
Scinax constrictus | 37.38135 | 21.5978410 | 0.1267617 | 0.7895648 |
Scinax cretatus | 37.16772 | 28.4346473 | 0.1289224 | 1.1100186 |
Scinax cruentommus | 37.22195 | 35.5060340 | 0.1251393 | 1.2779144 |
Scinax staufferi | 37.34679 | 27.6861099 | 0.1261632 | 1.0393495 |
Scinax curicica | 37.21406 | 18.2588272 | 0.1283218 | 0.7249243 |
Scinax cuspidatus | 37.17583 | 29.5625744 | 0.1260405 | 1.1531715 |
Scinax danae | 37.27958 | 26.5602944 | 0.1263593 | 1.0218728 |
Scinax duartei | 37.43625 | 19.8900755 | 0.1232691 | 0.7652289 |
Scinax similis | 37.28576 | 25.8687770 | 0.1274680 | 1.0101367 |
Scinax hayii | 37.40840 | 22.1912528 | 0.1242489 | 0.8610538 |
Scinax exiguus | 37.29382 | 29.2602401 | 0.1243173 | 1.1141432 |
Scinax karenanneae | 37.25809 | 36.0481751 | 0.1271123 | 1.2761368 |
Scinax lindsayi | 37.27116 | 37.6805825 | 0.1266800 | 1.3057933 |
Scinax fuscomarginatus | 37.32667 | 24.4716997 | 0.1250333 | 0.9001568 |
Scinax proboscideus | 36.68456 | 27.7348603 | 0.1303256 | 1.0046744 |
Scinax jolyi | 36.69636 | 38.2847223 | 0.1277195 | 1.4128154 |
Scinax rostratus | 36.75887 | 29.3169669 | 0.1307867 | 1.0932253 |
Scinax iquitorum | 37.26045 | 36.0899120 | 0.1236808 | 1.3089043 |
Scinax kennedyi | 37.30217 | 34.4545673 | 0.1258850 | 1.2378596 |
Scinax manriquei | 37.20795 | 27.8534860 | 0.1275088 | 1.1006340 |
Scinax maracaya | 37.25614 | 21.4169608 | 0.1272055 | 0.8267333 |
Scinax nebulosus | 37.78960 | 32.5666208 | 0.1237381 | 1.1617482 |
Scinax pedromedinae | 37.30524 | 34.6419012 | 0.1260900 | 1.4511128 |
Scinax perereca | 37.32696 | 17.3168449 | 0.1256568 | 0.6748810 |
Scinax tigrinus | 37.65315 | 20.3067300 | 0.1289706 | 0.7562200 |
Scinax trilineatus | 37.28839 | 33.8754443 | 0.1262280 | 1.2665054 |
Scinax wandae | 37.39095 | 28.5568998 | 0.1251582 | 1.0593828 |
Sphaenorhynchus bromelicola | 37.20375 | 14.5084768 | 0.1264238 | 0.5807061 |
Sphaenorhynchus caramaschii | 37.51727 | 14.9804380 | 0.1250851 | 0.5863574 |
Sphaenorhynchus palustris | 37.31475 | 27.1899417 | 0.1277738 | 1.0674073 |
Sphaenorhynchus carneus | 37.46770 | 32.9084772 | 0.1282533 | 1.1880383 |
Sphaenorhynchus dorisae | 37.42989 | 36.3072307 | 0.1283073 | 1.3005768 |
Sphaenorhynchus planicola | 37.66935 | 24.7059018 | 0.1260851 | 0.9633148 |
Sphaenorhynchus mirim | 37.15788 | 23.5592492 | 0.1242493 | 0.9163662 |
Sphaenorhynchus surdus | 37.17566 | 14.0151114 | 0.1263878 | 0.5619788 |
Sphaenorhynchus orophilus | 37.23194 | 17.9288543 | 0.1245663 | 0.6946707 |
Nyctimantis rugiceps | 36.56708 | 23.8816052 | 0.1281675 | 0.9203655 |
Corythomantis greeningi | 36.71461 | 21.9741545 | 0.1299461 | 0.8423136 |
Trachycephalus coriaceus | 37.06664 | 28.5234286 | 0.1255911 | 1.0274072 |
Trachycephalus dibernardoi | 37.05328 | 14.3678013 | 0.1284856 | 0.5587666 |
Trachycephalus hadroceps | 37.01270 | 29.4769606 | 0.1265791 | 1.0708623 |
Trachycephalus resinifictrix | 37.03802 | 28.1098403 | 0.1257001 | 1.0078257 |
Trachycephalus imitatrix | 36.97395 | 13.4192481 | 0.1290884 | 0.5217342 |
Trachycephalus nigromaculatus | 37.04663 | 17.6059170 | 0.1263934 | 0.6776350 |
Trachycephalus lepidus | 37.07888 | 14.3184283 | 0.1269164 | 0.5341874 |
Trachycephalus jordani | 36.98972 | 20.0952268 | 0.1247778 | 0.8105600 |
Dryaderces pearsoni | 36.70667 | 31.3523912 | 0.1254760 | 1.2823154 |
Itapotihyla langsdorffii | 36.52514 | 20.1479478 | 0.1276448 | 0.7779178 |
Osteocephalus alboguttatus | 36.34898 | 23.6811824 | 0.1267887 | 0.9588912 |
Osteocephalus heyeri | 36.32726 | 29.4954475 | 0.1283991 | 1.0053536 |
Osteocephalus subtilis | 36.43382 | 31.1986274 | 0.1289442 | 1.0862022 |
Osteocephalus verruciger | 35.93347 | 20.4371571 | 0.1250937 | 0.8204113 |
Osteocephalus cabrerai | 36.35760 | 26.0996037 | 0.1255321 | 0.9489319 |
Osteocephalus castaneicola | 36.30612 | 28.0867745 | 0.1268045 | 1.2520978 |
Osteocephalus deridens | 36.27057 | 25.7379383 | 0.1284203 | 0.9503331 |
Osteocephalus fuscifacies | 36.27606 | 27.4665861 | 0.1270348 | 1.0284745 |
Osteocephalus leoniae | 36.29917 | 19.4885616 | 0.1272156 | 0.8861471 |
Osteocephalus planiceps | 36.25402 | 25.7523356 | 0.1304283 | 0.9698427 |
Osteocephalus leprieurii | 36.27085 | 27.4637851 | 0.1294768 | 0.9864510 |
Osteocephalus yasuni | 36.32279 | 31.0683869 | 0.1283486 | 1.0981215 |
Osteocephalus oophagus | 36.36374 | 28.7410206 | 0.1267177 | 1.0175931 |
Osteocephalus taurinus | 36.39764 | 28.1716296 | 0.1259697 | 1.0145041 |
Tepuihyla aecii | 36.40476 | 29.5267147 | 0.1274721 | 1.1355523 |
Tepuihyla edelcae | 36.30893 | 24.3441698 | 0.1282128 | 0.9473377 |
Tepuihyla rodriguezi | 36.38435 | 28.3811830 | 0.1255790 | 1.0744206 |
Tepuihyla exophthalma | 36.40093 | 27.9519061 | 0.1259160 | 1.0605680 |
Tepuihyla luteolabris | 36.36707 | 27.7172174 | 0.1279345 | 1.0675046 |
Osteopilus crucialis | 36.30672 | 70.6986334 | 0.1282017 | 2.5697962 |
Osteopilus marianae | 36.35382 | 74.1706688 | 0.1275226 | 2.7036141 |
Osteopilus wilderi | 36.29378 | 64.5726666 | 0.1284708 | 2.3434735 |
Osteopilus ocellatus | 36.31627 | 71.6339618 | 0.1280216 | 2.6006254 |
Osteopilus dominicensis | 36.38663 | 58.9026546 | 0.1277055 | 2.1424083 |
Osteopilus pulchrilineatus | 36.38508 | 63.0070722 | 0.1291889 | 2.3050757 |
Osteopilus vastus | 35.88509 | 55.4024447 | 0.1307992 | 2.0326437 |
Phyllodytes acuminatus | 36.56279 | 26.5010442 | 0.1273006 | 1.0398870 |
Phyllodytes brevirostris | 36.59005 | 32.0567351 | 0.1267425 | 1.2408872 |
Phyllodytes edelmoi | 36.56512 | 27.4258950 | 0.1293519 | 1.0652777 |
Phyllodytes gyrinaethes | 36.64828 | 28.7537445 | 0.1263215 | 1.1153790 |
Phyllodytes kautskyi | 36.58838 | 29.3774726 | 0.1246911 | 1.1487833 |
Phyllodytes maculosus | 36.57212 | 24.5349681 | 0.1276410 | 0.9598108 |
Phyllodytes punctatus | 36.59047 | 37.8642029 | 0.1260196 | 1.4805931 |
Phyllodytes tuberculosus | 36.52061 | 16.1464899 | 0.1291743 | 0.6460697 |
Phyllodytes wuchereri | 36.58344 | 27.3104935 | 0.1266546 | 1.0749943 |
Phytotriades auratus | 36.43872 | 41.1594202 | 0.1298135 | 1.5423305 |
Pseudacris brachyphona | 35.38471 | 9.3375931 | 0.1265851 | 0.3730978 |
Pseudacris brimleyi | 35.35055 | 6.4440702 | 0.1262738 | 0.2550310 |
Pseudacris clarkii | 35.43851 | 10.9579696 | 0.1251977 | 0.4340129 |
Pseudacris maculata | 35.68126 | 4.4653375 | 0.1245638 | 0.2306718 |
Pseudacris kalmi | 35.37562 | 4.6662589 | 0.1258860 | 0.1983079 |
Pseudacris nigrita | 35.42830 | 10.0487058 | 0.1250397 | 0.3734595 |
Pseudacris fouquettei | 35.42805 | 11.7611822 | 0.1267439 | 0.4318869 |
Pseudacris streckeri | 35.34790 | 11.8360462 | 0.1290029 | 0.4550012 |
Pseudacris ornata | 35.39345 | 13.0503144 | 0.1276962 | 0.4794677 |
Pseudacris ocularis | 35.19177 | 11.3650206 | 0.1276570 | 0.4265106 |
Triprion petasatus | 36.30095 | 30.8547377 | 0.1293621 | 1.1134153 |
Smilisca cyanosticta | 36.38276 | 18.5759239 | 0.1323309 | 0.6881534 |
Smilisca puma | 36.64592 | 21.2157475 | 0.1374102 | 0.8151012 |
Smilisca dentata | 36.29829 | 14.2692840 | 0.1338812 | 0.6025948 |
Smilisca sila | 36.27392 | 30.8767394 | 0.1332556 | 1.1509169 |
Smilisca sordida | 35.74569 | 25.6978768 | 0.1334889 | 0.9652028 |
Isthmohyla angustilineata | 36.39756 | 39.2847741 | 0.1307875 | 1.4092991 |
Isthmohyla debilis | 36.30098 | 36.9850137 | 0.1337652 | 1.3510577 |
Isthmohyla graceae | 36.46532 | 31.3714046 | 0.1333846 | 1.2027008 |
Isthmohyla infucata | 36.35565 | 44.3700196 | 0.1295075 | 1.5876761 |
Isthmohyla insolita | 35.93677 | 32.8302358 | 0.1314407 | 1.2461114 |
Isthmohyla lancasteri | 36.48293 | 31.1823892 | 0.1298117 | 1.2348731 |
Isthmohyla picadoi | 36.39547 | 29.7831161 | 0.1327408 | 1.1553551 |
Isthmohyla pictipes | 35.82071 | 31.9910882 | 0.1337814 | 1.2432834 |
Isthmohyla pseudopuma | 36.44968 | 31.5192734 | 0.1286519 | 1.2222338 |
Isthmohyla rivularis | 35.95807 | 37.1468162 | 0.1313743 | 1.3325080 |
Isthmohyla tica | 35.83487 | 40.0523797 | 0.1305406 | 1.4364009 |
Isthmohyla xanthosticta | 36.44082 | 30.6917375 | 0.1288788 | 1.1067991 |
Isthmohyla zeteki | 36.35976 | 32.5454775 | 0.1309296 | 1.2640934 |
Tlalocohyla godmani | 36.11358 | 18.4678507 | 0.1304522 | 0.7318871 |
Tlalocohyla loquax | 36.92453 | 27.1827848 | 0.1304950 | 1.0019723 |
Tlalocohyla picta | 36.65109 | 23.9145866 | 0.1324528 | 0.8989314 |
Hyla annectans | 36.30189 | 16.7338288 | 0.1307993 | 0.6989753 |
Hyla tsinlingensis | 36.27943 | 8.9267444 | 0.1310659 | 0.3830658 |
Hyla chinensis | 36.42974 | 16.0876824 | 0.1336184 | 0.5911377 |
Hyla savignyi | 36.34427 | 11.0752858 | 0.1285036 | 0.4995423 |
Hyla hallowellii | 36.35567 | 41.5412719 | 0.1321892 | 1.5162549 |
Hyla intermedia | 36.35491 | 9.7858207 | 0.1321228 | 0.4130477 |
Hyla sanchiangensis | 36.39020 | 17.0147920 | 0.1292033 | 0.6158972 |
Hyla sarda | 36.34809 | 12.2671101 | 0.1329907 | 0.5115061 |
Hyla simplex | 36.31108 | 23.6456891 | 0.1302864 | 0.8450204 |
Hyla zhaopingensis | 36.35195 | 20.0475156 | 0.1312882 | 0.7100984 |
Charadrahyla altipotens | 35.88012 | 25.6333377 | 0.1287761 | 0.9572468 |
Charadrahyla chaneque | 35.88984 | 26.6889970 | 0.1304316 | 0.9550003 |
Charadrahyla nephila | 35.86304 | 17.2816670 | 0.1308017 | 0.6925581 |
Charadrahyla taeniopus | 35.79620 | 18.7658759 | 0.1295825 | 0.7704689 |
Charadrahyla trux | 35.98842 | 23.6808045 | 0.1292333 | 0.9505629 |
Megastomatohyla mixe | 35.79827 | 14.0970907 | 0.1301363 | 0.6225722 |
Megastomatohyla mixomaculata | 35.79643 | 21.7498069 | 0.1277705 | 0.8739939 |
Megastomatohyla nubicola | 35.75959 | 35.9078335 | 0.1315057 | 1.3929500 |
Megastomatohyla pellita | 35.79703 | 29.6363042 | 0.1301177 | 1.1001625 |
Bromeliohyla bromeliacia | 36.25882 | 25.5220330 | 0.1298923 | 0.9905229 |
Bromeliohyla dendroscarta | 36.35686 | 20.2534334 | 0.1304015 | 0.8156058 |
Duellmanohyla chamulae | 35.72670 | 29.1434740 | 0.1289529 | 1.0441584 |
Duellmanohyla ignicolor | 35.73936 | 14.2483314 | 0.1301460 | 0.6287999 |
Duellmanohyla lythrodes | 35.75116 | 29.2279807 | 0.1294935 | 1.2903439 |
Duellmanohyla rufioculis | 35.77619 | 36.6789243 | 0.1305319 | 1.3880428 |
Duellmanohyla salvavida | 35.80672 | 43.0686206 | 0.1309868 | 1.6353137 |
Duellmanohyla schmidtorum | 36.24058 | 26.4939885 | 0.1293373 | 0.9705055 |
Duellmanohyla soralia | 35.74044 | 32.9708365 | 0.1322100 | 1.2937716 |
Duellmanohyla uranochroa | 35.75090 | 38.4199115 | 0.1309023 | 1.4922178 |
Ptychohyla dendrophasma | 35.74018 | 25.3100428 | 0.1305101 | 0.9348130 |
Ptychohyla euthysanota | 35.78012 | 23.2429833 | 0.1301791 | 0.8797630 |
Ptychohyla hypomykter | 36.27286 | 25.7439834 | 0.1294949 | 0.9854358 |
Ptychohyla legleri | 35.83081 | 33.5684138 | 0.1292556 | 1.3431014 |
Ptychohyla leonhardschultzei | 35.69761 | 24.9066349 | 0.1312504 | 0.9675596 |
Ptychohyla zophodes | 35.75869 | 23.4063254 | 0.1294377 | 0.9176485 |
Ptychohyla macrotympanum | 35.80959 | 25.0118332 | 0.1283930 | 0.9364599 |
Ptychohyla salvadorensis | 36.20431 | 23.4041821 | 0.1273174 | 0.8870587 |
Ecnomiohyla fimbrimembra | 36.28329 | 33.6246822 | 0.1304625 | 1.2064000 |
Ecnomiohyla miliaria | 36.25588 | 34.6787448 | 0.1302707 | 1.3125983 |
Ecnomiohyla minera | 36.21461 | 21.4742376 | 0.1306053 | 0.8422098 |
Ecnomiohyla phantasmagoria | 36.11689 | 27.7000628 | 0.1302793 | 1.0211321 |
Ecnomiohyla salvaje | 36.22711 | 30.8280397 | 0.1275333 | 1.1677039 |
Ecnomiohyla thysanota | 36.23362 | 31.7022036 | 0.1289401 | 1.1289280 |
Ecnomiohyla valancifer | 36.29746 | 25.2061227 | 0.1278830 | 0.9246893 |
Exerodonta abdivita | 36.16902 | 19.0944716 | 0.1297714 | 0.7645945 |
Exerodonta perkinsi | 35.70656 | 22.8085523 | 0.1295126 | 0.9155717 |
Exerodonta bivocata | 35.79278 | 28.8059400 | 0.1300936 | 1.0289608 |
Exerodonta catracha | 36.23689 | 20.5160392 | 0.1294441 | 0.8097971 |
Exerodonta chimalapa | 35.80917 | 26.8118844 | 0.1280912 | 0.9676089 |
Exerodonta smaragdina | 36.27409 | 21.6251683 | 0.1300978 | 0.8678886 |
Exerodonta xera | 36.22949 | 20.8334730 | 0.1310199 | 0.8499939 |
Exerodonta melanomma | 36.18757 | 26.4148975 | 0.1327651 | 1.0007692 |
Exerodonta sumichrasti | 36.25448 | 25.1262501 | 0.1299272 | 0.9412093 |
Plectrohyla acanthodes | 35.74814 | 22.2742608 | 0.1271328 | 0.8411552 |
Plectrohyla avia | 36.33623 | 25.2976613 | 0.1263734 | 0.9620606 |
Plectrohyla chrysopleura | 35.79293 | 32.3035436 | 0.1306272 | 1.2317754 |
Plectrohyla dasypus | 36.31160 | 37.5068249 | 0.1285260 | 1.4735509 |
Plectrohyla exquisita | 36.21985 | 35.9698205 | 0.1300386 | 1.4123350 |
Plectrohyla glandulosa | 35.87680 | 16.5127757 | 0.1272233 | 0.7258745 |
Plectrohyla guatemalensis | 35.83873 | 26.1513088 | 0.1282470 | 1.0036151 |
Plectrohyla hartwegi | 35.66568 | 23.4440821 | 0.1302450 | 0.8984077 |
Plectrohyla ixil | 35.79679 | 24.4111357 | 0.1277748 | 0.9290309 |
Plectrohyla lacertosa | 35.79025 | 25.3556320 | 0.1277927 | 0.9658139 |
Plectrohyla matudai | 36.42826 | 24.8582674 | 0.1291381 | 0.9495347 |
Plectrohyla pokomchi | 35.78591 | 19.5008893 | 0.1313972 | 0.7670001 |
Plectrohyla psiloderma | 35.82578 | 26.5620015 | 0.1290014 | 0.9926284 |
Plectrohyla quecchi | 35.76981 | 23.5396556 | 0.1299098 | 0.9030847 |
Plectrohyla sagorum | 35.88773 | 22.9207972 | 0.1271048 | 0.8950539 |
Plectrohyla tecunumani | 35.82252 | 15.7832729 | 0.1281341 | 0.6986712 |
Plectrohyla teuchestes | 35.79805 | 28.0297476 | 0.1294877 | 1.0445040 |
Macrogenioglottus alipioi | 34.44562 | 22.0377546 | 0.1362890 | 0.8563499 |
Odontophrynus achalensis | 33.52875 | 7.6299610 | 0.1369397 | 0.3286903 |
Odontophrynus cultripes | 34.94441 | 16.4934296 | 0.1377662 | 0.6276932 |
Odontophrynus cordobae | 33.34824 | 9.0808516 | 0.1385828 | 0.3769552 |
Odontophrynus lavillai | 34.92755 | 12.6825034 | 0.1385553 | 0.5035816 |
Odontophrynus carvalhoi | 34.09205 | 19.9299517 | 0.1399994 | 0.7693879 |
Proceratophrys appendiculata | 34.71142 | 21.0698292 | 0.1344052 | 0.8147374 |
Proceratophrys melanopogon | 34.75770 | 19.6566663 | 0.1345028 | 0.7591571 |
Proceratophrys phyllostomus | 34.64535 | 26.3346165 | 0.1388588 | 1.0185003 |
Proceratophrys moehringi | 34.09244 | 27.8651749 | 0.1367349 | 1.0754932 |
Proceratophrys boiei | 34.70858 | 20.0427994 | 0.1370544 | 0.7818353 |
Proceratophrys laticeps | 34.69035 | 27.0542486 | 0.1345743 | 1.0609415 |
Proceratophrys cururu | 34.72845 | 16.8869013 | 0.1374471 | 0.6865940 |
Proceratophrys concavitympanum | 34.08240 | 27.5527400 | 0.1360164 | 0.9745240 |
Proceratophrys moratoi | 34.92411 | 18.4263401 | 0.1343595 | 0.6906081 |
Proceratophrys goyana | 34.67940 | 19.7328865 | 0.1364530 | 0.7329793 |
Proceratophrys brauni | 34.74574 | 14.6821439 | 0.1328168 | 0.5894116 |
Proceratophrys cristiceps | 34.81870 | 24.3074429 | 0.1328736 | 0.9412419 |
Proceratophrys paviotii | 34.30599 | 25.0228660 | 0.1336683 | 0.9697462 |
Proceratophrys subguttata | 34.72842 | 15.7428270 | 0.1334230 | 0.6412752 |
Proceratophrys palustris | 34.68781 | 18.5682717 | 0.1366288 | 0.7042751 |
Proceratophrys vielliardi | 34.75149 | 19.7936817 | 0.1341758 | 0.7488271 |
Proceratophrys bigibbosa | 34.70944 | 15.0033454 | 0.1357548 | 0.5818948 |
Proceratophrys avelinoi | 34.91764 | 16.7093291 | 0.1352624 | 0.6360931 |
Adenomus kandianus | 34.83116 | 26.1842095 | 0.1337408 | 0.9476342 |
Adenomus kelaartii | 35.44174 | 24.4031983 | 0.1299752 | 0.8749833 |
Duttaphrynus atukoralei | 35.49324 | 24.5606931 | 0.1313116 | 0.8694519 |
Duttaphrynus scaber | 35.47492 | 20.5888928 | 0.1316486 | 0.7440006 |
Duttaphrynus beddomii | 35.45664 | 28.6915754 | 0.1328672 | 1.0453207 |
Duttaphrynus brevirostris | 35.40791 | 20.9651121 | 0.1321670 | 0.7784718 |
Duttaphrynus crocus | 35.44068 | 41.7205463 | 0.1321471 | 1.4872305 |
Duttaphrynus dhufarensis | 35.52021 | 23.1427248 | 0.1312352 | 0.8753369 |
Duttaphrynus himalayanus | 35.49113 | 9.0108450 | 0.1302522 | 0.5197369 |
Duttaphrynus hololius | 35.44901 | 20.2704884 | 0.1328466 | 0.7383462 |
Duttaphrynus kotagamai | 34.83293 | 27.4632775 | 0.1334500 | 0.9912224 |
Duttaphrynus microtympanum | 35.39216 | 23.5055180 | 0.1326525 | 0.8485894 |
Duttaphrynus noellerti | 35.41764 | 27.1365255 | 0.1340493 | 0.9829927 |
Duttaphrynus olivaceus | 35.47707 | 16.2699191 | 0.1321593 | 0.6341331 |
Duttaphrynus parietalis | 35.45754 | 23.0788995 | 0.1289141 | 0.8369255 |
Duttaphrynus scorteccii | 35.40414 | 21.8322749 | 0.1309286 | 0.8770401 |
Duttaphrynus silentvalleyensis | 34.86731 | 18.5387310 | 0.1339422 | 0.6781613 |
Duttaphrynus stomaticus | 35.50623 | 15.7353099 | 0.1315224 | 0.6156946 |
Duttaphrynus stuarti | 35.45289 | 9.5167431 | 0.1318204 | 0.5808769 |
Duttaphrynus sumatranus | 34.80952 | 37.8935658 | 0.1315079 | 1.3097801 |
Duttaphrynus valhallae | 35.47308 | 40.0893193 | 0.1301658 | 1.4463941 |
Xanthophryne koynayensis | 35.44790 | 21.9372423 | 0.1296164 | 0.8096123 |
Xanthophryne tigerina | 35.45819 | 21.6271405 | 0.1319866 | 0.7988646 |
Pedostibes tuberculosus | 34.90501 | 24.2477407 | 0.1314003 | 0.8779811 |
Churamiti maridadi | 35.36998 | 17.6719482 | 0.1330606 | 0.7590519 |
Nectophrynoides cryptus | 35.55099 | 28.7700417 | 0.1324099 | 1.1812039 |
Nectophrynoides frontierei | 35.48748 | 33.5450891 | 0.1320883 | 1.3371220 |
Nectophrynoides laevis | 35.52930 | 27.7279626 | 0.1337202 | 1.1295344 |
Nectophrynoides laticeps | 35.44879 | 19.3933666 | 0.1354803 | 0.8380736 |
Nectophrynoides minutus | 35.55512 | 29.2285633 | 0.1311665 | 1.2004596 |
Nectophrynoides paulae | 35.32712 | 18.5679913 | 0.1330366 | 0.8007157 |
Nectophrynoides poyntoni | 35.50548 | 19.7349453 | 0.1325848 | 0.9093152 |
Nectophrynoides pseudotornieri | 35.52724 | 25.7424721 | 0.1312193 | 1.0633890 |
Nectophrynoides tornieri | 35.51649 | 26.3465992 | 0.1310407 | 1.1025268 |
Nectophrynoides vestergaardi | 35.56446 | 35.1902039 | 0.1305145 | 1.4037319 |
Nectophrynoides viviparus | 35.50325 | 23.7370450 | 0.1309774 | 1.0324758 |
Nectophrynoides wendyae | 35.53465 | 20.2788087 | 0.1305281 | 0.9367257 |
Schismaderma carens | 35.47861 | 18.3585386 | 0.1306169 | 0.7726606 |
Bufotes balearicus | 35.92672 | 8.9156582 | 0.1322525 | 0.3848462 |
Bufotes latastii | 35.86421 | 4.3472691 | 0.1332363 | 0.3577085 |
Bufotes luristanicus | 35.87598 | 13.5829088 | 0.1318907 | 0.5669184 |
Bufotes oblongus | 35.88093 | 12.3247348 | 0.1312245 | 0.6050177 |
Bufotes pseudoraddei | 35.86388 | 6.2134026 | 0.1315311 | 0.3707296 |
Bufotes surdus | 35.81908 | 12.9674056 | 0.1313877 | 0.5331983 |
Bufotes turanensis | 35.84372 | 11.8703914 | 0.1309352 | 0.5707624 |
Bufotes variabilis | 35.88808 | 7.3455794 | 0.1330371 | 0.3549572 |
Bufotes zamdaensis | 35.85896 | 4.2025584 | 0.1320657 | 0.4070099 |
Bufotes zugmayeri | 35.83644 | 9.6141509 | 0.1317252 | 0.4752614 |
Ansonia albomaculata | 35.45973 | 32.9388709 | 0.1288913 | 1.1916879 |
Ansonia torrentis | 34.83762 | 34.7191770 | 0.1290963 | 1.2747820 |
Ansonia longidigita | 35.42961 | 38.0945815 | 0.1305750 | 1.3637423 |
Ansonia endauensis | 34.79720 | 34.2530289 | 0.1348732 | 1.1902274 |
Ansonia inthanon | 34.75501 | 24.9263460 | 0.1343161 | 0.9033635 |
Ansonia kraensis | 34.73042 | 28.5629390 | 0.1309107 | 1.0048334 |
Ansonia thinthinae | 34.71803 | 29.0896010 | 0.1341639 | 1.0456740 |
Ansonia siamensis | 34.77164 | 33.7082682 | 0.1298668 | 1.2171627 |
Ansonia fuliginea | 35.44563 | 53.0207873 | 0.1301011 | 1.9498358 |
Ansonia mcgregori | 34.83211 | 44.9449377 | 0.1331824 | 1.6325199 |
Ansonia muelleri | 34.82216 | 42.1637505 | 0.1316447 | 1.5234089 |
Ansonia glandulosa | 34.81630 | 43.5587892 | 0.1306315 | 1.5233275 |
Ansonia hanitschi | 35.39329 | 35.9988732 | 0.1291911 | 1.3041720 |
Ansonia platysoma | 34.70233 | 37.6593015 | 0.1328630 | 1.3874372 |
Ansonia minuta | 34.82512 | 35.0660163 | 0.1303776 | 1.2408649 |
Ansonia spinulifer | 35.25841 | 37.0728633 | 0.1332720 | 1.3187325 |
Ansonia jeetsukumarani | 34.75835 | 35.5892108 | 0.1324118 | 1.2839052 |
Ansonia latidisca | 35.22528 | 46.6036052 | 0.1310725 | 1.6642784 |
Ansonia latiffi | 34.83990 | 36.6627491 | 0.1300009 | 1.2857743 |
Ansonia latirostra | 35.28152 | 33.8208869 | 0.1330092 | 1.1778800 |
Ansonia tiomanica | 34.81097 | 32.4750177 | 0.1293184 | 1.1301003 |
Ansonia malayana | 34.86449 | 30.8246420 | 0.1331900 | 1.0973843 |
Pelophryne albotaeniata | 35.27559 | 52.8827503 | 0.1348140 | 1.9016986 |
Pelophryne api | 35.45578 | 38.0781631 | 0.1306146 | 1.3943337 |
Pelophryne brevipes | 35.26789 | 39.1598379 | 0.1321559 | 1.4111199 |
Pelophryne guentheri | 35.50379 | 36.3692664 | 0.1316714 | 1.3226200 |
Pelophryne lighti | 35.37515 | 44.7198579 | 0.1317720 | 1.6243426 |
Pelophryne linanitensis | 35.50204 | 25.5019904 | 0.1316496 | 0.9753959 |
Pelophryne misera | 35.43199 | 39.5522271 | 0.1318021 | 1.4677972 |
Pelophryne murudensis | 35.47933 | 27.6235428 | 0.1342736 | 1.0594310 |
Pelophryne rhopophilia | 35.43954 | 33.5759111 | 0.1328983 | 1.2165770 |
Pelophryne signata | 35.46660 | 40.4323489 | 0.1295018 | 1.4585897 |
Ghatophryne ornata | 34.79937 | 27.8241103 | 0.1307217 | 1.0288273 |
Ghatophryne rubigina | 34.79559 | 21.1485505 | 0.1294982 | 0.7583687 |
Ingerophrynus biporcatus | 35.43267 | 39.4730892 | 0.1331929 | 1.4102894 |
Ingerophrynus claviger | 35.39554 | 50.3036397 | 0.1284326 | 1.8322506 |
Ingerophrynus divergens | 35.40473 | 37.2803835 | 0.1317261 | 1.3236362 |
Ingerophrynus galeatus | 35.37127 | 26.7547701 | 0.1345437 | 0.9664523 |
Ingerophrynus philippinicus | 35.44300 | 49.0407572 | 0.1314224 | 1.7556065 |
Ingerophrynus gollum | 34.73786 | 38.5508883 | 0.1332794 | 1.3614489 |
Ingerophrynus kumquat | 35.42490 | 37.0724759 | 0.1304510 | 1.3005243 |
Ingerophrynus macrotis | 35.42031 | 25.1849275 | 0.1323409 | 0.9224505 |
Ingerophrynus parvus | 34.79179 | 28.5698542 | 0.1312255 | 0.9992073 |
Ingerophrynus quadriporcatus | 35.43527 | 38.6672668 | 0.1294823 | 1.3621191 |
Ingerophrynus celebensis | 35.32215 | 43.1281065 | 0.1341643 | 1.5940275 |
Bufo ailaoanus | 35.11008 | 16.2315680 | 0.1331076 | 0.7121010 |
Bufo aspinius | 34.99632 | 12.6750566 | 0.1324399 | 0.6429680 |
Bufo cryptotympanicus | 35.07303 | 16.3741942 | 0.1332996 | 0.6012758 |
Bufo tuberculatus | 35.14395 | 5.9428029 | 0.1332374 | 0.3912064 |
Bufo eichwaldi | 35.11257 | 10.9620459 | 0.1314125 | 0.5551417 |
Bufo japonicus | 35.02680 | 9.8121464 | 0.1331707 | 0.3995011 |
Bufo torrenticola | 34.99901 | 10.1603136 | 0.1329419 | 0.4078581 |
Bufo pageoti | 35.01504 | 15.7046443 | 0.1334151 | 0.6538492 |
Bufo stejnegeri | 35.03142 | 5.3514813 | 0.1334447 | 0.2446396 |
Bufo verrucosissimus | 35.09905 | 7.3669016 | 0.1299747 | 0.3661210 |
Strauchbufo raddei | 35.33320 | 6.4613252 | 0.1307411 | 0.3407825 |
Didynamipus sjostedti | 35.36204 | 36.2415991 | 0.1317457 | 1.3345330 |
Nimbaphrynoides occidentalis | 35.33423 | 34.5548060 | 0.1317484 | 1.2489595 |
Nectophryne afra | 35.29632 | 30.2568469 | 0.1314945 | 1.1056800 |
Nectophryne batesii | 35.21549 | 27.3610370 | 0.1313974 | 0.9999211 |
Werneria bambutensis | 34.79556 | 29.8629285 | 0.1307255 | 1.1380191 |
Werneria iboundji | 34.71272 | 24.4815701 | 0.1322958 | 0.8734771 |
Werneria mertensiana | 34.68638 | 30.1247915 | 0.1330718 | 1.1216648 |
Werneria tandyi | 34.72225 | 38.1690669 | 0.1293262 | 1.4080948 |
Werneria preussi | 34.76748 | 42.8263233 | 0.1326891 | 1.5749690 |
Werneria submontana | 34.72081 | 36.1757093 | 0.1281752 | 1.3305559 |
Wolterstorffina chirioi | 35.35492 | 26.5678603 | 0.1323167 | 1.0284082 |
Wolterstorffina mirei | 35.34803 | 26.0428791 | 0.1317892 | 1.0099529 |
Wolterstorffina parvipalmata | 34.69579 | 34.8673425 | 0.1297824 | 1.3007498 |
Leptophryne borbonica | 35.31562 | 31.0109553 | 0.1313269 | 1.0984341 |
Leptophryne cruentata | 34.66755 | 25.1875364 | 0.1323389 | 0.8801180 |
Pedostibes kempi | 35.22684 | 23.5270451 | 0.1318985 | 0.9212173 |
Altiphrynoides malcolmi | 35.12554 | 26.1305976 | 0.1323037 | 1.3224118 |
Amazophrynella bokermanni | 35.26772 | 38.6463966 | 0.1315749 | 1.3762122 |
Amazophrynella minuta | 35.11771 | 36.4867157 | 0.1335164 | 1.3203282 |
Dendrophryniscus berthalutzae | 35.25474 | 17.1300094 | 0.1301212 | 0.6877008 |
Dendrophryniscus krausae | 35.28414 | 14.6391078 | 0.1307613 | 0.5969076 |
Dendrophryniscus leucomystax | 35.21689 | 21.1483054 | 0.1306496 | 0.8147212 |
Dendrophryniscus brevipollicatus | 35.22112 | 27.0801940 | 0.1329571 | 1.0497258 |
Dendrophryniscus carvalhoi | 35.30652 | 33.4581266 | 0.1291717 | 1.2977836 |
Dendrophryniscus proboscideus | 35.30108 | 27.9994706 | 0.1313786 | 1.0947255 |
Dendrophryniscus stawiarskyi | 35.20643 | 17.1561836 | 0.1329137 | 0.6808884 |
Vandijkophrynus amatolicus | 35.13563 | 14.6690928 | 0.1329065 | 0.7104059 |
Vandijkophrynus inyangae | 35.17968 | 18.7344848 | 0.1321497 | 0.7827564 |
Vandijkophrynus angusticeps | 35.25651 | 14.5603680 | 0.1316464 | 0.6887052 |
Vandijkophrynus gariepensis | 35.19048 | 13.1927653 | 0.1329832 | 0.6251869 |
Vandijkophrynus robinsoni | 35.18982 | 16.1237826 | 0.1328317 | 0.7881477 |
Anaxyrus hemiophrys | 36.03568 | 3.5127715 | 0.1266966 | 0.1864475 |
Anaxyrus houstonensis | 36.06607 | 12.9177991 | 0.1250382 | 0.4753305 |
Anaxyrus microscaphus | 35.91994 | 5.9666803 | 0.1233382 | 0.2893595 |
Anaxyrus californicus | 35.97774 | 9.2482868 | 0.1236505 | 0.4343909 |
Anaxyrus debilis | 37.34067 | 10.4459130 | 0.1241215 | 0.4451499 |
Anaxyrus kelloggi | 35.94267 | 12.9084480 | 0.1258540 | 0.5089264 |
Anaxyrus mexicanus | 35.97549 | 10.3105342 | 0.1253500 | 0.4285197 |
Anaxyrus quercicus | 35.99303 | 11.0426034 | 0.1242137 | 0.4093134 |
Anaxyrus speciosus | 36.95540 | 13.5656368 | 0.1249515 | 0.5542702 |
Incilius occidentalis | 36.56727 | 14.9322438 | 0.1249271 | 0.6147031 |
Incilius aucoinae | 36.42283 | 25.2077376 | 0.1285786 | 0.9850586 |
Incilius melanochlorus | 36.39641 | 26.5945011 | 0.1261243 | 1.0047342 |
Incilius campbelli | 35.81029 | 23.4543529 | 0.1250094 | 0.8864794 |
Incilius leucomyos | 36.45645 | 22.6175565 | 0.1254232 | 0.8634570 |
Incilius macrocristatus | 36.39801 | 21.9684919 | 0.1274942 | 0.7892096 |
Incilius tutelarius | 35.79579 | 17.4063241 | 0.1266969 | 0.6580238 |
Incilius cristatus | 36.41486 | 16.5809990 | 0.1253855 | 0.6740380 |
Incilius perplexus | 36.42000 | 19.2652799 | 0.1281327 | 0.7622893 |
Incilius cavifrons | 35.72291 | 19.3603137 | 0.1274821 | 0.7080481 |
Incilius spiculatus | 35.78535 | 12.3396634 | 0.1279790 | 0.5495362 |
Incilius chompipe | 36.45748 | 22.6075211 | 0.1256610 | 0.9347218 |
Incilius coniferus | 36.47094 | 25.7656633 | 0.1258667 | 0.9811312 |
Incilius coccifer | 36.47462 | 23.0188273 | 0.1264908 | 0.8608147 |
Incilius cycladen | 36.46317 | 19.2111144 | 0.1280446 | 0.7615384 |
Incilius signifer | 36.49145 | 36.3191163 | 0.1251882 | 1.3413723 |
Incilius porteri | 36.41310 | 19.0897241 | 0.1281373 | 0.7316909 |
Incilius ibarrai | 36.46950 | 15.2924597 | 0.1260149 | 0.5955546 |
Incilius pisinnus | 36.45051 | 21.1882556 | 0.1264693 | 0.8646359 |
Incilius epioticus | 36.37982 | 28.8997244 | 0.1272831 | 1.1859751 |
Incilius gemmifer | 36.34127 | 18.2918366 | 0.1275401 | 0.6998054 |
Incilius guanacaste | 36.49205 | 30.7865999 | 0.1239423 | 1.1505372 |
Incilius holdridgei | 36.42661 | 27.4510376 | 0.1248283 | 0.9895505 |
Incilius luetkenii | 36.54825 | 20.5933574 | 0.1261011 | 0.7659573 |
Incilius nebulifer | 36.47617 | 16.4420008 | 0.1234030 | 0.6336554 |
Incilius valliceps | 36.41210 | 22.1386149 | 0.1267956 | 0.8167254 |
Incilius tacanensis | 35.82957 | 20.5965002 | 0.1263616 | 0.8026630 |
Incilius bocourti | 36.25522 | 19.7438448 | 0.1274121 | 0.7677863 |
Rhinella abei | 36.74118 | 10.9006551 | 0.1250059 | 0.4422981 |
Rhinella pombali | 36.73158 | 12.6038887 | 0.1258480 | 0.4868344 |
Rhinella achalensis | 36.56378 | 9.2358866 | 0.1254394 | 0.4037417 |
Rhinella achavali | 36.33822 | 9.2366831 | 0.1257520 | 0.3775466 |
Rhinella rubescens | 36.30004 | 15.6322267 | 0.1270945 | 0.5804241 |
Rhinella acrolopha | 36.58573 | 29.6183883 | 0.1279110 | 1.0863324 |
Rhinella acutirostris | 36.55210 | 27.0238589 | 0.1253891 | 0.9912560 |
Rhinella alata | 36.55634 | 28.6108924 | 0.1281364 | 1.0656376 |
Rhinella amabilis | 36.77235 | 16.0817288 | 0.1227261 | 0.7061256 |
Rhinella amboroensis | 35.92321 | 25.7658186 | 0.1260679 | 1.1382094 |
Rhinella veraguensis | 36.38182 | 19.9748464 | 0.1245394 | 1.0017442 |
Rhinella arborescandens | 36.44619 | 19.9164431 | 0.1252602 | 0.8842629 |
Rhinella arunco | 36.58646 | 6.5553694 | 0.1243358 | 0.3597176 |
Rhinella atacamensis | 36.73836 | 7.9825023 | 0.1273904 | 0.4647936 |
Rhinella bergi | 36.61275 | 14.1256223 | 0.1251814 | 0.5131944 |
Rhinella castaneotica | 36.50196 | 29.3272895 | 0.1274228 | 1.0339638 |
Rhinella cerradensis | 36.88074 | 16.2019138 | 0.1300585 | 0.5961285 |
Rhinella jimi | 36.92436 | 20.6675136 | 0.1279403 | 0.7976637 |
Rhinella chavin | 36.26387 | 14.7937596 | 0.1277133 | 0.7500062 |
Rhinella cristinae | 36.59081 | 23.8683145 | 0.1240037 | 0.9543205 |
Rhinella dapsilis | 36.52199 | 30.7889875 | 0.1261454 | 1.1367972 |
Rhinella martyi | 36.48259 | 30.6358918 | 0.1265049 | 1.1133777 |
Rhinella lescurei | 36.46705 | 26.1032499 | 0.1284349 | 0.9416199 |
Rhinella fernandezae | 36.62106 | 10.1486347 | 0.1274424 | 0.4042829 |
Rhinella festae | 36.54807 | 18.4408916 | 0.1263924 | 0.7672607 |
Rhinella fissipes | 36.55785 | 27.0848024 | 0.1242610 | 1.3145953 |
Rhinella gallardoi | 36.53532 | 14.7574086 | 0.1255248 | 0.6378595 |
Rhinella gnustae | 35.90304 | 10.5053631 | 0.1255695 | 0.6733245 |
Rhinella henseli | 36.56727 | 12.5891118 | 0.1236895 | 0.5032778 |
Rhinella inca | 36.59360 | 14.4939129 | 0.1254214 | 0.7679543 |
Rhinella iserni | 36.58299 | 33.7080666 | 0.1254464 | 1.5206741 |
Rhinella justinianoi | 36.61049 | 21.7624209 | 0.1243031 | 1.0379407 |
Rhinella limensis | 36.62087 | 16.5562114 | 0.1267166 | 0.7978144 |
Rhinella lindae | 36.51077 | 32.4465646 | 0.1262431 | 1.2265709 |
Rhinella macrorhina | 36.57904 | 16.9897702 | 0.1245416 | 0.7508256 |
Rhinella magnussoni | 36.54605 | 29.7752626 | 0.1272717 | 1.0721354 |
Rhinella manu | 36.41346 | 13.9183784 | 0.1239475 | 0.7987639 |
Rhinella nesiotes | 36.41072 | 28.0665866 | 0.1249733 | 1.2301770 |
Rhinella multiverrucosa | 36.67430 | 16.1909410 | 0.1240422 | 0.7992260 |
Rhinella nicefori | 36.62631 | 19.6204974 | 0.1246888 | 0.8145986 |
Rhinella ocellata | 36.53135 | 18.9153753 | 0.1290079 | 0.6911417 |
Rhinella poeppigii | 35.97371 | 22.1110522 | 0.1254827 | 1.0079103 |
Rhinella proboscidea | 36.56427 | 30.7713671 | 0.1263980 | 1.0756777 |
Rhinella pygmaea | 37.60213 | 21.3453837 | 0.1261858 | 0.8261741 |
Rhinella quechua | 36.59143 | 19.1981559 | 0.1242515 | 0.9725297 |
Rhinella roqueana | 36.59808 | 25.8749781 | 0.1262069 | 0.9670665 |
Rhinella rubropunctata | 36.49576 | 6.5069626 | 0.1247295 | 0.3759096 |
Rhinella ruizi | 36.54606 | 18.4635004 | 0.1276507 | 0.8216101 |
Rhinella rumbolli | 36.52757 | 12.3867523 | 0.1247267 | 0.6037890 |
Rhinella scitula | 35.93582 | 19.4902777 | 0.1276981 | 0.6786503 |
Rhinella sclerocephala | 36.50792 | 30.0610050 | 0.1249136 | 1.1233049 |
Rhinella stanlaii | 36.55036 | 22.0940579 | 0.1258570 | 1.0952267 |
Rhinella sternosignata | 36.53616 | 26.7701103 | 0.1254493 | 1.0423964 |
Rhinella tacana | 36.39047 | 19.3228360 | 0.1261228 | 0.9903784 |
Rhinella tenrec | 36.63820 | 31.9649818 | 0.1278191 | 1.2105331 |
Rhinella vellardi | 36.60368 | 18.9458447 | 0.1265229 | 0.9124408 |
Rhinella veredas | 36.51014 | 21.4275160 | 0.1275405 | 0.8099315 |
Rhinella yanachaga | 36.35901 | 19.6494314 | 0.1278061 | 0.9217852 |
Atelopus andinus | 34.06506 | 31.0179838 | 0.1292850 | 1.2652389 |
Atelopus arsyecue | 34.03874 | 24.8585896 | 0.1319212 | 0.9719388 |
Atelopus balios | 34.11297 | 25.3318181 | 0.1317062 | 0.9366497 |
Atelopus bomolochos | 34.03672 | 24.3493433 | 0.1318013 | 0.9404351 |
Atelopus carauta | 34.06963 | 34.1492387 | 0.1311225 | 1.2908873 |
Atelopus carrikeri | 34.06437 | 22.6337810 | 0.1312048 | 0.8848571 |
Atelopus certus | 34.00020 | 40.6724222 | 0.1342495 | 1.5065238 |
Atelopus chirripoensis | 34.60864 | 20.5143212 | 0.1332328 | 1.1926495 |
Atelopus chrysocorallus | 34.00709 | 32.5008370 | 0.1315493 | 1.2141573 |
Atelopus coynei | 34.02234 | 14.1365382 | 0.1341127 | 0.6785297 |
Atelopus cruciger | 33.98903 | 35.8526972 | 0.1328973 | 1.3223540 |
Atelopus dimorphus | 33.94101 | 30.7028714 | 0.1331727 | 1.2986456 |
Atelopus epikeisthos | 34.00278 | 30.5688673 | 0.1328530 | 1.3019853 |
Atelopus exiguus | 34.11752 | 16.6565610 | 0.1321631 | 0.6873446 |
Atelopus nanay | 34.03939 | 24.0409860 | 0.1320415 | 0.8916065 |
Atelopus famelicus | 34.00060 | 38.6532743 | 0.1323010 | 1.5007234 |
Atelopus flavescens | 33.97791 | 42.1774196 | 0.1302802 | 1.5557586 |
Atelopus franciscus | 33.93599 | 38.1371634 | 0.1318867 | 1.3978159 |
Atelopus galactogaster | 33.99630 | 39.2769887 | 0.1320713 | 1.5006033 |
Atelopus glyphus | 34.09901 | 37.8502923 | 0.1333644 | 1.3879053 |
Atelopus guitarraensis | 34.06035 | 27.0039560 | 0.1317352 | 1.1298309 |
Atelopus podocarpus | 34.00932 | 22.6235005 | 0.1336568 | 0.9753269 |
Atelopus ignescens | 34.00267 | 14.3235103 | 0.1323225 | 0.6624398 |
Atelopus laetissimus | 34.01285 | 24.9460089 | 0.1332165 | 0.9196353 |
Atelopus varius | 34.03504 | 30.4175552 | 0.1322922 | 1.1641835 |
Atelopus longibrachius | 33.97460 | 39.9737087 | 0.1330707 | 1.5494301 |
Atelopus longirostris | 34.05749 | 14.9405009 | 0.1310903 | 0.7164462 |
Atelopus lozanoi | 34.06518 | 22.9352889 | 0.1329542 | 1.0080147 |
Atelopus mandingues | 34.03856 | 21.7852784 | 0.1325289 | 0.9566417 |
Atelopus mittermeieri | 34.01800 | 22.2853383 | 0.1328151 | 0.9997384 |
Atelopus mucubajiensis | 34.03360 | 32.9783224 | 0.1310608 | 1.2276675 |
Atelopus muisca | 33.94503 | 22.3668116 | 0.1336363 | 0.9802376 |
Atelopus nahumae | 34.06169 | 26.7210462 | 0.1294103 | 0.9951222 |
Atelopus nepiozomus | 34.03237 | 18.0309055 | 0.1318183 | 0.7819804 |
Atelopus oxapampae | 34.09185 | 24.4569945 | 0.1311606 | 1.1461191 |
Atelopus palmatus | 33.98059 | 13.4533184 | 0.1323026 | 0.6061020 |
Atelopus pulcher | 34.05379 | 30.6512219 | 0.1321735 | 1.3051953 |
Atelopus pyrodactylus | 34.02039 | 30.1750495 | 0.1313364 | 1.3290152 |
Atelopus reticulatus | 33.93513 | 32.8544393 | 0.1342825 | 1.3820456 |
Atelopus sanjosei | 34.03727 | 35.9306282 | 0.1326413 | 1.3873888 |
Atelopus seminiferus | 34.03931 | 25.3804922 | 0.1336049 | 1.0993165 |
Atelopus simulatus | 34.59110 | 19.5458522 | 0.1320218 | 0.8784981 |
Atelopus siranus | 33.98550 | 29.4302308 | 0.1300840 | 1.2888447 |
Atelopus spurrelli | 33.99211 | 36.0476699 | 0.1316730 | 1.3901254 |
Atelopus tricolor | 34.20716 | 28.2780888 | 0.1309765 | 1.3237664 |
Atelopus walkeri | 34.10185 | 23.9435394 | 0.1295980 | 0.9176342 |
Bufoides meghalayanus | 34.53861 | 20.8875595 | 0.1303711 | 0.9024287 |
Capensibufo rosei | 35.36222 | 15.0531153 | 0.1299875 | 0.6953415 |
Capensibufo tradouwi | 35.24606 | 14.5823029 | 0.1324625 | 0.6970616 |
Mertensophryne anotis | 35.40258 | 30.2090552 | 0.1299873 | 1.1390197 |
Mertensophryne loveridgei | 35.37932 | 29.2078640 | 0.1311046 | 1.1328756 |
Mertensophryne howelli | 35.38804 | 35.8273827 | 0.1312162 | 1.3681549 |
Mertensophryne lindneri | 35.37464 | 28.4242457 | 0.1302679 | 1.1156163 |
Mertensophryne lonnbergi | 35.42195 | 24.3886497 | 0.1310555 | 1.1275070 |
Mertensophryne melanopleura | 35.35607 | 23.9283755 | 0.1294696 | 0.9796604 |
Mertensophryne micranotis | 35.39079 | 36.2062661 | 0.1318627 | 1.4405390 |
Mertensophryne mocquardi | 35.36637 | 22.9446172 | 0.1312119 | 1.0788321 |
Mertensophryne nairobiensis | 35.32911 | 20.2577120 | 0.1331775 | 0.9368216 |
Mertensophryne nyikae | 35.31917 | 29.6097408 | 0.1328933 | 1.3331982 |
Mertensophryne schmidti | 35.34364 | 27.5050661 | 0.1312202 | 1.0690126 |
Mertensophryne taitana | 35.35328 | 23.8059777 | 0.1328414 | 1.0079207 |
Mertensophryne usambarae | 35.37390 | 42.6742199 | 0.1326641 | 1.7002332 |
Mertensophryne uzunguensis | 35.35692 | 27.8758475 | 0.1305444 | 1.2590174 |
Poyntonophrynus beiranus | 35.34691 | 25.6031542 | 0.1305638 | 1.0007942 |
Poyntonophrynus damaranus | 36.28962 | 14.5353404 | 0.1323482 | 0.6281741 |
Poyntonophrynus dombensis | 35.26536 | 15.0459453 | 0.1315523 | 0.6445383 |
Poyntonophrynus fenoulheti | 35.40372 | 19.5790174 | 0.1314857 | 0.8118549 |
Poyntonophrynus grandisonae | 35.12522 | 15.1499942 | 0.1290208 | 0.6161834 |
Poyntonophrynus hoeschi | 35.33731 | 15.6976632 | 0.1302224 | 0.7065102 |
Poyntonophrynus kavangensis | 35.30309 | 20.2473354 | 0.1317571 | 0.8375877 |
Poyntonophrynus lughensis | 35.35574 | 35.9273091 | 0.1306500 | 1.4674106 |
Poyntonophrynus parkeri | 35.28589 | 23.0327126 | 0.1301360 | 1.0333644 |
Poyntonophrynus vertebralis | 35.34119 | 15.2917074 | 0.1299599 | 0.7189934 |
Laurentophryne parkeri | 35.35262 | 24.9690131 | 0.1276237 | 1.0166798 |
Metaphryniscus sosai | 35.19916 | 33.3965564 | 0.1329798 | 1.2781440 |
Nannophryne apolobambica | 35.22024 | 19.8485574 | 0.1325793 | 1.2144922 |
Nannophryne corynetes | 35.31629 | 15.8997972 | 0.1281268 | 0.8539352 |
Nannophryne variegata | 35.23681 | 5.9891532 | 0.1328576 | 0.5111197 |
Oreophrynella cryptica | 35.35178 | 35.5940544 | 0.1289411 | 1.3583891 |
Oreophrynella dendronastes | 35.15019 | 41.2420761 | 0.1324181 | 1.5332423 |
Oreophrynella huberi | 35.31137 | 32.3328036 | 0.1300325 | 1.2300338 |
Oreophrynella macconnelli | 35.17633 | 36.6938071 | 0.1295490 | 1.3623021 |
Oreophrynella nigra | 35.31341 | 37.9192576 | 0.1309872 | 1.4252345 |
Oreophrynella quelchii | 35.32884 | 36.5569119 | 0.1309520 | 1.3691920 |
Oreophrynella vasquezi | 35.36308 | 31.0314516 | 0.1304765 | 1.1930045 |
Oreophrynella weiassipuensis | 35.10860 | 34.4702840 | 0.1294893 | 1.2920565 |
Osornophryne bufoniformis | 35.18577 | 20.9226885 | 0.1309626 | 0.9222589 |
Osornophryne antisana | 35.19835 | 14.0327177 | 0.1291933 | 0.6346783 |
Osornophryne percrassa | 35.19785 | 27.9778520 | 0.1316896 | 1.2337678 |
Osornophryne puruanta | 35.14500 | 21.6381936 | 0.1324441 | 0.9730545 |
Osornophryne cofanorum | 35.03366 | 22.8309617 | 0.1317262 | 1.0237140 |
Osornophryne guacamayo | 35.23698 | 17.1980768 | 0.1292414 | 0.7813464 |
Osornophryne sumacoensis | 35.25214 | 25.2131921 | 0.1317810 | 1.0549256 |
Osornophryne talipes | 35.20451 | 23.2108239 | 0.1325689 | 1.0102005 |
Parapelophryne scalpta | 35.35914 | 49.5028869 | 0.1344618 | 1.7582776 |
Peltophryne cataulaciceps | 35.24405 | 62.3058731 | 0.1311330 | 2.2699611 |
Peltophryne longinasus | 35.27440 | 69.8530066 | 0.1311419 | 2.5321490 |
Peltophryne gundlachi | 35.16998 | 56.5105847 | 0.1306993 | 2.0512004 |
Peltophryne empusa | 35.22459 | 67.4290361 | 0.1323866 | 2.4438947 |
Peltophryne florentinoi | 35.24879 | 57.5275787 | 0.1304691 | 2.0916729 |
Peltophryne peltocephala | 35.15934 | 63.1083825 | 0.1318917 | 2.2895180 |
Peltophryne fustiger | 35.19928 | 54.5700891 | 0.1317842 | 1.9878861 |
Peltophryne taladai | 35.23140 | 61.7744614 | 0.1306144 | 2.2342201 |
Peltophryne guentheri | 35.17545 | 71.4539488 | 0.1315157 | 2.5995771 |
Peltophryne lemur | 35.24856 | 64.0283991 | 0.1324287 | 2.3658546 |
Pseudobufo subasper | 35.25779 | 44.5693186 | 0.1300819 | 1.5371435 |
Rhaebo blombergi | 35.02381 | 33.1122153 | 0.1342978 | 1.3133197 |
Rhaebo caeruleostictus | 35.08212 | 19.5248911 | 0.1323861 | 0.8149009 |
Rhaebo glaberrimus | 34.52886 | 32.9897688 | 0.1310494 | 1.3025697 |
Rhaebo guttatus | 35.04955 | 32.1869704 | 0.1319600 | 1.1606890 |
Rhaebo hypomelas | 35.15661 | 32.0599884 | 0.1293464 | 1.2829509 |
Rhaebo lynchi | 35.14797 | 35.8580456 | 0.1289433 | 1.3573454 |
Rhaebo nasicus | 34.54102 | 31.7859953 | 0.1301990 | 1.1968849 |
Truebella skoptes | 35.21988 | 23.5191369 | 0.1288299 | 1.3761998 |
Truebella tothastes | 35.29795 | 13.1134919 | 0.1300858 | 0.7611042 |
Frostius erythrophthalmus | 35.23968 | 23.3056253 | 0.1316565 | 0.9325698 |
Frostius pernambucensis | 35.33719 | 32.2575386 | 0.1313048 | 1.2702542 |
Melanophryniscus admirabilis | 34.47497 | 18.5628400 | 0.1305944 | 0.7323096 |
Melanophryniscus alipioi | 34.96327 | 14.3530842 | 0.1332953 | 0.5930302 |
Melanophryniscus atroluteus | 35.06521 | 14.8178376 | 0.1304168 | 0.5909739 |
Melanophryniscus cambaraensis | 34.54404 | 15.0002144 | 0.1317050 | 0.6090524 |
Melanophryniscus cupreuscapularis | 34.99878 | 18.1978181 | 0.1339878 | 0.6688359 |
Melanophryniscus dorsalis | 35.09563 | 16.4661500 | 0.1347633 | 0.6751854 |
Melanophryniscus fulvoguttatus | 34.96883 | 23.1011827 | 0.1335668 | 0.8248919 |
Melanophryniscus klappenbachi | 35.03516 | 19.2080286 | 0.1317283 | 0.6907243 |
Melanophryniscus stelzneri | 35.06464 | 13.1682181 | 0.1309114 | 0.6048878 |
Melanophryniscus langonei | 34.31513 | 12.7911251 | 0.1325819 | 0.5129390 |
Melanophryniscus macrogranulosus | 34.92130 | 13.9372789 | 0.1336346 | 0.5579309 |
Melanophryniscus montevidensis | 34.94778 | 14.6986493 | 0.1333500 | 0.6602740 |
Melanophryniscus moreirae | 35.02925 | 22.6717783 | 0.1317277 | 0.8489025 |
Melanophryniscus orejasmirandai | 35.07922 | 16.2706869 | 0.1345130 | 0.7446443 |
Melanophryniscus pachyrhynus | 35.06597 | 13.6447880 | 0.1332251 | 0.5620936 |
Melanophryniscus peritus | 35.05050 | 20.0662530 | 0.1315102 | 0.7580169 |
Melanophryniscus sanmartini | 35.02358 | 15.3394157 | 0.1341816 | 0.6615833 |
Melanophryniscus simplex | 35.07852 | 15.7040571 | 0.1337984 | 0.6273214 |
Melanophryniscus spectabilis | 35.08245 | 16.5594161 | 0.1306124 | 0.6565784 |
Melanophryniscus tumifrons | 35.09568 | 16.1232335 | 0.1335948 | 0.6433429 |
Edalorhina nasuta | 36.27354 | 18.7073421 | 0.1336140 | 0.8775205 |
Engystomops montubio | 36.75920 | 20.9416756 | 0.1318696 | 0.8433883 |
Engystomops pustulatus | 36.52844 | 20.7153230 | 0.1311398 | 0.8279026 |
Physalaemus caete | 36.60964 | 23.8326373 | 0.1346209 | 0.9297250 |
Physalaemus aguirrei | 36.42675 | 27.1870611 | 0.1326818 | 1.0610349 |
Physalaemus irroratus | 36.45277 | 23.3728622 | 0.1289947 | 0.9104527 |
Physalaemus maculiventris | 36.65234 | 20.1923446 | 0.1320654 | 0.7842384 |
Physalaemus moreirae | 36.40766 | 18.6662134 | 0.1306764 | 0.7170901 |
Physalaemus albifrons | 36.44264 | 18.6270143 | 0.1344178 | 0.7165931 |
Physalaemus centralis | 35.71338 | 17.3289629 | 0.1347089 | 0.6323514 |
Physalaemus ephippifer | 35.51333 | 27.8340813 | 0.1345210 | 0.9960033 |
Physalaemus erythros | 35.75214 | 14.5871336 | 0.1352921 | 0.5664967 |
Physalaemus maximus | 35.80934 | 13.9773065 | 0.1315266 | 0.5465853 |
Physalaemus angrensis | 36.34619 | 20.2441362 | 0.1332388 | 0.7540133 |
Physalaemus rupestris | 36.36991 | 22.3137614 | 0.1311286 | 0.8548396 |
Physalaemus atlanticus | 37.23987 | 18.9222066 | 0.1304566 | 0.7567729 |
Physalaemus santafecinus | 37.35823 | 12.5667334 | 0.1312305 | 0.4703211 |
Physalaemus spiniger | 37.12182 | 16.3974819 | 0.1288403 | 0.6387528 |
Physalaemus barrioi | 36.00508 | 16.3526960 | 0.1321302 | 0.6147210 |
Physalaemus biligonigerus | 35.99251 | 14.9144893 | 0.1333020 | 0.5753734 |
Physalaemus jordanensis | 36.18298 | 13.8948056 | 0.1312580 | 0.5376260 |
Physalaemus bokermanni | 36.51876 | 15.5032536 | 0.1324882 | 0.6069186 |
Physalaemus cuqui | 36.88809 | 13.7514444 | 0.1307270 | 0.5746019 |
Physalaemus kroyeri | 36.57926 | 19.8800535 | 0.1304654 | 0.7815604 |
Physalaemus fernandezae | 35.63700 | 10.0327272 | 0.1343204 | 0.4576415 |
Physalaemus deimaticus | 36.37199 | 16.7975844 | 0.1325630 | 0.6825474 |
Physalaemus insperatus | 36.40970 | 15.2627911 | 0.1308695 | 0.6223080 |
Physalaemus evangelistai | 36.33540 | 18.9471721 | 0.1325540 | 0.7509364 |
Physalaemus nanus | 36.34017 | 15.4228533 | 0.1319849 | 0.6235099 |
Physalaemus fischeri | 36.31729 | 30.6358561 | 0.1319181 | 1.1435621 |
Physalaemus olfersii | 36.34164 | 18.7908411 | 0.1310271 | 0.7323787 |
Physalaemus lisei | 36.29943 | 13.3395395 | 0.1327246 | 0.5407885 |
Physalaemus marmoratus | 37.67312 | 18.4800678 | 0.1318215 | 0.6833972 |
Physalaemus obtectus | 36.39366 | 20.4123343 | 0.1307354 | 0.7901597 |
Physalaemus soaresi | 36.38070 | 23.3504734 | 0.1312349 | 0.8921354 |
Pleurodema borellii | 37.19611 | 9.4766966 | 0.1304718 | 0.4497366 |
Pleurodema cinereum | 37.18823 | 10.1241881 | 0.1319652 | 0.5951182 |
Pleurodema fuscomaculatum | 37.11748 | 24.3630327 | 0.1322985 | 0.8558101 |
Pleurodema bibroni | 35.81643 | 9.4333641 | 0.1355485 | 0.3851898 |
Pleurodema kriegi | 35.82267 | 8.3331792 | 0.1342764 | 0.3586660 |
Pleurodema guayapae | 36.75042 | 9.4540861 | 0.1301690 | 0.3999375 |
Pseudopaludicola mystacalis | 36.48101 | 22.5266996 | 0.1314382 | 0.8436858 |
Pseudopaludicola boliviana | 36.52567 | 27.0261197 | 0.1286960 | 0.9712619 |
Pseudopaludicola pusilla | 36.54700 | 29.0485252 | 0.1307580 | 1.0836532 |
Pseudopaludicola saltica | 36.59960 | 23.9164955 | 0.1311752 | 0.8913482 |
Pseudopaludicola canga | 36.45520 | 33.4551916 | 0.1303129 | 1.1916364 |
Pseudopaludicola mineira | 36.50494 | 16.1948245 | 0.1275396 | 0.6513831 |
Pseudopaludicola llanera | 36.53589 | 29.7731036 | 0.1260592 | 1.1084553 |
Pseudopaludicola ternetzi | 36.74930 | 18.2225275 | 0.1291552 | 0.6874762 |
Crossodactylodes bokermanni | 35.93615 | 31.2561428 | 0.1300625 | 1.2095514 |
Crossodactylodes izecksohni | 36.02075 | 30.8111683 | 0.1311206 | 1.1942098 |
Crossodactylodes pintoi | 36.02339 | 24.6480102 | 0.1322302 | 0.9178945 |
Paratelmatobius mantiqueira | 35.97587 | 21.0712641 | 0.1322453 | 0.8060755 |
Paratelmatobius cardosoi | 36.00188 | 20.6151656 | 0.1296190 | 0.8191506 |
Paratelmatobius gaigeae | 36.03135 | 20.1367167 | 0.1306995 | 0.7539061 |
Paratelmatobius poecilogaster | 36.01358 | 20.5583116 | 0.1333081 | 0.8183076 |
Paratelmatobius lutzii | 36.08054 | 21.5212628 | 0.1281960 | 0.8069389 |
Scythrophrys sawayae | 36.03073 | 18.3497075 | 0.1326686 | 0.7458269 |
Rupirana cardosoi | 35.47791 | 21.4557465 | 0.1317179 | 0.8537356 |
Adenomera ajurauna | 34.86067 | 14.6966572 | 0.1342320 | 0.5730912 |
Adenomera araucaria | 35.34419 | 14.3138952 | 0.1296895 | 0.5740153 |
Adenomera thomei | 35.33126 | 30.6957497 | 0.1331121 | 1.2008729 |
Adenomera nana | 35.45841 | 15.8875116 | 0.1324253 | 0.6393327 |
Adenomera bokermanni | 35.38564 | 17.4913737 | 0.1320983 | 0.6773274 |
Adenomera coca | 35.36697 | 13.6877537 | 0.1311980 | 0.9425057 |
Adenomera diptyx | 35.41116 | 18.9506071 | 0.1323430 | 0.6927039 |
Adenomera hylaedactyla | 35.39350 | 28.5709900 | 0.1318151 | 1.0388234 |
Adenomera martinezi | 35.35206 | 29.3326675 | 0.1323411 | 1.0562728 |
Adenomera marmorata | 35.44286 | 19.1578594 | 0.1302786 | 0.7402232 |
Adenomera heyeri | 35.52512 | 35.0187468 | 0.1319803 | 1.2725990 |
Adenomera lutzi | 35.39185 | 32.1575265 | 0.1337709 | 1.1919543 |
Hydrolaetare caparu | 37.47125 | 23.5290065 | 0.1312401 | 0.8200392 |
Hydrolaetare schmidti | 36.41392 | 34.7324765 | 0.1317690 | 1.2220515 |
Hydrolaetare dantasi | 36.43028 | 33.5043130 | 0.1301014 | 1.1899950 |
Leptodactylus poecilochilus | 35.44867 | 27.8375641 | 0.1311916 | 1.0329955 |
Leptodactylus chaquensis | 36.46040 | 15.8663046 | 0.1312637 | 0.6006834 |
Leptodactylus fragilis | 38.12338 | 23.2250674 | 0.1281574 | 0.8738531 |
Leptodactylus longirostris | 37.86599 | 27.3308171 | 0.1301427 | 1.0053962 |
Leptodactylus caatingae | 36.52327 | 19.7394692 | 0.1291798 | 0.7641990 |
Leptodactylus camaquara | 37.51463 | 17.3861291 | 0.1317728 | 0.6857897 |
Leptodactylus colombiensis | 36.52463 | 27.2707592 | 0.1315883 | 1.0973239 |
Leptodactylus cunicularius | 36.56946 | 15.7825899 | 0.1331705 | 0.6086664 |
Leptodactylus cupreus | 37.47964 | 17.9185419 | 0.1293163 | 0.6931035 |
Leptodactylus notoaktites | 35.69695 | 13.4284133 | 0.1345796 | 0.5205640 |
Leptodactylus mystaceus | 35.65891 | 28.0110860 | 0.1329157 | 1.0121382 |
Leptodactylus spixi | 35.77497 | 21.1334840 | 0.1321075 | 0.8250210 |
Leptodactylus elenae | 35.93795 | 16.6512071 | 0.1303876 | 0.6068650 |
Leptodactylus diedrus | 36.85951 | 28.8186537 | 0.1297745 | 1.0026669 |
Leptodactylus discodactylus | 37.05933 | 25.9589457 | 0.1300614 | 0.9414296 |
Leptodactylus griseigularis | 37.08923 | 17.8783008 | 0.1285516 | 0.9103298 |
Leptodactylus validus | 36.61205 | 46.8360418 | 0.1304273 | 1.7394302 |
Leptodactylus fallax | 36.54158 | 50.0406161 | 0.1276546 | 1.8428222 |
Leptodactylus labyrinthicus | 36.70459 | 23.0400565 | 0.1291108 | 0.8373426 |
Leptodactylus myersi | 36.54907 | 35.3933862 | 0.1293879 | 1.2894410 |
Leptodactylus knudseni | 36.45353 | 29.5357300 | 0.1303475 | 1.0706648 |
Leptodactylus pentadactylus | 36.52621 | 32.0494970 | 0.1272322 | 1.1593204 |
Leptodactylus flavopictus | 36.55520 | 18.5246859 | 0.1318682 | 0.7228278 |
Leptodactylus furnarius | 36.01523 | 16.9262046 | 0.1327488 | 0.6346320 |
Leptodactylus plaumanni | 37.00816 | 12.8390123 | 0.1295658 | 0.4976682 |
Leptodactylus stenodema | 36.58751 | 31.7404305 | 0.1322606 | 1.1325103 |
Leptodactylus hylodes | 36.52889 | 29.1891845 | 0.1305304 | 1.1552490 |
Leptodactylus jolyi | 36.95606 | 15.5142791 | 0.1303924 | 0.5889605 |
Leptodactylus magistris | 35.72640 | 25.2738961 | 0.1316250 | 0.9538428 |
Leptodactylus laticeps | 36.52204 | 17.1724795 | 0.1300341 | 0.6440944 |
Leptodactylus lauramiriamae | 36.51318 | 26.3310022 | 0.1313425 | 0.9354005 |
Leptodactylus nesiotus | 36.15059 | 33.2402846 | 0.1322601 | 1.2262868 |
Leptodactylus marambaiae | 36.59740 | 26.6407296 | 0.1317241 | 1.0451368 |
Leptodactylus natalensis | 36.56315 | 26.0646455 | 0.1291910 | 1.0003491 |
Leptodactylus paraensis | 36.56970 | 29.7467355 | 0.1276516 | 1.0603802 |
Leptodactylus rhodonotus | 36.56169 | 31.1960747 | 0.1293562 | 1.3259194 |
Leptodactylus peritoaktites | 36.60434 | 25.5879783 | 0.1308053 | 0.9949166 |
Leptodactylus pustulatus | 36.54849 | 26.9850301 | 0.1308207 | 0.9652710 |
Leptodactylus rhodomerus | 36.52562 | 26.4311472 | 0.1330671 | 1.0487722 |
Leptodactylus riveroi | 36.66225 | 35.2499035 | 0.1332207 | 1.2396965 |
Leptodactylus silvanimbus | 36.53498 | 20.1309761 | 0.1307332 | 0.7513414 |
Leptodactylus rugosus | 36.46688 | 29.9879909 | 0.1319459 | 1.1369092 |
Leptodactylus sabanensis | 36.53384 | 25.4411414 | 0.1307931 | 0.9718616 |
Leptodactylus savagei | 36.53853 | 29.9965660 | 0.1326507 | 1.1094368 |
Leptodactylus sertanejo | 36.46835 | 19.4521157 | 0.1308334 | 0.7249981 |
Leptodactylus tapiti | 36.57346 | 20.3920147 | 0.1300997 | 0.7666681 |
Leptodactylus turimiquensis | 36.55808 | 32.6062338 | 0.1338481 | 1.2156383 |
Leptodactylus vastus | 36.56575 | 29.4784507 | 0.1303024 | 1.0949815 |
Leptodactylus viridis | 36.59207 | 28.5884327 | 0.1315597 | 1.1228650 |
Leptodactylus syphax | 36.32011 | 23.8139313 | 0.1302545 | 0.8818460 |
Celsiella revocata | 33.59445 | 30.2473216 | 0.1319174 | 1.1203549 |
Celsiella vozmedianoi | 33.57724 | 34.0007747 | 0.1340820 | 1.2507006 |
Hyalinobatrachium aureoguttatum | 33.75471 | 34.9245864 | 0.1314458 | 1.3696993 |
Hyalinobatrachium valerioi | 33.70486 | 28.4329683 | 0.1316411 | 1.1305481 |
Hyalinobatrachium talamancae | 33.76946 | 22.7034810 | 0.1312049 | 1.0083848 |
Hyalinobatrachium chirripoi | 33.74315 | 34.0922573 | 0.1298248 | 1.3184243 |
Hyalinobatrachium colymbiphyllum | 33.66930 | 38.3861401 | 0.1356566 | 1.4758901 |
Hyalinobatrachium pellucidum | 33.71843 | 24.2402472 | 0.1323760 | 1.0559132 |
Hyalinobatrachium cappellei | 33.70430 | 32.5999234 | 0.1331762 | 1.1679981 |
Hyalinobatrachium taylori | 33.71546 | 32.8023305 | 0.1315167 | 1.2125471 |
Hyalinobatrachium iaspidiense | 33.82644 | 35.3569542 | 0.1300873 | 1.2610273 |
Hyalinobatrachium fleischmanni | 33.67869 | 27.8809743 | 0.1334762 | 1.0533266 |
Hyalinobatrachium tatayoi | 33.71788 | 31.2067637 | 0.1314051 | 1.1992357 |
Hyalinobatrachium duranti | 33.75107 | 29.5262997 | 0.1312392 | 1.1216104 |
Hyalinobatrachium ibama | 33.74308 | 25.3915557 | 0.1305276 | 1.0573921 |
Hyalinobatrachium pallidum | 33.70107 | 29.8096139 | 0.1313788 | 1.1082223 |
Hyalinobatrachium fragile | 33.72649 | 31.6683085 | 0.1326616 | 1.1715144 |
Hyalinobatrachium orientale | 33.65906 | 42.3936855 | 0.1332026 | 1.5763922 |
Hyalinobatrachium esmeralda | 33.70004 | 21.9109343 | 0.1329656 | 0.9659856 |
Hyalinobatrachium guairarepanense | 33.76369 | 33.2854090 | 0.1296200 | 1.2497908 |
Hyalinobatrachium vireovittatum | 33.67809 | 39.1076646 | 0.1335969 | 1.4941840 |
Centrolene acanthidiocephalum | 33.56235 | 31.0213760 | 0.1289939 | 1.2577944 |
Centrolene antioquiense | 33.52348 | 24.0636861 | 0.1292905 | 1.0163093 |
Centrolene azulae | 33.48108 | 33.0360028 | 0.1333791 | 1.3986593 |
Centrolene ballux | 33.51296 | 11.5281489 | 0.1291011 | 0.5603604 |
Centrolene buckleyi | 34.04653 | 14.4738132 | 0.1296972 | 0.6655512 |
Centrolene condor | 33.53394 | 25.4278217 | 0.1315202 | 1.0185657 |
Centrolene heloderma | 33.56788 | 17.8731470 | 0.1299826 | 0.7749041 |
Centrolene hybrida | 33.51465 | 26.3560149 | 0.1333397 | 1.0941952 |
Centrolene lemniscatum | 33.53547 | 16.0569976 | 0.1311840 | 0.7781381 |
Centrolene lynchi | 33.55699 | 8.8729783 | 0.1333436 | 0.4422597 |
Centrolene medemi | 33.57195 | 31.5485991 | 0.1335595 | 1.2830998 |
Centrolene muelleri | 33.52655 | 20.8804870 | 0.1345394 | 0.9617397 |
Centrolene paezorum | 34.04636 | 19.0990298 | 0.1301078 | 0.8295609 |
Centrolene petrophilum | 33.39959 | 18.7257594 | 0.1327058 | 0.8255692 |
Centrolene quindianum | 33.45856 | 18.5789911 | 0.1321669 | 0.8454177 |
Centrolene robledoi | 33.50243 | 25.5310536 | 0.1332775 | 1.0741351 |
Centrolene sanchezi | 33.51600 | 24.1393106 | 0.1324069 | 0.9965511 |
Centrolene savagei | 33.55084 | 25.6710013 | 0.1334923 | 1.0850944 |
Centrolene solitaria | 33.53706 | 23.9737663 | 0.1335561 | 0.9586484 |
Centrolene venezuelense | 34.01799 | 24.9621253 | 0.1303068 | 0.9532852 |
Cochranella duidaeana | 33.95681 | 31.8392833 | 0.1319011 | 1.2242865 |
Cochranella euhystrix | 33.46035 | 40.0444288 | 0.1345661 | 1.6349650 |
Cochranella euknemos | 33.43706 | 32.9860585 | 0.1352981 | 1.2155807 |
Cochranella geijskesi | 33.53152 | 28.4736682 | 0.1312317 | 1.0220581 |
Cochranella granulosa | 33.52127 | 33.8827171 | 0.1333937 | 1.2654572 |
Cochranella litoralis | 33.98621 | 26.9844058 | 0.1331085 | 1.1158439 |
Cochranella mache | 33.54007 | 30.9934531 | 0.1342575 | 1.2394563 |
Cochranella nola | 33.57136 | 24.1292901 | 0.1305334 | 1.1756881 |
Cochranella phryxa | 33.99242 | 29.0584477 | 0.1316217 | 1.3598975 |
Cochranella ramirezi | 33.53914 | 32.4230110 | 0.1281267 | 1.2058125 |
Cochranella resplendens | 34.00929 | 27.5751301 | 0.1313065 | 1.1215230 |
Cochranella riveroi | 33.96465 | 34.4720388 | 0.1313320 | 1.2707465 |
Cochranella xanthocheridia | 33.51965 | 31.0082225 | 0.1304633 | 1.1766791 |
Espadarana andina | 32.93952 | 22.1287174 | 0.1337244 | 0.8789090 |
Nymphargus anomalus | 33.57746 | 14.7545104 | 0.1301123 | 0.6368559 |
Nymphargus armatus | 33.56525 | 33.9568255 | 0.1311198 | 1.4068493 |
Nymphargus bejaranoi | 34.00337 | 18.8823229 | 0.1302266 | 1.0158312 |
Nymphargus buenaventura | 33.58370 | 16.6931279 | 0.1290615 | 0.6889654 |
Nymphargus cariticommatus | 33.56190 | 22.5395739 | 0.1315369 | 0.9446151 |
Nymphargus chami | 34.15276 | 29.7998923 | 0.1291957 | 1.1325691 |
Nymphargus chancas | 33.64313 | 30.9300213 | 0.1294515 | 1.2701655 |
Nymphargus cochranae | 33.59961 | 18.4562212 | 0.1295591 | 0.8016269 |
Nymphargus cristinae | 34.03662 | 32.8586582 | 0.1295367 | 1.2437920 |
Nymphargus garciae | 33.99754 | 22.7226207 | 0.1303345 | 0.9667561 |
Nymphargus grandisonae | 34.09310 | 23.0020416 | 0.1316130 | 0.9606836 |
Nymphargus griffithsi | 34.02555 | 22.3764741 | 0.1337472 | 0.9360996 |
Nymphargus ignotus | 34.02742 | 34.0692113 | 0.1306729 | 1.3400367 |
Nymphargus laurae | 34.08030 | 20.2859901 | 0.1307589 | 0.8494245 |
Nymphargus luminosus | 34.04031 | 35.8204327 | 0.1311932 | 1.3546895 |
Nymphargus luteopunctatus | 34.06061 | 25.0695188 | 0.1302325 | 1.0287332 |
Nymphargus mariae | 34.03570 | 21.8423626 | 0.1294726 | 0.9187595 |
Nymphargus mixomaculatus | 33.63044 | 8.3937700 | 0.1296293 | 0.5285483 |
Nymphargus nephelophila | 33.57627 | 32.2929450 | 0.1335325 | 1.2512676 |
Nymphargus ocellatus | 34.01167 | 21.6039355 | 0.1313471 | 1.0104324 |
Nymphargus oreonympha | 33.94544 | 31.4195653 | 0.1329938 | 1.2122743 |
Nymphargus phenax | 33.98207 | 16.6999489 | 0.1348004 | 1.0697550 |
Nymphargus pluvialis | 33.58883 | 13.5383549 | 0.1304636 | 0.7525625 |
Nymphargus posadae | 33.96597 | 22.3316210 | 0.1312346 | 0.9521315 |
Nymphargus prasinus | 34.10865 | 28.3088928 | 0.1314722 | 1.1354919 |
Nymphargus rosada | 34.05368 | 23.6030944 | 0.1322461 | 1.0146644 |
Nymphargus ruizi | 34.06113 | 28.1315625 | 0.1293330 | 1.1463311 |
Nymphargus siren | 34.07226 | 23.0414835 | 0.1329945 | 0.9853339 |
Nymphargus spilotus | 34.04584 | 26.8981304 | 0.1309198 | 1.1637275 |
Nymphargus vicenteruedai | 33.63274 | 21.6648934 | 0.1297451 | 0.9580684 |
Nymphargus wileyi | 33.61895 | 21.2219849 | 0.1307580 | 0.8858312 |
Rulyrana adiazeta | 33.54789 | 27.1227342 | 0.1323136 | 1.1106908 |
Rulyrana flavopunctata | 33.57823 | 24.5788701 | 0.1327662 | 0.9984697 |
Rulyrana mcdiarmidi | 33.58246 | 24.1208738 | 0.1325285 | 1.0172382 |
Rulyrana saxiscandens | 33.55754 | 34.5779275 | 0.1316568 | 1.4227051 |
Rulyrana spiculata | 33.55302 | 20.3113832 | 0.1316330 | 1.0587415 |
Rulyrana susatamai | 33.52427 | 23.9128699 | 0.1318612 | 0.9951632 |
Sachatamia albomaculata | 33.59582 | 32.8936200 | 0.1313854 | 1.2408345 |
Sachatamia punctulata | 33.53492 | 26.1877340 | 0.1298624 | 1.0786850 |
Sachatamia ilex | 33.54502 | 34.0039896 | 0.1337593 | 1.2889473 |
Sachatamia orejuela | 33.52034 | 23.2957129 | 0.1316319 | 0.9675690 |
Teratohyla adenocheira | 33.52901 | 30.4338026 | 0.1318884 | 1.0677716 |
Teratohyla midas | 34.03799 | 33.4719206 | 0.1304343 | 1.2000599 |
Teratohyla spinosa | 33.48893 | 29.0493603 | 0.1316793 | 1.1163530 |
Teratohyla amelie | 33.99686 | 26.0830798 | 0.1322524 | 1.1530136 |
Teratohyla pulverata | 34.05080 | 33.4100301 | 0.1313171 | 1.2614253 |
Vitreorana antisthenesi | 33.97020 | 29.7596738 | 0.1321794 | 1.0929259 |
Vitreorana castroviejoi | 34.00469 | 40.3900527 | 0.1322055 | 1.5149458 |
Vitreorana eurygnatha | 34.05657 | 18.6423756 | 0.1313641 | 0.7241542 |
Vitreorana gorzulae | 33.95219 | 27.5287611 | 0.1305876 | 1.0498714 |
Vitreorana helenae | 33.95521 | 27.3819766 | 0.1316355 | 1.0506371 |
Vitreorana parvula | 33.60416 | 14.4410698 | 0.1298535 | 0.5826125 |
Vitreorana uranoscopa | 33.97157 | 17.8931107 | 0.1318042 | 0.6940331 |
Ikakogi tayrona | 33.68114 | 25.2362574 | 0.1319845 | 0.9270119 |
Allophryne ruthveni | 34.86452 | 39.3270059 | 0.1313495 | 1.4095369 |
Nasikabatrachus sahyadrensis | 34.82301 | 54.9376927 | 0.1378779 | 1.9800722 |
Sooglossus thomasseti | 33.04035 | 83.6734624 | 0.1439995 | 3.1109872 |
Sooglossus sechellensis | 33.67137 | 68.0749385 | 0.1399717 | 2.5311973 |
Sechellophryne pipilodryas | 33.71747 | 82.2796604 | 0.1368449 | 3.0595760 |
Sechellophryne gardineri | 33.72120 | 81.5350018 | 0.1395661 | 3.0334675 |
Hemisus barotseensis | 35.79353 | 28.1055685 | 0.1359514 | 1.1211405 |
Hemisus microscaphus | 35.73402 | 38.1810443 | 0.1380210 | 1.7537569 |
Hemisus marmoratus | 35.71051 | 35.0837494 | 0.1371161 | 1.3614321 |
Hemisus perreti | 35.72752 | 39.5264331 | 0.1361005 | 1.4033935 |
Hemisus guineensis | 35.79207 | 34.9421450 | 0.1358858 | 1.3594011 |
Hemisus guttatus | 35.67424 | 27.2605956 | 0.1354178 | 1.1876249 |
Hemisus olivaceus | 35.65563 | 43.1094499 | 0.1397306 | 1.6219021 |
Hemisus wittei | 35.75737 | 33.9785588 | 0.1348518 | 1.3988209 |
Hemisus brachydactylus | 35.73151 | 33.6910987 | 0.1370942 | 1.4733160 |
Balebreviceps hillmani | 34.70304 | 34.9789873 | 0.1380883 | 1.7282497 |
Callulina dawida | 34.75004 | 50.5295266 | 0.1380835 | 2.0607378 |
Callulina kanga | 34.66336 | 35.5990381 | 0.1371881 | 1.5299259 |
Callulina laphami | 34.64254 | 39.4392598 | 0.1374285 | 1.7119877 |
Callulina shengena | 34.57035 | 39.3099916 | 0.1381138 | 1.6642275 |
Callulina hanseni | 34.60071 | 44.1097703 | 0.1380014 | 1.8193115 |
Callulina meteora | 34.70775 | 45.3761590 | 0.1362309 | 1.8713381 |
Callulina kisiwamsitu | 34.67543 | 62.3819675 | 0.1370054 | 2.4871144 |
Callulina kreffti | 34.84795 | 41.4880151 | 0.1345883 | 1.7146473 |
Callulina stanleyi | 34.71140 | 37.7826305 | 0.1362243 | 1.6049301 |
Spelaeophryne methneri | 35.73386 | 39.5177068 | 0.1367333 | 1.6320828 |
Probreviceps durirostris | 34.83201 | 33.7202110 | 0.1360786 | 1.4322101 |
Probreviceps rungwensis | 34.73775 | 36.3813624 | 0.1371007 | 1.5966054 |
Probreviceps loveridgei | 34.78774 | 34.6554621 | 0.1353526 | 1.4713924 |
Probreviceps macrodactylus | 34.76842 | 45.7511136 | 0.1382357 | 1.8719997 |
Probreviceps uluguruensis | 34.80866 | 48.4917600 | 0.1367397 | 1.9903792 |
Probreviceps rhodesianus | 34.78480 | 28.7997779 | 0.1345239 | 1.1779153 |
Breviceps acutirostris | 35.67384 | 21.9471107 | 0.1355879 | 1.0569648 |
Breviceps adspersus | 35.71574 | 24.5137172 | 0.1407068 | 1.0392960 |
Breviceps gibbosus | 35.86239 | 18.1486407 | 0.1347297 | 0.8642603 |
Breviceps fichus | 35.85923 | 36.7440927 | 0.1369120 | 1.6152186 |
Breviceps mossambicus | 35.81952 | 34.7057860 | 0.1361835 | 1.4061223 |
Breviceps rosei | 35.78204 | 21.7085581 | 0.1393421 | 1.0448792 |
Breviceps bagginsi | 35.81801 | 28.1614249 | 0.1357996 | 1.2416005 |
Breviceps sopranus | 35.80348 | 28.7132304 | 0.1367409 | 1.1947798 |
Breviceps macrops | 35.85938 | 28.2495325 | 0.1358909 | 1.4231804 |
Breviceps namaquensis | 35.84358 | 23.9618268 | 0.1344599 | 1.1664561 |
Breviceps fuscus | 35.83721 | 19.6559430 | 0.1373618 | 0.9183382 |
Breviceps montanus | 35.85552 | 21.4474881 | 0.1350397 | 1.0206009 |
Breviceps verrucosus | 35.80662 | 24.8357444 | 0.1374861 | 1.1216026 |
Breviceps poweri | 35.76370 | 34.0141292 | 0.1368826 | 1.3754296 |
Breviceps sylvestris | 35.76447 | 26.3794311 | 0.1358075 | 1.1154490 |
Acanthixalus sonjae | 36.59167 | 51.6181482 | 0.1332141 | 1.8607160 |
Acanthixalus spinosus | 36.63873 | 42.8472917 | 0.1326268 | 1.5507902 |
Kassina arboricola | 36.92329 | 51.2763592 | 0.1330270 | 1.8497572 |
Kassina cassinoides | 36.93828 | 33.6974302 | 0.1336074 | 1.2163902 |
Kassina cochranae | 36.55626 | 40.4177593 | 0.1342822 | 1.4582999 |
Kassina decorata | 37.01313 | 39.4138639 | 0.1332270 | 1.4822666 |
Kassina fusca | 36.66873 | 34.0030871 | 0.1323139 | 1.2166450 |
Kassina jozani | 36.60006 | 57.3365910 | 0.1338105 | 2.2146759 |
Kassina kuvangensis | 36.85133 | 24.2587229 | 0.1359604 | 1.0037801 |
Kassina lamottei | 36.63582 | 43.6421448 | 0.1327194 | 1.5751488 |
Kassina maculata | 36.66236 | 31.1939014 | 0.1332083 | 1.2159382 |
Kassina maculifer | 36.77888 | 36.5449612 | 0.1314430 | 1.4889781 |
Kassina maculosa | 36.75993 | 37.0685627 | 0.1317801 | 1.3728386 |
Kassina senegalensis | 36.64983 | 28.4550247 | 0.1344795 | 1.1121046 |
Kassina mertensi | 36.71940 | 35.9751835 | 0.1358149 | 1.3523890 |
Kassina schioetzi | 36.66120 | 42.9768777 | 0.1323849 | 1.5420220 |
Kassina somalica | 36.65806 | 38.0314115 | 0.1356341 | 1.5627796 |
Kassina wazae | 36.88812 | 30.5817810 | 0.1338199 | 1.0977716 |
Phlyctimantis boulengeri | 36.57775 | 52.1815435 | 0.1307973 | 1.8987014 |
Phlyctimantis keithae | 36.52227 | 30.0272046 | 0.1329033 | 1.3811358 |
Phlyctimantis leonardi | 36.46806 | 40.3148878 | 0.1323268 | 1.4370516 |
Phlyctimantis verrucosus | 36.42668 | 42.2882514 | 0.1339175 | 1.6170789 |
Semnodactylus wealii | 36.67494 | 20.4800166 | 0.1342323 | 0.9417606 |
Afrixalus aureus | 36.87966 | 26.0274986 | 0.1337013 | 1.0531562 |
Afrixalus clarkei | 36.97334 | 26.4535463 | 0.1316232 | 1.1509294 |
Afrixalus delicatus | 36.92683 | 30.8919211 | 0.1327453 | 1.2225539 |
Afrixalus stuhlmanni | 36.88507 | 34.0315162 | 0.1373384 | 1.3592707 |
Afrixalus dorsalis | 36.95161 | 46.4584725 | 0.1329001 | 1.6791809 |
Afrixalus paradorsalis | 36.87952 | 43.4832250 | 0.1336730 | 1.5974380 |
Afrixalus dorsimaculatus | 36.81169 | 50.0531289 | 0.1335487 | 1.9974560 |
Afrixalus enseticola | 36.87780 | 28.8333460 | 0.1344113 | 1.3906403 |
Afrixalus equatorialis | 36.89360 | 38.2090696 | 0.1344354 | 1.3533810 |
Afrixalus fornasini | 36.84030 | 31.4144325 | 0.1335014 | 1.2394150 |
Afrixalus fulvovittatus | 36.87776 | 40.9448976 | 0.1362940 | 1.4791173 |
Afrixalus knysnae | 36.87086 | 16.9037395 | 0.1345712 | 0.7834226 |
Afrixalus lacteus | 36.75401 | 42.3237598 | 0.1344446 | 1.5876983 |
Afrixalus laevis | 36.87310 | 39.7353481 | 0.1344759 | 1.4561906 |
Afrixalus leucostictus | 36.98109 | 36.2132589 | 0.1323208 | 1.3586509 |
Afrixalus lindholmi | 36.77158 | 43.7091365 | 0.1331304 | 1.5765322 |
Afrixalus morerei | 36.88745 | 30.4586180 | 0.1294019 | 1.3169145 |
Afrixalus nigeriensis | 36.93278 | 46.8940709 | 0.1325526 | 1.6853257 |
Afrixalus orophilus | 36.97633 | 35.3719266 | 0.1310591 | 1.5270030 |
Afrixalus osorioi | 36.96926 | 33.7594059 | 0.1329192 | 1.2395072 |
Afrixalus quadrivittatus | 36.97393 | 36.8536233 | 0.1313655 | 1.3939420 |
Afrixalus schneideri | 37.00360 | 54.7395402 | 0.1321463 | 2.0118218 |
Afrixalus septentrionalis | 36.98934 | 34.5778330 | 0.1341833 | 1.4624006 |
Afrixalus spinifrons | 36.86668 | 24.6355575 | 0.1325143 | 1.1063868 |
Afrixalus sylvaticus | 36.91101 | 48.1453431 | 0.1327800 | 1.8936222 |
Afrixalus uluguruensis | 36.89942 | 26.5868095 | 0.1323810 | 1.1729433 |
Afrixalus upembae | 36.81538 | 30.3006397 | 0.1328588 | 1.2064739 |
Afrixalus vibekensis | 36.97691 | 51.3753933 | 0.1315131 | 1.8489759 |
Afrixalus vittiger | 36.92826 | 39.8456384 | 0.1333688 | 1.4292342 |
Afrixalus weidholzi | 36.87074 | 33.6502442 | 0.1309985 | 1.2160403 |
Afrixalus wittei | 36.97494 | 27.0587155 | 0.1315661 | 1.1025384 |
Heterixalus alboguttatus | 36.89993 | 36.5530817 | 0.1308601 | 1.4289955 |
Heterixalus boettgeri | 36.91633 | 35.7400913 | 0.1310560 | 1.3945025 |
Heterixalus madagascariensis | 36.84144 | 33.2464547 | 0.1328767 | 1.2798283 |
Heterixalus punctatus | 36.82754 | 33.0636293 | 0.1338707 | 1.2732622 |
Heterixalus andrakata | 36.83661 | 32.5684942 | 0.1334174 | 1.2376404 |
Heterixalus tricolor | 36.82486 | 29.7015053 | 0.1312809 | 1.0795702 |
Heterixalus variabilis | 36.82993 | 38.9416906 | 0.1324176 | 1.4394919 |
Heterixalus betsileo | 36.78709 | 38.7217657 | 0.1318456 | 1.5055508 |
Heterixalus carbonei | 36.79538 | 46.9468559 | 0.1361661 | 1.7325497 |
Heterixalus luteostriatus | 36.78368 | 37.4047677 | 0.1364461 | 1.3961464 |
Heterixalus rutenbergi | 36.85479 | 36.7847091 | 0.1343548 | 1.4286546 |
Tachycnemis seychellensis | 36.82922 | 69.6320926 | 0.1341037 | 2.5901278 |
Alexteroon hypsiphonus | 36.51623 | 36.6826332 | 0.1372875 | 1.3306723 |
Alexteroon jynx | 36.48939 | 48.3296902 | 0.1361137 | 1.7774334 |
Alexteroon obstetricans | 36.66812 | 36.8782542 | 0.1340075 | 1.3494611 |
Hyperolius acuticeps | 37.20839 | 26.7615240 | 0.1302870 | 1.1306801 |
Hyperolius howelli | 37.17460 | 25.1406250 | 0.1326657 | 1.1545143 |
Hyperolius friedemanni | 37.09227 | 25.5797656 | 0.1336246 | 1.1029649 |
Hyperolius adspersus | 37.11112 | 36.2757874 | 0.1335238 | 1.3092144 |
Hyperolius dartevellei | 37.15889 | 33.5203643 | 0.1325556 | 1.2431798 |
Hyperolius acutirostris | 37.04827 | 41.4797791 | 0.1336428 | 1.5451002 |
Hyperolius ademetzi | 37.08702 | 39.9750483 | 0.1356038 | 1.4992230 |
Hyperolius discodactylus | 37.06743 | 30.6180643 | 0.1325390 | 1.3050701 |
Hyperolius lateralis | 37.09088 | 32.9684231 | 0.1322550 | 1.3957749 |
Hyperolius nitidulus | 37.12084 | 31.5760113 | 0.1347930 | 1.1468582 |
Hyperolius tuberculatus | 37.15207 | 38.6811566 | 0.1324808 | 1.4074033 |
Hyperolius argus | 37.09790 | 28.5866001 | 0.1317531 | 1.1119825 |
Hyperolius atrigularis | 37.14824 | 30.0146661 | 0.1320260 | 1.2825263 |
Hyperolius balfouri | 37.12298 | 30.9961706 | 0.1315891 | 1.1786176 |
Hyperolius baumanni | 37.16273 | 50.4793880 | 0.1359916 | 1.7686657 |
Hyperolius sylvaticus | 37.24995 | 46.4208469 | 0.1334469 | 1.6677847 |
Hyperolius bobirensis | 37.23257 | 50.3195501 | 0.1326316 | 1.8167042 |
Hyperolius picturatus | 37.14442 | 44.9103898 | 0.1329717 | 1.6192554 |
Hyperolius benguellensis | 37.13080 | 21.6765669 | 0.1329131 | 0.8796280 |
Hyperolius nasutus | 37.16213 | 19.0618130 | 0.1331124 | 0.7718556 |
Hyperolius inyangae | 37.15150 | 21.8313699 | 0.1338025 | 0.9119184 |
Hyperolius bicolor | 37.04217 | 24.4663071 | 0.1330079 | 0.9045241 |
Hyperolius bolifambae | 37.14400 | 41.4498288 | 0.1338595 | 1.5394893 |
Hyperolius bopeleti | 37.23821 | 42.6233535 | 0.1320311 | 1.5794913 |
Hyperolius brachiofasciatus | 37.11994 | 36.1390433 | 0.1337665 | 1.3302401 |
Hyperolius camerunensis | 37.10153 | 40.8064678 | 0.1348237 | 1.5394260 |
Hyperolius castaneus | 37.21255 | 35.6747452 | 0.1331962 | 1.5257446 |
Hyperolius frontalis | 37.20947 | 29.7881459 | 0.1307263 | 1.2509582 |
Hyperolius cystocandicans | 37.11323 | 25.8480382 | 0.1332789 | 1.2022076 |
Hyperolius cinereus | 37.07079 | 21.2551491 | 0.1334424 | 0.8866154 |
Hyperolius chlorosteus | 37.13837 | 45.0978504 | 0.1309040 | 1.6302424 |
Hyperolius laurenti | 37.14118 | 49.3463233 | 0.1298524 | 1.7657596 |
Hyperolius torrentis | 37.05693 | 38.7627412 | 0.1322748 | 1.3684802 |
Hyperolius chrysogaster | 36.99037 | 35.2199681 | 0.1342530 | 1.4781501 |
Hyperolius cinnamomeoventris | 37.01104 | 35.8652476 | 0.1361989 | 1.3478353 |
Hyperolius veithi | 37.02626 | 38.3697817 | 0.1339644 | 1.3513444 |
Hyperolius molleri | 37.04655 | 55.1433132 | 0.1347808 | 2.0275973 |
Hyperolius thomensis | 37.04479 | 59.7003757 | 0.1339741 | 2.2011949 |
Hyperolius concolor | 37.05386 | 38.2448373 | 0.1336048 | 1.3753955 |
Hyperolius zonatus | 37.42831 | 49.1566544 | 0.1336381 | 1.7730883 |
Hyperolius constellatus | 37.19017 | 32.2382159 | 0.1299481 | 1.3523748 |
Hyperolius diaphanus | 37.16198 | 28.0784389 | 0.1348398 | 1.1212139 |
Hyperolius dintelmanni | 37.22202 | 47.7595794 | 0.1318838 | 1.7552411 |
Hyperolius endjami | 37.08282 | 38.8596878 | 0.1321272 | 1.4589627 |
Hyperolius fasciatus | 37.10187 | 22.9221690 | 0.1347153 | 0.8563173 |
Hyperolius ferreirai | 37.22861 | 22.7555719 | 0.1313046 | 0.8510682 |
Hyperolius ferrugineus | 37.12408 | 32.3423936 | 0.1327786 | 1.2806211 |
Hyperolius fuscigula | 37.13353 | 23.9311252 | 0.1337892 | 0.9104172 |
Hyperolius fusciventris | 37.04878 | 42.3574443 | 0.1348227 | 1.5271737 |
Hyperolius guttulatus | 37.04218 | 45.6707179 | 0.1332727 | 1.6472699 |
Hyperolius ghesquieri | 37.07555 | 35.8831805 | 0.1327243 | 1.2653708 |
Hyperolius glandicolor | 37.09721 | 28.6897062 | 0.1317361 | 1.2190091 |
Hyperolius phantasticus | 37.05302 | 40.1539645 | 0.1342843 | 1.4372641 |
Hyperolius gularis | 37.10746 | 25.0165020 | 0.1333334 | 0.9153504 |
Hyperolius horstockii | 36.95791 | 18.4117432 | 0.1338018 | 0.8701121 |
Hyperolius hutsebauti | 37.19428 | 36.1338365 | 0.1335588 | 1.3697089 |
Hyperolius igbettensis | 37.02939 | 37.8218924 | 0.1320159 | 1.3660902 |
Hyperolius jacobseni | 37.00830 | 36.5365899 | 0.1332200 | 1.3197883 |
Hyperolius poweri | 36.98934 | 25.9749326 | 0.1341923 | 1.1241137 |
Hyperolius inornatus | 37.10337 | 27.4322545 | 0.1342523 | 0.9669384 |
Hyperolius jackie | 37.18467 | 38.8903984 | 0.1308117 | 1.7741277 |
Hyperolius kachalolae | 37.11521 | 22.8710500 | 0.1308082 | 0.9408278 |
Hyperolius kibarae | 37.21616 | 27.1329821 | 0.1333360 | 1.0801941 |
Hyperolius kihangensis | 37.09734 | 25.7794961 | 0.1335530 | 1.1868824 |
Hyperolius kivuensis | 37.11825 | 26.7064848 | 0.1322865 | 1.1003553 |
Hyperolius quinquevittatus | 37.14174 | 24.6900194 | 0.1337519 | 1.0053623 |
Hyperolius kuligae | 37.04199 | 34.0136622 | 0.1357450 | 1.2868506 |
Hyperolius lamottei | 37.06951 | 35.5469343 | 0.1330998 | 1.2889961 |
Hyperolius langi | 37.09406 | 33.1234364 | 0.1316785 | 1.3068738 |
Hyperolius leleupi | 37.14278 | 30.6418754 | 0.1325603 | 1.2797770 |
Hyperolius leucotaenius | 37.11100 | 31.5327635 | 0.1349557 | 1.2899584 |
Hyperolius lupiroensis | 37.11219 | 31.2359963 | 0.1303869 | 1.3130102 |
Hyperolius major | 37.20603 | 23.1980220 | 0.1324220 | 0.9365792 |
Hyperolius marginatus | 37.06968 | 23.8452650 | 0.1322992 | 0.9644378 |
Hyperolius mariae | 37.04839 | 38.3615497 | 0.1327230 | 1.5359404 |
Hyperolius minutissimus | 37.12965 | 25.5269025 | 0.1329595 | 1.1265217 |
Hyperolius spinigularis | 37.07535 | 25.5826312 | 0.1349440 | 0.9902846 |
Hyperolius tanneri | 37.21578 | 51.1266794 | 0.1331288 | 2.0361249 |
Hyperolius mitchelli | 37.19978 | 28.5248607 | 0.1371942 | 1.1262108 |
Hyperolius puncticulatus | 37.14804 | 48.4951518 | 0.1349791 | 1.8937846 |
Hyperolius substriatus | 37.18365 | 28.3740023 | 0.1339130 | 1.1424449 |
Hyperolius montanus | 37.08714 | 24.7072587 | 0.1345370 | 1.1646426 |
Hyperolius mosaicus | 37.14728 | 38.0688182 | 0.1336485 | 1.4060675 |
Hyperolius ocellatus | 37.22244 | 34.8070411 | 0.1338864 | 1.2685641 |
Hyperolius nasicus | 37.07904 | 23.9717635 | 0.1331329 | 0.9884722 |
Hyperolius nienokouensis | 37.10543 | 57.5502939 | 0.1342489 | 2.0803883 |
Hyperolius nimbae | 37.08105 | 41.9799488 | 0.1340824 | 1.5193183 |
Hyperolius obscurus | 37.16807 | 27.5998814 | 0.1353737 | 1.0760335 |
Hyperolius occidentalis | 37.11388 | 33.9909732 | 0.1327641 | 1.2390530 |
Hyperolius parallelus | 37.09793 | 26.3611564 | 0.1318480 | 1.0267848 |
Hyperolius pardalis | 37.08399 | 37.1306491 | 0.1309046 | 1.3574560 |
Hyperolius parkeri | 36.99542 | 34.7423600 | 0.1356012 | 1.3321870 |
Hyperolius pickersgilli | 37.04100 | 24.9530483 | 0.1330992 | 1.0859663 |
Hyperolius pictus | 37.15723 | 29.8731464 | 0.1337286 | 1.3287661 |
Hyperolius platyceps | 37.07444 | 37.6256578 | 0.1351567 | 1.3585695 |
Hyperolius polli | 37.12413 | 34.6891859 | 0.1346818 | 1.2416524 |
Hyperolius polystictus | 37.13361 | 24.1817852 | 0.1344665 | 0.9885255 |
Hyperolius pseudargus | 37.04068 | 27.9907804 | 0.1320108 | 1.2321190 |
Hyperolius pusillus | 37.00136 | 29.8554637 | 0.1335966 | 1.1848987 |
Hyperolius pustulifer | 37.09632 | 38.4558151 | 0.1337551 | 1.7541904 |
Hyperolius pyrrhodictyon | 37.07787 | 22.4168520 | 0.1317420 | 0.9144053 |
Hyperolius quadratomaculatus | 37.12622 | 31.7643569 | 0.1334512 | 1.1996302 |
Hyperolius rhizophilus | 37.14197 | 28.1973481 | 0.1316782 | 0.9741723 |
Hyperolius rhodesianus | 37.01844 | 23.9714812 | 0.1332680 | 0.9850147 |
Hyperolius riggenbachi | 37.08023 | 34.6109296 | 0.1325592 | 1.3061640 |
Hyperolius robustus | 37.20032 | 35.0136120 | 0.1330028 | 1.2345266 |
Hyperolius rubrovermiculatus | 37.04952 | 46.4456919 | 0.1321302 | 1.8229297 |
Hyperolius rwandae | 37.14905 | 32.2732942 | 0.1332528 | 1.4440311 |
Hyperolius sankuruensis | 37.18702 | 30.6700271 | 0.1328842 | 1.0899661 |
Hyperolius schoutedeni | 37.16605 | 39.5515944 | 0.1340367 | 1.4334885 |
Hyperolius semidiscus | 37.11475 | 19.1482232 | 0.1344652 | 0.8522129 |
Hyperolius sheldricki | 37.11562 | 46.9758262 | 0.1329719 | 1.8930729 |
Hyperolius soror | 37.11635 | 36.9509027 | 0.1308565 | 1.3334898 |
Hyperolius steindachneri | 37.09007 | 24.9440468 | 0.1340476 | 0.9886350 |
Hyperolius stenodactylus | 37.16103 | 41.4375658 | 0.1325815 | 1.5416645 |
Hyperolius swynnertoni | 37.21241 | 24.3473246 | 0.1341434 | 0.9608220 |
Hyperolius vilhenai | 37.19931 | 28.0334711 | 0.1363334 | 1.0869691 |
Hyperolius viridigulosus | 37.15034 | 57.9730729 | 0.1321200 | 2.1030127 |
Hyperolius viridis | 37.16559 | 25.5809335 | 0.1331469 | 1.1342291 |
Hyperolius watsonae | 37.13228 | 57.2129916 | 0.1354533 | 2.2465329 |
Hyperolius xenorhinus | 37.16636 | 31.3080580 | 0.1329212 | 1.2396781 |
Kassinula wittei | 37.03875 | 24.1916716 | 0.1335150 | 0.9954662 |
Morerella cyanophthalma | 36.53373 | 68.2890338 | 0.1340592 | 2.4969336 |
Arlequinus krebsi | 36.86743 | 44.5161434 | 0.1348209 | 1.6842174 |
Callixalus pictus | 36.89619 | 34.2582818 | 0.1325987 | 1.4141995 |
Chrysobatrachus cupreonitens | 37.03148 | 30.3785095 | 0.1328967 | 1.2302892 |
Opisthothylax immaculatus | 36.84972 | 36.8736589 | 0.1348565 | 1.3354770 |
Paracassina kounhiensis | 36.86362 | 29.0154492 | 0.1307108 | 1.4213177 |
Paracassina obscura | 36.84252 | 26.1485867 | 0.1351887 | 1.1929484 |
Cryptothylax greshoffii | 35.97842 | 42.2161510 | 0.1362011 | 1.5062205 |
Cryptothylax minutus | 36.05622 | 47.4308070 | 0.1345187 | 1.6729987 |
Arthroleptis adelphus | 35.44509 | 43.6712739 | 0.1353371 | 1.5986619 |
Arthroleptis bioko | 35.50142 | 66.8759475 | 0.1327832 | 2.5317331 |
Arthroleptis brevipes | 35.42441 | 58.6844775 | 0.1348888 | 2.0574517 |
Arthroleptis poecilonotus | 35.44303 | 51.4447934 | 0.1346504 | 1.8673845 |
Arthroleptis crusculum | 35.35360 | 38.7178173 | 0.1345585 | 1.3963767 |
Arthroleptis nimbaensis | 35.37514 | 49.4693622 | 0.1348608 | 1.7903410 |
Arthroleptis langeri | 35.36851 | 57.6664391 | 0.1352291 | 2.0935717 |
Arthroleptis adolfifriederici | 35.45880 | 39.8070681 | 0.1328052 | 1.7601885 |
Arthroleptis krokosua | 35.41069 | 53.3101296 | 0.1347926 | 1.9176950 |
Arthroleptis palava | 35.47704 | 45.0675651 | 0.1337666 | 1.6968296 |
Arthroleptis variabilis | 35.41354 | 47.0911673 | 0.1343272 | 1.7140183 |
Arthroleptis perreti | 35.41894 | 62.8287039 | 0.1359034 | 2.3164573 |
Arthroleptis affinis | 35.58132 | 41.9487389 | 0.1323463 | 1.7767102 |
Arthroleptis nikeae | 35.45062 | 29.9811961 | 0.1352302 | 1.2929058 |
Arthroleptis reichei | 35.46057 | 33.4097969 | 0.1317544 | 1.4618724 |
Arthroleptis anotis | 35.41907 | 42.0368611 | 0.1365440 | 1.7848029 |
Arthroleptis aureoli | 34.61850 | 38.5634027 | 0.1368513 | 1.3961423 |
Arthroleptis formosus | 35.21415 | 32.0619002 | 0.1346854 | 1.1446549 |
Arthroleptis sylvaticus | 35.41208 | 46.4684848 | 0.1375806 | 1.6855270 |
Arthroleptis taeniatus | 35.38621 | 47.1515065 | 0.1321313 | 1.7139675 |
Arthroleptis bivittatus | 35.47882 | 49.2662984 | 0.1341733 | 1.7862302 |
Arthroleptis carquejai | 35.31685 | 32.3425615 | 0.1372072 | 1.2710286 |
Arthroleptis stenodactylus | 35.44277 | 33.4836101 | 0.1341497 | 1.3559660 |
Arthroleptis fichika | 35.43384 | 54.3346514 | 0.1344582 | 2.1642669 |
Arthroleptis kidogo | 35.45445 | 45.8928626 | 0.1368365 | 1.8931530 |
Arthroleptis xenochirus | 35.60829 | 29.7207050 | 0.1318225 | 1.2160053 |
Arthroleptis francei | 35.45409 | 33.8662338 | 0.1344485 | 1.2978256 |
Arthroleptis wahlbergii | 35.31783 | 30.6407343 | 0.1371571 | 1.3365790 |
Arthroleptis hematogaster | 35.34148 | 41.8488401 | 0.1354049 | 1.7246176 |
Arthroleptis kutogundua | 35.39726 | 37.0435684 | 0.1373625 | 1.7106303 |
Arthroleptis lameerei | 35.47645 | 30.4605973 | 0.1340168 | 1.2033221 |
Arthroleptis lonnbergi | 35.45212 | 52.6671987 | 0.1336510 | 2.1229409 |
Arthroleptis tanneri | 35.44242 | 60.1893114 | 0.1334142 | 2.3997313 |
Arthroleptis loveridgei | 35.33380 | 47.1018388 | 0.1387237 | 1.7958469 |
Arthroleptis mossoensis | 35.42962 | 50.6616787 | 0.1349511 | 2.1637481 |
Arthroleptis nguruensis | 35.54869 | 43.2581117 | 0.1350916 | 1.7843481 |
Arthroleptis nlonakoensis | 35.34690 | 49.7179677 | 0.1360804 | 1.8828371 |
Arthroleptis phrynoides | 35.39094 | 41.1410074 | 0.1338236 | 1.4725384 |
Arthroleptis pyrrhoscelis | 35.41522 | 39.8516716 | 0.1341749 | 1.6664317 |
Arthroleptis schubotzi | 35.45087 | 43.8260803 | 0.1341352 | 1.8925030 |
Arthroleptis xenodactyloides | 35.49078 | 32.6466562 | 0.1360625 | 1.3127458 |
Arthroleptis xenodactylus | 35.42790 | 58.2748801 | 0.1356460 | 2.3224174 |
Arthroleptis spinalis | 35.47819 | 56.0243514 | 0.1358391 | 2.3879873 |
Arthroleptis stridens | 35.37645 | 62.8625785 | 0.1348653 | 2.5082058 |
Arthroleptis troglodytes | 35.39370 | 29.5932915 | 0.1339139 | 1.1555920 |
Arthroleptis tuberosus | 35.27564 | 50.1102237 | 0.1376250 | 1.8262309 |
Arthroleptis vercammeni | 35.35276 | 36.0094898 | 0.1350865 | 1.4654786 |
Arthroleptis zimmeri | 35.34958 | 74.7589094 | 0.1356053 | 2.7452890 |
Cardioglossa alsco | 34.83491 | 41.5196838 | 0.1348409 | 1.5855757 |
Cardioglossa nigromaculata | 35.47592 | 53.5616641 | 0.1352480 | 1.9847200 |
Cardioglossa cyaneospila | 34.77455 | 38.5675579 | 0.1376159 | 1.7030297 |
Cardioglossa gratiosa | 34.81474 | 44.8539841 | 0.1350119 | 1.6211896 |
Cardioglossa elegans | 34.83243 | 49.9842402 | 0.1353782 | 1.8323498 |
Cardioglossa leucomystax | 34.87616 | 42.3037531 | 0.1346551 | 1.5352075 |
Cardioglossa trifasciata | 34.81293 | 55.9375011 | 0.1360942 | 2.0640396 |
Cardioglossa escalerae | 35.39084 | 48.0559523 | 0.1370707 | 1.7758605 |
Cardioglossa manengouba | 34.86353 | 58.0268738 | 0.1319735 | 2.1391097 |
Cardioglossa oreas | 34.74090 | 48.8500178 | 0.1350017 | 1.8638499 |
Cardioglossa pulchra | 34.81289 | 48.9714422 | 0.1336167 | 1.8242696 |
Cardioglossa venusta | 34.82891 | 54.6651784 | 0.1381922 | 2.0503487 |
Cardioglossa gracilis | 34.76170 | 45.0312904 | 0.1341311 | 1.6372529 |
Cardioglossa melanogaster | 34.73286 | 48.0583483 | 0.1316667 | 1.7905296 |
Cardioglossa schioetzi | 35.32152 | 46.6348053 | 0.1342617 | 1.7289018 |
Astylosternus batesi | 35.41696 | 42.7133211 | 0.1345081 | 1.5433531 |
Astylosternus schioetzi | 34.87757 | 50.3310687 | 0.1317373 | 1.8714233 |
Astylosternus diadematus | 34.77234 | 51.7016981 | 0.1349952 | 1.9324435 |
Astylosternus perreti | 34.83057 | 51.2498588 | 0.1344841 | 1.9150933 |
Astylosternus rheophilus | 34.78408 | 44.0995075 | 0.1345976 | 1.6584236 |
Astylosternus nganhanus | 35.35185 | 42.6731303 | 0.1369280 | 1.6169060 |
Trichobatrachus robustus | 34.76022 | 41.8068420 | 0.1348104 | 1.5230549 |
Astylosternus fallax | 34.89950 | 54.5269762 | 0.1328839 | 2.0164494 |
Astylosternus laurenti | 34.91213 | 60.7981082 | 0.1333397 | 2.2595122 |
Astylosternus montanus | 34.80023 | 47.4606270 | 0.1337770 | 1.7977603 |
Astylosternus ranoides | 35.35537 | 42.0872786 | 0.1358309 | 1.6074816 |
Astylosternus laticephalus | 35.41386 | 63.2166875 | 0.1331742 | 2.2919013 |
Astylosternus occidentalis | 35.38251 | 56.9697149 | 0.1348139 | 2.0600365 |
Nyctibates corrugatus | 35.34812 | 55.4099510 | 0.1339744 | 2.0599851 |
Scotobleps gabonicus | 34.63941 | 44.6696101 | 0.1338934 | 1.6155646 |
Leptodactylodon albiventris | 34.73324 | 51.2113777 | 0.1360018 | 1.9112737 |
Leptodactylodon boulengeri | 34.74019 | 54.0014680 | 0.1342259 | 2.0280771 |
Leptodactylodon erythrogaster | 34.72139 | 61.0466991 | 0.1343134 | 2.2497241 |
Leptodactylodon stevarti | 34.69303 | 45.5076221 | 0.1346618 | 1.6710015 |
Leptodactylodon axillaris | 35.34713 | 47.7846643 | 0.1351260 | 1.8595532 |
Leptodactylodon perreti | 34.77058 | 43.1199877 | 0.1319666 | 1.6443265 |
Leptodactylodon bueanus | 34.77235 | 50.6638821 | 0.1350595 | 1.8616579 |
Leptodactylodon bicolor | 34.70906 | 44.9349795 | 0.1371978 | 1.6858790 |
Leptodactylodon ornatus | 34.75138 | 49.0389204 | 0.1346625 | 1.8425693 |
Leptodactylodon mertensi | 34.79674 | 51.4047474 | 0.1343089 | 1.9311745 |
Leptodactylodon polyacanthus | 34.73695 | 45.2340851 | 0.1356841 | 1.7077960 |
Leptodactylodon ovatus | 34.77798 | 53.0121334 | 0.1355692 | 1.9771559 |
Leptodactylodon wildi | 34.81806 | 58.3719268 | 0.1356830 | 2.1502111 |
Leptodactylodon blanci | 34.80709 | 48.0698705 | 0.1345760 | 1.6934031 |
Leptodactylodon ventrimarmoratus | 35.39303 | 50.7955064 | 0.1360034 | 1.8855970 |
Leptopelis anchietae | 35.33692 | 26.0970784 | 0.1339190 | 1.0519754 |
Leptopelis lebeaui | 35.20733 | 37.4180383 | 0.1337201 | 1.4457643 |
Leptopelis argenteus | 35.36796 | 41.1194074 | 0.1348992 | 1.6137958 |
Leptopelis cynnamomeus | 35.19029 | 31.1928692 | 0.1353020 | 1.2674787 |
Leptopelis ocellatus | 35.34202 | 44.7326355 | 0.1354051 | 1.6036965 |
Leptopelis spiritusnoctis | 35.25623 | 54.8154835 | 0.1342984 | 1.9723581 |
Leptopelis aubryi | 35.23641 | 41.7507235 | 0.1348448 | 1.5049915 |
Leptopelis marginatus | 35.12915 | 28.3185274 | 0.1356792 | 1.1708763 |
Leptopelis aubryioides | 35.18851 | 49.4621260 | 0.1371899 | 1.8027921 |
Leptopelis susanae | 34.74945 | 33.1423050 | 0.1347791 | 1.5471701 |
Leptopelis bequaerti | 35.30443 | 49.5478670 | 0.1328800 | 1.7952586 |
Leptopelis uluguruensis | 35.29125 | 39.7509814 | 0.1347431 | 1.6595445 |
Leptopelis bocagii | 36.29791 | 28.9437515 | 0.1375596 | 1.2028930 |
Leptopelis concolor | 35.18509 | 56.0239670 | 0.1371070 | 2.2312725 |
Leptopelis vermiculatus | 35.21525 | 44.0110224 | 0.1347844 | 1.8638320 |
Leptopelis boulengeri | 35.21635 | 45.3037840 | 0.1352856 | 1.6355120 |
Leptopelis brevipes | 35.16872 | 61.9514295 | 0.1371247 | 2.3471631 |
Leptopelis notatus | 35.15884 | 37.5015505 | 0.1341017 | 1.3607264 |
Leptopelis brevirostris | 35.15957 | 45.4404293 | 0.1353211 | 1.6607520 |
Leptopelis palmatus | 34.64935 | 78.1914566 | 0.1356026 | 2.8679039 |
Leptopelis mossambicus | 35.17405 | 31.7063301 | 0.1345674 | 1.2591395 |
Leptopelis parvus | 35.25764 | 32.6902303 | 0.1340289 | 1.3016617 |
Leptopelis rufus | 35.23188 | 47.5318885 | 0.1341437 | 1.7222526 |
Leptopelis bufonides | 36.46827 | 34.9138024 | 0.1307695 | 1.2562831 |
Leptopelis nordequatorialis | 35.23494 | 40.1269088 | 0.1338758 | 1.5266810 |
Leptopelis christyi | 35.18790 | 43.3785002 | 0.1344181 | 1.7648961 |
Leptopelis flavomaculatus | 35.27317 | 36.7644281 | 0.1358658 | 1.4597566 |
Leptopelis calcaratus | 35.24396 | 43.2271302 | 0.1364498 | 1.5724526 |
Leptopelis yaldeni | 35.25580 | 28.1521411 | 0.1350419 | 1.2150077 |
Leptopelis crystallinoron | 35.14362 | 42.7701573 | 0.1350355 | 1.5703362 |
Leptopelis parkeri | 35.17442 | 43.1574371 | 0.1367748 | 1.7983179 |
Leptopelis fiziensis | 35.08515 | 41.7390281 | 0.1349985 | 1.7089279 |
Leptopelis karissimbensis | 35.10423 | 38.2903551 | 0.1363078 | 1.6929354 |
Leptopelis kivuensis | 35.07224 | 44.3294631 | 0.1361227 | 1.9045315 |
Leptopelis millsoni | 35.16738 | 48.7933937 | 0.1326765 | 1.7651200 |
Leptopelis fenestratus | 35.21476 | 35.8616544 | 0.1351930 | 1.4208478 |
Leptopelis mackayi | 35.21528 | 38.3828582 | 0.1367115 | 1.5540645 |
Leptopelis gramineus | 36.38146 | 31.9276933 | 0.1356314 | 1.5561849 |
Leptopelis natalensis | 35.27063 | 27.0454880 | 0.1329986 | 1.1960350 |
Leptopelis jordani | 35.15965 | 34.7005486 | 0.1342382 | 1.3523121 |
Leptopelis occidentalis | 35.13866 | 59.5489548 | 0.1329759 | 2.1486398 |
Leptopelis macrotis | 34.73208 | 58.3336363 | 0.1365483 | 2.1050120 |
Leptopelis ragazzii | 34.78849 | 33.9590528 | 0.1370239 | 1.6662951 |
Leptopelis modestus | 34.76736 | 47.2415363 | 0.1367145 | 1.7781550 |
Leptopelis xenodactylus | 35.17911 | 23.6620484 | 0.1369113 | 1.0770848 |
Leptopelis parbocagii | 36.22020 | 32.6615331 | 0.1368041 | 1.3327823 |
Leptopelis viridis | 35.09904 | 41.0938391 | 0.1364177 | 1.4888277 |
Leptopelis vannutellii | 35.13280 | 34.8239581 | 0.1344651 | 1.5719258 |
Leptopelis zebra | 35.16346 | 48.4944753 | 0.1360101 | 1.8088003 |
Leptopelis oryi | 35.16424 | 38.7488035 | 0.1338467 | 1.4868343 |
Phrynomantis affinis | 34.13351 | 26.6131851 | 0.1394993 | 1.0959718 |
Phrynomantis annectens | 34.10403 | 20.4703732 | 0.1384481 | 0.9137037 |
Phrynomantis bifasciatus | 34.09161 | 28.8523704 | 0.1419318 | 1.1905813 |
Phrynomantis microps | 34.15308 | 35.2517758 | 0.1407385 | 1.2734795 |
Phrynomantis somalicus | 34.13479 | 44.7301009 | 0.1411336 | 1.7377854 |
Hoplophryne rogersi | 34.61374 | 46.2765196 | 0.1376124 | 1.8904587 |
Hoplophryne uluguruensis | 34.65228 | 37.1060444 | 0.1389930 | 1.5415260 |
Parhoplophryne usambarica | 34.88426 | 49.5893642 | 0.1370555 | 1.9790978 |
Adelastes hylonomos | 36.10297 | 39.2847261 | 0.1377924 | 1.4084867 |
Arcovomer passarellii | 36.22562 | 28.7459645 | 0.1346833 | 1.1151482 |
Elachistocleis ovalis | 36.63905 | 22.2941958 | 0.1332599 | 0.8154826 |
Elachistocleis surinamensis | 36.65243 | 27.4135324 | 0.1340948 | 1.0200209 |
Elachistocleis bumbameuboi | 36.38913 | 35.2587509 | 0.1360326 | 1.2519301 |
Elachistocleis erythrogaster | 37.31863 | 14.4438872 | 0.1359066 | 0.5804027 |
Elachistocleis carvalhoi | 36.37817 | 33.0310856 | 0.1330727 | 1.1750865 |
Elachistocleis piauiensis | 37.35115 | 27.8400148 | 0.1358138 | 1.0319189 |
Elachistocleis helianneae | 36.36812 | 29.7595193 | 0.1333209 | 1.0438990 |
Elachistocleis pearsei | 36.40749 | 34.5251777 | 0.1332881 | 1.2999779 |
Elachistocleis matogrosso | 36.36281 | 23.7513823 | 0.1354273 | 0.8386752 |
Elachistocleis skotogaster | 36.40853 | 14.5130728 | 0.1345493 | 0.6844652 |
Elachistocleis panamensis | 36.37106 | 31.6862942 | 0.1332960 | 1.1791274 |
Elachistocleis surumu | 36.37498 | 26.7021721 | 0.1345492 | 0.9887196 |
Gastrophryne olivacea | 36.24391 | 11.8789410 | 0.1364330 | 0.4816355 |
Gastrophryne elegans | 36.26468 | 21.6220531 | 0.1353152 | 0.8145452 |
Hypopachus barberi | 36.20669 | 23.0881811 | 0.1350815 | 0.8851707 |
Hypopachus variolosus | 36.27605 | 23.3299284 | 0.1374070 | 0.8868556 |
Hypopachus pictiventris | 36.28144 | 29.2757396 | 0.1360199 | 1.1079126 |
Hamptophryne alios | 36.27497 | 28.6462912 | 0.1354807 | 1.1508375 |
Stereocyclops histrio | 36.21366 | 29.9751137 | 0.1363778 | 1.1786455 |
Stereocyclops parkeri | 36.42693 | 20.2757840 | 0.1342884 | 0.7791642 |
Dasypops schirchi | 35.78579 | 38.2476392 | 0.1354380 | 1.5051413 |
Myersiella microps | 35.81668 | 27.8094659 | 0.1352932 | 1.0770361 |
Chiasmocleis cordeiroi | 35.44969 | 27.6880722 | 0.1355253 | 1.0943920 |
Chiasmocleis crucis | 35.42064 | 29.2248716 | 0.1366478 | 1.1525062 |
Chiasmocleis schubarti | 35.41271 | 27.3568317 | 0.1367868 | 1.0665315 |
Chiasmocleis capixaba | 35.40284 | 29.5757451 | 0.1353241 | 1.1604706 |
Chiasmocleis carvalhoi | 35.32893 | 36.6592366 | 0.1374456 | 1.2708580 |
Chiasmocleis mehelyi | 35.32001 | 24.6425743 | 0.1385155 | 0.8668989 |
Chiasmocleis albopunctata | 35.38668 | 23.6245895 | 0.1364636 | 0.8545727 |
Chiasmocleis leucosticta | 35.30664 | 17.4900391 | 0.1369009 | 0.6788107 |
Chiasmocleis mantiqueira | 35.36454 | 18.0853389 | 0.1368406 | 0.7124682 |
Chiasmocleis centralis | 36.39830 | 24.9103237 | 0.1383082 | 0.9049684 |
Chiasmocleis gnoma | 35.40312 | 31.0378138 | 0.1399731 | 1.2167682 |
Chiasmocleis anatipes | 35.38656 | 32.1626727 | 0.1378422 | 1.2495967 |
Chiasmocleis devriesi | 35.40239 | 32.6090119 | 0.1371097 | 1.1144085 |
Chiasmocleis sapiranga | 35.36375 | 28.6171432 | 0.1370152 | 1.1308372 |
Chiasmocleis atlantica | 35.27940 | 20.8241722 | 0.1391891 | 0.8064832 |
Chiasmocleis avilapiresae | 35.40653 | 35.1720427 | 0.1358403 | 1.2296575 |
Chiasmocleis shudikarensis | 35.30627 | 36.3582983 | 0.1364380 | 1.2839830 |
Ctenophryne aequatorialis | 35.25964 | 16.1765194 | 0.1388052 | 0.7018206 |
Ctenophryne carpish | 35.36454 | 30.0858932 | 0.1347060 | 1.3253573 |
Ctenophryne aterrima | 35.19703 | 34.1441397 | 0.1391114 | 1.3365610 |
Ctenophryne minor | 35.19699 | 42.7893241 | 0.1393567 | 1.6606936 |
Ctenophryne barbatula | 35.32390 | 20.3158678 | 0.1386453 | 0.9553269 |
Paradoxophyla palmata | 35.29666 | 41.0287822 | 0.1399237 | 1.5937607 |
Paradoxophyla tiarano | 34.33984 | 36.6103283 | 0.1394592 | 1.3605616 |
Scaphiophryne boribory | 34.32502 | 28.6536912 | 0.1406592 | 1.1075828 |
Scaphiophryne madagascariensis | 35.25543 | 34.7826030 | 0.1418875 | 1.3450212 |
Scaphiophryne menabensis | 34.53743 | 41.6055877 | 0.1423899 | 1.5495280 |
Scaphiophryne marmorata | 34.29899 | 35.9720318 | 0.1403543 | 1.4257548 |
Scaphiophryne gottlebei | 35.29939 | 33.3574373 | 0.1398984 | 1.2736364 |
Scaphiophryne spinosa | 34.29622 | 38.5136991 | 0.1405176 | 1.4931059 |
Scaphiophryne calcarata | 34.41123 | 39.4282469 | 0.1386824 | 1.4839563 |
Scaphiophryne brevis | 34.35354 | 36.1918298 | 0.1399173 | 1.3768605 |
Anodonthyla boulengerii | 34.28335 | 34.4348646 | 0.1409215 | 1.3286724 |
Anodonthyla vallani | 34.24426 | 37.5353419 | 0.1390983 | 1.4503303 |
Anodonthyla hutchisoni | 34.24954 | 36.3078207 | 0.1389831 | 1.3520340 |
Anodonthyla moramora | 34.28511 | 28.0168128 | 0.1391493 | 1.0808742 |
Anodonthyla nigrigularis | 34.29802 | 38.4632165 | 0.1385915 | 1.4996147 |
Anodonthyla pollicaris | 34.36713 | 35.5087435 | 0.1356396 | 1.4224756 |
Anodonthyla theoi | 34.29026 | 38.0976429 | 0.1381298 | 1.4328998 |
Anodonthyla jeanbai | 34.26787 | 41.4493393 | 0.1382044 | 1.6027590 |
Anodonthyla emilei | 34.39653 | 32.8081054 | 0.1373680 | 1.2682875 |
Anodonthyla montana | 34.31641 | 36.2178789 | 0.1402798 | 1.3742065 |
Anodonthyla rouxae | 34.36214 | 39.4803407 | 0.1389056 | 1.5177742 |
Cophyla berara | 34.21660 | 48.7574504 | 0.1387455 | 1.8098823 |
Cophyla occultans | 34.15788 | 35.6644772 | 0.1402276 | 1.3349754 |
Cophyla phyllodactyla | 34.22043 | 38.8720311 | 0.1400607 | 1.4486149 |
Rhombophryne minuta | 35.35812 | 32.4289102 | 0.1387983 | 1.2273604 |
Plethodontohyla fonetana | 34.30479 | 39.4300520 | 0.1399030 | 1.4418528 |
Plethodontohyla guentheri | 34.38116 | 35.3969190 | 0.1419844 | 1.3339045 |
Plethodontohyla notosticta | 34.18025 | 39.7140211 | 0.1420828 | 1.5217102 |
Plethodontohyla bipunctata | 35.42609 | 42.9857626 | 0.1365352 | 1.6819134 |
Plethodontohyla tuberata | 34.39289 | 33.5660931 | 0.1402885 | 1.3115953 |
Plethodontohyla brevipes | 34.34467 | 35.4746950 | 0.1406144 | 1.3607687 |
Plethodontohyla ocellata | 34.37605 | 37.5074540 | 0.1398365 | 1.4499865 |
Plethodontohyla inguinalis | 34.14395 | 35.2123768 | 0.1420183 | 1.3566608 |
Plethodontohyla mihanika | 34.33885 | 37.9065144 | 0.1375529 | 1.4802165 |
Rhombophryne laevipes | 35.43492 | 34.4159494 | 0.1395258 | 1.3044559 |
Rhombophryne coudreaui | 35.44866 | 34.1990564 | 0.1387013 | 1.2856744 |
Rhombophryne testudo | 34.50153 | 34.7658519 | 0.1395498 | 1.2630148 |
Rhombophryne coronata | 35.39954 | 37.9924997 | 0.1374460 | 1.4847747 |
Rhombophryne serratopalpebrosa | 34.43301 | 36.6540548 | 0.1391830 | 1.3812968 |
Rhombophryne guentherpetersi | 34.39779 | 32.8365144 | 0.1408160 | 1.2268019 |
Rhombophryne mangabensis | 35.33623 | 30.1903939 | 0.1410622 | 1.1095828 |
Rhombophryne matavy | 34.38392 | 50.3432108 | 0.1378488 | 1.8932153 |
Stumpffia analamaina | 34.35181 | 30.2443705 | 0.1399739 | 1.1104830 |
Stumpffia be | 34.32863 | 41.2747980 | 0.1403470 | 1.5281456 |
Stumpffia hara | 34.43267 | 52.3442065 | 0.1386798 | 1.9648005 |
Stumpffia megsoni | 34.32989 | 58.6050607 | 0.1405778 | 2.1992739 |
Stumpffia staffordi | 34.35743 | 47.8540668 | 0.1389321 | 1.7947364 |
Stumpffia gimmeli | 34.29132 | 35.0937290 | 0.1400087 | 1.3105731 |
Stumpffia psologlossa | 34.23199 | 30.0003666 | 0.1400295 | 1.1296293 |
Stumpffia madagascariensis | 34.41780 | 56.3201164 | 0.1368325 | 2.1145802 |
Stumpffia pygmaea | 34.31829 | 35.4653276 | 0.1412816 | 1.2866861 |
Stumpffia grandis | 34.39826 | 38.6301357 | 0.1386395 | 1.4820583 |
Stumpffia roseifemoralis | 34.41914 | 31.6314943 | 0.1406395 | 1.1930096 |
Stumpffia tetradactyla | 34.32417 | 33.1866919 | 0.1420185 | 1.2676903 |
Stumpffia miery | 34.37511 | 31.5877497 | 0.1416859 | 1.2191371 |
Stumpffia tridactyla | 34.34681 | 40.0680773 | 0.1408173 | 1.5672738 |
Madecassophryne truebae | 34.31743 | 39.0380794 | 0.1424803 | 1.5149442 |
Melanobatrachus indicus | 33.92412 | 43.7891387 | 0.1380146 | 1.5683498 |
Otophryne pyburni | 33.74014 | 40.1669527 | 0.1403386 | 1.4582106 |
Otophryne robusta | 33.79596 | 37.4127536 | 0.1404056 | 1.4259233 |
Otophryne steyermarki | 33.85214 | 34.8465532 | 0.1382144 | 1.3352130 |
Synapturanus mirandaribeiroi | 33.86087 | 47.1403061 | 0.1354057 | 1.6869606 |
Synapturanus salseri | 33.80237 | 47.5871258 | 0.1395724 | 1.6662851 |
Synapturanus rabus | 34.79044 | 42.5518893 | 0.1389849 | 1.5351738 |
Kalophrynus baluensis | 33.15001 | 48.8735297 | 0.1392074 | 1.8127693 |
Kalophrynus intermedius | 33.09635 | 39.2337879 | 0.1429450 | 1.3778278 |
Kalophrynus subterrestris | 33.12900 | 40.9319977 | 0.1402047 | 1.4546748 |
Kalophrynus heterochirus | 33.10163 | 41.4701093 | 0.1428299 | 1.4832854 |
Kalophrynus palmatissimus | 33.02490 | 36.3274963 | 0.1425832 | 1.2879557 |
Kalophrynus bunguranus | 33.21721 | 69.8185299 | 0.1426661 | 2.5346032 |
Kalophrynus orangensis | 33.23990 | 35.9937282 | 0.1408618 | 1.3179996 |
Kalophrynus nubicola | 33.19617 | 39.1403367 | 0.1403970 | 1.4374320 |
Kalophrynus eok | 33.17114 | 31.3307694 | 0.1428788 | 1.1980225 |
Kalophrynus interlineatus | 33.15182 | 29.6543749 | 0.1418527 | 1.0754930 |
Kalophrynus punctatus | 33.20645 | 53.2840614 | 0.1397237 | 1.9186066 |
Kalophrynus minusculus | 33.24594 | 45.1789054 | 0.1428596 | 1.5977562 |
Kalophrynus robinsoni | 33.23255 | 48.5041528 | 0.1428330 | 1.6960443 |
Kalophrynus pleurostigma | 33.40101 | 46.6826336 | 0.1401591 | 1.6411839 |
Choerophryne allisoni | 31.42857 | 29.7086676 | 0.1445558 | 1.0683566 |
Choerophryne burtoni | 31.53731 | 31.6305860 | 0.1425616 | 1.1867104 |
Choerophryne longirostris | 31.49185 | 46.7440166 | 0.1477251 | 1.7507428 |
Choerophryne proboscidea | 31.44849 | 37.1858529 | 0.1440739 | 1.3868028 |
Choerophryne rostellifer | 31.55942 | 42.9320010 | 0.1458863 | 1.5859349 |
Aphantophryne minuta | 31.44847 | 28.6778476 | 0.1450950 | 1.0651116 |
Aphantophryne sabini | 31.47264 | 29.9388308 | 0.1440747 | 1.0674233 |
Aphantophryne pansa | 31.40979 | 38.7493892 | 0.1470964 | 1.4696364 |
Asterophrys leucopus | 31.53603 | 34.8754011 | 0.1437192 | 1.2747020 |
Asterophrys turpicola | 31.52008 | 37.9183562 | 0.1460157 | 1.3888682 |
Xenorhina adisca | 31.52857 | 38.9578595 | 0.1422696 | 1.4327745 |
Xenorhina anorbis | 31.54126 | 33.3640330 | 0.1412189 | 1.2658281 |
Xenorhina arboricola | 31.32316 | 41.0100400 | 0.1444935 | 1.5176237 |
Xenorhina arfakiana | 31.56758 | 53.2000207 | 0.1469989 | 1.9140149 |
Xenorhina bidens | 31.53964 | 33.4754772 | 0.1443199 | 1.2028872 |
Xenorhina bouwensi | 31.45077 | 39.0338312 | 0.1451639 | 1.4394624 |
Xenorhina eiponis | 31.37106 | 33.7653216 | 0.1472845 | 1.3152171 |
Xenorhina fuscigula | 32.47355 | 35.3789832 | 0.1435701 | 1.3510223 |
Xenorhina gigantea | 31.49060 | 35.6495039 | 0.1425712 | 1.3582037 |
Xenorhina huon | 31.39578 | 32.2859910 | 0.1446089 | 1.2293352 |
Xenorhina lanthanites | 31.39696 | 70.2897410 | 0.1436707 | 2.6652127 |
Xenorhina macrodisca | 31.50695 | 28.5323596 | 0.1452598 | 1.1903677 |
Xenorhina macrops | 31.55226 | 38.4691226 | 0.1414434 | 1.4477885 |
Xenorhina mehelyi | 31.52860 | 32.2789788 | 0.1445829 | 1.2073574 |
Xenorhina minima | 31.49127 | 38.9487255 | 0.1426918 | 1.4724475 |
Xenorhina multisica | 31.47723 | 30.0216329 | 0.1425843 | 1.2082065 |
Xenorhina obesa | 31.48522 | 37.8454625 | 0.1450005 | 1.4072921 |
Xenorhina ocellata | 31.44946 | 38.5666956 | 0.1482900 | 1.4592920 |
Xenorhina ophiodon | 31.46776 | 50.3482163 | 0.1442356 | 1.8062403 |
Xenorhina oxycephala | 31.44983 | 42.0518570 | 0.1471554 | 1.5543458 |
Xenorhina parkerorum | 31.51868 | 33.0516554 | 0.1423084 | 1.2405323 |
Xenorhina rostrata | 31.48351 | 36.6501122 | 0.1436908 | 1.3670052 |
Xenorhina scheepstrai | 31.48177 | 36.8570499 | 0.1446639 | 1.3991008 |
Xenorhina schiefenhoeveli | 31.55202 | 36.1056593 | 0.1450989 | 1.4097450 |
Xenorhina similis | 31.42989 | 36.1920424 | 0.1477656 | 1.3274247 |
Xenorhina subcrocea | 31.38787 | 33.6916246 | 0.1426807 | 1.2562966 |
Xenorhina tumulus | 32.49871 | 38.4178078 | 0.1447076 | 1.4345430 |
Xenorhina varia | 31.55541 | 83.2890085 | 0.1441274 | 3.1566062 |
Xenorhina zweifeli | 31.49103 | 42.2470952 | 0.1435812 | 1.5340709 |
Austrochaperina adamantina | 31.52177 | 42.6757525 | 0.1438428 | 1.5995625 |
Austrochaperina adelphe | 31.46002 | 31.4801134 | 0.1444541 | 1.1028638 |
Austrochaperina aquilonia | 31.52513 | 43.9999599 | 0.1459638 | 1.6494328 |
Austrochaperina archboldi | 31.54071 | 31.7504332 | 0.1435945 | 1.1603387 |
Austrochaperina basipalmata | 30.89936 | 47.1057688 | 0.1457973 | 1.7602207 |
Austrochaperina blumi | 31.59039 | 34.1460275 | 0.1426773 | 1.3331852 |
Austrochaperina brevipes | 31.57449 | 30.1314464 | 0.1442401 | 1.1165581 |
Austrochaperina derongo | 31.37923 | 35.2774805 | 0.1425568 | 1.3256471 |
Austrochaperina fryi | 31.50280 | 24.7779723 | 0.1445022 | 0.9307821 |
Austrochaperina gracilipes | 31.47781 | 31.5710335 | 0.1438343 | 1.1320266 |
Austrochaperina hooglandi | 31.54703 | 37.1253948 | 0.1437708 | 1.3709492 |
Austrochaperina kosarek | 31.53965 | 40.0919511 | 0.1433067 | 1.5217180 |
Austrochaperina macrorhyncha | 30.84358 | 37.9768480 | 0.1437988 | 1.4137417 |
Austrochaperina mehelyi | 31.46260 | 35.7708079 | 0.1435975 | 1.3473438 |
Austrochaperina minutissima | 31.51766 | 44.4175183 | 0.1465363 | 1.5861601 |
Austrochaperina novaebritanniae | 31.45760 | 47.2915559 | 0.1447115 | 1.6800421 |
Austrochaperina palmipes | 30.83750 | 44.1866268 | 0.1437677 | 1.6260831 |
Austrochaperina parkeri | 31.47133 | 36.8922230 | 0.1460500 | 1.3636504 |
Austrochaperina pluvialis | 31.46543 | 27.4494048 | 0.1451126 | 1.0478267 |
Austrochaperina polysticta | 31.40498 | 36.9221406 | 0.1447782 | 1.4062653 |
Austrochaperina rivularis | 31.67985 | 35.5441935 | 0.1471025 | 1.2948445 |
Austrochaperina robusta | 31.50751 | 24.3943404 | 0.1406233 | 0.9589234 |
Austrochaperina septentrionalis | 31.57799 | 44.0864281 | 0.1426421 | 1.6644176 |
Austrochaperina yelaensis | 31.57864 | 60.5556139 | 0.1452234 | 2.1974335 |
Barygenys atra | 31.54228 | 36.8736218 | 0.1424263 | 1.3557257 |
Barygenys cheesmanae | 31.45260 | 23.4733898 | 0.1462694 | 0.9098055 |
Barygenys exsul | 31.39611 | 57.7321587 | 0.1480174 | 2.0955228 |
Barygenys flavigularis | 31.53790 | 37.4348337 | 0.1441401 | 1.3806595 |
Barygenys maculata | 31.51015 | 40.8795703 | 0.1472740 | 1.4818701 |
Barygenys nana | 31.47197 | 37.8375563 | 0.1456746 | 1.4489271 |
Barygenys parvula | 31.49779 | 34.1059774 | 0.1445192 | 1.2679881 |
Callulops boettgeri | 31.43637 | 45.9942563 | 0.1443199 | 1.6514719 |
Callulops comptus | 31.47199 | 31.7398324 | 0.1453606 | 1.2384217 |
Callulops doriae | 32.44182 | 42.4603216 | 0.1422923 | 1.5518660 |
Callulops dubius | 31.56435 | 46.2760257 | 0.1431930 | 1.6704439 |
Callulops fuscus | 31.43041 | 52.1690114 | 0.1432365 | 1.8967550 |
Callulops glandulosus | 31.46722 | 31.9555621 | 0.1431143 | 1.2666898 |
Callulops humicola | 31.32318 | 31.6562494 | 0.1478319 | 1.2123459 |
Callulops kopsteini | 31.46917 | 61.6507305 | 0.1463771 | 2.2495394 |
Callulops marmoratus | 31.33584 | 32.4234632 | 0.1461105 | 1.2544321 |
Callulops personatus | 31.42031 | 43.2850836 | 0.1430884 | 1.6266841 |
Callulops robustus | 31.45055 | 49.0615608 | 0.1451887 | 1.7502096 |
Callulops sagittatus | 31.42530 | 37.7313875 | 0.1439256 | 1.3560807 |
Callulops stictogaster | 31.46707 | 37.0387651 | 0.1443836 | 1.4159524 |
Callulops wilhelmanus | 31.36225 | 33.5432702 | 0.1447448 | 1.2966818 |
Cophixalus ateles | 31.45423 | 34.9126943 | 0.1450849 | 1.2334794 |
Cophixalus balbus | 31.61504 | 42.9108814 | 0.1440659 | 1.5997801 |
Cophixalus bewaniensis | 31.52874 | 44.1744595 | 0.1430706 | 1.6083261 |
Cophixalus biroi | 31.30278 | 41.5955075 | 0.1441531 | 1.5457049 |
Cophixalus cheesmanae | 31.33819 | 34.4527497 | 0.1458730 | 1.2793585 |
Cophixalus crepitans | 31.43987 | 30.8911945 | 0.1462439 | 1.1117582 |
Cophixalus cryptotympanum | 31.30216 | 41.8290824 | 0.1452251 | 1.5083284 |
Cophixalus daymani | 31.59013 | 41.3789695 | 0.1429301 | 1.4934431 |
Cophixalus humicola | 31.52569 | 49.5998890 | 0.1443003 | 1.8079078 |
Cophixalus kaindiensis | 31.57949 | 36.6660650 | 0.1415466 | 1.3521367 |
Cophixalus misimae | 31.49021 | 49.3771749 | 0.1458559 | 1.7617815 |
Cophixalus montanus | 31.46389 | 42.1646042 | 0.1446234 | 1.5148210 |
Cophixalus nubicola | 31.63740 | 34.6358917 | 0.1440155 | 1.3685851 |
Cophixalus parkeri | 31.42820 | 33.9144478 | 0.1449466 | 1.2767317 |
Cophixalus peninsularis | 31.46315 | 31.5306532 | 0.1418661 | 1.1364150 |
Cophixalus pipilans | 31.59718 | 42.3461637 | 0.1395511 | 1.6020185 |
Cophixalus pulchellus | 31.42912 | 38.3284424 | 0.1466110 | 1.3865849 |
Cophixalus riparius | 31.47128 | 32.1612444 | 0.1428800 | 1.2101550 |
Cophixalus shellyi | 31.34679 | 34.8734610 | 0.1442290 | 1.3119823 |
Cophixalus sphagnicola | 31.39612 | 31.3128754 | 0.1454748 | 1.1556557 |
Cophixalus tagulensis | 30.87435 | 60.0800506 | 0.1430648 | 2.1918100 |
Cophixalus tetzlaffi | 31.31037 | 65.2982914 | 0.1435823 | 2.4144510 |
Cophixalus timidus | 31.32523 | 43.9634214 | 0.1448354 | 1.5955451 |
Cophixalus tridactylus | 31.47920 | 46.3582964 | 0.1428823 | 1.6521702 |
Cophixalus variabilis | 31.45940 | 48.7607793 | 0.1429633 | 1.7557562 |
Cophixalus verecundus | 31.40441 | 29.6355307 | 0.1440143 | 1.0566657 |
Cophixalus verrucosus | 31.43217 | 41.3460220 | 0.1452742 | 1.5078487 |
Cophixalus zweifeli | 31.46106 | 32.8188575 | 0.1450997 | 1.1787970 |
Copiula exspectata | 31.50219 | 69.8503842 | 0.1439819 | 2.6485887 |
Copiula fistulans | 31.55234 | 36.9918052 | 0.1449070 | 1.3698067 |
Copiula major | 31.44036 | 42.5934635 | 0.1449135 | 1.5193018 |
Copiula minor | 31.63352 | 55.7403646 | 0.1408642 | 2.0355797 |
Copiula obsti | 31.49846 | 41.9962969 | 0.1428708 | 1.4975308 |
Copiula oxyrhina | 31.58767 | 49.4097889 | 0.1440741 | 1.7538058 |
Copiula pipiens | 31.51164 | 43.8408024 | 0.1451935 | 1.6221857 |
Copiula tyleri | 31.65140 | 40.8539408 | 0.1437746 | 1.5208904 |
Hylophorbus picoides | 31.50086 | 56.0622791 | 0.1474798 | 2.0404816 |
Hylophorbus tetraphonus | 31.53175 | 55.3475220 | 0.1453231 | 1.9970230 |
Hylophorbus sextus | 31.48934 | 52.9457845 | 0.1467539 | 1.9089442 |
Hylophorbus rainerguentheri | 31.57252 | 32.8976062 | 0.1438551 | 1.2368143 |
Hylophorbus richardsi | 31.58562 | 33.8483176 | 0.1433513 | 1.2713280 |
Hylophorbus wondiwoi | 31.60003 | 41.9931279 | 0.1452670 | 1.4981043 |
Hylophorbus rufescens | 31.63592 | 31.5092673 | 0.1440181 | 1.1345434 |
Hylophorbus nigrinus | 31.57711 | 42.6753731 | 0.1426618 | 1.7146969 |
Mantophryne louisiadensis | 31.46049 | 62.2843736 | 0.1434801 | 2.2603167 |
Mantophryne lateralis | 31.45534 | 37.5086317 | 0.1451445 | 1.3785718 |
Oreophryne albopunctata | 31.33845 | 42.5429493 | 0.1450618 | 1.5535040 |
Oreophryne alticola | 31.56606 | 33.4308117 | 0.1435795 | 1.3052731 |
Oreophryne anthonyi | 31.38881 | 33.8692371 | 0.1433707 | 1.2311253 |
Oreophryne anulata | 31.45271 | 49.2541217 | 0.1430503 | 1.7781645 |
Oreophryne asplenicola | 31.30327 | 66.5045399 | 0.1445012 | 2.5215113 |
Oreophryne pseudasplenicola | 31.28329 | 76.5766185 | 0.1456252 | 2.9042387 |
Oreophryne atrigularis | 31.49835 | 43.7021335 | 0.1438838 | 1.6200673 |
Oreophryne biroi | 31.31094 | 35.6187346 | 0.1441785 | 1.3316757 |
Oreophryne brachypus | 31.26216 | 44.7086281 | 0.1440878 | 1.6216231 |
Oreophryne brevicrus | 31.33832 | 37.1534155 | 0.1459689 | 1.4160215 |
Oreophryne brevirostris | 31.62540 | 34.3085333 | 0.1448027 | 1.3390104 |
Oreophryne celebensis | 31.26794 | 57.8021932 | 0.1455319 | 2.1058360 |
Oreophryne clamata | 31.36345 | 44.4692265 | 0.1469432 | 1.5861210 |
Oreophryne crucifer | 31.38515 | 41.2641267 | 0.1452418 | 1.5232139 |
Oreophryne flava | 31.35103 | 34.0498438 | 0.1423549 | 1.3101069 |
Oreophryne frontifasciata | 31.38185 | 61.7005246 | 0.1435547 | 2.2708093 |
Oreophryne geislerorum | 31.36849 | 33.4094191 | 0.1428946 | 1.2317310 |
Oreophryne geminus | 31.45611 | 34.0146276 | 0.1449099 | 1.2224417 |
Oreophryne habbemensis | 31.37077 | 44.6863001 | 0.1435517 | 1.6272477 |
Oreophryne hypsiops | 31.40381 | 37.2024138 | 0.1449140 | 1.3756911 |
Oreophryne idenburgensis | 31.29067 | 50.3886603 | 0.1452339 | 1.7747809 |
Oreophryne inornata | 31.25730 | 58.3261766 | 0.1458377 | 2.1305910 |
Oreophryne insulana | 31.35804 | 52.3154154 | 0.1449642 | 1.9076513 |
Oreophryne jeffersoniana | 31.28742 | 46.4396012 | 0.1445091 | 1.6894428 |
Oreophryne kampeni | 31.31377 | 33.0291898 | 0.1441258 | 1.1781026 |
Oreophryne kapisa | 31.24820 | 56.6529750 | 0.1466964 | 2.1048813 |
Oreophryne loriae | 31.36167 | 32.5033685 | 0.1450744 | 1.1597552 |
Oreophryne minuta | 31.27951 | 29.3501556 | 0.1436887 | 1.2247821 |
Oreophryne moluccensis | 31.45978 | 57.8264484 | 0.1439794 | 2.0969053 |
Oreophryne monticola | 31.37129 | 50.9007000 | 0.1458107 | 1.8366306 |
Oreophryne notata | 31.38859 | 32.5836767 | 0.1456658 | 1.2408017 |
Oreophryne rookmaakeri | 31.46035 | 55.0870668 | 0.1413766 | 2.0450889 |
Oreophryne sibilans | 31.29745 | 49.8243759 | 0.1464590 | 1.7816628 |
Oreophryne terrestris | 31.41994 | 41.2056895 | 0.1435241 | 1.4828212 |
Oreophryne unicolor | 31.27945 | 55.6450618 | 0.1449580 | 2.0254048 |
Oreophryne variabilis | 31.41023 | 54.5035500 | 0.1453649 | 2.0065418 |
Oreophryne waira | 31.34143 | 69.3086306 | 0.1471936 | 2.6276977 |
Oreophryne wapoga | 31.31891 | 47.9910324 | 0.1446059 | 1.8631736 |
Sphenophryne cornuta | 31.48107 | 40.4228897 | 0.1447414 | 1.4875396 |
Gastrophrynoides borneensis | 33.54990 | 44.7153966 | 0.1416813 | 1.5927881 |
Glyphoglossus molossus | 35.41039 | 32.8539643 | 0.1393871 | 1.1543116 |
Microhyla achatina | 34.11878 | 40.3050338 | 0.1419448 | 1.4615475 |
Microhyla borneensis | 34.18975 | 37.6551146 | 0.1388445 | 1.3145615 |
Microhyla berdmorei | 34.73556 | 28.4866664 | 0.1396299 | 1.0367755 |
Microhyla pulchra | 34.70529 | 27.1429613 | 0.1396997 | 0.9887275 |
Microhyla rubra | 34.63915 | 23.5947787 | 0.1405643 | 0.8629311 |
Microhyla maculifera | 34.71924 | 33.7670363 | 0.1397449 | 1.1944547 |
Microhyla chakrapanii | 34.67672 | 36.9975025 | 0.1386860 | 1.2901080 |
Microhyla karunaratnei | 34.75358 | 29.9963796 | 0.1403607 | 1.0897901 |
Microhyla palmipes | 34.77981 | 41.0632690 | 0.1383021 | 1.4577030 |
Microhyla mixtura | 34.64310 | 12.8776242 | 0.1393478 | 0.5245570 |
Microhyla okinavensis | 34.67116 | 45.9770808 | 0.1410245 | 1.6746815 |
Microhyla superciliaris | 34.66862 | 41.2251256 | 0.1428557 | 1.4521951 |
Microhyla picta | 34.80536 | 30.8705602 | 0.1394597 | 1.1062737 |
Microhyla pulverata | 34.66977 | 30.1833264 | 0.1412639 | 1.1076868 |
Microhyla sholigari | 34.58847 | 20.3475942 | 0.1412893 | 0.7379431 |
Microhyla zeylanica | 34.86178 | 29.7191929 | 0.1394084 | 1.0786052 |
Micryletta inornata | 34.04029 | 50.6518136 | 0.1414811 | 1.7806164 |
Micryletta steinegeri | 34.09604 | 49.0608493 | 0.1408159 | 1.7497632 |
Chaperina fusca | 33.87773 | 45.2145262 | 0.1456986 | 1.6053328 |
Kaloula assamensis | 34.54892 | 29.8132354 | 0.1396028 | 1.1349785 |
Kaloula aureata | 34.35252 | 31.5787044 | 0.1417123 | 1.1035409 |
Kaloula baleata | 34.29719 | 34.4168247 | 0.1456301 | 1.2531531 |
Kaloula mediolineata | 34.42634 | 25.5855790 | 0.1437211 | 0.8902809 |
Kaloula conjuncta | 34.33421 | 41.7495089 | 0.1425138 | 1.5106543 |
Kaloula rigida | 34.23789 | 42.5530409 | 0.1407510 | 1.5209516 |
Kaloula kokacii | 33.88272 | 42.2681944 | 0.1413494 | 1.5153457 |
Kaloula picta | 34.33331 | 43.0779750 | 0.1414160 | 1.5526764 |
Kaloula borealis | 34.68825 | 9.1803141 | 0.1397242 | 0.3954540 |
Kaloula rugifera | 34.60171 | 11.3464789 | 0.1443856 | 0.5276955 |
Kaloula verrucosa | 34.70987 | 17.6060275 | 0.1411184 | 0.8112818 |
Uperodon globulosus | 35.36601 | 26.5223341 | 0.1428534 | 0.9692793 |
Uperodon systoma | 35.37920 | 25.2206096 | 0.1392109 | 0.9383407 |
Metaphrynella pollicaris | 34.07621 | 43.2505223 | 0.1412248 | 1.5235831 |
Metaphrynella sundana | 33.99698 | 44.3691898 | 0.1436834 | 1.5816560 |
Phrynella pulchra | 34.17476 | 45.9222159 | 0.1423197 | 1.6143390 |
Dyscophus insularis | 33.90136 | 35.9036211 | 0.1410256 | 1.3432572 |
Dyscophus antongilii | 33.74328 | 37.5274206 | 0.1432157 | 1.4431594 |
Dyscophus guineti | 33.74005 | 39.4547693 | 0.1419993 | 1.5229277 |
Hildebrandtia macrotympanum | 35.12332 | 45.8539520 | 0.1356085 | 1.8157680 |
Hildebrandtia ornatissima | 35.15858 | 29.4523866 | 0.1354883 | 1.1990081 |
Hildebrandtia ornata | 35.25022 | 29.2659767 | 0.1367635 | 1.1473379 |
Lanzarana largeni | 34.32664 | 41.2909699 | 0.1338031 | 1.6034896 |
Ptychadena aequiplicata | 34.51013 | 50.2731527 | 0.1358422 | 1.8242025 |
Ptychadena obscura | 34.24577 | 33.3299579 | 0.1346635 | 1.3863214 |
Ptychadena mahnerti | 34.54463 | 29.1063760 | 0.1369122 | 1.3564248 |
Ptychadena uzungwensis | 34.56566 | 32.9466014 | 0.1354140 | 1.3440274 |
Ptychadena porosissima | 34.35059 | 30.7034338 | 0.1342288 | 1.2854285 |
Ptychadena perreti | 34.20796 | 47.7007467 | 0.1352801 | 1.7265756 |
Ptychadena anchietae | 34.41599 | 30.7087572 | 0.1371922 | 1.2621208 |
Ptychadena oxyrhynchus | 34.30453 | 35.9795818 | 0.1340022 | 1.4009835 |
Ptychadena tellinii | 34.29064 | 35.0729805 | 0.1357888 | 1.2821619 |
Ptychadena longirostris | 34.12407 | 53.6117389 | 0.1386989 | 1.9313092 |
Ptychadena bunoderma | 34.26234 | 30.9597100 | 0.1364392 | 1.2333718 |
Ptychadena upembae | 34.58833 | 32.7609578 | 0.1348723 | 1.3414934 |
Ptychadena ansorgii | 34.62683 | 33.0290769 | 0.1342158 | 1.3450539 |
Ptychadena arnei | 34.33260 | 51.6637591 | 0.1330813 | 1.8715246 |
Ptychadena pumilio | 34.45743 | 41.4822145 | 0.1357350 | 1.5134181 |
Ptychadena retropunctata | 34.45188 | 37.7480761 | 0.1368602 | 1.3640585 |
Ptychadena bibroni | 34.18541 | 43.7987100 | 0.1356981 | 1.5883899 |
Ptychadena christyi | 34.18287 | 46.4199023 | 0.1340218 | 1.8776250 |
Ptychadena stenocephala | 34.13407 | 44.3796978 | 0.1351132 | 1.7034210 |
Ptychadena broadleyi | 34.17774 | 32.6808604 | 0.1343348 | 1.2592392 |
Ptychadena keilingi | 34.12788 | 32.8820741 | 0.1350488 | 1.3178058 |
Ptychadena chrysogaster | 34.07876 | 43.2070671 | 0.1370446 | 1.9486551 |
Ptychadena harenna | 34.14297 | 37.5856072 | 0.1356911 | 1.8616188 |
Ptychadena cooperi | 34.52393 | 32.9403782 | 0.1366553 | 1.6488029 |
Ptychadena erlangeri | 34.30785 | 33.9447841 | 0.1351183 | 1.5811355 |
Ptychadena nana | 34.28650 | 31.6450689 | 0.1362041 | 1.6502863 |
Ptychadena wadei | 34.39133 | 29.0667459 | 0.1324439 | 1.2379214 |
Ptychadena filwoha | 34.39244 | 33.3665870 | 0.1363476 | 1.6445811 |
Ptychadena subpunctata | 34.31268 | 33.5374443 | 0.1366012 | 1.3652181 |
Ptychadena gansi | 34.22042 | 57.3045671 | 0.1350798 | 2.1743459 |
Ptychadena grandisonae | 34.19510 | 33.4833555 | 0.1357304 | 1.3724005 |
Ptychadena guibei | 34.17967 | 30.7528521 | 0.1377485 | 1.2275603 |
Ptychadena neumanni | 34.47589 | 34.5045217 | 0.1369694 | 1.5921999 |
Ptychadena ingeri | 34.44032 | 42.0491959 | 0.1345563 | 1.5729967 |
Ptychadena submascareniensis | 34.19531 | 44.4192161 | 0.1356811 | 1.6080379 |
Ptychadena mapacha | 34.18963 | 29.0163695 | 0.1360337 | 1.1604276 |
Ptychadena straeleni | 34.13279 | 37.7634307 | 0.1385246 | 1.3908702 |
Ptychadena mascareniensis | 34.44350 | 35.8642954 | 0.1361977 | 1.3826998 |
Ptychadena newtoni | 34.42073 | 68.6269244 | 0.1390415 | 2.5317953 |
Ptychadena nilotica | 34.43075 | 36.2385547 | 0.1360738 | 1.4945216 |
Ptychadena taenioscelis | 34.10469 | 32.9099015 | 0.1360064 | 1.3218140 |
Ptychadena trinodis | 34.16060 | 38.5469428 | 0.1352686 | 1.3950151 |
Ptychadena mossambica | 34.11509 | 32.7866635 | 0.1364944 | 1.3479541 |
Ptychadena tournieri | 34.37629 | 43.6882735 | 0.1360967 | 1.5729977 |
Ptychadena perplicata | 34.14250 | 30.6738120 | 0.1389880 | 1.2370911 |
Ptychadena schillukorum | 34.12936 | 35.6889468 | 0.1383778 | 1.3806037 |
Ptychadena pujoli | 34.13759 | 40.1109001 | 0.1369247 | 1.4415594 |
Ptychadena superciliaris | 34.20858 | 56.3516066 | 0.1361110 | 2.0346590 |
Odontobatrachus natator | 33.35491 | 43.6153557 | 0.1384920 | 1.5763228 |
Phrynobatrachus latifrons | 34.12659 | 40.9039556 | 0.1347678 | 1.4679129 |
Phrynobatrachus asper | 34.40365 | 34.0644413 | 0.1374922 | 1.4060368 |
Phrynobatrachus acridoides | 34.40285 | 34.6421240 | 0.1339562 | 1.4127760 |
Phrynobatrachus pakenhami | 34.44659 | 56.9478262 | 0.1347458 | 2.2399780 |
Phrynobatrachus bullans | 34.34010 | 30.0884612 | 0.1371434 | 1.3612173 |
Phrynobatrachus francisci | 34.02063 | 41.3987802 | 0.1349921 | 1.4921553 |
Phrynobatrachus natalensis | 34.13362 | 31.7553134 | 0.1367491 | 1.2615441 |
Phrynobatrachus bequaerti | 34.28499 | 38.1756398 | 0.1365249 | 1.6517268 |
Phrynobatrachus africanus | 34.36054 | 47.4107762 | 0.1380031 | 1.7267261 |
Phrynobatrachus elberti | 34.19922 | 37.9360219 | 0.1342591 | 1.3938459 |
Phrynobatrachus brevipalmatus | 34.15825 | 34.8289172 | 0.1346156 | 1.3104699 |
Phrynobatrachus albomarginatus | 34.10522 | 43.4204712 | 0.1371429 | 1.6143780 |
Phrynobatrachus mababiensis | 34.28429 | 30.3121194 | 0.1378338 | 1.2576095 |
Phrynobatrachus alleni | 34.19658 | 59.6490279 | 0.1393333 | 2.1564541 |
Phrynobatrachus phyllophilus | 34.06799 | 55.6911132 | 0.1351814 | 2.0137539 |
Phrynobatrachus ghanensis | 34.06750 | 63.6501882 | 0.1329366 | 2.3076371 |
Phrynobatrachus guineensis | 33.87805 | 50.9295338 | 0.1368139 | 1.8421043 |
Phrynobatrachus annulatus | 34.37724 | 54.9350435 | 0.1352215 | 1.9872169 |
Phrynobatrachus calcaratus | 34.28502 | 46.8870268 | 0.1371833 | 1.7021712 |
Phrynobatrachus villiersi | 34.12632 | 61.0213661 | 0.1368073 | 2.2076739 |
Phrynobatrachus cornutus | 34.14066 | 42.7336905 | 0.1347038 | 1.5523922 |
Phrynobatrachus anotis | 33.99312 | 35.6077155 | 0.1352364 | 1.4120200 |
Phrynobatrachus nanus | 33.98225 | 46.4965890 | 0.1352925 | 1.7090345 |
Phrynobatrachus auritus | 34.02804 | 40.3368299 | 0.1352004 | 1.4697983 |
Phrynobatrachus plicatus | 34.32558 | 58.8450710 | 0.1357758 | 2.1148221 |
Phrynobatrachus gastoni | 34.09697 | 50.3868607 | 0.1354139 | 1.8134110 |
Phrynobatrachus batesii | 34.06346 | 45.5010607 | 0.1346390 | 1.6739078 |
Phrynobatrachus werneri | 33.48294 | 49.4114026 | 0.1332490 | 1.8514563 |
Phrynobatrachus cricogaster | 34.30016 | 55.8899347 | 0.1353784 | 2.0703618 |
Phrynobatrachus steindachneri | 34.34474 | 39.7731649 | 0.1347676 | 1.5220064 |
Phrynobatrachus chukuchuku | 34.21231 | 38.7298599 | 0.1384828 | 1.5023784 |
Phrynobatrachus breviceps | 34.02771 | 31.5004284 | 0.1341242 | 1.4484241 |
Phrynobatrachus hylaios | 34.28624 | 45.5001714 | 0.1359389 | 1.6632009 |
Phrynobatrachus graueri | 34.49886 | 39.6128498 | 0.1361448 | 1.7346878 |
Phrynobatrachus kinangopensis | 34.45527 | 32.6889796 | 0.1349918 | 1.5314706 |
Phrynobatrachus cryptotis | 34.18320 | 34.2350650 | 0.1332178 | 1.3511684 |
Phrynobatrachus irangi | 34.09930 | 27.4151842 | 0.1360126 | 1.2513703 |
Phrynobatrachus dalcqi | 34.01251 | 34.3576094 | 0.1374166 | 1.3533759 |
Phrynobatrachus intermedius | 34.37871 | 79.1472842 | 0.1353511 | 2.8690836 |
Phrynobatrachus liberiensis | 34.28112 | 57.2153868 | 0.1365893 | 2.0780066 |
Phrynobatrachus tokba | 34.06317 | 49.6070178 | 0.1371728 | 1.7924068 |
Phrynobatrachus dispar | 34.32351 | 74.7507588 | 0.1339797 | 2.7403813 |
Phrynobatrachus leveleve | 34.31233 | 71.4087300 | 0.1345111 | 2.6341905 |
Phrynobatrachus inexpectatus | 34.02583 | 33.3254557 | 0.1378371 | 1.6815939 |
Phrynobatrachus minutus | 34.29046 | 32.8015570 | 0.1390414 | 1.5450022 |
Phrynobatrachus scheffleri | 34.28045 | 33.9214845 | 0.1390162 | 1.4639367 |
Phrynobatrachus rungwensis | 34.25707 | 30.1150825 | 0.1366595 | 1.2744464 |
Phrynobatrachus uzungwensis | 33.42862 | 36.3455260 | 0.1364463 | 1.5710306 |
Phrynobatrachus parvulus | 34.05103 | 31.2215891 | 0.1371204 | 1.2843086 |
Phrynobatrachus keniensis | 34.31648 | 28.8461975 | 0.1377458 | 1.3506711 |
Phrynobatrachus fraterculus | 34.25902 | 48.4895326 | 0.1351435 | 1.7524974 |
Phrynobatrachus gutturosus | 34.28823 | 49.9918446 | 0.1359689 | 1.7933322 |
Phrynobatrachus pintoi | 33.95382 | 33.5961575 | 0.1374982 | 1.1986232 |
Phrynobatrachus kakamikro | 33.97179 | 28.6956023 | 0.1372650 | 1.2562565 |
Phrynobatrachus taiensis | 34.11620 | 63.7653371 | 0.1367258 | 2.3114594 |
Phrynobatrachus giorgii | 34.03563 | 41.6553444 | 0.1372642 | 1.4676635 |
Phrynobatrachus scapularis | 34.24865 | 45.3981763 | 0.1357113 | 1.6815594 |
Phrynobatrachus ogoensis | 34.14309 | 41.6701227 | 0.1364115 | 1.4477210 |
Phrynobatrachus perpalmatus | 34.29422 | 33.4595628 | 0.1351265 | 1.3010064 |
Phrynobatrachus pallidus | 34.37978 | 60.0408490 | 0.1365370 | 2.3531526 |
Phrynobatrachus rouxi | 34.17976 | 43.1977053 | 0.1339384 | 2.0517233 |
Phrynobatrachus parkeri | 34.10655 | 44.0105413 | 0.1337862 | 1.5836497 |
Phrynobatrachus sternfeldi | 34.02050 | 39.3670229 | 0.1349916 | 1.4307976 |
Phrynobatrachus pygmaeus | 33.99578 | 39.5930401 | 0.1348249 | 1.4568488 |
Phrynobatrachus sulfureogularis | 34.06998 | 45.9769920 | 0.1334260 | 1.9929721 |
Phrynobatrachus stewartae | 34.21832 | 31.1405704 | 0.1349107 | 1.3456232 |
Phrynobatrachus ukingensis | 34.27768 | 38.1238026 | 0.1350735 | 1.6576982 |
Phrynobatrachus ungujae | 34.03877 | 56.6652720 | 0.1355771 | 2.2342485 |
Phrynobatrachus acutirostris | 33.51066 | 38.7784651 | 0.1361306 | 1.6779777 |
Phrynobatrachus dendrobates | 34.08270 | 42.5485698 | 0.1344518 | 1.7030948 |
Phrynobatrachus petropedetoides | 34.10609 | 37.2758949 | 0.1348853 | 1.5039353 |
Phrynobatrachus versicolor | 34.15861 | 42.6159078 | 0.1354856 | 1.9129899 |
Phrynobatrachus krefftii | 34.08610 | 60.0734843 | 0.1375360 | 2.3961861 |
Phrynobatrachus sandersoni | 34.26580 | 57.3629340 | 0.1375449 | 2.1346664 |
Conraua alleni | 33.39344 | 49.7806786 | 0.1359365 | 1.7962485 |
Conraua robusta | 33.47538 | 57.6570525 | 0.1368379 | 2.1535655 |
Conraua derooi | 33.46948 | 57.9150428 | 0.1365373 | 2.0310324 |
Conraua beccarii | 34.19674 | 27.8011971 | 0.1357926 | 1.2233781 |
Conraua crassipes | 33.42519 | 47.0548566 | 0.1362573 | 1.7120396 |
Conraua goliath | 33.40466 | 52.4409113 | 0.1351742 | 1.9453345 |
Micrixalus elegans | 33.48744 | 32.8118682 | 0.1350687 | 1.2201041 |
Micrixalus nudis | 34.31438 | 37.2979109 | 0.1345866 | 1.3421065 |
Micrixalus fuscus | 33.37829 | 35.9191232 | 0.1370533 | 1.3016405 |
Micrixalus kottigeharensis | 34.30138 | 35.4144876 | 0.1363030 | 1.3193445 |
Micrixalus saxicola | 33.42494 | 30.9494938 | 0.1388976 | 1.1474530 |
Micrixalus phyllophilus | 33.40551 | 34.5428860 | 0.1348498 | 1.2490760 |
Micrixalus swamianus | 34.04723 | 30.7538397 | 0.1351242 | 1.1436448 |
Micrixalus silvaticus | 33.45805 | 38.7141425 | 0.1363653 | 1.3977850 |
Micrixalus thampii | 33.42677 | 27.7727653 | 0.1365916 | 1.0150051 |
Micrixalus gadgili | 33.44447 | 45.3248303 | 0.1364512 | 1.6448377 |
Micrixalus narainensis | 33.49511 | 33.7317431 | 0.1347999 | 1.2534167 |
Arthroleptides martiensseni | 33.37953 | 53.0629266 | 0.1347459 | 2.1131117 |
Arthroleptides yakusini | 33.43919 | 35.2567099 | 0.1342516 | 1.4922359 |
Petropedetes cameronensis | 33.29735 | 52.3231649 | 0.1359186 | 1.9365547 |
Petropedetes parkeri | 34.16068 | 47.9266658 | 0.1368210 | 1.7796575 |
Petropedetes perreti | 33.27119 | 46.8508804 | 0.1392700 | 1.7586516 |
Petropedetes johnstoni | 33.96312 | 54.4211449 | 0.1361962 | 2.0147939 |
Petropedetes palmipes | 34.18371 | 48.8588461 | 0.1393948 | 1.8039886 |
Ericabatrachus baleensis | 33.30504 | 35.0565464 | 0.1375822 | 1.7317577 |
Aubria masako | 34.35765 | 43.6881006 | 0.1341188 | 1.5683095 |
Aubria occidentalis | 34.39129 | 53.9618882 | 0.1342332 | 1.9469832 |
Aubria subsigillata | 34.37881 | 42.3424795 | 0.1370176 | 1.5311714 |
Pyxicephalus adspersus | 35.11601 | 23.8780098 | 0.1343861 | 1.0274677 |
Pyxicephalus edulis | 34.95854 | 31.2777004 | 0.1378963 | 1.2379313 |
Pyxicephalus angusticeps | 34.34674 | 35.5024949 | 0.1362021 | 1.3683620 |
Pyxicephalus obbianus | 35.03760 | 38.3869729 | 0.1377434 | 1.5051965 |
Amietia tenuoplicata | 33.45135 | 38.0049031 | 0.1359969 | 1.6125052 |
Amietia angolensis | 34.29228 | 25.8139852 | 0.1352157 | 1.0446312 |
Amietia desaegeri | 34.28500 | 34.9400299 | 0.1375508 | 1.4481439 |
Amietia inyangae | 33.41188 | 25.5398388 | 0.1376740 | 1.0444134 |
Amietia johnstoni | 33.44028 | 28.7875467 | 0.1344562 | 1.1125411 |
Amietia vertebralis | 34.16374 | 22.3554251 | 0.1377993 | 1.0620521 |
Amietia ruwenzorica | 33.37046 | 43.0524678 | 0.1356381 | 1.7779528 |
Amietia wittei | 33.35622 | 30.3898921 | 0.1373278 | 1.3972975 |
Amietia fuscigula | 34.43164 | 20.6296147 | 0.1337904 | 0.9783156 |
Amietia vandijki | 33.58481 | 17.8516660 | 0.1328858 | 0.8299731 |
Strongylopus bonaespei | 34.40294 | 20.2740969 | 0.1339964 | 0.9713654 |
Strongylopus fuelleborni | 34.40114 | 32.8093107 | 0.1373934 | 1.4167363 |
Strongylopus kilimanjaro | 33.44635 | 39.5167742 | 0.1334243 | 1.7427764 |
Strongylopus fasciatus | 34.33593 | 25.4491278 | 0.1357069 | 1.0992561 |
Strongylopus springbokensis | 34.33834 | 20.8540270 | 0.1351556 | 1.0160654 |
Strongylopus rhodesianus | 33.51390 | 28.8021640 | 0.1339422 | 1.1581941 |
Strongylopus kitumbeine | 34.38173 | 24.0575917 | 0.1343695 | 1.1374046 |
Strongylopus wageri | 34.41544 | 24.4744749 | 0.1346591 | 1.1001983 |
Strongylopus merumontanus | 33.49870 | 26.2618751 | 0.1355786 | 1.1945499 |
Strongylopus grayii | 34.37534 | 20.8866231 | 0.1341118 | 0.9617047 |
Arthroleptella bicolor | 34.25090 | 18.2093026 | 0.1318380 | 0.8917577 |
Arthroleptella subvoce | 34.11975 | 19.0111306 | 0.1369268 | 0.9130022 |
Arthroleptella drewesii | 33.62898 | 21.4272928 | 0.1362208 | 1.0647422 |
Arthroleptella landdrosia | 34.18618 | 19.2252861 | 0.1368808 | 0.9266355 |
Arthroleptella lightfooti | 34.22507 | 19.3312238 | 0.1365418 | 0.9088354 |
Arthroleptella villiersi | 34.27388 | 20.3121670 | 0.1313506 | 0.9729909 |
Arthroleptella rugosa | 34.23703 | 24.3028594 | 0.1347815 | 1.2075042 |
Natalobatrachus bonebergi | 33.53030 | 27.2141634 | 0.1357380 | 1.2171325 |
Nothophryne broadleyi | 33.61491 | 30.3615809 | 0.1371495 | 1.1707027 |
Cacosternum leleupi | 34.11454 | 31.3235393 | 0.1354544 | 1.2719753 |
Cacosternum boettgeri | 34.16867 | 22.9713900 | 0.1358708 | 1.0184075 |
Cacosternum kinangopensis | 34.15118 | 28.8117207 | 0.1363883 | 1.4461586 |
Cacosternum plimptoni | 34.08835 | 31.2937704 | 0.1394555 | 1.4617981 |
Cacosternum striatum | 34.07393 | 27.7795993 | 0.1365365 | 1.2180283 |
Cacosternum parvum | 34.11397 | 26.0285531 | 0.1385302 | 1.1607369 |
Cacosternum nanum | 34.11088 | 24.2111344 | 0.1368893 | 1.1099696 |
Cacosternum capense | 35.10027 | 19.3311869 | 0.1358415 | 0.9217407 |
Cacosternum namaquense | 34.06226 | 18.5077661 | 0.1355596 | 0.9103051 |
Cacosternum karooicum | 34.05224 | 16.7832757 | 0.1372535 | 0.8094466 |
Cacosternum platys | 34.09928 | 20.8175025 | 0.1347344 | 0.9793799 |
Microbatrachella capensis | 34.42249 | 21.8143853 | 0.1340197 | 1.0435054 |
Poyntonia paludicola | 33.62631 | 20.1989917 | 0.1344109 | 0.9698318 |
Anhydrophryne hewitti | 34.04609 | 26.9063729 | 0.1337215 | 1.2024679 |
Anhydrophryne ngongoniensis | 34.07517 | 26.0260314 | 0.1355856 | 1.1931215 |
Anhydrophryne rattrayi | 34.04633 | 19.9500130 | 0.1348657 | 0.9736964 |
Tomopterna cryptotis | 33.97739 | 25.9038471 | 0.1371976 | 1.0210312 |
Tomopterna tandyi | 34.01049 | 20.3580175 | 0.1339464 | 0.9064900 |
Tomopterna damarensis | 35.02620 | 19.7263866 | 0.1355686 | 0.8383672 |
Tomopterna delalandii | 34.29160 | 17.8084239 | 0.1373458 | 0.8574217 |
Tomopterna gallmanni | 34.09943 | 29.4628026 | 0.1347839 | 1.3348449 |
Tomopterna tuberculosa | 34.33107 | 28.8082955 | 0.1345512 | 1.2105001 |
Tomopterna elegans | 34.03412 | 34.2800066 | 0.1361414 | 1.3196785 |
Tomopterna wambensis | 34.31302 | 37.9029697 | 0.1333458 | 1.6728265 |
Tomopterna kachowskii | 34.09091 | 26.9468785 | 0.1368839 | 1.2341690 |
Tomopterna krugerensis | 34.06616 | 23.2158149 | 0.1350281 | 0.9753391 |
Tomopterna luganga | 34.19561 | 27.0969805 | 0.1382727 | 1.2151130 |
Tomopterna marmorata | 34.03222 | 25.9373949 | 0.1361907 | 1.0788291 |
Tomopterna milletihorsini | 34.09921 | 31.2682106 | 0.1323098 | 1.1226135 |
Tomopterna natalensis | 34.07637 | 22.4909648 | 0.1366263 | 1.0012662 |
Platymantis levigatus | 32.49000 | 64.2156808 | 0.1386834 | 2.3270955 |
Platymantis mimulus | 31.19574 | 50.8023880 | 0.1375590 | 1.8221222 |
Platymantis naomii | 31.13705 | 58.6281680 | 0.1391270 | 2.1343940 |
Platymantis panayensis | 31.95491 | 51.6517162 | 0.1395452 | 1.8827949 |
Platymantis rabori | 32.29815 | 57.9067285 | 0.1352910 | 2.0937246 |
Platymantis isarog | 32.20459 | 59.2659013 | 0.1393669 | 2.1284204 |
Platymantis cornutus | 32.24133 | 62.6924104 | 0.1397108 | 2.2351576 |
Platymantis cagayanensis | 32.40326 | 64.2567178 | 0.1372403 | 2.3062093 |
Platymantis diesmosi | 32.41051 | 61.2997425 | 0.1362882 | 2.2012827 |
Platymantis lawtoni | 32.29263 | 70.1405636 | 0.1366256 | 2.5412813 |
Platymantis guentheri | 32.20571 | 47.4084257 | 0.1376539 | 1.7129896 |
Platymantis subterrestris | 32.16013 | 58.5738147 | 0.1394075 | 2.0841596 |
Platymantis hazelae | 31.68087 | 36.7352119 | 0.1377532 | 1.3436300 |
Platymantis pygmaeus | 31.78836 | 43.8313865 | 0.1395946 | 1.5645022 |
Platymantis indeprensus | 32.25571 | 72.3073111 | 0.1402421 | 2.6350431 |
Platymantis paengi | 32.25421 | 66.9584438 | 0.1399407 | 2.4360320 |
Platymantis insulatus | 32.22886 | 52.3068128 | 0.1374243 | 1.9082688 |
Platymantis taylori | 32.34143 | 67.2561365 | 0.1365442 | 2.4077103 |
Platymantis negrosensis | 32.33301 | 63.2262457 | 0.1392691 | 2.3058752 |
Platymantis pseudodorsalis | 32.32437 | 71.7357768 | 0.1375975 | 2.6145745 |
Platymantis polillensis | 32.22787 | 63.2038140 | 0.1363746 | 2.2667281 |
Platymantis sierramadrensis | 32.27245 | 68.5290334 | 0.1378534 | 2.4366492 |
Platymantis spelaeus | 32.45737 | 73.3797571 | 0.1373798 | 2.6360579 |
Lankanectes corrugatus | 33.45824 | 37.7526869 | 0.1369577 | 1.3450510 |
Nyctibatrachus sylvaticus | 32.91046 | 43.1922244 | 0.1348500 | 1.5941856 |
Nyctibatrachus major | 32.86054 | 36.2476877 | 0.1368283 | 1.3228206 |
Nyctibatrachus dattatreyaensis | 32.85307 | 30.3266047 | 0.1365032 | 1.1330925 |
Nyctibatrachus karnatakaensis | 32.79677 | 28.1254197 | 0.1365983 | 1.0456971 |
Nyctibatrachus sanctipalustris | 33.67398 | 36.9455816 | 0.1358358 | 1.3751247 |
Nyctibatrachus kempholeyensis | 32.83313 | 37.8503993 | 0.1385259 | 1.4001205 |
Nyctibatrachus humayuni | 32.95900 | 34.8496728 | 0.1368973 | 1.2944740 |
Nyctibatrachus petraeus | 32.92886 | 31.9082733 | 0.1366137 | 1.1715529 |
Nyctibatrachus aliciae | 33.74247 | 38.6959195 | 0.1336159 | 1.4156174 |
Nyctibatrachus vasanthi | 32.82412 | 46.2580852 | 0.1387027 | 1.6634327 |
Nyctibatrachus deccanensis | 33.68978 | 33.6648735 | 0.1351962 | 1.2252789 |
Nyctibatrachus minor | 33.72791 | 30.7280790 | 0.1351213 | 1.1158207 |
Nyctibatrachus beddomii | 33.72757 | 34.1962686 | 0.1363631 | 1.2297687 |
Nyctibatrachus minimus | 33.50434 | 43.0199321 | 0.1347260 | 1.5607476 |
Indirana beddomii | 34.70178 | 35.6756257 | 0.1320385 | 1.3024483 |
Indirana brachytarsus | 34.03380 | 32.7483408 | 0.1342447 | 1.1867229 |
Indirana leithii | 34.74526 | 35.6861318 | 0.1323513 | 1.3129141 |
Indirana semipalmata | 34.05621 | 37.2658682 | 0.1333498 | 1.3549693 |
Indirana gundia | 34.08508 | 40.9310975 | 0.1315131 | 1.5128096 |
Indirana longicrus | 34.02124 | 35.6992366 | 0.1321526 | 1.3272403 |
Indirana diplosticta | 33.91454 | 43.2315783 | 0.1330741 | 1.5430480 |
Indirana leptodactyla | 34.58953 | 37.0531686 | 0.1309783 | 1.3356239 |
Indirana phrynoderma | 34.49028 | 32.2078070 | 0.1328029 | 1.1376044 |
Ingerana borealis | 35.02161 | 30.1115658 | 0.1321959 | 1.2132064 |
Ingerana tenasserimensis | 34.80948 | 39.7470783 | 0.1330537 | 1.4215323 |
Ingerana charlesdarwini | 34.63531 | 42.8084502 | 0.1308568 | 1.4908037 |
Ingerana reticulata | 34.10374 | 12.9483144 | 0.1317647 | 0.7833483 |
Occidozyga baluensis | 34.68477 | 44.8004348 | 0.1311474 | 1.5997167 |
Occidozyga celebensis | 34.50370 | 49.6520095 | 0.1380648 | 1.8366578 |
Occidozyga lima | 34.57823 | 34.5010184 | 0.1337142 | 1.2459697 |
Occidozyga magnapustulosa | 34.36191 | 32.8969354 | 0.1342109 | 1.1817891 |
Occidozyga martensii | 34.30022 | 29.4147490 | 0.1352992 | 1.0657763 |
Occidozyga semipalmata | 34.46961 | 53.3847917 | 0.1319218 | 1.9693544 |
Occidozyga sumatrana | 34.55165 | 48.0340453 | 0.1323231 | 1.7273137 |
Occidozyga floresiana | 33.76592 | 38.7497278 | 0.1378544 | 1.4229301 |
Occidozyga diminutiva | 33.62624 | 70.6251411 | 0.1335460 | 2.5934102 |
Allopaa hazarensis | 36.15805 | 8.0308111 | 0.1317630 | 0.5390387 |
Chrysopaa sternosignata | 35.99743 | 14.5742383 | 0.1315267 | 0.6680340 |
Ombrana sikimensis | 35.30282 | 21.3415366 | 0.1328674 | 1.0461706 |
Euphlyctis hexadactylus | 37.25920 | 26.8930182 | 0.1265245 | 0.9605230 |
Euphlyctis cyanophlyctis | 37.29928 | 20.6055432 | 0.1295874 | 0.7815540 |
Euphlyctis ehrenbergii | 37.20970 | 26.5049417 | 0.1320721 | 1.0673109 |
Euphlyctis ghoshi | 37.32430 | 36.2422143 | 0.1305215 | 1.2377183 |
Hoplobatrachus crassus | 38.70098 | 25.0543542 | 0.1287983 | 0.9078453 |
Hoplobatrachus tigerinus | 38.14047 | 19.5993064 | 0.1285650 | 0.7324167 |
Hoplobatrachus occipitalis | 37.29963 | 24.9587237 | 0.1280308 | 0.9315330 |
Nannophrys ceylonensis | 37.00743 | 34.9566510 | 0.1302394 | 1.2627574 |
Nannophrys marmorata | 37.11432 | 32.0122983 | 0.1279112 | 1.1545068 |
Nannophrys naeyakai | 36.21617 | 34.5655676 | 0.1325771 | 1.2161116 |
Fejervarya iskandari | 36.55580 | 33.9712129 | 0.1297710 | 1.1969067 |
Fejervarya orissaensis | 36.61933 | 25.9183864 | 0.1304905 | 0.9197083 |
Fejervarya moodiei | 36.88813 | 44.6599842 | 0.1307736 | 1.5828174 |
Fejervarya multistriata | 36.81537 | 37.4927863 | 0.1299125 | 1.3585629 |
Fejervarya triora | 36.54477 | 28.1120171 | 0.1304501 | 0.9658406 |
Fejervarya verruculosa | 36.53754 | 46.0123487 | 0.1300220 | 1.6738751 |
Fejervarya vittigera | 36.57534 | 58.0512162 | 0.1301323 | 2.0923317 |
Sphaerotheca breviceps | 36.53970 | 21.8497554 | 0.1297897 | 0.7990234 |
Sphaerotheca dobsonii | 37.61181 | 28.4813684 | 0.1279225 | 1.0279084 |
Sphaerotheca leucorhynchus | 37.57133 | 28.2175995 | 0.1286579 | 1.0390981 |
Sphaerotheca maskeyi | 37.53500 | 23.7307846 | 0.1282568 | 1.0645302 |
Sphaerotheca rolandae | 37.57086 | 29.6659137 | 0.1291156 | 1.0419848 |
Sphaerotheca swani | 37.49241 | 29.3647618 | 0.1302325 | 1.1322224 |
Limnonectes acanthi | 34.44401 | 55.6630538 | 0.1338317 | 1.9943316 |
Limnonectes arathooni | 35.11627 | 52.2113846 | 0.1306163 | 1.9201727 |
Limnonectes microtympanum | 34.44107 | 55.0133429 | 0.1312404 | 2.0478908 |
Limnonectes asperatus | 35.16511 | 34.5447996 | 0.1311728 | 1.2040242 |
Limnonectes kuhlii | 34.47027 | 39.4174466 | 0.1297016 | 1.4346676 |
Limnonectes fujianensis | 35.38096 | 22.8255888 | 0.1325458 | 0.8220447 |
Limnonectes namiyei | 34.38404 | 42.6603034 | 0.1332658 | 1.5418342 |
Limnonectes poilani | 33.66618 | 23.6156966 | 0.1348330 | 0.8296146 |
Limnonectes dabanus | 35.37863 | 28.4703074 | 0.1334018 | 0.9950351 |
Limnonectes gyldenstolpei | 35.16379 | 29.2669736 | 0.1299188 | 1.0390572 |
Limnonectes dammermani | 34.49331 | 48.0850726 | 0.1327683 | 1.7538915 |
Limnonectes diuatus | 34.58059 | 38.7031689 | 0.1294570 | 1.3918886 |
Limnonectes doriae | 35.13648 | 31.7199951 | 0.1306393 | 1.1307667 |
Limnonectes hascheanus | 35.09663 | 30.1139396 | 0.1293106 | 1.0885989 |
Limnonectes limborgi | 35.03804 | 28.5896592 | 0.1325599 | 1.0489193 |
Limnonectes plicatellus | 34.41098 | 39.2894812 | 0.1329640 | 1.3785826 |
Limnonectes kohchangae | 35.12461 | 32.1030839 | 0.1312360 | 1.1015934 |
Limnonectes finchi | 34.67839 | 33.9911165 | 0.1334289 | 1.2165516 |
Limnonectes ingeri | 34.05377 | 35.6451176 | 0.1346465 | 1.2823785 |
Limnonectes fragilis | 34.41589 | 44.1930039 | 0.1316866 | 1.5682648 |
Limnonectes grunniens | 35.33754 | 43.1207372 | 0.1335321 | 1.5851052 |
Limnonectes ibanorum | 35.26941 | 38.5313945 | 0.1328489 | 1.3680019 |
Limnonectes heinrichi | 33.76309 | 48.8059733 | 0.1351175 | 1.7815615 |
Limnonectes modestus | 34.71537 | 45.2907328 | 0.1329494 | 1.6634801 |
Limnonectes macrocephalus | 34.47581 | 41.9777377 | 0.1329869 | 1.5006307 |
Limnonectes visayanus | 33.63521 | 46.6364251 | 0.1333593 | 1.7020624 |
Limnonectes magnus | 33.71071 | 46.4844881 | 0.1351523 | 1.6881487 |
Limnonectes kadarsani | 34.45193 | 45.9444302 | 0.1328861 | 1.6637835 |
Limnonectes microdiscus | 35.03233 | 41.4203732 | 0.1302215 | 1.4943610 |
Limnonectes kenepaiensis | 35.19292 | 53.4031672 | 0.1361679 | 1.9138477 |
Limnonectes khammonensis | 35.23892 | 25.4834122 | 0.1327094 | 0.8863826 |
Limnonectes khasianus | 35.07850 | 29.7632624 | 0.1309254 | 1.1509533 |
Limnonectes leporinus | 35.18808 | 36.6054542 | 0.1319113 | 1.3022261 |
Limnonectes leytensis | 34.46943 | 48.7484639 | 0.1338404 | 1.7695419 |
Limnonectes macrodon | 35.30781 | 36.0185261 | 0.1326843 | 1.2956634 |
Limnonectes shompenorum | 35.04021 | 47.8784479 | 0.1327002 | 1.7311020 |
Limnonectes paramacrodon | 35.29052 | 42.0443652 | 0.1321673 | 1.4876662 |
Limnonectes macrognathus | 35.16612 | 30.2022167 | 0.1305009 | 1.0783926 |
Limnonectes mawlyndipi | 35.15350 | 18.2756559 | 0.1325025 | 0.7884142 |
Limnonectes micrixalus | 34.50135 | 65.8155149 | 0.1348462 | 2.4446146 |
Limnonectes nitidus | 34.53354 | 36.6612099 | 0.1315586 | 1.3186284 |
Limnonectes palavanensis | 34.54376 | 42.8569963 | 0.1316625 | 1.5361607 |
Limnonectes parvus | 34.55071 | 48.9127860 | 0.1302589 | 1.7730775 |
Limnonectes tweediei | 35.09340 | 38.3581428 | 0.1315665 | 1.3533739 |
Nanorana aenea | 38.30122 | 22.5923405 | 0.1266960 | 0.8905850 |
Nanorana unculuanus | 37.73238 | 18.9848412 | 0.1262629 | 0.8094385 |
Nanorana annandalii | 37.77073 | 18.2242826 | 0.1260667 | 0.9204034 |
Nanorana arnoldi | 37.66528 | 11.1721405 | 0.1288648 | 0.6490755 |
Nanorana maculosa | 37.70801 | 21.4449328 | 0.1258660 | 0.9389666 |
Nanorana medogensis | 37.70224 | 11.8912729 | 0.1292209 | 0.7226686 |
Nanorana blanfordii | 37.63530 | 14.1877133 | 0.1275141 | 0.7469903 |
Nanorana conaensis | 37.54010 | 16.5356630 | 0.1299967 | 0.8937617 |
Nanorana ercepeae | 37.68616 | 14.4120764 | 0.1279254 | 0.6941810 |
Nanorana taihangnica | 37.67919 | 10.6194119 | 0.1269075 | 0.4642796 |
Nanorana liebigii | 37.70313 | 10.8571474 | 0.1273497 | 0.6391476 |
Nanorana minica | 37.65472 | 10.7043254 | 0.1287109 | 0.5902483 |
Nanorana mokokchungensis | 37.63107 | 29.1160221 | 0.1262916 | 1.0873220 |
Nanorana parkeri | 38.28232 | 6.4722284 | 0.1291963 | 0.5658316 |
Nanorana pleskei | 38.34453 | 7.0121322 | 0.1295869 | 0.5078671 |
Nanorana ventripunctata | 38.50914 | 13.1122005 | 0.1270620 | 0.7928125 |
Nanorana polunini | 37.75378 | 12.1118927 | 0.1270595 | 0.6801575 |
Nanorana quadranus | 37.72184 | 11.7460693 | 0.1258683 | 0.4914523 |
Nanorana rarica | 38.54830 | 6.6668713 | 0.1287705 | 0.5230524 |
Nanorana rostandi | 37.66914 | 9.6025447 | 0.1273421 | 0.5772400 |
Nanorana vicina | 37.68358 | 8.4120234 | 0.1252208 | 0.5365041 |
Nanorana yunnanensis | 37.68984 | 18.1172162 | 0.1274181 | 0.7834525 |
Quasipaa boulengeri | 38.86486 | 14.0472303 | 0.1277544 | 0.5730122 |
Quasipaa verrucospinosa | 38.87653 | 24.3724097 | 0.1256713 | 0.9395367 |
Quasipaa jiulongensis | 38.80290 | 15.3137436 | 0.1277208 | 0.5638494 |
Quasipaa shini | 38.88512 | 20.3390285 | 0.1266756 | 0.7513675 |
Quasipaa exilispinosa | 39.34434 | 17.2478674 | 0.1231967 | 0.6229766 |
Quasipaa yei | 38.69298 | 13.0545008 | 0.1268549 | 0.4703952 |
Quasipaa delacouri | 38.20034 | 22.9954239 | 0.1257979 | 0.8686169 |
Quasipaa fasciculispina | 38.25535 | 25.1284889 | 0.1256282 | 0.8565287 |
Amolops archotaphus | 33.07479 | 26.0451714 | 0.1343301 | 1.0051289 |
Amolops aniqiaoensis | 33.17955 | 13.4790490 | 0.1319989 | 0.8170666 |
Amolops assamensis | 33.18172 | 36.6570338 | 0.1345106 | 1.3840981 |
Amolops bellulus | 33.13002 | 20.9923716 | 0.1351592 | 1.0541397 |
Amolops chakrataensis | 33.11484 | 19.4655196 | 0.1344752 | 0.9117390 |
Amolops chunganensis | 33.87965 | 16.4236573 | 0.1309472 | 0.6790184 |
Amolops compotrix | 33.07249 | 32.3982041 | 0.1376847 | 1.1462722 |
Amolops cucae | 33.07143 | 24.4868244 | 0.1343076 | 0.9398164 |
Amolops vitreus | 33.16521 | 25.7935049 | 0.1316995 | 1.0364661 |
Amolops cremnobatus | 33.32288 | 29.9003321 | 0.1289623 | 1.0850643 |
Amolops daiyunensis | 33.05568 | 24.0106627 | 0.1341384 | 0.8738968 |
Amolops iriodes | 33.92502 | 29.0342717 | 0.1329873 | 1.0936796 |
Amolops formosus | 33.18429 | 16.7207543 | 0.1335122 | 0.8485461 |
Amolops gerbillus | 33.18895 | 20.3652108 | 0.1325792 | 0.9753305 |
Amolops granulosus | 33.74674 | 11.5421489 | 0.1316467 | 0.5290846 |
Amolops lifanensis | 33.04941 | 10.2333069 | 0.1374920 | 0.5320435 |
Amolops hainanensis | 33.14426 | 49.0627889 | 0.1320012 | 1.7410919 |
Amolops hongkongensis | 33.09714 | 40.9462832 | 0.1360458 | 1.4800370 |
Amolops jaunsari | 33.14461 | 17.2128486 | 0.1341782 | 0.8029931 |
Amolops jinjiangensis | 33.12608 | 14.7236644 | 0.1336047 | 0.8744822 |
Amolops tuberodepressus | 33.14968 | 24.5858093 | 0.1325232 | 1.0735413 |
Amolops loloensis | 33.09788 | 17.6094523 | 0.1343013 | 0.8500152 |
Amolops mantzorum | 33.12913 | 12.2131612 | 0.1341193 | 0.6624975 |
Amolops kaulbacki | 33.04899 | 17.4332208 | 0.1371004 | 0.9095366 |
Amolops larutensis | 33.11471 | 44.8531343 | 0.1365602 | 1.5865765 |
Amolops longimanus | 33.72273 | 25.8073179 | 0.1365734 | 1.1436013 |
Amolops marmoratus | 33.20643 | 23.4696824 | 0.1341763 | 1.0112268 |
Amolops medogensis | 33.21921 | 13.3786966 | 0.1341189 | 0.8121172 |
Amolops mengyangensis | 33.02641 | 23.8186119 | 0.1364861 | 1.0209959 |
Amolops minutus | 33.19330 | 28.7126511 | 0.1335837 | 1.1162751 |
Amolops monticola | 33.03901 | 13.7608384 | 0.1361774 | 0.7896819 |
Amolops panhai | 33.22372 | 33.5909936 | 0.1302906 | 1.1787383 |
Amolops ricketti | 33.15176 | 22.5995992 | 0.1351319 | 0.8216175 |
Amolops wuyiensis | 33.25416 | 22.2176829 | 0.1316525 | 0.8203297 |
Amolops spinapectoralis | 33.15246 | 31.2106695 | 0.1344849 | 1.1119492 |
Amolops splendissimus | 33.23531 | 26.0387289 | 0.1325000 | 1.0245921 |
Amolops torrentis | 33.07230 | 52.3421529 | 0.1348497 | 1.8582779 |
Amolops viridimaculatus | 33.14203 | 21.2838301 | 0.1367685 | 1.0126647 |
Babina holsti | 33.42207 | 44.9970826 | 0.1350286 | 1.6325056 |
Babina subaspera | 33.13875 | 41.8340602 | 0.1362651 | 1.5364482 |
Odorrana absita | 32.57304 | 29.8235633 | 0.1330908 | 1.0633775 |
Odorrana khalam | 32.57789 | 26.8160651 | 0.1333100 | 0.9458925 |
Odorrana amamiensis | 32.66202 | 40.0118410 | 0.1328575 | 1.4676651 |
Odorrana narina | 32.58249 | 47.0774461 | 0.1353837 | 1.7030618 |
Odorrana supranarina | 32.57679 | 41.5222249 | 0.1334412 | 1.4794741 |
Odorrana jingdongensis | 32.60008 | 21.4208297 | 0.1351254 | 0.9194860 |
Odorrana grahami | 32.63454 | 18.0768137 | 0.1324823 | 0.8383472 |
Odorrana junlianensis | 32.64752 | 19.4468490 | 0.1339170 | 0.8016456 |
Odorrana anlungensis | 32.64521 | 19.4867443 | 0.1325801 | 0.7954388 |
Odorrana aureola | 32.61765 | 27.0670084 | 0.1345619 | 0.9797208 |
Odorrana livida | 32.59824 | 29.3198362 | 0.1369741 | 1.0321092 |
Odorrana chloronota | 32.57719 | 23.8318769 | 0.1363539 | 0.8809783 |
Odorrana leporipes | 32.50690 | 27.0667424 | 0.1352392 | 0.9511375 |
Odorrana graminea | 32.60172 | 32.9823782 | 0.1347148 | 1.1686813 |
Odorrana bacboensis | 32.59256 | 23.3479389 | 0.1348466 | 0.8807860 |
Odorrana hainanensis | 32.65427 | 50.7123178 | 0.1338131 | 1.8015070 |
Odorrana banaorum | 32.56605 | 25.8259550 | 0.1324327 | 0.9038989 |
Odorrana morafkai | 32.60684 | 29.2396120 | 0.1329602 | 1.0295655 |
Odorrana bolavensis | 32.57741 | 28.8966072 | 0.1339446 | 1.0065076 |
Odorrana chapaensis | 32.59398 | 21.9248746 | 0.1360166 | 0.8441888 |
Odorrana geminata | 32.55539 | 24.6162680 | 0.1338928 | 0.9516788 |
Odorrana exiliversabilis | 32.72082 | 16.4137263 | 0.1336788 | 0.6000984 |
Odorrana nasuta | 32.68486 | 45.9310077 | 0.1334406 | 1.6346439 |
Odorrana versabilis | 32.72928 | 20.4742590 | 0.1344829 | 0.7544039 |
Odorrana gigatympana | 32.59192 | 30.1221354 | 0.1352696 | 1.0652620 |
Odorrana hejiangensis | 32.57692 | 14.1698372 | 0.1344244 | 0.5702983 |
Odorrana hosii | 32.56841 | 41.2821509 | 0.1335087 | 1.4604710 |
Odorrana schmackeri | 32.59093 | 14.9017318 | 0.1353297 | 0.5721473 |
Odorrana indeprensa | 32.65667 | 31.1677668 | 0.1330867 | 1.0666658 |
Odorrana ishikawae | 32.56161 | 42.3212467 | 0.1358735 | 1.5315015 |
Odorrana kuangwuensis | 32.60661 | 10.8042194 | 0.1331159 | 0.4518653 |
Odorrana margaretae | 32.61945 | 14.6376738 | 0.1364481 | 0.5997134 |
Odorrana lungshengensis | 32.59254 | 20.4169065 | 0.1339699 | 0.7686470 |
Odorrana mawphlangensis | 32.52967 | 25.9830096 | 0.1364090 | 1.0499308 |
Odorrana monjerai | 32.53542 | 40.2578116 | 0.1334687 | 1.3977162 |
Odorrana nasica | 32.69270 | 26.8312802 | 0.1316796 | 0.9680645 |
Odorrana orba | 32.55738 | 28.2458097 | 0.1348538 | 1.0014831 |
Odorrana splendida | 32.54850 | 41.0444391 | 0.1359049 | 1.5077505 |
Odorrana utsunomiyaorum | 32.51471 | 33.1015976 | 0.1356877 | 1.1812941 |
Odorrana tiannanensis | 32.57726 | 27.5651492 | 0.1343450 | 1.0407415 |
Odorrana tormota | 32.60910 | 14.5706917 | 0.1369549 | 0.5300616 |
Odorrana trankieni | 32.55970 | 27.2969817 | 0.1358834 | 0.9951674 |
Odorrana wuchuanensis | 32.64199 | 17.4305450 | 0.1327089 | 0.6712679 |
Odorrana yentuensis | 32.61404 | 27.0193922 | 0.1342587 | 0.9734683 |
Rana amurensis | 33.00096 | 4.2394106 | 0.1318924 | 0.2464539 |
Rana coreana | 33.02578 | 10.0496838 | 0.1336311 | 0.4260121 |
Rana sakuraii | 32.09859 | 10.6889121 | 0.1371526 | 0.4326171 |
Rana tagoi | 32.80907 | 11.6617416 | 0.1336728 | 0.4692583 |
Rana pyrenaica | 31.82601 | 5.9804209 | 0.1329434 | 0.2903853 |
Rana italica | 31.73597 | 7.1800944 | 0.1340469 | 0.3138864 |
Rana asiatica | 32.66387 | 5.5201404 | 0.1340863 | 0.3488347 |
Rana macrocnemis | 32.63539 | 7.3767640 | 0.1339631 | 0.3644144 |
Rana tavasensis | 31.88346 | 9.9276168 | 0.1311046 | 0.4582389 |
Rana pseudodalmatina | 32.72514 | 9.5893504 | 0.1332046 | 0.4771051 |
Rana aurora | 32.38134 | 5.6018105 | 0.1324466 | 0.3312136 |
Rana muscosa | 31.51051 | 8.5783049 | 0.1344169 | 0.4246923 |
Rana sierrae | 32.39104 | 7.5541213 | 0.1358650 | 0.4192967 |
Rana draytonii | 32.37649 | 8.4820316 | 0.1386862 | 0.4304917 |
Rana chaochiaoensis | 32.97634 | 13.0649104 | 0.1329623 | 0.6106310 |
Rana zhenhaiensis | 33.17701 | 13.3911016 | 0.1331765 | 0.4890543 |
Rana omeimontis | 32.91606 | 10.0770380 | 0.1318776 | 0.4310531 |
Rana hanluica | 33.13891 | 13.5768357 | 0.1334667 | 0.5048711 |
Rana japonica | 33.20863 | 9.9594583 | 0.1315259 | 0.4015722 |
Rana kukunoris | 30.52672 | 3.6827245 | 0.1397259 | 0.2654785 |
Rana huanrensis | 29.54801 | 6.8367098 | 0.1368803 | 0.3059040 |
Rana pirica | 29.36064 | 4.8586117 | 0.1402077 | 0.2746369 |
Rana ornativentris | 29.91526 | 8.5711169 | 0.1399334 | 0.3498978 |
Rana dalmatina | 33.02775 | 7.6503805 | 0.1344551 | 0.3780462 |
Rana latastei | 32.83497 | 8.9256854 | 0.1339196 | 0.4166030 |
Rana graeca | 32.91905 | 10.6812868 | 0.1354888 | 0.5107871 |
Rana johnsi | 32.80924 | 18.8277604 | 0.1344104 | 0.7217826 |
Rana tsushimensis | 32.94718 | 12.5451933 | 0.1351112 | 0.4937246 |
Rana sangzhiensis | 32.14614 | 18.3420526 | 0.1326363 | 0.6874427 |
Rana shuchinae | 32.08207 | 11.2516102 | 0.1345247 | 0.6434477 |
Glandirana minima | 33.67199 | 23.3289536 | 0.1335388 | 0.8580812 |
Pterorana khare | 33.65817 | 28.7939915 | 0.1343344 | 1.1133573 |
Sanguirana everetti | 32.69940 | 45.3944045 | 0.1336807 | 1.6447996 |
Sanguirana igorota | 32.72852 | 48.9131068 | 0.1320049 | 1.7460662 |
Sanguirana sanguinea | 32.72760 | 46.4155884 | 0.1328430 | 1.6643249 |
Sanguirana tipanan | 33.51510 | 53.6608063 | 0.1346740 | 1.9065739 |
Hylarana chitwanensis | 33.53630 | 23.6614627 | 0.1313977 | 1.0775179 |
Hylarana garoensis | 33.52155 | 22.8546308 | 0.1356110 | 1.0033888 |
Hylarana macrodactyla | 33.46014 | 32.4126321 | 0.1329293 | 1.1555581 |
Hylarana margariana | 32.84083 | 25.3822606 | 0.1337270 | 0.9581327 |
Hylarana montivaga | 32.91624 | 33.7271775 | 0.1347548 | 1.2154664 |
Hylarana persimilis | 33.64623 | 33.6910382 | 0.1306178 | 1.1491573 |
Hylarana taipehensis | 33.52070 | 28.3584151 | 0.1337640 | 1.0169368 |
Hylarana tytleri | 33.61876 | 28.3796188 | 0.1331199 | 1.0440570 |
Pelophylax bedriagae | 34.61256 | 15.0951917 | 0.1322584 | 0.6540504 |
Pelophylax caralitanus | 34.69599 | 11.2044652 | 0.1321087 | 0.5150636 |
Pelophylax cerigensis | 34.71231 | 22.5849008 | 0.1305984 | 0.9189920 |
Pelophylax kurtmuelleri | 34.66453 | 12.1823997 | 0.1299983 | 0.5415747 |
Pelophylax ridibundus | 34.68801 | 7.7036209 | 0.1317450 | 0.3833080 |
Pelophylax bergeri | 34.65935 | 9.3080097 | 0.1321746 | 0.3925843 |
Pelophylax shqipericus | 34.56027 | 9.1337703 | 0.1314194 | 0.4068579 |
Pelophylax chosenicus | 34.64755 | 9.7332115 | 0.1332570 | 0.4288022 |
Pelophylax plancyi | 34.68506 | 10.5971311 | 0.1304076 | 0.4233562 |
Pelophylax nigromaculatus | 34.61127 | 10.4226533 | 0.1295350 | 0.4563814 |
Pelophylax hubeiensis | 34.61296 | 14.1484946 | 0.1355375 | 0.5250549 |
Pelophylax cretensis | 34.63876 | 21.0623690 | 0.1332766 | 0.8458434 |
Pelophylax epeiroticus | 34.56774 | 13.2097610 | 0.1339338 | 0.6366595 |
Pelophylax fukienensis | 34.59532 | 17.8147584 | 0.1329365 | 0.6514172 |
Pelophylax porosus | 34.69703 | 11.9042867 | 0.1297662 | 0.4803182 |
Pelophylax tenggerensis | 34.57188 | 9.2949087 | 0.1315838 | 0.4913381 |
Pelophylax terentievi | 34.61304 | 9.7079506 | 0.1313005 | 0.6572904 |
Clinotarsus alticola | 33.22293 | 31.5811226 | 0.1360188 | 1.1983108 |
Clinotarsus curtipes | 33.86592 | 29.8464878 | 0.1338127 | 1.0866341 |
Huia cavitympanum | 33.90005 | 49.2057770 | 0.1326085 | 1.7607586 |
Meristogenys amoropalamus | 33.18998 | 44.3222762 | 0.1369138 | 1.6153975 |
Meristogenys orphnocnemis | 33.24455 | 48.5226699 | 0.1346864 | 1.7428979 |
Meristogenys whiteheadi | 33.25898 | 50.4395525 | 0.1312296 | 1.8063013 |
Meristogenys poecilus | 33.28508 | 41.8108780 | 0.1331460 | 1.4713918 |
Meristogenys macrophthalmus | 33.30939 | 50.4592370 | 0.1314740 | 1.7886923 |
Meristogenys jerboa | 33.25331 | 51.1942699 | 0.1338703 | 1.7973844 |
Meristogenys phaeomerus | 33.25006 | 44.0716977 | 0.1339396 | 1.5614177 |
Meristogenys kinabaluensis | 33.24449 | 48.4273587 | 0.1311321 | 1.7595068 |
Staurois parvus | 33.52683 | 55.5664515 | 0.1343101 | 2.0298614 |
Staurois tuberilinguis | 33.50374 | 48.1562514 | 0.1355964 | 1.7198447 |
Staurois latopalmatus | 33.45530 | 49.9996804 | 0.1345455 | 1.7831465 |
Buergeria buergeri | 35.53063 | 13.2187867 | 0.1310527 | 0.5283378 |
Buergeria oxycephala | 35.51347 | 48.5880696 | 0.1311981 | 1.7254816 |
Buergeria robusta | 35.45206 | 45.1765667 | 0.1334165 | 1.6357832 |
Chiromantis kelleri | 34.34138 | 26.1610641 | 0.1342566 | 1.0812862 |
Chiromantis petersii | 34.28138 | 23.5261330 | 0.1332454 | 1.0403425 |
Chiromantis xerampelina | 34.27738 | 22.7577252 | 0.1302941 | 0.9252885 |
Chiromantis rufescens | 34.24738 | 36.7560763 | 0.1329333 | 1.3397171 |
Feihyla kajau | 34.23177 | 39.1486093 | 0.1340809 | 1.3949759 |
Feihyla palpebralis | 34.24272 | 28.1783855 | 0.1334098 | 1.0497809 |
Ghatixalus asterops | 34.28458 | 29.6735875 | 0.1343876 | 1.0577111 |
Ghatixalus variabilis | 34.20414 | 20.7813556 | 0.1373084 | 0.7619503 |
Polypedates chlorophthalmus | 34.48901 | 38.9850892 | 0.1327587 | 1.3880337 |
Polypedates colletti | 35.02408 | 37.2350438 | 0.1343483 | 1.3241167 |
Polypedates cruciger | 34.95848 | 30.4012616 | 0.1329198 | 1.0782838 |
Polypedates insularis | 35.01122 | 47.1666120 | 0.1308848 | 1.6873475 |
Polypedates macrotis | 34.94310 | 40.8463746 | 0.1325272 | 1.4480928 |
Polypedates maculatus | 34.99914 | 21.0567314 | 0.1335008 | 0.7791250 |
Polypedates megacephalus | 35.05278 | 22.9054732 | 0.1336873 | 0.8414945 |
Polypedates mutus | 35.01386 | 22.9082478 | 0.1326270 | 0.8514266 |
Polypedates occidentalis | 34.91986 | 24.7931042 | 0.1340832 | 0.8665060 |
Polypedates otilophus | 35.00593 | 43.3527401 | 0.1314744 | 1.5535475 |
Polypedates pseudocruciger | 35.06188 | 26.6378681 | 0.1306674 | 0.9616056 |
Polypedates taeniatus | 35.06703 | 20.9256390 | 0.1299878 | 0.8542592 |
Polypedates zed | 34.97955 | 23.5289908 | 0.1331363 | 1.0708110 |
Taruga eques | 34.87960 | 30.9534438 | 0.1337377 | 1.1170447 |
Taruga fastigo | 34.94060 | 27.8826277 | 0.1314375 | 1.0117671 |
Taruga longinasus | 34.88801 | 33.1563582 | 0.1328128 | 1.1971205 |
Gracixalus ananjevae | 34.18389 | 31.4186660 | 0.1311553 | 1.1291754 |
Gracixalus jinxiuensis | 34.22680 | 25.7041817 | 0.1323061 | 0.9347917 |
Gracixalus medogensis | 34.23031 | 12.9567041 | 0.1304974 | 0.7859256 |
Gracixalus gracilipes | 34.12446 | 28.4634327 | 0.1373368 | 1.0906111 |
Gracixalus quangi | 34.15759 | 32.0604396 | 0.1333532 | 1.2188761 |
Gracixalus supercornutus | 34.20360 | 31.5019639 | 0.1328328 | 1.1219696 |
Rhacophorus vampyrus | 34.26833 | 30.4880075 | 0.1350440 | 1.0723643 |
Kurixalus appendiculatus | 33.62933 | 48.7688137 | 0.1355145 | 1.7689886 |
Kurixalus baliogaster | 33.45191 | 27.7273637 | 0.1309766 | 0.9768165 |
Kurixalus banaensis | 33.49511 | 29.0667894 | 0.1311191 | 1.0349718 |
Kurixalus bisacculus | 33.56770 | 31.8585202 | 0.1323910 | 1.1181280 |
Kurixalus odontotarsus | 33.51163 | 22.4818070 | 0.1320775 | 0.8930485 |
Kurixalus verrucosus | 33.43671 | 26.5657733 | 0.1318992 | 0.9764279 |
Kurixalus naso | 33.42328 | 18.9194816 | 0.1364593 | 0.9078617 |
Kurixalus idiootocus | 32.97881 | 33.0368928 | 0.1357364 | 1.1948722 |
Pseudophilautus abundus | 34.25310 | 30.1980291 | 0.1336262 | 1.0889111 |
Pseudophilautus alto | 34.18249 | 33.4910045 | 0.1340856 | 1.2090538 |
Pseudophilautus amboli | 34.26727 | 19.9114120 | 0.1335834 | 0.7469849 |
Pseudophilautus wynaadensis | 34.30476 | 32.2989270 | 0.1356874 | 1.1743121 |
Pseudophilautus asankai | 34.26951 | 32.1618591 | 0.1363632 | 1.1608209 |
Pseudophilautus auratus | 34.26863 | 32.6656861 | 0.1355667 | 1.1852392 |
Pseudophilautus caeruleus | 34.25403 | 28.0954084 | 0.1368206 | 1.0199254 |
Pseudophilautus cavirostris | 34.34421 | 30.5461669 | 0.1326215 | 1.1032235 |
Pseudophilautus cuspis | 34.43293 | 31.9212738 | 0.1346475 | 1.1526645 |
Pseudophilautus decoris | 34.27354 | 29.2194346 | 0.1344528 | 1.0627913 |
Pseudophilautus mittermeieri | 34.32208 | 32.8577026 | 0.1340431 | 1.1840891 |
Pseudophilautus femoralis | 34.36389 | 30.2126967 | 0.1352023 | 1.0910137 |
Pseudophilautus poppiae | 34.39935 | 29.9913492 | 0.1313006 | 1.0881275 |
Pseudophilautus mooreorum | 34.30495 | 35.1876284 | 0.1325986 | 1.2653367 |
Pseudophilautus fergusonianus | 34.25549 | 30.1877331 | 0.1340485 | 1.0717810 |
Pseudophilautus folicola | 34.27601 | 32.8112075 | 0.1322098 | 1.1850514 |
Pseudophilautus frankenbergi | 34.25750 | 30.6765462 | 0.1306174 | 1.0971043 |
Pseudophilautus fulvus | 34.16010 | 30.1707649 | 0.1351568 | 1.0862951 |
Pseudophilautus schmarda | 34.29825 | 32.6048120 | 0.1335525 | 1.1781872 |
Pseudophilautus kani | 34.21064 | 44.8468944 | 0.1329923 | 1.6151481 |
Pseudophilautus limbus | 34.29267 | 33.4422061 | 0.1348423 | 1.2077911 |
Pseudophilautus lunatus | 34.28278 | 30.0171342 | 0.1342868 | 1.0857800 |
Pseudophilautus macropus | 33.76313 | 31.8521691 | 0.1343414 | 1.1479329 |
Pseudophilautus microtympanum | 34.35567 | 29.4925346 | 0.1339203 | 1.0666129 |
Pseudophilautus steineri | 34.25480 | 33.4867649 | 0.1339260 | 1.2042118 |
Pseudophilautus nemus | 34.33321 | 31.7540911 | 0.1340080 | 1.1496005 |
Pseudophilautus ocularis | 34.31650 | 27.7206503 | 0.1324595 | 1.0056702 |
Pseudophilautus reticulatus | 34.27698 | 32.6738768 | 0.1331543 | 1.1824134 |
Pseudophilautus pleurotaenia | 34.29362 | 33.8006262 | 0.1333342 | 1.2126163 |
Pseudophilautus popularis | 34.29252 | 29.8661115 | 0.1341081 | 1.0635059 |
Pseudophilautus regius | 34.24579 | 30.9862663 | 0.1352956 | 1.1074024 |
Pseudophilautus rus | 34.27489 | 31.4038627 | 0.1319665 | 1.1306975 |
Pseudophilautus sarasinorum | 33.80154 | 31.8914351 | 0.1330379 | 1.1399887 |
Pseudophilautus semiruber | 34.48474 | 31.3821533 | 0.1335145 | 1.1310128 |
Pseudophilautus simba | 34.39360 | 29.9716299 | 0.1349421 | 1.0875275 |
Pseudophilautus singu | 34.34080 | 32.3879094 | 0.1329781 | 1.1691694 |
Pseudophilautus sordidus | 34.31275 | 29.9130318 | 0.1346543 | 1.0807674 |
Pseudophilautus stellatus | 34.35611 | 30.9200396 | 0.1321691 | 1.1240310 |
Pseudophilautus stictomerus | 34.22797 | 33.9138275 | 0.1344049 | 1.2078419 |
Pseudophilautus stuarti | 34.26899 | 29.4516889 | 0.1338642 | 1.0571128 |
Pseudophilautus tanu | 34.29012 | 28.6644322 | 0.1332671 | 1.0395377 |
Pseudophilautus viridis | 34.33474 | 31.3679822 | 0.1332078 | 1.1368796 |
Pseudophilautus zorro | 34.47227 | 31.0119183 | 0.1348226 | 1.1200387 |
Raorchestes akroparallagi | 34.28904 | 30.4172663 | 0.1322251 | 1.1082105 |
Raorchestes bobingeri | 34.19220 | 39.1007654 | 0.1333842 | 1.4096064 |
Raorchestes glandulosus | 34.14888 | 30.7768668 | 0.1360912 | 1.1240610 |
Raorchestes anili | 34.41560 | 34.4946708 | 0.1338031 | 1.2474013 |
Raorchestes kaikatti | 34.28907 | 29.0763346 | 0.1324870 | 1.0201374 |
Raorchestes sushili | 34.24295 | 28.7785882 | 0.1341557 | 1.0050397 |
Raorchestes beddomii | 34.33428 | 32.3873150 | 0.1333225 | 1.1579987 |
Raorchestes munnarensis | 34.41927 | 32.8394718 | 0.1340069 | 1.1694862 |
Raorchestes resplendens | 34.48363 | 27.5319984 | 0.1336291 | 0.9840720 |
Raorchestes dubois | 34.24146 | 31.3442262 | 0.1344996 | 1.1170372 |
Raorchestes bombayensis | 34.31682 | 26.1674111 | 0.1284632 | 0.9688925 |
Raorchestes tuberohumerus | 34.28785 | 24.1306239 | 0.1315863 | 0.8850969 |
Raorchestes charius | 34.28398 | 33.7616691 | 0.1310064 | 1.2569264 |
Raorchestes griet | 34.27462 | 27.1200340 | 0.1329062 | 0.9668984 |
Raorchestes coonoorensis | 34.35610 | 19.9393726 | 0.1327912 | 0.7335199 |
Raorchestes chlorosomma | 34.27637 | 31.2039627 | 0.1344517 | 1.1237528 |
Raorchestes luteolus | 34.29101 | 23.0531019 | 0.1313639 | 0.8476617 |
Raorchestes travancoricus | 34.28469 | 43.0788144 | 0.1315133 | 1.5632392 |
Raorchestes chotta | 34.20215 | 40.0222138 | 0.1348330 | 1.4365240 |
Raorchestes chromasynchysi | 34.28074 | 29.9076402 | 0.1302659 | 1.1007476 |
Raorchestes signatus | 34.36663 | 22.9901152 | 0.1321500 | 0.8303023 |
Raorchestes tinniens | 34.36823 | 23.0401163 | 0.1358839 | 0.8472012 |
Raorchestes graminirupes | 34.42840 | 40.9733399 | 0.1358570 | 1.4744403 |
Raorchestes gryllus | 34.25946 | 31.5105348 | 0.1330607 | 1.1180049 |
Raorchestes menglaensis | 33.67226 | 25.8341394 | 0.1332146 | 1.0471452 |
Raorchestes longchuanensis | 34.23274 | 24.0018132 | 0.1316562 | 0.9778726 |
Raorchestes marki | 34.24917 | 28.9378452 | 0.1321800 | 1.0123274 |
Raorchestes nerostagona | 34.19729 | 21.2009078 | 0.1351085 | 0.7796698 |
Raorchestes ochlandrae | 34.30312 | 30.0058043 | 0.1335718 | 1.0877171 |
Raorchestes parvulus | 34.28412 | 31.3970794 | 0.1347159 | 1.1442962 |
Raorchestes ponmudi | 34.24369 | 32.6061583 | 0.1355034 | 1.1792607 |
Nyctixalus margaritifer | 33.96612 | 32.7674855 | 0.1334370 | 1.1785866 |
Nyctixalus spinosus | 34.08559 | 49.3313274 | 0.1351343 | 1.7904617 |
Philautus abditus | 33.08146 | 26.8708730 | 0.1328078 | 0.9510400 |
Philautus acutirostris | 32.27012 | 36.1578249 | 0.1361468 | 1.3104637 |
Philautus acutus | 33.50546 | 42.0587075 | 0.1340149 | 1.5427405 |
Philautus aurantium | 33.49888 | 48.4938794 | 0.1374585 | 1.7613234 |
Philautus amoenus | 33.56342 | 54.5597952 | 0.1347763 | 2.0044806 |
Philautus mjobergi | 33.53594 | 50.3045151 | 0.1372959 | 1.8434940 |
Philautus aurifasciatus | 33.47546 | 41.7225055 | 0.1361537 | 1.4949362 |
Philautus bunitus | 33.63437 | 44.3226821 | 0.1342997 | 1.6020782 |
Philautus kerangae | 33.59180 | 40.9480741 | 0.1357995 | 1.5162208 |
Philautus cardamonus | 33.56965 | 30.6275375 | 0.1353598 | 1.0456830 |
Philautus cornutus | 33.56883 | 42.4874141 | 0.1356628 | 1.4589507 |
Philautus davidlabangi | 33.55836 | 38.8261442 | 0.1325805 | 1.3781809 |
Philautus disgregus | 33.57289 | 50.6179386 | 0.1341868 | 1.7928139 |
Philautus erythrophthalmus | 33.49827 | 44.5322800 | 0.1361097 | 1.5985048 |
Philautus everetti | 33.46413 | 55.7098764 | 0.1340567 | 2.0008963 |
Philautus garo | 33.48596 | 28.5457645 | 0.1312356 | 1.1151553 |
Philautus gunungensis | 33.46584 | 56.1725888 | 0.1376262 | 2.0682973 |
Philautus hosii | 33.45371 | 39.6693542 | 0.1360454 | 1.4235797 |
Philautus ingeri | 33.57186 | 42.2114237 | 0.1347566 | 1.5474563 |
Philautus kempiae | 33.49445 | 28.5019185 | 0.1355009 | 1.1130475 |
Philautus kempii | 33.51911 | 12.4601912 | 0.1352888 | 0.6987453 |
Philautus leitensis | 33.57469 | 47.2218274 | 0.1325023 | 1.7124781 |
Philautus longicrus | 33.49009 | 61.0206571 | 0.1359094 | 2.2066619 |
Philautus maosonensis | 33.44663 | 29.0234107 | 0.1353771 | 1.0678661 |
Philautus microdiscus | 33.51359 | 21.8556822 | 0.1327521 | 1.0414129 |
Philautus namdaphaensis | 33.48893 | 26.3953524 | 0.1351760 | 1.1798584 |
Philautus pallidipes | 33.56452 | 28.1236791 | 0.1351250 | 0.9823343 |
Philautus petersi | 33.69632 | 62.1534248 | 0.1327375 | 2.2544019 |
Philautus poecilius | 33.54884 | 35.3226529 | 0.1345371 | 1.2746567 |
Philautus refugii | 33.52199 | 47.5268615 | 0.1350634 | 1.6871277 |
Philautus saueri | 33.58897 | 58.3663617 | 0.1359725 | 2.1467695 |
Philautus schmackeri | 33.52931 | 48.5492307 | 0.1343325 | 1.7453368 |
Philautus similipalensis | 33.70881 | 27.7287218 | 0.1344276 | 0.9194723 |
Philautus surrufus | 33.35210 | 43.0827088 | 0.1372878 | 1.5614544 |
Philautus tectus | 33.51703 | 42.5047621 | 0.1357995 | 1.5136641 |
Philautus tytthus | 33.54514 | 27.0965083 | 0.1329037 | 1.1209666 |
Philautus umbra | 33.61853 | 42.9312718 | 0.1341892 | 1.5696680 |
Philautus vermiculatus | 33.48937 | 39.3626831 | 0.1356311 | 1.3913814 |
Philautus vittiger | 33.53057 | 34.7732031 | 0.1346622 | 1.2351075 |
Philautus worcesteri | 33.67986 | 47.9581764 | 0.1359593 | 1.7296716 |
Rhacophorus angulirostris | 34.21538 | 46.5301808 | 0.1347259 | 1.7263865 |
Rhacophorus annamensis | 33.73781 | 29.3746198 | 0.1359779 | 1.0251321 |
Rhacophorus exechopygus | 34.20079 | 28.5283785 | 0.1349877 | 1.0111370 |
Rhacophorus baluensis | 34.31363 | 40.2214663 | 0.1339015 | 1.4631954 |
Rhacophorus barisani | 33.79648 | 46.9312302 | 0.1329860 | 1.6523611 |
Rhacophorus gauni | 34.28807 | 43.7150709 | 0.1352133 | 1.5545693 |
Rhacophorus gadingensis | 34.26541 | 52.2521692 | 0.1340214 | 1.8672722 |
Rhacophorus bifasciatus | 33.74028 | 49.7472039 | 0.1323424 | 1.7744960 |
Rhacophorus bimaculatus | 34.22539 | 52.3500046 | 0.1353855 | 1.8913175 |
Rhacophorus bipunctatus | 34.18711 | 28.9020166 | 0.1345694 | 1.1152326 |
Rhacophorus rhodopus | 34.19711 | 25.8419551 | 0.1346370 | 1.0096799 |
Rhacophorus reinwardtii | 34.20950 | 42.3511962 | 0.1350358 | 1.5416306 |
Rhacophorus calcadensis | 34.29437 | 30.7263597 | 0.1337252 | 1.0917939 |
Rhacophorus calcaneus | 34.15291 | 35.0887982 | 0.1329451 | 1.2660191 |
Rhacophorus catamitus | 33.78570 | 43.4451977 | 0.1325237 | 1.5332590 |
Rhacophorus translineatus | 34.30934 | 14.3463192 | 0.1318332 | 0.7827558 |
Rhacophorus pardalis | 34.23761 | 43.5602210 | 0.1328676 | 1.5634456 |
Rhacophorus fasciatus | 34.15076 | 50.7193236 | 0.1329237 | 1.8249644 |
Rhacophorus harrissoni | 34.24655 | 42.6567105 | 0.1322725 | 1.5169530 |
Rhacophorus rufipes | 34.22895 | 42.8755721 | 0.1313595 | 1.5134232 |
Rhacophorus georgii | 34.31250 | 46.8593344 | 0.1340060 | 1.7273817 |
Rhacophorus helenae | 34.29469 | 26.1352044 | 0.1334346 | 0.8898189 |
Rhacophorus kio | 34.25836 | 27.0833690 | 0.1335241 | 1.0388316 |
Rhacophorus hoanglienensis | 34.35968 | 27.3055371 | 0.1343087 | 1.0630306 |
Rhacophorus lateralis | 34.29864 | 25.8537975 | 0.1337109 | 0.9500845 |
Rhacophorus malabaricus | 34.25791 | 28.2036569 | 0.1345907 | 1.0280316 |
Rhacophorus pseudomalabaricus | 34.31042 | 32.5703932 | 0.1330654 | 1.1621785 |
Rhacophorus margaritifer | 33.72706 | 37.8540545 | 0.1346667 | 1.3586963 |
Rhacophorus marmoridorsum | 34.25166 | 35.9397960 | 0.1303003 | 1.2860451 |
Rhacophorus modestus | 33.69630 | 49.0610570 | 0.1363611 | 1.7039393 |
Rhacophorus monticola | 33.79878 | 58.6567400 | 0.1341880 | 2.1933935 |
Rhacophorus nigropalmatus | 34.16209 | 40.7907944 | 0.1354595 | 1.4367601 |
Rhacophorus orlovi | 33.81781 | 32.5561589 | 0.1317460 | 1.1529287 |
Rhacophorus verrucopus | 34.33080 | 13.0317001 | 0.1318897 | 0.7894793 |
Rhacophorus poecilonotus | 34.28803 | 43.2178927 | 0.1332314 | 1.5622328 |
Rhacophorus robertingeri | 33.78444 | 33.4458313 | 0.1320646 | 1.1851400 |
Rhacophorus robinsonii | 34.29187 | 40.0922422 | 0.1327725 | 1.4168280 |
Rhacophorus spelaeus | 34.16999 | 30.5257348 | 0.1356809 | 1.0698763 |
Rhacophorus tuberculatus | 34.19721 | 17.2979458 | 0.1347610 | 0.8474985 |
Rhacophorus turpes | 34.24761 | 27.7063315 | 0.1328231 | 1.1444056 |
Theloderma asperum | 34.36683 | 37.9820408 | 0.1364111 | 1.3523752 |
Theloderma rhododiscus | 34.25124 | 22.0733284 | 0.1352557 | 0.8249338 |
Theloderma bicolor | 34.50427 | 22.4749187 | 0.1353173 | 0.9397243 |
Theloderma corticale | 34.39695 | 25.3003852 | 0.1331091 | 0.9164720 |
Theloderma gordoni | 34.47766 | 32.2603370 | 0.1324899 | 1.1950127 |
Theloderma leporosum | 34.24921 | 38.2935419 | 0.1353218 | 1.3462841 |
Theloderma horridum | 34.27303 | 41.6439930 | 0.1346373 | 1.4841784 |
Theloderma laeve | 34.29306 | 29.9164081 | 0.1319626 | 1.0544573 |
Theloderma lateriticum | 34.23879 | 27.4200061 | 0.1330211 | 1.0240944 |
Theloderma licin | 34.25980 | 41.6557903 | 0.1344783 | 1.4797533 |
Theloderma moloch | 34.30166 | 14.7865597 | 0.1341532 | 0.8029772 |
Theloderma nagalandense | 34.20684 | 26.2502075 | 0.1330357 | 1.0309790 |
Theloderma nebulosum | 34.06100 | 32.5014440 | 0.1341250 | 1.1561129 |
Theloderma truongsonense | 33.68407 | 31.0461196 | 0.1349781 | 1.0951407 |
Theloderma phrynoderma | 34.27567 | 29.5363079 | 0.1340946 | 1.0558458 |
Theloderma ryabovi | 34.28939 | 32.6979523 | 0.1355901 | 1.1834989 |
Theloderma stellatum | 34.15408 | 34.9758181 | 0.1337790 | 1.2126933 |
Liuixalus hainanus | 34.57256 | 48.9988299 | 0.1329657 | 1.7472446 |
Liuixalus ocellatus | 34.58056 | 49.8857885 | 0.1347608 | 1.7705730 |
Liuixalus romeri | 34.56632 | 37.9318605 | 0.1317228 | 1.3703468 |
Boophis albilabris | 34.06437 | 38.9554940 | 0.1338597 | 1.4885053 |
Boophis occidentalis | 33.67070 | 37.1508958 | 0.1311617 | 1.3938193 |
Boophis albipunctatus | 33.72313 | 39.0904497 | 0.1324941 | 1.5239013 |
Boophis tampoka | 34.16652 | 41.8103370 | 0.1334125 | 1.5184275 |
Boophis jaegeri | 34.17109 | 40.8562277 | 0.1349567 | 1.5044736 |
Boophis anjanaharibeensis | 34.18583 | 29.7782832 | 0.1360104 | 1.1101449 |
Boophis septentrionalis | 33.68424 | 36.0138983 | 0.1356782 | 1.3496565 |
Boophis englaenderi | 33.64994 | 34.7881677 | 0.1369490 | 1.3005209 |
Boophis ankaratra | 33.67656 | 34.4800195 | 0.1345590 | 1.3410974 |
Boophis schuboeae | 33.64515 | 35.2884911 | 0.1372963 | 1.3624588 |
Boophis andreonei | 34.09384 | 32.2603144 | 0.1340973 | 1.2026965 |
Boophis sibilans | 33.69541 | 35.4499497 | 0.1333474 | 1.3606438 |
Boophis blommersae | 34.11188 | 38.8762896 | 0.1353567 | 1.4589149 |
Boophis andohahela | 34.21935 | 35.6031592 | 0.1301002 | 1.3701271 |
Boophis elenae | 34.11134 | 34.7150799 | 0.1351387 | 1.3692929 |
Boophis axelmeyeri | 33.62996 | 34.0543554 | 0.1361582 | 1.2730890 |
Boophis burgeri | 34.09968 | 38.2517764 | 0.1354536 | 1.5365388 |
Boophis reticulatus | 33.66026 | 36.5767871 | 0.1344820 | 1.4028022 |
Boophis rufioculis | 33.61280 | 36.6301004 | 0.1343463 | 1.4424695 |
Boophis boehmei | 33.68131 | 37.0553398 | 0.1336642 | 1.4459310 |
Boophis quasiboehmei | 33.63817 | 35.6705036 | 0.1348702 | 1.3721913 |
Boophis popi | 33.61279 | 32.1633218 | 0.1357799 | 1.2399767 |
Boophis fayi | 34.07399 | 37.4406178 | 0.1367128 | 1.4020448 |
Boophis brachychir | 33.73740 | 41.1841114 | 0.1321448 | 1.5396988 |
Boophis entingae | 33.75033 | 37.6843553 | 0.1335486 | 1.4294428 |
Boophis goudotii | 34.11725 | 36.2411670 | 0.1350650 | 1.3915042 |
Boophis obscurus | 34.10277 | 35.2090538 | 0.1329744 | 1.3561371 |
Boophis luciae | 33.71429 | 38.9369364 | 0.1334978 | 1.5344392 |
Boophis luteus | 33.60363 | 38.8003663 | 0.1337557 | 1.5012660 |
Boophis madagascariensis | 34.08954 | 39.4038484 | 0.1342462 | 1.5146443 |
Boophis roseipalmatus | 33.59170 | 35.1516803 | 0.1372713 | 1.3126439 |
Boophis liami | 33.78635 | 31.8098389 | 0.1329460 | 1.2785338 |
Boophis sambirano | 33.69325 | 31.9103594 | 0.1350377 | 1.1973406 |
Boophis mandraka | 33.79446 | 41.2425777 | 0.1321183 | 1.5958477 |
Boophis andrangoloaka | 34.06832 | 37.7594008 | 0.1343904 | 1.4589295 |
Boophis rhodoscelis | 34.08922 | 36.4168672 | 0.1330470 | 1.4284374 |
Boophis laurenti | 33.74421 | 36.7093774 | 0.1342507 | 1.3950964 |
Boophis lilianae | 33.68272 | 29.8478706 | 0.1326108 | 1.1520277 |
Boophis arcanus | 34.19453 | 38.4792269 | 0.1359567 | 1.5098720 |
Boophis feonnyala | 34.17979 | 41.1879760 | 0.1334815 | 1.6500919 |
Boophis haematopus | 34.23794 | 40.8525549 | 0.1339867 | 1.5928057 |
Boophis pyrrhus | 33.84013 | 36.2357293 | 0.1301170 | 1.4107740 |
Boophis miniatus | 33.75028 | 34.9717947 | 0.1327482 | 1.3442918 |
Boophis baetkei | 34.16742 | 53.4121383 | 0.1337327 | 2.0042278 |
Boophis ulftunni | 33.79853 | 35.1595309 | 0.1320958 | 1.3167583 |
Boophis majori | 33.68672 | 33.0197520 | 0.1356375 | 1.2673485 |
Boophis narinsi | 33.69647 | 30.0414017 | 0.1351719 | 1.1606470 |
Boophis picturatus | 33.68199 | 36.6046261 | 0.1361604 | 1.4295148 |
Boophis microtympanum | 33.63778 | 32.9544343 | 0.1349497 | 1.2717185 |
Boophis williamsi | 33.66518 | 30.9365195 | 0.1342654 | 1.2322619 |
Boophis marojezensis | 33.76504 | 30.0626098 | 0.1334899 | 1.1560176 |
Boophis vittatus | 33.75071 | 33.9834500 | 0.1311072 | 1.2697035 |
Boophis bottae | 33.78434 | 36.8025712 | 0.1327857 | 1.4392038 |
Boophis erythrodactylus | 34.12429 | 32.9632432 | 0.1359858 | 1.2902973 |
Boophis rappiodes | 33.67440 | 36.6384831 | 0.1338380 | 1.4304516 |
Boophis tasymena | 33.69537 | 37.8841106 | 0.1327288 | 1.4694289 |
Boophis viridis | 33.67003 | 34.1668393 | 0.1328601 | 1.3178431 |
Boophis periegetes | 33.67379 | 34.8227070 | 0.1349447 | 1.3391560 |
Boophis solomaso | 34.10433 | 41.4496339 | 0.1362846 | 1.6266619 |
Boophis haingana | 33.74841 | 38.2940902 | 0.1340857 | 1.4824043 |
Boophis miadana | 33.71870 | 39.8451102 | 0.1306540 | 1.5398452 |
Boophis piperatus | 34.17757 | 31.6565999 | 0.1328687 | 1.2203205 |
Boophis sandrae | 33.82765 | 30.1851884 | 0.1305287 | 1.1645161 |
Boophis spinophis | 34.19421 | 34.4608425 | 0.1322576 | 1.3261784 |
Boophis tsilomaro | 33.73504 | 57.8668049 | 0.1352057 | 2.1530137 |
Boophis opisthodon | 34.14313 | 37.8788858 | 0.1332763 | 1.4648096 |
Boophis calcaratus | 33.65685 | 35.9931077 | 0.1341058 | 1.4058575 |
Boophis guibei | 34.14298 | 34.9191057 | 0.1334765 | 1.3577247 |
Boophis lichenoides | 34.11431 | 37.2128291 | 0.1351705 | 1.4322248 |
Boophis doulioti | 34.12625 | 35.4959227 | 0.1338699 | 1.3391923 |
Boophis tephraeomystax | 34.13946 | 37.7725089 | 0.1312206 | 1.4412637 |
Boophis xerophilus | 34.14841 | 38.4444079 | 0.1336789 | 1.4560324 |
Boophis idae | 34.08289 | 36.6155387 | 0.1361890 | 1.4305991 |
Boophis pauliani | 34.14750 | 37.1088922 | 0.1359723 | 1.4501845 |
Blommersia angolafa | 34.14743 | 37.9024626 | 0.1346279 | 1.4320384 |
Blommersia grandisonae | 34.20587 | 39.6795913 | 0.1353647 | 1.5299468 |
Blommersia kely | 34.33049 | 37.4355846 | 0.1379339 | 1.4620689 |
Blommersia sarotra | 34.35878 | 35.2472346 | 0.1341046 | 1.3964496 |
Blommersia blommersae | 34.08131 | 36.6364861 | 0.1357203 | 1.4486589 |
Blommersia dejongi | 34.27211 | 37.4299970 | 0.1338896 | 1.4126265 |
Blommersia galani | 34.23268 | 29.8483964 | 0.1352150 | 1.1267219 |
Blommersia domerguei | 34.24222 | 32.7337852 | 0.1358007 | 1.2734232 |
Blommersia variabilis | 34.08967 | 37.0838899 | 0.1360047 | 1.3698919 |
Blommersia wittei | 34.04916 | 43.0392219 | 0.1313395 | 1.6038493 |
Guibemantis albolineatus | 34.13170 | 36.2847924 | 0.1323553 | 1.4121303 |
Guibemantis bicalcaratus | 34.10449 | 37.9020362 | 0.1343464 | 1.4627794 |
Guibemantis methueni | 34.10817 | 37.6956880 | 0.1344766 | 1.4656979 |
Guibemantis annulatus | 34.13967 | 41.5122676 | 0.1327365 | 1.6175596 |
Guibemantis flavobrunneus | 34.04706 | 35.6776623 | 0.1351191 | 1.3741055 |
Guibemantis pulcher | 34.07965 | 37.5099974 | 0.1330232 | 1.4425973 |
Guibemantis tasifotsy | 34.08494 | 35.4420066 | 0.1354543 | 1.3511566 |
Guibemantis punctatus | 34.11883 | 42.7559830 | 0.1366924 | 1.6540575 |
Guibemantis wattersoni | 34.10903 | 42.3740010 | 0.1353871 | 1.6510022 |
Guibemantis liber | 34.12419 | 37.6438550 | 0.1323148 | 1.4437087 |
Guibemantis timidus | 34.11925 | 35.6695311 | 0.1315710 | 1.3839937 |
Guibemantis depressiceps | 34.08095 | 37.4167172 | 0.1329741 | 1.4444187 |
Guibemantis kathrinae | 34.11303 | 33.6383729 | 0.1369639 | 1.3064926 |
Guibemantis tornieri | 34.11147 | 39.6400987 | 0.1351273 | 1.5423541 |
Mantella crocea | 34.56518 | 38.5275457 | 0.1332642 | 1.4957375 |
Mantella milotympanum | 34.29375 | 36.2390093 | 0.1338406 | 1.4523111 |
Mantella pulchra | 34.29880 | 35.2245238 | 0.1330841 | 1.3543522 |
Mantella madagascariensis | 33.64387 | 35.8604304 | 0.1348189 | 1.4053537 |
Mantella betsileo | 34.21755 | 40.5493298 | 0.1335361 | 1.5224461 |
Mantella ebenaui | 34.26994 | 35.0762348 | 0.1325249 | 1.3064694 |
Mantella viridis | 33.64132 | 53.4413621 | 0.1351426 | 2.0023389 |
Mantella expectata | 33.64466 | 37.4414194 | 0.1346029 | 1.4271150 |
Mantella laevigata | 34.20989 | 37.0130123 | 0.1337572 | 1.4066421 |
Mantella manery | 34.23192 | 31.8089731 | 0.1335527 | 1.1729046 |
Mantella baroni | 34.29344 | 33.3278419 | 0.1359808 | 1.3056258 |
Mantella haraldmeieri | 33.68039 | 37.2617535 | 0.1349767 | 1.4341173 |
Mantella nigricans | 33.68705 | 34.0767397 | 0.1333467 | 1.2800040 |
Mantella cowanii | 33.72641 | 36.4550923 | 0.1340966 | 1.4269322 |
Mantella bernhardi | 34.28862 | 37.5965059 | 0.1336858 | 1.4428693 |
Wakea madinika | 34.22710 | 34.9638227 | 0.1351968 | 1.2699450 |
Boehmantis microtympanum | 33.58289 | 39.4722532 | 0.1364827 | 1.5286143 |
Gephyromantis ambohitra | 33.54949 | 38.1544158 | 0.1358140 | 1.4247573 |
Gephyromantis asper | 34.23005 | 34.5245328 | 0.1350531 | 1.3410421 |
Gephyromantis tahotra | 33.68942 | 29.8189369 | 0.1358867 | 1.1146836 |
Gephyromantis horridus | 34.31959 | 37.1265958 | 0.1336272 | 1.3942004 |
Gephyromantis malagasius | 34.04047 | 38.5288434 | 0.1363550 | 1.4944752 |
Gephyromantis striatus | 34.15220 | 36.6378008 | 0.1361099 | 1.3898223 |
Gephyromantis ventrimaculatus | 34.30115 | 41.3434576 | 0.1345964 | 1.6137372 |
Gephyromantis klemmeri | 34.31366 | 32.1829501 | 0.1344881 | 1.2102013 |
Gephyromantis rivicola | 33.65692 | 40.1579343 | 0.1339820 | 1.5125511 |
Gephyromantis silvanus | 33.67959 | 33.0310121 | 0.1350812 | 1.2309118 |
Gephyromantis webbi | 33.63809 | 35.0415782 | 0.1358031 | 1.3035448 |
Gephyromantis atsingy | 34.10730 | 37.6406590 | 0.1364643 | 1.3758593 |
Gephyromantis azzurrae | 33.69919 | 36.9543227 | 0.1315305 | 1.4093634 |
Gephyromantis corvus | 34.22860 | 37.8599530 | 0.1371713 | 1.4309832 |
Gephyromantis pseudoasper | 34.07166 | 38.0997375 | 0.1348831 | 1.4276450 |
Gephyromantis blanci | 34.22089 | 34.5501231 | 0.1345743 | 1.3331056 |
Gephyromantis runewsweeki | 34.17763 | 32.9895992 | 0.1357077 | 1.2765962 |
Gephyromantis enki | 34.18756 | 35.9806166 | 0.1355563 | 1.3868298 |
Gephyromantis boulengeri | 34.15368 | 35.6513114 | 0.1332648 | 1.3770796 |
Gephyromantis eiselti | 34.07231 | 35.4928269 | 0.1353647 | 1.4157856 |
Gephyromantis mafy | 33.98416 | 41.8352760 | 0.1357996 | 1.6489214 |
Gephyromantis thelenae | 34.08517 | 39.8846099 | 0.1320861 | 1.5992640 |
Gephyromantis decaryi | 33.98624 | 36.5601859 | 0.1371059 | 1.4097783 |
Gephyromantis hintelmannae | 34.01144 | 38.8920330 | 0.1364066 | 1.5269919 |
Gephyromantis verrucosus | 34.04441 | 33.6588640 | 0.1351796 | 1.2777173 |
Gephyromantis leucocephalus | 34.24599 | 42.7014476 | 0.1338787 | 1.6557973 |
Gephyromantis ranjomavo | 33.66289 | 31.3014835 | 0.1346679 | 1.1825109 |
Gephyromantis spiniferus | 34.30883 | 42.1018165 | 0.1337423 | 1.6182287 |
Gephyromantis cornutus | 33.50278 | 39.1076784 | 0.1342327 | 1.5515885 |
Gephyromantis tschenki | 34.02949 | 37.6510606 | 0.1347823 | 1.4597015 |
Gephyromantis redimitus | 33.99142 | 40.0604852 | 0.1359301 | 1.5382619 |
Gephyromantis granulatus | 34.19031 | 37.1653185 | 0.1365775 | 1.3925261 |
Gephyromantis moseri | 34.03625 | 35.3342509 | 0.1341706 | 1.3532881 |
Gephyromantis leucomaculatus | 34.14442 | 35.5544092 | 0.1357843 | 1.3391123 |
Gephyromantis zavona | 33.58406 | 32.4633388 | 0.1335833 | 1.2100552 |
Gephyromantis salegy | 34.09330 | 35.0445412 | 0.1338625 | 1.3152886 |
Gephyromantis schilfi | 34.00196 | 34.6257679 | 0.1350030 | 1.2895591 |
Gephyromantis tandroka | 33.58216 | 33.1136373 | 0.1340923 | 1.2413554 |
Gephyromantis luteus | 34.27442 | 37.1948302 | 0.1344481 | 1.4325199 |
Gephyromantis sculpturatus | 34.32264 | 36.3899797 | 0.1330565 | 1.4225320 |
Gephyromantis plicifer | 34.00912 | 34.9796505 | 0.1356264 | 1.3470014 |
Mantidactylus aerumnalis | 34.20646 | 36.2351846 | 0.1351758 | 1.4062689 |
Mantidactylus albofrenatus | 33.56801 | 35.1420010 | 0.1357779 | 1.4108255 |
Mantidactylus brevipalmatus | 33.56565 | 38.5534333 | 0.1350136 | 1.4878144 |
Mantidactylus delormei | 33.65246 | 36.0594471 | 0.1331606 | 1.3748473 |
Mantidactylus paidroa | 33.62583 | 33.2821313 | 0.1309444 | 1.2851184 |
Mantidactylus alutus | 34.33717 | 37.4036551 | 0.1367543 | 1.4484701 |
Mantidactylus curtus | 33.55380 | 40.0025550 | 0.1338267 | 1.5201414 |
Mantidactylus madecassus | 33.62834 | 39.3632699 | 0.1352063 | 1.5113206 |
Mantidactylus pauliani | 33.58380 | 35.0716629 | 0.1361633 | 1.3991732 |
Mantidactylus bellyi | 33.56414 | 42.2556622 | 0.1332361 | 1.5815824 |
Mantidactylus ulcerosus | 33.53829 | 36.4278942 | 0.1347924 | 1.3729053 |
Mantidactylus betsileanus | 33.55022 | 41.1804098 | 0.1339119 | 1.5709119 |
Mantidactylus noralottae | 34.02794 | 36.0873812 | 0.1360314 | 1.3781139 |
Mantidactylus ambohimitombi | 33.67438 | 32.6715781 | 0.1345807 | 1.2739447 |
Mantidactylus ambreensis | 33.61719 | 39.0962875 | 0.1350499 | 1.4639378 |
Mantidactylus femoralis | 33.50601 | 36.5425589 | 0.1367609 | 1.3953814 |
Mantidactylus zolitschka | 33.56451 | 40.1238617 | 0.1359249 | 1.6095425 |
Mantidactylus mocquardi | 33.51014 | 39.6624523 | 0.1388057 | 1.5220648 |
Mantidactylus biporus | 33.64820 | 37.1399010 | 0.1323105 | 1.4249316 |
Mantidactylus bourgati | 33.59725 | 37.0357471 | 0.1365414 | 1.4248153 |
Mantidactylus charlotteae | 33.63082 | 38.4699491 | 0.1337205 | 1.4863225 |
Mantidactylus opiparis | 33.55528 | 38.6968745 | 0.1358116 | 1.4791247 |
Mantidactylus melanopleura | 33.52597 | 39.7596543 | 0.1354068 | 1.5309768 |
Mantidactylus zipperi | 33.62946 | 40.1211153 | 0.1350144 | 1.5648265 |
Mantidactylus lugubris | 33.60169 | 34.7079673 | 0.1349328 | 1.3370649 |
Mantidactylus tricinctus | 33.57395 | 40.9118440 | 0.1346862 | 1.5814150 |
Mantidactylus majori | 33.59785 | 38.3543017 | 0.1353503 | 1.4875496 |
Mantidactylus argenteus | 34.08681 | 32.2897188 | 0.1319842 | 1.2486756 |
Mantidactylus cowanii | 33.63801 | 39.0745812 | 0.1325754 | 1.5295839 |
Mantidactylus grandidieri | 33.55878 | 36.3214311 | 0.1343737 | 1.4022044 |
Mantidactylus guttulatus | 33.57074 | 35.1740986 | 0.1363710 | 1.3454306 |
Spinomantis aglavei | 33.68267 | 36.5159729 | 0.1323347 | 1.4065561 |
Spinomantis fimbriatus | 34.12157 | 35.7744988 | 0.1333992 | 1.3722590 |
Spinomantis tavaratra | 34.08525 | 31.0912842 | 0.1332289 | 1.1556551 |
Spinomantis phantasticus | 33.69033 | 37.9419334 | 0.1360104 | 1.4474296 |
Spinomantis bertini | 33.72554 | 35.4064425 | 0.1343952 | 1.3657610 |
Spinomantis guibei | 33.67211 | 43.3145221 | 0.1361180 | 1.6868688 |
Spinomantis microtis | 33.66020 | 39.5837116 | 0.1339489 | 1.5354941 |
Spinomantis brunae | 33.65240 | 43.7996976 | 0.1339881 | 1.7076971 |
Spinomantis elegans | 33.74601 | 39.7176563 | 0.1336128 | 1.5282744 |
Spinomantis peraccae | 34.02520 | 35.9703421 | 0.1357367 | 1.3769420 |
Spinomantis massi | 34.14283 | 31.9997567 | 0.1361332 | 1.1968339 |
Tsingymantis antitra | 34.32781 | 39.6708299 | 0.1348581 | 1.4707729 |
Laliostoma labrosum | 34.29460 | 36.0655586 | 0.1347566 | 1.3591491 |
Aglyptodactylus securifer | 34.26081 | 40.7942148 | 0.1346237 | 1.5174793 |
Aglyptodactylus laticeps | 34.23987 | 43.2735997 | 0.1335303 | 1.6098148 |
Aglyptodactylus madagascariensis | 34.26118 | 41.0900700 | 0.1336204 | 1.5891644 |
Oreobates gemcare | 27.18024 | 2.9400451 | 0.1326552 | 0.2002437 |
Oreobates granulosus | 30.08670 | 5.8639713 | 0.1394010 | 0.3568929 |
Pristimantis pharangobates | 26.77105 | 9.0765376 | 0.1370976 | 0.4712096 |
Dryophytes walkeri | 36.25684 | 11.0801553 | 0.1290336 | 0.4251331 |
Dendropsophus molitor | 35.94550 | 6.5445313 | 0.1114455 | 0.2843902 |
Paramesotriton labiatus | 33.29464 | 13.7005921 | 0.1384989 | 0.4894372 |
Hyloxalus italoi | 33.54766 | 15.1925930 | 0.1376286 | 0.6148015 |
Polypedates braueri | 35.69335 | 4.4672186 | 0.1396728 | 0.1748780 |
Hynobius fucus | 29.53878 | 16.7055366 | 0.1387388 | 0.6095587 |
Cynops orientalis | 34.43684 | 5.4331496 | 0.1463195 | 0.1994169 |
Cophixalus australis | 32.31767 | 19.6651206 | 0.1467242 | 0.7645302 |
Chalcorana labialis | 32.96300 | 21.5367799 | 0.1317188 | 0.7552998 |
Kalophrynus limbooliati | 32.94849 | 27.0779766 | 0.1411581 | 0.9369931 |
Pristimantis matidiktyo | 33.79371 | 15.3999838 | 0.1477094 | 0.6131096 |
Pristimantis festae | 30.38937 | 5.4975168 | 0.1405368 | 0.2732094 |
# Summary statistics
summary(species_ARR$slope)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04859 0.13112 0.13464 0.13440 0.13813 0.21569
species_ARR %>%
summarise(ARR = mean(slope), sd = sd(slope))
## ARR sd
## 1 0.1344049 0.008228308
# Figure
ggplot(species_ARR) + geom_density(aes(slope), fill = "#CE5B97", alpha = 1) + xlab("Acclimation Response Ratio (ARR)") +
ylab("Number of species") + theme_classic() + theme(text = element_text(color = "black"),
axis.title.x = element_text(size = 50, margin = margin(t = 40, r = 0, b = 0,
l = 0)), axis.title.y = element_text(size = 50, margin = margin(t = 0, r = 40,
b = 0, l = 0)), axis.text.x = element_text(size = 40, margin = margin(t = 20,
r = 0, b = 0, l = 0)), axis.text.y = element_text(size = 40, margin = margin(t = 0,
r = 20, b = 0, l = 0)), panel.border = element_rect(fill = NA, size = 2))
ggsave(file = "fig/Figure_S3.png", width = 20, height = 15, dpi = 500)
Fig. A3 | Variation in plastic responses across species. The acclimation response ratio (ARR) represents the magnitude change in heat tolerance limits for each degree change in environmental temperature. The variation in ARR was low (mean ± standard deviation = 0.134 ± 0.008; range = 0.049 – 0.216; n = 5203).
Fig. S4 - Community-level patterns in TSM
Load data
# Substrate data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells.rds")
# Pond data
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current_clipped_cells.rds")
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C_clipped_cells.rds")
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C_clipped_cells.rds")
# Above-ground vegetation
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_clipped_cells.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_clipped_cells.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_clipped_cells.rds")
# Upload high resolution Earth data
world <- ne_countries(scale = "large", returnclass = "sf")
world <- world %>%
filter(!grepl("Antarctica", name))
st_crs(world) <- st_crs(community_pond_current)
# Find limits for colours of the plot
tsm_min <- min(min(community_sub_current$community_TSM, na.rm = TRUE), min(community_sub_future4C$community_TSM,
na.rm = TRUE), min(community_arb_current$community_TSM, na.rm = TRUE), min(community_arb_future4C$community_TSM,
na.rm = TRUE), min(community_pond_current$community_TSM, na.rm = TRUE), min(community_pond_future4C$community_TSM,
na.rm = TRUE))
tsm_max <- max(max(community_sub_current$community_TSM, na.rm = TRUE), max(community_sub_future4C$community_TSM,
na.rm = TRUE), max(community_arb_current$community_TSM, na.rm = TRUE), max(community_arb_future4C$community_TSM,
na.rm = TRUE), max(community_pond_current$community_TSM, na.rm = TRUE), max(community_pond_future4C$community_TSM,
na.rm = TRUE))
Vegetated substrate
# Current
map_sub_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_current,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
name = "TSM", na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5),
limits = c(tsm_min, tsm_max), begin = 0, end = 1) + theme_void() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 2, colour = "#5DC8D9"))
# Future +2C
map_sub_TSM_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future2C,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5), limits = c(tsm_min,
tsm_max), begin = 0, end = 1) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#FAA43A"))
# Future +4C
map_sub_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future4C,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5), limits = c(tsm_min,
tsm_max), begin = 0, end = 1) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_sub_current <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_current.rds")
pred_community_sub_future2C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_future2C.rds")
pred_community_sub_future4C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_future4C.rds")
lat_sub_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_sub_future4C, aes(x = lat, y = community_TSM,
size = 1/community_TSM_se), alpha = 0.7, fill = "#EF4187", col = "transparent",
shape = 22, stroke = 0.1) + geom_point(data = community_sub_future2C, aes(x = lat,
y = community_TSM, size = 1/community_TSM_se), alpha = 0.7, fill = "#FAA43A",
col = "transparent", shape = 22, stroke = 0.1) + geom_point(data = community_sub_current,
aes(x = lat, y = community_TSM, size = 1/community_TSM_se), alpha = 0.75, fill = "#5DC8D9",
col = "transparent", shape = 22, stroke = 0.1) + geom_ribbon(data = pred_community_sub_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black",
size = 0.1) + geom_ribbon(data = pred_community_sub_future2C, aes(x = lat, ymin = lower,
ymax = upper), fill = "#FAA43A", colour = "black", size = 0.1) + geom_ribbon(data = pred_community_sub_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black",
size = 0.1) + scale_size_continuous(range = c(0.001, 1.75), guide = "none") +
xlim(-55.00099, 72.00064) + ylim(0, 40) + xlab("") + ylab("") + coord_flip() +
theme_classic() + theme(axis.text.y = element_text(color = "black", size = 11),
aspect.ratio = 1, plot.background = element_rect(fill = "transparent", colour = NA),
panel.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), text = element_text(color = "black"), axis.title.x = element_text(size = 12),
axis.text.x = element_text(color = "black", size = 11), axis.line = element_line(color = "black"),
panel.border = element_rect(fill = NA, size = 2))
substrate_plot <- (map_sub_TSM_current + map_sub_TSM_future2C + map_sub_TSM_future4C +
lat_sub_all + plot_layout(ncol = 4))
Pond or wetland
# Current
map_pond_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_current,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
name = "TSM", na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5),
limits = c(tsm_min, tsm_max), begin = 0, end = 1) + theme_void() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 2, colour = "#5DC8D9"))
# Future +2C
map_pond_TSM_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_future2C,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5), limits = c(tsm_min,
tsm_max), begin = 0, end = 1) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#FAA43A"))
# Future +4C
map_pond_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_future4C,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5), limits = c(tsm_min,
tsm_max), begin = 0, end = 1) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_pond_current <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_current.rds")
pred_community_pond_future2C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_future2C.rds")
pred_community_pond_future4C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_substrate_future4C.rds")
lat_pond_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_pond_future4C, aes(x = lat, y = community_TSM,
size = 1/community_TSM_se), alpha = 0.7, fill = "#EF4187", col = "transparent",
shape = 22, stroke = 0.1) + geom_point(data = community_pond_future2C, aes(x = lat,
y = community_TSM, size = 1/community_TSM_se), alpha = 0.7, fill = "#FAA43A",
col = "transparent", shape = 22, stroke = 0.1) + geom_point(data = community_pond_current,
aes(x = lat, y = community_TSM, size = 1/community_TSM_se), alpha = 0.7, fill = "#5DC8D9",
col = "transparent", shape = 22, stroke = 0.1) + geom_ribbon(data = pred_community_pond_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black",
size = 0.1) + geom_ribbon(data = pred_community_pond_future2C, aes(x = lat, ymin = lower,
ymax = upper), fill = "#FAA43A", colour = "black", size = 0.1) + geom_ribbon(data = pred_community_pond_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black",
size = 0.1) + scale_size_continuous(range = c(0.001, 1.75), guide = "none") +
xlim(-55.00099, 72.00064) + ylim(0, 40) + xlab("") + ylab("") + coord_flip() +
theme_classic() + theme(axis.text.y = element_text(color = "black", size = 11),
aspect.ratio = 1, plot.background = element_rect(fill = "transparent", colour = NA),
panel.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), text = element_text(color = "black"), axis.title.x = element_text(size = 12),
axis.text.x = element_text(color = "black", size = 11), axis.line = element_line(color = "black"),
panel.border = element_rect(fill = NA, size = 2))
pond_plot <- (map_pond_TSM_current + map_pond_TSM_future2C + map_pond_TSM_future4C +
lat_pond_all + plot_layout(ncol = 4))
Above-ground vegetation
# Current
map_arb_TSM_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_current,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
name = "TSM", na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5),
limits = c(tsm_min, tsm_max), begin = 0, end = 1) + theme_void() + theme(legend.position = "none",
plot.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA, size = 2, colour = "#5DC8D9"))
# Future +2C
map_arb_TSM_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future2C,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(option = "plasma",
na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 5), limits = c(tsm_min,
tsm_max), begin = 0, end = 1) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), legend.position = "none",
panel.border = element_rect(fill = NA, size = 2, colour = "#FAA43A"))
# Future +4C
map_arb_TSM_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future4C,
aes(fill = community_TSM), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_viridis(name = "TSM",
option = "plasma", na.value = "gray1", direction = -1, breaks = seq(0, 40, by = 10),
limits = c(tsm_min, tsm_max), begin = 0, end = 1) + theme_void() + theme(plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "bottom",
panel.border = element_rect(fill = NA, size = 2, colour = "#EF4187"))
# Latitudinal patterns
pred_community_arb_current <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_arboreal_current.rds")
pred_community_arb_future2C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_arboreal_future2C.rds")
pred_community_arb_future4C <- readRDS("RData/Models/TSM/predictions_community_lat_TSM_arboreal_future4C.rds")
lat_arb_all <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = community_arb_future4C, aes(x = lat, y = community_TSM,
size = 1/community_TSM_se), alpha = 0.7, fill = "#EF4187", col = "transparent",
shape = 22, stroke = 0.1) + geom_point(data = community_arb_future2C, aes(x = lat,
y = community_TSM, size = 1/community_TSM_se), alpha = 0.7, fill = "#FAA43A",
col = "transparent", shape = 22, stroke = 0.1) + geom_point(data = community_arb_current,
aes(x = lat, y = community_TSM, size = 1/community_TSM_se), alpha = 0.7, fill = "#5DC8D9",
col = "transparent", shape = 22, stroke = 0.1) + geom_ribbon(data = pred_community_arb_current,
aes(x = lat, ymin = lower, ymax = upper), fill = "#5DC8D9", colour = "black",
size = 0.1) + geom_ribbon(data = pred_community_arb_future2C, aes(x = lat, ymin = lower,
ymax = upper), fill = "#FAA43A", colour = "black", size = 0.1) + geom_ribbon(data = pred_community_arb_future4C,
aes(x = lat, ymin = lower, ymax = upper), fill = "#EF4187", colour = "black",
size = 0.1) + scale_size_continuous(range = c(0.001, 1.75), guide = "none") +
xlim(-55.00099, 72.00064) + ylim(0, 40) + xlab("") + ylab("TSM") + coord_flip() +
theme_classic() + theme(axis.text.y = element_text(color = "black", size = 11),
aspect.ratio = 1, plot.background = element_rect(fill = "transparent", colour = NA),
panel.background = element_rect(fill = "transparent", colour = NA), plot.margin = unit(c(0,
0, 0, 0), "cm"), text = element_text(color = "black"), axis.title.x = element_text(size = 15),
axis.text.x = element_text(color = "black", size = 11), axis.line = element_line(color = "black"),
panel.border = element_rect(fill = NA, size = 2))
arboreal_plot <- (map_arb_TSM_current + map_arb_TSM_future2C + map_arb_TSM_future4C +
lat_arb_all + plot_layout(ncol = 4))
All habitats
fig_S4 <- (substrate_plot/pond_plot/arboreal_plot/plot_layout(ncol = 1))
fig_S4
ggsave(fig_S4, file = "fig/Figure_A4.png", width = 15, height = 7, dpi = 500)
Fig. S4 | Community-level patterns in thermal safety margin for amphibians on terrestrial (top row), aquatic (middle row), or arboreal (bottom row) microhabitats. Thermal safety margins (TSM) were calculated as the mean difference between CTmax and the predicted operative body temperature in full shade during the warmest quarters of 2006-2015 in each community (1-degree grid cell). Black color depicts areas with no data. The right panel depicts latitudinal patterns in TSM in current climates (blue) or assuming 2°C (orange) or 4°C of global warming above pre-industrial levels (pink), as predicted from generalized additive mixed models. Dashed lines represent the equator and tropics.
Fig. S5 - Number of species overheating
Load data
# Substrate data
community_sub_current <- readRDS("RData/Climate_vulnerability/Substrate/current/community_vulnerability_substrate_mean_acc_current_clipped_cells.rds")
community_sub_future2C <- readRDS("RData/Climate_vulnerability/Substrate/future2C/community_vulnerability_substrate_mean_acc_future2C_clipped_cells.rds")
community_sub_future4C <- readRDS("RData/Climate_vulnerability/Substrate/future4C/community_vulnerability_substrate_mean_acc_future4C_clipped_cells.rds")
# Pond data
community_pond_current <- readRDS("RData/Climate_vulnerability/Pond/current/community_vulnerability_pond_mean_acc_current_clipped_cells.rds")
community_pond_future2C <- readRDS("RData/Climate_vulnerability/Pond/future2C/community_vulnerability_pond_mean_acc_future2C_clipped_cells.rds")
community_pond_future4C <- readRDS("RData/Climate_vulnerability/Pond/future4C/community_vulnerability_pond_mean_acc_future4C_clipped_cells.rds")
# Above-ground vegetation
community_arb_current <- readRDS("RData/Climate_vulnerability/Arboreal/current/community_vulnerability_arboreal_mean_acc_current_clipped_cells.rds")
community_arb_future2C <- readRDS("RData/Climate_vulnerability/Arboreal/future2C/community_vulnerability_arboreal_mean_acc_future2C_clipped_cells.rds")
community_arb_future4C <- readRDS("RData/Climate_vulnerability/Arboreal/future4C/community_vulnerability_arboreal_mean_acc_future4C_clipped_cells.rds")
# Upload high resolution Earth data
world <- ne_countries(scale = "large", returnclass = "sf")
world <- world %>%
filter(!grepl("Antarctica", name))
st_crs(world) <- st_crs(community_sub_current)
Vegetated Substrate
# Set colours
color_palette <- colorRampPalette(colors = c("#FAF218", "#EF4187", "#d90429"))
colors <- color_palette(100)
color_func <- colorRampPalette(c("gray65", colors))
color_palette <- color_func(100)
sp_min <- min(min(community_sub_current$n_species_overheating, na.rm = TRUE), min(community_sub_future4C$n_species_overheating,
na.rm = TRUE), min(community_pond_current$n_species_overheating, na.rm = TRUE),
min(community_pond_future4C$n_species_overheating, na.rm = TRUE), min(community_arb_current$n_species_overheating,
na.rm = TRUE), min(community_arb_future4C$n_species_overheating, na.rm = TRUE))
sp_max <- max(max(community_sub_current$n_species_overheating, na.rm = TRUE), max(community_sub_future4C$n_species_overheating,
na.rm = TRUE), max(community_pond_current$n_species_overheating, na.rm = TRUE),
max(community_pond_future4C$n_species_overheating, na.rm = TRUE), max(community_arb_current$n_species_overheating,
na.rm = TRUE), max(community_arb_future4C$n_species_overheating, na.rm = TRUE))
# Substrate (current)
map_sub_sp_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_current,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Substrate (Future +2C)
map_sub_sp_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future2C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0.1, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#FAA43A"))
# Substrate (Future +4C)
map_sub_sp_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_sub_future4C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
lat_sub <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = filter(community_sub_future4C, n_species_overheating >
0), aes(x = lat, y = n_species_overheating), alpha = 0.85, fill = "#EF4187",
col = "transparent", shape = 22, size = 1, stroke = 0.1) + geom_point(data = filter(community_sub_future2C,
n_species_overheating > 0), aes(x = lat, y = n_species_overheating), alpha = 0.85,
fill = "#FAA43A", col = "transparent", shape = 22, size = 1, stroke = 0.1) +
geom_point(data = filter(community_sub_current, n_species_overheating > 0), aes(x = lat,
y = n_species_overheating), alpha = 0.85, fill = "#5DC8D9", col = "transparent",
shape = 22, size = 1, stroke = 0.1) + xlim(-55.00099, 72.00064) + ylim(0,
38) + xlab("") + ylab("") + coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_blank(), axis.text.x = element_text(color = "black", size = 11),
axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
substrate_plot <- map_sub_sp_current + map_sub_sp_future2C + map_sub_sp_future4C +
lat_sub + plot_layout(ncol = 4)
Pond or wetland
# Pond (current)
map_pond_sp_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_current,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Substrate (Future +2C)
map_pond_sp_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_future2C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0.1, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#FAA43A"))
# Substrate (Future +4C)
map_pond_sp_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_pond_future4C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(plot.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.position = "none", panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
lat_pond <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = filter(community_pond_future4C, n_species_overheating >
0), aes(x = lat, y = n_species_overheating), alpha = 0.85, fill = "#EF4187",
col = "transparent", shape = 22, size = 1, stroke = 0.1) + xlim(-55.00099, 72.00064) +
ylim(0, 38) + xlab("") + ylab("") + coord_flip() + theme_classic() + theme(axis.text.y = element_text(color = "black",
size = 11), aspect.ratio = 1, plot.background = element_rect(fill = "transparent",
colour = NA), panel.background = element_rect(fill = "transparent", colour = NA),
plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_blank(), axis.text.x = element_text(color = "black", size = 11),
axis.line = element_line(color = "black"), panel.border = element_rect(fill = NA,
size = 2))
pond_plot <- map_pond_sp_current + map_pond_sp_future2C + map_pond_sp_future4C +
lat_pond + plot_layout(ncol = 4)
Above-ground vegetation
# Current
map_arb_sp_current <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_current,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(legend.position = "none", plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#5DC8D9"))
# Future +2C
map_arb_sp_future2C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future2C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(legend.position = "bottom", legend.text = element_text(size = 11),
legend.title = element_text(size = 14), legend.key.height = unit(0.5, "cm"),
legend.key.width = unit(1, "cm"), plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0.1, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#FAA43A"))
# Future +4C
map_arb_sp_future4C <- ggplot() + geom_hline(yintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_hline(yintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_sf(data = world, fill = "black", col = "black") + geom_sf(data = community_arb_future4C,
aes(fill = n_species_overheating), color = NA, alpha = 1) + coord_sf(ylim = c(-55.00099,
72.00064), xlim = c(-166.82905, 178.56617)) + scale_fill_gradientn(colours = color_palette,
na.value = "gray1", name = "Species overheating", limits = c(sp_min, sp_max)) +
theme_void() + theme(legend.position = "bottom", legend.text = element_text(size = 11),
legend.title = element_text(size = 14), legend.key.height = unit(0.5, "cm"),
legend.key.width = unit(1, "cm"), plot.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), panel.border = element_rect(fill = NA,
size = 2, colour = "#EF4187"))
# Latitudinal patterns
lat_arb <- ggplot() + geom_vline(xintercept = 0, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = 23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_vline(xintercept = -23.43663, colour = "gray", linetype = "dashed",
size = 0.5) + geom_point(data = filter(community_arb_future4C, n_species_overheating >
0), aes(x = lat, y = n_species_overheating), alpha = 0.85, fill = "#EF4187",
col = "transparent", shape = 22, size = 1, stroke = 0.1) + geom_point(data = filter(community_arb_future2C,
n_species_overheating > 0), aes(x = lat, y = n_species_overheating), alpha = 0.85,
fill = "#FAA43A", col = "transparent", shape = 22, size = 1, stroke = 0.1) +
geom_point(data = filter(community_arb_current, n_species_overheating > 0), aes(x = lat,
y = n_species_overheating), alpha = 0.85, fill = "#5DC8D9", col = "transparent",
shape = 22, size = 1, stroke = 0.1) + xlim(-55.00099, 72.00064) + ylim(0,
38) + xlab("") + ylab("Species overheating") + coord_flip() + theme_classic() +
theme(axis.text.y = element_text(color = "black", size = 11), aspect.ratio = 1,
plot.background = element_rect(fill = "transparent", colour = NA), panel.background = element_rect(fill = "transparent",
colour = NA), plot.margin = unit(c(0, 0, 0, 0), "cm"), text = element_text(color = "black"),
axis.title.x = element_text(size = 13), axis.text.x = element_text(color = "black",
size = 11), axis.line = element_line(color = "black"), legend.text = element_text(size = 15),
legend.title = element_text(size = 18), legend.key.height = unit(0.6, "cm"),
legend.key.width = unit(0.5, "cm"), panel.border = element_rect(fill = NA,
size = 2))
arboreal_plot <- map_arb_sp_current + map_arb_sp_future2C + map_arb_sp_future4C +
lat_arb + plot_layout(ncol = 4)
Final plot
fig_S5 <- (substrate_plot/pond_plot/arboreal_plot/plot_layout(ncol = 1))
fig_S5
ggsave(fig_S5, file = "fig/Figure_S5.png", width = 14, height = 7, dpi = 500)
Fig. S5 | Number of species predicted to experience overheating events in terrestrial (top row), aquatic (middle row) and arboreal (bottom row) microhabitats. The number of species overheating was assessed as the sum of species overheating at least once in the period surveyed (warmest quarters of 2006-2015) in each community (1-degree grid cell). Black color depicts areas with no data, and gray color communities without species at risk. The right panel depicts latitudinal patterns in the number of species predicted to overheat in current climates (blue) or assuming 2°C (orange) or 4°C of global warming above pre-industrial levels (pink). Dashed lines represent the equator and tropics. No species were predicted to experience overheating events in water bodies, and hence are not displayed.
Package versions
sessionInfo()
## R version 4.2.0 (2022-04-22 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22631)
##
## Matrix products: default
##
## locale:
## [1] English_Australia.utf8
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] ncdf4_1.22 RNCEP_1.0.10 terra_1.7-46
## [4] emmeans_1.7.3 optimx_2023-10.21 ggeffects_1.2.2
## [7] cowplot_1.1.1 lwgeom_0.2-13 ggspatial_1.1.8
## [10] metafor_4.2-0 numDeriv_2016.8-1.1 metadat_1.2-0
## [13] rnaturalearthhires_0.2.1 rnaturalearthdata_0.1.0 rnaturalearth_0.3.3
## [16] futile.logger_1.4.3 future.apply_1.10.0 furrr_0.3.1
## [19] future_1.33.0 rlang_1.1.1 gamm4_0.2-6
## [22] lme4_1.1-33 mgcv_1.8-40 nlme_3.1-157
## [25] MCMCglmm_2.34 coda_0.19-4 Matrix_1.5-4
## [28] microclima_0.1.0 NicheMapR_3.3.2 RNetCDF_2.6-2
## [31] data.table_1.14.8 sf_1.0-14 zoo_1.8-12
## [34] curl_5.0.0 abind_1.4-5 doParallel_1.0.17
## [37] iterators_1.0.14 foreach_1.5.2 rgdal_1.6-7
## [40] taxize_0.9.100 rredlist_0.7.1 letsR_4.0
## [43] rgeos_0.6-2 rasterSp_0.0.1 raster_3.6-23
## [46] sp_2.0-0 ggbeeswarm_0.7.2 ggExtra_0.10.0
## [49] here_1.0.1 ggstatsplot_0.11.1 ggdist_3.2.1
## [52] RColorBrewer_1.1-3 ggnewscale_0.4.10.9000 tidytree_0.4.2
## [55] phytools_1.5-1 ggtreeExtra_1.7.0 ggtree_3.5.0.901
## [58] R.utils_2.12.2 R.oo_1.25.0 R.methodsS3_1.8.2
## [61] patchwork_1.2.0.9000 naniar_1.0.0 ape_5.7-1
## [64] maps_3.4.1 viridis_0.6.4 viridisLite_0.4.2
## [67] kableExtra_1.3.4 lubridate_1.9.2 forcats_1.0.0
## [70] stringr_1.5.0 dplyr_1.1.2 purrr_1.0.1
## [73] readr_2.1.4 tidyr_1.3.0 tibble_3.2.1
## [76] ggplot2_3.5.1 tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
## [1] estimability_1.3 rappdirs_0.3.3 ragg_1.2.5
## [4] visdat_0.6.0 clusterGeneration_1.3.7 knitr_1.44
## [7] multcomp_1.4-26 rpart_4.1.16 generics_0.1.3
## [10] lambda.r_1.2.4 tgp_2.4-21 TH.data_1.1-2
## [13] combinat_0.0-8 proxy_0.4-27 slippymath_0.3.1
## [16] correlation_0.8.4 tzdb_0.4.0 webshot_0.5.4
## [19] xml2_1.3.6 httpuv_1.6.9 bold_1.3.0
## [22] xfun_0.39 hms_1.1.3 elevatr_0.99.0
## [25] jquerylib_0.1.4 evaluate_0.21 promises_1.2.0.1
## [28] progress_1.2.2 fansi_1.0.4 igraph_1.4.2
## [31] DBI_1.1.3 tensorA_0.36.2 paletteer_1.5.0
## [34] ellipsis_0.3.2 bookdown_0.34 insight_0.19.1
## [37] vctrs_0.6.2 geosphere_1.5-18 cachem_1.0.8
## [40] withr_2.5.0 progressr_0.14.0 treeio_1.21.0
## [43] prettyunits_1.1.1 mnormt_2.1.1 svglite_2.1.1
## [46] cluster_2.1.3 dotCall64_1.0-2 lazyeval_0.2.2
## [49] crayon_1.5.2 crul_1.4.0 labeling_0.4.3
## [52] pkgconfig_2.0.3 units_0.8-4 vipor_0.4.5
## [55] statsExpressions_1.5.0 globals_0.16.2 lifecycle_1.0.3
## [58] miniUI_0.1.1.1 sandwich_3.1-1 httpcode_0.3.0
## [61] mathjaxr_1.6-0 distributional_0.3.2 tcltk_4.2.0
## [64] rprojroot_2.0.3 datawizard_0.7.1 aplot_0.1.10
## [67] phangorn_2.11.1 boot_1.3-28 beeswarm_0.4.0
## [70] rnoaa_1.4.0 parameters_0.21.0 KernSmooth_2.23-20
## [73] spam_2.9-1 classInt_0.4-10 conditionz_0.1.0
## [76] maptools_1.1-6 parallelly_1.36.0 gridGraphics_0.5-1
## [79] scales_1.3.0 magrittr_2.0.3 compiler_4.2.0
## [82] plotrix_3.8-2 cli_3.6.1 listenv_0.9.0
## [85] hoardr_0.5.3 formatR_1.14 MASS_7.3-56
## [88] tidyselect_1.2.1 stringi_1.7.12 textshaping_0.3.6
## [91] highr_0.10 yaml_2.3.7 grid_4.2.0
## [94] maptree_1.4-8 sass_0.4.9 fastmatch_1.1-3
## [97] tools_4.2.0 timechange_0.2.0 rstudioapi_0.15.0
## [100] uuid_1.1-0 foreign_0.8-82 gridExtra_2.3
## [103] cubature_2.0.4.6 scatterplot3d_0.3-44 rmdformats_1.0.4
## [106] farver_2.1.1 digest_0.6.31 pracma_2.4.2
## [109] shiny_1.7.5 quadprog_1.5-8 Rcpp_1.0.10
## [112] later_1.3.1 httr_1.4.7 colorspace_2.1-0
## [115] rvest_1.0.3 XML_3.99-0.14 splines_4.2.0
## [118] fields_15.2 yulab.utils_0.0.6 rematch2_2.1.2
## [121] expm_0.999-7 ggplotify_0.1.0 systemfonts_1.0.4
## [124] xtable_1.8-4 futile.options_1.0.1 jsonlite_1.8.7
## [127] nloptr_2.0.3 corpcor_1.6.10 zeallot_0.1.0
## [130] ggfun_0.0.9 R6_2.5.1 pillar_1.9.0
## [133] htmltools_0.5.5 mime_0.12 glue_1.6.2
## [136] fastmap_1.1.1 minqa_1.2.5 class_7.3-20
## [139] codetools_0.2-18 optimParallel_1.0-2 mvtnorm_1.1-3
## [142] utf8_1.2.3 lattice_0.20-45 bslib_0.5.1
## [145] survival_3.7-0 rmarkdown_2.25.1 munsell_0.5.0
## [148] e1071_1.7-13 gtable_0.3.4 bayestestR_0.13.1